WO2012011521A1 - 電動車両の制振制御装置および電動車両の制振制御方法 - Google Patents
電動車両の制振制御装置および電動車両の制振制御方法 Download PDFInfo
- Publication number
- WO2012011521A1 WO2012011521A1 PCT/JP2011/066541 JP2011066541W WO2012011521A1 WO 2012011521 A1 WO2012011521 A1 WO 2012011521A1 JP 2011066541 W JP2011066541 W JP 2011066541W WO 2012011521 A1 WO2012011521 A1 WO 2012011521A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- torque
- motor
- target value
- model
- calculation
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/46—Drive Train control parameters related to wheels
- B60L2240/461—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/46—Drive Train control parameters related to wheels
- B60L2240/465—Slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/50—Drive Train control parameters related to clutches
- B60L2240/507—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/145—Structure borne vibrations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention is applied to an electric vehicle having an electric motor as a power source, and performs vibration suppression control on a motor torque command value acquired by feedforward calculation and feedback calculation.
- the present invention relates to a vibration control method.
- a steady torque target value is determined based on various vehicle information
- a first torque target value is calculated by feedforward calculation (hereinafter, F / F calculation)
- the second torque target value is calculated by F / B calculation.
- a vehicle vibration control device using an electric motor that performs motor torque control by adding a first torque target value and a second torque target value to obtain a motor torque command value is known (for example, Patent Document 1). reference).
- the first torque target is obtained by using the model Gp (s) of the torque input to the vehicle and the transfer characteristic of the motor rotational speed in every traveling scene.
- F / F calculation and F / B calculation may malfunction in a driving scene where the torsional vibration of the drive system hardly occurs due to changes in motor torque, and unexpected vibration and shock may occur. There was a problem.
- the present invention has been made paying attention to the above-described problem.
- the vibration suppression control device for an electric vehicle and the vibration suppression for the electric vehicle that can suppress unexpected vibration and shock during torque transmission interruption.
- An object is to provide a control method.
- a vibration suppression control device for an electric vehicle is an electric vehicle having an electric motor as a power source.
- the rotation speed detection means detects the rotation speed of the motor.
- the motor torque target value calculation means calculates a motor torque target value based on a driver's request.
- the first torque target value calculating means calculates a first torque target value by a feedforward calculation using a torque input-motor rotational speed transfer characteristic model with respect to the motor torque target value.
- the second torque target value calculation means calculates a second torque target value by feedback calculation using a model of the torque input-motor rotation speed transfer characteristic based on the rotation speed of the motor.
- the motor torque command value setting means adds the first torque target value and the second torque target value to obtain a motor torque command value for the motor.
- the determination means determines whether or not the torque input-motor rotational speed transfer characteristic model matches an actual transfer characteristic.
- the vibration suppression control means feeds the first torque target value by the first torque target value calculation means while determining that the torque input-motor rotation speed transfer characteristic model does not match the actual transfer characteristic. Forward calculation and feedback calculation of the second torque target value by the second torque target value calculating means are stopped, and the motor torque target value is set as the motor torque command value.
- the feedforward calculation and the feedback calculation are stopped while it is determined that the model of the torque input-motor rotational speed transfer characteristic does not match the actual transfer characteristic. That is, when torque transmission to the drive shaft is interrupted, the transmission characteristic of the motor rotation speed with respect to torque input to the vehicle is greatly different from the model assumed in advance. For this reason, the malfunction by performing both calculations is prevented by stopping the feedforward calculation and the feedback calculation using the model while the torque transmission is interrupted. As a result, it is possible to suppress unexpected vibration and shock during torque transmission interruption.
- FIG. 1 is an overall configuration diagram illustrating a vibration suppression control device of an electric vehicle (an example of an electric vehicle) according to a first embodiment. It is explanatory drawing showing the equation of motion of a vehicle drive system, (a) shows the top view of a torsional vibration system, (b) shows the side view of a torsional vibration system. It is a control block diagram which shows the vibration suppression control part 9b which the motor controller 9 of Example 1 has. It is a control block diagram which shows the vibration suppression control part of a comparative example. It is a time chart of the simulation result which shows each characteristic of FF torque, FB torque, final output torque, and drive torque at the time of start by an electric vehicle to which vibration suppression control of a comparative example is applied.
- FIG. 6 is a time chart of a simulation result showing each characteristic of FF torque, FB torque, final output torque, and drive torque at the time of start of an electric vehicle to which the vibration suppression control of the first embodiment is applied. It is a control block diagram which shows the vibration suppression control part 9b which the motor controller 9 of Example 2 has. 7 is a time chart of a simulation result showing each characteristic of FF torque, FB torque, final output torque, and drive torque at the time of start of an electric vehicle to which vibration suppression control of Example 2 is applied. It is a control block diagram which shows the vibration suppression control part 9b which has in the motor controller 9 of Example 3.
- FIG. 1 is an overall configuration diagram illustrating a vibration suppression control device for an electric vehicle (an example of an electric vehicle) according to a first embodiment.
- the overall configuration will be described below with reference to FIG.
- the drive system of the electric vehicle to which the vibration damping control device of the first embodiment is applied includes an electric motor 1 (motor), a stepped transmission 2, a differential gear 3, and left and right drive shafts. 4 and 4 and left and right drive wheels 5 and 5.
- the control system of the electric vehicle to which the vibration damping control device of the first embodiment is applied includes an accelerator opening sensor 6, a motor rotation angle sensor 7, a drive shaft rotation angle sensor 8, and a motor controller. 9.
- the accelerator opening sensor 6 detects the accelerator opening APO by the driver's accelerator operation.
- the motor rotation angle sensor 7 detects the motor angular velocity ⁇ m by using a resolver or the like.
- the drive shaft rotation angle sensor 8 detects a drive wheel angular velocity ⁇ w.
- the motor controller 9 is a control unit that controls the motor torque of the electric motor 1 based on input information, and includes a motor torque setting unit 9a, a vibration suppression control unit 9b, and a motor torque control unit 9c.
- the motor torque setting unit 9 a calculates a steady torque target value Tm * based on the accelerator opening APO from the accelerator opening sensor 6 and the motor angular velocity ⁇ m from the motor rotation angle sensor 7.
- the vibration suppression control unit 9b receives a steady torque target value Tm * , a motor angular velocity ⁇ m, and a drive wheel angular velocity ⁇ w.
- Tm * a steady torque target value
- ⁇ m a motor angular velocity
- ⁇ w a drive wheel angular velocity
- the motor torque control unit 9c controls an output torque of the electric motor 1 to follow the motor torque command value Tm by driving an inverter (not shown) with a PWM signal or the like.
- the transfer characteristic H (s) is a feedback element that reduces only vibration when a band-pass filter is used.
- the frequency fp is the torsional resonance frequency of the drive system and the transfer characteristic H (s) is configured as in the following equation (17)
- the low-pass attenuation characteristic and the high-pass attenuation characteristic substantially coincide with each other
- the torsional resonance frequency of the drive system is set to be near the center of the passband on the logarithmic axis (log scale).
- H (s) ⁇ Hs / ⁇ (1 + ⁇ Hs) ⁇ (1 + ⁇ Ls) ⁇ (17)
- ⁇ L 1 / (2 ⁇ fHC)
- fHC fp
- ⁇ H 1 / (2 ⁇ fLC)
- fLC fp It is. Therefore, the bandpass filter H (s) is configured by the transfer characteristic represented by the above equation (17).
- FIG. 3 is a control block diagram illustrating the vibration suppression control unit 9b included in the motor controller 9 according to the first embodiment.
- the configuration of the vibration suppression control unit 9b will be described with reference to FIG.
- the vibration suppression control unit 9b includes an F / F calculation unit 91 (first torque target value calculation unit), an F / B calculation unit 92 (second torque target value calculation unit), 1 model determination unit 93 (determination unit), first torque target value switching unit 94 (vibration suppression control unit), second model determination unit 95 (determination unit), and second torque target value switching unit 96 (vibration suppression) Control means) and an adder 97 (motor torque command value setting means).
- the F / F calculation unit 91 receives a steady torque target value Tm * and inputs Gm (s) using the ideal model Gm (s) and model Gp (s) of the torque input to the vehicle and the motor rotation speed transmission characteristics. ) / Gp (s), the first torque target value Tm * 1 is calculated.
- the F / B calculation unit 92 calculates the estimated motor angular velocity value ⁇ m # from the motor torque command value Tm and the model Gp (s).
- the motor torque command value Tm is input to the actual plant Gp ′ (s) via the inverter
- the motor angular velocity ⁇ m is detected by the motor rotation angle sensor 7.
- the deviation ⁇ between the estimated motor angular velocity value ⁇ m # and the motor angular velocity ⁇ m is calculated, and this deviation ⁇ is H (s) / Gp (s) using the model Gp (s) and the bandpass filter H (s).
- the second torque target value Tm * 2 is calculated by passing the filter.
- the first model determination unit 93 determines whether or not the actual transfer characteristic substantially matches the model Gp (s) of the transfer characteristic between the torque input to the vehicle and the motor rotational speed.
- the determination method in the first model determination unit 93 is that the absolute value of the difference between the motor angular velocity ⁇ m detected by the motor rotation angle sensor 7 and the drive wheel angular velocity ⁇ w detected by the drive shaft rotation angle sensor 8 is within a predetermined value. If so, ON is determined as approximately coincidence (for example, time Tff in FIG. 6 is “approximately coincidence determination time”).
- the drive shaft angular speed ⁇ w is converted to an angular speed equivalent to the motor shaft using the gear ratio of the stepped transmission 2, but the gear ratio of the electric motor 1 to the drive wheels 5 and 5 is the same as during the shift. If not fixed, the gear ratio after the end of gear shifting is used.
