Nothing Special   »   [go: up one dir, main page]

WO2012144278A1 - 走行車 - Google Patents

走行車 Download PDF

Info

Publication number
WO2012144278A1
WO2012144278A1 PCT/JP2012/055779 JP2012055779W WO2012144278A1 WO 2012144278 A1 WO2012144278 A1 WO 2012144278A1 JP 2012055779 W JP2012055779 W JP 2012055779W WO 2012144278 A1 WO2012144278 A1 WO 2012144278A1
Authority
WO
WIPO (PCT)
Prior art keywords
deceleration
servo
traveling
deceleration pattern
servo motor
Prior art date
Application number
PCT/JP2012/055779
Other languages
English (en)
French (fr)
Inventor
村中武
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Priority to JP2013510918A priority Critical patent/JP5768876B2/ja
Priority to CN201280019254.7A priority patent/CN103492290B/zh
Priority to KR1020137030378A priority patent/KR101553569B1/ko
Priority to US14/112,553 priority patent/US8825331B2/en
Publication of WO2012144278A1 publication Critical patent/WO2012144278A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0407Storage devices mechanical using stacker cranes
    • B65G1/0421Storage devices mechanical using stacker cranes with control for stacker crane operations

Definitions

  • the present invention relates to a traveling vehicle, and more particularly, to a traveling vehicle using a plurality of servo motors as traveling motors.
  • a stacker crane used in an automatic warehouse is known as an example of a transport vehicle that performs automatic traveling.
  • a conventional automatic warehouse includes, for example, a pair of racks provided at predetermined intervals in the front-rear direction, a stacker crane provided movably in the left-right direction between the front and rear racks, and a side of one rack. And a loading station arranged on the side of the other rack.
  • the rack has a large number of luggage storage shelves vertically and horizontally.
  • the stacker crane has a traveling carriage, a lifting platform that can be raised and lowered by a mast provided therein, and a load transfer device (for example, a slide fork that is slidable in the front-rear direction). (For example, refer to Patent Document 1).
  • the stacker crane described in Patent Document 1 uses a total of four servo motors as traveling motors.
  • the mechanical brake of each servo motor is operated by simply shutting off the power supply, thereby stopping the stacker crane.
  • stacker cranes have been increased in speed and acceleration / deceleration. For this reason, the control deceleration torque realized by the servo driver is larger than the deceleration torque obtained by the mechanical brake of the servo motor.
  • stop category 1 a method in which the power is cut off after the stop by the deceleration control by the servo driver.
  • stop category 1 a method in which the power is cut off after the stop by the deceleration control by the servo driver.
  • An object of the present invention is to make it possible to stop safely and in a short distance even in the case where an abnormality occurs in some servo motors in a traveling vehicle that is driven by a plurality of servo motors.
  • a traveling vehicle includes a traveling vehicle main body, a plurality of servo motors, and a controller.
  • the plurality of servo motors are travel motors for traveling the traveling vehicle main body and have brakes.
  • the controller controls a plurality of servo motors.
  • the controller has an abnormality grasping unit that grasps an abnormality in a plurality of servomotors, and a deceleration pattern storage unit that stores a plurality of deceleration patterns by combining some servomotors among the plurality of servomotors. .
  • the controller removes the abnormal servo motor from the target of deceleration control, and further creates a deceleration pattern consisting of a combination of normal servo motors from the deceleration pattern storage unit. Then, the braking control is performed using the deceleration pattern.
  • the servo motor abnormality includes abnormality of the servo motor itself and abnormality of a device that affects the operation of the servo motor such as a servo amplifier.
  • the traveling vehicle when an abnormality occurs in some servo motors in a traveling vehicle that is driven by a plurality of servo motors, the abnormal servo motors are excluded from the target of deceleration control, and further, normal servo motors A deceleration pattern composed of the combination is read out, and braking control is performed using the deceleration pattern. Therefore, the traveling vehicle can be stopped safely and at a short distance.
  • the brake may be a mechanical brake.
  • the controller determines whether there is a deceleration pattern that consists of a combination of servo motors that have a deceleration greater than the deceleration obtained by the mechanical brake, and as a result, consists of a combination of deceleration by the mechanical brake and the servo motor
  • the braking control may be performed by selecting one capable of generating a larger deceleration as compared with the deceleration control using the deceleration pattern. In this traveling vehicle, when the deceleration by the mechanical brake is larger than the deceleration by the deceleration control using the deceleration pattern, the braking control by the mechanical brake is performed. That is, by selecting the braking means that can generate the greatest deceleration depending on the situation, the traveling vehicle can be stopped at the shortest distance in the situation.
  • the plurality of deceleration patterns may include a balance deceleration pattern composed of a combination of servo motors excluding the servo motor that causes unbalance in the traveling of the traveling vehicle main body.
  • the controller reads the balance deceleration pattern from the storage unit, the controller performs the deceleration control by the servo motor included in the balance deceleration pattern and also controls the servo motor that causes unbalance in the traveling of the traveling vehicle body. Remove from the target. In this traveling vehicle, even if it is a normal servo motor, the balance is improved by removing from the object of control a poorly balanced motor. As a result, an excessive load does not act on the traveling vehicle body.
  • a traveling vehicle includes a traveling vehicle main body, a plurality of servo drivers, and a controller.
  • the servo driver includes a servo motor having a mechanical brake that is a traveling motor for traveling the traveling vehicle body, and a servo amplifier corresponding to the servo motor.
  • the controller controls a plurality of servo drivers. When a servo driver abnormality signal is sent, the controller reads a deceleration pattern consisting of a combination of normal servo drivers. The controller compares the deceleration of the read deceleration pattern with the decelerations by a plurality of mechanical brakes and determines which is larger.
  • the controller When the deceleration by the plurality of mechanical brakes is larger, the controller operates the plurality of mechanical brakes by shutting off the power sources of the plurality of servo motors. If the deceleration of the read deceleration pattern is greater, the controller turns off the abnormal servo driver with the mechanical brake of the servo motor included in the abnormal servo driver open, and is specified in the deceleration pattern. A speed command is generated so that the set deceleration is realized. In this traveling vehicle, when the deceleration by the mechanical brake is larger than the deceleration by the deceleration control using the deceleration pattern, the braking control by the mechanical brake is performed.
  • the traveling vehicle can be stopped at the shortest distance in the situation.
  • the braking control by the mechanical brake is performed. That is, by selecting the braking means that can generate the greatest deceleration depending on the situation, the traveling vehicle can be stopped at the shortest distance in the situation.
  • the traveling vehicle according to the present invention can be stopped safely and in a short distance even when an abnormality occurs in some servo motors.
  • the schematic side view of the stacker crane as one embodiment.
  • the block block diagram which shows the control system of the servomotor of a stacker crane.
  • the block block diagram which shows the function of a traveling control part.
  • the graph which shows the deceleration and stop distance in the case of the deceleration control by some servomotors.
  • the flowchart which shows braking control when abnormality arises in a servo driver.
  • FIG. 1 is a schematic side view of a stacker crane as one embodiment.
