WO2012036328A1 - Variable nozzle device and turbo charger provided with same - Google Patents
Variable nozzle device and turbo charger provided with same Download PDFInfo
- Publication number
- WO2012036328A1 WO2012036328A1 PCT/KR2010/006309 KR2010006309W WO2012036328A1 WO 2012036328 A1 WO2012036328 A1 WO 2012036328A1 KR 2010006309 W KR2010006309 W KR 2010006309W WO 2012036328 A1 WO2012036328 A1 WO 2012036328A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ring
- vane
- variable nozzle
- vanes
- nozzle device
- Prior art date
Links
- 238000003780 insertion Methods 0.000 claims description 21
- 230000037431 insertion Effects 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 7
- 230000013011 mating Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 10
- 230000033001 locomotion Effects 0.000 abstract description 4
- 230000007547 defect Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
- F01D17/14—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
- F01D17/16—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
- F01D17/165—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/04—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
- F02C6/10—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
- F02C6/12—Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/24—Control of the pumps by using pumps or turbines with adjustable guide vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
Definitions
- the present invention relates to a variable nozzle apparatus and a turbocharger having the same. More particularly, the variable nozzle apparatus controls a rotation of a rotating body such as a turbine by controlling a flow of a fluid such as exhaust gas in a turbocharger of an internal combustion engine. It is a technique regarding a nozzle apparatus.
- Variable nozzle devices are conventionally used in turbochargers for supercharging internal combustion engines. That is, when the exhaust gas of the internal combustion engine is provided to the turbine of the turbocharger, the rotation of the turbine can be controlled by adjusting the flow of the exhaust gas supplied.
- a plurality of vanes are disposed around a centrally located turbine, so that the flow of exhaust gas flowing from the outside of the vanes to the turbine inside is adjusted by changing the angle of the vanes.
- a mechanism for adjusting the angle of the vanes is provided with a driving ring for installing a rotary link on each of the plurality of vanes and rotating the rotary links collectively, and the drive ring as a separate external link device. It is used to rotate the vanes so that the angle of the vanes is changed at the same time.
- the driving mechanism of the variable nozzle apparatus is a plurality of parts are used to rotate all the vanes at the same angle with respect to the turbine at each position, the structure is complicated, the assembly workability is poor, The likelihood of failure and breakdown is relatively high. In addition, it is difficult to avoid a decrease in power transmission efficiency due to operation through a plurality of parts.
- the present invention has been made to solve the problems described above, with a relatively small number of parts and a simple structure, it is possible to collectively change the angle of the vanes arranged on the circumference, relatively high power transmission It is an object of the present invention to provide a variable nozzle device capable of smoothly and stably adjusting angles of vanes with efficiency, greatly improving assemblability, and greatly reducing the occurrence rate of assembly failure and the possibility of failure and damage.
- the pivot shaft and the guide pin of the vane are formed to protrude from the vane in the same direction, and the surface on which the shaft insertion groove of the first ring is formed and the surface on which the cam groove of the second ring are formed Combined to be horizontal.
- the first ring and the second ring are combined in a concave-convex structure that is mutually constrained in the radial direction and the one axial direction.
- the portion where the cam groove of the second ring is formed is coupled to be located inside the portion where the shaft insertion groove of the first ring is formed.
- any one of the first ring and the second ring is fixed, and the other one is connected to an external power carrier so as to be able to rotate relative to the fixed by an external force.
- the vane has a straight cross-sectional structure perpendicular to the rotation axis of the vane.
- the vane has a curved cross-sectional structure perpendicular to the rotation axis of the vane.
- Turbocharger for achieving the object of the present invention as described above is equipped with such a variable nozzle device.
- the present invention is a relatively small number of parts and a simple structure, it is possible to collectively change the angle of the vanes arranged on the circumference, it is possible to adjust the angle of the vanes smooth and stable with a relatively high power transmission efficiency, It is possible to greatly improve the assemblability and to greatly reduce the rate of occurrence of assembly failure and the possibility of failure and damage.
- FIG. 1 is an exploded perspective view of an embodiment of a variable nozzle device according to the present invention.
- Figure 2 is an assembled state of the embodiment of Figure 1
- FIG. 3 is a view listing the components used in the embodiment of FIG.
- FIG. 4 is a view showing two left and right coupling embodiments of the first ring and the second ring, respectively;
- FIG. 5 is a view explaining the operation of the embodiment of FIG.
- Figure 6 is a perspective view of the vane of another shape.
- an exemplary embodiment of the present invention includes a first ring having a plurality of shaft insertion grooves 5 in which rotation shafts 3 of vanes 1 are rotatably inserted along one circumferential direction. 7); A plurality of vanes (1) formed by protruding the rotation shaft (3) inserted into the shaft insertion groove (5) of the first ring (7) and protruding the guide pin (9) in parallel with the rotation shaft (3) )and; Coaxially coupled with the first ring (7), the guide pins (9) of the vanes (1) are respectively inserted so that the shaft insertion of the vanes (1) during relative rotation with the first ring (7)
- a plurality of cam grooves 11 formed to rotate about the groove 5 are configured to include a second ring 13 arranged along the circumferential direction. The cam groove 11 is recessed to one side of the second ring 13 to a predetermined depth, extends inclined by a predetermined angle with respect to the radial direction, and preferably forms an arc shape.
