Nothing Special   »   [go: up one dir, main page]

WO2012014529A1 - Lighting device and display device - Google Patents

Lighting device and display device Download PDF

Info

Publication number
WO2012014529A1
WO2012014529A1 PCT/JP2011/058196 JP2011058196W WO2012014529A1 WO 2012014529 A1 WO2012014529 A1 WO 2012014529A1 JP 2011058196 W JP2011058196 W JP 2011058196W WO 2012014529 A1 WO2012014529 A1 WO 2012014529A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
guide plate
light guide
emitting diodes
Prior art date
Application number
PCT/JP2011/058196
Other languages
French (fr)
Japanese (ja)
Inventor
寺川大輔
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012014529A1 publication Critical patent/WO2012014529A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area

Definitions

  • the present invention relates to an illuminating device, and more particularly to an illuminating device including a light source and a light guide plate that emits light from the light source to an irradiated object such as a liquid crystal panel, and a display device using the illuminating device.
  • liquid crystal display devices have been widely used in liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight compared to conventional cathode ray tubes.
  • a liquid crystal display device includes an illumination device (backlight device) that emits light, and a liquid crystal panel that displays a desired image by serving as a shutter for light from a light source provided in the illumination device. It is included.
  • liquid crystal display device as described above, a plurality of display areas are provided on the display surface of the liquid crystal panel, and in the illumination device, a plurality of light emitting areas in which light from the light source is incident on the plurality of display areas, respectively Set.
  • low power consumption has been achieved by performing local dimming (area active backlight) driving in which the light source is driven to light in units of light emitting areas.
  • the same number of first light guide members as the number of light emitting areas installed are provided, so that when the plurality of light emitting areas are provided, the number of parts of the lighting device increases. There was a problem that the cost could not be suppressed and the cost increased.
  • the first and second light guides are provided when a plurality of light emitting areas are provided. There has been a problem in that cost is increased because much time and labor are required for connecting the members.
  • an object of the present invention is to provide an illumination device that can suppress an increase in the number of parts even when a plurality of light emitting areas are provided, and a display device using the illumination device.
  • an illumination device includes a light source and a light guide plate that guides light from the light source in a predetermined propagation direction and emits the light to an object to be irradiated. Because The light guide plate is provided with a plurality of light guide plate members stacked in a predetermined direction, Each of the plurality of light guide plate members is provided with a light blocking portion so that a plurality of light emitting areas that respectively emit light from the plurality of light sources are formed on a light emitting surface of the light guide plate. It is what.
  • the light guide plate of the lighting device configured as described above is provided with a plurality of light guide plate members stacked in a predetermined direction.
  • Each of the plurality of light guide plate members is provided with a light blocking portion so that a plurality of light emitting areas for emitting light from the plurality of light sources are formed on the light emitting surface of the light guide plate.
  • the illumination device as the light blocking portion, a slit provided in the light guide plate member along a boundary line of the plurality of light emitting areas, and a facing surface side of the light guide plate member facing the light emitting surface It is preferable that a reflective member provided in the is used.
  • a reflective material that reflects light is installed inside the slit.
  • a light scattering portion that scatters light from the light source is provided on the facing surface side facing the light emitting surface according to the light emitting area. It is preferable.
  • the light scattering portion can efficiently emit light from the corresponding light emitting area from the corresponding light emitting area, and the luminance of the light emitting area can be easily increased.
  • each of the plurality of light guide plate members is provided with a plurality of light incident surfaces on which light from a plurality of light sources respectively enter linearly.
  • a compact lighting device can be easily configured even when the number of light emitting areas is increased.
  • the light guide plate may be provided between a plurality of light incident surfaces provided on the plurality of light guide plate members and a plurality of light sources that respectively input light to the plurality of light incident surfaces. It is preferable that a partition member for restricting the emission direction of the light from the plurality of light sources is attached so that the light from the plurality of light sources enters only the corresponding light incident surface.
  • the display device of the present invention is characterized by using any one of the above lighting devices.
  • a display unit that displays information is used as the irradiated object. It is preferable that the display unit includes a plurality of display areas into which light from the plurality of light emitting areas is incident.
  • the light source of the corresponding light emitting area is appropriately driven to be turned on, and a display device with reduced power consumption can be easily configured.
  • the present invention even when a plurality of light emitting areas are provided, it is possible to suppress an increase in the number of parts, and it is possible to provide a lighting device that is inexpensive and a display device using the lighting device.
  • FIG. 1 is a diagram for explaining an illumination device and a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the configuration of the liquid crystal panel shown in FIG.
  • FIG. 3 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 2.
  • 4 is a block diagram illustrating a configuration example of the illumination control unit illustrated in FIG.
  • FIG. 5 is a diagram illustrating a specific example of a plurality of light emitting areas provided in the lighting device illustrated in FIG. 1 and a plurality of display areas irradiated with light from these light emitting areas.
  • FIG. 6 is a perspective view illustrating a configuration example of the light guide plate illustrated in FIG. 1.
  • FIG. 7A and 7B are a plan view and a side view of the first light guide plate member shown in FIG. 6, respectively.
  • 8A and 8B are a plan view and a side view of the second light guide plate member shown in FIG. 6, respectively.
  • FIG. 9A and FIG. 9B are a plan view and a side view of the third light guide plate member shown in FIG. 6, respectively.
  • FIG. 10 is a diagram for explaining a main configuration of the illumination device shown in FIG.
  • FIG. 11 is a diagram illustrating an operation example of the illumination device illustrated in FIG. 1.
  • FIG. 12 is a diagram for explaining a main configuration of a modified example of the illumination device shown in FIG.
  • FIG. 13 is a diagram for explaining a main configuration of an illumination device according to the second embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a main configuration of the illumination device shown in FIG.
  • FIG. 11 is a diagram illustrating an operation example of the illumination device illustrated in FIG. 1.
  • FIG. 12 is a
  • FIG. 14 is a diagram for explaining a main configuration of an illumination apparatus according to the third embodiment of the present invention.
  • FIG. 15 is a perspective view illustrating a configuration example of the partition member illustrated in FIG. 14.
  • FIG. 16 is a diagram for explaining a main configuration of an illuminating device according to the fourth embodiment of the present invention.
  • FIG. 17 is a diagram for explaining a main configuration of an illumination apparatus according to the fifth embodiment of the present invention.
  • FIG. 1 is a diagram for explaining an illumination device and a liquid crystal display device according to a first embodiment of the present invention.
  • the illuminating device 2 of this invention and the liquid crystal panel 3 as a display part which displays the information while irradiating the light from the illuminating device 2 are provided.
  • the illumination device 2 and the liquid crystal panel 3 are integrated as a transmissive liquid crystal display device 1.
  • the lighting device 2 includes a plurality of light emitting diodes (LEDs) 4 as light sources, an LED substrate 5 on which the plurality of light emitting diodes 4 are mounted, a frame body 6 to which the LED substrate 5 is attached, and the light emitting diodes 4. And a light guide plate 7 for emitting the light to the liquid crystal panel 3 as an irradiated object. Moreover, in this illuminating device 2, the light emission surface 7a of the light-guide plate 7 is formed with the some light emission area which each light-emits the light from the some light emitting diode 4 so that it may explain in full detail later.
  • LEDs light emitting diodes
  • liquid crystal display device 1 of the present embodiment light from a plurality of light emitting areas is incident on a plurality of display areas provided in the liquid crystal panel 3, and the light emitting diodes 4 are provided in units of light emitting areas. Local dimming (area active backlight) driving for lighting is performed.
  • the light guide plate 7 is provided with a plurality of, for example, three light guide plate members, that is, first, second, and third light guide plate members 71, 72, 73. These first, second, and third light guide plate members 71, 72, 73 are arranged in a predetermined direction so that the light emitting surface of the first light guide plate member 71 constitutes the light emitting surface 7 a of the light guide plate 7.
  • the light emitting diodes 4 are laminated so that light from the plurality of light emitting diodes 4 is appropriately guided to emit light from the corresponding light emitting areas (details will be described later).
  • red, green, and blue light emitting diodes that emit red (R), green (G), and blue (B) light, respectively, are integrated with each of the plurality of light emitting diodes 4.
  • the so-called three-in-one (3 in 1) type is used.
  • 24 light-emitting areas set for each light-emitting diode 4 are determined and set on the display surface of the liquid crystal panel 3 corresponding to these light-emitting areas. The light from the corresponding light emitting diodes 4 is made incident on the 24 display areas.
  • each of the light emitting areas uses the 3in1 light emitting diode 4, a light source of a plurality of colors that can be mixed with white is used in each light emitting area.
  • a polarizing sheet 8 and a prism (light collecting) sheet 9 are installed between the illumination device 2 and the liquid crystal panel 3, and the illumination from the illumination device 2 is performed by these optical sheets.
  • the display performance of the liquid crystal panel 3 is improved by appropriately increasing the brightness of light.
  • liquid crystal display device 1 signal lines (source lines) and control lines (gate lines), which will be described later, included in the liquid crystal panel 3 are connected to a drive control circuit 11 via an FPC (Flexible Printed Circuit) 9. Yes.
  • the drive control circuit 11 performs drive control on a pixel basis for a plurality of pixels provided in the liquid crystal panel 3.
  • a lighting drive circuit 12 that drives the plurality of light emitting diodes 4 to light is installed in the vicinity of the drive control circuit 11.
  • the lighting drive circuit 12 is configured to drive each of the light emitting diodes 4 using, for example, PWM dimming.
  • FIG. 2 is a diagram for explaining the configuration of the liquid crystal panel shown in FIG.
  • FIG. 3 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 2.
  • 4 is a block diagram illustrating a configuration example of the illumination control unit illustrated in FIG.
  • an image signal is input to the control unit 13 from the outside of the liquid crystal display device 1 via a signal source (not shown) such as a TV (receiver) or a PC.
  • the control unit 13 is provided in the drive control circuit 11 (FIG. 1), and substantially performs drive control of the liquid crystal panel 3 using the input image signal. Furthermore, the control unit 13 is configured to substantially perform drive control of the illumination device 2 using the input image signal.
  • control unit 13 uses the image signal to control the liquid crystal panel 3 in units of pixels, the panel control unit 14 as a display control unit, and the image signal to each of the lighting devices 2.
  • An illumination control unit 15 that controls driving of the light emitting diode 4 and a frame memory 16 configured to be able to store display data in units of frames included in the image signal are provided.
  • an ASIC Application ⁇ ⁇ Specific Integrated Circuit
  • predetermined calculation processing can be performed at high speed.
  • the panel control unit 14 and the illumination control unit 15 are provided as described above, in the liquid crystal display device 1 of the present embodiment, the panel control unit 14 and the illumination control unit 15 are each a liquid crystal panel (display unit). 3 and the illumination device 2 can be appropriately driven, and high-quality display can be easily performed.
  • the panel control unit 14 outputs each instruction signal to the source driver 17 and the gate driver 18. Further, in the panel control unit 14, the luminance value of each light emitting area is notified from an area luminance calculation unit (described later) provided in the illumination control unit 15, and an instruction signal to the source driver 17 is notified. After being corrected to a signal reflecting the luminance value of each light emitting area, it is output from the panel control unit 14 to the source driver 17 (details will be described later).
  • the source driver 17 and the gate driver 18 are drive circuits that drive a plurality of pixels P provided in the liquid crystal panel 3 in units of pixels.
  • the source driver 17 and the gate driver 18 include a plurality of signal lines S1 to SM (M Is an integer of 2 or more) and a plurality of control lines G1 to GN (N is an integer of 2 or more).
  • the signal lines S1 to SM and the control lines G1 to GN are arranged in a matrix, and the areas of the plurality of pixels P are formed in the areas partitioned in the matrix.
  • the liquid crystal panel 3 is not provided with a color filter.
  • the RGB light-emitting diodes provided for each light-emitting area are sequentially turned on, so that each pixel P has a red color. , Green and blue pixels.
  • each control line G1 to GN is provided for each pixel P, and connected to the gate of the switching element 19 using, for example, a thin film transistor (Thin Film Transistor).
  • the source of the switching element 19 is connected to each of the signal lines S1 to SM.
  • a pixel electrode 20 provided for each pixel P is connected to the drain of each switching element 19.
  • the common electrode 21 is configured to face the pixel electrode 20 with a liquid crystal layer (not shown) provided on the liquid crystal panel 3 interposed therebetween.
  • the panel control unit 14 is also provided with an image processing unit 22 and a display data correction calculation unit 23 with reference to FIG. 3.
  • the source driver 17 and the gate driver 18 are used by using the input image signal.
  • Each instruction signal is generated. That is, the image processing unit 22 generates an instruction signal for the gate driver 18 based on the display data of the image signal stored in the frame memory 16 and outputs the instruction signal to the gate driver 18. Thereby, the gate driver 18 sequentially outputs gate signals for turning on the gates of the corresponding switching elements 19 to the control lines G1 to GN based on the instruction signal from the image processing unit 22. Further, the image processing unit 22 generates an instruction signal to the source driver 17 based on the display data and outputs the instruction signal to the display data correction calculation unit 23.
  • the display data correction calculation unit 23 receives not only an instruction signal from the image processing unit 22 to the source driver 17 but also the luminance value of each light emitting area from the area luminance calculation unit.
  • the luminance value of each light emitting area is a luminance value after being corrected using the luminance value of the surrounding light emitting area, and is a value that takes into account the influence of light crosstalk from the surrounding light emitting area. Then, as will be described in detail later, the display data correction calculation unit 23 corrects the instruction signal to the source driver 17 pixel by pixel using the luminance value of each light emitting area, and generates a new instruction signal. To the source driver 17.
  • the source driver 17 generates a voltage signal (gradation voltage) for designating the luminance (gradation) of the information displayed on the display surface based on the instruction signal from the display data correction calculation unit 23 as the signal line S1. Output as appropriate to SM.
  • the display data correction calculation unit 23 acquires the display data of the image signal directly from the frame memory 16 and uses the corrected luminance value of the corresponding light emitting area for each pixel P. Alternatively, the acquired display data may be corrected.
  • the illumination control unit 15 is provided with an area luminance calculation unit 24 and an LED drive control unit 25 with reference to FIG.
  • the area luminance calculation unit 24 acquires luminance information of the pixels P included in the corresponding display area for each light emitting area from the input image signal.
  • the area luminance calculation unit 24 uses the acquired luminance information of the pixel P to perform luminance calculation processing that is obtained by calculating the luminance value of each color of red, green, and blue in each light emitting area. (Details will be described later).
  • the area luminance calculation unit 24 performs an area crosstalk correction process, which will be described later, on the luminance value of each color obtained by performing the luminance calculation process, thereby affecting the influence of light crosstalk from surrounding light emitting areas. Thus, the corrected luminance value of each color is obtained. Then, the area luminance calculation unit 24 outputs the calculated luminance value of each color after correction of each light emitting area to the display data correction calculation unit 23 and the LED drive control unit 25.
  • the light emitting area and the display area respectively provided on the lighting device 2 side and the liquid crystal panel 3 side, and the luminance calculation processing and area crosstalk correction processing in the area luminance calculation unit 24 are specifically described. I will explain it.
  • FIG. 5 is a diagram for explaining a specific example of a plurality of light emitting areas provided in the illumination device shown in FIG. 1 and a plurality of display areas irradiated with light from these light emitting areas.
  • a plurality of light emitting areas and a plurality of display areas will be described.
  • a total of 24 light emitting areas 1-1, 1-2,..., 4-5, 4-6 are arranged opposite to the liquid crystal panel 3 side to provide planar illumination light.
  • These light emitting areas 1-1, 1-2,..., 4-5, 4-6 are provided in the first, second, and third light guide plate members 71, 72, 73 as will be described in detail later.
  • the light blocking section described later emits light from the corresponding light emitting diode 4.
  • the light emitting areas 1-1, 1-2,..., 4-5, 4-6 are shown separated from each other by vertical and horizontal lines in order to clearly show them. Actually, the light emitting areas 1-1, 1-2,..., 4-5, 4-6 are not separated from one another by a boundary line or the like installed on the light emitting surface 7 a.
  • each of these display areas (1), (2),..., (23), (24) includes a plurality of pixels P. Specifically, when, for example, 1920 ⁇ 1080 pixels P are provided in the horizontal and vertical directions in the liquid crystal panel 3, the display areas (1), (2),..., (23), (24 ) Includes 320 ⁇ 270 pixels P.
  • the matrix-shaped light emitting areas 1-1, 1-2,..., 4-5, 4-6 and the matrix-shaped display areas (1), (2),. , (23), and (24) are set in a one-to-one relationship, and the local light is appropriately irradiated to one display area according to information to be displayed by illumination light from one light emitting area. Dimming driving is performed.
  • each of the light emitting areas 1-1, 1-2,..., 4-5, 4-6 the RGB colors from the RGB light emitting diodes included in the corresponding light emitting diode 4 are displayed.
  • Each color light can be independently emitted to the liquid crystal panel 3 side.
  • -1, 1-2,..., 4-5, 4-6 can be appropriately incident, and the reproducibility of each color of RGB can be easily improved.
  • the area luminance calculation unit 24 9 corresponding to the light emitting areas 1-2, 1-3, 1-4, 2-2, 2-3, 2-4, 3-2, 3-3, and 3-4, respectively.
  • luminance calculation processing is performed for each of the display areas (2), (3), (4), (8), (9), (10), (14), (15), and (16). Accordingly, red, blue, and green in the corresponding light emitting areas 1-2, 1-3, 1-4, 2-2, 2-3, 2-4, 3-2, 3-3, 3-4 The luminance value of each color is obtained.
  • the area luminance calculation unit 24 acquires luminance information of a plurality of pixels P (for example, 320 ⁇ 270 pixels P) included in the display area (2) from the frame memory 16. Then, the area luminance calculation unit 24 performs luminance calculation processing on the acquired luminance information to extract, for example, data of the maximum luminance value for each of red, blue, and green colors, and displays the display area (2 ) Corresponding to the luminance values of the respective colors in the light emitting area 1-2. That is, when the area luminance calculation unit 24 executes the luminance calculation process, the luminance value of the pixel P to be displayed in red with the highest luminance is emitted from the plurality of pixels P included in the display area (2). It is selected as the red luminance value in area 1-2.
  • the area luminance calculation unit 24 can prevent the luminance value from being extracted as the maximum luminance value when there is a pixel P having an abnormally high luminance value compared to the surrounding pixels P due to noise mixing. It is configured as follows.
  • the luminance value of the pixel P to be displayed in green with the highest luminance is selected as the green luminance value in the light emitting area 1-2.
  • the luminance value of the pixel P to be displayed in blue with the highest luminance is selected as the blue luminance value in the light emitting area 1-2.
  • the area luminance calculation unit 24 determines the luminance values of the selected red, blue, and green colors as the luminance values of the light emitting area 1-2.
  • the area luminance calculation unit 24 performs red, blue in the light emitting areas 1-3, 1-4, 2-2, 2-3, 2-4, 3-2, 3-3, 3-4. The luminance value of each color of green and green is obtained. Then, the area luminance calculation unit 24 sets the luminance value of the light emitting area 2-3 for each of the red, blue, and green colors, the surrounding light emitting areas 1-2, 1-3, 1-4, and 2-2. Area crosstalk correction processing using luminance values 2-4, 3-2, 3-3, and 3-4 is performed.
  • the area luminance calculation unit 24 corrects the obtained luminance value by using a correction coefficient stored in a memory (not shown), thereby red, blue, and green colors. In addition, the brightness value after correction of each illumination area is calculated.
  • the light from the surrounding light emitting areas 1-2, 1-3, 1-4, 2-2, 2-4, 3-2, 3-3, 3-4 is used.
  • a correction coefficient that cancels out the luminance increase in each of the red, blue, and green colors is obtained in advance and stored in the memory.
  • the area luminance calculation unit 24 corrects each color of the light emitting area 2-3 by using the luminance value of each color of the light emitting area 2-3 obtained by the luminance calculation processing and the correction coefficient held in the memory. Later luminance values are calculated.
  • the area luminance calculation unit 24 outputs the calculated luminance value of each color after correction of each illumination area to the display data correction calculation unit 23 and the LED drive control unit 25.
  • the internal structure of the liquid crystal panel 3 and optical sheets such as the light guide plate 7, the polarizing sheet 8, and the prism sheet 9 are used. Therefore, it is possible to more reliably eliminate the influence of crosstalk in the liquid crystal display device 1 and to improve display quality more easily.
  • the LED drive control unit 25 constitutes a drive control unit that drives the light source to turn on, and responds based on the corrected luminance value of each of the plurality of illumination areas from the area luminance calculation unit 24.
  • the lighting periods of the RGB light emitting diodes are determined, and the light emitting diodes of the respective RGB colors are driven to light by PWM dimming according to the determined lighting periods. That is, the LED drive control unit 25 determines the on / off duty in the PWM dimming according to the luminance value determined by the area luminance calculation unit 24, and a signal that indicates the determined on / off duty. Is output to the lighting drive circuit 12 (FIG. 1) as an instruction signal. Then, the lighting drive circuit 12 drives each of the light emitting diodes by supplying power to the RGB light emitting diodes based on the instruction signal.
  • the display data correction calculation unit 23 the luminance value of each color of red, green, and blue in each of the light emitting areas 1-1, 1-2,. When transmitted, these luminance values are used to correct the instruction signal to the source driver 17 input from the image processing unit 22 and output to the source driver 17 as a new instruction signal. That is, the display data correction calculation unit 23 corresponds to the corresponding color from the area luminance calculation unit 24 with respect to the gradation voltages in red, green, and blue pixel units determined by the image processing unit 22 according to the image signal. Is corrected based on the luminance value of, to obtain a new gradation voltage. Then, the display data correction calculation unit 23 generates an instruction signal instructing new gradation voltages in red, green, and blue pixel units, and outputs the instruction signal to the source driver 17.
  • the panel control unit 14 uses the corrected luminance values of the plurality of light emitting areas 1-1, 1-2,..., 4-5, 4-6.
  • the image signal is corrected, and drive control of the liquid crystal panel 3 is performed on a pixel basis based on the corrected image signal.
  • FIG. 6 is a perspective view showing a configuration example of the light guide plate shown in FIG. 7A and 7B are a plan view and a side view of the first light guide plate member shown in FIG. 6, respectively.
  • 8A and 8B are a plan view and a side view of the second light guide plate member shown in FIG. 6, respectively.
  • FIG. 9A and FIG. 9B are a plan view and a side view of the third light guide plate member shown in FIG. 6, respectively.
  • FIG. 10 is a diagram for explaining a main configuration of the illumination device shown in FIG.
  • FIG. 11 is a diagram illustrating an operation example of the illumination device illustrated in FIG. 1.
  • first to third light guide plate members 71, 72, 73 are arranged along the Z direction (predetermined direction, a direction perpendicular to the display surface of the liquid crystal panel 3). Are stacked. That is, in these first to third light guide plate members 71, 72, 73, the first light guide plate member 71 is installed on the liquid crystal panel 3 side, and as described above, the first light guide plate member 71 The light emitting surfaces are laminated in the predetermined direction so that the light emitting surface 7a of the light guide plate 7 is formed.
  • each of the light guide plate members 71 to 73 for example, a transparent synthetic resin material having a plate thickness of about 1 mm to several mm is used.
  • each of the light guide plate members 71 to 73 is provided with a light blocking section, and the 24 light emitting areas 1-1, 1-2,... That emit light from the 24 light emitting diodes 4 respectively. 4-5 and 4-6 are formed on the light emitting surface 7a of the light guide plate 7 as indicated by the dotted lines in FIG.
  • the first light guide plate member 71 is opposed to the light emitting surface 71A constituting the light emitting surface 7a of the light guide plate 7 and the light emitting surface 71A.
  • the opposed surface 71B is provided between the light emitting surface 71A and the opposed surface 71B, and includes side surfaces 71C and 71D on which the four light emitting diodes 4 are arranged to face each other. That is, on the side surface 71C, four light incident surfaces 71a on which the four light emitting diodes 4 are respectively incident are linearly provided. In addition, on the side surface 71D, four light incident surfaces 71b on which the four light emitting diodes 4 are respectively incident are provided linearly. On each of these light incident surfaces 71a and 71b, light from the light emitting diodes 4 other than the corresponding (opposing) light emitting diodes 4 is prevented from entering by a partition plate described later (details will be described later).
  • the first light guide plate member 71 includes slits 71c and 71d parallel to the Y direction (vertical direction of the liquid crystal panel 3) and slits 71e, 71f and 71g parallel to the X direction (lateral direction of the liquid crystal panel 3). Is provided.
  • the slits 71c to 71g are provided in the first light guide plate member 71 so as to be formed on the boundary line of the light emitting area. That is, the slit 71 c is provided from the left edge (side surface 71 ⁇ / b> C) of the first light guide plate member 71 at a position that is 1/6 of the dimension in the X direction of the first light guide plate member 71.
  • the slit 71d is provided from the right edge (side surface 71D) of the first light guide plate member 71 at a position that is 1/6 of the dimension in the X direction of the first light guide plate member 71.
  • the slits 71e, 71f, 71g are respectively provided at three locations that divide the dimension of the first light guide plate member 71 in the Y direction into four equal parts.
  • each of the slits 71c to 71g is formed to have a bottom and an opening on the light emitting surface 71A side and the opposing surface 71B side, respectively.
  • the respective opening dimensions in the Z direction are set to dimensions that leave the plate thickness (the dimension in the Z direction) of the first light guide plate member 71 about 0.5 mm to 1.0 mm. Yes.
  • the opening dimensions in the X direction of the slits 71c and 71d and the opening dimensions in the Y direction of the slits 71e to 71g are set to, for example, about several mm.
  • Each of the slits 71c to 71g blocks the light that has traveled.
  • the slit 71c enters the inside of the first light guide plate member 71 from the lower left light incident surface 71a of FIG. The light is blocked from traveling to the right side of the slit 71c. Further, the slit 71e enters the first light guide plate member 71 from, for example, the lower left light incident surface 71a of FIG. 7A, and the light travels upward in the Y direction. Proceeding to the upper side of the slit 71e is blocked. Further, each of the slits 71c to 71g passes through the second light guide plate member 72 from the third light guide plate member 73 and the light that has entered the first light guide plate member 71 from the second light guide plate member 72. Thus, light that has entered the inside of the first light guide plate member 71 is also blocked.
  • a reflection sheet 71h as a reflection member is provided on the opposing surface 71B from the side surface 71C to the slit 71c, and further, a reflection sheet 71i as a reflection member is from the side surface 71D to the slit 71d. Is provided on the opposite surface 71B.
  • These reflection sheets 71h and 71i are used as the light blocking section together with the slits 71c to 71g. That is, the reflection sheets 71h and 71i reflect the light incident on the inside of the first light guide plate member 71 from the light incident surfaces 71a and 71b, respectively, so that each of these lights is the second light guide plate member 72. Blocks going to the side.
  • the slits 71c to 71g and the reflection sheets 71h and 71i are used as light blocking portions. Therefore, in the first light guide plate member 71, a total of eight light emitting areas 1 are provided. -1, 2-1, 3-1, 4-1, 1-6, 2-6, 3-6, 4-6 (FIG. 5) are formed.
  • scattering dot patterns 71j and 71k as light scattering portions that scatter light from the light emitting diodes 4 are provided on the facing surface 71B side according to the light emitting area.
  • the scattered dot pattern 71j is opposed to the light emitting areas 1-1, 2-1, 3-1, 4-1 as indicated by the hatched portion on the left side of FIG. It is formed on the surface 71B and scatters light from the four light emitting diodes 4 to emit light from the light emitting areas 1-1, 2-1, 3-1, 4-1 respectively. .
  • the scattered dot pattern 71k is a surface of the opposing surface 71B corresponding to the light emitting areas 1-6, 2-6, 3-6, 4-6, as indicated by the hatched portion on the right side of FIG.
  • the light is emitted from the light emitting areas 1-6, 2-6, 3-6, and 4-6 by scattering the light from the four light emitting diodes 4 respectively.
  • the second light guide plate member 72 includes a light emitting surface 72A installed in parallel to the light emitting surface 7a of the light guide plate 7, and a facing surface facing the light emitting surface 72A. It is provided between the surface 72B and the light emitting surface 72A and the opposing surface 72B, and includes side surfaces 72C and 72D on which the four light emitting diodes 4 are arranged to face each other. That is, on the side surface 72C, four light incident surfaces 72a on which the four light emitting diodes 4 are respectively incident are provided linearly. In addition, on the side surface 72D, four light incident surfaces 72b on which the four light emitting diodes 4 are respectively incident are linearly provided. In each of these light incident surfaces 72a and 72b, light from the light emitting diodes 4 other than the corresponding (opposing) light emitting diodes 4 is prevented from entering by a partition plate described later (details will be described later).
  • the second light guide plate member 72 includes slits 72c and 72d parallel to the Y direction (vertical direction of the liquid crystal panel 3) and slits 72e, 72f and 72g parallel to the X direction (lateral direction of the liquid crystal panel 3). Is provided.