  • the stacker crane 1 can travel in the vicinity of a rack in an automatic warehouse (not shown).
  • a lower rail 5 and an upper rail 7 are provided along a path along which the stacker crane 1 travels.
  • the stacker crane 1 can move to the left and right in FIG. 1 along the lower rail 5 and the upper rail 7.
  • the lower rail 5 is installed on the floor surface 3.
  • the upper rail 7 is fixed to the ceiling 9.
  • the stacker crane 1 includes a traveling carriage 11, a mast 15 provided on the traveling carriage 11, and a lifting platform 17 that is mounted on the mast 15 so as to be movable up and down.
  • the stacker crane 1 further has an upper carriage 13 provided on the upper part of the mast 15.
  • the traveling carriage 11 has a first wheel 21 and a second wheel 23.
  • the first wheel 21 and the second wheel 23 are arranged side by side in the traveling direction and are in contact with the lower rail 5.
  • the upper carriage 13 has a third wheel 25.
  • the third wheel 25 is in contact with the upper rail 7.
  • FIG. 2 is a block diagram showing a control system of the servo motor of the stacker crane.
  • the travel control system of the stacker crane 1 has a travel control unit 39.
  • the travel control unit 39 is a computer that includes a CPU, a RAM, a ROM, and the like and executes a program.
  • the traveling control unit 39 receives the conveyance command from the traveling vehicle controller 37, the traveling control unit 39 transmits the traveling command to a servo driver (described later) including each servo motor.
  • the travel control system of the stacker crane 1 includes a first servo motor 31, a second servo motor 32, a third servo motor 33, a fourth servo motor 34, and a fifth servo motor 35.
  • the first servo motor 31 and the second servo motor 32 drive the first wheel 21, and the third servo motor 33 and the fourth servo motor 34 drive the second wheel 23. Further, the fifth servo motor 35 drives the third wheel 25.
  • the first servo motor 31 and the third servo motor 33 are arranged forward and backward on one of the left and right sides, and the second servo motor 32 and the fourth servo motor 34 are arranged forward and backward on the other left and right side.
  • the servo motors 31 to 35 are provided with a first brake 56a, a second brake 56b, a third brake 56c, a fourth brake 56d, and a fifth brake 56e, respectively.
  • the brake is an electromagnetic brake built in the motor, and stops the motor by generating a deceleration torque at the same time as the power is turned off. These brakes are mechanical brakes.
  • the travel control system of the stacker crane 1 further includes a first servo amplifier 47a, a second servo amplifier 47b, a third servo amplifier 47c, a fourth servo amplifier 47d, and a fifth servo amplifier 47e.
  • the servo amplifier transmits the current amplified speed command to the servo motor.
  • the servo amplifiers 47a to 47e are provided with a first abnormality detection unit 55a, a second abnormality detection unit 55b, a third abnormality detection unit 55c, a fourth abnormality detection unit 55d, and a fifth abnormality detection unit 55e, respectively.
  • the abnormality detection unit can detect an abnormality in the control circuit of the servo amplifier and the corresponding servo motor, and transmits an abnormality detection signal to the travel control unit 39 when an abnormality is detected.
  • the travel control system of the stacker crane 1 further includes a first encoder 51a, a second encoder 51b, a third encoder 51c, a fourth encoder 51d, and a fifth encoder 51e.
  • the encoders 51a to 51e detect the rotational speeds of the servo motors 31 to 35, respectively, thereby obtaining the current positions and speeds of the servo motors 31 to 35, respectively.
  • the travel control system of the stacker crane 1 further includes a first torque sensor 53a, a second torque sensor 53b, a third torque sensor 53c, a fourth torque sensor 53d, and a fifth torque sensor 53e.
  • the torque sensors 53a to 53e are, for example, current sensors, and obtain the power consumption and output torque of the servo motors 31 to 35, respectively. Minor loops via the torque sensors 53a to 53e are provided between the servo motors 31 to 35 and the servo amplifiers 47a to 47e, respectively, and control is performed so that the servo motors 31 to 35 generate target torque. .
  • the traveling control system of the stacker crane 1 further includes a first error amplifier 49a, a second error amplifier 49b, a third error amplifier 49c, a fourth error amplifier 49d, and a fifth error amplifier 49e.
  • the error amplifiers 49a to 49e calculate errors between the speed signal generated from the travel control unit 39 and the speed signals calculated from the encoders 51a to 51e, and input the errors to the servo amplifiers 47a to 47e, respectively. As a result, the minor loop output target torque in the servo amplifiers 47a to 47e is changed.
  • the first servo motor 31, the first servo amplifier 47a, the first error amplifier 49a, the first encoder 51a, and the first torque sensor 53a are collectively referred to as the first servo driver 41.
  • the second servo motor 32, the second servo amplifier 47b, the second error amplifier 49b, the second encoder 51b, and the second torque sensor 53b are collectively referred to as a second servo driver 42.
  • the third servo motor 33, the third servo amplifier 47c, the third error amplifier 49c, the third encoder 51c, and the third torque sensor 53c are collectively referred to as a third servo driver 43.
  • the fourth servo motor 34, the fourth servo amplifier 47d, the fourth error amplifier 49d, the fourth encoder 51d, and the fourth torque sensor 53d are collectively referred to as a fourth servo driver 44.
  • the fifth servo motor 35, the fifth servo amplifier 47e, the fifth error amplifier 49e, the fifth encoder 51e, and the fifth torque sensor 53e are collectively referred to as a fifth servo driver 45.
  • the travel control system of the stacker crane 1 further includes a linear sensor 59.
  • the linear sensor 59 detects the absolute position of the stacker crane 1 with respect to the detection plate 57.
  • the plate 57 to be detected is provided at each stop position facing a station or a shelf of an automatic warehouse.
  • the traveling control unit 39 can accurately obtain the absolute distance to the target stop position. Therefore, in the stop control to the target stop position, the speed pattern according to the remaining distance obtained by the linear sensor 59.
  • the servo amplifiers 47a to 47e are respectively controlled so as to eliminate errors between the speed signals generated by the error amplifiers 49a to 49e and the speed signals obtained by the encoders 51a to 51e.
  • a laser distance meter capable of accurate position measurement and an encoder capable of quickly grasping the position may be used in combination.
  • FIG. 3 is a block diagram showing the function of the travel control unit.
  • the traveling control unit 39 When the traveling control unit 39 receives the conveyance command from the traveling vehicle controller 37, the traveling control unit 39 obtains the distance from the current position to the stop position obtained by the linear sensor 59, and further generates a pattern of the traveling speed to the stop position.
  • the travel control unit 39 includes a speed pattern generation unit 61, an abnormality grasping unit 63, a deceleration pattern storage unit 65, and a determination unit 67.
  • the speed pattern generation unit 61 generates a speed pattern and transmits a speed command based on the speed pattern to the servo drivers 41 to 45.
  • the abnormality grasping unit 63 detects an abnormality in the servo drivers 41 to 45. Specifically, when abnormality detection signals are transmitted from the abnormality detection units 55a to 55e, the abnormality grasping unit 63 determines that there is an abnormality in the servo amplifier or servomotor corresponding to the abnormality detection unit as the transmission source.
  • the deceleration pattern storage unit 65 stores a deceleration pattern list 65a.
  • the deceleration pattern list 65a is composed of a plurality of deceleration patterns obtained by combining some servo motors among the plurality of servo motors 31-35.
  • the deceleration obtained by the deceleration control when an abnormality occurs in the servo driver in this embodiment will be described.
  • the stacker crane 1 is traveling at 600 m / min.
  • the fifth servomotor 35 has the fifth brake 56e.
  • the travel stop control is performed by the first to fourth brakes 56a to 56e, the fifth brake 56e is not operated. ing.