- the shaft insertion grooves 5 and the cam grooves 11 are formed in the first ring 7 and the second ring 13, which are coupled to each other so that relative rotation is possible, and the rotation of the vanes 1 is here.
- the coaxial 3 and the guide pin 9 are inserted so that the guide pin 9 of the vane 1 is the cam groove 11 when the first ring 7 and the second ring 13 rotate relative to each other. It is to cause the rotation of the vane (1) while moving along. That is, when the first ring 7 is rotated, the position movement of the vanes 1 is generated in a state where the rotation shaft 3 is inserted into the shaft insertion groove 5, and thus the guide pins of the vanes 1 9) is the rotation of the vanes (1) is generated while sliding along the cam groove (11).
- the rotational characteristic of the vane 1 can be adjusted according to the shape of the cam groove 11 with respect to the guide pin 9, so that the tip of the vane 1 enters the turbine side too much and causes interference. Since it is possible to limit the one provided with a separate stopper or the like by the shape of the guide pin 9 and the cam groove 11 without a separate stopper, the cam groove 11 of the second ring 13 ) Does not interfere with a rotating body such as a turbine installed at the inner diameter of the second ring 13 when the vane 1 is rotated relative to the first ring 7 and the second ring 13. It will be desirable to have a structure formed so as to limit the movement of the guide pin (9).
- the vane 1 may have a cross-sectional structure perpendicular to the pivot shaft 3 of the vane, as shown in FIG. 6, but may have a simple straight line shape. It may be made to form a curved shape.
- the rotating shaft 3 and the guide pin 9 of the vane 1 are formed to protrude from the vane 1 in the same direction, and the shaft insertion groove 5 of the first ring 7 is formed. And the surface on which the cam groove 11 of the second ring 13 is formed are coupled to each other to form a single plane, that is, horizontal.
- the surface in which the guide pin 9 and the pivot shaft 3 of the vane 1 protrude is also rotated in contact with the plane formed by the first ring 7 and the second ring 13. Is operated so that a plane by another member can be rotated in contact with the vane 1 so that a fluid such as exhaust gas passes along with the vanes 1. It will form a passageway.
- a member for providing another plane in which the vanes 1 are rotated while the vanes 1 slide opposite the first ring 7 and the second ring 13 is used in a variable nozzle device used in a conventional turbocharger or the like. Likewise, it may be the case of a turbocharger or other separately inserted member.
- the pivot shaft 3 and the guide pin 9 of the vane 1 protrude in opposite directions, and the first ring 7 and the second ring 13 are concentric with each other but the vanes
- the vanes 1 may be collectively rotated only by the relative rotation of the first ring 7 and the second ring 13, even if the first ring 7 and the second ring 13 are installed in opposite directions.
- the first ring 7 and the second ring 13 are combined in a concave-convex structure constrained to each other in the radial direction and one side axial direction. That is, as illustrated in each of the left and right of FIG. 4, the second ring is inserted into the insertion groove 7a formed in the inner side of the first ring 7 so that the first ring 7 and the second ring 13 form an uneven structure.
- the ring 13 may be configured to be seated, or the first ring 7 may be seated in the insertion groove 13a formed in the second ring 13.
- grooves and protrusions may be formed in pairs with the first ring 7 having the insertion groove 7a and the second ring 13 seated thereon, respectively.
- first ring 7 and the second ring 13 are provided with grooves and protrusions, or by forming protrusions or grooves with each other, so that the concentricity of the concentric axes is made by the assembly and restrained in the radial direction.
- the vanes 1 are coupled to each other in a direction in which the vanes 1 are coupled to each other in a direction that is not inserted into each other to form a single plane to be mutually constrained in one axial direction.
- the surfaces of the first ring 7 and the second ring 13 in the direction in which the vanes 1 are mounted have the same horizontal height.
- the portion in which the cam groove 11 of the second ring 13 is formed is located inside the portion in which the shaft insertion groove 5 of the first ring 7 is formed. It is a structure coupled to position.
- any one of the first ring 7 and the second ring 13 is fixed, and the other one is connected to the external power transmission body 15 so as to be able to rotate relative to the fixed by the external force,
- the angle of the vanes 1 may be collectively controlled by causing relative rotation between the first ring 7 and the second ring 13 as necessary.
- the first ring 7 is preferably formed with a power transmission groove 17 so that the external power transmission body 15 is fitted into the power transmission groove 17 so as to be relatively rotated.
- a second ring 13 in which the cam groove 11 is formed is fixed, and the first ring 7 provided with the shaft insertion groove 5 is an external power transmission body ( 15) a state in which relative rotation is made with respect to the second ring 13 in accordance with the linear motion of the actuating rod is connected to the actuating rod.
- the actuating rod which is the external power carrier 15, may be a rod or a link constituting an actuator for driving the variable nozzle apparatus in the related art.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Supercharger (AREA)
Abstract
The present invention may integrally change the angles of vanes, which are disposed on a circumference of a ring, with a relatively small number of parts and a simple structure. Therefore, it is possible to smoothly and stably control the angles of the vanes with a relatively high degree of transmission efficiency. Therefore, it is possible to smoothly and stably control the angles of the vanes with highly efficient motion transmission. In addition, the simple structure can significantly improve the manufacturing process by reducing the rate of rejection and possible faults or defects.