- the first model determination unit 93 determines ON, the F / F calculation by the F / F calculation unit 91 is started.
- the first torque target value switching unit 94 is a switch that switches the output based on the determination result of the first model determination unit 93. That is, if the determination result in the first model determination unit 93 is OFF determination, the steady torque target value Tm * is output to the adder 97. If the determination result in the first model determination unit 93 is ON determination, the first torque target value Tm * 1 is output to the adder 97.
- the second model determination unit 95 determines whether or not the actual transfer characteristic completely matches the model Gp (s) of the transfer characteristic between the torque input to the vehicle and the motor rotational speed.
- the determination method in the second model determination unit 95 is that the absolute value of the difference between the motor angular velocity ⁇ m detected by the motor rotation angle sensor 7 and the drive wheel angular velocity ⁇ w detected by the drive shaft rotation angle sensor 8 is within a predetermined value. If a predetermined time elapses while maintaining this state, it is determined to be completely coincident with ON (for example, time Tfb in FIG. 6 is “perfect coincidence determination time”).
- the drive shaft angular velocity ⁇ w is converted to an angular velocity corresponding to the motor shaft using the gear ratio of the stepped transmission 2, as in the first model determination unit 93, but the electric motor 1 is in the middle of shifting.
- the gear ratio of the drive wheels 5 and 5 is not determined, the gear ratio after the end of the shift is used.
- the first model determination unit 93 determines ON, the F / B calculation by the F / B calculation unit 92 is started.
- the second torque target value switching unit 96 is a switch that switches the output based on the determination result of the second model determination unit 95. That is, if the determination result in the second model determination unit 95 is OFF determination, 0 Nm is output to the adder 97. If the determination result in the second model determination unit 95 is ON determination, the second torque target value Tm * 2 is output to the adder 97.
- the adder 97 adds the output from the first torque target value switching unit 94 and the output from the second torque target value switching unit 96 to obtain a motor torque command value Tm.
- Tm Tm * 1 + Tm * 2.
- Tm Tm * .
- Tm Tm * 1.
- the vibration suppression control unit includes an F / F calculation unit, an F / B calculation unit, and an adder.
- the F / F calculation unit inputs a steady torque target value Tm * , and uses an ideal model Gm (s) and a model Gp (s) of the torque input to the vehicle and the transfer characteristics of the motor rotation speed.
- the first torque target value Tm * 1 is calculated by F / F calculation through a filter / Gp (s).
- the steady torque target value Tm * is determined by the accelerator opening and the motor speed.
- the F / B calculation unit calculates an estimated value of the motor rotation speed from the model Gp (s) of the torque input to the vehicle and the transfer characteristic of the motor rotation speed. Then, input the deviation between the estimated value and the detected value of the motor rotation speed, and use the model Gp (s) and the bandpass filter H (s) to pass the filter H (s) / Gp (s). Thus, the second torque target value Tm * 2 is calculated.
- the adder adds the first torque target value Tm * 1 and the second torque target value Tm * 2 to obtain a motor torque command value Tm. Then, control is performed so that the output torque of the actual motor matches or follows the motor torque command value Tm.
- the F / B torque (second torque target value Tm * 2) is calculated from the deviation between the detected motor rotational speed and the estimated motor rotational speed calculated from the model Gp (s) in every traveling scene. It is configured. For this reason, in a driving scene in which the drive system hardly twists and does not generate vibration due to changes in motor torque (for example, driving scenes (a) and (b) described below), the motor rotation speed with respect to torque input to the vehicle Therefore, the F / B calculation may malfunction and unexpected vibrations and shocks may occur.
- the actual transfer characteristic is different from that of the model Gp (s), so that the motor angular velocity ⁇ m detected by the motor rotation angle sensor 7, the drive wheel angular velocity ⁇ w detected by the drive shaft rotation angle sensor 8, The absolute value of the difference exceeds a predetermined value.
- the first model determination unit 93 makes an OFF determination as a torque transmission interruption state, and the first torque target value switching unit 94 switches to the side where the steady torque target value Tm * is output to the adder 97.
- the first embodiment employs a configuration in which the F / F calculation and the F / B calculation using the model Gp (s) are stopped while it is determined that the torque transmission is interrupted. That is, while the torque transmission to the drive shafts 5 and 5 is interrupted, the transmission characteristic of the motor rotation speed with respect to the torque input to the vehicle is greatly different from the model Gp (s) assumed in advance, and the model Gp (s) is used. Malfunctions occur due to execution of F / F and F / B operations. For this reason, it is possible to prevent unexpected vibrations and shocks by preventing malfunction caused by executing F / F calculation and F / B calculation when the driving scene is determined to be interrupted by torque transmission. Can do.
- the motor rotation speed transmission characteristic with respect to the torque input to the vehicle gradually approaches the model Gp (s) assumed in advance, and therefore the motor detected by the motor rotation angle sensor 7 is used.
- the absolute value of the difference between the angular velocity ⁇ m and the drive wheel angular velocity ⁇ w detected by the drive shaft rotation angle sensor 8 is within a predetermined value. Therefore, the first model determination unit 93 makes an ON determination on the assumption that the actual transmission characteristic is substantially the same as the model Gp (s), and the first torque target value switching unit 94 determines the first torque target value Tm * 1. Is switched to the output side to the adder 97.
- the difference between the motor angular speed ⁇ m and the driving wheel angular speed ⁇ w is not necessary for the transfer characteristic of the motor rotational speed to the torque input to the vehicle to completely match the model Gp (s) assumed in advance. It is necessary to wait for the elapse of a predetermined time while maintaining the state where the absolute value is within the predetermined value.
- the second model determination unit 95 after a predetermined time has elapsed since the absolute value of the difference between the motor angular velocity ⁇ m and the drive wheel angular velocity ⁇ w falls within a predetermined value, an ON determination is made and the second torque target value
- the switching unit 96 switches to the side where the second torque target value Tm * 2 is output to the adder 97.
- the F / B calculation starts from a complete match determination time Tfb (0.6 [s]) that is a timing delayed after the model match time Tma (0.1 [s]). For this reason, the malfunction of the F / B calculation that has occurred in the comparative example can be prevented (arrow A in FIG. 6), and the torque fluctuation that makes the driver feel uncomfortable can be suppressed (arrow B in FIG. 6).
- the F / F calculation starts from a substantially coincidence determination time Tff (0.0 [s]) that is an earlier timing before the model coincidence time Tma (0.1 [s]). For this reason, as shown by the FF torque characteristic indicated by the arrow C in FIG. 6, the F / F calculation works as intended, and as shown by the drive torque characteristic indicated by the arrow D in FIG. 6, a transient close to the ideal state (dotted line). A response can be realized.
- the F / F calculation is started before the F / B calculation.
- the controlled object will be suddenly switched when the transfer characteristics actually match the presumed model Gp (s).
- the F / B calculation malfunctions, the transmission torque fluctuates, and torsional vibration of the drive system may be induced (see comparative example).
- a rotational speed detecting means for detecting the rotational speed (motor angular speed ⁇ m) of the motor (electric motor 1);
- Motor torque target value calculating means for calculating a motor torque target value (steady torque target value Tm * ) based on a driver's request; For the motor torque target value (steady torque target value Tm * ), the first torque target value Tm * 1 is calculated by F / F calculation using the model Gp (s) of torque input-motor rotational speed transfer characteristics.
- First torque target value calculation means (F / F calculation unit 91), Based on the rotational speed (motor angular speed ⁇ m) of the motor (electric motor 1), the second torque target value Tm * is calculated by F / B calculation using the torque input-motor rotational speed transfer characteristic model Gp (s) .
- 2nd torque target value calculation means (F / B calculating part 92) which calculates 2;
- Motor torque command value setting means (adder 97) that adds the first torque target value Tm * 1 and the second torque target value Tm * 2 to obtain a motor torque command value Tm for the motor (electric motor 1).
- Determination means (a first model determination unit 93, a second model determination unit 95) for determining whether or not the model Gp (s) of the torque input-motor rotational speed transfer characteristic matches the actual transfer characteristic; While it is determined that the torque input-motor rotational speed transfer characteristic model Gp (s) does not match the actual transfer characteristic, the first torque target value calculating means (F / F calculating section 91) performs the first The F / F calculation of the torque target value Tm * 1 and the F / B calculation of the second torque target value Tm * 2 by the second torque target value calculation means (F / B calculation unit 92) are stopped, and the motor torque Vibration suppression control means (first torque target value switching unit 94, second torque target value switching unit 96) that sets a target value (steady torque target value Tm * ) as the motor torque command value Tm; Equipped with. For this reason, it is possible to provide a vibration suppression control device for an electric vehicle (electric vehicle) that suppresses occurrence of unexpected vibration and shock during interruption
- the vibration suppression control means determines that the return condition is satisfied
- the first torque target value calculation means F / F calculation of the first torque target value Tm * 1 by the unit 91
- F / B calculation of the second torque target value Tm * 2 by the second torque target value calculation means F / B calculation unit 92.
- the motor torque command value Tm is calculated. For this reason, in addition to the effect of (1), it is possible to suppress the occurrence of unexpected vibrations and shocks in the torque transmission start region after the torque transmission is interrupted.
- the determination means (the first model determination unit 93 and the second model determination unit 95) It is determined that the transfer characteristic model Gp (s) does not match the actual transfer characteristic. For this reason, in addition to the effect of (1) or (2), the model Gp (s) of the torque input-motor rotational speed transfer characteristic can be compared with the actual transfer characteristic by the absolute difference between the motor angular speed ⁇ m and the drive wheel angular speed ⁇ w. It is possible to accurately determine that they do not match.