  • the slits 72c to 72g are provided in the second light guide plate member 72 so as to be formed on the boundary line of the light emitting area. In other words, the slit 72 c is provided from the left edge (side surface 72 ⁇ / b> C) of the second light guide plate member 72 at a location 2/6 of the dimension in the X direction of the second light guide plate member 72.
  • the slit 72d is provided from the right edge (side surface 72D) of the second light guide plate member 72 at a position 2/6 of the dimension in the X direction of the second light guide plate member 72.
  • the slits 72e, 72f, and 72g are respectively provided at three locations that divide the dimension of the second light guide plate member 72 in the Y direction into four equal parts.
  • each of the slits 72c to 72g is formed to have a bottom and an opening on the light emitting surface 72A side and the opposing surface 72B side, respectively.
  • the respective opening dimensions in the Z direction are set to dimensions that leave the thickness (dimension in the Z direction) of the second light guide plate member 72 about 0.5 mm to 1.0 mm. Yes.
  • the respective opening dimensions in the X direction of the slits 72c and 72d and the respective opening dimensions in the Y direction of the slits 72e to 72g are set to, for example, about several mm.
  • Each of the slits 72c to 72g blocks the light that has traveled.
  • the slit 72c is incident on the inside of the second light guide plate member 72 from the lower left light incident surface 72a of FIG. 8A and travels to the right in the X direction. The light is blocked from traveling to the right side of the slit 72c.
  • the slit 72e enters the inside of the second light guide plate member 72 from the lower left light incident surface 72a in FIG. 8A, and the light travels upward in the Y direction. Proceeding to the upper side of the slit 72e is blocked.
  • each of the slits 72c to 72g blocks light that has entered the second light guide plate member 72 from the third light guide plate member 73.
  • a reflection sheet 72h as a reflection member is provided on the opposing surface 72B from the side surface 72C to the slit 72c, and further, a reflection sheet 72i as a reflection member is from the side surface 72D to the slit 72d. Is provided on the opposite surface 72B.
  • These reflection sheets 72h and 72i are used as the light blocking section together with the slits 72c to 72g. That is, the reflection sheets 72h and 72i reflect the light incident on the inside of the second light guide plate member 72 from the light incident surfaces 72a and 72b, respectively, so that each of these lights is the third light guide plate member 73. Blocks going to the side.
  • the slits 72c to 72g and the reflection sheets 72h and 72i are used as light blocking portions. Therefore, in the second light guide plate member 72, a total of eight light emitting areas 1 are provided. -2, 2-2, 3-2, 4-2, 1-5, 2-5, 3-5, 4-5 (FIG. 5).
  • scattering dot patterns 72j and 72k as light scattering portions for scattering light from the light emitting diodes 4 are provided on the facing surface 72B side according to the light emitting area. More specifically, the scattered dot pattern 72j corresponds to the light emitting areas 1-2, 2-2, 3-2, and 4-2 as shown by the hatched portion on the left side of FIG. It is formed on the surface of the surface 72B. That is, the scattering dot pattern 72j is formed on the surface of the facing surface 72B from the straight line portion 72E directly below the slit 71c of the first light guide plate member 71 to the slit 72c.
  • the scattering dot pattern 72j includes four light emitting diodes 4. Are scattered from the light emitting areas 1-2, 2-2, 3-2 and 4-2, respectively.
  • the scattered dot pattern 72k is a surface of the facing surface 72B corresponding to the light emitting areas 1-5, 2-5, 3-5, 4-5, as indicated by the hatched portion on the right side of FIG. Formed on top. That is, the scattering dot pattern 72k is formed on the surface of the facing surface 72B from the straight portion 72F directly below the slit 71d of the first light guide plate member 71 to the slit 72d.
  • the scattering dot pattern 72k includes four light emitting diodes 4. Are scattered from the light emitting areas 1-5, 2-5, 3-5, and 4-5, respectively.
  • the third light guide plate member 73 includes a light emitting surface 73A installed in parallel to the light emitting surface 7a of the light guide plate 7, and a facing surface facing the light emitting surface 73A.
  • the surface 73B is provided between the light emitting surface 73A and the opposing surface 73B, and includes side surfaces 73C and 73D on which the four light emitting diodes 4 are arranged to face each other. That is, the side surface 73C is provided with four light incident surfaces 73a on which the four light emitting diodes 4 are respectively incident.
  • four light incident surfaces 73b on which the four light emitting diodes 4 are respectively incident are provided linearly. On each of these light incident surfaces 73a and 73b, light from the light emitting diodes 4 other than the corresponding (opposing) light emitting diodes 4 is prevented from entering by a partition plate described later (details will be described later).
  • the third light guide plate member 73 has slits 73c parallel to the Y direction (vertical direction of the liquid crystal panel 3) and slits 73d, 73e, and 73f parallel to the X direction (lateral direction of the liquid crystal panel 3). Is provided.
  • the slits 72c to 73f are provided in the third light guide plate member 73 so as to be formed on the boundary line of the light emitting area.
  • the slit 73 c is provided from the left edge (side surface 73 ⁇ / b> C) of the third light guide plate member 73 at a position that is 3/6 of the dimension in the X direction of the third light guide plate member 73.
  • the slits 73d, 73e, and 73f are respectively provided at three locations that divide the dimension of the third light guide plate member 73 in the Y direction into four equal parts.
  • each of the slits 73c to 73f is formed to have a bottom and an opening on the light emitting surface 73A side and the opposing surface 73B side, respectively.
  • the respective opening dimensions in the Z direction are set to dimensions that leave the thickness (dimension in the Z direction) of the third light guide plate member 73 about 0.5 mm to 1.0 mm. Yes.
  • the opening dimension in the X direction of the slit 73c and each opening dimension in the Y direction of the slits 73d to 73f are set to about several mm, for example.
  • Each of the slits 73c to 73f blocks the light that has traveled.
  • the slit 73c is incident on the inside of the third light guide plate member 73 from the lower left light incident surface 73a in FIG. 9A and travels to the right in the X direction. The light is blocked from traveling to the right side of the slit 73c.
  • the slit 73d enters the inside of the third light guide plate member 73 from the lower left light incident surface 73a of FIG. 9A, and the light travels upward in the Y direction. Proceeding to the upper side of the slit 73d is blocked.
  • the reflection sheet 73g as a reflection member is provided on the facing surface 73B from the side surface 73C to the slit 73c, and further, the reflection sheet 73h as a reflection member is from the side surface 73D to the slit 73d. Is provided on the opposite surface 73B.
  • These reflection sheets 73g and 73h are used as the light blocking section together with the slits 73c to 73f. That is, the reflection sheets 73g and 73h reflect the light incident on the inside of the third light guide plate member 73 from the light incident surfaces 73a and 73b, respectively, so that each of these lights is the third light guide plate member 73. Blocks going outside.
  • the third light guide plate member 73 As described above, in the third light guide plate member 73, the slits 73c to 73f and the reflection sheets 73g and 73h are used as the light blocking portions. Therefore, the third light guide plate member 73 has a total of eight light emitting areas 1. -3, 2-3, 3-3, 4-3, 1-4, 2-4, 3-4, 4-4 (FIG. 5).
  • the scattered dot pattern 73i is opposed to the light emitting areas 1-3, 2-3, 3-3, and 4-3, as indicated by the hatched portion on the left side of FIG. It is formed on the surface of the surface 73B. That is, the scattering dot pattern 73i is formed on the surface of the facing surface 73B from the straight line portion 73E directly below the slit 72c of the second light guide plate member 72 to the slit 73c.
  • the scattering dot pattern 73i scatters light from the four light emitting diodes 4 to emit light from the light emitting areas 1-3, 2-3, 3-3, and 4-3, respectively.
  • the scattered dot pattern 73j is a surface of the facing surface 73B corresponding to the light emitting areas 1-4, 2-4, 3-4, and 4-4, as indicated by the hatched portion on the right side of FIG. Formed on top. That is, the scattering dot pattern 73j is formed on the surface of the facing surface 73B from the straight portion 73F that is directly below the slit 72d of the second light guide plate member 72 to the slit 73d. Further, in the first and second light guide plate members 71 and 72 facing the scattering dot pattern 73j, as shown in FIG. 7B and FIG. 8B, a reflection sheet is not formed, The scattering dot pattern 73j scatters light from the four light emitting diodes 4 to emit light from the light emitting areas 1-4, 2-4, 3-4, and 4-4, respectively.
  • the frame 6 is attached so that the both-sides part of the light-guide plate 7 may be covered.
  • the frame 6 supports the LED substrate 5 on which twelve light emitting diodes 4 are mounted inside each side surface portion of the light guide plate 7. Further, in the LED substrate 5 on the left side of FIG. 10, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71a.
  • this LED board 5 arranges in the direction perpendicular
  • the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71b. Further, in this LED substrate 5, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 72b, respectively, and the four light emitting diodes 4 have four light incidents. They are arranged in a direction perpendicular to the drawing so as to face the surface 73b.
  • the frame 6 is provided with partition plates 6a, 6b, 6c, 6d, 6e, 6f, and 6g so that light from the light emitting diodes 4 enters only the corresponding (opposing) light incident surfaces. ing. That is, the partition plates 6a and 6b are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 71a or 71b, respectively. Further, a partition plate 6e is provided between the partition plates 6a and 6b so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing.
  • the three partition plates 6e are provided so as to be arranged in a straight line with the slits 71e, 71f, 71g, respectively, and four light incidents together with the partition plates 6a, 6b.
  • the surfaces 71a are separated from each other.
  • the partition plates 6b and 6c are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 72a or 72b, respectively. Further, a partition plate 6f is provided between the partition plates 6b and 6c so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 6f are provided so as to be arranged in a straight line with the slits 72e, 72f, 72g, respectively, and four light incidents together with the partition plates 6b, 6c. The surfaces 72a are separated from each other.
  • partition plates 6c and 6d are provided so as to sandwich the four light emitting diodes 4 respectively facing the four light incident surfaces 73a or 73b.
  • a partition plate 6g is provided between the partition plates 6c and 6d so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, three partition plates 6 g are provided so as to be aligned with the slits 73 d, 73 e, 73 f, respectively, and four light incidents together with the partition plates 6 c, 6 d.
  • the surfaces 73a are separated from each other.
  • the partition plates 6a to 6g are made of, for example, a metal material having a high light reflectivity.
  • the light from the light-emitting diode 4 is efficiently incident on the light incident surface, thereby improving the use efficiency of the light. It can be improved.
  • the light from the light emitting diode 4 facing the light incident surface 71 a is reflected by the reflection sheet 71 h and the first
  • the inside of the light guide plate member 71 proceeds to the left side of FIG.
  • the light is blocked by the slit 71c and scattered by the scattering dot pattern 71j, and is emitted, for example, as light from the light emitting area 1-1 to the liquid crystal panel 3 side.
  • the light from the light emitting diode 4 facing the light incident surface 72a travels to the left in FIG. 11 through the second light guide plate member 72 while being reflected by the reflection sheets 71h and 72h.
  • the light is blocked by the slit 72c and scattered by the scattering dot pattern 72j, and is emitted, for example, as light from the light emitting area 1-2 to the liquid crystal panel 3 side.
  • the light from the light emitting diode 4 facing the light incident surface 73a travels to the left side of FIG. 11 through the inside of the third light guide plate member 73 while being reflected by the reflection sheets 72h and 73g.
  • the light is blocked by the slit 73c and scattered by the scattering dot pattern 73i, and is emitted, for example, as light from the light emitting area 1-3 to the liquid crystal panel 3 side.
  • the light guide plate 7 is provided with first to third light guide plate members 71 to 73 stacked in a predetermined direction. Further, the first light guide plate member 71 has eight light emitting areas 1-1, 2-1, 3-1, 4-1, 1 that emit light from eight light emitting diodes (light sources) 4, respectively. Slits 71c to 71g and reflection sheets 71h and 71i (light blocking portions) are provided so that ⁇ 6, 2-6, 3-6, and 4-6 are formed on the light emitting surface 7a of the light guide plate 7. .
  • the second light guide plate member 72 has eight light emitting areas 1-2, 2-2, 3-2, 4-2, 1 for emitting light from the eight light emitting diodes (light sources) 4, respectively.
  • Slits 72c to 72g and reflection sheets 72h and 72i (light blocking portions) are provided so that ⁇ 5, 2-5, 3-5, and 4-5 are formed on the light emitting surface 7a of the light guide plate 7.
  • the third light guide plate member 73 has eight light emitting areas 1-3, 2-3, 3-3, 4-3, 1 that emit light from the eight light emitting diodes (light sources) 4, respectively.
  • the illuminating device 2 of this embodiment unlike the said prior art example, even when providing a several light emission area, it is not necessary to provide the same number of light-guide plate members as a light emission area. As a result, in the present embodiment, unlike the conventional example, even when a plurality of light emitting areas are provided, an increase in the number of parts can be suppressed, and the illuminating device 2 can be configured at a low cost.
  • the first to third light guide plate members 71 to 73 are scattered dot patterns 71j, 71k, 72j, 72k, 73i, 73j (which scatter light from the light emitting diode 4). .., 4-5, 4-6 are provided on the facing surfaces 71B to 73B facing the light-emitting surface 7a according to the light-emitting areas 1-1, 1-2,.
  • the light from the light emitting diode 4 can be efficiently emitted from the corresponding light emitting areas 1-1, 1-2,..., 4-5, 4-6. It is possible to easily increase the luminance of the light emitting areas 1-1, 1-2,..., 4-5, 4-6.
  • the liquid crystal display device 1 can be easily configured at a low cost, in which an increase in the number of components is suppressed.
  • (1), (2), ..., (23), (24) are provided.
  • the display areas (1), (2),..., (23), (24 corresponding to the display contents of the liquid crystal panel 3, the corresponding light emitting areas 1-1, 1-2, .., 4-5 and 4-6 are appropriately driven to light, and a liquid crystal display device with reduced power consumption can be easily configured.
  • FIG. 12 is a diagram for explaining a main configuration of a modified example of the illumination device shown in FIG.
  • the main difference between the present modification and the first embodiment is that a reflecting material that reflects light is provided inside the slit.
  • a reflecting material that reflects light is provided inside the slit.
  • symbol is attached
  • the reflective material H is installed inside the slit 71c.
  • the reflecting material H for example, a white reflecting material or a specular reflecting material is used to reflect light.
  • each opening dimension in the X direction and Y direction of the slit 71c is the thickness dimension of the reflective material H + ⁇ (for example, about 0.1 mm to 1 mm). ) Is set.
  • FIG. 13 is a diagram for explaining a main configuration of an illumination device according to the second embodiment of the present invention.
  • the main difference between the present embodiment and the first embodiment is that a separately provided LED substrate is used according to the light guide plate member.
  • symbol is attached
  • the LED substrate 27 provided separately is used according to the first to third light guide plate members 71 to 73.
  • the frame body 28 is attached so as to cover both side portions of the light guide plate 7. Further, the frame body 28 supports the three LED substrates 27 on which the four light emitting diodes 4 are mounted inside each side surface portion of the light guide plate 7. That is, on the first LED substrate 27 from the left side of FIG. 13, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71a.
  • the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 72a, respectively, and from the left side of FIG.
  • the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 73a.
  • the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71b.
  • the four light emitting diodes 4 are arranged in the direction perpendicular to the drawing so as to face the four light incident surfaces 72b, respectively, and from the right side of FIG.
  • the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 73b.
  • the partition plate 29 a, 29 b, 29 c, 29 d, 29 e, 29 f, 29 g, 29 h so that the light from the light emitting diode 4 enters only the corresponding (opposing) light incident surface.
  • 29i, 29j, 29k, 29l, and 29m are provided. That is, the partition plates 29a to 29e are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 71a or 71b, respectively.
  • a partition plate 29k is provided between the partition plates 29a to 29e so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing.
  • the three partition plates 29k are provided so as to be arranged in a straight line with the slits 71e, 71f, 71g, respectively, and four light incidents together with the partition plates 29a to 29e.
  • the surfaces 71a are separated from each other.
  • partition plates 29d to 29h are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 72a or 72b, respectively.
  • a partition plate 29l is provided between the partition plates 29d to 29h so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, three partition plates 29l are provided so as to be arranged in a straight line with the slits 72e, 72f, 72g, respectively, and four light incidents together with the partition plates 29d to 29h.
  • the surfaces 72a are separated from each other.
  • partition plates 29g to 29j are provided so as to sandwich the four light emitting diodes 4 respectively facing the four light incident surfaces 73a or 73b. Further, a partition plate 29m is provided between the partition plates 29g to 29j so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 29m are provided so as to be arranged in a straight line with the slits 73d, 73e, 73f, and four light incidents together with the partition plates 29g to 29j. The surfaces 73a are separated from each other.
  • the partition plates 29a to 29m are made of, for example, a metal material having a high light reflectivity.
  • the light from the light emitting diode 4 is efficiently incident on the light incident surface, and the light use efficiency is increased. It can be improved.
  • the present embodiment can achieve the same operations and effects as the first embodiment. Further, in the present embodiment, since the LED substrate 27 provided separately according to the first to third light guide plate members 71 to 73 is used, each of the light incident surfaces 71a to 73a and 71b to 73b is used. Even when the light emitting portion of the light emitting diode 4 is larger than the dimension in the plate thickness direction (Z direction), it is easy for the light from the light emitting diode 4 to enter only the corresponding (opposing) light incident surface. Therefore, it is possible to easily prevent light from the plurality of light emitting diodes (light sources) 4 from being mixed with each other.
  • FIG. 14 is a diagram for explaining a main configuration of an illumination apparatus according to the third embodiment of the present invention.
  • FIG. 15 is a perspective view illustrating a configuration example of the partition member illustrated in FIG. 14.
  • the direction of light emission from the plurality of light emitting diodes is set so that the light from the plurality of light emitting diodes enters only the corresponding light incident surface between the light emitting diodes that respectively enter light on the light surface. It is the point which attached the partition member to restrict
  • symbol is attached
  • the partition member 30 is attached to the both side surfaces of the light guide plate 7 inside the frame body 6. Moreover, unlike the thing of 1st Embodiment, only the partition plates 6a and 6d are provided in the inside of the frame 6. FIG. In other words, in the illumination device 2 of the present embodiment, the partition member 30 is configured to function as the partition plates 6b, 6c, 6e, 6f, and 6g.
  • Each of the surfaces 71a, 72a, and 73a is provided between twelve light emitting diodes 4 that receive light.
  • the partition member 30 limits the emission direction of the light from the 12 light emitting diodes 4 so that the light from the 12 light emitting diodes 4 enters only the corresponding light incident surfaces 71a, 72a, 73a. It is configured.
  • the partition member 30 limits the emission direction of the light from the twelve light emitting diodes 4 so that the light from the twelve light emitting diodes 4 enters only the corresponding light incident surfaces 71b, 72b, and 73b. It is configured.
  • the partition member 30 has four openings 30a, 30b, and 30c, respectively, and a member body in which a total of twelve openings 30a to 30c are formed. 30d is provided.
  • the openings 30a to 30c are provided in the member main body 30d according to the position of the light emitting diode 4 mounted on the LED substrate 5, and the openings 30a to 30c are light emitting diodes as indicated by arrows in the figure. 4 is incident on the light incident surfaces 71a to 73a.
  • the partition portion 30e is between two adjacent openings, that is, between the openings 30a and 30b, between the openings 30b and 30c, and the opening 30c. 30a.
  • the light from the 12 light emitting diodes 4 is configured to enter only the corresponding light incident surfaces 71a, 72a, 73a.
  • the present embodiment can achieve the same operations and effects as the first embodiment. Moreover, in this embodiment, since the partition member 30 is attached with respect to the light-guide plate 7, it can prevent easily that the light from the several light emitting diode (light source) 4 mutually mixes.
  • FIG. 16 is a diagram for explaining a main configuration of an illuminating device according to the fourth embodiment of the present invention.
  • the main difference between this embodiment and the first embodiment is that each light guide plate member is provided so that the light incident surface and the light emitting surface are parallel to each other.
  • symbol is attached
  • the frame 31 is attached so that the both-sides part of the light-guide plate 7 may be covered.
  • the frame 31 supports the LED substrate 5 on which twelve light emitting diodes 4 are mounted inside each side surface portion of the light guide plate 7.
  • the light incident surfaces 71a to 73a and 71b to 73b of the first to third light guide plate members 71 to 73 are provided so as to be parallel to the light emitting surface 7a.
  • the LED board 5 is attached to the frame 31 so that it may become mutually parallel with the light emission surface 7a.
  • the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71a. Moreover, in this LED board 5, it arranges in the direction perpendicular
  • the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71b. Further, in this LED substrate 5, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 72b, respectively, and the four light emitting diodes 4 have four light incidents. They are arranged in a direction perpendicular to the drawing so as to face the surface 73b.
  • 31i, 31j, and 31k are provided. That is, the partition plates 31a to 31e are provided so as to sandwich the four light emitting diodes 4 respectively facing the four light incident surfaces 71a or 71b. Further, a partition plate 31i is provided between the partition plates 31a to 31e so as to partition each installation region of the four light emitting diodes 4 arranged in a direction perpendicular to the drawing.
  • the three partition plates 31i are provided so as to be arranged in a straight line with the slits 71e, 71f, 71g, respectively, and four light incidents together with the partition plates 31a to 31e.
  • the surfaces 71a are separated from each other.
  • the partition plates 31d to 31g are provided so as to sandwich the four light emitting diodes 4 respectively facing the four light incident surfaces 72a or 72b. Further, a partition plate 31j is provided between the partition plates 31d to 31g so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 31j are provided so as to be arranged in a straight line with the slits 72e, 72f, 72g, respectively, and four light incidents together with the partition plates 31d to 31g. The surfaces 72a are separated from each other.
  • partition plates 31f to 31h are provided so as to sandwich the four light emitting diodes 4 respectively facing the four light incident surfaces 73a or 73b.
  • a partition plate 31k is provided between the partition plates 31f to 31h so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 31k are provided so as to be arranged in a straight line with the slits 73d, 73e, 73f, respectively, and four light incidents together with the partition plates 31f to 31h.
  • the surfaces 73a are separated from each other.
  • the partition plates 31a to 31k are made of, for example, a metal material having a high light reflectivity.
  • the light from the light-emitting diode 4 is efficiently incident on the light incident surface, and the use efficiency of the light is increased. It can be improved.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • FIG. 17 is a diagram for explaining a main configuration of an illumination apparatus according to the fifth embodiment of the present invention.
  • the main difference between the present embodiment and the fourth embodiment is that an LED substrate provided separately is used according to the light guide plate member.
  • symbol is attached
  • LED substrates 27 that are separately provided according to the first to third light guide plate members 71 to 73 are used.
  • the frame body 32 is attached so as to cover both side portions of the light guide plate 7.
  • the frame 32 supports the three LED substrates 27 on which the four light emitting diodes 4 are mounted inside the side surfaces of the light guide plate 7. That is, in the first LED substrate 27 from the left side of FIG. 17, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71a. Further, in the second LED substrate 27 from the left side of FIG.
  • the four light emitting diodes 4 are arranged in the direction perpendicular to the drawing so as to face the four light incident surfaces 72a, respectively, and from the left side of FIG.
  • the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 73a.
  • the second LED board 27 from the left side of FIG. 17 is installed on the first LED board 27 from the left side of FIG. 17, and the third LED board 27 from the left side of FIG. It is installed on the second LED board 27.
  • the second and third LED substrates 27 from the left side of FIG. 17 are held by the frame body 32 via the first LED substrate 27 from the left side of FIG.
  • the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71b.
  • the four light emitting diodes 4 are arranged in the direction perpendicular to the drawing so as to face the four light incident surfaces 72b, respectively, and from the right side of FIG.
  • the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 73b.
  • the second LED board 27 from the right side of FIG. 17 is installed on the first LED board 27 from the right side of FIG. 17, and the third LED board 27 from the right side of FIG. It is installed on the second LED board 27.
  • the second and third LED substrates 27 from the right side of FIG. 17 are held by the frame body 32 via the first LED substrate 27 from the right side of FIG.
  • the light incident surfaces 71a to 73a and 71b to 73b of the first to third light guide plate members 71 to 73 are at a predetermined angle (for example, 45) with respect to the light emitting surface 7a. Degree).
  • the partition plates 32a, 32b, 32c, 32d, 32e, 32f, 32g, 32h, and the like so that the light from the light emitting diode 4 enters only the corresponding (opposing) light incident surface. 32i is provided. That is, the partition plates 32a, 32b, and 32d are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 71a or 71b, respectively. Further, a partition plate 32g is provided between the partition plates 32a, 32b, and 32d so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing.
  • the three partition plates 32 g are provided so as to be aligned with the slits 71 e, 71 f, 71 g, respectively, and together with the partition plates 32 a, 32 b, 32 d, The light incident surfaces 71a are partitioned from each other.
  • partition plates 32c, 32d, and 32f are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 72a or 72b, respectively.
  • a partition plate 32h is provided between the partition plates 32c, 32d, and 32f so as to partition each installation region of the four light emitting diodes 4 arranged in a direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 32h are provided so as to be arranged in a straight line with the slits 72e, 72f, 72g, respectively, and four partition plates 32c, 32d, 32f are provided.
  • the light incident surfaces 72a are partitioned from each other.
  • partition plates 32e and 32f are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 73a or 73b, respectively.
  • a partition plate 32i is provided between the partition plates 32e and 32f so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 32i are provided so as to be arranged in a straight line with the slits 73d, 73e, 73f, respectively, and four light incidents together with the partition plates 32e, 32f.
  • the surfaces 73a are separated from each other.
  • the partition plates 32a to 32i are made of, for example, a metal material having a high light reflectivity.
  • the light from the light-emitting diode 4 is efficiently incident on the light incident surface, thereby improving the use efficiency of the light. It can be improved.
  • the present embodiment can achieve the same operations and effects as the fourth embodiment.
  • the illumination device of the present invention is not limited to this, for example, a transflective liquid crystal display device, or The illumination device of the present invention can be suitably used for various display devices such as a projection display device using a liquid crystal panel as a light valve.
  • the present invention is installed on a light box for illuminating X-ray film or photographic negatives for irradiating light to make it easy to see, or on a signboard or a wall in a station. It can be suitably used as a lighting device for a light emitting device that illuminates advertisements and the like. That is, it is possible to configure an illumination device that irradiates an object other than the liquid crystal panel with light from the light source.
  • the light guide plate is provided with a plurality of light guide plate members stacked in a predetermined direction, and each of the plurality of light guide plate members emits light from a plurality of light sources, respectively.
  • a light blocking part is provided so that a plurality of light emitting areas are formed on the light emitting surface of the light guide plate. The number is not limited to the above.
  • the light blocking unit of the present invention uses the light guide plate member to emit light from a plurality of light sources, respectively.
  • a plurality of light emitting areas for emitting light are appropriately blocked so that the light emitting surface of the light guide plate is formed.
  • a reflective material disposed in the slit may be used as the light blocking portion.
  • it can replace with a reflective sheet and can also use the coating material of a color with a high light reflectance.
  • a metal material preferably a metal material having a high light reflectance, may be embedded in the light guide plate member.
  • the light guide plate member of the present invention receives light from a light source. There is no limitation as long as a plurality of incident light incident surfaces are provided.
  • the case where a plurality of light incident surfaces into which light from a plurality of light sources are respectively incident is provided in a straight line is more compact even when the number of light emitting areas is increased. This is preferable in that the lighting device can be easily configured.
  • the light source of the present invention is not limited to this. Specifically, a so-called four-in-one (4in1) type light emitting diode in which RGBW light emitting diodes are integrated, two types of light emitting diodes that emit yellow light and blue light, or a white light emitting diode, etc.
  • Light emitting diodes, discharge tubes such as cold cathode fluorescent tubes and hot cathode fluorescent tubes, and light emitting elements such as organic EL (Electronic Luminescence) and inorganic EL elements can also be used as the light source.
  • the white light emitting diode includes a blue light emitting diode that emits white light by applying a phosphor.
  • a blue light emitting diode using a red phosphor and a green phosphor There are a blue light emitting diode using a red phosphor and a yellow phosphor, and a blue light emitting diode using a yellow phosphor.
  • the present invention can suppress an increase in the number of parts even when a plurality of light emitting areas are provided, and is useful for an inexpensive lighting device and a display device using the same.
  • Liquid crystal display device (display device) 2 Lighting device 3 Liquid crystal panel (display unit) 4 Light emitting diode (light source) 7 Light guide plate 7a Light emitting surface 71 First light guide plate member 71A Light emitting surface 71B Opposing surface 71a, 71b Light incident surface 71c, 71d, 71e, 71f, 71g Slit (light blocking portion) 71h, 71i Reflective sheet (light blocking part, reflective member) 71j, 71k Scattering dot pattern (light scattering part) 72 Second light guide plate member 72A Light emitting surface 72B Opposing surface 72a, 72b Light incident surface 72c, 72d, 72e, 72f, 72g Slit (light blocking portion) 72h, 72i Reflective sheet (light blocking part, reflective member) 72j, 72k Scattering dot pattern (light scattering part) 73 Third light guide plate member 73A Light emitting surface 73B Opposing surface 73a, 73b Light incident surface 73c