  • the deceleration In the case of normal control (when deceleration control is performed with five servo motors), the deceleration is 1.0 G, and the travel distance to stop is 5.1 m.
  • the deceleration is 0.66 G, and the travel distance until the stop is 7 .73 m.
  • the deceleration is 0.4 G, and the travel distance until the stop Is 12.76 m.
  • the deceleration when the first to fourth brakes 56a to 56e are operated is 0.26G, and the travel distance until the stop is 19.62m. If three of the first to fourth servomotors 31 to 34 are abnormal, the deceleration is 0.2 G, for example, although not shown. From the above, when the number of abnormal servo drivers is up to 2, deceleration control by the servo driver can achieve greater deceleration, and when the number of abnormal servo drivers is 3, the servo motor It can be seen that deceleration with the built-in brake can achieve greater deceleration.
  • the deceleration pattern list 65a will be described with reference to FIG. FIG. 5 is a table showing a deceleration pattern list.
  • the deceleration pattern list 65a records the correspondence between the abnormal state of the servo motor and the deceleration that can occur in that case. Specifically, the deceleration pattern list 65a records decelerations that can be generated when there are 2 to 4 servo motors that operate normally.
  • FIG. 6 is a flowchart showing the braking control when an abnormality occurs in the servo driver.
  • step S ⁇ b> 1 when an abnormality signal is transmitted from the abnormality grasping unit 63, the determination unit 67 determines a possible deceleration based on the number of servo drivers in which an abnormality has occurred, in the deceleration pattern storage unit 65. Read from the speed pattern list 65a.
  • step S2 the determination unit 67 compares the read deceleration and the deceleration by the first to fourth brakes 56a to 56e to determine which is greater. If the brake stop deceleration is greater, the process proceeds to step S3, and if the control stop deceleration is greater, the process proceeds to step S4. As another example of step S2, it may be determined that the deceleration that is smaller than the deceleration of the mechanical brake is not stored, and that the deceleration of the mechanical brake is large if there is no registration.
  • step S3 the determination unit 67 transmits a cutoff signal to the power supply control unit 69.
  • the power controller 69 cuts off the power of the servo motors 31 to 34.
  • the fifth brake 56e of the fifth servomotor 35 is maintained in the released state.
  • the first to fourth brakes 56a to 56d perform braking.
  • the reason for maintaining the released state of the fifth brake 56e of the fifth servomotor 35 is to not place an unreasonable burden on the mechanical structure.
  • the brake torque of the fifth servo motor 35 is too large compared with the brake torque of the other servo motors, so that the unbalance of the brake torque becomes excessive.
  • step S4 the traveling control unit 39 turns off the servo driver having the abnormality while keeping the brake of the servo motor having the abnormality opened.
  • step S ⁇ b> 5 the determination unit 67 transmits the deceleration pattern to the speed pattern generation unit 61.
  • the speed pattern generation unit 61 transmits a speed command to a normal servo driver so that the deceleration defined in the deceleration pattern is realized.
  • step S6 the traveling control unit 39 waits for the stacker crane 1 to stop. If the stacker crane 1 stops, the process proceeds to step S7.
  • step S7 the determination unit 67 transmits a cutoff signal to the power supply control unit 69.
  • the power controller 69 cuts off the power of the servo motors 31 to 34.
  • the braking control by the mechanical brake is performed. That is, by selecting the braking means that can generate the greatest deceleration depending on the situation, the stacker crane 1 can be stopped at the shortest distance in the situation.
  • the traveling vehicle (for example, stacker crane 2) includes a traveling vehicle body (for example, traveling vehicle 11), a plurality of servo motors (for example, first to fourth servo motors 31 to 35), and a controller (for example, a traveling control unit). 39).
  • the plurality of servo motors 31 to 37 are travel motors for traveling the traveling vehicle body, and have brakes.
  • the controller controls a plurality of servo motors.
  • the controller includes an abnormality grasping unit (for example, an abnormality grasping unit 63) that grasps an abnormality in a plurality of servo motors, and a deceleration pattern that stores a plurality of deceleration patterns by combining some servo motors among the plurality of servo motors. And a storage unit (for example, a deceleration pattern storage unit 65). If the abnormality grasping unit grasps the abnormality of the servo motor, the controller removes the abnormal servo motor from the target of deceleration control, and further creates a deceleration pattern consisting of a combination of normal servo motors from the deceleration pattern storage unit. Then, the braking control is performed using the deceleration pattern.
  • an abnormality grasping unit for example, an abnormality grasping unit 63
  • a deceleration pattern that stores a plurality of deceleration patterns by combining some servo motors among the plurality of servo motors.
  • the traveling vehicle in the traveling vehicle that travels by a plurality of servo motors, when an abnormality occurs in some servo motors, the abnormal servo motors are excluded from the target of deceleration control, and further, between normal servo motors A deceleration pattern composed of the combination is read out, and braking control is performed using the deceleration pattern. Therefore, the traveling vehicle can be stopped safely and at a short distance.
  • the plurality of deceleration patterns are composed of only the balance deceleration patterns that are combinations of all servo motors except the servo motor in which an abnormality has occurred.
  • a plurality of deceleration patterns may be used for servo motors excluding servo motors that cause unbalance in advance when left and right or front and rear unbalance occurs when all normal servo motor combinations are assumed.
  • a balance deceleration pattern composed of a combination of motors may be included.
  • the controller when the controller reads the balance deceleration pattern from the storage unit, the controller performs deceleration control by the servo motor included in the balance deceleration pattern and servos the servo motor that causes unbalance in the traveling of the traveling vehicle body. Turn off. In this traveling vehicle, an excessive load is not applied to the traveling vehicle main body by removing those servo motors that are poor in balance from the subject of braking control.
  • the deceleration of the deceleration control by the servo motor is assumed to be greater than the deceleration of the mechanical brake.
  • the first motor and the third motor are arranged on the same left and right sides. If the motor is controlled to decelerate, the left / right balance will deteriorate. Therefore, in order to balance, one of the first motor and the third motor is servo-off although both are normal.
  • the second motor and the fourth motor are arranged on the same left and right sides. If deceleration control is performed, the left / right balance will be poor. Therefore, in order to balance, one of the second motor and the fourth motor is servo-off although both are normal.
  • a stacker crane is used as an example of a traveling vehicle.
  • the present invention can be applied to other types of traveling vehicles.
  • the fifth servo motor is provided with a brake, but may be provided without a brake.
  • the deceleration pattern is divided only by the number of servo systems in which an abnormality has occurred, but may have a deceleration pattern that identifies the servo motor in which an abnormality has occurred. This is effective when servo motors having different characteristics are used.
  • the traveling vehicle uses two servo motors to rotate one wheel.
  • the traveling vehicle uses one servo motor to rotate one wheel. It may be a car.
  • a traveling vehicle in which servo motors are connected to the front, rear, left and right wheels may be used.
  • a traveling vehicle in which one servomotor is used to rotate two wheels may be used.
  • the present invention can be widely applied to a traveling vehicle having a plurality of servo motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