- the determination means determines that the return condition is satisfied when the absolute value of the difference between the motor angular velocity ⁇ m and the drive wheel angular velocity ⁇ w is within a predetermined value. To do. For this reason, in addition to the effect of (2) or (3), the model Gp (s) of the torque input-motor rotation speed transfer characteristic can be compared with the actual transfer characteristic by the absolute difference between the motor angular speed ⁇ m and the drive wheel angular speed ⁇ w. It is possible to accurately determine the transition from the mismatched state to the return.
- the first torque target value calculation means (F / F calculation unit 91) inputs the steady torque target value Tm * determined based on the driver's request, and transmits the torque input to the vehicle and the motor rotation speed.
- the first torque target value Tm * 1 is calculated by F / F calculation through the filter Gm (s) / Gp (s) using the ideal model Gm (s) and model Gp (s)
- the second torque target value calculating means (F / B calculating unit 92) calculates an estimated value ⁇ m # of the motor rotational speed from the model Gp (s) of the torque input to the vehicle and the transmission characteristic of the motor rotational speed,
- the estimated value ⁇ m # of the motor rotation speed and the deviation ⁇ of the detected value ⁇ m of the motor rotation speed are input, and the filter H (s) / Gp (s) using the model Gp (s) and the bandpass filter H (s) is input.
- the determination means determines the torque at a timing earlier than the reference timing.
- a first model determination unit 93 that determines the end of transmission interruption
- a second model determination unit 95 that determines the end of torque transmission interruption at a timing later than the reference timing
- the vibration suppression control means includes a first torque target value switching unit 94 that starts F / F calculation by a torque transmission interruption end determination (ON determination) by the first model determination unit 93 and a second model determination unit 95.
- a second torque target value switching unit 96 that starts the F / B calculation by the torque transmission interruption end determination (ON determination).
- the F / F calculation for the change in steady torque works from an earlier timing when the transfer characteristic of the motor rotation speed to the torque input to the vehicle actually matches the model Gp (s).
- Gp model Gp
- a torque interruption mode control procedure in which a steady torque target value Tm * determined based on a driver's request is used as a motor torque command value Tm for the electric motor 1;
- the transfer characteristic is actually equal to the model Gp (s) assumed in advance.
- the F / F calculation for the change in steady torque is started in advance from the earlier timing before the coincidence, the first torque target value Tm * 1 is set as the motor torque command value Tm to the electric motor 1, and the transfer characteristics are assumed in advance.
- the F / B calculation starts at a later timing after actually matching the model Gp (s), and the second torque target value Tm * 2 is added to the first torque target value Tm * 1 by the preceding F / F calculation.
- Example 2 is an example in which a motor torque command value that suppresses fluctuations in drive torque in the F / B calculation start region is corrected using a filter.
- FIG. 7 is a control block diagram illustrating the vibration suppression control unit 9b included in the motor controller 9 according to the second embodiment.
- the configuration of the vibration suppression control unit 9b will be described with reference to FIG.
- the vibration suppression controller 9b includes an F / F calculator 91 (first torque target value calculator), an F / B calculator 92 (second torque target value calculator), 1 model determination unit 93 (determination unit), first torque target value switching unit 94 (vibration suppression control unit), second model determination unit 95 (determination unit), and second torque target value switching unit 96 (vibration suppression) Control means), an adder 97 (motor torque command value setting means), a motor torque command value correction unit 98 (motor torque command value correction means), and a subtractor 99.
- the motor torque command value correction unit 98 calculates the motor rotation speed estimated value ⁇ m # by the F / B calculation unit 92 when the second model determination unit 95 determines the end of torque transmission interruption (ON determination). The input motor torque command value Tm is not corrected. Then, the motor torque command value corresponding to the final output torque input to the actual plant Gp '(s) is corrected so as to be smoothly connected before and after the start of the F / B calculation, and the correction value is reduced to zero within a predetermined time. Decrease.
- the motor torque command value correction unit 98 includes a filter 98a based on Gm ′ (s) / Gp (s) composed of a second ideal model Gm ′ (s) and a model Gp (s), and a second model determination unit. 95, a correction switching unit 98b that switches according to the determination result from 95, and a storage unit 98d that stores the second torque target value Tm * 2 for only one sample.
- the filter 98a has a characteristic of Gm ′ (s) / Gp (s).
- the model Gp (s) is a model that represents the torque input to the vehicle and the transfer characteristics of the motor rotation speed ⁇ m.
- the second ideal model Gm ′ (s) is a model that represents a response target of torque input to the vehicle and motor rotation speed.
- the correction switching unit 98b is a switch for switching the output based on the determination result of the second model determination unit 95. If the determination result is OFF determination, 0 Nm is output, and if it is ON determination, the calculation result of the filter 98a having the characteristic of Gm ′ (s) / Gp (s) is output.
- the storage unit 98d includes a second torque target value Tm * 2 has a function of storing only one sample, and outputs the second preceding value of the torque target value Tm * 2.
- the subtractor 99 subtracts the torque correction value Tm * 3 output from the motor torque command value correction unit 98 from the motor torque command value Tm output from the adder 97, so that the actual plant Gp ′ (s) Calculate the final torque command value (Tm-Tm * 3) to be input to.
- the other components F / F calculation unit 91 to adder 97
- the corresponding components are denoted by the same reference numerals and description thereof is omitted.
- a motor rotation speed estimated value ⁇ m # is calculated by the second torque target value calculation means (F / B calculation unit 92).
- the input motor torque command value Tm is not corrected, and the motor torque command value corresponding to the final output torque input to the actual plant Gp '(s) is corrected so that it is smoothly connected before and after the start of the F / B calculation.
- motor torque command value correcting means for reducing the torque correction value Tm * 3 to zero within a predetermined time is provided.
- the motor torque command value correcting means includes a second ideal model Gm ′ (s) of a transfer characteristic between a preset torque input and a motor rotation speed, and the model Each time it has a filter 98a composed of Gp (s) and the second model determination unit 95 determines that the return condition is satisfied (ON determination), the second torque target value Tm * 2 is immediately before the determination. It initializes with the value and outputs the previous value, and after the initialization, the zero input is the value passed through the filter 98a.
- the F / F calculation works on the torque correction value Tm * 3 of the motor torque command value Tm to cancel the torque step of the final output without inducing vibration. It is possible to prevent the occurrence of a steady torque deviation. That is, immediately after the ON determination, the second torque target value Tm * 2 is initialized (outputs the previous value), and after the initialization, the zero input is set to the value passed through the filter 98a, so that the torque correction value Tm * 3 Then, the F / F calculation works to cancel the FB torque step with the FF torque.
- the transfer characteristic H (s) is a band pass filter
- the second torque target value Tm * 2 is normally 0 Nm.
- Example 3 is an example of correcting a motor torque command value that suppresses fluctuations in driving torque in the start region of F / B calculation using a change rate limiting unit.
- FIG. 9 is a control block diagram illustrating a vibration suppression control unit 9b included in the motor controller 9 according to the third embodiment.
- the configuration of the vibration suppression control unit 9b will be described with reference to FIG.
- the vibration suppression control unit 9b includes an F / F calculation unit 91 (first torque target value calculation unit), an F / B calculation unit 92 (second torque target value calculation unit), 1 model determination unit 93 (determination unit), first torque target value switching unit 94 (vibration suppression control unit), second model determination unit 95 (determination unit), and second torque target value switching unit 96 (vibration suppression) Control means), an adder 97 (motor torque command value setting means), a motor torque command value correction unit 98 '(motor torque command value correction means), and a subtractor 99.
- F / F calculation unit 91 first torque target value calculation unit
- F / B calculation unit 92 second torque target value calculation unit
- 1 model determination unit 93 determination unit
- first torque target value switching unit 94 vibration suppression control unit
- second model determination unit 95 determination unit
- second torque target value switching unit 96 vibration suppression
- the motor torque command value correction unit 98 ′ determines the motor transmission speed estimation by the F / B calculation unit 92 when the second model determination unit 95 determines the end of torque transmission interruption (ON determination).
- the motor torque command value Tm that is an input for calculating the value ⁇ m # is not corrected.
- the motor torque command value corresponding to the final output torque input to the actual plant Gp '(s) is corrected so as to be smoothly connected before and after the start of the F / B calculation, and the correction value is reduced to zero within a predetermined time. Decrease.
- the motor torque command value correction unit 98 ′ stores the change rate limiting unit 98c, the correction switching unit 98b that switches according to the determination result from the second model determination unit 95, and the second torque target value Tm * 2 by one sample. And a storage unit 98d.
- the change rate limiting unit 98c limits the change rate with a preset change rate that does not induce vibration.
- the second torque target value Tm is immediately after the second model determination unit 95 determines ON by initializing with the previous value of the second torque target value Tm * 2. * The previous value of 2 is output, but after that, 0Nm is passed through the rate of change limit, and it is normally 0Nm. Since other configurations are the same as those in the first and second embodiments, the corresponding components are denoted by the same reference numerals and description thereof is omitted. Further, the operation of the third embodiment is substantially the same as that of the second embodiment, and thus the description thereof is omitted.
- the motor torque command value correcting means (motor torque command value correcting unit 98 ′) includes a change rate limiting unit 98c that limits at a preset change rate that does not induce vibration, and the second model determining unit 95. Each time it is determined that the return condition is satisfied (ON determination), the value immediately after the determination is initialized with the previous value of the second torque target value Tm * 2 and the previous value is output. The value passed through the rate limiting unit 98c. For this reason, in addition to the effect (8) of the second embodiment, the F / F calculation works on the torque correction value Tm * 3 of the motor torque command value Tm, so that the final output torque can be obtained without inducing vibration. The step can be canceled and a steady torque deviation can be prevented.