Description
본 발명은 가변 노즐 장치 및 이를 구비한 터보차져에 관한 것으로서, 보다 상세하게는 내연기관의 터보차져 등에서 배기가스 등과 같은 유체의 유동을 조절하여 터빈과 같은 회전체의 회전을 제어할 수 있도록 하는 가변 노즐 장치에 관한 기술이다.The present invention relates to a variable nozzle apparatus and a turbocharger having the same. More particularly, the variable nozzle apparatus controls a rotation of a rotating body such as a turbine by controlling a flow of a fluid such as exhaust gas in a turbocharger of an internal combustion engine. It is a technique regarding a nozzle apparatus.
가변 노즐 장치는 종래에 내연기관의 과급을 위한 터보차져에 많이 사용되고 있다. 즉, 내연기관의 배기가스를 터보차져의 터빈으로 제공할 때, 공급되는 배기가스의 유동을 조절함으로써, 터빈의 회전을 제어할 수 있도록 하는 것이다.Variable nozzle devices are conventionally used in turbochargers for supercharging internal combustion engines. That is, when the exhaust gas of the internal combustion engine is provided to the turbine of the turbocharger, the rotation of the turbine can be controlled by adjusting the flow of the exhaust gas supplied.
종래의 가변 노즐 장치는 중앙에 위치한 터빈 주위에 다수의 베인이 배치되어, 베인들의 외측으로부터 내측의 터빈으로 흐르는 배기가스의 흐름을 상기 베인의 각도를 변경함으로써 조절할 수 있도록 되어 있다.In the conventional variable nozzle apparatus, a plurality of vanes are disposed around a centrally located turbine, so that the flow of exhaust gas flowing from the outside of the vanes to the turbine inside is adjusted by changing the angle of the vanes.
종래 상기 베인들의 각도를 조절하기 위한 메커니즘으로는 다수의 베인들 각각에 회전링크를 설치하고, 상기 회전링크들을 일괄적으로 회동시킬 수 있는 구동링을 구비하여, 별도의 외부링크장치로 상기 구동링을 회전시킴에 의해 베인들의 각도가 동시에 변경되도록 하는 것이 사용되고 있다.Conventionally, a mechanism for adjusting the angle of the vanes is provided with a driving ring for installing a rotary link on each of the plurality of vanes and rotating the rotary links collectively, and the drive ring as a separate external link device. It is used to rotate the vanes so that the angle of the vanes is changed at the same time.
상기한 바와 같은 가변 노즐 장치의 구동 메커니즘은 모든 베인들을 각각의 위치에서 터빈에 대해 동일한 각도로 회동되도록 하기 위해, 다수의 부품이 사용되어 그 구조가 복잡하고 조립 작업성이 떨어지며, 조립 불량 발생율과, 고장 및 파손의 가능성이 상대적으로 높다. 또한 다수 부품들을 통한 조작에 따른 동력 전달 효율의 저하를 피하기 어렵다.As described above, the driving mechanism of the variable nozzle apparatus is a plurality of parts are used to rotate all the vanes at the same angle with respect to the turbine at each position, the structure is complicated, the assembly workability is poor, The likelihood of failure and breakdown is relatively high. In addition, it is difficult to avoid a decrease in power transmission efficiency due to operation through a plurality of parts.
본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 상대적으로 적은 수의 부품과 간단한 구조로, 원주상에 배치된 베인들의 각도를 일괄적으로 변경시킬 수 있도록 하여, 상대적으로 높은 동력 전달 효율로 원활하고 안정된 베인들의 각도 조절이 가능하며, 조립성을 크게 향상시키고, 조립 불량 발생율과, 고장 및 파손의 가능성을 크게 저감시킬 수 있도록 한 가변 노즐 장치를 제공함에 그 목적이 있다.The present invention has been made to solve the problems described above, with a relatively small number of parts and a simple structure, it is possible to collectively change the angle of the vanes arranged on the circumference, relatively high power transmission It is an object of the present invention to provide a variable nozzle device capable of smoothly and stably adjusting angles of vanes with efficiency, greatly improving assemblability, and greatly reducing the occurrence rate of assembly failure and the possibility of failure and damage.
상기와 같은 본 발명의 목적을 달성하기 위한 가변 노즐장치는 일측면에 원주방향을 따라 축삽입홈이 다수개 형성된 제1링; 상기 제1링과 동심축을 이루도록 결합되고, 상기 축삽입홈과 짝을 이루는 캠홈이 방사 방향에 대해 기울어지게 연장되는 제2링; 및 상기 제1링의 축삽입홈에 삽입되는 회동축과, 상기 캠홈에 삽입되는 가이드핀이 서로 평행을 이루도록 돌출된 다수의 베인; 을 포함하고, 상기 제1링과 상기 제2링의 상대 회동시, 상기 가이드핀이 상기 캠홈을 따라 슬라이딩되면서 상기 베인이 상기 회동축을 기준으로 회동된다.The variable nozzle device for achieving the object of the present invention as described above comprises: a first ring formed with a plurality of shaft insertion grooves in the circumferential direction on one side; A second ring coupled to form the concentric shaft with the first ring, and the cam groove mating with the shaft insertion groove extending inclined with respect to the radial direction; And a plurality of vanes protruding so that the pivot shaft inserted into the shaft insertion groove of the first ring and the guide pin inserted into the cam groove are parallel to each other. The vane is rotated with respect to the pivot shaft while the guide pin slides along the cam groove when the first ring and the second ring rotate relative to each other.