 本発明であるスタッカクレーンは、走行車本体を走行させるための複数のサーボモータ、及び各サーボモータに設けられたブレーキを有する。本発明は、更に、複数のサーボモータにおける異常を把握する異常把握部と、複数のサーボモータのうち一部のサーボモータの組み合わせによる複数の減速度パターンを記憶した減速度パターン記憶部とを有する走行制御部を有し、異常把握部がサーボモータの異常を把握すれば、異常なサーボモータを減速制御の対象から外して、さらに、正常なサーボモータ同士の組み合わせからなる減速度パターンを減速度パターン記憶部から読み出して、次に、当該減速度パターンで制動制御を行うものである。本発明は、これにより、一部のモータに異常が発生した場合でも、安全かつ短距離で停止することが可能となる。

Description

走行車
 本発明は、走行車に関し、特に、複数のサーボモータを走行用モータとして使用する走行車に関する。
 自動走行を行う搬送車の一例として、自動倉庫に用いられるスタッカクレーンが知られている。
 従来の自動倉庫は、例えば、前後方向に所定間隔をあけるようにして設けられた一対のラックと、前後のラック間において左右方向に移動自在に設けられたスタッカクレーンと、一方のラックの側方に配された入庫ステーションと、他方のラックの側方に配された出庫ステーションとを有している。ラックは、上下・左右に多数の荷物収納棚を有する。スタッカクレーンは、走行台車と、それに設けられたマストに昇降自在となされた昇降台と、それに設けられた荷物移載装置(例えば、前後方向に摺動自在に設けられたスライドフォーク)とを有している(例えば、特許文献1を参照。)。
特開2008-100773号公報
 特許文献1に記載のスタッカクレーンは、合計4台のサーボモータを走行用モータとして使用している。
 従来は単純な動力電源遮断を行うことで、各サーボモータのメカニカルブレーキを作動させ、それによりスタッカクレーンを停止させることが行われていた。しかし、複数の走行用サーボモータを用いた多軸走行の場合は、各サーボモータのメカニカルブレーキのトルクをバランスすることが難しいので、全軸を同時にブレーキ作動させると、過大な負荷が機械構造に与えられることがある。一方で、スタッカクレーンは、高速・高加減速化が進んでおり、そのためにサーボモータのメカニカルブレーキで得られる減速トルクより、サーボドライバによって実現される制御減速トルクの方が大きくなっている。
 そこで、サーボドライバによる減速制御による停止の後に動力遮断する方法(停止カテゴリー1)を用いることが考えられる。しかし、サーボドライバに異常が生じた場合には、減速制御による停止が行えない可能性がある。
 本発明の課題は、複数のサーボモータによって走行する走行車において、一部のサーボモータに異常が発生した場合にでも、安全かつ短距離で停止可能にすることにある。
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合わせることができる。
 本発明の一見地に係る走行車は、走行車本体と、複数のサーボモータと、コントローラとを備えている。複数のサーボモータは、走行車本体を走行させるための走行モータであり、ブレーキを有する。コントローラは、複数のサーボモータを制御する。コントローラは、複数のサーボモータにおける異常を把握する異常把握部と、複数のサーボモータのうち一部のサーボモータの組み合わせによる複数の減速度パターンを記憶した減速度パターン記憶部とを有している。コントローラは、異常把握部がサーボモータの異常を把握すれば、異常なサーボモータを減速制御の対象から外して、さらに、正常なサーボモータ同士の組み合わせからなる減速度パターンを減速度パターン記憶部から読み出して、次に、当該減速度パターンを用いて制動制御を行う。なお、サーボモータの異常とは、サーボモータ自体の異常及びサーボアンプ等のサーボモータの動作に影響を与える装置の異常を含む。
 この走行車では、複数のサーボモータによって走行する走行車において、一部のサーボモータに異常が発生した場合に、異常なサーボモータを減速制御の対象から外して、さらに、正常なサーボモータ同士の組み合わせからなる減速度パターンが読み出されて、当該減速度パターンによって制動制御が行われる。したがって、走行車は、安全かつ短距離で停止できる。
 ブレーキはメカニカルブレーキであってもよい。コントローラは、メカニカルブレーキにより得られる減速度よりも大きな減速度を有するサーボモータの組み合わせからなる減速度パターンがあるか否かを判断し、その結果、メカニカルブレーキによる減速と、サーボモータの組み合わせからなる減速度パターンを用いた減速制御とを比べて、より大きな減速度を発生可能な一方を選択して制動制御を行ってもよい。
 この走行車では、減速度パターンを用いた減速制御の減速度よりもメカニカルブレーキによる減速度の方が大きな場合は、メカニカルブレーキによる制動制御が行われる。つまり、その状況によって最も大きな減速度を発生可能な制動手段が選択されることで、その状況において最も短い距離で走行車を停止させることができる。
 複数の減速度パターンは、走行車本体の走行にアンバランスを生じさせるサーボモータを除いたサーボモータの組み合わせからなるバランス減速度パターンを含んでいてもよい。その場合、コントローラは、バランス減速度パターンを記憶部から読み出した場合は、バランス減速度パターンに含まれるサーボモータによる減速制御を行うとともに、走行車本体の走行にアンバランスを生じさせるサーボモータを制御の対象から外す。
 この走行車では、正常サーボモータであってもバランスを悪くするものを制御の対象から外すことによって、バランスが良くなり、その結果、走行車本体に過大な負荷が作用しなくなる。
 本発明の他の見地に係る走行車は、走行車本体と、複数のサーボドライバと、コントローラと備えている。サーボドライバは、走行車本体を走行させるための走行モータでありメカニカルブレーキを有するサーボモータと、サーボモータに対応するサーボアンプとを含む。コントローラは、複数のサーボドライバを制御する。
 コントローラは、サーボドライバの異常信号が送られてくると、正常なサーボドライバの組み合わせからなる減速度パターンを読み出す。
 コントローラは、読み出した減速度パターンの減速度と複数のメカニカルブレーキによる減速度とを比較していずれが大きいかを判断する。
 コントローラは、複数のメカニカルブレーキによる減速度の方が大きい場合は、複数のサーボモータの電源を遮断することで複数のメカニカルブレーキを作動させる。
 コントローラは、読み出した減速度パターンの減速度の方が大きい場合は、異常なサーボドライバに含まれるサーボモータのメカニカルブレーキを開放状態にしたまま異常なサーボドライバをサーボOFFし、減速度パターンに規定された減速度が実現されるような速度指令を生成する。
 この走行車では、減速度パターンを用いた減速制御の減速度よりもメカニカルブレーキによる減速度の方が大きな場合は、メカニカルブレーキによる制動制御が行われる。つまり、その状況によって最も大きな減速度を発生可能な制動手段が選択されることで、その状況において最も短い距離で走行車を停止させることができる。
 この走行車では、減速度パターンを用いた減速制御の減速度よりもメカニカルブレーキによる減速度の方が大きな場合は、メカニカルブレーキによる制動制御が行われる。つまり、その状況によって最も大きな減速度を発生可能な制動手段が選択されることで、その状況において最も短い距離で走行車を停止させることができる。
 本発明に係る走行車では、一部のサーボモータに異常が発生した場合にでも、安全かつ短距離で停止できる。
一実施形態としてのスタッカクレーンの概略側面図。 スタッカクレーンのサーボモータの制御系を示すブロック構成図。 走行制御部の機能を示すブロック構成図。 一部のサーボモータによる減速制御の場合の減速度及び停止距離を示すグラフ。 減速度パターンリストを示す表。 サーボドライバに異常が生じた場合の制動制御を示すフローチャート。
(1)スタッカクレーンの概略構成
 図1を用いて、スタッカクレーン1の概略構成を説明する。図1は、一実施形態としてスタッカクレーンの概略側面図である。スタッカクレーン1は、図示しない自動倉庫において、ラックの近傍を走行可能である。
 スタッカクレーン1が走行する通路に沿って、下部レール5と、上部レール7とが設けられている。下部レール5及び上部レール7に沿ってスタッカクレーン1が図1の左右に移動可能である。下部レール5は床面3に設置されている。上部レール7は、天井9に固定されている。
 スタッカクレーン1は、図1に示すように、走行台車11と、走行台車11に設けられたマスト15と、マスト15に昇降自在に装着された昇降台17とを有している。スタッカクレーン1は、さらに、マスト15の上部に設けられた上方台車13を有している。