- the second torque target value Tm * 2 is initialized (the previous value is output), and after the initialization, the zero input is set to a value passed through the change rate limiting unit 98c, so that the torque correction value Tm *.
- the F / F calculation works to cancel the FB torque step with the FF torque.
- the transfer characteristic H (s) is a band pass filter
- the second torque target value Tm * 2 is normally 0 Nm.
- the vibration suppression control device for an electric vehicle has been described based on the first to third embodiments.
- the specific configuration is not limited to these embodiments, and the scope of the claims is as follows. Design changes and additions are allowed without departing from the spirit of the invention according to each claim.
- Examples 1 to 3 show application examples to an electric vehicle equipped with the electric motor 1 and the stepped transmission 2.
- the present invention may be applied to an electric vehicle equipped with an electric motor and a speed reduction mechanism.
- it is an electric vehicle having an electric motor as a power source, it may be applied to, for example, a hybrid vehicle or a fuel cell vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
このため、モータトルクの変化に対して駆動系のねじれ振動がほとんど生じない走行シーンにおいて、F/F演算とF/B演算が誤動作してしまい、予想外の振動やショックが生じる可能性がある、という問題があった。
前記回転数検出手段は、前記モータの回転数を検出する。
前記モータトルク目標値算出手段は、ドライバーの要求に基づき、モータトルク目標値を算出する。
前記第1トルク目標値算出手段は、前記モータトルク目標値に対して、トルク入力-モータ回転数の伝達特性のモデルを用いたフィードフォワード演算により第1トルク目標値を算出する。
前記第2トルク目標値算出手段は、前記モータの回転数に基づいて、前記トルク入力-モータ回転数の伝達特性のモデルを用いたフィードバック演算により第2トルク目標値を算出する。
前記モータトルク指令値設定手段は、前記第1トルク目標値と前記第2トルク目標値を加え合わせて、前記モータへのモータトルク指令値とする。
前記判定手段は、前記トルク入力-モータ回転数の伝達特性のモデルが実際の伝達特性と一致しているか否かを判定する。
前記制振制御手段は、前記トルク入力-モータ回転数の伝達特性のモデルが実際の伝達特性と一致しないと判定している間、前記第1トルク目標値算出手段による第1トルク目標値のフィードフォワード演算と、前記第2トルク目標値算出手段による第2トルク目標値のフィードバック演算を停止し、前記モータトルク目標値を前記モータトルク指令値とする。
すなわち、駆動軸へのトルク伝達の途切れ中は、車両へのトルク入力に対するモータ回転速度の伝達特性が、予め想定したモデルとは大きく異なる。このため、トルク伝達の途切れ中、フィードフォワード演算とモデルを用いたフィードバック演算を停止することで、両演算を実行することによる誤動作が防止される。
この結果、トルク伝達の途切れ中において、予想外の振動やショックが生じることを抑制することができる。
図1は、実施例1の電気自動車(電動車両の一例)の制振制御装置を示す全体構成図である。以下、図1に基づき全体構成を説明する。
図2(a),(b)は、車両駆動系の運動方程式をあらわす説明図であり、各符号は、
Jm: モータのイナーシャ
Jw: 駆動輪のイナーシャ
M: 車両の質量
Kd: 駆動系のねじり剛性
Kt: タイヤと路面の摩擦に関する係数
N: オーバーオールギア比
r: タイヤの荷重半径
ωm: モータの角速度
Tm: モータのトルク
TD: 駆動輪のトルク
F: 車両に加えられる力
V: 車両の速度
ωw: 駆動輪の角速度
である。
Jm・dωm/dt=Tm-TD/N …(1)
2Jw・dωm/dt=TD-rF-Fbrk …(2)
M・dV/dt=F …(3)
TD=KD∫(ωm/N-ωw)dt …(4)
F=KT(rωw-V) …(5)
という運動方程式(1)~(5)式を導くことができる。
Gp(s)=(b3s3+b2s2+b1s+b0)/s(a4s3+a3s2+a2s+a1) …(6)
a4=2Jm・Jw・M …(7)
a3=Jm(2Jw+Mr2)KT …(8)
a2={Jm+(2Jw/N2)}M・KD …(9)
a1={Jm+(2Jw/N2)+(Mr2/N2)}KD・KT …(10)
b3=2Jw・M …(11)
b2=Jm(2Jw+Mr2)KT …(12)
b1=M・KD …(13)
b0=KD・KT …(14)
の式となる。
Gp(s)=(s+β)(b2´s2+b1´s+b0´)/s(s+α)(a3´s2+a2´s+a1´) …(15)
従って、式(15)における極零相殺(α=βと近似)により、
Gp(s)=(b2´s2+b1´s+b0´)/s(a3´s2+a2´s+a1´) …(16)
となる。従って、車両への入力トルクとモータ回転速度の伝達特性のモデルGp(s)は、上記式(16)に示すごとく、(2次)/(3次)の伝達特性を構成する。
伝達特性H(s)は、バンドパスフィルタとした場合に、振動のみを低減するフィードバック要素となる。この際、周波数fpを駆動系のねじり共振周波数とし、次の(17)式のように伝達特性H(s)を構成すると、ローパス側の減衰特性、及びハイパス側の減衰特性が略一致し、且つ、駆動系のねじり共振周波数が、対数軸(logスケール)上で、通過帯域の中央部近傍となるように設定される。
H(s)=τHs/{(1+τHs)・(1+τLs)} …(17)
但し、
τL=1/(2πfHC)、fHC=fp、τH=1/(2πfLC)、fLC=fp
である。
よって、上記(17)式によりあらわされる伝達特性により、バンドパスフィルタH(s)が構成される。
この第1モデル判定部93での判定手法は、モータ回転角センサ7により検出したモータ角速度ωmと、駆動軸回転角センサ8により検出した駆動輪角速度ωwと、の差分の絶対値が所定値以内であれば略一致としてON判定する(例えば、図6の時刻Tffは、「略一致判定時間」である。)。一方、モータ角速度ωmと駆動輪角速度ωwとの差分の絶対値が所定値を超えていれば、実際の伝達特性がモデルGp(s)と異なるトルク伝達途切れ状態としてOFF判定する。
なお、駆動軸角速度ωwは、有段変速機2のギア比を用いてモータ軸相当の角速度となるように換算するが、変速中のように電動モータ1~駆動輪5,5のギア比が定まらない場合は、変速終了後のギア比を用いる。また、第1モデル判定部93がON判定したら、F/F演算部91によるF/F演算を開始する。
この第2モデル判定部95での判定手法は、モータ回転角センサ7により検出したモータ角速度ωmと、駆動軸回転角センサ8により検出した駆動輪角速度ωwと、の差分の絶対値が所定値以内である状態を維持したままで所定時間を経過すれば完全に一致としてON判定する(例えば、図6の時刻Tfbは、「完全一致判定時間」である。)。一方、モータ角速度ωmと駆動輪角速度ωwとの差分の絶対値が所定値を超えている、あるいは、差分の絶対値が所定値以内であるが所定時間の経過前であれば、実際の伝達特性がモデルGp(s)と異なるトルク伝達途切れ状態としてOFF判定する。つまり、第2モデル判定部95は、ON判定に所定時間を要するため、第1モデル判定部93より必ずON判定のタイミングは遅くなる。
なお、駆動軸角速度ωwは、第1モデル判定部93と同様に、有段変速機2のギア比を用いてモータ軸相当の角速度となるように換算するが、変速中のように電動モータ1~駆動輪5,5のギア比が定まらない場合は、変速終了後のギア比を用いる。また、第1モデル判定部93がON判定したら、F/B演算部92によるF/B演算を開始する。
まず、「比較例の課題について」の説明を行う。続いて、実施例1の電気自動車の制振制御装置における作用を、「伝達特性がモデルGp(s)と異なる走行シーンでの制振作用」、「伝達特性がモデル一致へ移行する走行シーンでの制振作用」に分けて説明する。
比較例は、図4に示すように、制振制御部に、F/F演算部と、F/B演算部と、加算器と、を備えているものとする。
図5に示すそれぞれの波形と、図4のブロック図との相関は、
「FFトルク」=「第1トルク目標値Tm*1」
「FBトルク」=「第2トルク目標値Tm*2」
「最終出力トルク」=「Tm*1+Tm*2」
である。
<条件>
車両へのトルク入力に対するモータ回転速度の伝達特性がモデルGp(s)と実際に一致する時間Tma:0.1[s]
定常トルク目標値入力時間Tin:0.3[s]
F/F演算開始時間Tff:0.0[s]
F/B演算開始時間Tfb:0.0[s](実線)、F/B演算OFF(点線)
<説明>
車両へのトルク入力に対するモータ回転速度の伝達特性がモデルGp(s)と実際に一致する時間Tmaの前の時間TffからF/B演算を開始している。このため、車両へのトルク入力に対するモータ回転速度の伝達特性がモデルGp(s)と実際に一致する時に制御対象が急に切り替わることで、図5の矢印AのFBトルク特性に示すように、F/B演算が誤動作してしまう。この結果、図5の矢印Bの駆動トルク特性に示すように、ドライバーにとって違和感となるトルク変動が、モデルGp(s)と実際特性が一致する時間Tmaから定常トルク目標値入力時間Tinの間で生じてしまう。そして、目標値入力時間Tinの後、駆動トルクの周期的な変化による振動がみられる。
ちなみに、F/B演算をOFFとする理想状態(点線)の駆動トルク特性は、モデルGp(s)と実際特性が一致する時間Tmaから定常トルク目標値入力時間Tinの間においてトルク変動がみられない。
上記のように、伝達特性がモデルGp(s)と異なる走行シーンでは、モデルGp(s)を用いるF/F演算とF/B演算の誤動作により受ける影響を避けることが必要である。以下、これを反映する伝達特性がモデルGp(s)と異なる走行シーンでの制振作用を説明する。
したがって、加算器97において、モータトルク指令値Tmが、Tm=(Tm*+0)=Tm*により与えられる。
すなわち、駆動軸5,5へのトルク伝達の途切れ中は、車両へのトルク入力に対するモータ回転速度の伝達特性が、予め想定したモデルGp(s)とは大きく異なり、モデルGp(s)を用いるF/F演算とF/B演算を実行することにより誤動作が生じる。
このため、トルク伝達の途切れ中と判定される走行シーンのとき、F/F演算とF/B演算を実行することによる誤動作を防止することで、予想外の振動やショックが生じることを抑えることができる。
上記のように、F/F演算とF/B演算がOFFの状態からトルク制御を開始するとき、F/B演算の誤動作による変動トルクの発生を抑えるには、F/F演算の開始を先行し、F/B演算の開始タイミングをF/F演算の開始タイミングより遅らせることが必要である。以下、これを反映する伝達特性がモデル一致へ移行する走行シーンでの制振作用を説明する。