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

A lighting device (2), which is provided with a light emitting diode (light source) (4) and a light-guiding plate (7) that guides the light from the light emitting diode (4) in a designated propagation direction and outputs the light to a liquid crystal panel (irradiated object) (3), is provided with first to third light-guiding members (71-73), which are stacked in a designated direction, on the light-guiding plate (7). Further, each of the light-guiding members is provided with light blocking slots (71c, 71d, 72c, 72d, 73c) and reflective sheets (reflective members) (71h, 71i, 72h, 72i, 73g, 73h) in such a manner that multiple light emitting areas, which each emit light from multiple light emitting diodes (4), are formed on the light emitting surface (7a) of the light-guiding plate (7).

Description

照明装置、及び表示装置Lighting device and display device
 本発明は、照明装置、特に光源と、光源の光を液晶パネルなどの被照射物に出射する導光板を備えた照明装置、及びこれを用いた表示装置に関する。 The present invention relates to an illuminating device, and more particularly to an illuminating device including a light source and a light guide plate that emits light from the light source to an irradiated object such as a liquid crystal panel, and a display device using the illuminating device.
 近年、例えば液晶表示装置は、在来のブラウン管に比べて薄型、軽量などの特長を有するフラットパネルディスプレイとして、液晶テレビ、モニター、携帯電話などに幅広く利用されている。このような液晶表示装置には、光を発光する照明装置(バックライト装置)と、照明装置に設けられた光源からの光に対してシャッターの役割を果たすことで所望画像を表示する液晶パネルとが含まれている。 In recent years, for example, liquid crystal display devices have been widely used in liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight compared to conventional cathode ray tubes. Such a liquid crystal display device includes an illumination device (backlight device) that emits light, and a liquid crystal panel that displays a desired image by serving as a shutter for light from a light source provided in the illumination device. It is included.
 また、上記のような液晶表示装置では、その液晶パネルの表示面に複数の表示エリアを設けるとともに、その照明装置において、複数の表示エリアに対して、光源の光をそれぞれ入射させる複数の発光エリアを設定する。そして、この液晶表示装置では、発光エリア単位に光源を点灯駆動させるローカルディミング(エリアアクティブバックライト)駆動を行わせることにより、低消費電力化が図られていた。 Further, in the liquid crystal display device as described above, a plurality of display areas are provided on the display surface of the liquid crystal panel, and in the illumination device, a plurality of light emitting areas in which light from the light source is incident on the plurality of display areas, respectively Set. In this liquid crystal display device, low power consumption has been achieved by performing local dimming (area active backlight) driving in which the light source is driven to light in units of light emitting areas.
 また、上記のような従来の照明装置には、例えば下記特許文献1に記載されているように、導光板において、28(=7×4)個の領域(発光エリア)に分割する。そして、この従来の照明装置では、28個の領域にそれぞれ対向して、28個の第1の導光部材を設けるとともに、これら28個の第1の導光部材を、当該第1の導光部材と屈折率が異なる第2の導光部材を介して、連結することが提案されている。また、この従来の照明装置では、28個の第1の導光部材の下方側(非発光面側)に、28個の光源をそれぞれ設置し、各光源からの光を発光面側に向けて発光させていた。そして、この従来の照明装置では、第1の導光部材の光が、隣接する第2の導光部材を介して、隣接する第1の導光部材に導光できることから、光源のバラツキによる導光板の領域毎の色ムラを改善可能とされていた。 In the conventional lighting device as described above, for example, as described in Patent Document 1 below, the light guide plate is divided into 28 (= 7 × 4) areas (light emitting areas). And in this conventional illuminating device, while providing 28 1st light guide members facing each of 28 area | regions, these 28 1st light guide members are used as the said 1st light guide. It has been proposed to connect via a second light guide member having a refractive index different from that of the member. Further, in this conventional illumination device, 28 light sources are respectively installed on the lower side (non-light emitting surface side) of the 28 first light guide members, and the light from each light source is directed to the light emitting surface side. It was emitting light. In this conventional illumination device, the light from the first light guide member can be guided to the adjacent first light guide member via the adjacent second light guide member. It was possible to improve color unevenness for each region of the light plate.
特開2009-163902号公報JP 2009-163902 A
 しかしながら、上記のような従来の照明装置では、発光エリアの設置数と同数の第1の導光部材を設けていたので、複数の発光エリアを設ける場合に照明装置の部品点数が増加するのを抑えることができずに、コストが増大するという問題点があった。また、この従来の照明装置では、第2の導光部材を介して、複数の第1の導光部材を連結していたので、複数の発光エリアを設ける場合に第1及び第2の導光部材の連結作業に多大な時間及び手間を要して、コストが増大するという問題点があった。 However, in the conventional illuminating device as described above, the same number of first light guide members as the number of light emitting areas installed are provided, so that when the plurality of light emitting areas are provided, the number of parts of the lighting device increases. There was a problem that the cost could not be suppressed and the cost increased. Moreover, in this conventional illuminating device, since the plurality of first light guide members are coupled via the second light guide member, the first and second light guides are provided when a plurality of light emitting areas are provided. There has been a problem in that cost is increased because much time and labor are required for connecting the members.
 上記の課題を鑑み、本発明は、複数の発光エリアを設ける場合でも、部品点数が増加するのを抑えることができ、コスト安価な照明装置、及びそれを用いた表示装置を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide an illumination device that can suppress an increase in the number of parts even when a plurality of light emitting areas are provided, and a display device using the illumination device. And
 上記の目的を達成するために、本発明にかかる照明装置は、光源と、前記光源からの光を所定の伝搬方向に導くとともに、被照射物に当該光を出射する導光板を備えた照明装置であって、
 前記導光板には、所定の方向に積層された複数の導光板部材が設けられ、
 前記複数の各導光板部材には、複数の前記光源からの光をそれぞれ発光する複数の発光エリアが前記導光板の発光面に形成されるように、光遮断部が設けられていることを特徴とするものである。
In order to achieve the above object, an illumination device according to the present invention includes a light source and a light guide plate that guides light from the light source in a predetermined propagation direction and emits the light to an object to be irradiated. Because
The light guide plate is provided with a plurality of light guide plate members stacked in a predetermined direction,
Each of the plurality of light guide plate members is provided with a light blocking portion so that a plurality of light emitting areas that respectively emit light from the plurality of light sources are formed on a light emitting surface of the light guide plate. It is what.
 上記のように構成された照明装置の導光板には、所定の方向に積層された複数の導光板部材が設けられている。また、複数の各導光板部材には、複数の光源からの光をそれぞれ発光する複数の発光エリアが、導光板の発光面に形成されるように、光遮断部が設けられている。これにより、上記従来例と異なり、複数の発光エリアを設ける場合でも、部品点数が増加するのを抑えることができ、コスト安価な照明装置を構成することができる。 The light guide plate of the lighting device configured as described above is provided with a plurality of light guide plate members stacked in a predetermined direction. Each of the plurality of light guide plate members is provided with a light blocking portion so that a plurality of light emitting areas for emitting light from the plurality of light sources are formed on the light emitting surface of the light guide plate. Thus, unlike the conventional example, even when a plurality of light emitting areas are provided, an increase in the number of parts can be suppressed, and an inexpensive lighting device can be configured.
 また、上記照明装置において、前記光遮断部として、前記複数の発光エリアの境界線に沿うように前記導光板部材に設けられたスリット、及び前記発光面に対向する前記導光板部材の対向面側に設けられた反射部材が用いられていることが好ましい。 Further, in the illumination device, as the light blocking portion, a slit provided in the light guide plate member along a boundary line of the plurality of light emitting areas, and a facing surface side of the light guide plate member facing the light emitting surface It is preferable that a reflective member provided in the is used.
 この場合、部品点数が増加するのを抑えつつ、発光エリア毎に対応する光源からの光を確実に発光させることができる。 In this case, it is possible to reliably emit light from the light source corresponding to each light emitting area while suppressing an increase in the number of parts.
 また、上記照明装置において、前記スリットの内部には、光を反射する反射材が設置されていることが好ましい。 Further, in the above illumination device, it is preferable that a reflective material that reflects light is installed inside the slit.
 この場合、光源からの光が対応する発光エリア以外の発光エリアから発光されるのを確実に防ぐことができるとともに、各光源の光利用効率を向上することができる。 In this case, it is possible to reliably prevent light from the light source from being emitted from light emitting areas other than the corresponding light emitting area, and to improve the light utilization efficiency of each light source.
 また、上記照明装置において、前記複数の各導光板部材では、前記光源からの光を散乱する光散乱部が、前記発光エリアに応じて、前記発光面に対向する対向面側に設けられていることが好ましい。 In the lighting device, in each of the plurality of light guide plate members, a light scattering portion that scatters light from the light source is provided on the facing surface side facing the light emitting surface according to the light emitting area. It is preferable.
 この場合、光散乱部により、光源からの光を対応する発光エリアから効率よく発光させることができ、当該発光エリアの高輝度化を容易に図ることができる。 In this case, the light scattering portion can efficiently emit light from the corresponding light emitting area from the corresponding light emitting area, and the luminance of the light emitting area can be easily increased.
 また、上記照明装置において、前記複数の各導光板部材では、複数の光源からの光がそれぞれ入光される複数の入光面が直線状に設けられていることが好ましい。 In the illumination device, it is preferable that each of the plurality of light guide plate members is provided with a plurality of light incident surfaces on which light from a plurality of light sources respectively enter linearly.
 この場合、発光エリアの数を増加したときでも、コンパクトな照明装置を容易に構成することができる。 In this case, a compact lighting device can be easily configured even when the number of light emitting areas is increased.
 また、上記照明装置において、前記導光板には、前記複数の導光板部材に設けられた複数の入光面と、前記複数の入光面にそれぞれ光を入光する複数の光源との間に、前記複数の光源からの光が対応する入光面だけに入光するように、前記複数の光源からの光の出射方向を制限する仕切部材が取り付けられていることが好ましい。 In the illumination device, the light guide plate may be provided between a plurality of light incident surfaces provided on the plurality of light guide plate members and a plurality of light sources that respectively input light to the plurality of light incident surfaces. It is preferable that a partition member for restricting the emission direction of the light from the plurality of light sources is attached so that the light from the plurality of light sources enters only the corresponding light incident surface.
 この場合、複数の光源からの光が互いに混ざるのを容易に防ぐことができる。 In this case, it is possible to easily prevent light from a plurality of light sources from being mixed with each other.
 また、本発明の表示装置は、上記いずれかの照明装置を用いたことを特徴とするものである。 The display device of the present invention is characterized by using any one of the above lighting devices.
 上記のように構成された表示装置では、複数の発光エリアを設ける場合でも、部品点数が増加するのを抑えることができ、コスト安価な照明装置が用いられているので、高輝度化及び/または大画面化を図ったときでも、部品点数の増加が抑えられたコスト安価な表示装置を容易に構成することができる。 In the display device configured as described above, even when a plurality of light emitting areas are provided, an increase in the number of components can be suppressed, and an inexpensive lighting device is used. Even when the screen is enlarged, an inexpensive display device in which an increase in the number of components is suppressed can be easily configured.
 また、上記表示装置において、前記被照射物として、情報を表示する表示部が用いられ、
 前記表示部には、前記複数の発光エリアからの光が、それぞれ入射される複数の表示エリアが設けられていることが好ましい。
Moreover, in the display device, a display unit that displays information is used as the irradiated object.
It is preferable that the display unit includes a plurality of display areas into which light from the plurality of light emitting areas is incident.
 この場合、表示部の各表示エリアの表示内容に応じて、対応する発光エリアの光源が適宜点灯駆動されることとなり、消費電力を抑制した表示装置を容易に構成することができる。 In this case, according to the display contents of each display area of the display unit, the light source of the corresponding light emitting area is appropriately driven to be turned on, and a display device with reduced power consumption can be easily configured.
 本発明によれば、複数の発光エリアを設ける場合でも、部品点数が増加するのを抑えることができ、コスト安価な照明装置、及びそれを用いた表示装置を提供することが可能となる。 According to the present invention, even when a plurality of light emitting areas are provided, it is possible to suppress an increase in the number of parts, and it is possible to provide a lighting device that is inexpensive and a display device using the lighting device.
図1は、本発明の第1の実施形態にかかる照明装置及び液晶表示装置を説明する図である。FIG. 1 is a diagram for explaining an illumination device and a liquid crystal display device according to a first embodiment of the present invention. 図2は、図1に示した液晶パネルの構成を説明する図である。FIG. 2 is a diagram for explaining the configuration of the liquid crystal panel shown in FIG. 図3は、図2に示したパネル制御部の構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 2. 図4は、図2に示した照明制御部の構成例を示すブロック図である。4 is a block diagram illustrating a configuration example of the illumination control unit illustrated in FIG. 図5は、図1に示した照明装置に設けられた複数の発光エリアと、これらの発光エリアから光が照射される複数の表示エリアの具体例を説明する図である。FIG. 5 is a diagram illustrating a specific example of a plurality of light emitting areas provided in the lighting device illustrated in FIG. 1 and a plurality of display areas irradiated with light from these light emitting areas. 図6は、図1に示した導光板の構成例を示す斜視図である。FIG. 6 is a perspective view illustrating a configuration example of the light guide plate illustrated in FIG. 1. 図7(a)及び図7(b)は、それぞれ図6に示した第1の導光板部材の平面図及び側面図である。7A and 7B are a plan view and a side view of the first light guide plate member shown in FIG. 6, respectively. 図8(a)及び図8(b)は、それぞれ図6に示した第2の導光板部材の平面図及び側面図である。8A and 8B are a plan view and a side view of the second light guide plate member shown in FIG. 6, respectively. 図9(a)及び図9(b)は、それぞれ図6に示した第3の導光板部材の平面図及び側面図である。FIG. 9A and FIG. 9B are a plan view and a side view of the third light guide plate member shown in FIG. 6, respectively. 図10は、図1に示した照明装置の要部構成を説明する図である。FIG. 10 is a diagram for explaining a main configuration of the illumination device shown in FIG. 図11は、図1に示した照明装置の動作例を説明する図である。FIG. 11 is a diagram illustrating an operation example of the illumination device illustrated in FIG. 1. 図12は、図1に示した照明装置の変形例の要部構成を説明する図である。FIG. 12 is a diagram for explaining a main configuration of a modified example of the illumination device shown in FIG. 図13は、本発明の第2の実施形態にかかる照明装置の要部構成を説明する図である。FIG. 13 is a diagram for explaining a main configuration of an illumination device according to the second embodiment of the present invention. 図14は、本発明の第3の実施形態にかかる照明装置の要部構成を説明する図である。FIG. 14 is a diagram for explaining a main configuration of an illumination apparatus according to the third embodiment of the present invention. 図15は、図14に示した仕切部材の構成例を示す斜視図である。FIG. 15 is a perspective view illustrating a configuration example of the partition member illustrated in FIG. 14. 図16は、本発明の第4の実施形態にかかる照明装置の要部構成を説明する図である。FIG. 16 is a diagram for explaining a main configuration of an illuminating device according to the fourth embodiment of the present invention. 図17は、本発明の第5の実施形態にかかる照明装置の要部構成を説明する図である。FIG. 17 is a diagram for explaining a main configuration of an illumination apparatus according to the fifth embodiment of the present invention.
 以下、本発明の照明装置及び表示装置の好ましい実施形態について、図面を参照しながら説明する。なお、以下の説明では、本発明を透過型の液晶表示装置に適用した場合を例示して説明する。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。 Hereinafter, preferred embodiments of the illumination device and the display device of the present invention will be described with reference to the drawings. In the following description, the case where the present invention is applied to a transmissive liquid crystal display device will be described as an example. Moreover, the dimension of the structural member in each figure does not faithfully represent the actual dimension of the structural member, the dimensional ratio of each structural member, or the like.
 [第1の実施形態]
 図1は、本発明の第1の実施形態にかかる照明装置及び液晶表示装置を説明する図である。図において、本実施形態の液晶表示装置1では、本発明の照明装置2と、照明装置2からの光が照射されるとともに、情報を表示する表示部としての液晶パネル3とが設けられており、これら照明装置2と液晶パネル3とが透過型の液晶表示装置1として一体化されている。
[First Embodiment]
FIG. 1 is a diagram for explaining an illumination device and a liquid crystal display device according to a first embodiment of the present invention. In the figure, in the liquid crystal display device 1 of this embodiment, the illuminating device 2 of this invention and the liquid crystal panel 3 as a display part which displays the information while irradiating the light from the illuminating device 2 are provided. The illumination device 2 and the liquid crystal panel 3 are integrated as a transmissive liquid crystal display device 1.
 照明装置2は、光源としての複数の発光ダイオード(LED)4と、これら複数の発光ダイオード4が実装されたLED基板5と、このLED基板5が取り付けられた枠体6と、発光ダイオード4からの光を所定の伝搬方向に導くとともに、被照射物としての液晶パネル3に当該光を出射する導光板7を備えている。また、この照明装置2では、後に詳述するように、導光板7の発光面7aに、複数の発光ダイオード4からの光をそれぞれ発光する複数の発光エリアが形成されている。そして、本実施形態の液晶表示装置1では、複数の発光エリアからの光がそれぞれ液晶パネル3に設けられた複数の表示エリアに入射されるようになっており、発光エリア単位に発光ダイオード4を点灯駆動させるローカルディミング(エリアアクティブバックライト)駆動が行われるように構成されている。 The lighting device 2 includes a plurality of light emitting diodes (LEDs) 4 as light sources, an LED substrate 5 on which the plurality of light emitting diodes 4 are mounted, a frame body 6 to which the LED substrate 5 is attached, and the light emitting diodes 4. And a light guide plate 7 for emitting the light to the liquid crystal panel 3 as an irradiated object. Moreover, in this illuminating device 2, the light emission surface 7a of the light-guide plate 7 is formed with the some light emission area which each light-emits the light from the some light emitting diode 4 so that it may explain in full detail later. In the liquid crystal display device 1 of the present embodiment, light from a plurality of light emitting areas is incident on a plurality of display areas provided in the liquid crystal panel 3, and the light emitting diodes 4 are provided in units of light emitting areas. Local dimming (area active backlight) driving for lighting is performed.
 さらに、照明装置2では、導光板7において、平板状の複数、例えば3つ導光板部材、つまり第1、第2、及び第3の導光板部材71、72、73が設けられている。これらの第1、第2、及び第3の導光板部材71、72、73は、第1の導光板部材71の発光面が導光板7の発光面7aを構成するように、所定の方向に積層されており、複数の発光ダイオード4からの光をそれぞれ適切に導いて、対応する発光エリアから発光させるように構成されている(詳細は後述。)。 Furthermore, in the lighting device 2, the light guide plate 7 is provided with a plurality of, for example, three light guide plate members, that is, first, second, and third light guide plate members 71, 72, 73. These first, second, and third light guide plate members 71, 72, 73 are arranged in a predetermined direction so that the light emitting surface of the first light guide plate member 71 constitutes the light emitting surface 7 a of the light guide plate 7. The light emitting diodes 4 are laminated so that light from the plurality of light emitting diodes 4 is appropriately guided to emit light from the corresponding light emitting areas (details will be described later).
 また、複数の各発光ダイオード4には、例えば赤色(R)、緑色(G)、及び青色(B)の光をそれぞれ発光する赤色、緑色、及び青色の発光ダイオード(図示せず)を一体的に構成した、いわゆるスリーインワン(3in1)タイプのものが使用されている。そして、照明装置2では、後に詳述するように、発光ダイオード4毎に設定された24個の発光エリアが定められるとともに、これらの発光エリアに対応して液晶パネル3の表示面に設定された24個の表示エリアに対し、対応する発光ダイオード4からの光をそれぞれ入射させるように構成されている。また、各発光エリアでは、上記3in1の発光ダイオード4が用いられているので、各発光エリアでは、白色に混色可能な複数色の光源が使用されている。 Further, for example, red, green, and blue light emitting diodes (not shown) that emit red (R), green (G), and blue (B) light, respectively, are integrated with each of the plurality of light emitting diodes 4. The so-called three-in-one (3 in 1) type is used. And in the illuminating device 2, as will be described in detail later, 24 light-emitting areas set for each light-emitting diode 4 are determined and set on the display surface of the liquid crystal panel 3 corresponding to these light-emitting areas. The light from the corresponding light emitting diodes 4 is made incident on the 24 display areas. Further, since each of the light emitting areas uses the 3in1 light emitting diode 4, a light source of a plurality of colors that can be mixed with white is used in each light emitting area.
 また、液晶表示装置1では、照明装置2と液晶パネル3との間に、例えば偏光シート8及びプリズム(集光)シート9が設置されており、これら光学シートによって、照明装置2からの上記照明光の輝度上昇等が適宜行われて、液晶パネル3の表示性能を向上させるようになっている。 In the liquid crystal display device 1, for example, a polarizing sheet 8 and a prism (light collecting) sheet 9 are installed between the illumination device 2 and the liquid crystal panel 3, and the illumination from the illumination device 2 is performed by these optical sheets. The display performance of the liquid crystal panel 3 is improved by appropriately increasing the brightness of light.
 また、液晶表示装置1では、液晶パネル3に含まれた後述の信号線(ソースライン)及び制御線(ゲートライン)がFPC(Flexible Printed Circuit)9を介在させて駆動制御回路11に接続されている。そして、液晶表示装置1では、駆動制御回路11が液晶パネル3に設けられた複数の画素に対し、画素単位の駆動制御を行うようになっている。また、図1に例示するように、駆動制御回路11の近傍には、複数の発光ダイオード4を点灯駆動する点灯駆動回路12が設置されている。この点灯駆動回路12は、例えばPWM調光を用いて、各発光ダイオード4を点灯駆動するように構成されている。 In the liquid crystal display device 1, signal lines (source lines) and control lines (gate lines), which will be described later, included in the liquid crystal panel 3 are connected to a drive control circuit 11 via an FPC (Flexible Printed Circuit) 9. Yes. In the liquid crystal display device 1, the drive control circuit 11 performs drive control on a pixel basis for a plurality of pixels provided in the liquid crystal panel 3. In addition, as illustrated in FIG. 1, a lighting drive circuit 12 that drives the plurality of light emitting diodes 4 to light is installed in the vicinity of the drive control circuit 11. The lighting drive circuit 12 is configured to drive each of the light emitting diodes 4 using, for example, PWM dimming.
 次に、図2~図4も参照して、本実施形態の液晶表示装置1の要部構成について具体的に説明する。 Next, the configuration of the main part of the liquid crystal display device 1 of the present embodiment will be specifically described with reference to FIGS.
 図2は、図1に示した液晶パネルの構成を説明する図である。図3は、図2に示したパネル制御部の構成例を示すブロック図である。図4は、図2に示した照明制御部の構成例を示すブロック図である。 FIG. 2 is a diagram for explaining the configuration of the liquid crystal panel shown in FIG. FIG. 3 is a block diagram illustrating a configuration example of the panel control unit illustrated in FIG. 2. 4 is a block diagram illustrating a configuration example of the illumination control unit illustrated in FIG.
 図2において、制御部13には、TV(受像機)あるいはPCなどの信号源(図示せず)を介して液晶表示装置1の外部から画像信号が入力されるようになっている。また、この制御部13は、駆動制御回路11(図1)に設けられたものであり、入力された画像信号を用いて、液晶パネル3の駆動制御を実質的に行うようになっている。さらに、制御部13は、入力された画像信号を用いて、照明装置2の駆動制御も実質的に行うように構成されている。 In FIG. 2, an image signal is input to the control unit 13 from the outside of the liquid crystal display device 1 via a signal source (not shown) such as a TV (receiver) or a PC. The control unit 13 is provided in the drive control circuit 11 (FIG. 1), and substantially performs drive control of the liquid crystal panel 3 using the input image signal. Furthermore, the control unit 13 is configured to substantially perform drive control of the illumination device 2 using the input image signal.
 具体的にいえば、制御部13には、上記画像信号を用いて、液晶パネル3を画素単位に駆動制御する表示制御部としてのパネル制御部14、画像信号を用いて、照明装置2の各発光ダイオード4の駆動制御を行う照明制御部15、及び画像信号に含まれたフレーム単位の表示データを記憶可能に構成されたフレームメモリ16が設けられている。パネル制御部14及び照明制御部15には、例えばASIC(Application Specific Integrated Circuit)が各々用いられており、これらパネル制御部14及び照明制御部15が、フレームメモリ16に逐次格納される上記表示データに対して、所定の演算処理を高速に行えるようになっている。また、このように、パネル制御部14及び照明制御部15が設けられているので、本実施形態の液晶表示装置1では、これらパネル制御部14及び照明制御部15がそれぞれ液晶パネル(表示部)3及び照明装置2を適切に駆動することが可能となり、高品位な表示を容易に行うことができるようになっている。 Specifically, the control unit 13 uses the image signal to control the liquid crystal panel 3 in units of pixels, the panel control unit 14 as a display control unit, and the image signal to each of the lighting devices 2. An illumination control unit 15 that controls driving of the light emitting diode 4 and a frame memory 16 configured to be able to store display data in units of frames included in the image signal are provided. For example, an ASIC (Application 制 御 Specific Integrated Circuit) is used for each of the panel control unit 14 and the illumination control unit 15, and the panel control unit 14 and the illumination control unit 15 are sequentially stored in the frame memory 16. On the other hand, predetermined calculation processing can be performed at high speed. In addition, since the panel control unit 14 and the illumination control unit 15 are provided as described above, in the liquid crystal display device 1 of the present embodiment, the panel control unit 14 and the illumination control unit 15 are each a liquid crystal panel (display unit). 3 and the illumination device 2 can be appropriately driven, and high-quality display can be easily performed.