또한 보다 바람직하게는, 상기 베인의 회동축과 상기 가이드핀은 상기 베인으로부터 동일한 방향으로 돌출되어 형성되고, 상기 제1링의 축삽입홈이 형성된 면과 상기 제2링의 캠홈이 형성된 면은 서로 수평을 이루도록 결합된다.More preferably, the pivot shaft and the guide pin of the vane are formed to protrude from the vane in the same direction, and the surface on which the shaft insertion groove of the first ring is formed and the surface on which the cam groove of the second ring are formed Combined to be horizontal.
또한 보다 바람직하게는, 상기 제1링과 제2링은 반경방향과 일측 축방향으로 상호 구속되는 요철구조로 결합된다.Also, more preferably, the first ring and the second ring are combined in a concave-convex structure that is mutually constrained in the radial direction and the one axial direction.
또한 보다 바람직하게는, 상기 제2링의 캠홈이 형성된 부분은 상기 제1링의 축삽입홈이 형성된 부분의 내측에 위치하도록 결합된다.Also, more preferably, the portion where the cam groove of the second ring is formed is coupled to be located inside the portion where the shaft insertion groove of the first ring is formed.
또한 보다 바람직하게는, 상기 제1링과 제2링 중 어느 하나는 고정되고, 나머지 하나는 외력에 의해 상기 고정된 것에 대해 상대적인 회동이 가능하도록 외부동력전달체에 연결된다.Also, more preferably, any one of the first ring and the second ring is fixed, and the other one is connected to an external power carrier so as to be able to rotate relative to the fixed by an external force.
또한 보다 바람직하게는, 상기 베인은 상기 베인의 회동축에 수직한 단면구조가 직선형이다.More preferably, the vane has a straight cross-sectional structure perpendicular to the rotation axis of the vane.
또한 보다 바람직하게는, 상기 베인은 상기 베인의 회동축에 수직한 단면구조가 곡선형이다.More preferably, the vane has a curved cross-sectional structure perpendicular to the rotation axis of the vane.
상기와 같은 본 발명의 목적을 달성하기 위한 터보차져는 이러한 가변 노즐장치가 장착된다.Turbocharger for achieving the object of the present invention as described above is equipped with such a variable nozzle device.
본 발명은 상대적으로 적은 수의 부품과 간단한 구조로, 원주상에 배치된 베인들의 각도를 일괄적으로 변경시킬 수 있도록 하여, 상대적으로 높은 동력 전달 효율로 원활하고 안정된 베인들의 각도 조절이 가능하며, 조립성을 크게 향상시키고, 조립 불량 발생율과, 고장 및 파손의 가능성을 크게 저감시킬 수 있도록 한다.The present invention is a relatively small number of parts and a simple structure, it is possible to collectively change the angle of the vanes arranged on the circumference, it is possible to adjust the angle of the vanes smooth and stable with a relatively high power transmission efficiency, It is possible to greatly improve the assemblability and to greatly reduce the rate of occurrence of assembly failure and the possibility of failure and damage.
도 1은 본 발명에 따른 가변 노즐 장치의 실시예의 분해 사시도,1 is an exploded perspective view of an embodiment of a variable nozzle device according to the present invention;
도 2는 도 1의 실시예의 조립상태도,Figure 2 is an assembled state of the embodiment of Figure 1,
도 3은 도 1의 실시예에 사용된 구성품들을 나열한 도면,3 is a view listing the components used in the embodiment of FIG.
도 4는 제1링과 제2링의 두 결합 실시예를 좌우로 각각 도시한 도면,4 is a view showing two left and right coupling embodiments of the first ring and the second ring, respectively;
도 5는 도 1의 실시예의 작동을 설명한 도면,5 is a view explaining the operation of the embodiment of FIG.
도 6은 또 다른 모양의 베인을 도시한 사시도.Figure 6 is a perspective view of the vane of another shape.
도 1 내지 도 3을 참조하면 본 발명 실시예는 일측면에 원주방향을 따라 베인(1)들의 회동축(3)이 회동 가능하게 삽입되는 축삽입홈(5)이 다수 구비된 제1링(7)과; 상기 제1링(7)의 축삽입홈(5)에 삽입되는 회동축(3)이 돌출되어 형성되고 상기 회동축(3)과 평행하게 가이드핀(9)이 돌출되어 형성된 다수의 베인(1)과; 상기 제1링(7)과 동심축을 이루어 결합되고, 상기 베인(1)들의 가이드핀(9)들이 각각 삽입되어 상기 제1링(7)과의 상대 회동시 상기 베인(1)을 상기 축삽입홈(5)을 중심으로 회동시키도록 형성된 다수의 캠홈(11)이 원주방향을 따라 배치된 제2링(13)을 포함하여 구성된다. 캠홈(11)은 제2링(13)의 일측면에 소정의 깊이로 함몰되고 방사형 방향에 대해 일정각도만큼 기울어지게 연장되며, 호 형상을 이루는 것이 바람직하다.1 to 3, an exemplary embodiment of the present invention includes a first ring having a plurality of shaft insertion grooves 5 in which rotation shafts 3 of vanes 1 are rotatably inserted along one circumferential direction. 7); A plurality of vanes (1) formed by protruding the rotation shaft (3) inserted into the shaft insertion groove (5) of the first ring (7) and protruding the guide pin (9) in parallel with the rotation shaft (3) )and; Coaxially coupled with the first ring (7), the guide pins (9) of the vanes (1) are respectively inserted so that the shaft insertion of the vanes (1) during relative rotation with the first ring (7) A plurality of cam grooves 11 formed to rotate about the groove 5 are configured to include a second ring 13 arranged along the circumferential direction. The cam groove 11 is recessed to one side of the second ring 13 to a predetermined depth, extends inclined by a predetermined angle with respect to the radial direction, and preferably forms an arc shape.