図6に示すそれぞれの波形と、図3のブロック図との相関は、
「FFトルク」=「第1トルク目標値Tm*1」
「FBトルク」=「第2トルク目標値Tm*2」
「最終出力トルク」=「Tm*1+Tm*2」
である。
<条件>
車両へのトルク入力に対するモータ回転速度の伝達特性がモデルGp(s)と実際に一致する時間Tma:0.1[s]
定常トルク目標値入力時間Tin:0.3[s]
F/F演算開始時間(略一致判定時間)Tff:0.0[s]
F/B演算開始時間(完全一致判定時間)Tfb:0.6[s](実線)、F/B演算OFF(点線)
<説明>
車両へのトルク入力に対するモータ回転速度の伝達特性がモデルGp(s)と実際に一致する時間をモデル一致時間Tmaとする。F/B演算は、モデル一致時間Tma(0.1[s])より後の遅れたタイミングである完全一致判定時間Tfb(0.6[s])から開始している。このため、比較例で生じていたF/B演算の誤動作を防止でき(図6の矢印A)、ドライバーにとって違和感となるトルク変動を抑制できる(図6の矢印B)。
すなわち、トルク伝達開始への移行判定に基づき、F/F演算とF/B演算を同時に開始すると、伝達特性が予め想定したモデルGp(s)と実際に一致する時に制御対象が急に切り替わることで、F/B演算が誤動作してしまい、伝達トルクが変動し、駆動系のねじれ振動が誘起されることがある(比較例を参照)。
これに対し、伝達特性が予め想定したモデルGp(s)と実際に一致する前の早いタイミングから定常トルクの変化に対するF/F演算が働くため、伝達特性が予め想定したモデルGp(s)と一致した後の定常トルクの変化による振動の誘起が抑制される。加えて、伝達特性が予め想定したモデルGp(s)と実際に一致した後の遅いタイミングからF/B演算を開始するため、伝達特性が予め想定したモデルGp(s)と実際に一致する前にF/B演算を行うことによる誤動作が防止される。この結果、発進時、あるいは、走行途中で解放クラッチを締結する時、等のようにトルク伝達開始域となる走行シーンにおいて、予想外の振動やショックが生じることを抑制することができる。
実施例1の電気自動車の制振制御装置にあっては、下記に列挙する効果を得ることができる。
前記モータ(電動モータ1)の回転数(モータ角速度ωm)を検出する回転数検出手段(モータ回転角センサ7)と、
ドライバーの要求に基づき、モータトルク目標値(定常トルク目標値Tm*)を算出するモータトルク目標値算出手段(モータトルク設定部9a)と、
前記モータトルク目標値(定常トルク目標値Tm*)に対して、トルク入力-モータ回転数の伝達特性のモデルGp(s)を用いたF/F演算により第1トルク目標値Tm*1を算出する第1トルク目標値算出手段(F/F演算部91)と、
前記モータ(電動モータ1)の回転数(モータ角速度ωm)に基づいて、前記トルク入力-モータ回転数の伝達特性のモデルGp(s)を用いたF/B演算により第2トルク目標値Tm*2を算出する第2トルク目標値算出手段(F/B演算部92)と、
前記第1トルク目標値Tm*1と前記第2トルク目標値Tm*2を加え合わせて、前記モータ(電動モータ1)へのモータトルク指令値Tmとするモータトルク指令値設定手段(加算器97)と、
前記トルク入力-モータ回転数の伝達特性のモデルGp(s)が実際の伝達特性と一致しているか否かを判定する判定手段(第1モデル判定部93,第2モデル判定部95)と、
前記トルク入力-モータ回転数の伝達特性のモデルGp(s)が実際の伝達特性と一致しないと判定している間、前記第1トルク目標値算出手段(F/F演算部91)による第1トルク目標値Tm*1のF/F演算と、前記第2トルク目標値算出手段(F/B演算部92)による第2トルク目標値Tm*2のF/B演算を停止し、前記モータトルク目標値(定常トルク目標値Tm*)を前記モータトルク指令値Tmとする制振制御手段(第1トルク目標値切替部94,第2トルク目標値切替部96)と、
を備えた。
このため、トルク伝達の途切れ中において、予想外の振動やショックが生じることを抑制する電動車両(電気自動車)の制振制御装置を提供することができる。
このため、(1)の効果に加え、トルク伝達途切れからのトルク伝達開始域において、予想外の振動やショックが生じることを抑制することができる。
このため、(1)または(2)の効果に加え、モータ角速度ωmと駆動輪角速度ωwの差分絶対値により、トルク入力-モータ回転数の伝達特性のモデルGp(s)が実際の伝達特性と一致しないことを精度良く判定することができる。
このため、(2)または(3)の効果に加え、モータ角速度ωmと駆動輪角速度ωwの差分絶対値により、トルク入力-モータ回転数の伝達特性のモデルGp(s)が実際の伝達特性と一致しない状態からの復帰への移行を精度良く判定することができる。
前記第2トルク目標値算出手段(F/B演算部92)は、車両へのトルク入力とモータ回転速度の伝達特性のモデルGp(s)からモータ回転速度の推定値ωm#を算出し、前記モータ回転速度の推定値ωm#と前記モータ回転速度の検出値ωmの偏差Δωを入力し、前記モデルGp(s)とバンドパスフィルタH(s)を用いたフィルタH(s)/Gp(s)を通すF/B演算により第2トルク目標値Tm*2を算出する。
このため、(1)~(4)の効果に加え、予め想定したモデルGp(s)を、F/F演算とF/B演算に用いることで、トルク伝達中に外乱トルクによる駆動系ねじれ振動を効果的に抑制すると共に、トルク伝達の途切れ中において、F/B演算とF/F演算の誤動作に起因して予想外の振動やショックが生じることを抑制することができる。
前記制振制御手段は、前記第1モデル判定部93によるトルク伝達途切れ終了判定(ON判定)によりF/F演算を開始する第1トルク目標値切替部94と、前記第2モデル判定部95によるトルク伝達途切れ終了判定(ON判定)によりF/B演算を開始する第2トルク目標値切替部96と、を有する。
このため、(5)の効果に加え、車両へのトルク入力に対するモータ回転速度の伝達特性がモデルGp(s)と実際に一致するより早いタイミングから定常トルクの変化に対するF/F演算が働くため、一致した後の定常トルクの変化による振動の誘起を確実に抑制することができる。さらに、実際に一致するより遅いタイミングでF/B演算を開始するため、一致する前にF/B演算を行なうことによる誤動作を確実に防止することができる。
前記トルク入力-モータ回転数の伝達特性のモデルGp(s)が実際の伝達特性と一致していると判定している走行シーンの間、F/F演算による第1トルク目標値Tm*1と、F/B演算による第2トルク目標値Tm*2と、を加え合わせて前記電動モータ1へのモータトルク指令値Tmとするトルク伝達モード制御手順と、
前記トルク入力-モータ回転数の伝達特性のモデルGp(s)が実際の伝達特性と一致していないと判定している走行シーンの間、前記F/F演算と前記F/B演算を停止し、ドライバーの要求に基づいて決定した定常トルク目標値Tm*を、前記電動モータ1へのモータトルク指令値Tmとするトルク途切れモード制御手順と、
前記トルク入力-モータ回転数の伝達特性のモデルGp(s)が実際の伝達特性と一致しないとの判定から一致への移行を判定すると、伝達特性が予め想定したモデルGp(s)と実際に一致する前の早いタイミングから定常トルクの変化に対するF/F演算を先行して開始し、第1トルク目標値Tm*1を前記電動モータ1へのモータトルク指令値Tmとし、伝達特性が予め想定したモデルGp(s)と実際に一致した後の遅いタイミングからF/B演算を開始し、先行するF/F演算による第1トルク目標値Tm*1に第2トルク目標値Tm*2を加えて前記電動モータ1へのモータトルク指令値Tmとするトルク過渡モード制御手順と、
を備えた。
このため、トルク伝達の途切れ中およびトルク伝達開始域において、予想外の振動やショックが生じることを抑制する電動車両(電気自動車)の制振制御方法を提供することができる。
図7は、実施例2のモータコントローラ9に有する制振制御部9bを示す制御ブロック図である。以下、図7に基づき制振制御部9bの構成を説明する。
なお、他の構成(F/F演算部91~加算器97)は、実施例1と同様であるので、対応する構成に同一符号を付して説明を省略する。
実施例2のシミュレーション結果を、図8に基づいて説明する。
図8に示すそれぞれの波形と、図7のブロック図との相関は、
「FFトルク」=「第1トルク目標値Tm*1+トルク補正値Tm*3」
「FBトルク」=「第2トルク目標値Tm*2」
「最終出力トルク」=「Tm*1+Tm*2+トルク補正値Tm*3」
である。
<条件>
車両へのトルク入力に対するモータ回転速度の伝達特性がモデルGp(s)と実際に一致する時間Tma:0.1[s]
定常トルク目標値入力時間Tin:0.3[s]
F/F演算開始時間(略一致判定時間)Tff:0.0[s]
F/B演算開始時間(完全一致判定時間)Tfb:0.6[s](実線)、実施例1のF/B演算(点線)
<説明>
実施例1,2の場合、図8の矢印Fの点線特性と実線特性に示すように、F/B演算開始直後において、振動抑制に必要のないF/Bトルクを出力してしまう。このため、実施例1の場合、図8の矢印Gの点線特性に示すように、駆動トルクが変動してしまう。しかし、実施例2の場合、図8の矢印Eの実線特性に示すように、必要のないF/Bトルクを打ち消すような補正トルクTm*3を、FFトルクに加えて出力する。このため、図8の矢印Gの実線特性に示すように、実施例1の駆動トルク特性(点線特性)と比べて、駆動トルクを理想状態に近づけることができる。なお、他の作用は、実施例1と同様であるので、説明を省略する。
実施例2の電気自動車の制振制御装置にあっては、下記の効果を得ることができる。
このため、実施例1の(6)の効果に加え、モータトルク指令値Tmを、F/B演算の開始前後で滑らかに繋ぐように補正することで、F/B演算開始直後に生じる第2トルク目標値Tm*2(=F/Bトルク)の段差が最終出力されるのを打ち消すことができる。さらに、トルク補正値Tm*3を所定時間内にゼロにすることで定常的なトルク偏差が生じるのを防止することができる。
このため、(8)の効果に加え、モータトルク指令値Tmのトルク補正値Tm*3に対してF/F演算が働くことで、振動を誘起することなく、最終出力のトルク段差を打ち消すことができると共に、定常的なトルク偏差が生じるのを防止することができる。
すなわち、ON判定直後は第2トルク目標値Tm*2を初期化し(前回値を出力)、初期化後はゼロ入力をフィルタ98aに通した値とすることで、トルク補正値Tm*3に対しては、FBトルク段差をFFトルクで打ち消すようにF/F演算が働く。そして、伝達特性H(s)をバンドパスフィルタにすると、第2トルク目標値Tm*2は、定常的には0Nmになる。
図9は、実施例3のモータコントローラ9に有する制振制御部9bを示す制御ブロック図である。以下、図9に基づき制振制御部9bの構成を説明する。
なお、他の構成は、実施例1および実施例2と同様であるので、対応する構成に同一符号を付して説明を省略する。また、実施例3の作用は、実施例2とほぼ同様であるので、説明を省略する。
実施例3の電気自動車の制振制御装置にあっては、下記の効果を得ることができる。
このため、実施例2の(8)の効果に加え、モータトルク指令値Tmのトルク補正値Tm*3に対してF/F演算が働くことで、振動を誘起することなく、最終出力のトルク段差を打ち消すことができると共に、定常的なトルク偏差が生じるのを防止することができる。
すなわち、ON判定直後は第2トルク目標値Tm*2を初期化し(前回値を出力)、初期化後はゼロ入力を変化率制限部98cに通した値とすることで、トルク補正値Tm*3に対しては、FBトルク段差をFFトルクで打ち消すようにF/F演算が働く。そして、伝達特性H(s)をバンドパスフィルタにすると、第2トルク目標値Tm*2は、定常的には0Nmになる。
Claims (10)
- 電動のモータを動力源に有する電動車両において、
前記モータの回転数を検出する回転数検出手段と、
ドライバーの要求に基づき、モータトルク目標値を算出するモータトルク目標値算出手段と、
前記モータトルク目標値に対して、トルク入力-モータ回転数の伝達特性のモデルを用いたフィードフォワード演算により第1トルク目標値を算出する第1トルク目標値算出手段と、
前記モータの回転数に基づいて、前記トルク入力-モータ回転数の伝達特性のモデルを用いたフィードバック演算により第2トルク目標値を算出する第2トルク目標値算出手段と、
前記第1トルク目標値と前記第2トルク目標値を加え合わせて、前記モータへのモータトルク指令値とするモータトルク指令値設定手段と、
前記トルク入力-モータ回転数の伝達特性のモデルが実際の伝達特性と一致しているか否かを判定する判定手段と、
前記トルク入力-モータ回転数の伝達特性のモデルが実際の伝達特性と一致しないと判定している間、前記第1トルク目標値算出手段による第1トルク目標値のフィードフォワード演算と、前記第2トルク目標値算出手段による第2トルク目標値のフィードバック演算を停止し、前記モータトルク目標値を前記モータトルク指令値とする制振制御手段と、
を備えたことを特徴とする電動車両の制振制御装置。 - 請求項1に記載された電動車両の制振制御装置において、
前記制振制御手段は、復帰条件を満足すると判定すると、前記第1トルク目標値算出手段による第1トルク目標値のフィードフォワード演算を、前記第2トルク目標値算出手段による第2トルク目標値のフィードバック演算より先に開始して、前記モータトルク指令値を演算することを特徴とする電動車両の制振制御装置。 - 請求項1または請求項2に記載された電動車両の制振制御装置において、
前記判定手段は、モータ角速度と駆動輪角速度の差分の絶対値が所定値を超えるとき、前記トルク入力-モータ回転数の伝達特性のモデルが実際の伝達特性と一致しないと判定することを特徴とする電動車両の制振制御装置。 - 請求項2または請求項3に記載された電動車両の制振制御装置において、
前記判定手段は、モータ角速度と駆動輪角速度の差分の絶対値が所定値以内になるとき、復帰条件を満足すると判定することを特徴とする電動車両の制振制御装置。 - 請求項1から請求項4までの何れか1項に記載された電動車両の制振制御装置において、
前記第1トルク目標値算出手段は、ドライバーの要求に基づいて決定した定常トルク目標値を入力し、車両へのトルク入力とモータ回転速度の伝達特性の理想モデルとモデルを用いたフィルタを通すフィードフォワード演算により第1トルク目標値を算出し、
前記第2トルク目標値算出手段は、車両へのトルク入力とモータ回転速度の伝達特性のモデルからモータ回転速度の推定値を算出し、前記モータ回転速度の推定値と前記モータ回転速度の検出値の偏差を入力し、前記モデルとバンドパスフィルタを用いたフィルタを通すフィードバック演算により第2トルク目標値を算出することを特徴とする電動車両の制振制御装置。 - 請求項5に記載された電動車両の制振制御装置において、
前記判定手段は、車両へのトルク入力とモータ回転速度の伝達特性が予め想定したモデルと実際に一致するタイミングを基準タイミングとしたとき、前記基準タイミングより早いタイミングで復帰条件を満足すると判定する第1モデル判定部と、前記基準タイミングより遅いタイミングで復帰条件を満足すると判定する第2モデル判定部と、を有し、
前記制振制御手段は、前記第1モデル判定部による復帰条件を満足するとの判定によりフィードフォワード演算を開始する第1トルク目標値切替部と、前記第2モデル判定部による復帰条件を満足するとの判定によりフィードバック演算を開始する第2トルク目標値切替部と、を有することを特徴とする電動車両の制振制御装置。 - 請求項6に記載された電動車両の制振制御装置において、
前記第2モデル判定部により復帰条件を満足すると判定されると、前記第2トルク目標値算出手段によるモータ回転速度推定値を算出するための入力であるモータトルク指令値は補正せず、実プラントに入力する最終出力トルクに相当するモータトルク指令値を、フィードバック演算の開始前後で滑らかに繋ぐように補正すると共に、所定時間内にトルク補正値をゼロまで減少させるモータトルク指令値補正手段を設けたことを特徴とする電動車両の制振制御装置。 - 請求項7に記載された電動車両の制振制御装置において、
前記モータトルク指令値補正手段は、予め設定されるトルク入力とモータ回転速度との伝達特性の第2の理想モデルと、前記モデルで構成されるフィルタを有し、前記第2モデル判定部により復帰条件を満足すると判定される度に、判定直後は第2トルク目標値の前回値により初期化して前回値を出力し、初期化後は、ゼロ入力を前記フィルタに通した値とすることを特徴とする電動車両の制振制御装置。 - 請求項7に記載された電動車両の制振制御装置において、
前記モータトルク指令値補正手段は、振動を誘起させない予め設定した変化率で制限する変化率制限部を有し、前記第2モデル判定部により復帰条件を満足すると判定される度に、判定直後は第2トルク目標値の前回値により初期化して前回値を出力し、初期化後は、ゼロ入力を前記変化率制限部に通した値とすることを特徴とする電動車両の制振制御装置。 - 電動のモータを動力源に有し、駆動軸を介したトルク伝達により駆動輪を駆動する電動車両において、
前記トルク入力-モータ回転数の伝達特性のモデルが実際の伝達特性と一致していると判定している走行シーンの間、フィードフォワード演算による第1トルク目標値と、フィードバック演算による第2トルク目標値と、を加え合わせて前記モータへのモータトルク指令値とするトルク伝達モード制御手順と、
前記トルク入力-モータ回転数の伝達特性のモデルが実際の伝達特性と一致していないと判定している走行シーンの間、前記フィードフォワード演算と前記フィードバック演算を停止し、ドライバーの要求に基づいて決定した定常トルク目標値を、前記モータへのモータトルク指令値とするトルク途切れモード制御手順と、
前記トルク入力-モータ回転数の伝達特性のモデルが実際の伝達特性と一致しないとの判定から一致への移行を判定すると、伝達特性が予め想定したモデルと実際に一致する前の早いタイミングから定常トルクの変化に対するフィードフォワード演算を先行して開始し、第1トルク目標値を前記モータへのモータトルク指令値とし、伝達特性が予め想定したモデルと実際に一致した後の遅いタイミングからフィードバック演算を開始し、先行するフィードフォワード演算による第1トルク目標値に第2トルク目標値を加えて前記モータへのモータトルク指令値とするトルク過渡モード制御手順と、
を備えたことを特徴とする電動車両の制振制御方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137001685A KR101372762B1 (ko) | 2010-07-23 | 2011-07-21 | 전동 차량의 제진 제어 장치 및 전동 차량의 제진 제어 방법 |
EP11809691.6A EP2597772B1 (en) | 2010-07-23 | 2011-07-21 | Vibration-inhibition control apparatus for electrically driven vehicle, and vibration-inhibition control method for electrically driven vehicle |
CN201180036129.2A CN103026616B (zh) | 2010-07-23 | 2011-07-21 | 电动车辆的减振控制装置和电动车辆的减振控制方法 |
RU2013107962/07A RU2527916C1 (ru) | 2010-07-23 | 2011-07-21 | Система управления подавлением вибрации для электроприводного транспортного средства и способ подавления вибрации для него |
MX2013000833A MX2013000833A (es) | 2010-07-23 | 2011-07-21 | Sistema de control para la supresion de vibraciones para vehiculos de impulsion electrica y metodo de supresion de vibraciones para el mismo. |
BR112013001748-1A BR112013001748B1 (pt) | 2010-07-23 | 2011-07-21 | Sistema e método de supressão da vibração para veículo acionado eletricamente |
US13/811,394 US8694189B2 (en) | 2010-07-23 | 2011-07-21 | Vibration-inhibition control apparatus for electrically driven vehicle, and vibration-inhibition control method for electrically driven vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-166207 | 2010-07-23 | ||
JP2010166207A JP5573456B2 (ja) | 2010-07-23 | 2010-07-23 | 電動車両の制振制御装置および電動車両の制振制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012011521A1 true WO2012011521A1 (ja) | 2012-01-26 |
Family
ID=45496939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/066541 WO2012011521A1 (ja) | 2010-07-23 | 2011-07-21 | 電動車両の制振制御装置および電動車両の制振制御方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US8694189B2 (ja) |
EP (1) | EP2597772B1 (ja) |
JP (1) | JP5573456B2 (ja) |
KR (1) | KR101372762B1 (ja) |
CN (1) | CN103026616B (ja) |
BR (1) | BR112013001748B1 (ja) |
MX (1) | MX2013000833A (ja) |
RU (1) | RU2527916C1 (ja) |
WO (1) | WO2012011521A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014108294A2 (fr) | 2013-01-10 | 2014-07-17 | Renault S.A.S. | Système et procédé correspondant de commande de la vitesse de rotation d'un moteur électrique d'un véhicule automobile |
US20140257617A1 (en) * | 2011-10-14 | 2014-09-11 | Robert Bosch Gmbh | Active damping control for an electric vehicle or hybrid vehicle |
GB2511829A (en) * | 2013-03-14 | 2014-09-17 | Jaguar Land Rover Ltd | Vehicle speed control system |
EP2839983A4 (en) * | 2012-04-18 | 2016-03-23 | Nissan Motor | DEVICE FOR CONTROLLING ELECTRIC VEHICLE, AND METHOD FOR CONTROLLING ELECTRIC VEHICLE |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5206902B1 (ja) * | 2011-04-26 | 2013-06-12 | トヨタ自動車株式会社 | 車両制御装置 |
JP5857781B2 (ja) * | 2012-02-15 | 2016-02-10 | 日産自動車株式会社 | 電動モータを用いた車両の制振制御装置 |
JP5861554B2 (ja) * | 2012-04-18 | 2016-02-16 | 日産自動車株式会社 | 車両用制振制御装置 |
US9457787B2 (en) * | 2012-05-07 | 2016-10-04 | Ford Global Technologies, Llc | Method and system to manage driveline oscillations with motor torque adjustment |
JP5610090B1 (ja) * | 2012-11-30 | 2014-10-22 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
WO2014115626A1 (ja) * | 2013-01-25 | 2014-07-31 | 日産自動車株式会社 | 誘導モータ制御装置および誘導モータ制御方法 |
JP6225778B2 (ja) * | 2013-06-27 | 2017-11-08 | 株式会社デンソー | トルク伝達装置 |
CN104442412B (zh) * | 2013-09-18 | 2018-01-19 | 通用电气公司 | 装置,移动运输设备,电动拖拉机,电动叉车以及相关方法 |
KR101461909B1 (ko) | 2013-10-10 | 2014-11-13 | 현대자동차주식회사 | 친환경 자동차의 모터 제어 시스템 |
JP6243279B2 (ja) * | 2014-04-02 | 2017-12-06 | カルソニックカンセイ株式会社 | 電動車両の駆動力制御装置 |
WO2016021059A1 (ja) * | 2014-08-08 | 2016-02-11 | 日産自動車株式会社 | 電動車両の制御装置および電動車両の制御方法 |
KR20160034773A (ko) * | 2014-09-22 | 2016-03-30 | 현대자동차주식회사 | 전기 자동차의 모터 진동 저감 제어 장치 및 방법 |
KR101704243B1 (ko) | 2015-08-12 | 2017-02-22 | 현대자동차주식회사 | 친환경자동차의 구동축 진동 저감 제어 방법 |
CN105216780B (zh) * | 2015-09-30 | 2017-12-15 | 上海凌翼动力科技有限公司 | 电动汽车冲击度主动抑制的动力品质控制方法 |
CN105292109B (zh) * | 2015-09-30 | 2017-12-29 | 上海凌翼动力科技有限公司 | 混合动力电动汽车动力品质控制方法 |
JP6531946B2 (ja) * | 2015-10-09 | 2019-06-19 | 日立オートモティブシステムズ株式会社 | 電動車両の制御装置、電動車両の制御システム及び電動車両の制御方法 |
JP6589554B2 (ja) * | 2015-10-26 | 2019-10-16 | 日産自動車株式会社 | 電動車両の制御方法、及び、制御装置 |
EP3446914B1 (en) * | 2016-04-19 | 2020-03-25 | Nissan Motor Co., Ltd. | Electric vehicle control method and electric vehicle control device |
JP6640659B2 (ja) * | 2016-06-14 | 2020-02-05 | 株式会社日立製作所 | 電力変換器の制御装置、電力変換システム、圧縮機駆動システム、フライホイール発電システム、及び、電力変換器の制御方法 |
CN107949981B (zh) * | 2016-07-11 | 2020-01-21 | 三菱电机株式会社 | 逆变器装置 |
WO2018020679A1 (ja) * | 2016-07-29 | 2018-02-01 | 日産自動車株式会社 | 車両の制御方法および制御装置 |
JP6536559B2 (ja) * | 2016-12-27 | 2019-07-03 | トヨタ自動車株式会社 | トルク制御装置 |
CA3065760C (en) * | 2017-06-01 | 2020-11-03 | Nissan Motor Co., Ltd. | Control method and control device for electric vehicle |
DE102017128113B4 (de) * | 2017-11-28 | 2023-12-28 | Gkn Automotive Ltd. | Verfahren zur Steuerung eines Antriebssystems für mindestens eine Achse eines Kraftfahrzeuges |
US11926309B2 (en) * | 2018-12-10 | 2024-03-12 | Aisin Corporation | Motor control device |
JP7196594B2 (ja) * | 2018-12-25 | 2022-12-27 | 株式会社アイシン | モータ制御装置 |
US11177762B2 (en) * | 2019-02-20 | 2021-11-16 | Volvo Car Corporation | Electric motor control for preventing torque ripple |
JP7215371B2 (ja) * | 2019-08-01 | 2023-01-31 | トヨタ自動車株式会社 | 電動車両システム及び電動車両の制御方法 |
CN111581807B (zh) * | 2020-04-30 | 2023-12-26 | 深圳市英威腾电动汽车驱动技术有限公司 | 一种新能源车辆的调试方法、系统、设备及存储介质 |
US11970154B2 (en) * | 2021-09-03 | 2024-04-30 | GM Global Technology Operations LLC | Transmission output speed based wheel flare control system for electrified vehicle applications |
CN115782617A (zh) * | 2022-11-30 | 2023-03-14 | 重庆长安新能源汽车科技有限公司 | 车辆控制方法、装置、设备、介质、车辆及产品 |
US12179583B2 (en) | 2023-02-15 | 2024-12-31 | Dana Heavy Vehicle Systems Group, Llc | System and method for controlling a tandem axle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003009566A (ja) | 2001-06-18 | 2003-01-10 | Nissan Motor Co Ltd | 電動モータを用いた車両の制振制御装置 |
JP2009273328A (ja) * | 2008-05-12 | 2009-11-19 | Nissan Motor Co Ltd | 車両用制振制御装置 |
JP2009294879A (ja) * | 2008-06-04 | 2009-12-17 | Fuji Electric Systems Co Ltd | モデル予測制御装置 |
JP2010200587A (ja) * | 2009-02-27 | 2010-09-09 | Nissan Motor Co Ltd | 電動車両の制振制御装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3747255B2 (ja) * | 1999-04-23 | 2006-02-22 | 株式会社日立製作所 | 電気車の制御装置 |
JP4754766B2 (ja) * | 2000-06-28 | 2011-08-24 | 株式会社ブリヂストン | 車両制御方法及び車両制御装置 |
JP2002171778A (ja) * | 2000-09-25 | 2002-06-14 | Aisin Seiki Co Ltd | 電動モータの振動抑制制御装置及び電動モータの振動抑制制御における設計手法 |
US7110867B2 (en) * | 2002-08-26 | 2006-09-19 | Nissan Motor Co., Ltd. | Vibration suppression apparatus and method for hybrid vehicle |
US6806667B1 (en) * | 2003-05-23 | 2004-10-19 | Toyota Jidosha Kabushiki Kaisha | Control unit and control method for controlling vibration of an electric vehicle |
JP3829840B2 (ja) * | 2003-11-14 | 2006-10-04 | 日産自動車株式会社 | 車両の駆動力制御装置 |
EP1619063B1 (en) * | 2004-07-21 | 2009-10-14 | Nissan Motor Company, Limited | Motor torque control apparatus and method for automotive vehicle |
JP4774975B2 (ja) * | 2005-12-15 | 2011-09-21 | トヨタ自動車株式会社 | 電動機の制御装置 |
JP2007314066A (ja) * | 2006-05-26 | 2007-12-06 | Nissan Motor Co Ltd | ハイブリッド車両のクラッチ締結制御装置 |
JP2008081099A (ja) * | 2006-08-29 | 2008-04-10 | Nissan Motor Co Ltd | ハイブリッド車両の制御装置 |
RU2412839C2 (ru) * | 2006-10-19 | 2011-02-27 | Тойота Дзидося Кабусики Кайся | Устройство управления гашением колебаний транспортного средства |
JP4396717B2 (ja) * | 2007-03-07 | 2010-01-13 | トヨタ自動車株式会社 | 車両の制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体 |
DE112007003699B4 (de) * | 2007-11-07 | 2018-08-30 | Mitsubishi Electric Corp. | Türsteuervorrichtung für einen Aufzug |
EP2341235A1 (en) * | 2008-10-31 | 2011-07-06 | Toyota Jidosha Kabushiki Kaisha | Damping controller of vehicle |
JP5262811B2 (ja) * | 2008-10-31 | 2013-08-14 | トヨタ自動車株式会社 | 車両のバネ上制振制御装置 |
JP5146546B2 (ja) * | 2009-01-13 | 2013-02-20 | トヨタ自動車株式会社 | 車両制御装置 |
JP5035271B2 (ja) * | 2009-02-27 | 2012-09-26 | 日産自動車株式会社 | 電動車両の制振制御装置 |
US8290656B2 (en) * | 2009-05-25 | 2012-10-16 | Nissan Motor Co., Ltd. | Controller and controlling method of electric vehicle |
JP5488203B2 (ja) * | 2010-05-31 | 2014-05-14 | 日産自動車株式会社 | 車両の制振制御装置 |
JP5540894B2 (ja) * | 2010-05-31 | 2014-07-02 | 日産自動車株式会社 | 車両の制振制御装置 |
JP5565627B2 (ja) * | 2010-09-29 | 2014-08-06 | アイシン・エィ・ダブリュ株式会社 | 制御装置 |
-
2010
- 2010-07-23 JP JP2010166207A patent/JP5573456B2/ja active Active
-
2011
- 2011-07-21 MX MX2013000833A patent/MX2013000833A/es active IP Right Grant
- 2011-07-21 KR KR1020137001685A patent/KR101372762B1/ko active IP Right Grant
- 2011-07-21 CN CN201180036129.2A patent/CN103026616B/zh active Active
- 2011-07-21 US US13/811,394 patent/US8694189B2/en active Active
- 2011-07-21 RU RU2013107962/07A patent/RU2527916C1/ru active
- 2011-07-21 WO PCT/JP2011/066541 patent/WO2012011521A1/ja active Application Filing
- 2011-07-21 BR BR112013001748-1A patent/BR112013001748B1/pt active IP Right Grant
- 2011-07-21 EP EP11809691.6A patent/EP2597772B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003009566A (ja) | 2001-06-18 | 2003-01-10 | Nissan Motor Co Ltd | 電動モータを用いた車両の制振制御装置 |
JP2009273328A (ja) * | 2008-05-12 | 2009-11-19 | Nissan Motor Co Ltd | 車両用制振制御装置 |
JP2009294879A (ja) * | 2008-06-04 | 2009-12-17 | Fuji Electric Systems Co Ltd | モデル予測制御装置 |
JP2010200587A (ja) * | 2009-02-27 | 2010-09-09 | Nissan Motor Co Ltd | 電動車両の制振制御装置 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140257617A1 (en) * | 2011-10-14 | 2014-09-11 | Robert Bosch Gmbh | Active damping control for an electric vehicle or hybrid vehicle |
US9855857B2 (en) * | 2011-10-14 | 2018-01-02 | Robert Bosch Gmbh | Active damping control for an electric vehicle or hybrid vehicle |
EP2839983A4 (en) * | 2012-04-18 | 2016-03-23 | Nissan Motor | DEVICE FOR CONTROLLING ELECTRIC VEHICLE, AND METHOD FOR CONTROLLING ELECTRIC VEHICLE |
WO2014108294A2 (fr) | 2013-01-10 | 2014-07-17 | Renault S.A.S. | Système et procédé correspondant de commande de la vitesse de rotation d'un moteur électrique d'un véhicule automobile |
CN104853951A (zh) * | 2013-01-10 | 2015-08-19 | 雷诺股份公司 | 用于控制机动车辆电动马达的旋转速度的系统以及对应方法 |
CN104853951B (zh) * | 2013-01-10 | 2018-04-03 | 雷诺股份公司 | 用于控制机动车辆电动马达的旋转速度的系统以及对应方法 |
US10106052B2 (en) | 2013-01-10 | 2018-10-23 | Renault S.A.S. | System and corresponding method for controlling the rotation speed of an electric motor of a motor vehicle |
GB2511829A (en) * | 2013-03-14 | 2014-09-17 | Jaguar Land Rover Ltd | Vehicle speed control system |
GB2511829B (en) * | 2013-03-14 | 2015-11-25 | Jaguar Land Rover Ltd | Vehicle speed control system |
US9475493B2 (en) | 2013-03-14 | 2016-10-25 | Jaguar Land Rover Limited | Vehicle speed control system |
Also Published As
Publication number | Publication date |
---|---|
EP2597772A1 (en) | 2013-05-29 |
CN103026616B (zh) | 2015-09-09 |
JP5573456B2 (ja) | 2014-08-20 |
BR112013001748B1 (pt) | 2021-06-15 |
MX2013000833A (es) | 2013-02-11 |
RU2013107962A (ru) | 2014-08-27 |
JP2012029474A (ja) | 2012-02-09 |
KR20130032366A (ko) | 2013-04-01 |
KR101372762B1 (ko) | 2014-03-10 |
EP2597772B1 (en) | 2018-12-05 |
EP2597772A4 (en) | 2017-10-18 |
RU2527916C1 (ru) | 2014-09-10 |
US8694189B2 (en) | 2014-04-08 |
BR112013001748A2 (pt) | 2020-10-27 |
CN103026616A (zh) | 2013-04-03 |
US20130184918A1 (en) | 2013-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5573456B2 (ja) | 電動車両の制振制御装置および電動車両の制振制御方法 | |
JP3508742B2 (ja) | 電動モータを用いた車両の制振制御装置 | |
JP5861554B2 (ja) | 車両用制振制御装置 | |
KR101448746B1 (ko) | 전기자동차의 안티 저크 제어 방법 및 시스템 | |
JP4270079B2 (ja) | 駆動力制御装置 | |
JP5862436B2 (ja) | 電動車両の制御装置 | |
US9008941B2 (en) | Anti-jerk control apparatus and method for Hybrid Electric Vehicle | |
JP7172675B2 (ja) | 電動車両の制御装置 | |
JP6574161B2 (ja) | アンチジャーク方法 | |
KR101876015B1 (ko) | 친환경차량의 정차 변속단 해제시 진동 저감 방법 | |
JP2000217209A (ja) | 電動機を駆動力源とした車両の制振装置 | |
JP2012029473A (ja) | 電動車両の制御装置 | |
WO2020137639A1 (ja) | モータ制御装置 | |
JP7333713B2 (ja) | 電動車両の制振装置 | |
JP2005269834A (ja) | 車両用制振制御装置 | |
JP7119968B2 (ja) | モータ制御装置 | |
JP7127553B2 (ja) | モータ制御装置 | |
JP5880048B2 (ja) | 電動車両の制御方法及び電動車両の制御装置 | |
JP7513371B2 (ja) | 電動車両の制御方法、及び、電動車両の制御装置 | |
WO2020122018A1 (ja) | モータ制御装置 | |
WO2022044092A1 (ja) | ハイブリッド車両の制御方法、及び、ハイブリッド車両の制御装置 | |
JP7626250B2 (ja) | 制御装置 | |
US20250001877A1 (en) | Torque control method of drive system of electric vehicle | |
US20240317066A1 (en) | Method of controlling torque of drive system of electric vehicle | |
JP2013237352A (ja) | 車両制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180036129.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11809691 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/000833 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20137001685 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011809691 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013107962 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13811394 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013001748 Country of ref document: BR |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112013001748 Country of ref document: BR Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2010-166207 DE 23/07/2010 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DA CITADA PRIORIDADE, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME |
|
ENP | Entry into the national phase |
Ref document number: 112013001748 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130123 |