 また、パネル制御部14は、ソースドライバ17及びゲートドライバ18への各指示信号を出力するようになっている。さらに、パネル制御部14では、照明制御部15に設けられた後述のエリア輝度演算部から上記各発光エリアの輝度値が通知されるようになっており、ソースドライバ17への指示信号は通知された各発光エリアの輝度値を反映した信号に補正された後、パネル制御部14からソースドライバ17に出力されるようになっている(詳細は後述。)。 Further, the panel control unit 14 outputs each instruction signal to the source driver 17 and the gate driver 18. Further, in the panel control unit 14, the luminance value of each light emitting area is notified from an area luminance calculation unit (described later) provided in the illumination control unit 15, and an instruction signal to the source driver 17 is notified. After being corrected to a signal reflecting the luminance value of each light emitting area, it is output from the panel control unit 14 to the source driver 17 (details will be described later).
 ソースドライバ17及びゲートドライバ18は、液晶パネル3に設けられた複数の画素Pを画素単位に駆動する駆動回路であり、ソースドライバ17及びゲートドライバ18には、複数の信号線S1~SM(Mは、2以上の整数)及び複数の制御線G1~GN(Nは、2以上の整数)がそれぞれ接続されている。これらの信号線S1~SM及び制御線G1~GNは、マトリクス状に配列されており、当該マトリクス状に区画された各領域には、上記複数の各画素Pの領域が形成されている。また、この液晶パネル3には、カラーフィルタが設けられておらず、照明装置2において、発光エリア毎に設けられた上記RGBの発光ダイオードが順次点灯駆動されることにより、各画素Pは、赤色、緑色、及び青色の画素として機能するようになっている。 The source driver 17 and the gate driver 18 are drive circuits that drive a plurality of pixels P provided in the liquid crystal panel 3 in units of pixels. The source driver 17 and the gate driver 18 include a plurality of signal lines S1 to SM (M Is an integer of 2 or more) and a plurality of control lines G1 to GN (N is an integer of 2 or more). The signal lines S1 to SM and the control lines G1 to GN are arranged in a matrix, and the areas of the plurality of pixels P are formed in the areas partitioned in the matrix. The liquid crystal panel 3 is not provided with a color filter. In the illumination device 2, the RGB light-emitting diodes provided for each light-emitting area are sequentially turned on, so that each pixel P has a red color. , Green and blue pixels.
 また、各制御線G1~GNには、画素P毎に設けられるとともに、例えば薄膜トランジスタ(Thin Film Transistor)を用いたスイッチング素子19のゲートが接続されている。一方、各信号線S1~SMには、スイッチング素子19のソースが接続されている。また、各スイッチング素子19のドレインには、画素P毎に設けられた画素電極20が接続されている。また、各画素Pでは、共通電極21が液晶パネル3に設けられた液晶層(図示せず)を間に挟んだ状態で画素電極20に対向するよう構成されている。 Further, each control line G1 to GN is provided for each pixel P, and connected to the gate of the switching element 19 using, for example, a thin film transistor (Thin Film Transistor). On the other hand, the source of the switching element 19 is connected to each of the signal lines S1 to SM. A pixel electrode 20 provided for each pixel P is connected to the drain of each switching element 19. In each pixel P, the common electrode 21 is configured to face the pixel electrode 20 with a liquid crystal layer (not shown) provided on the liquid crystal panel 3 interposed therebetween.
 また、パネル制御部14には、図3も参照して、画像処理部22及び表示データ補正演算部23が設けられており、入力された画像信号を使用して、ソースドライバ17及びゲートドライバ18への各指示信号を生成するように構成されている。つまり、画像処理部22は、フレームメモリ16に格納された画像信号の表示データに基づいてゲートドライバ18への指示信号を生成して当該ゲートドライバ18に出力する。これにより、ゲートドライバ18は、画像処理部22からの指示信号を基に制御線G1~GNに対して、対応するスイッチング素子19のゲートをオン状態にするゲート信号を順次出力する。また、画像処理部22は、上記表示データに基づいてソースドライバ17への指示信号を生成して表示データ補正演算部23に出力する。 The panel control unit 14 is also provided with an image processing unit 22 and a display data correction calculation unit 23 with reference to FIG. 3. The source driver 17 and the gate driver 18 are used by using the input image signal. Each instruction signal is generated. That is, the image processing unit 22 generates an instruction signal for the gate driver 18 based on the display data of the image signal stored in the frame memory 16 and outputs the instruction signal to the gate driver 18. Thereby, the gate driver 18 sequentially outputs gate signals for turning on the gates of the corresponding switching elements 19 to the control lines G1 to GN based on the instruction signal from the image processing unit 22. Further, the image processing unit 22 generates an instruction signal to the source driver 17 based on the display data and outputs the instruction signal to the display data correction calculation unit 23.
 表示データ補正演算部23には、画像処理部22からのソースドライバ17への指示信号だけでなく、上記エリア輝度演算部から各発光エリアの輝度値が入力される。これらの各発光エリアの輝度値は、周囲の発光エリアの輝度値を用いて補正された後の輝度値であり、周囲の発光エリアからの光のクロストークの影響が考慮された値である。そして、表示データ補正演算部23は、後に詳述するように、ソースドライバ17への指示信号について、上記の各発光エリアの輝度値を用いて画素単位に補正し、新たな指示信号を生成してソースドライバ17に出力する。これにより、ソースドライバ17は、表示データ補正演算部23からの指示信号に基づいて、上記表示面に表示される情報の輝度(階調)を指定する電圧信号(階調電圧)を信号線S1~SMに対して適宜出力する。 The display data correction calculation unit 23 receives not only an instruction signal from the image processing unit 22 to the source driver 17 but also the luminance value of each light emitting area from the area luminance calculation unit. The luminance value of each light emitting area is a luminance value after being corrected using the luminance value of the surrounding light emitting area, and is a value that takes into account the influence of light crosstalk from the surrounding light emitting area. Then, as will be described in detail later, the display data correction calculation unit 23 corrects the instruction signal to the source driver 17 pixel by pixel using the luminance value of each light emitting area, and generates a new instruction signal. To the source driver 17. As a result, the source driver 17 generates a voltage signal (gradation voltage) for designating the luminance (gradation) of the information displayed on the display surface based on the instruction signal from the display data correction calculation unit 23 as the signal line S1. Output as appropriate to SM.
 尚、上記の説明以外に、表示データ補正演算部23がフレームメモリ16から直接的に画像信号の表示データを取得して、画素P毎に、対応する発光エリアの補正後の輝度値を用いて、取得した表示データを補正する構成でもよい。 In addition to the above description, the display data correction calculation unit 23 acquires the display data of the image signal directly from the frame memory 16 and uses the corrected luminance value of the corresponding light emitting area for each pixel P. Alternatively, the acquired display data may be corrected.
 照明制御部15には、図4も参照して、エリア輝度演算部24と、LED駆動制御部25とが設けられている。エリア輝度演算部24は、上記発光エリア毎に、対応する表示エリアに含まれた画素Pの輝度情報を、入力された画像信号から取得する。また、エリア輝度演算部24は、取得した画素Pの輝度情報を用いて、各発光エリアでの赤色、緑色、及び青色の各色の輝度値を演算して求める輝度演算処理を行うようになっている(詳細は後述)。 The illumination control unit 15 is provided with an area luminance calculation unit 24 and an LED drive control unit 25 with reference to FIG. The area luminance calculation unit 24 acquires luminance information of the pixels P included in the corresponding display area for each light emitting area from the input image signal. In addition, the area luminance calculation unit 24 uses the acquired luminance information of the pixel P to perform luminance calculation processing that is obtained by calculating the luminance value of each color of red, green, and blue in each light emitting area. (Details will be described later).
 さらに、エリア輝度演算部24は、輝度演算処理を行うことによって求めた各色の輝度値に対して、後述のエリアクロストーク補正処理を施すことにより、周囲の発光エリアからの光のクロストークの影響を考慮した、補正後の各色の輝度値を求めるようになっている。そして、エリア輝度演算部24は、求めた各発光エリアの補正後の各色の輝度値を表示データ補正演算部23及びLED駆動制御部25に出力するようになっている。 Furthermore, the area luminance calculation unit 24 performs an area crosstalk correction process, which will be described later, on the luminance value of each color obtained by performing the luminance calculation process, thereby affecting the influence of light crosstalk from surrounding light emitting areas. Thus, the corrected luminance value of each color is obtained. Then, the area luminance calculation unit 24 outputs the calculated luminance value of each color after correction of each light emitting area to the display data correction calculation unit 23 and the LED drive control unit 25.
 ここで、図5も参照して、照明装置2側及び液晶パネル3側にそれぞれ設けられた発光エリア及び表示エリアと、エリア輝度演算部24での輝度演算処理及びエリアクロストーク補正処理とについて具体的に説明する。 Here, referring also to FIG. 5, the light emitting area and the display area respectively provided on the lighting device 2 side and the liquid crystal panel 3 side, and the luminance calculation processing and area crosstalk correction processing in the area luminance calculation unit 24 are specifically described. I will explain it.
 図5は、図1に示した照明装置に設けられた複数の発光エリアと、これらの発光エリアから光が照射される複数の表示エリアの具体例を説明する図である。 FIG. 5 is a diagram for explaining a specific example of a plurality of light emitting areas provided in the illumination device shown in FIG. 1 and a plurality of display areas irradiated with light from these light emitting areas.
 まず、複数の発光エリアと複数の表示エリアについて説明する。図5に示すように、照明装置2では、合計24個の発光エリア1-1、1-2、…、4-5、4-6が液晶パネル3側に対向配置されて平面状の照明光を発光する発光面7a(導光板7(図1)の液晶パネル3側の表面)上に設けられている。これら発光エリア1-1、1-2、…、4-5、4-6は、後に詳述するように、第1、第2、及び第3の各導光板部材71、72、73に設けられた後述の光遮断部によって、対応する発光ダイオード4からの光を発光するようになっている。 First, a plurality of light emitting areas and a plurality of display areas will be described. As shown in FIG. 5, in the illuminating device 2, a total of 24 light emitting areas 1-1, 1-2,..., 4-5, 4-6 are arranged opposite to the liquid crystal panel 3 side to provide planar illumination light. Is provided on the light emitting surface 7a (the surface on the liquid crystal panel 3 side of the light guide plate 7 (FIG. 1)). These light emitting areas 1-1, 1-2,..., 4-5, 4-6 are provided in the first, second, and third light guide plate members 71, 72, 73 as will be described in detail later. The light blocking section described later emits light from the corresponding light emitting diode 4.
 尚、図5では、各発光エリア1-1、1-2、…、4-5、4-6を明確に図示するために、同図に縦線及び横線にて互いに区切って示しているが、実際には、各発光エリア1-1、1-2、…、4-5、4-6は上記発光面7a上に設置された境界線などによって互いに区切られていない。 In FIG. 5, the light emitting areas 1-1, 1-2,..., 4-5, 4-6 are shown separated from each other by vertical and horizontal lines in order to clearly show them. Actually, the light emitting areas 1-1, 1-2,..., 4-5, 4-6 are not separated from one another by a boundary line or the like installed on the light emitting surface 7 a.
 また、発光エリア1-1、1-2、…、4-5、4-6では、液晶パネル3の上記表示面上に設けられた24個の表示エリア(1)、(2)、…、(23)、(24)に対して、対応する発光ダイオード4の光をそれぞれ入射させるように構成されている。これらの各表示エリア(1)、(2)、…、(23)、(24)には、複数の画素Pが含まれている。具体的には、液晶パネル3において、横×縦方向に、例えば1920×1080個の画素Pが設けられているとき、各表示エリア(1)、(2)、…、(23)、(24)には、320×270個の画素Pが含まれている。そして、液晶表示装置1では、上記のように、マトリクス状の発光エリア1-1、1-2、…、4-5、4-6とマトリクス状の表示エリア(1)、(2)、…、(23)、(24)とが1対1の関係で設定されており、1つの表示エリアに対し、1つの発光エリアからの照明光が表示すべき情報に応じて適宜照射される上記ローカルディミング駆動が行われるように構成されている。 In the light emitting areas 1-1, 1-2,..., 4-5, 4-6, 24 display areas (1), (2),... Provided on the display surface of the liquid crystal panel 3 are provided. With respect to (23) and (24), the light of the corresponding light emitting diode 4 is made incident respectively. Each of these display areas (1), (2),..., (23), (24) includes a plurality of pixels P. Specifically, when, for example, 1920 × 1080 pixels P are provided in the horizontal and vertical directions in the liquid crystal panel 3, the display areas (1), (2),..., (23), (24 ) Includes 320 × 270 pixels P. In the liquid crystal display device 1, as described above, the matrix-shaped light emitting areas 1-1, 1-2,..., 4-5, 4-6 and the matrix-shaped display areas (1), (2),. , (23), and (24) are set in a one-to-one relationship, and the local light is appropriately irradiated to one display area according to information to be displayed by illumination light from one light emitting area. Dimming driving is performed.
 また、上記ローカルディミング駆動では、各発光エリア1-1、1-2、…、4-5、4-6において、対応する発光ダイオード4に含まれた上記RGBの各色の発光ダイオードからのRGBの各色光を液晶パネル3側に互いに独立して出射できるようになっている。これにより、液晶表示装置1では、各表示エリア(1)、(2)、…、(23)、(24)に対して、表示すべき情報に応じてRGBの各色光を対応する発光エリア1-1、1-2、…、4-5、4-6から適切に入射させることができ、RGBの各色の再現性を容易に向上できるようになっている。 Further, in the local dimming driving, in each of the light emitting areas 1-1, 1-2,..., 4-5, 4-6, the RGB colors from the RGB light emitting diodes included in the corresponding light emitting diode 4 are displayed. Each color light can be independently emitted to the liquid crystal panel 3 side. Thereby, in the liquid crystal display device 1, the light emitting area 1 corresponding to each color light of RGB corresponding to the information to be displayed for each display area (1), (2),..., (23), (24). -1, 1-2,..., 4-5, 4-6 can be appropriately incident, and the reproducibility of each color of RGB can be easily improved.
 続いて、エリア輝度演算部24での輝度演算処理及びエリアクロストーク補正処理について説明する。尚、以下の説明では、9個の発光エリア1-2、1-3、1-4、2-2、2-3、2-4、3-2、3-3、3-4のうち、その中心部に位置する発光エリア2-3の輝度値を求める場合を例示して、説明する。 Subsequently, luminance calculation processing and area crosstalk correction processing in the area luminance calculation unit 24 will be described. In the following description, of the nine light emitting areas 1-2, 1-3, 1-4, 2-2, 2-3, 2-4, 3-2, 3-3, 3-4, An example of obtaining the luminance value of the light emitting area 2-3 located at the center will be described.
 エリア輝度演算部24では、上記発光エリア1-2、1-3、1-4、2-2、2-3、2-4、3-2、3-3、3-4にそれぞれ対応した9個の表示エリア(2)、(3)、(4)、(8)、(9)、(10)、(14)、(15)、(16)の画像信号に関して、輝度演算処理を各々行うことにより、対応する発光エリア1-2、1-3、1-4、2-2、2-3、2-4、3-2、3-3、3-4での赤色、青色、及び緑色の各色の輝度値が求められる。 In the area luminance calculation unit 24, 9 corresponding to the light emitting areas 1-2, 1-3, 1-4, 2-2, 2-3, 2-4, 3-2, 3-3, and 3-4, respectively. For each of the display areas (2), (3), (4), (8), (9), (10), (14), (15), and (16), luminance calculation processing is performed. Accordingly, red, blue, and green in the corresponding light emitting areas 1-2, 1-3, 1-4, 2-2, 2-3, 2-4, 3-2, 3-3, 3-4 The luminance value of each color is obtained.
 具体的には、エリア輝度演算部24は、フレームメモリ16から表示エリア(2)に含まれた複数の画素P(例えば、320×270個の画素P)の輝度情報を取得する。そして、エリア輝度演算部24は、取得した輝度情報に対して輝度演算処理を行うことにより、赤色、青色、及び緑色の色毎に、例えば最大輝度値のデータが抽出されて、表示エリア(2)に対応した発光エリア1-2での各色の輝度値とされる。つまり、エリア輝度演算部24が、輝度演算処理を実行することにより、表示エリア(2)に含まれた複数の画素Pにおいて、最も高い輝度で、赤色に表示すべき画素Pの輝度値が発光エリア1-2での赤色の輝度値として選定される。 Specifically, the area luminance calculation unit 24 acquires luminance information of a plurality of pixels P (for example, 320 × 270 pixels P) included in the display area (2) from the frame memory 16. Then, the area luminance calculation unit 24 performs luminance calculation processing on the acquired luminance information to extract, for example, data of the maximum luminance value for each of red, blue, and green colors, and displays the display area (2 ) Corresponding to the luminance values of the respective colors in the light emitting area 1-2. That is, when the area luminance calculation unit 24 executes the luminance calculation process, the luminance value of the pixel P to be displayed in red with the highest luminance is emitted from the plurality of pixels P included in the display area (2). It is selected as the red luminance value in area 1-2.
 また、この輝度演算処理では、ノイズ除去を行うためのフィルタリング処理が実施されており、ノイズの悪影響を確実に排除できるようになっている。つまり、エリア輝度演算部24では、ノイズの混入により、周りの画素Pに比べて異常に輝度値の高い画素Pがある場合などにおいて、その輝度値が最大輝度値として抽出されるのを防止できるように構成されている。 Also, in this luminance calculation process, a filtering process for removing noise is performed, so that adverse effects of noise can be surely eliminated. That is, the area luminance calculation unit 24 can prevent the luminance value from being extracted as the maximum luminance value when there is a pixel P having an abnormally high luminance value compared to the surrounding pixels P due to noise mixing. It is configured as follows.
 同様に、表示エリア(2)に含まれた複数の画素Pにおいて、最も高い輝度で、緑色に表示すべき画素Pの輝度値が発光エリア1-2での緑色の輝度値として選定される。同様に、表示エリア(2)に含まれた複数の画素Pにおいて、最も高い輝度で、青色に表示すべき画素Pの輝度値が発光エリア1-2での青色の輝度値として選定される。そして、エリア輝度演算部24は、選定した赤色、青色、及び緑色の各色の輝度値を発光エリア1-2の輝度値として定める。 Similarly, in the plurality of pixels P included in the display area (2), the luminance value of the pixel P to be displayed in green with the highest luminance is selected as the green luminance value in the light emitting area 1-2. Similarly, in the plurality of pixels P included in the display area (2), the luminance value of the pixel P to be displayed in blue with the highest luminance is selected as the blue luminance value in the light emitting area 1-2. Then, the area luminance calculation unit 24 determines the luminance values of the selected red, blue, and green colors as the luminance values of the light emitting area 1-2.
 また、エリア輝度演算部24は、同様に、発光エリア1-3、1-4、2-2、2-3、2-4、3-2、3-3、3-4での赤色、青色、及び緑色の各色の輝度値を求める。そして、エリア輝度演算部24では、発光エリア2-3の輝度値について、赤色、青色、及び緑色の色毎に、その周囲の発光エリア1-2、1-3、1-4、2-2、2-4、3-2、3-3、3-4の輝度値を用いたエリアクロストーク補正処理が行われる。 Similarly, the area luminance calculation unit 24 performs red, blue in the light emitting areas 1-3, 1-4, 2-2, 2-3, 2-4, 3-2, 3-3, 3-4. The luminance value of each color of green and green is obtained. Then, the area luminance calculation unit 24 sets the luminance value of the light emitting area 2-3 for each of the red, blue, and green colors, the surrounding light emitting areas 1-2, 1-3, 1-4, and 2-2. Area crosstalk correction processing using luminance values 2-4, 3-2, 3-3, and 3-4 is performed.
 このエリアクロストーク補正処理では、エリア輝度演算部24が、図示を省略したメモリ内に格納された補正係数を用いて、求めた輝度値を補正することにより、赤色、青色、及び緑色の色毎に、各照明エリアの補正後の輝度値を算出するようになっている。 In this area crosstalk correction process, the area luminance calculation unit 24 corrects the obtained luminance value by using a correction coefficient stored in a memory (not shown), thereby red, blue, and green colors. In addition, the brightness value after correction of each illumination area is calculated.
 つまり、例えば発光エリア2-3では、その周囲の発光エリア1-2、1-3、1-4、2-2、2-4、3-2、3-3、3-4からの光によって、赤色、青色、及び緑色の色毎に、各色光の輝度が上昇する。そこで、実製品を用いた試験またはシミュレーションの結果などを行うことにより、赤色、青色、及び緑色の各色での輝度上昇分を相殺するような補正係数を予め求めて、上記メモリに保持させる。そして、エリア輝度演算部24は、輝度演算処理で求めた発光エリア2-3の各色の輝度値と、メモリに保持されている補正係数とを用いることにより、発光エリア2-3の各色の補正後の輝度値が算出される。そして、エリア輝度演算部24は、求めた各照明エリアの補正後の各色の輝度値を表示データ補正演算部23及びLED駆動制御部25に出力する。 That is, for example, in the light emitting area 2-3, the light from the surrounding light emitting areas 1-2, 1-3, 1-4, 2-2, 2-4, 3-2, 3-3, 3-4 is used. For each of red, blue, and green colors, the brightness of each color light increases. Therefore, by performing a test or simulation result using an actual product, a correction coefficient that cancels out the luminance increase in each of the red, blue, and green colors is obtained in advance and stored in the memory. Then, the area luminance calculation unit 24 corrects each color of the light emitting area 2-3 by using the luminance value of each color of the light emitting area 2-3 obtained by the luminance calculation processing and the correction coefficient held in the memory. Later luminance values are calculated. Then, the area luminance calculation unit 24 outputs the calculated luminance value of each color after correction of each illumination area to the display data correction calculation unit 23 and the LED drive control unit 25.
 また、上述の補正係数は、実製品を用いた試験またはシミュレーションの結果などから定められているので、液晶パネル3の内部構造や、導光板7、偏光シート8、及びプリズムシート9などの光学シートによる輝度変化を考慮したものであり、液晶表示装置1でのクロストークの影響をより確実に排除して、表示品位の向上をより容易に行えるようになっている。 In addition, since the correction coefficient described above is determined from the results of tests or simulations using actual products, the internal structure of the liquid crystal panel 3 and optical sheets such as the light guide plate 7, the polarizing sheet 8, and the prism sheet 9 are used. Therefore, it is possible to more reliably eliminate the influence of crosstalk in the liquid crystal display device 1 and to improve display quality more easily.
 図4に戻って、LED駆動制御部25は、光源を点灯駆動する駆動制御部を構成しており、エリア輝度演算部24からの複数の各照明エリアの補正後の輝度値に基づき、対応するRGBの各色の発光ダイオードの点灯期間を決定するとともに、決定した点灯期間に応じて、当該RGBの各色の発光ダイオードをPWM調光にて点灯駆動するようになっている。つまり、LED駆動制御部25では、エリア輝度演算部24にて定められた輝度値に応じて、PWM調光でのオン/オフデューティが決定され、その決定されたオン/オフデューティを指示する信号が指示信号として点灯駆動回路12(図1)に出力される。そして、点灯駆動回路12は、指示信号に基づき、RGBの各発光ダイオードに電力供給を行うことにより、これらの各発光ダイオードを点灯駆動する。 Returning to FIG. 4, the LED drive control unit 25 constitutes a drive control unit that drives the light source to turn on, and responds based on the corrected luminance value of each of the plurality of illumination areas from the area luminance calculation unit 24. The lighting periods of the RGB light emitting diodes are determined, and the light emitting diodes of the respective RGB colors are driven to light by PWM dimming according to the determined lighting periods. That is, the LED drive control unit 25 determines the on / off duty in the PWM dimming according to the luminance value determined by the area luminance calculation unit 24, and a signal that indicates the determined on / off duty. Is output to the lighting drive circuit 12 (FIG. 1) as an instruction signal. Then, the lighting drive circuit 12 drives each of the light emitting diodes by supplying power to the RGB light emitting diodes based on the instruction signal.
 一方、表示データ補正演算部23では、エリア輝度演算部24から各発光エリア1-1、1-2、…、4-5、4-6での赤色、緑色、及び青色の各色の輝度値が伝えられると、これらの輝度値を用いて、画像処理部22から入力されたソースドライバ17への指示信号を補正して、新たな指示信号としてソースドライバ17に出力する。すなわち、表示データ補正演算部23は、画像処理部22が上記画像信号に応じて定めた赤色、緑色、及び青色の画素単位の階調電圧に対して、エリア輝度演算部24からの対応する色の輝度値を基に補正して、新たな階調電圧とする。そして、表示データ補正演算部23は、赤色、緑色、及び青色の画素単位の新たな階調電圧を指示する指示信号を生成して、ソースドライバ17に出力する。 On the other hand, in the display data correction calculation unit 23, the luminance value of each color of red, green, and blue in each of the light emitting areas 1-1, 1-2,. When transmitted, these luminance values are used to correct the instruction signal to the source driver 17 input from the image processing unit 22 and output to the source driver 17 as a new instruction signal. That is, the display data correction calculation unit 23 corresponds to the corresponding color from the area luminance calculation unit 24 with respect to the gradation voltages in red, green, and blue pixel units determined by the image processing unit 22 according to the image signal. Is corrected based on the luminance value of, to obtain a new gradation voltage. Then, the display data correction calculation unit 23 generates an instruction signal instructing new gradation voltages in red, green, and blue pixel units, and outputs the instruction signal to the source driver 17.
 この結果、液晶パネル3では、表示データ補正演算部23からの新たな階調電圧に応じて、照明装置2の対応する発光エリア1-1、1-2、…、4-5、4-6からの照明光の透過率が赤色、緑色、及び青色の画素単位に変更される。このように、本実施形態の液晶表示装置1では、パネル制御部14が複数の各発光エリア1-1、1-2、…、4-5、4-6の補正後の輝度値を用いて画像信号を補正し、補正後の画像信号に基づいて、液晶パネル3の駆動制御が画素単位に行われる。これにより、本実施形態の液晶表示装置1では、入力された画像信号及び照明装置2からの照明光に応じて、各画素Pをより適切に駆動することができ、表示品位の低下をより確実に防ぐことができる。 As a result, in the liquid crystal panel 3, the corresponding light emitting areas 1-1, 1-2,... Is changed to pixel units of red, green, and blue. Thus, in the liquid crystal display device 1 of the present embodiment, the panel control unit 14 uses the corrected luminance values of the plurality of light emitting areas 1-1, 1-2,..., 4-5, 4-6. The image signal is corrected, and drive control of the liquid crystal panel 3 is performed on a pixel basis based on the corrected image signal. Thereby, in the liquid crystal display device 1 of this embodiment, each pixel P can be driven more appropriately according to the input image signal and the illumination light from the illumination device 2, and the deterioration of the display quality is more reliably ensured. Can be prevented.
 次に、図6乃至図11を参照して、導光板7及び照明装置2の要部構成について具体的に説明する。 Next, with reference to FIGS. 6 to 11, the configuration of the main parts of the light guide plate 7 and the illumination device 2 will be described in detail.
 図6は、図1に示した導光板の構成例を示す斜視図である。図7(a)及び図7(b)は、それぞれ図6に示した第1の導光板部材の平面図及び側面図である。図8(a)及び図8(b)は、それぞれ図6に示した第2の導光板部材の平面図及び側面図である。図9(a)及び図9(b)は、それぞれ図6に示した第3の導光板部材の平面図及び側面図である。図10は、図1に示した照明装置の要部構成を説明する図である。図11は、図1に示した照明装置の動作例を説明する図である。 FIG. 6 is a perspective view showing a configuration example of the light guide plate shown in FIG. 7A and 7B are a plan view and a side view of the first light guide plate member shown in FIG. 6, respectively. 8A and 8B are a plan view and a side view of the second light guide plate member shown in FIG. 6, respectively. FIG. 9A and FIG. 9B are a plan view and a side view of the third light guide plate member shown in FIG. 6, respectively. FIG. 10 is a diagram for explaining a main configuration of the illumination device shown in FIG. FIG. 11 is a diagram illustrating an operation example of the illumination device illustrated in FIG. 1.
 まず図6乃至図9を使用して、導光板7の要部構成について具体的に説明する。 First, the main configuration of the light guide plate 7 will be specifically described with reference to FIGS.
 図6に示すように、導光板7では、平板状の第1~第3の導光板部材71、72、73がZ方向(所定の方向、液晶パネル3の表示面に垂直な方向)に沿って積層されている。つまり、これら第1~第3の導光板部材71、72、73では、第1の導光板部材71が液晶パネル3側に設置されており、上述したように、第1の導光板部材71の発光面が導光板7の発光面7aを構成するように、上記所定の方向に積層されている。 As shown in FIG. 6, in the light guide plate 7, flat plate-like first to third light guide plate members 71, 72, 73 are arranged along the Z direction (predetermined direction, a direction perpendicular to the display surface of the liquid crystal panel 3). Are stacked. That is, in these first to third light guide plate members 71, 72, 73, the first light guide plate member 71 is installed on the liquid crystal panel 3 side, and as described above, the first light guide plate member 71 The light emitting surfaces are laminated in the predetermined direction so that the light emitting surface 7a of the light guide plate 7 is formed.