즉, 상호간에 상대 회동이 가능하게 결합되는 제1링(7)과 제2링(13)에 각각 축삽입홈(5)과 캠홈(11)이 형성되도록 하고, 여기에 베인(1)의 회동축(3)과 가이드핀(9)이 각각 삽입되도록 하여, 상기 제1링(7)과 제2링(13)의 상대 회동시 상기 베인(1)의 가이드핀(9)이 상기 캠홈(11)을 따라 이동하면서 상기 베인(1)의 회동을 유발시키도록 한 것이다. 즉, 제1링(7)이 회전되면, 축삽입홈(5)에 회동축(3)이 삽입된 상태에서 베인(1)의 위치 이동이 발생되고, 그에 따라 베인(1)의 가이드핀(9)은 캠홈(11)을 따라 슬라이딩 되면서 베인(1)의 회동이 발생되는 것이다.That is, the shaft insertion grooves 5 and the cam grooves 11 are formed in the first ring 7 and the second ring 13, which are coupled to each other so that relative rotation is possible, and the rotation of the vanes 1 is here. The coaxial 3 and the guide pin 9 are inserted so that the guide pin 9 of the vane 1 is the cam groove 11 when the first ring 7 and the second ring 13 rotate relative to each other. It is to cause the rotation of the vane (1) while moving along. That is, when the first ring 7 is rotated, the position movement of the vanes 1 is generated in a state where the rotation shaft 3 is inserted into the shaft insertion groove 5, and thus the guide pins of the vanes 1 9) is the rotation of the vanes (1) is generated while sliding along the cam groove (11).
따라서, 상기 베인(1)의 회동 특성은 상기 가이드핀(9)에 대한 캠홈(11)의 형상에 따라 조절될 수 있으며, 종래에 베인(1)의 선단부가 지나치게 터빈쪽으로 진입하여 간섭이 발생하게 되는 것을 방지하기 위해 별도의 스토퍼 등을 구비했던 것을, 별도의 스토퍼 없이 상기 가이드핀(9)과 캠홈(11)의 형상에 의해 제한하는 것이 가능 하므로, 상기 제2링(13)의 캠홈(11)은 상기 제1링(7)과 제2링(13)의 상대 회동시, 상기 베인(1)의 선단이 상기 제2링(13)의 내경부에 설치되는 터빈과 같은 회전체와 간섭하지 않도록 상기 가이드핀(9)의 이동을 제한하도록 형성된 구조로 하는 것이 바람직할 것이다.Therefore, the rotational characteristic of the vane 1 can be adjusted according to the shape of the cam groove 11 with respect to the guide pin 9, so that the tip of the vane 1 enters the turbine side too much and causes interference. Since it is possible to limit the one provided with a separate stopper or the like by the shape of the guide pin 9 and the cam groove 11 without a separate stopper, the cam groove 11 of the second ring 13 ) Does not interfere with a rotating body such as a turbine installed at the inner diameter of the second ring 13 when the vane 1 is rotated relative to the first ring 7 and the second ring 13. It will be desirable to have a structure formed so as to limit the movement of the guide pin (9).
상기 베인(1)은 상기 베인의 회동축(3)에 수직한 단면구조가, 도시된 바와 같이 단순한 직선 형상으로 형성될 수도 있지만, 도 6에 도시된 바와 같이 단면이 곡선이나 S 자형상 등 다양한 곡선 형상을 이루도록 형성되도록 할 수도 있다.The vane 1 may have a cross-sectional structure perpendicular to the pivot shaft 3 of the vane, as shown in FIG. 6, but may have a simple straight line shape. It may be made to form a curved shape.
상기 베인(1)의 회동축(3)과 상기 가이드핀(9)은 상기 베인(1)으로부터 동일한 방향으로 돌출되어 형성되고, 상기 제1링(7)의 축삽입홈(5)이 형성된 면과 상기 제2링(13)의 캠홈(11)이 형성된 면은 서로 단일 평면, 즉 수평을 이루도록 결합된 구조이다.The rotating shaft 3 and the guide pin 9 of the vane 1 are formed to protrude from the vane 1 in the same direction, and the shaft insertion groove 5 of the first ring 7 is formed. And the surface on which the cam groove 11 of the second ring 13 is formed are coupled to each other to form a single plane, that is, horizontal.
따라서, 상기 베인(1)의 상기 가이드핀(9) 및 회동축(3)이 돌출된 면은 상기 제1링(7)과 제2링(13)이 형성하는 평면에 접촉된 상태도 회동되어 작동되고, 이 평면의 맞은편에는 또 다른 부재에 의한 평면이 상기 베인(1)에 접촉된 상태로 회동될 수 있도록 구비되어 상기 베인(1)들과 함께 배기가스 등과 같은 유체가 통과하는 노즐의 통로를 형성하게 된다.Accordingly, the surface in which the guide pin 9 and the pivot shaft 3 of the vane 1 protrude is also rotated in contact with the plane formed by the first ring 7 and the second ring 13. Is operated so that a plane by another member can be rotated in contact with the vane 1 so that a fluid such as exhaust gas passes along with the vanes 1. It will form a passageway.