 走行台車11は、第1車輪21及び第2車輪23を有している。第1車輪21及び第2車輪23は、走行方向前後に並んで配置されており、下部レール5に当接している。また、上方台車13は、第3車輪25を有している。第3車輪25は、上部レール7に当接している。
(2)スタッカクレーンの走行制御系
 図2を用いて、スタッカクレーン1の走行制御系を説明する。図2は、スタッカクレーンのサーボモータの制御系を示すブロック構成図である。
 スタッカクレーン1の走行制御系は、走行制御部39を有している。走行制御部39は、CPU、RAM、ROM等からなりプログラムを実行するコンピュータである。走行制御部39は、走行車コントローラ37から搬送指令を受信すれば、各サーボモータを含むサーボドライバ(後述)に走行指令を送信する。
 スタッカクレーン1の走行制御系は、第1サーボモータ31、第2サーボモータ32、第3サーボモータ33、第4サーボモータ34及び第5サーボモータ35を有している。第1サーボモータ31及び第2サーボモータ32が第1車輪21を駆動し、第3サーボモータ33及び第4サーボモータ34が第2車輪23を駆動する。また、第5サーボモータ35が第3車輪25を駆動する。なお、第1サーボモータ31と第3サーボモータ33が左右一方の側で前後に配置され、第2サーボモータ32及び第4サーボモータ34が左右他方側で前後に配置されている。
 サーボモータ31~35には、第1ブレーキ56a、第2ブレーキ56b、第3ブレーキ56c、第4ブレーキ56d、及び第5ブレーキ56eがそれぞれ設けられている。ブレーキは、モータに内蔵された電磁ブレーキであり、電源オフと同時に減速トルクを発生することでモータを停止させる。これらブレーキは、メカニカルブレーキである。
 スタッカクレーン1の走行制御系は、さらに、第1サーボアンプ47a、第2サーボアンプ47b、第3サーボアンプ47c、第4サーボアンプ47d及び第5サーボアンプ47eを有している。サーボアンプは、電流増幅された速度指令をサーボモータに送信する。
 サーボアンプ47a~47eには、第1異常検出部55a、第2異常検出部55b、第3異常検出部55c、第4異常検出部55d及び第5異常検出部55eがそれぞれ設けられている。異常検出部は、サーボアンプの制御回路及び対応するサーボモータの異常を検出することができ、異常を検出した場合は異常検出信号を走行制御部39に送信する。
 スタッカクレーン1の走行制御系は、さらに、第1エンコーダ51a、第2エンコーダ51b、第3エンコーダ51c、第4エンコーダ51d及び第5エンコーダ51eを有している。エンコーダ51a~51eは、これらはサーボモータ31~35の回転数をそれぞれ検出することで、サーボモータ31~35の現在位置及び速度をそれぞれ求める。
 スタッカクレーン1の走行制御系は、さらに、第1トルクセンサ53a、第2トルクセンサ53b、第3トルクセンサ53c、第4トルクセンサ53d及び第5トルクセンサ53eを有している。トルクセンサ53a~53eは、例えば電流センサであり、サーボモータ31~35の消費電力や出力トルクなどをそれぞれ求める。サーボモータ31~35とサーボアンプ47a~47eとの間には、トルクセンサ53a~53eを介するマイナーループがそれぞれ設けられ、これによりサーボモータ31~35が目標トルクを発生するように制御が行われる。
 スタッカクレーン1の走行制御系は、さらに、第1誤差増幅器49a、第2誤差増幅器49b、第3誤差増幅器49c、第4誤差増幅器49d及び第5誤差増幅器49eを有している。誤差増幅器49a~49eは、走行制御部39から生成される速度信号と、エンコーダ51a~51eから求めた速度の信号との誤差を求め、この誤差をサーボアンプ47a~47eにそれぞれ入力する。これによってサーボアンプ47a~47eにおけるマイナーループの出力目標トルクが変更される。
 以上の構成において、第1サーボモータ31、第1サーボアンプ47a、第1誤差増幅器49a、第1エンコーダ51a、第1トルクセンサ53aをまとめて、第1サーボドライバ41とする。第2サーボモータ32、第2サーボアンプ47b、第2誤差増幅器49b、第2エンコーダ51b、第2トルクセンサ53bをまとめて、第2サーボドライバ42とする。第3サーボモータ33、第3サーボアンプ47c、第3誤差増幅器49c、第3エンコーダ51c、第3トルクセンサ53cをまとめて、第3サーボドライバ43とする。第4サーボモータ34、第4サーボアンプ47d、第4誤差増幅器49d、第4エンコーダ51d、第4トルクセンサ53dをまとめて、第4サーボドライバ44とする。第5サーボモータ35、第5サーボアンプ47e、第5誤差増幅器49e、第5エンコーダ51e、第5トルクセンサ53eをまとめて、第5サーボドライバ45とする。
 スタッカクレーン1の走行制御系は、さらに、リニアセンサ59を有している。リニアセンサ59は、被検出プレート57に対するスタッカクレーン1の絶対位置を検出する。被検出プレート57は、自動倉庫のステーションや棚に面した停止位置毎に設けられている。リニアセンサ59を用いることで、走行制御部39は、目標停止位置までの絶対距離を正確に求めることができるので、目標停止位置への停止制御では、リニアセンサ59で求めた残距離に従って速度パターンを生成し、誤差増幅器49a~49eで生成した速度信号とエンコーダ51a~51eで求めた速度信号との誤差をそれぞれ解消するように、サーボアンプ47a~47eをそれぞれ制御する。
 なお、リニアセンサの代わりに、正確な位置測定が可能なレーザー距離計と、迅速な位置把握が可能なエンコーダを併用してもよい。
(3)走行制御部の機能
 図3を用いて、走行制御部39の機能を説明する。図3は、走行制御部の機能を示すブロック構成図である。
 走行制御部39は、走行車コントローラ37から搬送指令を受け取ると、リニアセンサ59により得られた現在位置から停止位置までの距離を求めて、さらに停止位置までの走行速度のパターンを発生する。
 走行制御部39は、速度パターン発生部61と、異常把握部63と、減速度パターン記憶部65と、判断部67とを有している。
 速度パターン発生部61は、速度パターンを発生して、速度パターンに基づく速度指令をサーボドライバ41~45に送信する。
 異常把握部63は、サーボドライバ41~45の異常を検出する。具体的には、異常検出部55a~55eから異常検出信号が送信されてくると、異常把握部63は、送信元の異常検出部に対応するサーボアンプ又はサーボモータに異常があると判断する。
 減速度パターン記憶部65は、減速度パターンリスト65aを保存している。減速度パターンリスト65aは、複数のサーボモータ31~35のうち一部のサーボモータの組み合わせにより得られる複数の減速度パターンから構成されている。
 図4を用いて、本実施形態におけるサーボドライバに異常が生じた場合の減速制御により得られる減速度を説明する。なお、以下の説明では、スタッカクレーン1が600m/minで走行しているとする。また、この実施形態では、第5サーボモータ35は第5ブレーキ56eを有しているが、第1~第4ブレーキ56a~56eによって走行停止制御を行うときには第5ブレーキ56eは作動させないようになっている。
 通常制御の場合(5個のサーボモータで減速制御した場合)の減速度は1.0Gであって、停止までの走行距離は5.1mである。例えば、第1~第4サーボモータ31~34のうち1個が異常の場合(4個のサーボモータで減速制御した場合)の減速度は0.66Gであって、停止までの走行距離は7.73mである。また、例えば、第1~第4サーボモータ31~34のうち2個が異常の場合(3個のサーボモータで減速制御した場合)の減速度は0.4Gであって、停止までの走行距離は12.76mである。
 ここで、第1~第4ブレーキ56a~56eが作動した場合の減速度は0.26Gであって、停止までの走行距離は19.62mである。そして、第1~第4サーボモータ31~34のうち3個が異常の場合は、図示はしていないが、減速度は例えば0.2Gになっている。以上より、異常となったサーボドライバの数が2個までの場合はサーボドライバによる減速制御の方が大きい減速度を実現でき、異常となったサーボドライバの数が3個の場合はサーボモータに組み込まれたブレーキによる減速の方が大きい減速度を実現できることが分かる。
 図5を用いて、減速度パターンリスト65aを説明する。図5は、減速度パターンリストを示す表である。減速度パターンリスト65aには、サーボモータの異常状態と、その場合に発生可能な減速度との対応が記録されている。具体的には、減速度パターンリスト65aには、正常に作動するサーボモータが2~4個の場合に発生可能な減速度が記録されている。
(4)制御動作
 図6を用いて、サーボドライバに異常が生じた場合の制動制御を説明する。図6は、サーボドライバに異常が生じた場合の制動制御を示すフローチャートである。
 ステップS1では、判断部67は、異常把握部63からの異常信号が送られてくると、異常が発生したサーボドライバの数に基づいて、発生可能な減速度を減速度パターン記憶部65の減速度パターンリスト65aから読み出す。
 ステップS2では、判断部67は、読み出した減速度と第1~第4ブレーキ56a~56eによる減速度とを比較していずれが大きいかを判断する。ブレーキ停止減速度の方が大きい場合はプロセスはステップS3に移行し、制御停止減速度の方が大きい場合はプロセスはステップS4に移行する。
 なお、ステップS2の別例として、メカニカルブレーキの減速度よりも小さい減速度となるパターンは記憶せずに、登録がなければメカニカルブレーキの減速度が大きいと判断するようにしてもよい。
 ステップS3では、判断部67は、電源コントロール部69に遮断信号を送信する。その結果、電源コントロール部69は、サーボモータ31~34の電源を遮断する。このとき、第5サーボモータ35の第5ブレーキ56eは開放状態を維持される。その結果、第1~第4ブレーキ56a~56dが制動を行う。第5サーボモータ35の第5ブレーキ56eの開放状態を維持する理由は、機械構造に無理な負担かけないためである。この実施形態では、第5ブレーキの56eも同時に作動させると、第5サーボモータ35のブレーキトルクが他のサーボモータのブレーキトルクより大きすぎるので、ブレーキトルクのアンバランスが過大になってしまう。
 ステップS4では、走行制御部39は、異常があるサーボモータのブレーキを開放状態にしたまま、異常があるサーボドライバをサーボOFFする。
 ステップS5では、判断部67は、当該減速度パターンを速度パターン発生部61に送信する。速度パターン発生部61は、減速度パターンに規定された減速度が実現されるように速度指令を正常なサーボドライバに送信する。
 ステップS6では、走行制御部39はスタッカクレーン1が停止するのを待つ。スタッカクレーン1が停止すれば、プロセスはステップS7に移行する。
 ステップS7では、判断部67は、電源コントロール部69に遮断信号を送信する。その結果、電源コントロール部69は、サーボモータ31~34の電源を遮断する。
 このスタッカクレーン1では、減速度パターンを用いた減速制御よりもメカニカルブレーキによる減速の減速度が大きな場合は、メカニカルブレーキによる制動制御が行われる。つまり、その状況によって最も大きな減速度を発生可能な制動手段が選択されることで、その状況において最も短い距離でスタッカクレーン1を停止させることができる。
(5)特徴
 上記実施形態は、下記のように表現可能である。
 走行車(例えば、スタッカクレーン2)は、走行車本体(例えば、走行台車11)と、複数のサーボモータ(例えば、第1~第4サーボモータ31~35)と、コントローラ(例えば、走行制御部39)とを備えている。複数のサーボモータ31~37は、走行車本体を走行させるための走行モータであり、ブレーキを有する。コントローラは、複数のサーボモータを制御する。コントローラは、複数のサーボモータにおける異常を把握する異常把握部(例えば、異常把握部63)と、複数のサーボモータのうち一部のサーボモータの組み合わせによる複数の減速度パターンを記憶した減速度パターン記憶部(例えば、減速度パターン記憶部65)とを有している。コントローラは、異常把握部がサーボモータの異常を把握すれば、異常なサーボモータを減速制御の対象から外して、さらに、正常なサーボモータ同士の組み合わせからなる減速度パターンを減速度パターン記憶部から読み出して、次に、当該減速度パターンを用いて制動制御を行う。
 この走行車では、複数のサーボモータによって走行する走行車において、一部のサーボモータに異常が発生した場合に、異常なサーボモータを減速制御の対象から外して、さらに、正常なサーボモータ同士の組み合わせからなる減速度パターンが読み出されて、当該減速度パターンによって制動制御が行われる。したがって、走行車は、安全かつ短距離で停止できる。
(6)他の実施形態
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合わせ可能である。
 (a)前記実施形態では、複数の減速度パターンは、異常が発生したサーボモータを除いた全てのサーボモータの組み合わせからなるバランス減速度パターンのみで構成されていた。しかし、他の実施形態として、複数の減速度パターンは、正常なサーボモータ全ての組み合わせを想定した場合に左右又は前後にアンバランスが生じる場合に予めアンバランスの原因となるサーボモータを除いたサーボモータの組み合わせからなるバランス減速度パターンを含んでいてもよい。
 その場合、コントローラは、バランス減速度パターンを記憶部から読み出した場合は、バランス減速度パターンに含まれるサーボモータによる減速制御を行うとともに、走行車本体の走行にアンバランスを生じさせるサーボモータをサーボOFFする。この走行車では、正常サーボモータであってもバランスを悪くするものを制動制御の対象から外すことによって、走行車本体に過大な負荷が作用しなくなる。
 一例として、前記実施形態とは異なり、例えば図5において、正常なサーボモータが2個だけであっても、サーボモータによる減速制御の減速度が、メカニカルブレーキの減速度より大きいとする。この場合に、例えば、「第1モータと第3モータと第5モータ」のみが正常な場合に、第1モータと第3モータが左右同じ側に配置されているので、第1モータと第3モータを減速制御すると左右のバランスが悪くなってしまう。そこで、バランスを取るために、第1モータ及び第3モータは両方とも正常であるにもかかわらず、一方がサーボOFFされる。また、例えば、「第2モータと第4モータと第5モータ」のみが正常な場合に、第2モータと第4モータが左右同じ側に配置されているので、第2モータと第4モータを減速制御すると左右のバランスが悪くなってしまう。そこで、バランスを取るために、第2モータ及び第4モータの両方が正常であるにもかかわらず、一方がサーボOFFされる。
 (b)前記実施形態では走行車の例としてスタッカクレーンが用いられたが、他の種類の走行車にも本発明を適用できる。
 (c)前記実施形態では第5サーボモータはブレーキありとしていたが、ブレーキなしとしてもよい。
 (d)前記実施形態ではサーボモータの数は5であったが、複数であればいくつであってもよい。
 (e)前記実施形態では減速度パターンは異常が発生したサーボシステムの数のみよって分けられていたが、異常が発生したサーボモータを特定した減速度パターンを有していてもよい。これは、特性が互いに異なるサーボモータを用いた場合に有効である。
 (f)前記実施形態では1個の車輪を回転させるのに2個のサーボモータが用いられた走行車であったが、1個の車輪を回転させるのに1個のサーボモータが用いられる走行車であってもよい。例えば、前後左右の4輪にそれぞれサーボモータが連結された走行車でもよい。
 また、2個の車輪を回転させるのに1個のサーボモータが用いられた走行車でもよい。
 本発明は、複数のサーボモータを有する走行車に広く適用できる。
1    スタッカクレーン
5    下部レール
7    上部レール
9    天井
11   走行台車
13   上方台車
15   マスト
17   昇降台
21   第1車輪
23   第2車輪
25   第3車輪
31   第1サーボモータ
32   第2サーボモータ
33   第3サーボモータ
34   第4サーボモータ
35   第5サーボモータ
37   走行車コントローラ
39   走行制御部(コントローラ)
41   第1サーボドライバ
42   第2サーボドライバ
43   第3サーボドライバ
44   第4サーボドライバ
45   第5サーボドライバ
47a  第1サーボアンプ
47b  第2サーボアンプ
47c  第3サーボアンプ
47d  第4サーボアンプ
47e  第5サーボアンプ
49a  第1誤差増幅器
49b  第2誤差増幅器
49c  第3誤差増幅器
49d  第4誤差増幅器
49e  第5誤差増幅器
51a  第1エンコーダ
51b  第2エンコーダ
51c  第3エンコーダ
51d  第4エンコーダ
51e  第5エンコーダ
53a  第1トルクセンサ
53b  第2トルクセンサ
53c  第3トルクセンサ
53d  第4トルクセンサ
53e  第5トルクセンサ
55a  第1異常検出部
55b  第2異常検出部
55c  第3異常検出部
55d  第4異常検出部
55e  第5異常検出部
56a  第1ブレーキ
56b  第2ブレーキ
56c  第3ブレーキ
56d  第4ブレーキ
56e  第5ブレーキ
57   被検出プレート
59   リニアセンサ
61   速度パターン発生部
63   異常把握部
65   減速度パターン記憶部
65a  減速度パターンリスト
67   判断部
69   電源コントロール部

Claims (5)

  1.  走行車本体と、
     前記走行車本体を走行させるための走行モータであり、ブレーキを有する複数のサーボモータと、
     前記複数のサーボモータを制御するコントローラとを備え、
     前記コントローラは、
     前記複数のサーボモータにおける異常を把握する異常把握部と、
     前記複数のサーボモータのうち一部のサーボモータの組み合わせによる複数の減速度パターンを記憶した減速度パターン記憶部とを有しており、
     前記コントローラは、
     前記異常把握部が前記サーボモータの異常を把握すれば、異常なサーボモータを減速制御の対象から外して、さらに、正常なサーボモータ同士の組み合わせからなる減速度パターンを前記減速度パターン記憶部から読み出して、次に、当該減速度パターンを用いて制動制御を行う、
    走行車。
  2.  前記ブレーキはメカニカルブレーキであり、
     前記コントローラは、前記メカニカルブレーキにより得られる減速度よりも大きな減速度を有するサーボモータの組み合わせからなる減速度パターンがあるか否かを判断し、その結果、前記メカニカルブレーキと前記減速度パターンを用いた減速制御とを比べてより大きな減速度を発生可能な一方を選択して制動制御を行う、請求項1に記載の走行車。
  3.  前記複数の減速度パターンは、前記走行車本体の走行にアンバランスを生じさせるサーボモータを除いたサーボモータの組み合わせからなるバランス減速度パターンを含んでおり、
     前記コントローラは、前記バランス減速度パターンを前記記憶部から読み出した場合は、前記バランス減速度パターンに含まれるサーボモータによる制動制御を行うとともに、前記走行車本体の走行にアンバランスを生じさせるサーボモータを制御の対象から外す、請求項1に記載の走行車。
  4.  前記複数の減速度パターンは、前記走行車本体の走行にアンバランスを生じさせるサーボモータを除いたサーボモータの組み合わせからなるバランス減速度パターンを含んでおり、
     前記コントローラは、前記バランス減速度パターンを前記記憶部から読み出した場合は、前記バランス減速度パターンに含まれるサーボモータによる制動制御を行うとともに、前記走行車本体の走行にアンバランスを生じさせるサーボモータを制御の対象から外す、請求項2に記載の走行車。
  5.  走行車本体と、
     前記走行車本体を走行させるための走行モータでありメカニカルブレーキを有するサーボモータと、前記サーボモータに対応するサーボアンプとを含む複数のサーボドライバと、
     前記複数のサーボドライバを制御するコントローラとを備え、
     前記コントローラは、
     前記サーボドライバの異常信号が送られてくると、正常なサーボドライバの組み合わせからなる減速度パターンを読み出し、
     読み出した減速度パターンの減速度と複数のメカニカルブレーキによる減速度とを比較していずれが大きいかを判断し、
     前記複数のメカニカルブレーキによる減速度の方が大きい場合は、前記複数のサーボモータの電源を遮断することで前記複数のメカニカルブレーキを作動させ、
     前記読み出した減速度パターンの減速度の方が大きい場合は、異常なサーボドライバに含まれるサーボモータのメカニカルブレーキを開放状態にしたまま異常なサーボドライバをサーボOFFし、前記減速度パターンに規定された減速度が実現されるような速度指令を生成する、
    走行車。
     
PCT/JP2012/055779 2011-04-20 2012-03-07 走行車 WO2012144278A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013510918A JP5768876B2 (ja) 2011-04-20 2012-03-07 走行車
CN201280019254.7A CN103492290B (zh) 2011-04-20 2012-03-07 行驶车
KR1020137030378A KR101553569B1 (ko) 2011-04-20 2012-03-07 주행차
US14/112,553 US8825331B2 (en) 2011-04-20 2012-03-07 Travelling vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011094009 2011-04-20
JP2011-094009 2011-04-20

Publications (1)

Publication Number Publication Date
WO2012144278A1 true WO2012144278A1 (ja) 2012-10-26

Family

ID=47041400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055779 WO2012144278A1 (ja) 2011-04-20 2012-03-07 走行車

Country Status (6)

Country Link
US (1) US8825331B2 (ja)
JP (1) JP5768876B2 (ja)
KR (1) KR101553569B1 (ja)
CN (1) CN103492290B (ja)
TW (1) TWI523801B (ja)
WO (1) WO2012144278A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884369A (zh) * 2013-02-20 2015-09-02 村田机械株式会社 堆装起重机及其运转方法
JP2016037386A (ja) * 2014-08-11 2016-03-22 村田機械株式会社 昇降装置とスタッカークレーン及び昇降台の高さ保持方法
JP2021002225A (ja) * 2019-06-21 2021-01-07 株式会社椿本チエイン 走行システム、およびその制御方法
JP2022102314A (ja) * 2020-12-25 2022-07-07 株式会社ダイフク 監視システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11318920B2 (en) * 2020-02-28 2022-05-03 Bendix Commercial Vehicle Systems Llc Brake controller storing deceleration profiles and method using deceleration profiles stored in a brake controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115108A (ja) * 1991-10-21 1993-05-07 Nissan Motor Co Ltd 電気自動車
JPH1178859A (ja) * 1997-07-10 1999-03-23 Toyota Motor Corp 車輌のブレーキ装置
JP2009081919A (ja) * 2007-09-25 2009-04-16 Honda Motor Co Ltd 電動車両の駆動システムの制御装置および制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0136670B1 (ko) * 1995-11-28 1998-04-27 이종수 자동창고 스태커 크레인의 흔들림방지장치
JP2002271916A (ja) * 2001-03-09 2002-09-20 Matsushita Electric Ind Co Ltd 車両用モータ駆動制御方法
JP2006076699A (ja) 2004-09-08 2006-03-23 Daifuku Co Ltd 物品搬送車
JP4586990B2 (ja) * 2005-05-27 2010-11-24 株式会社ダイフク 物品収納設備
JP4273423B2 (ja) * 2005-05-31 2009-06-03 株式会社ダイフク 搬送装置
KR101014960B1 (ko) * 2006-07-27 2011-02-15 미쓰비시덴키 가부시키가이샤 엘리베이터 장치
JP4626890B2 (ja) 2006-10-17 2011-02-09 村田機械株式会社 走行台車
JP2009081819A (ja) * 2007-09-27 2009-04-16 Hitachi Information & Control Solutions Ltd 文書管理装置
JP4318734B2 (ja) * 2008-01-08 2009-08-26 アイダエンジニアリング株式会社 電動サーボプレス、電動サーボプレスの制御装置及び制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115108A (ja) * 1991-10-21 1993-05-07 Nissan Motor Co Ltd 電気自動車
JPH1178859A (ja) * 1997-07-10 1999-03-23 Toyota Motor Corp 車輌のブレーキ装置
JP2009081919A (ja) * 2007-09-25 2009-04-16 Honda Motor Co Ltd 電動車両の駆動システムの制御装置および制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884369A (zh) * 2013-02-20 2015-09-02 村田机械株式会社 堆装起重机及其运转方法
JP2016037386A (ja) * 2014-08-11 2016-03-22 村田機械株式会社 昇降装置とスタッカークレーン及び昇降台の高さ保持方法
JP2021002225A (ja) * 2019-06-21 2021-01-07 株式会社椿本チエイン 走行システム、およびその制御方法
JP2022102314A (ja) * 2020-12-25 2022-07-07 株式会社ダイフク 監視システム
JP7444051B2 (ja) 2020-12-25 2024-03-06 株式会社ダイフク 監視システム

Also Published As

Publication number Publication date
JPWO2012144278A1 (ja) 2014-07-28
TWI523801B (zh) 2016-03-01
TW201242866A (en) 2012-11-01
US8825331B2 (en) 2014-09-02
KR101553569B1 (ko) 2015-09-17
KR20130143670A (ko) 2013-12-31
JP5768876B2 (ja) 2015-08-26
CN103492290B (zh) 2015-07-29
CN103492290A (zh) 2014-01-01
US20140039769A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5768876B2 (ja) 走行車
JP5446055B2 (ja) 台車システム
JP5617939B2 (ja) 搬送台車システム及び搬送台車の走行制御方法
JP4314639B2 (ja) 搬送装置
JP2004106945A (ja) 自動倉庫
RU2013138216A (ru) Способ для управления рельсовым транспортным средством
KR20230124706A (ko) 로봇식 로드 핸들링 디바이스의 모션 제어
JP2008100773A (ja) 走行台車
JP2006076699A (ja) 物品搬送車
KR102606070B1 (ko) 이송 장치 및 그 제어 방법
JP2007168603A (ja) 同軸二輪移動台車
KR100598703B1 (ko) 무인 자동운반대차
JP2017126286A (ja) 移動体、移動体システム、および、移動体の補正係数算出方法
WO2010104140A1 (ja) 平行二輪機構を備えた走行体の走行制御装置及びこれを備えたボーディングブリッジ
KR20210055295A (ko) 이송 장치
JP2019014323A (ja) 電動式軌道台車
KR20180089592A (ko) 알티비 대차간 거리에 따른 속도 최적화 제어 시스템
KR102326019B1 (ko) 비히클 제어 장치 및 방법
JP2008222424A (ja) スタッカークレーンの走行制御装置
JP2019127117A (ja) 移動装置及び移動装置の制御方法
JP2005225654A (ja) 物品移載装置
JP2007204225A (ja) 移動体の走行制御装置
JP2003162327A (ja) ワーク搬送装置及び搬送方法
JP2002032124A (ja) 有軌道台車システム及び該システムでの有軌道台車の停止制御方法
JPH1035823A (ja) 移動体の停止装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510918

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14112553

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137030378

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12774036

Country of ref document: EP

Kind code of ref document: A1