 また、各導光板部材71~73には、例えば板厚が1mm~数mm程度の透明な合成樹脂材が用いられている。また、各導光板部材71~73には、光遮断部が設けられており、24個の発光ダイオード4からの光をそれぞれ発光する上記24個の発光エリア1-1、1-2、…、4-5、4-6が、図6の点線にて示すように、導光板7の発光面7aに形成されている。 Further, for each of the light guide plate members 71 to 73, for example, a transparent synthetic resin material having a plate thickness of about 1 mm to several mm is used. In addition, each of the light guide plate members 71 to 73 is provided with a light blocking section, and the 24 light emitting areas 1-1, 1-2,... That emit light from the 24 light emitting diodes 4 respectively. 4-5 and 4-6 are formed on the light emitting surface 7a of the light guide plate 7 as indicated by the dotted lines in FIG.
 具体的にいえば、図7(a)及び図7(b)において、第1の導光板部材71は、導光板7の発光面7aを構成する発光面71Aと、この発光面71Aに対向する対向面71Bと、これらの発光面71Aと対向面71Bとの間に設けられるとともに、各々4個の発光ダイオード4が対向して配置される側面71C、71Dを備えている。すなわち、側面71Cには、4個の発光ダイオード4がそれぞれ入光される4個の入光面71aが直線状に設けられている。また、側面71Dには、4個の発光ダイオード4がそれぞれ入光される4個の入光面71bが直線状に設けられている。これらの各入光面71a、71bでは、対応する(対向する)発光ダイオード4以外の発光ダイオード4からの光が後述の仕切板によって入光されないようになっている(詳細は後述。)。 Specifically, in FIGS. 7A and 7B, the first light guide plate member 71 is opposed to the light emitting surface 71A constituting the light emitting surface 7a of the light guide plate 7 and the light emitting surface 71A. The opposed surface 71B is provided between the light emitting surface 71A and the opposed surface 71B, and includes side surfaces 71C and 71D on which the four light emitting diodes 4 are arranged to face each other. That is, on the side surface 71C, four light incident surfaces 71a on which the four light emitting diodes 4 are respectively incident are linearly provided. In addition, on the side surface 71D, four light incident surfaces 71b on which the four light emitting diodes 4 are respectively incident are provided linearly. On each of these light incident surfaces 71a and 71b, light from the light emitting diodes 4 other than the corresponding (opposing) light emitting diodes 4 is prevented from entering by a partition plate described later (details will be described later).
 また、第1の導光板部材71には、Y方向(液晶パネル3の縦方向)に平行なスリット71c、71dと、X方向(液晶パネル3の横方向)に平行なスリット71e、71f、71gが設けられている。また、これらの各スリット71c~71gは、上記発光エリアの境界線上に形成されるように、第1の導光板部材71に設けられている。すなわち、スリット71cは、第1の導光板部材71の左縁(側面71C)から、当該第1の導光板部材71のX方向の寸法の1/6の箇所に設けられている。また、スリット71dは、第1の導光板部材71の右縁(側面71D)から、当該第1の導光板部材71のX方向の寸法の1/6の箇所に設けられている。また、スリット71e、71f、71gは、第1の導光板部材71のY方向の寸法を4等分する3つの箇所にそれぞれ設けられている。 Further, the first light guide plate member 71 includes slits 71c and 71d parallel to the Y direction (vertical direction of the liquid crystal panel 3) and slits 71e, 71f and 71g parallel to the X direction (lateral direction of the liquid crystal panel 3). Is provided. The slits 71c to 71g are provided in the first light guide plate member 71 so as to be formed on the boundary line of the light emitting area. That is, the slit 71 c is provided from the left edge (side surface 71 </ b> C) of the first light guide plate member 71 at a position that is 1/6 of the dimension in the X direction of the first light guide plate member 71. In addition, the slit 71d is provided from the right edge (side surface 71D) of the first light guide plate member 71 at a position that is 1/6 of the dimension in the X direction of the first light guide plate member 71. In addition, the slits 71e, 71f, 71g are respectively provided at three locations that divide the dimension of the first light guide plate member 71 in the Y direction into four equal parts.
 また、各スリット71c~71gは、発光面71A側及び対向面71B側にそれぞれ底部及び開口部を有するように形成されている。また、スリット71c~71gでは、そのZ方向の各開口寸法は、第1の導光板部材71の板厚(Z方向の寸法)を、0.5mm~1.0mm程度残した寸法に設定されている。また、スリット71c、71dのX方向の各開口寸法及びスリット71e~71gのY方向の各開口寸法は、例えば数mm程度に設定されている。そして、各スリット71c~71gは、進行してきた光を遮断するようになっている。具体的にいえば、スリット71cは、例えば図7(a)の左下の入光面71aから第1の導光板部材71の内部に入光して、X方向の右側に進行する光に対して、当該光がスリット71cの右側に進むのを遮断する。また、スリット71eは、例えば図7(a)の左下の入光面71aから第1の導光板部材71の内部に入光して、Y方向の上側に進行する光に対して、当該光がスリット71eの上側に進むのを遮断する。さらに、各スリット71c~71gは、第2の導光板部材72から第1の導光板部材71の内部に侵入した光、及び第3の導光板部材73から第2の導光板部材72を通過して第1の導光板部材71の内部に侵入した光も遮断するようになっている。 Further, each of the slits 71c to 71g is formed to have a bottom and an opening on the light emitting surface 71A side and the opposing surface 71B side, respectively. Further, in the slits 71c to 71g, the respective opening dimensions in the Z direction are set to dimensions that leave the plate thickness (the dimension in the Z direction) of the first light guide plate member 71 about 0.5 mm to 1.0 mm. Yes. Further, the opening dimensions in the X direction of the slits 71c and 71d and the opening dimensions in the Y direction of the slits 71e to 71g are set to, for example, about several mm. Each of the slits 71c to 71g blocks the light that has traveled. Specifically, for example, the slit 71c enters the inside of the first light guide plate member 71 from the lower left light incident surface 71a of FIG. The light is blocked from traveling to the right side of the slit 71c. Further, the slit 71e enters the first light guide plate member 71 from, for example, the lower left light incident surface 71a of FIG. 7A, and the light travels upward in the Y direction. Proceeding to the upper side of the slit 71e is blocked. Further, each of the slits 71c to 71g passes through the second light guide plate member 72 from the third light guide plate member 73 and the light that has entered the first light guide plate member 71 from the second light guide plate member 72. Thus, light that has entered the inside of the first light guide plate member 71 is also blocked.
 また、第1の導光板部材71では、反射部材としての反射シート71hが側面71Cからスリット71cまでの対向面71B上に設けられ、さらには反射部材としての反射シート71iが側面71Dからスリット71dまでの対向面71B上に設けられている。これらの反射シート71h、71iは、スリット71c~71gとともに、上記光遮断部として用いられている。つまり、反射シート71h、71iは、それぞれ入光面71a、71bから第1の導光板部材71の内部に入光した光をそれぞれ反射することによって、これらの各光が第2の導光板部材72側に進むのを遮断する。このように、第1の導光板部材71では、スリット71c~71g及び反射シート71h、71iが光遮断部として用いられているので、第1の導光板部材71では、合計8個の発光エリア1-1、2-1、3-1、4-1、1-6、2-6、3-6、4-6(図5)を形成するようになっている。 In the first light guide plate member 71, a reflection sheet 71h as a reflection member is provided on the opposing surface 71B from the side surface 71C to the slit 71c, and further, a reflection sheet 71i as a reflection member is from the side surface 71D to the slit 71d. Is provided on the opposite surface 71B. These reflection sheets 71h and 71i are used as the light blocking section together with the slits 71c to 71g. That is, the reflection sheets 71h and 71i reflect the light incident on the inside of the first light guide plate member 71 from the light incident surfaces 71a and 71b, respectively, so that each of these lights is the second light guide plate member 72. Blocks going to the side. As described above, in the first light guide plate member 71, the slits 71c to 71g and the reflection sheets 71h and 71i are used as light blocking portions. Therefore, in the first light guide plate member 71, a total of eight light emitting areas 1 are provided. -1, 2-1, 3-1, 4-1, 1-6, 2-6, 3-6, 4-6 (FIG. 5) are formed.
 さらに、第1の導光板部材71では、発光ダイオード4からの光を散乱する光散乱部としての散乱ドットパターン71j、71kが発光エリアに応じて、対向面71B側に設けられている。具体的にいえば、散乱ドットパターン71jは、図7(a)の左側の斜線部にて示すように、発光エリア1-1、2-1、3-1、4-1に対応する、対向面71Bの表面上に形成されており、4個の発光ダイオード4からの光を散乱して発光エリア1-1、2-1、3-1、4-1からそれぞれ発光させるようになっている。また、散乱ドットパターン71kは、図7(a)の右側の斜線部にて示すように、発光エリア1-6、2-6、3-6、4-6に対応する、対向面71Bの表面上に形成されており、4個の発光ダイオード4からの光を散乱して発光エリア1-6、2-6、3-6、4-6からそれぞれ発光させるようになっている。 Furthermore, in the first light guide plate member 71, scattering dot patterns 71j and 71k as light scattering portions that scatter light from the light emitting diodes 4 are provided on the facing surface 71B side according to the light emitting area. Specifically, the scattered dot pattern 71j is opposed to the light emitting areas 1-1, 2-1, 3-1, 4-1 as indicated by the hatched portion on the left side of FIG. It is formed on the surface 71B and scatters light from the four light emitting diodes 4 to emit light from the light emitting areas 1-1, 2-1, 3-1, 4-1 respectively. . The scattered dot pattern 71k is a surface of the opposing surface 71B corresponding to the light emitting areas 1-6, 2-6, 3-6, 4-6, as indicated by the hatched portion on the right side of FIG. The light is emitted from the light emitting areas 1-6, 2-6, 3-6, and 4-6 by scattering the light from the four light emitting diodes 4 respectively.
 また、図8(a)及び図8(b)において、第2の導光板部材72は、導光板7の発光面7aに平行に設置される発光面72Aと、この発光面72Aに対向する対向面72Bと、これらの発光面72Aと対向面72Bとの間に設けられるとともに、各々4個の発光ダイオード4が対向して配置される側面72C、72Dを備えている。すなわち、側面72Cには、4個の発光ダイオード4がそれぞれ入光される4個の入光面72aが直線状に設けられている。また、側面72Dには、4個の発光ダイオード4がそれぞれ入光される4個の入光面72bが直線状に設けられている。これらの各入光面72a、72bでは、対応する(対向する)発光ダイオード4以外の発光ダイオード4からの光が後述の仕切板によって入光されないようになっている(詳細は後述。)。 8A and 8B, the second light guide plate member 72 includes a light emitting surface 72A installed in parallel to the light emitting surface 7a of the light guide plate 7, and a facing surface facing the light emitting surface 72A. It is provided between the surface 72B and the light emitting surface 72A and the opposing surface 72B, and includes side surfaces 72C and 72D on which the four light emitting diodes 4 are arranged to face each other. That is, on the side surface 72C, four light incident surfaces 72a on which the four light emitting diodes 4 are respectively incident are provided linearly. In addition, on the side surface 72D, four light incident surfaces 72b on which the four light emitting diodes 4 are respectively incident are linearly provided. In each of these light incident surfaces 72a and 72b, light from the light emitting diodes 4 other than the corresponding (opposing) light emitting diodes 4 is prevented from entering by a partition plate described later (details will be described later).
 また、第2の導光板部材72には、Y方向(液晶パネル3の縦方向)に平行なスリット72c、72dと、X方向(液晶パネル3の横方向)に平行なスリット72e、72f、72gが設けられている。また、これらの各スリット72c~72gは、上記発光エリアの境界線上に形成されるように、第2の導光板部材72に設けられている。すなわち、スリット72cは、第2の導光板部材72の左縁(側面72C)から、当該第2の導光板部材72のX方向の寸法の2/6の箇所に設けられている。また、スリット72dは、第2の導光板部材72の右縁(側面72D)から、当該第2の導光板部材72のX方向の寸法の2/6の箇所に設けられている。また、スリット72e、72f、72gは、第2の導光板部材72のY方向の寸法を4等分する3つの箇所にそれぞれ設けられている。 The second light guide plate member 72 includes slits 72c and 72d parallel to the Y direction (vertical direction of the liquid crystal panel 3) and slits 72e, 72f and 72g parallel to the X direction (lateral direction of the liquid crystal panel 3). Is provided. The slits 72c to 72g are provided in the second light guide plate member 72 so as to be formed on the boundary line of the light emitting area. In other words, the slit 72 c is provided from the left edge (side surface 72 </ b> C) of the second light guide plate member 72 at a location 2/6 of the dimension in the X direction of the second light guide plate member 72. In addition, the slit 72d is provided from the right edge (side surface 72D) of the second light guide plate member 72 at a position 2/6 of the dimension in the X direction of the second light guide plate member 72. In addition, the slits 72e, 72f, and 72g are respectively provided at three locations that divide the dimension of the second light guide plate member 72 in the Y direction into four equal parts.
 また、各スリット72c~72gは、発光面72A側及び対向面72B側にそれぞれ底部及び開口部を有するように形成されている。また、スリット72c~72gでは、そのZ方向の各開口寸法は、第2の導光板部材72の板厚(Z方向の寸法)を、0.5mm~1.0mm程度残した寸法に設定されている。また、スリット72c、72dのX方向の各開口寸法及びスリット72e~72gのY方向の各開口寸法は、例えば数mm程度に設定されている。そして、各スリット72c~72gは、進行してきた光を遮断するようになっている。具体的にいえば、スリット72cは、例えば図8(a)の左下の入光面72aから第2の導光板部材72の内部に入光して、X方向の右側に進行する光に対して、当該光がスリット72cの右側に進むのを遮断する。また、スリット72eは、例えば図8(a)の左下の入光面72aから第2の導光板部材72の内部に入光して、Y方向の上側に進行する光に対して、当該光がスリット72eの上側に進むのを遮断する。さらに、各スリット72c~72gは、第3の導光板部材73から第2の導光板部材72の内部に侵入した光も遮断するようになっている。 Further, each of the slits 72c to 72g is formed to have a bottom and an opening on the light emitting surface 72A side and the opposing surface 72B side, respectively. Further, in the slits 72c to 72g, the respective opening dimensions in the Z direction are set to dimensions that leave the thickness (dimension in the Z direction) of the second light guide plate member 72 about 0.5 mm to 1.0 mm. Yes. Further, the respective opening dimensions in the X direction of the slits 72c and 72d and the respective opening dimensions in the Y direction of the slits 72e to 72g are set to, for example, about several mm. Each of the slits 72c to 72g blocks the light that has traveled. Specifically, for example, the slit 72c is incident on the inside of the second light guide plate member 72 from the lower left light incident surface 72a of FIG. 8A and travels to the right in the X direction. The light is blocked from traveling to the right side of the slit 72c. For example, the slit 72e enters the inside of the second light guide plate member 72 from the lower left light incident surface 72a in FIG. 8A, and the light travels upward in the Y direction. Proceeding to the upper side of the slit 72e is blocked. Further, each of the slits 72c to 72g blocks light that has entered the second light guide plate member 72 from the third light guide plate member 73.
 また、第2の導光板部材72では、反射部材としての反射シート72hが側面72Cからスリット72cまでの対向面72B上に設けられ、さらには反射部材としての反射シート72iが側面72Dからスリット72dまでの対向面72B上に設けられている。これらの反射シート72h、72iは、スリット72c~72gとともに、上記光遮断部として用いられている。つまり、反射シート72h、72iは、それぞれ入光面72a、72bから第2の導光板部材72の内部に入光した光をそれぞれ反射することによって、これらの各光が第3の導光板部材73側に進むのを遮断する。このように、第2の導光板部材72では、スリット72c~72g及び反射シート72h、72iが光遮断部として用いられているので、第2の導光板部材72では、合計8個の発光エリア1-2、2-2、3-2、4-2、1-5、2-5、3-5、4-5(図5)を形成するようになっている。 In the second light guide plate member 72, a reflection sheet 72h as a reflection member is provided on the opposing surface 72B from the side surface 72C to the slit 72c, and further, a reflection sheet 72i as a reflection member is from the side surface 72D to the slit 72d. Is provided on the opposite surface 72B. These reflection sheets 72h and 72i are used as the light blocking section together with the slits 72c to 72g. That is, the reflection sheets 72h and 72i reflect the light incident on the inside of the second light guide plate member 72 from the light incident surfaces 72a and 72b, respectively, so that each of these lights is the third light guide plate member 73. Blocks going to the side. As described above, in the second light guide plate member 72, the slits 72c to 72g and the reflection sheets 72h and 72i are used as light blocking portions. Therefore, in the second light guide plate member 72, a total of eight light emitting areas 1 are provided. -2, 2-2, 3-2, 4-2, 1-5, 2-5, 3-5, 4-5 (FIG. 5).
 さらに、第2の導光板部材72では、発光ダイオード4からの光を散乱する光散乱部としての散乱ドットパターン72j、72kが発光エリアに応じて、対向面72B側に設けられている。具体的にいえば、散乱ドットパターン72jは、図8(a)の左側の斜線部にて示すように、発光エリア1-2、2-2、3-2、4-2に対応する、対向面72Bの表面上に形成されている。つまり、散乱ドットパターン72jは、第1の導光板部材71のスリット71cの真下である直線部分72Eからスリット72cまでの対向面72Bの表面上に形成されている。また、この散乱ドットパターン72jに対向する第1の導光板部材71では、図7(b)に示すように、反射シートが形成されておらず、散乱ドットパターン72jは、4個の発光ダイオード4からの光を散乱して発光エリア1-2、2-2、3-2、4-2からそれぞれ発光させるようになっている。 Furthermore, in the second light guide plate member 72, scattering dot patterns 72j and 72k as light scattering portions for scattering light from the light emitting diodes 4 are provided on the facing surface 72B side according to the light emitting area. More specifically, the scattered dot pattern 72j corresponds to the light emitting areas 1-2, 2-2, 3-2, and 4-2 as shown by the hatched portion on the left side of FIG. It is formed on the surface of the surface 72B. That is, the scattering dot pattern 72j is formed on the surface of the facing surface 72B from the straight line portion 72E directly below the slit 71c of the first light guide plate member 71 to the slit 72c. Further, in the first light guide plate member 71 facing the scattering dot pattern 72j, as shown in FIG. 7B, no reflection sheet is formed, and the scattering dot pattern 72j includes four light emitting diodes 4. Are scattered from the light emitting areas 1-2, 2-2, 3-2 and 4-2, respectively.
 また、散乱ドットパターン72kは、図8(a)の右側の斜線部にて示すように、発光エリア1-5、2-5、3-5、4-5に対応する、対向面72Bの表面上に形成されている。つまり、散乱ドットパターン72kは、第1の導光板部材71のスリット71dの真下である直線部分72Fからスリット72dまでの対向面72Bの表面上に形成されている。また、この散乱ドットパターン72kに対向する第1の導光板部材71では、図7(b)に示すように、反射シートが形成されておらず、散乱ドットパターン72kは、4個の発光ダイオード4からの光を散乱して発光エリア1-5、2-5、3-5、4-5からそれぞれ発光させるようになっている。 The scattered dot pattern 72k is a surface of the facing surface 72B corresponding to the light emitting areas 1-5, 2-5, 3-5, 4-5, as indicated by the hatched portion on the right side of FIG. Formed on top. That is, the scattering dot pattern 72k is formed on the surface of the facing surface 72B from the straight portion 72F directly below the slit 71d of the first light guide plate member 71 to the slit 72d. In addition, in the first light guide plate member 71 facing the scattering dot pattern 72k, as shown in FIG. 7B, no reflection sheet is formed, and the scattering dot pattern 72k includes four light emitting diodes 4. Are scattered from the light emitting areas 1-5, 2-5, 3-5, and 4-5, respectively.
 また、図9(a)及び図9(b)において、第3の導光板部材73は、導光板7の発光面7aに平行に設置される発光面73Aと、この発光面73Aに対向する対向面73Bと、これらの発光面73Aと対向面73Bとの間に設けられるとともに、各々4個の発光ダイオード4が対向して配置される側面73C、73Dを備えている。すなわち、側面73Cには、4個の発光ダイオード4がそれぞれ入光される4個の入光面73aが直線状に設けられている。また、側面73Dには、4個の発光ダイオード4がそれぞれ入光される4個の入光面73bが直線状に設けられている。これらの各入光面73a、73bでは、対応する(対向する)発光ダイオード4以外の発光ダイオード4からの光が後述の仕切板によって入光されないようになっている(詳細は後述。)。 9A and 9B, the third light guide plate member 73 includes a light emitting surface 73A installed in parallel to the light emitting surface 7a of the light guide plate 7, and a facing surface facing the light emitting surface 73A. The surface 73B is provided between the light emitting surface 73A and the opposing surface 73B, and includes side surfaces 73C and 73D on which the four light emitting diodes 4 are arranged to face each other. That is, the side surface 73C is provided with four light incident surfaces 73a on which the four light emitting diodes 4 are respectively incident. In addition, on the side surface 73D, four light incident surfaces 73b on which the four light emitting diodes 4 are respectively incident are provided linearly. On each of these light incident surfaces 73a and 73b, light from the light emitting diodes 4 other than the corresponding (opposing) light emitting diodes 4 is prevented from entering by a partition plate described later (details will be described later).
 また、第3の導光板部材73には、Y方向(液晶パネル3の縦方向)に平行なスリット73cと、X方向(液晶パネル3の横方向)に平行なスリット、73d、73e、73fが設けられている。また、これらの各スリット72c~73fは、上記発光エリアの境界線上に形成されるように、第3の導光板部材73に設けられている。すなわち、スリット73cは、第3の導光板部材73の左縁(側面73C)から、当該第3の導光板部材73のX方向の寸法の3/6の箇所に設けられている。また、スリット73d、73e、73fは、第3の導光板部材73のY方向の寸法を4等分する3つの箇所にそれぞれ設けられている。 The third light guide plate member 73 has slits 73c parallel to the Y direction (vertical direction of the liquid crystal panel 3) and slits 73d, 73e, and 73f parallel to the X direction (lateral direction of the liquid crystal panel 3). Is provided. The slits 72c to 73f are provided in the third light guide plate member 73 so as to be formed on the boundary line of the light emitting area. In other words, the slit 73 c is provided from the left edge (side surface 73 </ b> C) of the third light guide plate member 73 at a position that is 3/6 of the dimension in the X direction of the third light guide plate member 73. In addition, the slits 73d, 73e, and 73f are respectively provided at three locations that divide the dimension of the third light guide plate member 73 in the Y direction into four equal parts.
 また、各スリット73c~73fは、発光面73A側及び対向面73B側にそれぞれ底部及び開口部を有するように形成されている。また、スリット73c~73fでは、そのZ方向の各開口寸法は、第3の導光板部材73の板厚(Z方向の寸法)を、0.5mm~1.0mm程度残した寸法に設定されている。また、スリット73cのX方向の開口寸法及びスリット73d~73fのY方向の各開口寸法は、例えば数mm程度に設定されている。そして、各スリット73c~73fは、進行してきた光を遮断するようになっている。具体的にいえば、スリット73cは、例えば図9(a)の左下の入光面73aから第3の導光板部材73の内部に入光して、X方向の右側に進行する光に対して、当該光がスリット73cの右側に進むのを遮断する。また、スリット73dは、例えば図9(a)の左下の入光面73aから第3の導光板部材73の内部に入光して、Y方向の上側に進行する光に対して、当該光がスリット73dの上側に進むのを遮断する。 Further, each of the slits 73c to 73f is formed to have a bottom and an opening on the light emitting surface 73A side and the opposing surface 73B side, respectively. Further, in the slits 73c to 73f, the respective opening dimensions in the Z direction are set to dimensions that leave the thickness (dimension in the Z direction) of the third light guide plate member 73 about 0.5 mm to 1.0 mm. Yes. Further, the opening dimension in the X direction of the slit 73c and each opening dimension in the Y direction of the slits 73d to 73f are set to about several mm, for example. Each of the slits 73c to 73f blocks the light that has traveled. Specifically, for example, the slit 73c is incident on the inside of the third light guide plate member 73 from the lower left light incident surface 73a in FIG. 9A and travels to the right in the X direction. The light is blocked from traveling to the right side of the slit 73c. For example, the slit 73d enters the inside of the third light guide plate member 73 from the lower left light incident surface 73a of FIG. 9A, and the light travels upward in the Y direction. Proceeding to the upper side of the slit 73d is blocked.
 また、第3の導光板部材73では、反射部材としての反射シート73gが側面73Cからスリット73cまでの対向面73B上に設けられ、さらには反射部材としての反射シート73hが側面73Dからスリット73dまでの対向面73B上に設けられている。これらの反射シート73g、73hは、スリット73c~73fとともに、上記光遮断部として用いられている。つまり、反射シート73g、73hは、それぞれ入光面73a、73bから第3の導光板部材73の内部に入光した光をそれぞれ反射することによって、これらの各光が第3の導光板部材73の外側に進むのを遮断する。このように、第3の導光板部材73では、スリット73c~73f及び反射シート73g、73hが光遮断部として用いられているので、第3の導光板部材73では、合計8個の発光エリア1-3、2-3、3-3、4-3、1-4、2-4、3-4、4-4(図5)を形成するようになっている。 In the third light guide plate member 73, the reflection sheet 73g as a reflection member is provided on the facing surface 73B from the side surface 73C to the slit 73c, and further, the reflection sheet 73h as a reflection member is from the side surface 73D to the slit 73d. Is provided on the opposite surface 73B. These reflection sheets 73g and 73h are used as the light blocking section together with the slits 73c to 73f. That is, the reflection sheets 73g and 73h reflect the light incident on the inside of the third light guide plate member 73 from the light incident surfaces 73a and 73b, respectively, so that each of these lights is the third light guide plate member 73. Blocks going outside. As described above, in the third light guide plate member 73, the slits 73c to 73f and the reflection sheets 73g and 73h are used as the light blocking portions. Therefore, the third light guide plate member 73 has a total of eight light emitting areas 1. -3, 2-3, 3-3, 4-3, 1-4, 2-4, 3-4, 4-4 (FIG. 5).
 さらに、第3の導光板部材73では、発光ダイオード4からの光を散乱する光散乱部としての散乱ドットパターン73i、73jが発光エリアに応じて、対向面73B側に設けられている。具体的にいえば、散乱ドットパターン73iは、図9(a)の左側の斜線部にて示すように、発光エリア1-3、2-3、3-3、4-3に対応する、対向面73Bの表面上に形成されている。つまり、散乱ドットパターン73iは、第2の導光板部材72のスリット72cの真下である直線部分73Eからスリット73cまでの対向面73Bの表面上に形成されている。また、この散乱ドットパターン73iに対向する第1及び第2の導光板部材71、72では、図7(b)及び図8(b)それぞれに示すように、反射シートが形成されておらず、散乱ドットパターン73iは、4個の発光ダイオード4からの光を散乱して発光エリア1-3、2-3、3-3、4-3からそれぞれ発光させるようになっている。 Furthermore, in the third light guide plate member 73, scattering dot patterns 73i and 73j as light scattering portions that scatter light from the light emitting diodes 4 are provided on the facing surface 73B side according to the light emitting area. Specifically, the scattered dot pattern 73i is opposed to the light emitting areas 1-3, 2-3, 3-3, and 4-3, as indicated by the hatched portion on the left side of FIG. It is formed on the surface of the surface 73B. That is, the scattering dot pattern 73i is formed on the surface of the facing surface 73B from the straight line portion 73E directly below the slit 72c of the second light guide plate member 72 to the slit 73c. Further, in the first and second light guide plate members 71 and 72 facing the scattering dot pattern 73i, as shown in FIG. 7B and FIG. 8B, no reflection sheet is formed, The scattering dot pattern 73i scatters light from the four light emitting diodes 4 to emit light from the light emitting areas 1-3, 2-3, 3-3, and 4-3, respectively.