여기서, 상기 제1링(7)과 제2링(13)의 맞은편에 상기 베인(1)이 미끄러지면서 회동되는 또 다른 평면을 제공하는 부재는 종래의 터보차져 등에 사용되는 가변 노즐 장치에서와 마찬가지로 터보차져의 케이스나 기타 별도로 삽입된 다른 부재 등이 될 수 있을 것이다.Here, a member for providing another plane in which the vanes 1 are rotated while the vanes 1 slide opposite the first ring 7 and the second ring 13 is used in a variable nozzle device used in a conventional turbocharger or the like. Likewise, it may be the case of a turbocharger or other separately inserted member.
물론, 상기 베인(1)의 회동축(3)과 상기 가이드핀(9)은 서로 반대방향으로 돌출되고, 상기 제1링(7)과 제2링(13)은 서로 동심축은 이루지만 상기 베인(1)을 사이에 두고 서로 반대방향에 설치되도록 구성하여도, 상기 제1링(7)과 제2링(13)의 상대회동만으로 상기 베인(1)들의 일괄적인 회동 조작이 가능하도록 구성할 수 있을 것이다.Of course, the pivot shaft 3 and the guide pin 9 of the vane 1 protrude in opposite directions, and the first ring 7 and the second ring 13 are concentric with each other but the vanes The vanes 1 may be collectively rotated only by the relative rotation of the first ring 7 and the second ring 13, even if the first ring 7 and the second ring 13 are installed in opposite directions. Could be.
상기 제1링(7)과 제2링(13)은 반경방향과 일측 축방향으로 상호 구속되는 요철구조로 결합된 구조이다. 즉, 도 4의 좌우에 각각 예시된 바와 같이 제1링(7)과 제2링(13)이 요철구조를 이루어 맞물리도록 제1링(7)의 내측에 형성된 삽입홈(7a)에 제2링(13)이 안착되는 구조로 이루어지거나, 제2링(13)에 형성된 삽입홈(13a)에 제1링(7)이 안착되는 구조로 이루어질 수 있다. 또한 삽입홈(7a)이 형성된 제1링(7)과 안착되는 제2링(13)에는 각각 홈과 돌기가 짝을 이루어 형성될 수 있다. 즉, 제1링(7)과 제2링(13)이 서로 홈과 돌기를 구비 또는 돌기나 홈 자체를 이루어 서로 결합되도록 함으로써, 조립에 의해 상호간의 동심축 일치가 저절로 이루어지고 반경방향의 구속이 이루어지며, 상호간에 삽입되는 방향으로도 서로 더 이상 삽입되지 않는 상태에서 베인(1)이 결합되는 면이 단일평면을 이루어 일측 축방향으로 상호 구속되는 구조가 되는 것이다. 베인(1)이 장착되는 방향의 제1링(7)과 제2링(13)의 면은 동일한 수평 높이를 이루는 것이 바람직하다.The first ring 7 and the second ring 13 are combined in a concave-convex structure constrained to each other in the radial direction and one side axial direction. That is, as illustrated in each of the left and right of FIG. 4, the second ring is inserted into the insertion groove 7a formed in the inner side of the first ring 7 so that the first ring 7 and the second ring 13 form an uneven structure. The ring 13 may be configured to be seated, or the first ring 7 may be seated in the insertion groove 13a formed in the second ring 13. In addition, grooves and protrusions may be formed in pairs with the first ring 7 having the insertion groove 7a and the second ring 13 seated thereon, respectively. That is, the first ring 7 and the second ring 13 are provided with grooves and protrusions, or by forming protrusions or grooves with each other, so that the concentricity of the concentric axes is made by the assembly and restrained in the radial direction. This is made, and the vanes 1 are coupled to each other in a direction in which the vanes 1 are coupled to each other in a direction that is not inserted into each other to form a single plane to be mutually constrained in one axial direction. It is preferable that the surfaces of the first ring 7 and the second ring 13 in the direction in which the vanes 1 are mounted have the same horizontal height.
참고로, 도 1과 도 2에 도시된 실시예에서 상기 제2링(13)의 캠홈(11)이 형성된 부분은 상기 제1링(7)의 축삽입홈(5)이 형성된 부분의 내측에 위치하도록 결합된 구조이다.For reference, in the embodiment shown in FIGS. 1 and 2, the portion in which the cam groove 11 of the second ring 13 is formed is located inside the portion in which the shaft insertion groove 5 of the first ring 7 is formed. It is a structure coupled to position.
여기서, 상기 제1링(7)과 제2링(13) 중 어느 하나는 고정되고, 나머지 하나는 외력에 의해 상기 고정된 것에 대해 상대적인 회동이 가능하도록 외부동력전달체(15)에 연결됨으로써, 상기 제1링(7)과 제2링(13) 사이에 필요에 따라 상대회동을 유발시켜 상기 베인(1)들의 각도를 일괄적으로 제어할 수 있다. 제1링(7)에는 동력전달 홈(17)이 형성되어 외부동력전달체(15)가 동력전달 홈(17)에 끼워져 상대회동시키는 것이 바람직하다.Here, any one of the first ring 7 and the second ring 13 is fixed, and the other one is connected to the external power transmission body 15 so as to be able to rotate relative to the fixed by the external force, The angle of the vanes 1 may be collectively controlled by causing relative rotation between the first ring 7 and the second ring 13 as necessary. The first ring 7 is preferably formed with a power transmission groove 17 so that the external power transmission body 15 is fitted into the power transmission groove 17 so as to be relatively rotated.