 また、散乱ドットパターン73jは、図9(a)の右側の斜線部にて示すように、発光エリア1-4、2-4、3-4、4-4に対応する、対向面73Bの表面上に形成されている。つまり、散乱ドットパターン73jは、第2の導光板部材72のスリット72dの真下である直線部分73Fからスリット73dまでの対向面73Bの表面上に形成されている。また、この散乱ドットパターン73jに対向する第1及び第2の導光板部材71、72では、図7(b)及び図8(b)にそれぞれ示すように、反射シートが形成されておらず、散乱ドットパターン73jは、4個の発光ダイオード4からの光を散乱して発光エリア1-4、2-4、3-4、4-4からそれぞれ発光させるようになっている。 The scattered dot pattern 73j is a surface of the facing surface 73B corresponding to the light emitting areas 1-4, 2-4, 3-4, and 4-4, as indicated by the hatched portion on the right side of FIG. Formed on top. That is, the scattering dot pattern 73j is formed on the surface of the facing surface 73B from the straight portion 73F that is directly below the slit 72d of the second light guide plate member 72 to the slit 73d. Further, in the first and second light guide plate members 71 and 72 facing the scattering dot pattern 73j, as shown in FIG. 7B and FIG. 8B, a reflection sheet is not formed, The scattering dot pattern 73j scatters light from the four light emitting diodes 4 to emit light from the light emitting areas 1-4, 2-4, 3-4, and 4-4, respectively.
 次に、図10及び図11を用いて、本実施形態の照明装置2の要部構成、及びその動作例について具体的に説明する。 Next, with reference to FIG. 10 and FIG. 11, a configuration of a main part of the illumination device 2 of the present embodiment and an operation example thereof will be specifically described.
 図10に示すように、本実施形態の照明装置2では、導光板7の両側面部を覆うように、枠体6が取り付けられている。また、この枠体6では、導光板7の各側面部側の内部において、12個の発光ダイオード4を実装したLED基板5を支持するようになっている。また、図10の左側のLED基板5では、4個の発光ダイオード4が4個の入光面71aにそれぞれ対向するように、図面に垂直な方向に並べられている。また、このLED基板5では、4個の発光ダイオード4が4個の入光面72aにそれぞれ対向するように、図面に垂直な方向に並べられ、4個の発光ダイオード4が4個の入光面73aにそれぞれ対向するように、図面に垂直な方向に並べられている。 As shown in FIG. 10, in the illuminating device 2 of this embodiment, the frame 6 is attached so that the both-sides part of the light-guide plate 7 may be covered. In addition, the frame 6 supports the LED substrate 5 on which twelve light emitting diodes 4 are mounted inside each side surface portion of the light guide plate 7. Further, in the LED substrate 5 on the left side of FIG. 10, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71a. Moreover, in this LED board 5, it arranges in the direction perpendicular | vertical to drawing so that the four light emitting diodes 4 may respectively oppose the four light-incidence surfaces 72a, and the four light emitting diodes 4 are four light-incidences. They are arranged in a direction perpendicular to the drawing so as to face the surface 73a.
 同様に、図10の右側のLED基板5では、4個の発光ダイオード4が4個の入光面71bにそれぞれ対向するように、図面に垂直な方向に並べられている。また、このLED基板5では、4個の発光ダイオード4が4個の入光面72bにそれぞれ対向するように、図面に垂直な方向に並べられ、4個の発光ダイオード4が4個の入光面73bにそれぞれ対向するように、図面に垂直な方向に並べられている。 Similarly, in the LED substrate 5 on the right side of FIG. 10, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71b. Further, in this LED substrate 5, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 72b, respectively, and the four light emitting diodes 4 have four light incidents. They are arranged in a direction perpendicular to the drawing so as to face the surface 73b.
 また、枠体6には、発光ダイオード4からの光が対応する(対向する)入光面だけに入光するように、仕切板6a、6b、6c、6d、6e、6f、6gが設けられている。すなわち、仕切板6a、6bは、4個の入光面71aまたは71bにそれぞれ対向する4個の発光ダイオード4を挟むように、設けられている。また、仕切板6a、6bの間には、図面に垂直な方向に並べられた4個の発光ダイオード4の各設置領域を区切るように、仕切板6eが設けられている。つまり、導光板7の各側面部側において、3つの仕切板6eが、スリット71e、71f、71gと直線上にそれぞれ並べられるように設けられており、仕切板6a、6bとともに4個の入光面71aを互いに仕切るようになっている。 The frame 6 is provided with partition plates 6a, 6b, 6c, 6d, 6e, 6f, and 6g so that light from the light emitting diodes 4 enters only the corresponding (opposing) light incident surfaces. ing. That is, the partition plates 6a and 6b are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 71a or 71b, respectively. Further, a partition plate 6e is provided between the partition plates 6a and 6b so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 6e are provided so as to be arranged in a straight line with the slits 71e, 71f, 71g, respectively, and four light incidents together with the partition plates 6a, 6b. The surfaces 71a are separated from each other.
 また、仕切板6b、6cは、4個の入光面72aまたは72bにそれぞれ対向する4個の発光ダイオード4を挟むように、設けられている。また、仕切板6b、6cの間には、図面に垂直な方向に並べられた4個の発光ダイオード4の各設置領域を区切るように、仕切板6fが設けられている。つまり、導光板7の各側面部側において、3つの仕切板6fが、スリット72e、72f、72gと直線上にそれぞれ並べられるように設けられており、仕切板6b、6cとともに4個の入光面72aを互いに仕切るようになっている。 The partition plates 6b and 6c are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 72a or 72b, respectively. Further, a partition plate 6f is provided between the partition plates 6b and 6c so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 6f are provided so as to be arranged in a straight line with the slits 72e, 72f, 72g, respectively, and four light incidents together with the partition plates 6b, 6c. The surfaces 72a are separated from each other.
 また、仕切板6c、6dは、4個の入光面73aまたは73bにそれぞれ対向する4個の発光ダイオード4を挟むように、設けられている。また、仕切板6c、6dの間には、図面に垂直な方向に並べられた4個の発光ダイオード4の各設置領域を区切るように、仕切板6gが設けられている。つまり、導光板7の各側面部側において、3つの仕切板6gが、スリット73d、73e、73fと直線上にそれぞれ並べられるように設けられており、仕切板6c、6dとともに4個の入光面73aを互いに仕切るようになっている。 Further, the partition plates 6c and 6d are provided so as to sandwich the four light emitting diodes 4 respectively facing the four light incident surfaces 73a or 73b. Further, a partition plate 6g is provided between the partition plates 6c and 6d so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, three partition plates 6 g are provided so as to be aligned with the slits 73 d, 73 e, 73 f, respectively, and four light incidents together with the partition plates 6 c, 6 d. The surfaces 73a are separated from each other.
 また、これらの仕切板6a~6gには、例えば光反射率の高い金属材が用いられており、発光ダイオード4からの光を効率よく入光面に入光させて、当該光の利用効率を向上することができるようになっている。 The partition plates 6a to 6g are made of, for example, a metal material having a high light reflectivity. The light from the light-emitting diode 4 is efficiently incident on the light incident surface, thereby improving the use efficiency of the light. It can be improved.
 以上のように構成された本実施形態の照明装置2では、図11に例示するように、入光面71aに対向する発光ダイオード4からの光は、反射シート71hに反射されつつ、第1の導光板部材71の内部を図11の左側に進行する。そして、この光は、スリット71cによって遮断されるとともに、散乱ドットパターン71jによって散乱されることにより、例えば発光エリア1-1からの光として液晶パネル3側に出射される。 In the illuminating device 2 of the present embodiment configured as described above, as illustrated in FIG. 11, the light from the light emitting diode 4 facing the light incident surface 71 a is reflected by the reflection sheet 71 h and the first The inside of the light guide plate member 71 proceeds to the left side of FIG. The light is blocked by the slit 71c and scattered by the scattering dot pattern 71j, and is emitted, for example, as light from the light emitting area 1-1 to the liquid crystal panel 3 side.
 また、入光面72aに対向する発光ダイオード4からの光は、反射シート71h、72hに反射されつつ、第2の導光板部材72の内部を図11の左側に進行する。そして、この光は、スリット72cによって遮断されるとともに、散乱ドットパターン72jによって散乱されることにより、例えば発光エリア1-2からの光として液晶パネル3側に出射される。 Further, the light from the light emitting diode 4 facing the light incident surface 72a travels to the left in FIG. 11 through the second light guide plate member 72 while being reflected by the reflection sheets 71h and 72h. The light is blocked by the slit 72c and scattered by the scattering dot pattern 72j, and is emitted, for example, as light from the light emitting area 1-2 to the liquid crystal panel 3 side.
 また、入光面73aに対向する発光ダイオード4からの光は、反射シート72h、73gに反射されつつ、第3の導光板部材73の内部を図11の左側に進行する。そして、この光は、スリット73cによって遮断されるとともに、散乱ドットパターン73iによって散乱されることにより、例えば発光エリア1-3からの光として液晶パネル3側に出射される。 Further, the light from the light emitting diode 4 facing the light incident surface 73a travels to the left side of FIG. 11 through the inside of the third light guide plate member 73 while being reflected by the reflection sheets 72h and 73g. The light is blocked by the slit 73c and scattered by the scattering dot pattern 73i, and is emitted, for example, as light from the light emitting area 1-3 to the liquid crystal panel 3 side.
 以上のように構成された本実施形態の照明装置2では、導光板7において、所定の方向に積層された第1~第3の導光板部材71~73が設けられている。また、第1の導光板部材71には、8個の発光ダイオード(光源)4からの光をそれぞれ発光する8個の発光エリア1-1、2-1、3-1、4-1、1-6、2-6、3-6、4-6が、導光板7の発光面7aに形成されるように、スリット71c~71g及び反射シート71h、71i(光遮断部)が設けられている。また、第2の導光板部材72には、8個の発光ダイオード(光源)4からの光をそれぞれ発光する8個の発光エリア1-2、2-2、3-2、4-2、1-5、2-5、3-5、4-5が、導光板7の発光面7aに形成されるように、スリット72c~72g及び反射シート72h、72i(光遮断部)が設けられている。また、第3の導光板部材73には、8個の発光ダイオード(光源)4からの光をそれぞれ発光する8個の発光エリア1-3、2-3、3-3、4-3、1-4、2-4、3-4、4-4が、導光板7の発光面7aに形成されるように、スリット73c~73f及び反射シート73g、73h(光遮断部)が設けられている。これにより、本実施形態の照明装置2では、上記従来例と異なり、複数の発光エリアを設ける場合でも、発光エリアと同数の導光板部材を設ける必要がない。この結果、本実施形態では、上記従来例と異なり、複数の発光エリアを設ける場合でも、部品点数が増加するのを抑えることができ、コスト安価な照明装置2を構成することができる。 In the lighting device 2 of the present embodiment configured as described above, the light guide plate 7 is provided with first to third light guide plate members 71 to 73 stacked in a predetermined direction. Further, the first light guide plate member 71 has eight light emitting areas 1-1, 2-1, 3-1, 4-1, 1 that emit light from eight light emitting diodes (light sources) 4, respectively. Slits 71c to 71g and reflection sheets 71h and 71i (light blocking portions) are provided so that −6, 2-6, 3-6, and 4-6 are formed on the light emitting surface 7a of the light guide plate 7. . Further, the second light guide plate member 72 has eight light emitting areas 1-2, 2-2, 3-2, 4-2, 1 for emitting light from the eight light emitting diodes (light sources) 4, respectively. Slits 72c to 72g and reflection sheets 72h and 72i (light blocking portions) are provided so that −5, 2-5, 3-5, and 4-5 are formed on the light emitting surface 7a of the light guide plate 7. . The third light guide plate member 73 has eight light emitting areas 1-3, 2-3, 3-3, 4-3, 1 that emit light from the eight light emitting diodes (light sources) 4, respectively. -4, 2-4, 3-4, and 4-4 are formed on the light emitting surface 7a of the light guide plate 7, slits 73c to 73f and reflection sheets 73g and 73h (light blocking portions) are provided. . Thereby, in the illuminating device 2 of this embodiment, unlike the said prior art example, even when providing a several light emission area, it is not necessary to provide the same number of light-guide plate members as a light emission area. As a result, in the present embodiment, unlike the conventional example, even when a plurality of light emitting areas are provided, an increase in the number of parts can be suppressed, and the illuminating device 2 can be configured at a low cost.
 また、本実施形態の照明装置2では、第1~第3の各導光板部材71~73では、発光ダイオード4からの光を散乱する散乱ドットパターン71j、71k、72j、72k、73i、73j(光散乱部)が、発光エリア1-1、1-2、…、4-5、4-6に応じて、発光面7aに対向する対向面71B~73B側に設けられている。これにより、本実施形態の照明装置2では、発光ダイオード4からの光を対応する発光エリア1-1、1-2、…、4-5、4-6から効率よく発光させることができ、当該発光エリア1-1、1-2、…、4-5、4-6の高輝度化を容易に図ることができる。 Further, in the illumination device 2 of the present embodiment, the first to third light guide plate members 71 to 73 are scattered dot patterns 71j, 71k, 72j, 72k, 73i, 73j (which scatter light from the light emitting diode 4). .., 4-5, 4-6 are provided on the facing surfaces 71B to 73B facing the light-emitting surface 7a according to the light-emitting areas 1-1, 1-2,. Thereby, in the illumination device 2 of the present embodiment, the light from the light emitting diode 4 can be efficiently emitted from the corresponding light emitting areas 1-1, 1-2,..., 4-5, 4-6. It is possible to easily increase the luminance of the light emitting areas 1-1, 1-2,..., 4-5, 4-6.
 また、本実施形態では、複数の発光エリアを設ける場合でも、部品点数が増加するのを抑えることができ、コスト安価な照明装置2が用いられているので、高輝度化及び/または大画面化を図ったときでも、部品点数の増加が抑えられたコスト安価な液晶表示装置1を容易に構成することができる。 Further, in the present embodiment, even when a plurality of light emitting areas are provided, an increase in the number of components can be suppressed, and the illuminating device 2 that is inexpensive is used, so that the brightness and / or the screen size is increased. Even when this is achieved, the liquid crystal display device 1 can be easily configured at a low cost, in which an increase in the number of components is suppressed.
 また、本実施形態では、液晶パネル(表示部)3に、複数の発光エリア1-1、1-2、…、4-5、4-6からの光が、それぞれ入射される複数の表示エリア(1)、(2)、…、(23)、(24)が設けられている。これにより、本実施形態では、液晶パネル3の各表示エリア(1)、(2)、…、(23)、(24の表示内容に応じて、対応する発光エリア1-1、1-2、…、4-5、4-6の発光ダイオード4が適宜点灯駆動されることとなり、消費電力を抑制した液晶表示装置を容易に構成することができる。 In the present embodiment, a plurality of display areas in which light from the plurality of light emitting areas 1-1, 1-2,..., 4-5, 4-6 is incident on the liquid crystal panel (display unit) 3, respectively. (1), (2), ..., (23), (24) are provided. As a result, in the present embodiment, the display areas (1), (2),..., (23), (24 corresponding to the display contents of the liquid crystal panel 3, the corresponding light emitting areas 1-1, 1-2, .., 4-5 and 4-6 are appropriately driven to light, and a liquid crystal display device with reduced power consumption can be easily configured.
 [変形例]
 図12は、図1に示した照明装置の変形例の要部構成を説明する図である。図において、本変形例と上記第1の実施形態との主な相違点は、スリットの内部に、光を反射する反射材を設置した点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Modification]
FIG. 12 is a diagram for explaining a main configuration of a modified example of the illumination device shown in FIG. In the figure, the main difference between the present modification and the first embodiment is that a reflecting material that reflects light is provided inside the slit. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 つまり、図12に例示するように、本変形例の照明装置2では、反射材Hがスリット71cの内部に設置されている。この反射材Hには、例えば白色反射材あるいは鏡面反射材などが用いられており、光を反射するようになっている。これにより、本変形例では、発光ダイオード(光源)4からの光が対応する発光エリア以外の発光エリアから発光されるのを確実に防ぐことができるとともに、各発光ダイオード4の光利用効率を向上することができる。 That is, as illustrated in FIG. 12, in the illumination device 2 of the present modification, the reflective material H is installed inside the slit 71c. As the reflecting material H, for example, a white reflecting material or a specular reflecting material is used to reflect light. Thereby, in this modification, it can prevent reliably that the light from the light emitting diode (light source) 4 is light-emitted from light emitting areas other than the corresponding light emitting area, and the light use efficiency of each light emitting diode 4 is improved. can do.
 尚、この変形例では、スリット71cに反射材Hを入れるために、当該スリット71cのX方向及びY方向の各開口寸法は、反射材Hの厚さ寸法+α(例えば、0.1mm~1mm程度)に設定されている。 In this modification, in order to put the reflective material H into the slit 71c, each opening dimension in the X direction and Y direction of the slit 71c is the thickness dimension of the reflective material H + α (for example, about 0.1 mm to 1 mm). ) Is set.
 また、上記の説明以外に、反射材Hの代わりに、白色インクなどを充填する構成でもよい。 In addition to the above description, a configuration in which white ink or the like is filled instead of the reflective material H may be used.
 [第2の実施形態]
 図13は、本発明の第2の実施形態にかかる照明装置の要部構成を説明する図である。図において、本実施形態と上記第1の実施形態との主な相違点は、導光板部材に応じて、別個に設けられたLED基板を用いた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Second Embodiment]
FIG. 13 is a diagram for explaining a main configuration of an illumination device according to the second embodiment of the present invention. In the figure, the main difference between the present embodiment and the first embodiment is that a separately provided LED substrate is used according to the light guide plate member. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 つまり、図13に示すように、本実施形態の照明装置2では、第1~第3の導光板部材71~73に応じて、別個に設けられたLED基板27が用いられている。具体的にいえば、本実施形態の照明装置2では、導光板7の両側面部を覆うように、枠体28が取り付けられている。また、この枠体28では、導光板7の各側面部側の内部において、4個の発光ダイオード4を実装した3個のLED基板27を支持するようになっている。つまり、図13の左側から一番目のLED基板27では、4個の発光ダイオード4が4個の入光面71aにそれぞれ対向するように、図面に垂直な方向に並べられている。また、図13の左側から二番目のLED基板27では、4個の発光ダイオード4が4個の入光面72aにそれぞれ対向するように、図面に垂直な方向に並べられ、図13の左側から三番目のLED基板27では、4個の発光ダイオード4が4個の入光面73aにそれぞれ対向するように、図面に垂直な方向に並べられている。 That is, as shown in FIG. 13, in the illumination device 2 of the present embodiment, the LED substrate 27 provided separately is used according to the first to third light guide plate members 71 to 73. Specifically, in the lighting device 2 of the present embodiment, the frame body 28 is attached so as to cover both side portions of the light guide plate 7. Further, the frame body 28 supports the three LED substrates 27 on which the four light emitting diodes 4 are mounted inside each side surface portion of the light guide plate 7. That is, on the first LED substrate 27 from the left side of FIG. 13, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71a. In the second LED substrate 27 from the left side of FIG. 13, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 72a, respectively, and from the left side of FIG. In the third LED substrate 27, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 73a.
 同様に、図13の右側から一番目のLED基板27では、4個の発光ダイオード4が4個の入光面71bにそれぞれ対向するように、図面に垂直な方向に並べられている。また、図13の右側から二番目のLED基板27では、4個の発光ダイオード4が4個の入光面72bにそれぞれ対向するように、図面に垂直な方向に並べられ、図13の右側から三番目のLED基板27では、4個の発光ダイオード4が4個の入光面73bにそれぞれ対向するように、図面に垂直な方向に並べられている。 Similarly, in the first LED substrate 27 from the right side of FIG. 13, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71b. In the second LED substrate 27 from the right side of FIG. 13, the four light emitting diodes 4 are arranged in the direction perpendicular to the drawing so as to face the four light incident surfaces 72b, respectively, and from the right side of FIG. In the third LED substrate 27, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 73b.
 また、枠体28には、発光ダイオード4からの光が対応する(対向する)入光面だけに入光するように、仕切板29a、29b、29c、29d、29e、29f、29g、29h、29i、29j、29k、29l、29mが設けられている。すなわち、仕切板29a~29eは、4個の入光面71aまたは71bにそれぞれ対向する4個の発光ダイオード4を挟むように、設けられている。また、仕切板29a~29eの間には、図面に垂直な方向に並べられた4個の発光ダイオード4の各設置領域を区切るように、仕切板29kが設けられている。つまり、導光板7の各側面部側において、3つの仕切板29kが、スリット71e、71f、71gと直線上にそれぞれ並べられるように設けられており、仕切板29a~29eとともに4個の入光面71aを互いに仕切るようになっている。 Further, the partition plate 29 a, 29 b, 29 c, 29 d, 29 e, 29 f, 29 g, 29 h, so that the light from the light emitting diode 4 enters only the corresponding (opposing) light incident surface. 29i, 29j, 29k, 29l, and 29m are provided. That is, the partition plates 29a to 29e are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 71a or 71b, respectively. Further, a partition plate 29k is provided between the partition plates 29a to 29e so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 29k are provided so as to be arranged in a straight line with the slits 71e, 71f, 71g, respectively, and four light incidents together with the partition plates 29a to 29e. The surfaces 71a are separated from each other.
 また、仕切板29d~29hは、4個の入光面72aまたは72bにそれぞれ対向する4個の発光ダイオード4を挟むように、設けられている。また、仕切板29d~29hの間には、図面に垂直な方向に並べられた4個の発光ダイオード4の各設置領域を区切るように、仕切板29lが設けられている。つまり、導光板7の各側面部側において、3つの仕切板29lが、スリット72e、72f、72gと直線上にそれぞれ並べられるように設けられており、仕切板29d~29hとともに4個の入光面72aを互いに仕切るようになっている。 Further, the partition plates 29d to 29h are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 72a or 72b, respectively. Further, a partition plate 29l is provided between the partition plates 29d to 29h so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, three partition plates 29l are provided so as to be arranged in a straight line with the slits 72e, 72f, 72g, respectively, and four light incidents together with the partition plates 29d to 29h. The surfaces 72a are separated from each other.
 また、仕切板29g~29jは、4個の入光面73aまたは73bにそれぞれ対向する4個の発光ダイオード4を挟むように、設けられている。また、仕切板29g~29jの間には、図面に垂直な方向に並べられた4個の発光ダイオード4の各設置領域を区切るように、仕切板29mが設けられている。つまり、導光板7の各側面部側において、3つの仕切板29mが、スリット73d、73e、73fと直線上にそれぞれ並べられるように設けられており、仕切板29g~29jとともに4個の入光面73aを互いに仕切るようになっている。 Further, the partition plates 29g to 29j are provided so as to sandwich the four light emitting diodes 4 respectively facing the four light incident surfaces 73a or 73b. Further, a partition plate 29m is provided between the partition plates 29g to 29j so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 29m are provided so as to be arranged in a straight line with the slits 73d, 73e, 73f, and four light incidents together with the partition plates 29g to 29j. The surfaces 73a are separated from each other.
 また、これらの仕切板29a~29mには、例えば光反射率の高い金属材が用いられており、発光ダイオード4からの光を効率よく入光面に入光させて、当該光の利用効率を向上することができるようになっている。 The partition plates 29a to 29m are made of, for example, a metal material having a high light reflectivity. The light from the light emitting diode 4 is efficiently incident on the light incident surface, and the light use efficiency is increased. It can be improved.
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、第1~第3の導光板部材71~73に応じて、別個に設けられたLED基板27が用いられているので、各入光面71a~73a、71b~73bの板厚方向(Z方向)の寸法よりも、発光ダイオード4の発光部が大きいときでも、当該発光ダイオード4からの光が対応する(対向する)入光面だけに入光するように、容易に仕切ることができ、複数の発光ダイオード(光源)4からの光が互いに混ざり合うのを容易に防ぐことができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the first embodiment. Further, in the present embodiment, since the LED substrate 27 provided separately according to the first to third light guide plate members 71 to 73 is used, each of the light incident surfaces 71a to 73a and 71b to 73b is used. Even when the light emitting portion of the light emitting diode 4 is larger than the dimension in the plate thickness direction (Z direction), it is easy for the light from the light emitting diode 4 to enter only the corresponding (opposing) light incident surface. Therefore, it is possible to easily prevent light from the plurality of light emitting diodes (light sources) 4 from being mixed with each other.
 [第3の実施形態]
 図14は、本発明の第3の実施形態にかかる照明装置の要部構成を説明する図である。図15は、図14に示した仕切部材の構成例を示す斜視図である。図において、本実施形態と上記第1の実施形態との主な相違点は、導光板に対して、第1~第3の導光板部材に設けられた複数の入光面と、複数の入光面にそれぞれ光を入光する複数の発光ダイオードとの間に、複数の発光ダイオードからの光が対応する入光面だけに入光するように、複数の発光ダイオードからの光の出射方向を制限する仕切部材を取り付けた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Third Embodiment]
FIG. 14 is a diagram for explaining a main configuration of an illumination apparatus according to the third embodiment of the present invention. FIG. 15 is a perspective view illustrating a configuration example of the partition member illustrated in FIG. 14. In the figure, the main difference between this embodiment and the first embodiment described above is that a plurality of light incident surfaces provided on the first to third light guide plate members and a plurality of light entrance surfaces are different from the light guide plate. The direction of light emission from the plurality of light emitting diodes is set so that the light from the plurality of light emitting diodes enters only the corresponding light incident surface between the light emitting diodes that respectively enter light on the light surface. It is the point which attached the partition member to restrict | limit. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 つまり、図14に示すように、本実施形態の照明装置2では、導光板7の両側面部に対して、仕切部材30が枠体6の内部で取り付けられている。また、枠体6の内部には、第1の実施形態のものと異なり、仕切板6a、6dだけが設けられている。言い換えれば、本実施形態の照明装置2では、仕切部材30が仕切板6b、6c、6e、6f、6gとして機能するように構成されている。 That is, as shown in FIG. 14, in the lighting device 2 of the present embodiment, the partition member 30 is attached to the both side surfaces of the light guide plate 7 inside the frame body 6. Moreover, unlike the thing of 1st Embodiment, only the partition plates 6a and 6d are provided in the inside of the frame 6. FIG. In other words, in the illumination device 2 of the present embodiment, the partition member 30 is configured to function as the partition plates 6b, 6c, 6e, 6f, and 6g.
 具体的にいえば、図14の右側において、仕切部材30が第1~第3の導光板部材71~73に設けられた合計12個の入光面71a、72a、73aと、これらの入光面71a、72a、73aにそれぞれ光を入光する12個の発光ダイオード4との間に設けられている。この仕切部材30は、12個の発光ダイオード4からの光が対応する入光面71a、72a、73aだけに入光するように、12個の発光ダイオード4からの光の出射方向を制限するように構成されている。また、図14の左側において、仕切部材30が第1~第3の導光板部材71~73に設けられた合計12個の入光面71b、72b、73bと、これらの入光面71b、72b、73bにそれぞれ光を入光する12個の発光ダイオード4との間に設けられている。この仕切部材30は、12個の発光ダイオード4からの光が対応する入光面71b、72b、73bだけに入光するように、12個の発光ダイオード4からの光の出射方向を制限するように構成されている。 Specifically, on the right side of FIG. 14, a total of twelve light incident surfaces 71a, 72a, 73a in which the partition member 30 is provided on the first to third light guide plate members 71 to 73, and their light incidents. Each of the surfaces 71a, 72a, and 73a is provided between twelve light emitting diodes 4 that receive light. The partition member 30 limits the emission direction of the light from the 12 light emitting diodes 4 so that the light from the 12 light emitting diodes 4 enters only the corresponding light incident surfaces 71a, 72a, 73a. It is configured. In addition, on the left side of FIG. 14, a total of twelve light incident surfaces 71b, 72b, 73b in which the partition member 30 is provided on the first to third light guide plate members 71-73, and these light incident surfaces 71b, 72b. , 73b are provided between twelve light emitting diodes 4 for receiving light. The partition member 30 limits the emission direction of the light from the twelve light emitting diodes 4 so that the light from the twelve light emitting diodes 4 enters only the corresponding light incident surfaces 71b, 72b, and 73b. It is configured.
 より具体的にいえば、図15に例示するように、仕切部材30には、各々4個ずつの開口部30a、30b、30cと、合計12個の開口部30a~30cが形成された部材本体30dが設けられている。開口部30a~30cは、LED基板5に実装された発光ダイオード4の位置に応じて、部材本体30dに設けられており、開口部30a~30cは、図の矢印にて示すように、発光ダイオード4からの光を入光面71a~73aにそれぞれ入光させるようになっている。 More specifically, as illustrated in FIG. 15, the partition member 30 has four openings 30a, 30b, and 30c, respectively, and a member body in which a total of twelve openings 30a to 30c are formed. 30d is provided. The openings 30a to 30c are provided in the member main body 30d according to the position of the light emitting diode 4 mounted on the LED substrate 5, and the openings 30a to 30c are light emitting diodes as indicated by arrows in the figure. 4 is incident on the light incident surfaces 71a to 73a.
 また、仕切部材30では、その部材本体30dにおいて、仕切部分30eが隣接する2つの開口部の間、つまり開口部30aと30bとの間、開口部30bと30cとの間、及び開口部30cと30aとの間に形成されている。そして、仕切部材30では、図15に例示するように、12個の発光ダイオード4からの光が対応する入光面71a、72a、73aだけに入光するように構成されている。 Moreover, in the partition member 30, in the member main body 30d, the partition portion 30e is between two adjacent openings, that is, between the openings 30a and 30b, between the openings 30b and 30c, and the opening 30c. 30a. And in the partition member 30, as illustrated in FIG. 15, the light from the 12 light emitting diodes 4 is configured to enter only the corresponding light incident surfaces 71a, 72a, 73a.
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、導光板7に対して、仕切部材30を取り付けいているので、複数の発光ダイオード(光源)4からの光が互いに混ざるのを容易に防ぐことができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the first embodiment. Moreover, in this embodiment, since the partition member 30 is attached with respect to the light-guide plate 7, it can prevent easily that the light from the several light emitting diode (light source) 4 mutually mixes.
 [第4の実施形態]
 図16は、本発明の第4の実施形態にかかる照明装置の要部構成を説明する図である。図において、本実施形態と上記第1の実施形態との主な相違点は、各導光板部材において、入光面と発光面とが互いに平行となるように、設けた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Fourth Embodiment]
FIG. 16 is a diagram for explaining a main configuration of an illuminating device according to the fourth embodiment of the present invention. In the figure, the main difference between this embodiment and the first embodiment is that each light guide plate member is provided so that the light incident surface and the light emitting surface are parallel to each other. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 つまり、図16に示すように、本実施形態の照明装置2では、導光板7の両側面部を覆うように、枠体31が取り付けられている。また、この枠体31では、導光板7の各側面部側の内部において、12個の発光ダイオード4を実装したLED基板5を支持するようになっている。また、導光板7では、第1~第3の導光板部材71~73の各入光面71a~73a、71b~73bが発光面7aと互いに平行となるように設けられている。さらに、本実施形態の照明装置2では、LED基板5が発光面7aと互いに平行となるように枠体31に取り付けられている。 That is, as shown in FIG. 16, in the illuminating device 2 of this embodiment, the frame 31 is attached so that the both-sides part of the light-guide plate 7 may be covered. In addition, the frame 31 supports the LED substrate 5 on which twelve light emitting diodes 4 are mounted inside each side surface portion of the light guide plate 7. In the light guide plate 7, the light incident surfaces 71a to 73a and 71b to 73b of the first to third light guide plate members 71 to 73 are provided so as to be parallel to the light emitting surface 7a. Furthermore, in the illuminating device 2 of this embodiment, the LED board 5 is attached to the frame 31 so that it may become mutually parallel with the light emission surface 7a.
 また、図16の左側のLED基板5では、4個の発光ダイオード4が4個の入光面71aにそれぞれ対向するように、図面に垂直な方向に並べられている。また、このLED基板5では、4個の発光ダイオード4が4個の入光面72aにそれぞれ対向するように、図面に垂直な方向に並べられ、4個の発光ダイオード4が4個の入光面73aにそれぞれ対向するように、図面に垂直な方向に並べられている。 In the LED substrate 5 on the left side of FIG. 16, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71a. Moreover, in this LED board 5, it arranges in the direction perpendicular | vertical to drawing so that the four light emitting diodes 4 may respectively oppose the four light-incidence surfaces 72a, and the four light emitting diodes 4 are four light-incidences. They are arranged in a direction perpendicular to the drawing so as to face the surface 73a.
 同様に、図16の右側のLED基板5では、4個の発光ダイオード4が4個の入光面71bにそれぞれ対向するように、図面に垂直な方向に並べられている。また、このLED基板5では、4個の発光ダイオード4が4個の入光面72bにそれぞれ対向するように、図面に垂直な方向に並べられ、4個の発光ダイオード4が4個の入光面73bにそれぞれ対向するように、図面に垂直な方向に並べられている。 Similarly, in the LED substrate 5 on the right side of FIG. 16, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71b. Further, in this LED substrate 5, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 72b, respectively, and the four light emitting diodes 4 have four light incidents. They are arranged in a direction perpendicular to the drawing so as to face the surface 73b.
 また、枠体31には、発光ダイオード4からの光が対応する(対向する)入光面だけに入光するように、仕切板31a、31b、31c、31d、31e、31f、31g、31h、31i、31j、31kが設けられている。すなわち、仕切板31a~31eは、4個の入光面71aまたは71bにそれぞれ対向する4個の発光ダイオード4を挟むように、設けられている。また、仕切板31a~31eの間には、図面に垂直な方向に並べられた4個の発光ダイオード4の各設置領域を区切るように、仕切板31iが設けられている。つまり、導光板7の各側面部側において、3つの仕切板31iが、スリット71e、71f、71gと直線上にそれぞれ並べられるように設けられており、仕切板31a~31eとともに4個の入光面71aを互いに仕切るようになっている。 Further, the partition plate 31a, 31b, 31c, 31d, 31e, 31f, 31g, 31h, and the like so that the light from the light emitting diode 4 enters only the corresponding (opposing) light incident surface. 31i, 31j, and 31k are provided. That is, the partition plates 31a to 31e are provided so as to sandwich the four light emitting diodes 4 respectively facing the four light incident surfaces 71a or 71b. Further, a partition plate 31i is provided between the partition plates 31a to 31e so as to partition each installation region of the four light emitting diodes 4 arranged in a direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 31i are provided so as to be arranged in a straight line with the slits 71e, 71f, 71g, respectively, and four light incidents together with the partition plates 31a to 31e. The surfaces 71a are separated from each other.
 また、仕切板31d~31gは、4個の入光面72aまたは72bにそれぞれ対向する4個の発光ダイオード4を挟むように、設けられている。また、仕切板31d~31gの間には、図面に垂直な方向に並べられた4個の発光ダイオード4の各設置領域を区切るように、仕切板31jが設けられている。つまり、導光板7の各側面部側において、3つの仕切板31jが、スリット72e、72f、72gと直線上にそれぞれ並べられるように設けられており、仕切板31d~31gとともに4個の入光面72aを互いに仕切るようになっている。 The partition plates 31d to 31g are provided so as to sandwich the four light emitting diodes 4 respectively facing the four light incident surfaces 72a or 72b. Further, a partition plate 31j is provided between the partition plates 31d to 31g so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 31j are provided so as to be arranged in a straight line with the slits 72e, 72f, 72g, respectively, and four light incidents together with the partition plates 31d to 31g. The surfaces 72a are separated from each other.
 また、仕切板31f~31hは、4個の入光面73aまたは73bにそれぞれ対向する4個の発光ダイオード4を挟むように、設けられている。また、仕切板31f~31hの間には、図面に垂直な方向に並べられた4個の発光ダイオード4の各設置領域を区切るように、仕切板31kが設けられている。つまり、導光板7の各側面部側において、3つの仕切板31kが、スリット73d、73e、73fと直線上にそれぞれ並べられるように設けられており、仕切板31f~31hとともに4個の入光面73aを互いに仕切るようになっている。 Further, the partition plates 31f to 31h are provided so as to sandwich the four light emitting diodes 4 respectively facing the four light incident surfaces 73a or 73b. Further, a partition plate 31k is provided between the partition plates 31f to 31h so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 31k are provided so as to be arranged in a straight line with the slits 73d, 73e, 73f, respectively, and four light incidents together with the partition plates 31f to 31h. The surfaces 73a are separated from each other.
 また、これらの仕切板31a~31kには、例えば光反射率の高い金属材が用いられており、発光ダイオード4からの光を効率よく入光面に入光させて、当該光の利用効率を向上することができるようになっている。 The partition plates 31a to 31k are made of, for example, a metal material having a high light reflectivity. The light from the light-emitting diode 4 is efficiently incident on the light incident surface, and the use efficiency of the light is increased. It can be improved.
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the first embodiment.
 [第5の実施形態]
 図17は、本発明の第5の実施形態にかかる照明装置の要部構成を説明する図である。図において、本実施形態と上記第4の実施形態との主な相違点は、導光板部材に応じて、別個に設けられたLED基板を用いた点である。なお、上記第4の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Fifth Embodiment]
FIG. 17 is a diagram for explaining a main configuration of an illumination apparatus according to the fifth embodiment of the present invention. In the figure, the main difference between the present embodiment and the fourth embodiment is that an LED substrate provided separately is used according to the light guide plate member. In addition, about the element which is common in the said 4th Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 つまり、図17に示すように、本実施形態の照明装置2では、第1~第3の導光板部材71~73に応じて、別個に設けられたLED基板27が用いられている。具体的にいえば、本実施形態の照明装置2では、導光板7の両側面部を覆うように、枠体32が取り付けられている。また、この枠体32では、導光板7の各側面部側の内部において、4個の発光ダイオード4を実装した3個のLED基板27を支持するようになっている。つまり、図17の左側から一番目のLED基板27では、4個の発光ダイオード4が4個の入光面71aにそれぞれ対向するように、図面に垂直な方向に並べられている。また、図17の左側から二番目のLED基板27では、4個の発光ダイオード4が4個の入光面72aにそれぞれ対向するように、図面に垂直な方向に並べられ、図17の左側から三番目のLED基板27では、4個の発光ダイオード4が4個の入光面73aにそれぞれ対向するように、図面に垂直な方向に並べられている。また、図17の左側から二番目のLED基板27は、図17の左側から一番目のLED基板27上に設置され、図17の左側から三番目のLED基板27は、図17の左側から二番目のLED基板27上に設置されている。そして、図17の左側から二番目及び三番目のLED基板27は、図17の左側から一番目のLED基板27を介して枠体32に保持されている。 That is, as shown in FIG. 17, in the illuminating device 2 of the present embodiment, LED substrates 27 that are separately provided according to the first to third light guide plate members 71 to 73 are used. Specifically, in the lighting device 2 of the present embodiment, the frame body 32 is attached so as to cover both side portions of the light guide plate 7. Further, the frame 32 supports the three LED substrates 27 on which the four light emitting diodes 4 are mounted inside the side surfaces of the light guide plate 7. That is, in the first LED substrate 27 from the left side of FIG. 17, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71a. Further, in the second LED substrate 27 from the left side of FIG. 17, the four light emitting diodes 4 are arranged in the direction perpendicular to the drawing so as to face the four light incident surfaces 72a, respectively, and from the left side of FIG. In the third LED substrate 27, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 73a. In addition, the second LED board 27 from the left side of FIG. 17 is installed on the first LED board 27 from the left side of FIG. 17, and the third LED board 27 from the left side of FIG. It is installed on the second LED board 27. The second and third LED substrates 27 from the left side of FIG. 17 are held by the frame body 32 via the first LED substrate 27 from the left side of FIG.
 同様に、図17の右側から一番目のLED基板27では、4個の発光ダイオード4が4個の入光面71bにそれぞれ対向するように、図面に垂直な方向に並べられている。また、図17の右側から二番目のLED基板27では、4個の発光ダイオード4が4個の入光面72bにそれぞれ対向するように、図面に垂直な方向に並べられ、図17の右側から三番目のLED基板27では、4個の発光ダイオード4が4個の入光面73bにそれぞれ対向するように、図面に垂直な方向に並べられている。また、図17の右側から二番目のLED基板27は、図17の右側から一番目のLED基板27上に設置され、図17の右側から三番目のLED基板27は、図17の右側から二番目のLED基板27上に設置されている。そして、図17の右側から二番目及び三番目のLED基板27は、図17の右側から一番目のLED基板27を介して枠体32に保持されている。 Similarly, in the first LED substrate 27 from the right side of FIG. 17, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 71b. Further, in the second LED board 27 from the right side of FIG. 17, the four light emitting diodes 4 are arranged in the direction perpendicular to the drawing so as to face the four light incident surfaces 72b, respectively, and from the right side of FIG. In the third LED substrate 27, the four light emitting diodes 4 are arranged in a direction perpendicular to the drawing so as to face the four light incident surfaces 73b. The second LED board 27 from the right side of FIG. 17 is installed on the first LED board 27 from the right side of FIG. 17, and the third LED board 27 from the right side of FIG. It is installed on the second LED board 27. The second and third LED substrates 27 from the right side of FIG. 17 are held by the frame body 32 via the first LED substrate 27 from the right side of FIG.
 また、本実施形態の導光板7では、第1~第3の導光板部材71~73の各入光面71a~73a、71b~73bは発光面7aに対して、所定の角度(例えば、45度)を有するように形成されている。 In the light guide plate 7 of the present embodiment, the light incident surfaces 71a to 73a and 71b to 73b of the first to third light guide plate members 71 to 73 are at a predetermined angle (for example, 45) with respect to the light emitting surface 7a. Degree).
 また、枠体32には、発光ダイオード4からの光が対応する(対向する)入光面だけに入光するように、仕切板32a、32b、32c、32d、32e、32f、32g、32h、32iが設けられている。すなわち、仕切板32a、32b、32dは、4個の入光面71aまたは71bにそれぞれ対向する4個の発光ダイオード4を挟むように、設けられている。また、仕切板32a、32b、32dの間には、図面に垂直な方向に並べられた4個の発光ダイオード4の各設置領域を区切るように、仕切板32gが設けられている。つまり、導光板7の各側面部側において、3つの仕切板32gが、スリット71e、71f、71gと直線上にそれぞれ並べられるように設けられており、仕切板32a、32b、32dとともに4個の入光面71aを互いに仕切るようになっている。 Moreover, the partition plates 32a, 32b, 32c, 32d, 32e, 32f, 32g, 32h, and the like so that the light from the light emitting diode 4 enters only the corresponding (opposing) light incident surface. 32i is provided. That is, the partition plates 32a, 32b, and 32d are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 71a or 71b, respectively. Further, a partition plate 32g is provided between the partition plates 32a, 32b, and 32d so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 32 g are provided so as to be aligned with the slits 71 e, 71 f, 71 g, respectively, and together with the partition plates 32 a, 32 b, 32 d, The light incident surfaces 71a are partitioned from each other.
 また、仕切板32c、32d、32fは、4個の入光面72aまたは72bにそれぞれ対向する4個の発光ダイオード4を挟むように、設けられている。また、仕切板32c、32d、32fの間には、図面に垂直な方向に並べられた4個の発光ダイオード4の各設置領域を区切るように、仕切板32hが設けられている。つまり、導光板7の各側面部側において、3つの仕切板32hが、スリット72e、72f、72gと直線上にそれぞれ並べられるように設けられており、仕切板32c、32d、32fとともに4個の入光面72aを互いに仕切るようになっている。 Further, the partition plates 32c, 32d, and 32f are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 72a or 72b, respectively. Further, a partition plate 32h is provided between the partition plates 32c, 32d, and 32f so as to partition each installation region of the four light emitting diodes 4 arranged in a direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 32h are provided so as to be arranged in a straight line with the slits 72e, 72f, 72g, respectively, and four partition plates 32c, 32d, 32f are provided. The light incident surfaces 72a are partitioned from each other.
 また、仕切板32e、32fは、4個の入光面73aまたは73bにそれぞれ対向する4個の発光ダイオード4を挟むように、設けられている。また、仕切板32e、32fの間には、図面に垂直な方向に並べられた4個の発光ダイオード4の各設置領域を区切るように、仕切板32iが設けられている。つまり、導光板7の各側面部側において、3つの仕切板32iが、スリット73d、73e、73fと直線上にそれぞれ並べられるように設けられており、仕切板32e、32fとともに4個の入光面73aを互いに仕切るようになっている。 Further, the partition plates 32e and 32f are provided so as to sandwich the four light emitting diodes 4 facing the four light incident surfaces 73a or 73b, respectively. Further, a partition plate 32i is provided between the partition plates 32e and 32f so as to partition each installation region of the four light emitting diodes 4 arranged in the direction perpendicular to the drawing. That is, on each side surface side of the light guide plate 7, the three partition plates 32i are provided so as to be arranged in a straight line with the slits 73d, 73e, 73f, respectively, and four light incidents together with the partition plates 32e, 32f. The surfaces 73a are separated from each other.
 また、これらの仕切板32a~32iには、例えば光反射率の高い金属材が用いられており、発光ダイオード4からの光を効率よく入光面に入光させて、当該光の利用効率を向上することができるようになっている。 The partition plates 32a to 32i are made of, for example, a metal material having a high light reflectivity. The light from the light-emitting diode 4 is efficiently incident on the light incident surface, thereby improving the use efficiency of the light. It can be improved.
 以上の構成により、本実施形態では、上記第4の実施形態と同様な作用・効果を奏することができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the fourth embodiment.
 尚、上記の実施形態はすべて例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更も本発明の技術的範囲に含まれる。 It should be noted that all of the above embodiments are illustrative and not restrictive. The technical scope of the present invention is defined by the claims, and all modifications within the scope equivalent to the configurations described therein are also included in the technical scope of the present invention.
 例えば、上記の説明では、本発明を透過型の液晶表示装置に適用した場合について説明したが、本発明の照明装置はこれに限定されるものではなく、例えば半透過型の液晶表示装置、あるいは液晶パネルをライトバルブに用いた投写型表示装置などの各種表示装置に本発明の照明装置を好適に用いることができる。 For example, in the above description, the case where the present invention is applied to a transmissive liquid crystal display device has been described. However, the illumination device of the present invention is not limited to this, for example, a transflective liquid crystal display device, or The illumination device of the present invention can be suitably used for various display devices such as a projection display device using a liquid crystal panel as a light valve.
 また、上記の説明以外に、本発明は、レントゲン写真に光を照射するシャウカステンあるいは写真ネガ等に光を照射して視認をし易くするためのライトボックスや、看板や駅構内の壁面などに設置される広告等をライトアップする発光装置の照明装置として好適に用いることができる。つまり、液晶パネル以外の被照射物に光源からの光を照射する照明装置を構成することもできる。 In addition to the above explanation, the present invention is installed on a light box for illuminating X-ray film or photographic negatives for irradiating light to make it easy to see, or on a signboard or a wall in a station. It can be suitably used as a lighting device for a light emitting device that illuminates advertisements and the like. That is, it is possible to configure an illumination device that irradiates an object other than the liquid crystal panel with light from the light source.
 また、上記の説明では、3つの導光板部材を導光板に設けるとともに、当該導光板の発光面にマトリクス状の24個の発光エリアを設置した場合について説明した。しかしながら、本発明の照明装置は、導光板において、所定の方向に積層された複数の導光板部材が設けられ、かつ、複数の各導光板部材には、複数の光源からの光をそれぞれ発光する複数の発光エリアが導光板の発光面に形成されるように、光遮断部が設けられているものであれば何等限定されるものではなく、導光板部材の設置数や発光エリアの形状あるいは設置数などは上記のものに限定されない。 In the above description, the case where three light guide plate members are provided on the light guide plate and 24 light emitting areas in a matrix form are installed on the light emitting surface of the light guide plate has been described. However, in the illumination device of the present invention, the light guide plate is provided with a plurality of light guide plate members stacked in a predetermined direction, and each of the plurality of light guide plate members emits light from a plurality of light sources, respectively. There is no limitation as long as a light blocking part is provided so that a plurality of light emitting areas are formed on the light emitting surface of the light guide plate. The number is not limited to the above.
 また、上記の説明では、光遮断部として、スリット及び反射シート(反射部材)を用いた場合について説明したが、本発明の光遮断部は、導光板部材において、複数の光源からの光をそれぞれ発光する複数の発光エリアが導光板の発光面に形成されるように、これらの光を適宜遮断するものであれば何等限定されない。具体的にいえば、上記変形例に示したように、光遮断部として、スリット内に配置した反射材を用いてもよい。また、反射シートに代えて、光反射率の高い色の塗料を用いることもできる。また、金属材、好ましくは光反射率の高い金属材を導光板部材の内部に埋設してもよい。 In the above description, the case where a slit and a reflection sheet (reflective member) are used as the light blocking unit has been described. However, the light blocking unit of the present invention uses the light guide plate member to emit light from a plurality of light sources, respectively. There is no limitation as long as a plurality of light emitting areas for emitting light are appropriately blocked so that the light emitting surface of the light guide plate is formed. Specifically, as shown in the above-described modification, a reflective material disposed in the slit may be used as the light blocking portion. Moreover, it can replace with a reflective sheet and can also use the coating material of a color with a high light reflectance. Further, a metal material, preferably a metal material having a high light reflectance, may be embedded in the light guide plate member.
 但し、上記の各実施形態のように、スリット及び反射シート(反射部材)を用いる場合の方が、部品点数が増加するのを抑えつつ、発光エリア毎に対応する光源からの光を確実に発光させることができる点で好ましい。 However, as in the above-described embodiments, when the slit and the reflection sheet (reflection member) are used, light from the light source corresponding to each light emitting area is surely emitted while suppressing an increase in the number of components. It is preferable at the point which can be made.
 また、上記の説明では、平板状の各導光板部材の互いに対向する側面に、4つの入光面を直線状に設けた場合について説明したが、本発明の導光板部材は光源からの光が入光される入光面を複数設けたものであれば何等限定されない。 In the above description, the case where four light incident surfaces are provided in a straight line on the opposite side surfaces of each flat plate-shaped light guide plate member has been described. However, the light guide plate member of the present invention receives light from a light source. There is no limitation as long as a plurality of incident light incident surfaces are provided.
 但し、上記の各実施形態のように、複数の光源からの光がそれぞれ入光される複数の入光面を直線状に設ける場合の方が、発光エリアの数を増加したときでも、コンパクトな照明装置を容易に構成することができる点で好ましい。 However, as in each of the above embodiments, the case where a plurality of light incident surfaces into which light from a plurality of light sources are respectively incident is provided in a straight line is more compact even when the number of light emitting areas is increased. This is preferable in that the lighting device can be easily configured.
 また、上記の説明では、光源としてRGBの発光ダイオードを一体化した1個の3in1タイプの発光ダイオードを用いた場合について説明したが、本発明の光源はこれに何等限定されない。具体的にいえば、RGBWの発光ダイオードを一体化した、いわゆるフォーインワン(4in1)タイプの発光ダイオード、黄色の光及び青色の光を発光する2種類の発光ダイオード、あるいは白色の発光ダイオードなどの他の発光ダイオード、冷陰極蛍光管や熱陰極蛍光管等の放電管、有機EL(Electronic Luminescence)や無機EL素子等の発光素子を光源に使用することもできる。 In the above description, the case where one 3-in-1 type light emitting diode in which RGB light emitting diodes are integrated is used as the light source. However, the light source of the present invention is not limited to this. Specifically, a so-called four-in-one (4in1) type light emitting diode in which RGBW light emitting diodes are integrated, two types of light emitting diodes that emit yellow light and blue light, or a white light emitting diode, etc. Light emitting diodes, discharge tubes such as cold cathode fluorescent tubes and hot cathode fluorescent tubes, and light emitting elements such as organic EL (Electronic Luminescence) and inorganic EL elements can also be used as the light source.
 また、上記白色の発光ダイオードでは、青色の発光ダイオードに蛍光体を塗布して白色の光を発光するものが含まれており、例えば青色の発光ダイオードに赤色蛍光体及び緑色蛍光体を用いたもの、青色の発光ダイオードに赤色蛍光体及び黄色蛍光体を用いたもの、あるいは青色の発光ダイオードに黄色蛍光体を用いたものなどがある。 The white light emitting diode includes a blue light emitting diode that emits white light by applying a phosphor. For example, a blue light emitting diode using a red phosphor and a green phosphor. There are a blue light emitting diode using a red phosphor and a yellow phosphor, and a blue light emitting diode using a yellow phosphor.
 本発明は、複数の発光エリアを設ける場合でも、部品点数が増加するのを抑えることができ、コスト安価な照明装置、及びそれを用いた表示装置に対して有用である。 The present invention can suppress an increase in the number of parts even when a plurality of light emitting areas are provided, and is useful for an inexpensive lighting device and a display device using the same.
 1 液晶表示装置(表示装置)
 2 照明装置
 3 液晶パネル(表示部)
 4 発光ダイオード(光源)
 7 導光板
 7a 発光面
 71 第1の導光板部材
 71A 発光面
 71B 対向面
 71a、71b 入光面
 71c、71d、71e、71f、71g スリット(光遮断部)
 71h、71i 反射シート(光遮断部、反射部材)
 71j、71k 散乱ドットパターン(光散乱部)
 72 第2の導光板部材
 72A 発光面
 72B 対向面
 72a、72b 入光面
 72c、72d、72e、72f、72g スリット(光遮断部)
 72h、72i 反射シート(光遮断部、反射部材)
 72j、72k 散乱ドットパターン(光散乱部)
 73 第3の導光板部材
 73A 発光面
 73B 対向面
 73a、73b 入光面
 73c、73d、73e、73f スリット(光遮断部)
 73g、73h 反射シート(光遮断部、反射部材)
 73i、73j 散乱ドットパターン(光散乱部)
 30 仕切部材
 1-1~1-6、2-1~2-6、3-1~3-6、4-1~4-6 発光エリア
 (1)~(24) 表示エリア
 H 反射材
1 Liquid crystal display device (display device)
2 Lighting device 3 Liquid crystal panel (display unit)
4 Light emitting diode (light source)
7 Light guide plate 7a Light emitting surface 71 First light guide plate member 71A Light emitting surface 71B Opposing surface 71a, 71b Light incident surface 71c, 71d, 71e, 71f, 71g Slit (light blocking portion)
71h, 71i Reflective sheet (light blocking part, reflective member)
71j, 71k Scattering dot pattern (light scattering part)
72 Second light guide plate member 72A Light emitting surface 72B Opposing surface 72a, 72b Light incident surface 72c, 72d, 72e, 72f, 72g Slit (light blocking portion)
72h, 72i Reflective sheet (light blocking part, reflective member)
72j, 72k Scattering dot pattern (light scattering part)
73 Third light guide plate member 73A Light emitting surface 73B Opposing surface 73a, 73b Light incident surface 73c, 73d, 73e, 73f Slit (light blocking portion)
73g, 73h Reflective sheet (light blocking part, reflective member)
73i, 73j Scattering dot pattern (light scattering part)
30 Partition member 1-1 to 1-6, 2-1 to 2-6, 3-1 to 3-6, 4-1 to 4-6 Light emitting area (1) to (24) Display area H Reflective material