참고로 도 5의 동작 설명도에는 상기 캠홈(11)이 형성되어 있는 제2링(13)이 고정되어 있고, 상기 축삽입홈(5)이 구비된 제1링(7)이 외부동력전달체(15)인 작동로드에 연결되어 상기 작동로드의 직선운동에 따라 상기 제2링(13)에 대해 상대회동이 이루어지는 상태가 묘사되어 있다. (a) 상태는 베인(1)에 의해 완전 폐쇄된 상태이고, (c) 상태는 베인(1)이 오픈된 상태이고, (b)단계는 베인(1)이 완전 폐쇄된 상태와 오픈된 상태의 중간 상태를 나타낸다.For reference, in operation description of FIG. 5, a second ring 13 in which the cam groove 11 is formed is fixed, and the first ring 7 provided with the shaft insertion groove 5 is an external power transmission body ( 15) a state in which relative rotation is made with respect to the second ring 13 in accordance with the linear motion of the actuating rod is connected to the actuating rod. (a) the state is completely closed by the vane (1), (c) the state is the vane (1) is open, the step (b) the vane (1) is fully closed and open state Indicates an intermediate state of.
물론, 상기 외부동력전달체(15)인 상기 작동로드는 종래에 가변 노즐 장치를 구동하기 위한 액츄에이터를 구성하는 로드나 링크 등이 될 수 있을 것이다.Of course, the actuating rod, which is the external power carrier 15, may be a rod or a link constituting an actuator for driving the variable nozzle apparatus in the related art.
본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.
Claims (8)
- 일측면에 원주방향을 따라 축삽입홈이 다수개 형성된 제1링;A first ring having a plurality of shaft insertion grooves formed in one circumferential direction;상기 제1링과 동심축을 이루도록 결합되고, 상기 축삽입홈과 짝을 이루는 캠홈이 방사 방향에 대해 기울어지게 연장되는 제2링; 및 A second ring coupled to form the concentric shaft with the first ring, and the cam groove mating with the shaft insertion groove extending inclined with respect to the radial direction; And상기 제1링의 축삽입홈에 삽입되는 회동축과, 상기 캠홈에 삽입되는 가이드핀이 서로 평행을 이루도록 돌출된 다수의 베인; 을 포함하고, A plurality of vanes protruding so that the pivot shaft inserted into the shaft insertion groove of the first ring and the guide pin inserted into the cam groove are parallel to each other; Including,상기 제1링과 상기 제2링의 상대 회동시, 상기 가이드핀이 상기 캠홈을 따라 슬라이딩되면서 상기 베인이 상기 회동축을 기준으로 회동되는 것을 특징으로 하는 가변 노즐 장치.The vane is rotated with respect to the rotation axis while the guide pin is slid along the cam groove during the relative rotation of the first ring and the second ring.
- 청구항 1에 있어서,The method according to claim 1,상기 베인의 회동축과 상기 가이드핀은 상기 베인으로부터 동일한 방향으로 돌출되어 형성되고,Rotating shaft and the guide pin of the vane is formed to protrude in the same direction from the vane,상기 제1링의 축삽입홈이 형성된 면과 상기 제2링의 캠홈이 형성된 면은 서로 수평을 이루도록 결합된 것을 특징으로 하는 가변 노즐 장치.And the surface on which the shaft insertion groove of the first ring is formed and the surface on which the cam groove of the second ring is formed are coupled to be horizontal to each other.
- 청구항 2에 있어서,The method according to claim 2,상기 제1링과 제2링은 반경방향과 일측 축방향으로 상호 구속되는 요철구조로 결합된 것을 특징으로 하는 가변 노즐 장치.The first ring and the second ring is a variable nozzle device, characterized in that coupled to the concave-convex structure constrained mutually in the radial direction and one side axial direction.
- 청구항 3에 있어서, The method according to claim 3,상기 제2링의 캠홈이 형성된 부분은 상기 제1링의 축삽입홈이 형성된 부분의 내측에 위치하도록 결합된 것을 특징으로 하는 가변 노즐 장치.The cam groove formed part of the second ring is variable nozzle device, characterized in that coupled to be located inside the portion formed the shaft insertion groove of the first ring.
- 청구항 1 내지 4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,상기 제1링과 제2링 중 어느 하나는 고정되고, 나머지 하나는 외력에 의해 상기 고정된 것에 대해 상대적인 회동이 가능하도록 외부동력전달체에 연결된 것을 특징으로 하는 가변 노즐 장치.Any one of the first ring and the second ring is fixed, and the other one is connected to the external power carrier to enable a relative rotation relative to the fixed by an external force.
- 청구항 1 내지 4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,상기 베인은 상기 베인의 회동축에 수직한 단면구조가 직선형인 것을 특징으로 하는 가변 노즐 장치.The vane is a variable nozzle device, characterized in that the cross-sectional structure perpendicular to the rotation axis of the vane is straight.
- 청구항 1 내지 4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,상기 베인은 상기 베인의 회동축에 수직한 단면구조가 곡선형인 것을 특징으로 하는 가변 노즐 장치.The vane is a variable nozzle device, characterized in that the cross-sectional structure perpendicular to the rotation axis of the vane is curved.
- 청구항 1 내지 4항 중 어느 한 항의 가변 노즐 장치;Variable nozzle device according to any one of claims 1 to 4;를 포함하는 것을 특징으로 하는 터보차져.Turbocharger comprising a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2010/006309 WO2012036328A1 (en) | 2010-09-15 | 2010-09-15 | Variable nozzle device and turbo charger provided with same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2010/006309 WO2012036328A1 (en) | 2010-09-15 | 2010-09-15 | Variable nozzle device and turbo charger provided with same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012036328A1 true WO2012036328A1 (en) | 2012-03-22 |
Family
ID=45831770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2010/006309 WO2012036328A1 (en) | 2010-09-15 | 2010-09-15 | Variable nozzle device and turbo charger provided with same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012036328A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107559086A (en) * | 2017-08-21 | 2018-01-09 | 安徽江淮汽车集团股份有限公司 | Turbocharger |
CN113309653A (en) * | 2021-06-11 | 2021-08-27 | 汕头大学 | Flow channel type wave energy propulsion mode and aircraft using same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4657476A (en) * | 1984-04-11 | 1987-04-14 | Turbotech, Inc. | Variable area turbine |
US20020094284A1 (en) * | 2001-01-16 | 2002-07-18 | Arnold Steven Don | Vane for variable nozzle turbocharger |
US20040096317A1 (en) * | 2002-11-11 | 2004-05-20 | Georg Scholz | Guiding grid of variable geometry |
US7137778B2 (en) * | 2004-04-12 | 2006-11-21 | Borgwarner Inc. | Variable turbine geometry turbocharger |
JP2008008227A (en) * | 2006-06-29 | 2008-01-17 | Toyota Motor Corp | Variable capacity turbine |
-
2010
- 2010-09-15 WO PCT/KR2010/006309 patent/WO2012036328A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4657476A (en) * | 1984-04-11 | 1987-04-14 | Turbotech, Inc. | Variable area turbine |
US20020094284A1 (en) * | 2001-01-16 | 2002-07-18 | Arnold Steven Don | Vane for variable nozzle turbocharger |
US20040096317A1 (en) * | 2002-11-11 | 2004-05-20 | Georg Scholz | Guiding grid of variable geometry |
US7137778B2 (en) * | 2004-04-12 | 2006-11-21 | Borgwarner Inc. | Variable turbine geometry turbocharger |
JP2008008227A (en) * | 2006-06-29 | 2008-01-17 | Toyota Motor Corp | Variable capacity turbine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107559086A (en) * | 2017-08-21 | 2018-01-09 | 安徽江淮汽车集团股份有限公司 | Turbocharger |
CN107559086B (en) * | 2017-08-21 | 2019-06-28 | 安徽江淮汽车集团股份有限公司 | Turbocharger |
CN113309653A (en) * | 2021-06-11 | 2021-08-27 | 汕头大学 | Flow channel type wave energy propulsion mode and aircraft using same |
CN113309653B (en) * | 2021-06-11 | 2023-08-08 | 汕头大学 | Runner type wave energy propulsion method and aircraft using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10408228B2 (en) | Mixed-flow turbocharger with variable turbine geometry | |
EP2351911B1 (en) | Variable geometry vane assembly for a turbocharger | |
EP2878770B1 (en) | Drive arrangement for a unison ring of a variable-vane assembly | |
US20070172348A1 (en) | Adjustable guide device | |
US20070231125A1 (en) | Preswirl guide device | |
CN103016070A (en) | Turbocharger variable-nozzle assembly with vane sealing arrangement | |
WO2012036328A1 (en) | Variable nozzle device and turbo charger provided with same | |
CN106640349B (en) | Loaded turbocharger turbine wastegate control link joint | |
US9664198B2 (en) | Exhaust-gas turbocharger | |
US10900497B2 (en) | Compressor for a charging device of an internal combustion engine and charging device for an internal combustion engine | |
RU2700113C2 (en) | Control system of blades with variable angle of installation for gas turbine engine | |
US10590794B2 (en) | Turbine engine compressor, in particular of an aeroplane turboprop or turbofan | |
WO2010120028A1 (en) | Nozzle assembly for a variable geometry turbocharger, and a production method therefor | |
EP3617461B1 (en) | Variable vane actuating system | |
JP2009114986A (en) | Supercharger | |
KR20150050673A (en) | Variable geometry turbo system | |
EP3617462A1 (en) | Variable vane actuating system | |
JP2008019748A (en) | Turbo supercharger | |
KR20100112366A (en) | Variable nozzle apparatus | |
KR101031635B1 (en) | Variable Nozzle Apparatus | |
RU2674227C1 (en) | Mechanism of regulation of paddles of the guide device of the stator multistage compressor of a gas turbine engine | |
CN104395558B (en) | Be there is by the differential speed rotation of blower fan disk the blower fan of variable set up | |
EP3225787B1 (en) | Turbocharger with variable nozzle mechanism | |
JP7020396B2 (en) | Link mechanism used for turbocharger | |
CN114738324B (en) | Inlet guide vane adjusting device and centrifugal compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10857313 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10857313 Country of ref document: EP Kind code of ref document: A1 |