Claims (8)

  1. 光源と、前記光源からの光を所定の伝搬方向に導くとともに、被照射物に当該光を出射する導光板を備えた照明装置であって、
     前記導光板には、所定の方向に積層された複数の導光板部材が設けられ、
     前記複数の各導光板部材には、複数の前記光源からの光をそれぞれ発光する複数の発光エリアが前記導光板の発光面に形成されるように、光遮断部が設けられている、
     ことを特徴とする照明装置。
    A light source and a lighting device including a light guide plate that guides light from the light source in a predetermined propagation direction and emits the light to an irradiated object,
    The light guide plate is provided with a plurality of light guide plate members stacked in a predetermined direction,
    Each of the plurality of light guide plate members is provided with a light blocking portion so that a plurality of light emitting areas that respectively emit light from the plurality of light sources are formed on the light emitting surface of the light guide plate.
    A lighting device characterized by that.
  2. 前記光遮断部として、前記複数の発光エリアの境界線に沿うように前記導光板部材に設けられたスリット、及び前記発光面に対向する前記導光板部材の対向面側に設けられた反射部材が用いられている請求項1に記載の照明装置。 As the light blocking portion, there are a slit provided in the light guide plate member along the boundary line of the plurality of light emitting areas, and a reflective member provided on the facing surface side of the light guide plate member facing the light emitting surface. The illuminating device of Claim 1 used.
  3. 前記スリットの内部には、光を反射する反射材が設置されている請求項2に記載の照明装置。 The lighting device according to claim 2, wherein a reflective material that reflects light is installed inside the slit.
  4. 前記複数の各導光板部材では、前記光源からの光を散乱する光散乱部が、前記発光エリアに応じて、前記発光面に対向する対向面側に設けられている請求項1~3のいずれか1項に記載の照明装置。 4. In each of the plurality of light guide plate members, a light scattering portion that scatters light from the light source is provided on a facing surface side that faces the light emitting surface according to the light emitting area. The lighting device according to claim 1.
  5. 前記複数の各導光板部材では、複数の光源からの光がそれぞれ入光される複数の入光面が直線状に設けられている請求項1~4のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 4, wherein each of the plurality of light guide plate members is provided with a plurality of light incident surfaces on which light from a plurality of light sources respectively enter linearly.
  6. 前記導光板には、前記複数の導光板部材に設けられた複数の入光面と、前記複数の入光面にそれぞれ光を入光する複数の光源との間に、前記複数の光源からの光が対応する入光面だけに入光するように、前記複数の光源からの光の出射方向を制限する仕切部材が取り付けられている請求項1~5のいずれか1項に記載の照明装置。 The light guide plate includes a plurality of light incident surfaces provided on the plurality of light guide plate members, and a plurality of light sources that respectively input light to the plurality of light incident surfaces. The illumination device according to any one of claims 1 to 5, wherein a partition member that restricts an emission direction of light from the plurality of light sources is attached so that light enters only a corresponding light incident surface. .
  7. 請求項1~6のいずれか1項に記載の照明装置を用いたことを特徴とする表示装置。 A display device using the illumination device according to any one of claims 1 to 6.
  8. 前記被照射物として、情報を表示する表示部が用いられ、
     前記表示部には、前記複数の発光エリアからの光が、それぞれ入射される複数の表示エリアが設けられている請求項7に記載の表示装置。
    As the irradiated object, a display unit for displaying information is used,
    The display device according to claim 7, wherein the display unit is provided with a plurality of display areas into which light from the plurality of light emitting areas is incident.
PCT/JP2011/058196 2010-07-26 2011-03-31 Lighting device and display device WO2012014529A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-167360 2010-07-26
JP2010167360 2010-07-26

Publications (1)

Publication Number Publication Date
WO2012014529A1 true WO2012014529A1 (en) 2012-02-02

Family

ID=45529753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058196 WO2012014529A1 (en) 2010-07-26 2011-03-31 Lighting device and display device

Country Status (1)

Country Link
WO (1) WO2012014529A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318584U (en) * 1989-03-06 1991-02-22
JP2009076464A (en) * 2008-10-30 2009-04-09 Sharp Corp Illuminating device, and display device equipped with it
JP2009170325A (en) * 2008-01-18 2009-07-30 Minebea Co Ltd Planar lighting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318584U (en) * 1989-03-06 1991-02-22
JP2009170325A (en) * 2008-01-18 2009-07-30 Minebea Co Ltd Planar lighting system
JP2009076464A (en) * 2008-10-30 2009-04-09 Sharp Corp Illuminating device, and display device equipped with it

Similar Documents

Publication Publication Date Title
CN109581739B (en) Backlight unit and liquid crystal display device including the same
US8104945B2 (en) Backlight unit implementing local dimming for liquid crystal display device
JP5324068B2 (en) Backlight assembly and display device having the same
TWI464496B (en) Backlight unit for liquid crystal display device and driving method of the same
US10488577B2 (en) Illumination device and display device
KR101493706B1 (en) Backlight unit for liquid crystal display device
US20120300135A1 (en) Lighting device, display device and television receiver
US8908124B2 (en) Light guide plate and liquid crystal display device including the same
US20130321495A1 (en) Display device
WO2011048830A1 (en) Backlight device, image display apparatus comprising same, and driving method
JP2011191751A (en) Backlight unit, illumination device, and display device
JP2010135204A (en) Plane light source and liquid crystal display
US20070263409A1 (en) Light guide plate with reflective light mixing
US20160282667A1 (en) Color liquid crystal display module structure and backlight module thereof
US20070171669A1 (en) Backlight assembly and liquid crystal display device having the same
JP2010123551A (en) Surface light source and liquid crystal display device
JP6749824B2 (en) Display device and lighting device
JP2007173217A (en) Led backlight apparatus with color deflection removed from side surface
US9507076B2 (en) Backlight unit and liquid crystal display device including the same
KR101885929B1 (en) Backlight unit and liquid crystal display device having the same
KR20210004019A (en) Color conversion sheet, backlight unit and display device
JP2013211184A (en) Backlight device, display device, and television receiving apparatus
WO2013073428A1 (en) Display device
USRE45229E1 (en) Backlight for color liquid crystal display apparatus
JP2019186060A (en) Luminaire and display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP