Nothing Special   »   [go: up one dir, main page]

WO2012010641A2 - Pharmaceutical composition for increasing cellular hypoxic tolerance - Google Patents

Pharmaceutical composition for increasing cellular hypoxic tolerance Download PDF

Info

Publication number
WO2012010641A2
WO2012010641A2 PCT/EP2011/062469 EP2011062469W WO2012010641A2 WO 2012010641 A2 WO2012010641 A2 WO 2012010641A2 EP 2011062469 W EP2011062469 W EP 2011062469W WO 2012010641 A2 WO2012010641 A2 WO 2012010641A2
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
hypusinylation
eif5a
composition according
diaminoheptane
Prior art date
Application number
PCT/EP2011/062469
Other languages
French (fr)
Other versions
WO2012010641A3 (en
Inventor
Christian Frelin
Paul Vigne
Michel Tauc
Isabelle Rubera
Christophe Duranton
Marc Cougnon
Nicolas Blondeau
Original Assignee
Universite De Nice Sophia Antipolis
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Nice Sophia Antipolis, Centre National De La Recherche Scientifique (Cnrs) filed Critical Universite De Nice Sophia Antipolis
Publication of WO2012010641A2 publication Critical patent/WO2012010641A2/en
Publication of WO2012010641A3 publication Critical patent/WO2012010641A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • the present invention aims to improve existing treatments to relieve patients who have suffered ischemic injury and / or hypoxia conditions, preventing in vivo the onset of disorders resulting from the deprivation of oxygen supply.
  • Hypoxia consists of insufficient oxygenation of the tissues. It can occur in several ways: on the one hand when one climbs aloft (natural hypoxia), on the other hand because of an ischemic lesion (pathological hypoxia).
  • hypobaric Altitude hypoxia (due to the surrounding natural environment) is called hypobaric. It is the decrease of atmospheric air pressure (less than 760mmHg) which leads to the decrease of the partial pressure of each of the gases that compose it, including oxygen.
  • Ischemia is the decrease in arterial blood supply to an organ. This decrease leads to a decrease in tissue oxygenation and the accumulation of anaerobic metabolic products. These disturbances can lead to the cessation of tissue function. Ischemia can have various causes:
  • Ischemia can be reversible and cause only limited discomfort. It can be irreversible and can lead to infarction of the organ, that is to say to the death of part or all of it.
  • the two most critical cases are obviously ischemia affecting the brain or the heart muscle.
  • the molecular mechanisms responsible for tissue damage are well known. They include in particular:
  • metabolic disturbances including decreased ATP stores and kinase activation
  • hypoxia-induced protein HIF Hydrophilia Inducible Factor
  • HIF-prolyl hydroxylases hydrophilicity-inducible Factors
  • Inhibitors of these enzymes induce a state of hypoxic tolerance in vivo and in vitro.
  • the use of these inhibitors in humans is however excluded because these molecules also promote tumor development and dissemination of metastases (Semenza GL et al, Science 2007).
  • the present inventors have discovered a new class of cytoprotective therapeutic agents allowing mammalian cells to survive longer under hypoxic conditions, and to prevent related disturbances. to oxygen deprivation in a model of renal failure due to ischemic injury in rats and in a model of cerebral ischemia in mice.
  • These new agents make it possible to limit the consequences of cellular hypoxia and to reduce oxygen deficiency disorders in vivo in mammals. These disorders most often result from ischemic lesions or conditions of hypoxia.
  • the agents identified in the present invention make it possible to reduce the symptoms of renal insufficiency caused by a 40-minute renal ischemia, and reduce the volume of the infarction induced by a focal cerebrovascular accident.
  • these agents induce a significant decrease in the basal oxygen consumption of an individual, without modifying the level of activity.
  • the subject of the present invention is a pharmaceutical composition for its use for preventing and / or treating pathologies resulting from hypoxic and / or ischemic conditions in a mammal, said composition comprising as a cyto-protective agent an agent that inhibits hypusinylation. of eIF5A.
  • said pathologies are chosen from: renal insufficiency due to ischemic injury, cardiac insufficiency due to an infarction, neurological sequelae due to a cerebrovascular accident, peripheral and central microangiopathies , or disruption of an organ such as the liver, intestine, heart, lung or kidney following transplantation.
  • composition of the invention can be used to increase the hypoxic tolerance of mammalian cells subjected to ischemic injury or hypoxic conditions.
  • said hypusinylation inhibiting agent inhibits the synthesis of hypusin.
  • said hypusinylation inhibiting agent inhibits deoxyhypusine synthase (DHS) or deoxyhypusine hydroxylase (DHH).
  • said hypusinylation inhibiting agent is chosen from 1,7-diaminoheptane (DAH) derivatives such as N-guanyl-1,7-diaminoheptane (GC7), or chosen from 1,3-diazacyclohexane and 1,3-diazacyclo-1-hexene, and is preferably N-Guanyl-1,7-diaminoheptane (GC7).
  • the subject of the invention is a pharmaceutical composition which can be used to prevent and / or treat renal failure due to ischemic injury and to reduce the consequences of a cerebrovascular accident, said composition comprising, as a Cytoprotective agent, an inhibitor of the hypusinylation of eIF5A, preferably Nl-Guanyl-1,7-diaminoheptane (GC7).
  • a Cytoprotective agent an inhibitor of the hypusinylation of eIF5A, preferably Nl-Guanyl-1,7-diaminoheptane (GC7).
  • composition of the invention can also be used to decrease the oxygen consumption of an individual.
  • Figure 1 depicts the model of renal ischemia by temporary arrest of the arterial flow and used to demonstrate the effects of GC7 on hypoxia / ischemia.
  • the left renal artery of anesthetized rats is kept ligated for 40 minutes before being released. Prior to surgery, the rats were treated intraperitoneally with either placebo (0.9% NaCl) or GC7 (1 IP injection per day for 3 days at 3 mg / kg). Renal function parameters were analyzed 24 hours after restoration of the arterial flow.
  • FIG. 2 shows the determination of the Neutralophil Gelatinase Associated Lipocalin (NGAL) tissue marker in total urine before and 24 hours after the application of the ischemia / reperfusion protocol (FIG. 1) to the left renal artery, control rats (white bars) or treated with GC7 3 mg / kg intraperitoneal for 3 days (gray bars).
  • GC7 protects renal tissue integrity impaired by ischemia reperfusion.
  • FIG. 3 shows the plasma NGAL (Neutrophil Gelatinase Associated
  • GC7 protects the renal reabsorption function of glucose impaired by hypoxia / ischemia.
  • GC7 protects the renal reabsorption functions of sodium and phosphate impaired by hypoxia / ischemia.
  • FIG. 6 describes the level of hypusinylated eIF5A (in% relative to total eIF5a) is determined on extracts of kidneys, from animals treated or not treated with GC7, by western blot (6A) with the aid of specific antibodies directed respectively against hypusinylated (eIF5a hyp) or total (eIF5a early) forms of eIF5A.
  • the densitometric analysis in arbitrary units of the gels (6B) is carried out before (white bar) and after treatment with the GC7 (gray bar).
  • an antibody directed against ⁇ -actin was used (actin). Standard means and deviations from 4 animals in each category are shown (**: p ⁇ 0.01, Student's "t” test).
  • GC7 induces in vivo inhibition of hypusinylation of eIF5a.
  • Figure 8 is a graph showing oxygen consumption (8A), intracellular ATP content (8B) glucose consumption (8C) and and lactate production (8D) of renal epithelial cells (proximal tubule). ) treated (gray bars) or not (white bars) with GC-7 at 30 ⁇ . Measurements are taken 24 hours after the start of GC7 treatment. GC7 induces a metabolic shift toward anaerobic glycolysis, allowing cells to break free of oxygen while retaining ATP synthesis capabilities.
  • Figure 9 is a graph showing the basal oxygen consumption of male (A) or female (B) mice injected with placebo (0.9% NaCl, white bars) or with 3 mg GC-7 (gray bars) / kg in IP (1 injection per day during the 3 days preceding the measurement).
  • the mice are maintained in a closed chamber of a volume of 500 cm and containing an expired C0 2 capture system based on barium hydroxide.
  • the O 2 content is measured every 5 minutes with an oxybaby® (Witt) oximeter.
  • the values are expressed in ml of oxygen consumed per hour and per gram of body weight.
  • FIG. 10 represents the quantification of viable neurons in primary cultures of cortical neurons of GC-7 treated and ungaged mice, having undergone (or not) oxygen and glucose deprivation (OGD) for 60 minutes.
  • OGD glucose deprivation
  • Figure 11 shows the volume of cerebral infarction (in mm 3 ) of stroke mice with or without pretreatment with GC-7.
  • the ischemic lesion is quantified by histomorphometric analysis on coronal sections according to 12 defined stereotactic levels.
  • the volume of the infarct is calculated by a mathematical integration of the surfaces of the lesions measured by computer imaging, with the introduction of a corrective factor of the cerebral edema.
  • the therapeutic agents identified by the inventors are molecules known to inhibit a post-translational modification called hypusinylation.
  • these molecules of interest inhibit the hypusinylation of the eIF5A translation initiation factor (SEQ ID NOs: 1, 3 and 4, Al isoforms in humans, the mouse and the rat, respectively: SEQ ID NOs : 5, 6 and 7, isoforms A2 in humans, mice and rats, SEQ ID NO: 2, isoform B in humans).
  • Hypusinylation is a post-translational modification that results from the addition of a 4-aminobutyl residue (from spermidine) to a Lys residue.
  • the eIF5A protein is the only protein known to be hypusinylated to date (Park M.H. et al, J. Biochem, 2006). This protein is a eukaryotic translation initiation factor whose structure is highly conserved between yeast and humans. Hypusine formation is generally known to render the eIF5A protein functional, and contributes to cell proliferation, so that it is associated with different forms of cancer.
  • eIF5Al SEQ ID NO 1 to 4 in humans, mice and rats
  • MG132 another (designated eIF5A2, SEQ ID NO: 5-7 for humans, mice and rats) would likely be involved in translation and cell proliferation (Park MH et al, Amino Acids 2010).
  • the eIF5Al protein is presented as an apoptosis-specific protein having pro-apoptotic properties that can be used to induce cell apoptosis, in particular that of the tumor cells (see EP1959010 for example).
  • the non-hypusinylated form of eIF5Al is active in apoptosis. Inhibition of eIF5Al hypusinylation is therefore generally associated with a pro-apoptotic effect (Sun Z, J. Cell Physiol 2010).
  • WO 2009/144933 proposes to use inhibitors of the secreted form of eIF5A to diagnose or treat atherosclerosis induced by oxidative stress or by ischemic injury.
  • eIF5A was originally described as a translation initiation factor, its inactivation is not actually associated with a decrease in protein synthesis, and a more complex role of nucleocytoplasmic transport of messenger RNAs has also been suggested (Park et al., Amino Acids, 2010).
  • ODC ornithine decarboxylase
  • SSAT spermine synthase
  • SSAT spermidine synthase
  • polyamine oxidase S-adenosyl-L-methionine decarboxylase
  • Inhibitors of hypusinylation of eIF5A have been identified.
  • the best known are DFMO (R, S) -2- (difluoromethyl) ornithine) or ⁇ -difluoromethylornithine (CAS 70052-12-9), a specific inhibitor of ornithine decarboxylase and GC7 (Nl-guanyl-1, 7 diaminoheptane), an inhibitor of deoxyhypusine synthase DHS (CAS 150333-69-0).
  • Many DHS inhibitors have also been tested and characterized (Lee YB and Folk JE, 1998).
  • WO 2003/106433 proposes to inhibit hypusinylation of eIF5A in order to limit the immune reactions that are often induced during organ transplantation.
  • WO 2010/118224 mentions that the administration of agents that inhibit the hypusinylation of eIF5A makes it possible to prevent pancreatic islet degradation, to lower the level of glucose in the blood and to avoid the resistance to insulin in diabetic patients.
  • the amino acids in the diet are beneficial under normal oxygenation conditions (21% of 0 2 ).
  • Vigne et al. demonstrated in 2008 that the specific inhibitor of eIF5A hypusinylation, GC7, is capable of decreasing the toxic effect of the amino acids and polyamines mentioned above.
  • treatment of flies with GC7 reduces their longevity under hypoxia conditions, suggesting that GC7 has a deleterious effect on hypoxiated cells.
  • treatment with GC7 induces a decrease in hypoxic tolerance in Drosophila.
  • GC7 increases the hypoxic tolerance of Drosophilae.
  • the present invention relates to a pharmaceutical composition for its use for preventing and / or treating disorders related to hypoxic conditions and / or ischemic injury in a mammal, said composition comprising, as a cytoplasmic agent, protective agent, an inhibitor of hypusinylation of eIF5A.
  • the present invention is directed to the use of a pharmaceutical composition comprising, as a cytopterive agent, an eIF5A hypusinylation inhibiting agent, for the manufacture of a medicament for preventing and / or treating disorders related to hypoxic conditions and / or ischemic injury in the mammal.
  • the pharmaceutical composition of the invention comprises, in addition to the cytoprotective agent, at least one pharmaceutically acceptable excipient.
  • the present invention provides an eIF5A hypusinylation inhibiting agent for use in preventing and / or treating disorders related to hypoxic conditions and / or ischemic injury in a mammal, or the use of an inhibitor of eIF5A hypusinylation for the manufacture of a medicament for preventing and / or treating disorders related to hypoxic conditions and / or ischemic injury in a mammal.
  • the present invention also relates to a method for preventing and / or treating disorders related to hypoxic conditions and / or ischemic lesions in an individual suffering from them, comprising the step of administering a pharmaceutical composition comprising, in as a cytopterant agent, an eIF5A hypusinylation inhibitory agent, and a pharmaceutically acceptable excipient.
  • said hypusinylation inhibiting agent inhibits the synthesis of hypusin.
  • Hypusine (N e - (4-amino-2-hydroxybutyl) lysine) is a unique amino acid that only occurs for the modification of eIF5A, either in mammals or in Drosophila. It is formed in two stages. First, the DHS enzyme transfers the 4-aminobutyl group of spermidine to the ⁇ group of the lysine residue of the inactive eIF5A protein. Then DHH hydroxylates the eIF5A-deoxyhypusin protein into eIF5A-hypusine which is the active form of eIF5A (Park MH et al., Amino Acids 2010). Thus, in a preferred embodiment, the hypusinylation inhibiting agent inhibits deoxyhypusine synthase (DHS) or deoxyhypusin hydroxylase (DHH).
  • DHS deoxyhypusine synthase
  • DHH deoxyhypusin hydroxylase
  • this hypusinylation inhibiting agent may be chosen from 1,7-diaminoheptane derivatives (DAH, CAS 646-19-5) such as N-guanyl-1,7-diaminoheptane ( GC7) (CAS 150333-69-0), 1,3 diazacyclohexane (CAS 505-21-5) and 1,3 diazacyclo-1-hexene (CAS 25377-66-6), the (R, S) - 2- (difluoromethyl) ornithine (DFMO, CAS 70052-12-9), trans-4-methylcyclohexylamine (CAS 2523-55-9), N- (3-aminopropyl) cyclohexylamine (CAS 3312-60-5), and is preferably Nl-Guanyl-1,7-diaminoheptane (GC7).
  • DAH 1,7-diaminoheptane derivatives
  • GC7 N-guanyl-1,7-diaminoh
  • the hypusinylation inhibiting agent is chosen from 1,7-diaminoheptane derivatives, 1,3-diazacyclohexane derivatives (CAS 505-21-5) and 1,3-diazacyclo-1-hexene derivatives. (CAS 25377-66-6).
  • the hypusinylation inhibiting agent is chosen from the derivatives of 1,7-diaminoheptane, 1,3-diazacyclohexane and 1,3-diazacyclo-1-hexene.
  • the derivatives of 1,7 diaminoheptane (C 7 ) are advantageously branched derivatives such as N-guanyl-1,7-diaminoheptane (GC7), GC7G, GC6, GC8, GC6G, GC8G, CNI-1493 (or semapimod, N, N'-bis [3,5-bis [N- (diaminomethylideneamino) -C-methylcarbonimidoyl] phenyl] decanediamide
  • the derivatives of 1,7 diaminoheptane can also be unsaturated derivatives such as the compounds described in Lee and Folk (1998): 19a (1,7-diguanidinohept-3-yne, C 7 H 4 N 2 ), 22a (1,7-diaminohept-3-yne, C 8 H 18 N 6 ), 1,7-diamino-trans-hept-3-ene (compound 20a, C-7H 16 N 2 ), or 23 (1,7-diguanidinohept-1-ene). 3-ene, C9H 2 0N 6).
  • the hypusinylation inhibiting agent is N 1 -Guanyl-1, 7-diaminoheptane (GC7).
  • the "hypoxic" conditions result either from an ischemic injury (pathological hypoxia), or when climbing at altitude or underwater diving (natural hypoxia).
  • the pharmaceutical composition is used to prevent the occurrence of disorders related to the occurrence of ischemic injury or hypoxia, specifically disorders resulting from the occurrence of ischemic injury or hypoxia affecting an organ, a tissue or cells.
  • renal failure or cortical necrosis due to ischemic injury or hypoxic conditions
  • heart failure due to infarction
  • neurological sequelae resulting from the death of neurons or reduced functioning (due to stroke or trauma)
  • organ disruption or tissue damage to the liver, intestine, heart, lung, kidney or other organs as a result of their transplantation, mountaineering, aeronautical activities or scuba diving.
  • the composition of the invention - or the hypusinylation inhibiting agent of the invention - is used to prevent and / or treat pathologies resulting from hypoxic conditions and / or ischemic lesions.
  • pathologies resulting from hypoxic conditions and / or ischemic lesions for example selected from: renal failure due to ischemic injury or hypoxic conditions, heart failure due to infarction, neurological sequelae due to stroke or trauma, or disturbances of a organ such as liver, intestine, heart, lung or kidney following transplantation.
  • the present inventors have demonstrated that the previously described hypusinylation inhibiting agents increase the hypoxic tolerance of different cell types, i.e., to increase their resistance to oxygen deprivation.
  • the cells (or tissues) that are deprived of oxygen due to ischemic injury or the occurrence of hypoxic conditions) are less affected (therefore more functional) when they have been previously treated with these inhibitors.
  • the pharmaceutical composition of the invention - or the hypusinylation inhibiting agent of the invention - can therefore be used to improve the remission of patients who have undergone ischemic injury, or who have been under hypoxic conditions (diving, mountaineering) for a while. It is thus perfectly indicated in the treatment of any pathology likely to induce ischemic lesions in order to reduce the harmful consequences. It is also perfectly indicated during physical activities likely to induce hypoxic conditions such as aeronautism, mountaineering or diving, in order to reduce the harmful consequences.
  • the pharmaceutical composition of the invention can be used to prevent and / or treat disorders of a hypoxia organ, preferably for a period of at least 2 minutes, and even more preferably to at least 5 minutes.
  • the "conditions of hypoxia” likely to affect a cell, a tissue, an organ or an individual are such that the level of oxygen supplied to said cell, tissue, or organ (especially via the blood stream ) is decreased by 30%, preferably 50%, even more preferably 80% or even 100% compared to a normal situation in vivo. Decreasing this oxygen level can be easily measured by determining the oxygen level in the individual's blood (and comparing it to standard values), or the number of functional blood vessels that irrigate the target organ. (by comparing it with standard data).
  • hypoxia refers to a situation in which a cell, tissue, organ or individual is completely deprived of oxygen (for example, during a cut in the bloodstream or in a non-ventilated medium, for example in submarine or super-atmospheric environment) for at least 5 minutes, preferably at least 10 minutes, most preferably at least 15 minutes.
  • disorders of an organ which has undergone hypoxia or ischemia means the molecular mechanisms induced by hypoxia and ischemia known to those skilled in the art as well as the consequences, or sequelae, of these molecular mechanisms on the subject. general condition of the organ (tissue damage, malfunctions).
  • sequelae / dysregulations mention may again be made of renal insufficiency or cortical necrosis, cardiac insufficiency, neurological sequelae resulting from the necrosis of the neurons or the reduction of their functioning, or the disturbances organs or tissue damage affecting the liver, intestine, heart, lung or kidney or any organ after transplantation, mountaineering, aeronautical activities or scuba diving.
  • the composition of the invention - or the hypusinylation inhibiting agent of the invention - is used to treat pathologies inducing hypoxic conditions and / or ischemic lesions, for example selected from: stroke, trauma, cardiac arrest, atrial fibrillation, angiopathies, peripheral and central microangiopathies , thrombosis, infarction or pulmonary embolism.
  • organs such as liver, intestines, heart or lungs
  • these organs are sometimes transported for a certain distance and for a longer or shorter time.
  • the grafts are stored at 4 ° C. in appropriate solutions for each organ.
  • FID cold ischemia
  • the ischemic lesion should not generally exceed a few hours, otherwise irreversible sequelae.
  • the pharmaceutical composition of the invention can therefore be used to increase the hypoxic tolerance of mammalian cells subjected to ischemic injury or hypoxic conditions.
  • the pharmaceutical composition of the invention makes it possible to increase the waiting time of the organ before its reoxygenation in the tissues of the transplanted individual (DIF), before that sequelae do not appear.
  • the pharmaceutical composition of the invention is therefore used to prevent and / or treat disorders of the organs following their transplantation. More specifically, the pharmaceutical composition of the invention is used to improve the resistance of the organ and to limit cell and tissue damage in the organ during the various stages of its transplantation. It thus makes it possible to improve the functions of the organ once after its transplantation and the remission of the patient who has undergone the transplant. It can therefore also be used to treat patients who have undergone organ transplantation.
  • the hypusinylation inhibiting agent is present in the organ preservation fluid prior to transplantation into the host individual.
  • the cells are protected during the time when oxygen is lacking.
  • the present invention therefore also relates to the use of the hypusinylation inhibiting agent described above as a cytoprotective agent used in an organ preservation fluid, as well as a liquid for the preservation of ex vivo organs containing the inhibiting agent of the organism. hypusinylation previously described.
  • Organ preservation fluids are well known to those skilled in the art, and the cyto-protective agent of the invention may therefore be added to any of them.
  • the composition of the invention comprises, as a cyto-protecting agent, Nl-Guanyl-1,7-diaminoheptane (GC7).
  • GC7 Nl-Guanyl-1,7-diaminoheptane
  • sequelae is meant both direct and / or indirect damage to neurons (eg necrosis of neurons, reduction of their functioning) and their consequences on the individual and his physiology, in the short, medium and and long-term (for example, the occurrence of Alzheimer's disease, post-stroke depression, or the reduction of mental and motor faculties).
  • the composition of the invention thus makes it possible to prevent the formation of cellular and / or tissue lesions in the brain, and thus to reduce or even prevent the appearance of functional, motor and mental sequelae (post-stroke depression or diabetic disease). Alzheimer for example) due to the oxygen deprivation of the patient's neurons.
  • composition of the invention is also useful for treating any pathology likely to induce reduction and / or oxygen deprivation on neuronal cells, in particular to treat pathologies of purely neurological origin (neuropathologies), or neuro-or cerebrovascular (stroke type and angiopathy).
  • the pharmaceutical composition of the invention is used to prevent and / or treat heart failure due to infarction in an animal. More specifically, the pharmaceutical composition of the invention is used to prevent heart failure or any other disorder or injury due to infarction. It can therefore also be used to treat patients who have suffered a heart attack.
  • the composition then comprises, as a cytopter protective agent, Nl-Guanyl-1,7-diaminoheptane (GC7).
  • GC7 Nl-Guanyl-1,7-diaminoheptane
  • composition of the invention makes it possible to significantly reduce the basal oxygen consumption of the treated animals. Surprisingly, this decrease in oxygen consumption is not accompanied by a decrease in the level of activity of the treated animals.
  • composition of the invention can therefore be used in any activity where the oxygen supply is limiting, for example for activities at altitude (first aid, mountaineering, aerial activities, etc.), or even for underwater activities ( diving). This discovery is important because there is no other way to limit the oxygen consumption of a mammal without reducing physical activity.
  • the present invention therefore also aims more particularly at the use of the pharmaceutical composition of the invention for reducing the oxygen consumption of an individual.
  • the present invention is therefore directed to the pharmaceutical composition (or hypusinylation inhibiting agent) of the invention for use in decreasing the oxygen consumption of an individual in need thereof.
  • composition or hypusinylation inhibiting agent of the invention for the manufacture of a medicament for decreasing the oxygen consumption of an individual in need thereof, thereby a method for decreasing the oxygen consumption of an individual in need thereof, said method comprising administering to said individual the pharmaceutical composition (or hypusinylation inhibiting agent) of the invention.
  • said individual is preferably a mammal, even more preferably a human being.
  • GC7 protects a mammal from the adverse consequences of renal failure caused by ischemic injury (see examples).
  • the present invention therefore furthermore relates to a pharmaceutical composition for its use for preventing and / or treating ischemic injury-related renal failure, said composition comprising, as a cyto-protective agent, an inhibitory agent for hypusinylation of eIF5A, preferably Nl-Guanyl-1,7-diaminoheptane (GC7).
  • a pharmaceutical composition for its use for preventing and / or treating ischemic injury-related renal failure comprising, as a cyto-protective agent, an inhibitory agent for hypusinylation of eIF5A, preferably Nl-Guanyl-1,7-diaminoheptane (GC7).
  • GC7 Nl-Guanyl-1,7-diaminoheptane
  • the present invention is directed to the use of a pharmaceutical composition comprising, as a cytopterive agent, an eIF5A hypusinylation inhibiting agent, for the manufacture of a medicament for preventing and / or treating renal failure due to ischemic injury in an animal, particularly in a mammal.
  • the pharmaceutical composition is used to prevent the occurrence of disorders related to renal failure.
  • the present invention is directed to the hypusinylation inhibiting agent of the invention, for its use for preventing and / or treating renal failure due to ischemic injury in an animal, or the use of this agent. inhibitor for the manufacture of a medicament for preventing and / or treating renal failure due to ischemic injury in an animal.
  • said animal is a mammal, in particular man.
  • said hypusinylation inhibiting agent of the invention is N-Guanyl-1,7-diaminoheptane (GC7).
  • the present invention finally provides a method of preventing and / or treating renal failure due to ischemic injury in an individual suffering from it, comprising the step of administering the hypusinylation inhibiting agent of the invention. or a pharmaceutical composition comprising, as a cyto-protective agent, the hypusinylation inhibiting agent of the invention, and a pharmaceutically acceptable carrier.
  • the present invention also relates to the pharmaceutical composition of the invention, for its use for - or for the manufacture of a medicament for - preventing and / or treating neurological sequelae due to a stroke or trauma in an animal .
  • the present invention relates to the hypusinylation inhibiting agent of the invention, for its use for - or for the manufacture of a medicament for - preventing and / or treating neurological sequelae due to a cerebrovascular accident or trauma in an animal.
  • Said animal is preferably a mammal, and in particular man.
  • the present invention finally provides a method for preventing and / or treating neurological sequelae due to a stroke or trauma in an animal, comprising the step of administering the hypusinylation inhibiting agent of the invention , or a pharmaceutical composition comprising it.
  • said composition comprises, as a cyto-protective agent, N 1 -Guanyl-1, 7-diaminoheptane (GC7).
  • cyto-protective agent N 1 -Guanyl-1, 7-diaminoheptane (GC7).
  • Said animal is preferably a mammal, and in particular man.
  • DHS deoxyhypusin synthase
  • GC7 (Nl-guanyl-1,7 diaminoheptane), an inhibitor of deoxyhypusine synthase DHS, was synthesized according to the method described by Jalusionis et al. Cell Biochem Funct (2007). The structure of the product and its purity were evaluated by analysis methods known to those skilled in the art (NMR, mass spectrometry). The purity obtained is greater than 99%.
  • GC7 is soluble in water. A 3 mg / ml solution was prepared in physiological saline.
  • a polyclonal antibody was produced in the rabbit after coupling the peptide to ovalbumin. It recognizes in Western blot experiments, a single protein with the expected molecular weight (17 kDa). The pre-immune serum is inactive. The dilution used is 1/1000.
  • NGAL Neutrophil Gelatinase-Associated Lipocalin
  • the rats were divided into two groups, one treated with GC7 (3 mg / kg intraperitoneal), the other with the control vehicle (same amount of saline) for 4 days before the ischemic injury.
  • the rats were anesthetized with isoflurane, and the left renal artery was ligated. After 40 minutes of ischemia, the blood flow is restored. Urine and a blood sample are collected at time zero (before ischemia) and after 24 hours of recovery.
  • the NGAL marker was assayed in total urine before and 24 hours after 40-minute cross-clamping (temporal ligation) of the left renal artery.
  • the results are shown in Figure 2. These results demonstrate that ischemia induces urine production of NGAL in control animals (confirming the existence of an ischemic state), and that this production is inhibited by GC7, indicating a protective effect of GC7.
  • FIG. 2 also shows that the administration of GC7 does not modify the urinary excretion of NGAL at time 0 before ischemia.
  • Plasma NGAL (from the ischemic kidney) was assayed 24 hours after 40-minute cross-clamping (temporal ligation) of the left renal artery in control or GC7-treated rats. The results are shown in Figure 3. These results demonstrate that the increase in plasma NGAL is more significantly reduced in the GC7-treated animals, indicating a protective effect.
  • Renal function was assessed by fractional excretion of glucose, sodium, and phosphate. All rats underwent 40-minute ischemia of the left renal artery and were reperfused. After 24 hours of recovery the clearance experiments (Dworkin LD and BM Brenner, 2000) were carried out independently on the right (control) and left (ischemic) kidneys of anesthetized rats. Blood and urine glucose was measured by a spectrometric technique (Randox, Kit Gluc HK). Figure 4 shows an alteration of glucose reabsorption by ischemic kidneys. The GC7 corrects this default meaningfully.
  • Plasma (Na) and urinary sodium were measured by flame spectrometry. Plasma and urine phosphate were determined by ion chromatography (Dionex IonPac AS 11).
  • Figure 5 shows an alteration of the fractional excretion of sodium (A) and phosphates (B) on the ischemic left kidneys.
  • the animals treated with GC7 are protected from the harmful consequences induced by ischemia.
  • GC7 is a specific inhibitor of desoxyhypusine synthase, the enzyme that allows hypusinylation (and functionalization of eIF5A). It was important to verify that treatment of rats with GC7 effectively reduced hypusinylation of eIF5A. Hypusinylation of eIF5A was analyzed by "Western blot" experiments using two primary antibodies:
  • GC7 inhibits hypusinylation of eIF5A at the renal level. Moreover, the present inventors have been able to show that GC7 protects renal damage induced by ischemia / reperfusion. The GC7 therefore largely protects animals against the renal consequences of ischemia.
  • the kidney is the organ responsible for maintaining the ionic homeostasis of the body and especially the phospho-calcium balance. This balance is essential and is described in the literature as hypoxia-sensitive (Baines AD et al 1998, Mimura Y and Knox FG 1994, Brazy PC et al 1984). The latter induces a rapid loss of phosphate ions in the urine which can become problematic.
  • mice treated with GC-7 Male and female mice were injected (3 times at 1 day intervals) either with a placebo or with GC7 at 3 mg / kg in IP . The 3rd day, the animals were kept either in normoxic (21% 0 2) or hypoxia (6-8% 0 2) in normobariques conditions for 24 hours. Urine samples were then collected from each animal and analyzed for inorganic phosphate (PO 4 ) and creatinine content.
  • FIG. 7 gives for each animal category the average of the PO 4 / creatinine ratios on (n) mice. The ratio to creatinine eliminates the urine dilution rate specific to each animal and its physiological condition at the moment of measurement.
  • hypoxia induces a massive urinary loss of phosphate
  • GC7 does not modify the urinary excretion of phosphates under normoxic conditions
  • GC7 significantly attenuates hypoxia-induced urinary phosphate loss.
  • GC7 Since phosphate reabsorption in mammals is located mainly in the proximal segment of the nephron, these results prove that GC7 protects this essential function of the kidney in cases of hypoxia. III. GC7 decreases the basal oxygen consumption of a mammal.
  • mice injected with placebo NaCl 0.9%) or with GC-7 at 3 mg / kg was investigated:
  • the animals were placed individually in a 500 cm enclosure containing a device (barium hydroxide solution) capable of trapping the C0 2 exhaled by the animals.
  • the oxygen consumption was recorded for about 30 minutes (1 point every 5 minutes) using an oxybaby® (Witt) oximeter.
  • the indicated consumptions were expressed in ml of 0 2 per hour and per gram of body weight. The experiments were stopped when the oxygen level of the container reached 10% of 0 2 .
  • GC7 induces a significant decrease in the basal oxygen consumption of a male or female mammal; this effect of GC7 on oxygen consumption in vitro and in vivo is explained by a metabolic shift making the mammal less dependent on oxygen; this less dependence on oxygen explains the resistance of the kidney to a hypoxic / ischemic episode; and this decrease in oxygen consumption does not change the level of sleep of animals that maintain normal behavior.
  • GC7 protects neurons from ischemia
  • Figure 10 shows that deprivation of oxygen and glucose for 60 minutes results in the death of 32% of neurons.
  • the OGD leads to only 11% neuronal loss when the cells were pre-treated with GC7 (Condition control + GC7: 86.74 + 1.58 versus condition OGD + pretreatment GC7: 77,27 + 1,7).
  • the results presented in FIG. 11 were obtained with male C57B1 / 6 mice with a minimum weight of 20 g.
  • the animals had free access to food and water and were kept in the circadian cycle (12 h of light / 12 h of darkness) in our licensed pet shop.
  • MCAO model the model of transient focal ischemia
  • MCA middle cerebral artery
  • the average cerebral artery corresponds to the sylvian artery in humans, whose occlusion is responsible for approximately 80% of strokes.
  • the occlusion time was 60 min (Blondeau et al., 2009, Nguemeni et al., 2010).
  • the size of the infarct, the mortality rate, the percentage of cases of spontaneous reperfusion were characterized according to a published method (Nguemeni et al., 2010).
  • the preventive approach consisted of 3 repeated injections of GC7 (3 mg / kg body weight) spaced 24 hours apart, the last injection was performed 30 minutes before the induction of stroke. The same protocol was performed for placebo.
  • GC7 pretreatment clearly decreases the animal mortality rate 24 hours after carotid occlusion by doubling the survival rate of animals on the first day post-stroke.
  • GC7 treatment increases spontaneous reperfusion rate after stroke.
  • mortality is the first consequence of stroke and non-reperfusion is the most unfavorable prognosis for stroke.
  • Mortality is a consequence of excessive brain damage / infarction / neuronal loss and the absence of reperfusion results in an expansion of the lesional volume.
  • pretreatment with GC7 reduces infarct size by about 30%.
  • the different brain regions have different sensitivities to stroke and the severity of the tissue injury is related to its proximity to vascular occlusion. Also, it is admitted in the ischemia of the middle cerebral artery that the ischemic heart mainly affects the subcortical regions, whereas the target ischemic penumbra of the therapeutics would be cortical.
  • the finer analysis of GC7-induced protection suggests that GC7 protection also occurs at the cortical level ( Figure 11). Since the effect of GC7 on reperfusion may affect protection, we analyzed the effects of GC7 only in reperfused animals. Pretreatment with GC7 also reduced cerebral infarction by 30% in reperfused animals (control: 26.4 + 4.2 mm versus GC7: 18.3 + 2.6, p ⁇ 0.05).

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)

Abstract

The present inventors have discovered a new class of cryoprotective therapeutic agents which make it possible for mammalian cells to survive for longer periods of time under hypoxic conditions, and to prevent problems linked to oxygen deprivation in a model of renal failure due to ischemic lesion in rats and of cardiac stroke. The present invention is therefore directed towards a pharmaceutical composition for preventing and/or treating pathological conditions resulting from hypoxic conditions and/or from ischemic lesions in a mammal, said composition comprising, as cytoprotective agent, an elF5A-hypusination-inhibiting agent, such as, for example, N1-guanyl-1,7-diaminoheptane (GC7).

Description

COMPOSITION PHARMACEUTIQUE POUR AUGMENTER LA  PHARMACEUTICAL COMPOSITION FOR INCREASING THE
TOLERANCE HYPOXIQUE CELLULAIRE  CELLULAR HYPOXIC TOLERANCE
La présente invention vise à améliorer les traitements existants pour soulager des patients ayant subi des lésions ischémiques et/ou des conditions d'hypoxie, en prévenant in vivo l'apparition des troubles résultant de la privation de l'apport d'oxygène. The present invention aims to improve existing treatments to relieve patients who have suffered ischemic injury and / or hypoxia conditions, preventing in vivo the onset of disorders resulting from the deprivation of oxygen supply.
L'hypoxie consiste en une oxygénation insuffisante des tissus. Elle peut survenir de plusieurs manières : d'une part lorsque l'on monte en altitude (hypoxie naturelle), d'autre part à cause d'une lésion ischémique (hypoxie pathologique).  Hypoxia consists of insufficient oxygenation of the tissues. It can occur in several ways: on the one hand when one climbs aloft (natural hypoxia), on the other hand because of an ischemic lesion (pathological hypoxia).
L'hypoxie d'altitude (due au milieu naturel ambiant) est dite hypobare. C'est la diminution de pression de l'air atmosphérique (moins de 760mmHg) qui conduit à la diminution de la pression partielle de chacun des gaz qui le composent, dont le dioxygène.  Altitude hypoxia (due to the surrounding natural environment) is called hypobaric. It is the decrease of atmospheric air pressure (less than 760mmHg) which leads to the decrease of the partial pressure of each of the gases that compose it, including oxygen.
Une ischémie est la diminution de l'apport sanguin artériel à un organe. Cette diminution entraîne une diminution de l'oxygénation des tissus et l'accumulation des produits du métabolisme anaérobique. Ces perturbations peuvent conduire à l'arrêt de la fonction tissulaire. L'ischémie peut avoir diverses causes :  Ischemia is the decrease in arterial blood supply to an organ. This decrease leads to a decrease in tissue oxygenation and the accumulation of anaerobic metabolic products. These disturbances can lead to the cessation of tissue function. Ischemia can have various causes:
présence d'un caillot sanguin obstruant une artère (thrombose),  presence of a blood clot obstructing an artery (thrombosis),
- formation d'une plaque d'athérome,  - formation of an atheromatous plaque,
hémorragie ou hypo perfusion empêchant certains tissus d'être correctement alimentés,  hemorrhage or hypo-infusion preventing certain tissues from being properly fed,
compression d'une artère par un objet extérieur (écrasement d'un membre, garrot) ou par un phénomène interne (hématome, tumeur, ou épanchement d'un liquide).  compression of an artery by an external object (crushing of a limb, tourniquet) or by an internal phenomenon (hematoma, tumor, or effusion of a liquid).
L'ischémie peut être réversible et n'entraîner qu'une gêne limitée. Elle peut être irréversible et peut conduire à l'infarctus de l'organe, c'est-à-dire à la mort d'une partie ou de la totalité de celui-ci. Les deux cas les plus critiques sont évidemment les ischémies touchant le cerveau ou le muscle cardiaque. L'ischémie aiguë d'un membre, consécutive à l'oblitération brutale de l'axe artériel de ce dernier, est une urgence vasculaire à pronostic vital engagé (mortalité d'environ 20 %). Elle survient le plus souvent après une thrombose ou une embolie. Il en résulte une souffrance tissulaire due à la privation d'oxygène. Ischemia can be reversible and cause only limited discomfort. It can be irreversible and can lead to infarction of the organ, that is to say to the death of part or all of it. The two most critical cases are obviously ischemia affecting the brain or the heart muscle. The acute ischemia of a limb, consecutive to the abrupt obliteration of the arterial axis of the latter, is a vascular emergency with vital prognosis (mortality of about 20%). It occurs most often after thrombosis or embolism. This results in tissue suffering due to oxygen deprivation.
Les mécanismes moléculaires responsables des dommages tissulaires sont bien connus. Ils comprennent en particulier :  The molecular mechanisms responsible for tissue damage are well known. They include in particular:
- une acidose cellulaire et les conséquences de la dérégulation du pH intracellulaire sur l'homéostasie du sodium et du calcium intracellulaire,  - a cellular acidosis and the consequences of the deregulation of the intracellular pH on the homeostasis of sodium and intracellular calcium,
- des perturbations métaboliques, dont la diminution des réserves d'ATP et l'activation de ΑΜΡ kinase,  metabolic disturbances, including decreased ATP stores and kinase activation,
- la production de radicaux libres, et  - the production of free radicals, and
- l'apoptose selon la sévérité de l'attaque ischémique.  apoptosis according to the severity of the ischemic attack.
De nombreux développements pharmaceutiques et études cliniques ont eu pour objet la prévention des lésions ischémiques en elles-mêmes (prévention des infarctus du myocarde et/ou des accidents vasculaires cérébraux), et la prise en charge par les services d'urgence des patients souffrant de ces pathologies a été nettement améliorée ces dernières années. Cependant, les affections pathologiques résultant de ces lésions, ainsi que les troubles liés au vieillissement (insuffisances cardiaques et rénales, microangiopathies cérébrales) ont peu été étudiés à ce jour, et l'industrie pharmaceutique a besoin de nouvelles cibles moléculaires validées dans ce domaine. De telles cibles pourraient avantageusement augmenter la tolérance hypoxique des cellules, leur permettant de survivre plus longtemps dans des conditions hypoxiques, et ce afin de retarder les effets délétères de la privation d'oxygène dans les tissus ischémiés.  Numerous pharmaceutical developments and clinical studies have focused on the prevention of ischemic lesions by themselves (prevention of myocardial infarction and / or stroke), and the management by emergency departments of patients suffering from these pathologies have been significantly improved in recent years. However, pathological conditions resulting from these lesions, as well as disorders related to aging (cardiac and renal insufficiency, cerebral microangiopathies) have been little studied to date, and the pharmaceutical industry needs new molecular targets validated in this field. Such targets could advantageously increase the hypoxic tolerance of cells, allowing them to survive longer under hypoxic conditions, in order to delay the deleterious effects of oxygen deprivation in ischemic tissue.
Une cible moléculaire connue pour augmenter la tolérance hypoxique des cellules est la protéine induite par l'hypoxie HIF (Hypoxia Inducible Factor) et les enzymes associées HIF-prolyl hydroxylases. Des inhibiteurs de ces enzymes induisent un état de tolérance hypoxique in vivo et in vitro. L'utilisation de ces inhibiteurs chez l'homme est cependant exclue car ces molécules favorisent également le développement tumoral et la dissémination des métastases (Semenza GL et al, Science 2007).  A molecular target known to increase the hypoxic tolerance of cells is the hypoxia-induced protein HIF (Hypoxia Inducible Factor) and the associated enzymes HIF-prolyl hydroxylases. Inhibitors of these enzymes induce a state of hypoxic tolerance in vivo and in vitro. The use of these inhibitors in humans is however excluded because these molecules also promote tumor development and dissemination of metastases (Semenza GL et al, Science 2007).
Dans ce contexte, les présents inventeurs ont découvert une nouvelle classe d'agents thérapeutiques cyto-protecteurs permettant aux cellules de mammifères de survivre plus longtemps dans des conditions hypoxiques, et de prévenir les troublés liés à la privation d'oxygène dans un modèle d'insuffisance rénale due à une lésion ischémique chez le rat et dans un modèle d'ischémie cérébrale chez la souris. Ces nouveaux agents permettent de limiter les conséquences de l'hypoxie cellulaire, et de diminuer les troubles liés à la privation d'oxygène in vivo chez les mammifères. Ces troubles résultent le plus souvent de lésions ischémiques ou de conditions d'hypoxie. En particulier, les agents identifiés dans la présente invention permettent de diminuer les symptômes d'une insuffisance rénale provoquée par une ischémie rénale de 40 minutes, et réduisent le volume de l'infarctus induit par un accident vasculaire cérébral focal. In this context, the present inventors have discovered a new class of cytoprotective therapeutic agents allowing mammalian cells to survive longer under hypoxic conditions, and to prevent related disturbances. to oxygen deprivation in a model of renal failure due to ischemic injury in rats and in a model of cerebral ischemia in mice. These new agents make it possible to limit the consequences of cellular hypoxia and to reduce oxygen deficiency disorders in vivo in mammals. These disorders most often result from ischemic lesions or conditions of hypoxia. In particular, the agents identified in the present invention make it possible to reduce the symptoms of renal insufficiency caused by a 40-minute renal ischemia, and reduce the volume of the infarction induced by a focal cerebrovascular accident.
Par ailleurs, ces agents induisent une diminution significative de la consommation basale en oxygène d'un individu, sans en modifier le niveau d'activité.  Moreover, these agents induce a significant decrease in the basal oxygen consumption of an individual, without modifying the level of activity.
RÉSUMÉ DE L'INVENTION SUMMARY OF THE INVENTION
La présente invention a pour objet une composition pharmaceutique pour son utilisation pour prévenir et/ou traiter les pathologies résultant de conditions hypoxiques et/ou ischémiques chez un mammifère, ladite composition comprenant en tant qu'agent cyto-protecteur un agent inhibiteur de l'hypusinylation d'eIF5A. Selon un aspect plus spécifique de l'invention, lesdites pathologies sont choisies parmi : l'insuffisance rénale due à une lésion ischémique, l'insuffisance cardiaque due à un infarctus, les séquelles neurologiques dues à un accident vasculaire cérébral, les microangiopathies périphériques et centrales, ou les dérèglements d'un organe tel que le foie, l'intestin, le cœur, le poumon ou le rein suite à sa transplantation.  The subject of the present invention is a pharmaceutical composition for its use for preventing and / or treating pathologies resulting from hypoxic and / or ischemic conditions in a mammal, said composition comprising as a cyto-protective agent an agent that inhibits hypusinylation. of eIF5A. According to a more specific aspect of the invention, said pathologies are chosen from: renal insufficiency due to ischemic injury, cardiac insufficiency due to an infarction, neurological sequelae due to a cerebrovascular accident, peripheral and central microangiopathies , or disruption of an organ such as the liver, intestine, heart, lung or kidney following transplantation.
Les inventeurs ont montré en particulier que la composition pharmaceutique de l'invention peut être utilisée pour augmenter la tolérance hypoxique des cellules de mammifère soumises à une lésion ischémique ou à des conditions hypoxiques.  The inventors have shown in particular that the pharmaceutical composition of the invention can be used to increase the hypoxic tolerance of mammalian cells subjected to ischemic injury or hypoxic conditions.
De préférence, ledit agent inhibiteur de l'hypusinylation selon l'invention inhibe la synthèse de l'hypusine. En particulier, ledit agent inhibiteur de l'hypusinylation inhibe la désoxyhypusine synthase (DHS) ou la désoxyhypusine hydroxylase (DHH). Encore plus particulièrement, ledit agent inhibiteur de l'hypusinylation est choisi parmi les dérivés du 1,7-diaminoheptane (DAH) tels que le Nl-Guanyl-l,7-diaminoheptane (GC7), ou choisi parmi le 1,3 diazacyclohexane et le 1,3 diazacyclo-l-hexene, et est de préférence le Nl-Guanyl- 1,7-diaminoheptane (GC7). De façon encore plus préférée, ladite invention a pour objet une composition pharmaceutique qui peut être utilisée pour prévenir et/ou traiter l'insuffisance rénale due à une lésion ischémique et diminuer les conséquences d'un accident vasculaire cérébral, ladite composition comprenant, en tant qu'agent cyto-protecteur, un agent inhibiteur de l'hypusinylation d'eIF5A, de préférence le Nl-Guanyl-l,7-diaminoheptane (GC7). Preferably, said hypusinylation inhibiting agent according to the invention inhibits the synthesis of hypusin. In particular, said hypusinylation inhibiting agent inhibits deoxyhypusine synthase (DHS) or deoxyhypusine hydroxylase (DHH). Even more particularly, said hypusinylation inhibiting agent is chosen from 1,7-diaminoheptane (DAH) derivatives such as N-guanyl-1,7-diaminoheptane (GC7), or chosen from 1,3-diazacyclohexane and 1,3-diazacyclo-1-hexene, and is preferably N-Guanyl-1,7-diaminoheptane (GC7). Even more preferably, the subject of the invention is a pharmaceutical composition which can be used to prevent and / or treat renal failure due to ischemic injury and to reduce the consequences of a cerebrovascular accident, said composition comprising, as a Cytoprotective agent, an inhibitor of the hypusinylation of eIF5A, preferably Nl-Guanyl-1,7-diaminoheptane (GC7).
La composition de l'invention peut également être utilisée pour diminuer la consommation en oxygène d'un individu.  The composition of the invention can also be used to decrease the oxygen consumption of an individual.
LÉGENDES DES FIGURES LEGENDS OF FIGURES
La figure 1 décrit le modèle d'ischémie rénale par arrêt momentané du flot artériel et utilisé pour démontrer les effets du GC7 sur l'hypoxie/ischémie. L'artère rénale gauche de rats anesthésiés est maintenue ligaturée pendant 40 minutes avant d'être relâchée. Préalablement à l'acte chirurgical les rats ont été traités par voie intrapéritonéale soit avec du placebo (NaCl 0,9 %) soit avec du GC7 (1 injection IP par jour pendant 3 jours à 3 mg/kg). Les paramètres de la fonction rénale ont été analysés 24 heures après la restauration du flux artériel.  Figure 1 depicts the model of renal ischemia by temporary arrest of the arterial flow and used to demonstrate the effects of GC7 on hypoxia / ischemia. The left renal artery of anesthetized rats is kept ligated for 40 minutes before being released. Prior to surgery, the rats were treated intraperitoneally with either placebo (0.9% NaCl) or GC7 (1 IP injection per day for 3 days at 3 mg / kg). Renal function parameters were analyzed 24 hours after restoration of the arterial flow.
La figure 2 représente le dosage du marqueur d'atteinte tissulaire NGAL (Neutrophil Gelatinase Associated Lipocalin) dans les urines totales avant et 24 heures après l'application du protocole d'ischémie / reperfusion (figure 1) sur l'artère rénale gauche, chez des rats contrôles (barres blanches) ou traités par du GC7 3 mg/kg en intra péritonéal, pendant 3 jours, (barres grises). Les valeurs de NGAL sont classiquement rapportées à la créatinine urinaire. Les moyennes sont représentées (+ sem) et le nombre d'animaux utilisés est indiqué (entre parenthèses). ** = P < 0.01 avec le test « t » de Student. Le GC7 protège l'intégrité tissulaire rénale altérée par l'ischémie reperfusion.  FIG. 2 shows the determination of the Neutralophil Gelatinase Associated Lipocalin (NGAL) tissue marker in total urine before and 24 hours after the application of the ischemia / reperfusion protocol (FIG. 1) to the left renal artery, control rats (white bars) or treated with GC7 3 mg / kg intraperitoneal for 3 days (gray bars). The NGAL values are classically related to urinary creatinine. The averages are represented (+ sem) and the number of animals used is indicated (in parentheses). ** = P <0.01 with Student's "t" test. GC7 protects renal tissue integrity impaired by ischemia reperfusion.
La figure 3 représente le NGAL plasmatique (Neutrophil Gelatinase Associated Figure 3 shows the plasma NGAL (Neutrophil Gelatinase Associated
Lipocalin) dosé 24 heures après l'application du protocole d'ischémie / reperfusion (figure 1) sur l'artère rénale gauche chez des rats contrôles (barre blanche) ou traités par du GC7 3 mg/kg en intra péritonéal, pendant 3 jours avant la ligature, (barre grise). Les moyennes sont représentées (+ sem) et le nombre d'animaux utilisés est indiqué (entre parenthèses). * = P< 0.05 avec le test « t » de Student. La figure 4 représente les excrétions fractionnelles (en % du glucose filtré) urinaires de glucose des reins droit (barres blanches) et gauche (barres grises) mesurées 24 heures après l'application du protocole d'ischémie / reperfusion (figure 1) sur l'artère rénale gauche chez des rats contrôles ou traités par du GC7 (3 mg/kg en intra-péritonéal, pendant 3 jours). Les moyennes sont représentées (+ sem) et le nombre d'animaux utilisés est indiqué (n). * = P < 0.05 avec le test « t » de Student. Le GC7 protège la fonction de réabsorption rénale du glucose altérée par l'hypoxie/ischémie. Lipocalin) dosed 24 hours after the application of the ischemia / reperfusion protocol (FIG. 1) on the left renal artery in control rats (white bar) or treated with GC7 3 mg / kg intraperitoneal for 3 days before ligature, (gray bar). The averages are represented (+ sem) and the number of animals used is indicated (in parentheses). * = P <0.05 with Student's "t" test. Figure 4 shows fractional excretion (as a% of glucose filtered) urinary glucose of the right kidneys (white bars) and left (gray bars) measured 24 hours after the application of the ischemia / reperfusion protocol (Figure 1) on the left renal artery in control or GC7-treated rats (3 mg / kg intraperitoneal for 3 days). The averages are represented (+ sem) and the number of animals used is indicated (n). * = P <0.05 with Student's "t" test. GC7 protects the renal reabsorption function of glucose impaired by hypoxia / ischemia.
La figure 5 est un graphique représentant les excrétions fractionnelles ( en % de la quantité de sodium et de phosphate filtré) urinaires de sodium (A) et de phosphate (B) des reins droit (barres blanches) et gauche (barres grises) mesurées 24 heures après l'application du protocole d'ischémie / reperfusion (figure 1) sur l'artère rénale gauche chez des rats contrôles ou traités par du GC7 (3 mg/kg intra péritonéal, pendant 3 jours avant la ligature). Les moyennes sont représentées (+ sem) et le nombre d'animaux utilisés est indiqué (entre parenthèses). * = P < 0.05 avec le test « t » de Student. Le GC7 protège les fonctions de réabsorption rénale de sodium et de phosphate altérée par l'hypoxie/ischémie.  Figure 5 is a graph showing fractional excretions (as a% of sodium and filtered phosphate) of sodium urinary (A) and phosphate (B) of right kidneys (white bars) and left (gray bars) measured 24 hours after the application of the ischemia / reperfusion protocol (Figure 1) to the left renal artery in control or GC7-treated rats (3 mg / kg intraperitoneal for 3 days before ligation). The averages are represented (+ sem) and the number of animals used is indicated (in parentheses). * = P <0.05 with Student's "t" test. GC7 protects the renal reabsorption functions of sodium and phosphate impaired by hypoxia / ischemia.
La figure 6 décrit le taux d'eIF5A hypusinylé (en % par rapport à eIF5a total) est déterminé sur des extraits de reins, provenant d'animaux traités ou non avec le GC7, par western blot (6A) à l'aide d'anticorps spécifiques dirigés respectivement contre les formes hypusinylées (eIF5a hyp) ou totales (eIF5a tôt) de eIF5A. L'analyse densitométrique en unité arbitraire des gels (6B) est réalisée avant (barre blanche) et après traitement par le GC7 (barre grise). Afin de vérifier la quantité totale de protéines déposées par piste (80 μg), un anticorps dirigé contre la β-actine a été utilisé (actine). Les moyennes et déviations standards provenant de 4 animaux dans chaque catégorie, sont indiquées (**: p < 0.01, test « t » de Student). Le GC7 induit bien in vivo une inhibition de l'hypusinylation de eIF5a.  FIG. 6 describes the level of hypusinylated eIF5A (in% relative to total eIF5a) is determined on extracts of kidneys, from animals treated or not treated with GC7, by western blot (6A) with the aid of specific antibodies directed respectively against hypusinylated (eIF5a hyp) or total (eIF5a early) forms of eIF5A. The densitometric analysis in arbitrary units of the gels (6B) is carried out before (white bar) and after treatment with the GC7 (gray bar). In order to verify the total amount of proteins deposited per lane (80 μg), an antibody directed against β-actin was used (actin). Standard means and deviations from 4 animals in each category are shown (**: p <0.01, Student's "t" test). GC7 induces in vivo inhibition of hypusinylation of eIF5a.
La figure 7 est un graphique représentant le rapport phosphate / créatinine dans les urines de souris ayant subi des conditions de normoxie ou d'hypoxie avec (barres grises) ou sans (barres blanches) prétraitement avec du GC7. Les souris prétraitées quotidiennement (3 jours) ou non avec du GC7 à 3 mg/kg sont maintenues en normoxie (21 % d'oxygène) ou en en hypoxie (8 % d'oxygène) pendant 24 heures. Les urines recueillies à t=24 heures sont analysées pour leur contenu en phosphate et en créatinine. Le GC7 protège de la perte de phosphate induite par l'hypoxie Figure 7 is a graph showing the phosphate / creatinine ratio in urine of normoxia or hypoxia-treated (gray bars) or without (white bars) pretreatment with GC7. Mice pretreated daily (3 days) or not with GC7 at 3 mg / kg are maintained in normoxia (21% oxygen) or in hypoxia (8% oxygen) for 24 hours. The urines collected at t = 24 hours are analyzed for their phosphate and creatinine content. GC7 protects against hypoxia-induced phosphate loss
La figure 8 est un graphique représentant la consommation d'oxygène (8A), le contenu en ATP intracellulaire (8B) la consommation de glucose (8C) et et la production de lactate (8D) de cellules épithéliales d'origine rénale (tubule proximal) traitées (barres grises) ou non (barres blanches) avec du GC-7 à 30 μΜ. Les mesures sont réalisées 24 heures après le début du traitement au GC7. Le GC7 induit un "shift" métabolique vers la glycolyse anaérobie permettant aux cellules de s'affranchir de l'oxygène tout en conservant ses capacités de synthèse d'ATP.  Figure 8 is a graph showing oxygen consumption (8A), intracellular ATP content (8B) glucose consumption (8C) and and lactate production (8D) of renal epithelial cells (proximal tubule). ) treated (gray bars) or not (white bars) with GC-7 at 30 μΜ. Measurements are taken 24 hours after the start of GC7 treatment. GC7 induces a metabolic shift toward anaerobic glycolysis, allowing cells to break free of oxygen while retaining ATP synthesis capabilities.
La figure 9 est un graphique représentant la consommation basale en oxygène de souris mâles (A) ou femelles (B) injectées avec le placebo (NaCl 0,9 %, barres blanches) ou avec du GC-7 (barres grises) à 3 mg/kg en IP (1 injection par jour pendant les 3 jours précédant la mesure). Les souris sont maintenues dans une enceinte fermée d'un volume de 500 cm et contenant un système de captage du C02 expiré à base d'hydroxyde de baryum. La teneur en 02 est mesurée toutes les 5 minutes avec un oxymètre oxybaby® (Witt). Les valeurs sont exprimées en ml d'oxygène consommés par heure et par gramme de poids corporel. Les moyennes sont représentées (+ sem) et le nombre d'animaux utilisés est indiqué (n). * = P < 0.05 avec le test « t » de Student. Figure 9 is a graph showing the basal oxygen consumption of male (A) or female (B) mice injected with placebo (0.9% NaCl, white bars) or with 3 mg GC-7 (gray bars) / kg in IP (1 injection per day during the 3 days preceding the measurement). The mice are maintained in a closed chamber of a volume of 500 cm and containing an expired C0 2 capture system based on barium hydroxide. The O 2 content is measured every 5 minutes with an oxybaby® (Witt) oximeter. The values are expressed in ml of oxygen consumed per hour and per gram of body weight. The averages are represented (+ sem) and the number of animals used is indicated (n). * = P <0.05 with Student's "t" test.
La figure 10 représente la quantification des neurones viables dans des cultures primaires de neurone corticaux de souris traitées ou non avec du GC-7, ayant subi (ou non) une privation d'oxygène et de glucose (OGD) pendant 60 minutes. Ce modèle in vitro de privation concomitante d'oxygène et de glucose est décrit comme reproduisant au mieux les effets de l'ischémie observés pendant l'AVC. La privation de glucose est totale et hypoxie de l'ordre de 75 % (passage de 5 % oxygène dans le milieu de culture à 1,2 %).  FIG. 10 represents the quantification of viable neurons in primary cultures of cortical neurons of GC-7 treated and ungaged mice, having undergone (or not) oxygen and glucose deprivation (OGD) for 60 minutes. This in vitro model of concomitant oxygen and glucose deprivation is described as best reproducing the effects of ischemia observed during stroke. The glucose deprivation is total and hypoxia of the order of 75% (passage of 5% oxygen in the culture medium to 1.2%).
La figure 11 représente le volume de l'infarctus cérébrale (en mm3) de souris ayant subi un AVC avec ou sans prétraitement avec le GC-7. La lésion ischémique est quantifiée par une analyse histomorphométrique sur coupes coronales selon 12 niveaux stéréotaxiques définis. Le volume de l'infarctus est calculé par une intégration mathématique des surfaces des lésions mesurées par imagerie informatique, avec introduction d'un facteur correctif de l'œdème cérébral. DESCRIPTION DÉTAILLÉE DE L'INVENTION Figure 11 shows the volume of cerebral infarction (in mm 3 ) of stroke mice with or without pretreatment with GC-7. The ischemic lesion is quantified by histomorphometric analysis on coronal sections according to 12 defined stereotactic levels. The volume of the infarct is calculated by a mathematical integration of the surfaces of the lesions measured by computer imaging, with the introduction of a corrective factor of the cerebral edema. DETAILED DESCRIPTION OF THE INVENTION
Les agents thérapeutiques identifiés par les inventeurs sont des molécules connues pour inhiber une modification post-traductionnelle appelée l'hypusinylation. En particulier, ces molécules d'intérêt inhibent l'hypusinylation du facteur d'initiation de la traduction eIF5A (SEQ ID NOs : 1, 3 et 4, isoformes Al chez l'homme, la souris et le rat, respectivement ; SEQ ID NOs : 5, 6 et 7, isoformes A2 chez l'homme, la souris et le rat ; SEQ ID NO : 2, isoforme B chez l'homme).  The therapeutic agents identified by the inventors are molecules known to inhibit a post-translational modification called hypusinylation. In particular, these molecules of interest inhibit the hypusinylation of the eIF5A translation initiation factor (SEQ ID NOs: 1, 3 and 4, Al isoforms in humans, the mouse and the rat, respectively: SEQ ID NOs : 5, 6 and 7, isoforms A2 in humans, mice and rats, SEQ ID NO: 2, isoform B in humans).
L'hypusinylation est une modification post-traductionnelle qui résulte de l'addition d'un résidu 4 aminobutyl (provenant de la spermidine) sur un résidu Lys. La protéine eIF5A est la seule protéine connue à ce jour pour être hypusinylée (Park M.H. et al, J. Biochem. 2006). Cette protéine est un facteur d'initiation de la traduction eucaryote dont la structure est très conservée entre la levure et l'homme. La formation d'hypusine est généralement connue pour rendre la protéine eIF5A fonctionnelle, et contribue à la prolifération cellulaire, de sorte qu'elle est associée à différentes formes de cancers. L'inhibition de l'hypusinylation d'eIF5A est donc connue pour ses propriétés antiapoptotiques et cytostatiques, favorisant un état quiescent des cellules en bloquant les cellules en phase Gl/S (Balabanov S et al, Blood 2007 ; Jasiulionis M. G. et al, Cell Biochem. Funct. 2007).  Hypusinylation is a post-translational modification that results from the addition of a 4-aminobutyl residue (from spermidine) to a Lys residue. The eIF5A protein is the only protein known to be hypusinylated to date (Park M.H. et al, J. Biochem, 2006). This protein is a eukaryotic translation initiation factor whose structure is highly conserved between yeast and humans. Hypusine formation is generally known to render the eIF5A protein functional, and contributes to cell proliferation, so that it is associated with different forms of cancer. The inhibition of hypusinylation of eIF5A is therefore known for its antiapoptotic and cytostatic properties, favoring a quiescent state of the cells by blocking cells in the Gl / S phase (Balabanov S et al, Blood 2007, Jasiulionis MG et al. Biochem Funct 2007).
Plusieurs isoformes de eIF5A ont été découvertes : parmi elles, eIF5Al (SEQ ID NO 1 à 4 chez l'homme, la souris et le rat) serait exprimée spécifiquement en réponse à l'induction d'une apoptose, induite par un inhibiteur du protéasome, le MG132, une autre (appelée eIF5A2, SEQ ID NO 5 à 7 pour l'homme, la souris et le rat) serait vraisemblablement impliquée dans la traduction et la prolifération cellulaire (Park M.H. et al, Amino Acids 2010).  Several isoforms of eIF5A have been discovered: among them, eIF5Al (SEQ ID NO 1 to 4 in humans, mice and rats) would be specifically expressed in response to the induction of apoptosis, induced by a proteasome inhibitor. the MG132, another (designated eIF5A2, SEQ ID NO: 5-7 for humans, mice and rats) would likely be involved in translation and cell proliferation (Park MH et al, Amino Acids 2010).
La protéine eIF5Al est présentée comme une protéine spécifique de apoptose, ayant des propriétés pro-apoptotiques que l'on peut utiliser pour induire l'apoptose cellulaire, notamment celle des cellules tumorales (voir EP1959010 par exemple). La forme non-hypusinylée d'eIF5Al est active dans l'apoptose. L'inhibition de l'hypusinylation d'eIF5Al est donc généralement associée à un effet pro-apoptotique (Sun Z, J. Cell Physiol 2010). Par ailleurs, WO 2009/144933 propose d'utiliser des inhibiteurs de la forme sécrétée d'eIF5A pour diagnostiquer ou traiter l'athérosclérose induite par le stress oxydatif ou par une lésion ischémique. The eIF5Al protein is presented as an apoptosis-specific protein having pro-apoptotic properties that can be used to induce cell apoptosis, in particular that of the tumor cells (see EP1959010 for example). The non-hypusinylated form of eIF5Al is active in apoptosis. Inhibition of eIF5Al hypusinylation is therefore generally associated with a pro-apoptotic effect (Sun Z, J. Cell Physiol 2010). Furthermore, WO 2009/144933 proposes to use inhibitors of the secreted form of eIF5A to diagnose or treat atherosclerosis induced by oxidative stress or by ischemic injury.
Par ailleurs, à l'inverse, il est généralement admis que c'est la forme hypusinylée des isoformes d'eIF5A qui est impliquée dans la prolifération cellulaire. Dans ce cas, l'inhibition de Γ hypusinylation bloque le cycle cellulaire et induit l'apoptose dans de nombreuses cellules tumorales (d'où son utilisation comme agent cytostatique) (Taylor CA, Exp Cell Res 2007 ; Li AL, J. Biol. Chem. 2004). De la même façon, Huang Y et al ont démontré que l'inhibition de l'hypusinylation d'eIF5A bloque la croissance des neurites et réduit de façon significative la survie des neurones de mammifère.  On the other hand, it is generally accepted that it is the hypusinylated form of eIF5A isoforms that is involved in cell proliferation. In this case, inhibition of hypusinylation blocks the cell cycle and induces apoptosis in many tumor cells (hence its use as a cytostatic agent) (Taylor CA, Exp Cell Res 2007, Li AL, J. Biol. Chem 2004). Similarly, Huang Y et al demonstrated that inhibition of eIF5A hypusinylation blocks neurite outgrowth and significantly reduces the survival of mammalian neurons.
Si eIF5A a été initialement décrite comme étant un facteur d'initiation de la traduction, son inactivation n'est pas réellement associée à une diminution de la synthèse protéique, et un rôle plus complexe de transport nucléocytoplasmique des ARN messagers a également été suggéré (Park et al, Amino Acids, 2010).  Although eIF5A was originally described as a translation initiation factor, its inactivation is not actually associated with a decrease in protein synthesis, and a more complex role of nucleocytoplasmic transport of messenger RNAs has also been suggested (Park et al., Amino Acids, 2010).
Deux enzymes, la désoxyhypusine synthase DHS (EC n° 2.5.1.46 ; SEQ ID NO : Two enzymes, deoxyhypusine synthase DHS (EC No. 2.5.1.46; SEQ ID NO:
8 à 10 pour l'homme (isoformes A, B, et C), SEQ ID NO : 11 chez la souris, et SEQ ID NO : 12 chez le rat) et la désoxyhypusine hydroxylase DHH (EC N° 1.14.99.29 ; SEQ ID NO : 13 pour l'homme, SEQ ID NO : 14 chez la souris, et SEQ ID NO : 15 chez le rat) sont nécessaires à l'hypusinylation d'eIF5A. D'autres enzymes y contribuent par ailleurs : ce sont les enzymes responsables de la synthèse des polyamines, dont en particulier la spermidine, qui est transformée en hypusine par la DHS et la DHH. Ces enzymes sont : l'ornithine décarboxylase (ODC), la spermine synthase, la spermidine synthase, la spermidine/spermine acétyltransférase (SSAT) et la polyamine oxydase, et la S-adénosyl-L-méthionine décarboxylase. 8 to 10 for humans (isoforms A, B, and C), SEQ ID NO: 11 in mice, and SEQ ID NO: 12 in rats) and deoxyhypusin hydroxylase DHH (EC No. 1.14.99.29; ID NO: 13 for humans, SEQ ID NO: 14 in mice, and SEQ ID NO: 15 in rats) are required for hypusinylation of eIF5A. Other enzymes also contribute: it is the enzymes responsible for the synthesis of polyamines, including spermidine, which is converted into hypusine by DHS and DHH. These enzymes are: ornithine decarboxylase (ODC), spermine synthase, spermidine synthase, spermidine / spermine acetyltransferase (SSAT) and polyamine oxidase, and S-adenosyl-L-methionine decarboxylase.
Des inhibiteurs de l'hypusinylation d'eIF5A ont été identifiés. Les plus connus sont le DFMO (R,S)-2-(difluorométhyl)ornithine) ou α-difluorométhylornithine (CAS 70052-12-9), un inhibiteur spécifique de l'ornithine décarboxylase et le GC7 (Nl- guanyl-1,7 diaminoheptane), un inhibiteur de la désoxyhypusine synthase DHS (CAS 150333-69-0). De nombreux inhibiteurs de l'enzyme DHS ont par ailleurs été testés et caractérisés (Lee Y.B. et Folk J.E., 1998). Ces inhibiteurs sont utilisés comme de puissants agents cytostatiques, et ont été proposés pour inhiber les pathologies cancéreuses ainsi que d'autres indications infectieuses (VIH, malaria, leishmaniose) (Jasiulionis M. G. et al, Cell Biochem. Funct. 2007, Kersher B et al, Amino Acids 2010). Certaines études suggèrent un effet pro-apoptotique propre du GC7 et d'autres inhibiteurs de DHS (cf. EP1959010, Sun Z, J. Cell Physiol 2010).Ainsi, l'hypusinylation d'eIF5A est considérée comme une cible potentielle dans le traitement de cancers et d'autres maladies infectieuses (VIH, malaria, leishmaniose). Inhibitors of hypusinylation of eIF5A have been identified. The best known are DFMO (R, S) -2- (difluoromethyl) ornithine) or α-difluoromethylornithine (CAS 70052-12-9), a specific inhibitor of ornithine decarboxylase and GC7 (Nl-guanyl-1, 7 diaminoheptane), an inhibitor of deoxyhypusine synthase DHS (CAS 150333-69-0). Many DHS inhibitors have also been tested and characterized (Lee YB and Folk JE, 1998). These inhibitors are used as powerful cytostatic agents, and have been proposed to inhibit cancerous pathologies as well as other infectious indications (HIV, malaria, leishmaniasis). (Jasiulionis MG et al, Cell Biochem Funct 2007, Kersher B et al, Amino Acids 2010). Some studies suggest a specific pro-apoptotic effect of GC7 and other DHS inhibitors (see EP1959010, Sun Z, J. Cell Physiol 2010). Thus, hypusinylation of eIF5A is considered a potential target in treatment. cancers and other infectious diseases (HIV, malaria, leishmaniasis).
Par ailleurs, WO 2003/106433 propose d'inhiber l'hypusinylation d'eIF5A afin de limiter les réactions immunitaires qui sont souvent induites lors de la transplantation d'organes. D'autre part, WO 2010/118224 mentionne que l'administration d'agents inhibant l'hypusinylation d'eIF5A permet de prévenir la dégradation des ilôts pancréatiques, de diminuer le taux de glucose dans le sang et d'éviter la résistance à l'insuline chez des patients diabétiques.  Furthermore, WO 2003/106433 proposes to inhibit hypusinylation of eIF5A in order to limit the immune reactions that are often induced during organ transplantation. On the other hand, WO 2010/118224 mentions that the administration of agents that inhibit the hypusinylation of eIF5A makes it possible to prevent pancreatic islet degradation, to lower the level of glucose in the blood and to avoid the resistance to insulin in diabetic patients.
Cependant, le lien entre cette hypusinylation et la tolérance hypoxique n'a jamais été identifié chez un mammifère.  However, the link between hypusinylation and hypoxic tolerance has never been identified in a mammal.
Des études récentes sur les mécanismes impliqués dans les mécanismes de tolérance à l'hypoxie ont été réalisées sur des mouches de l'espèce Drosophila (Vigne P, et al, Mech Ageing Dev 2007 et Vigne P. et al, BMC Physiology 2008). Ces études démontrent que le sucrose augmente la survie des Drosophiles placées en conditions d'hypoxie chronique (5% d'02). A l'inverse, les acides aminés naturels (notamment L- proline, L-arginine, L-glutamine, et L-asparagine), les acides aminés du cycle de l'urée (L-citrulline, L-ornithine) et les polyamines (putrescine, spermine, et spermidine) réduisent la survie des mouches hypoxiées et nourries par une solution de sucrose. Les acides aminés du régime alimentaire sont bénéfiques dans des conditions normales d'oxygénation (21% d'02). Vigne et al. ont démontré en 2008 que l'inhibiteur spécifique de l'hypusinylation d'eIF5A, GC7, est capable de diminuer l'effet toxique des acides aminés et des polyamines cités ci-dessus. En l'absence d'acides aminés, le traitement des mouches avec du GC7 diminue leur longévité dans des conditions d'hypoxie, suggérant que le GC7 a un effet délétère sur les cellules hypoxiées. En d'autres termes, selon cette étude, en l'absence d'acides aminés ou de polyamines, le traitement au GC7 induit une diminution de la tolérance hypoxique chez la Drosophile. En revanche, dans des conditions hypoxiques et en présence d'acides aminés, le GC7 augmente la tolérance hypoxique des drosophiles. Dans un premier aspect, la présente invention concerne une composition pharmaceutique pour son utilisation pour prévenir et/ou traiter les troubles liés à des conditions hypoxiques et/ou à des lésions ischémiques chez un mammifère, ladite composition comprenant, en tant qu'agent cyto-protecteur, un agent inhibiteur de l'hypusinylation d'eIF5A. Recent studies on the mechanisms involved in hypoxia tolerance mechanisms have been performed on flies of the Drosophila species (Vigne P, et al., Mech Ageing Dev 2007 and Vigne P. et al., BMC Physiology 2008). These studies demonstrate that sucrose increases the survival of Drosophila placed under conditions of chronic hypoxia (5% 0 2 ). Conversely, natural amino acids (in particular L-proline, L-arginine, L-glutamine, and L-asparagine), the amino acids of the urea cycle (L-citrulline, L-ornithine) and polyamines (putrescine, spermine, and spermidine) reduce the survival of hypoxia-fed and sucrose-solution-fed flies. The amino acids in the diet are beneficial under normal oxygenation conditions (21% of 0 2 ). Vigne et al. demonstrated in 2008 that the specific inhibitor of eIF5A hypusinylation, GC7, is capable of decreasing the toxic effect of the amino acids and polyamines mentioned above. In the absence of amino acids, treatment of flies with GC7 reduces their longevity under hypoxia conditions, suggesting that GC7 has a deleterious effect on hypoxiated cells. In other words, according to this study, in the absence of amino acids or polyamines, treatment with GC7 induces a decrease in hypoxic tolerance in Drosophila. On the other hand, under hypoxic conditions and in the presence of amino acids, GC7 increases the hypoxic tolerance of Drosophilae. In a first aspect, the present invention relates to a pharmaceutical composition for its use for preventing and / or treating disorders related to hypoxic conditions and / or ischemic injury in a mammal, said composition comprising, as a cytoplasmic agent, protective agent, an inhibitor of hypusinylation of eIF5A.
En d'autres termes, la présente invention vise l'utilisation d'une composition pharmaceutique comprenant, en tant qu'agent cyto-protecteur, un agent inhibiteur de l'hypusinylation d'eIF5A, pour la fabrication d'un médicament destiné à prévenir et/ou traiter les troubles liés à des conditions hypoxiques et/ou à des lésions ischémiques chez le mammifère.  In other words, the present invention is directed to the use of a pharmaceutical composition comprising, as a cytopterive agent, an eIF5A hypusinylation inhibiting agent, for the manufacture of a medicament for preventing and / or treating disorders related to hypoxic conditions and / or ischemic injury in the mammal.
La composition pharmaceutique de l'invention comprend, outre l'agent cyto- protecteur, au moins un excipient acceptable sur le plan pharmaceutique.  The pharmaceutical composition of the invention comprises, in addition to the cytoprotective agent, at least one pharmaceutically acceptable excipient.
Plus précisément, la présente invention vise un agent inhibiteur de l'hypusinylation d'eIF5A pour son utilisation pour prévenir et/ou traiter les troubles liés à des conditions hypoxiques et/ou à des lésions ischémiques chez un mammifère, ou encore l'utilisation d'un agent inhibiteur de l'hypusinylation d'eIF5A, pour la fabrication d'un médicament destiné à prévenir et/ou traiter les troubles liés à des conditions hypoxiques et/ou à des lésions ischémiques chez un mammifère.  More specifically, the present invention provides an eIF5A hypusinylation inhibiting agent for use in preventing and / or treating disorders related to hypoxic conditions and / or ischemic injury in a mammal, or the use of an inhibitor of eIF5A hypusinylation for the manufacture of a medicament for preventing and / or treating disorders related to hypoxic conditions and / or ischemic injury in a mammal.
Enfin, la présente invention vise aussi une méthode de prévention et/ou de traitement de troubles liés à des conditions hypoxiques et/ou à des lésions ischémiques chez un individu qui en souffre, comprenant l'étape d'administrer une composition pharmaceutique comprenant, en tant qu'agent cyto-protecteur, un agent inhibiteur de l'hypusinylation d'eIF5A, et un excipient acceptable sur le plan pharmaceutique.  Finally, the present invention also relates to a method for preventing and / or treating disorders related to hypoxic conditions and / or ischemic lesions in an individual suffering from them, comprising the step of administering a pharmaceutical composition comprising, in as a cytopterant agent, an eIF5A hypusinylation inhibitory agent, and a pharmaceutically acceptable excipient.
De préférence, dans le cadre de la présente invention, ledit agent inhibiteur de l'hypusinylation inhibe la synthèse de l'hypusine.  Preferably, in the context of the present invention, said hypusinylation inhibiting agent inhibits the synthesis of hypusin.
L'hypusine (Ne-(4-amino-2-hydroxybutyl)lysine) est un acide aminé unique qui n'intervient que pour la modification d'eIF5A, que ce soit chez les mammifères ou chez la Drosophile. Il est formé en deux temps. D'abord, l'enzyme DHS transfère le groupe 4-aminobutyl de la spermidine sur le groupe ε du résidu lysine de la protéine eIF5A inactive. Puis DHH effectue l'hydroxylation de la protéine eIF5A-désoxyhypusine en eIF5A-hypusine qui est la forme active d'eIF5A (Park MH et al, Amino Acids 2010). Ainsi, dans un mode de réalisation préféré, l'agent inhibiteur de l'hypusinylation inhibe la désoxyhypusine synthase (DHS) ou la désoxyhypusine hydroxylase (DHH). Hypusine (N e - (4-amino-2-hydroxybutyl) lysine) is a unique amino acid that only occurs for the modification of eIF5A, either in mammals or in Drosophila. It is formed in two stages. First, the DHS enzyme transfers the 4-aminobutyl group of spermidine to the ε group of the lysine residue of the inactive eIF5A protein. Then DHH hydroxylates the eIF5A-deoxyhypusin protein into eIF5A-hypusine which is the active form of eIF5A (Park MH et al., Amino Acids 2010). Thus, in a preferred embodiment, the hypusinylation inhibiting agent inhibits deoxyhypusine synthase (DHS) or deoxyhypusin hydroxylase (DHH).
Dans le cadre de la présente invention, cet agent inhibiteur de l'hypusinylation peut être choisi parmi les dérivés du 1,7-diaminoheptane (DAH ; CAS 646-19-5) tels que le Nl-Guanyl- 1,7-diaminoheptane (GC7) (CAS 150333-69-0 ), le 1,3 diazacyclohexane (CAS 505-21-5) et le 1,3 diazacyclo-l-hexene (CAS 25377-66-6), le (R,S)-2-(difluorométhyl)ornithine (DFMO ; CAS 70052-12-9), la trans-4- methylcyclohexylamine (CAS 2523-55-9), la N-(3-aminopropyl)cyclohexylamine (CAS 3312-60-5), et est de préférence le Nl-Guanyl- 1,7-diaminoheptane (GC7).  In the context of the present invention, this hypusinylation inhibiting agent may be chosen from 1,7-diaminoheptane derivatives (DAH, CAS 646-19-5) such as N-guanyl-1,7-diaminoheptane ( GC7) (CAS 150333-69-0), 1,3 diazacyclohexane (CAS 505-21-5) and 1,3 diazacyclo-1-hexene (CAS 25377-66-6), the (R, S) - 2- (difluoromethyl) ornithine (DFMO, CAS 70052-12-9), trans-4-methylcyclohexylamine (CAS 2523-55-9), N- (3-aminopropyl) cyclohexylamine (CAS 3312-60-5), and is preferably Nl-Guanyl-1,7-diaminoheptane (GC7).
Plus généralement, l'agent inhibiteur de l'hypusinylation est choisi parmi les dérivés du 1,7-diaminoheptane, les dérivés du 1,3 diazacyclohexane (CAS 505-21-5) et les dérivés du 1,3 diazacyclo-l-hexene (CAS 25377-66-6).  More generally, the hypusinylation inhibiting agent is chosen from 1,7-diaminoheptane derivatives, 1,3-diazacyclohexane derivatives (CAS 505-21-5) and 1,3-diazacyclo-1-hexene derivatives. (CAS 25377-66-6).
De manière préférée, l'agent inhibiteur de l'hypusinylation est choisi parmi les dérivés du 1,7-diaminoheptane, le 1,3 diazacyclohexane et le 1,3 diazacyclo- l-hexene.  Preferably, the hypusinylation inhibiting agent is chosen from the derivatives of 1,7-diaminoheptane, 1,3-diazacyclohexane and 1,3-diazacyclo-1-hexene.
Les dérivés du 1,7 diaminoheptane (C7) sont avantageusement des dérivés branchés comme le Nl-Guanyl- 1,7-diaminoheptane (GC7), le GC7G, le GC6, le GC8, le GC6G, le GC8G, le CNI-1493 (ou semapimod, N,N'-bis[3,5-bis[N- (diaminomethylideneamino)-C-methylcarbonimidoyl]phenyl]decanediamide The derivatives of 1,7 diaminoheptane (C 7 ) are advantageously branched derivatives such as N-guanyl-1,7-diaminoheptane (GC7), GC7G, GC6, GC8, GC6G, GC8G, CNI-1493 (or semapimod, N, N'-bis [3,5-bis [N- (diaminomethylideneamino) -C-methylcarbonimidoyl] phenyl] decanediamide
tetrahydrochloride) ou encore les composés 25b (1,7-diaminooctane, C8H20N2), 26b (1,7-diguanidinooctane, CioH24N6), 26c (1,7-diguanidinononane, CHE ^NÔ) et le 7- amino- l-guanidino-octane (composé 39, CçEfoN- décrits dans Lee et Folk (1998). tetrahydrochloride) or the compounds 25b (1,7-diaminooctane, C 8 H 2 0N 2), 26b (1,7-diguanidinooctane, CIOH 24 N 6), 26c (1,7-diguanidinononane, CHE N ^ O) and 7-amino-1-guanidinooctane (Compound 39, CefoN-) described in Lee and Folk (1998).
Les dérivés du 1,7 diaminoheptane (C7) peuvent être également des dérivés insaturés comme les composés décrits dans Lee et Folk (1998) : 19a (1,7- diguanidinohept-3-yne, C7Hi4N2), 22a (l,7-diaminohept-3-yne, CgHisNô), 1,7-diamino- trans-hept-3-ene (composé 20a, C-7H16N2), ou 23 (l,7-diguanidinohept-3-ène, C9H20N6). The derivatives of 1,7 diaminoheptane (C 7 ) can also be unsaturated derivatives such as the compounds described in Lee and Folk (1998): 19a (1,7-diguanidinohept-3-yne, C 7 H 4 N 2 ), 22a (1,7-diaminohept-3-yne, C 8 H 18 N 6 ), 1,7-diamino-trans-hept-3-ene (compound 20a, C-7H 16 N 2 ), or 23 (1,7-diguanidinohept-1-ene). 3-ene, C9H 2 0N 6).
De manière préférée entre toutes, l'agent inhibiteur de l'hypusinylation est le N 1 -Guanyl- 1 ,7-diaminoheptane (GC7) .  Most preferably, the hypusinylation inhibiting agent is N 1 -Guanyl-1, 7-diaminoheptane (GC7).
Dans le cadre de la présente invention, les conditions « hypoxiques » résultent soit d'une lésion ischémique (hypoxie pathologique), soit lorsque l'on monte en altitude ou lorsqu'on pratique la plongée sous-marine (hypoxie naturelle). De préférence, la composition pharmaceutique est utilisée pour prévenir l'apparition de troubles liés à l'occurrence d'une lésion ischémique ou d'une hypoxie, plus précisément des troubles résultant de la survenue d'une lésion ischémique ou d'une hypoxie affectant un organe, un tissu ou des cellules. Ces troubles sont, par exemple, l'insuffisance rénale ou la nécrose corticale (due à une lésion ischémique ou à des conditions hypoxiques), l'insuffisance cardiaque (due à un infarctus), les séquelles neurologiques résultant de la mort de neurones ou de la réduction de leur fonctionnement (dues à un accident vasculaire cérébral ou à un traumatisme), ou les dérèglements d'organes ou les dommages tissulaires affectant le foie, l'intestin, le cœur, le poumon ou le rein ou tout autre organe suite à leur transplantation, à l'alpinisme, aux activités aéronautiques ou à la plongée sous-marine. In the context of the present invention, the "hypoxic" conditions result either from an ischemic injury (pathological hypoxia), or when climbing at altitude or underwater diving (natural hypoxia). Preferably, the pharmaceutical composition is used to prevent the occurrence of disorders related to the occurrence of ischemic injury or hypoxia, specifically disorders resulting from the occurrence of ischemic injury or hypoxia affecting an organ, a tissue or cells. These disorders are, for example, renal failure or cortical necrosis (due to ischemic injury or hypoxic conditions), heart failure (due to infarction), neurological sequelae resulting from the death of neurons or reduced functioning (due to stroke or trauma), or organ disruption or tissue damage to the liver, intestine, heart, lung, kidney or other organs as a result of their transplantation, mountaineering, aeronautical activities or scuba diving.
Ainsi, de manière préférée, la composition de l'invention - ou l'agent inhibiteur de l'hypusinylation de l'invention - est utilisé(e) pour prévenir et/ou traiter les pathologies résultant de conditions hypoxiques et/ou de lésions ischémiques, par exemple choisies parmi : l'insuffisance rénale due à une lésion ischémique ou à des conditions hypoxiques, l'insuffisance cardiaque due à un infarctus, les séquelles neurologiques dues à un accident vasculaire cérébral ou à un traumatisme, ou les dérèglements d'un organe tel que le foie, l'intestin, le cœur, le poumon ou le rein suite à sa transplantation.  Thus, preferably, the composition of the invention - or the hypusinylation inhibiting agent of the invention - is used to prevent and / or treat pathologies resulting from hypoxic conditions and / or ischemic lesions. , for example selected from: renal failure due to ischemic injury or hypoxic conditions, heart failure due to infarction, neurological sequelae due to stroke or trauma, or disturbances of a organ such as liver, intestine, heart, lung or kidney following transplantation.
Les présents inventeurs ont démontré que les agents inhibiteurs de l'hypusinylation décrits précédemment permettent d'augmenter la tolérance hypoxique de différents types cellulaires, i.e. d'augmenter leur résistance à une privation d'oxygène. En d'autres termes, les cellules (ou tissus) qui subissent une privation d'oxygène (due à une lésion ischémique ou à la survenue de conditions hypoxiques) sont moins affectées (donc plus fonctionnelles) lorsqu'elles ont été traitées au préalable avec ces inhibiteurs.  The present inventors have demonstrated that the previously described hypusinylation inhibiting agents increase the hypoxic tolerance of different cell types, i.e., to increase their resistance to oxygen deprivation. In other words, the cells (or tissues) that are deprived of oxygen (due to ischemic injury or the occurrence of hypoxic conditions) are less affected (therefore more functional) when they have been previously treated with these inhibitors.
La composition pharmaceutique de l'invention - ou l'agent inhibiteur de l'hypusinylation de l'invention - peut donc être utilisé(e) pour améliorer la rémission des patients ayant subi une lésion ischémique, ou ayant été en conditions hypoxiques (plongée, alpinisme) pendant un certain temps. Elle est ainsi parfaitement indiquée dans le traitement de toute pathologie susceptible d'induire des lésions ischémiques afin d'en réduire les conséquences néfastes. Elle est également parfaitement indiquée lors d'activités physiques susceptibles d'induire des conditions hypoxiques telles que aéronautisme, l'alpinisme ou la plongée, afin d'en réduire les conséquences néfastes. The pharmaceutical composition of the invention - or the hypusinylation inhibiting agent of the invention - can therefore be used to improve the remission of patients who have undergone ischemic injury, or who have been under hypoxic conditions (diving, mountaineering) for a while. It is thus perfectly indicated in the treatment of any pathology likely to induce ischemic lesions in order to reduce the harmful consequences. It is also perfectly indicated during physical activities likely to induce hypoxic conditions such as aeronautism, mountaineering or diving, in order to reduce the harmful consequences.
Plus particulièrement, la composition pharmaceutique de l'invention peut être utilisée pour prévenir et/ou traiter les dérèglements d'un organe ayant subi une hypoxie, de préférence pendant une durée d'au moins 2 minutes, et de manière encore plus préférée d'au moins 5 minutes.  More particularly, the pharmaceutical composition of the invention can be used to prevent and / or treat disorders of a hypoxia organ, preferably for a period of at least 2 minutes, and even more preferably to at least 5 minutes.
Au sens de la présente invention, « les conditions d'hypoxie » susceptibles d'affecter une cellule, un tissu, un organe ou un individu sont telles que le taux d'oxygène apporté auxdits cellule, tissu, ou organe (notamment par voie sanguine) est diminué de 30 %, de préférence de 50 %, de manière encore plus préférée de 80 % voire de 100 % par rapport à une situation normale in vivo. La diminution de ce taux d'oxygène peut être mesurée facilement en déterminant le taux d'oxygène présent dans le sang de l'individu (et en le comparant à des valeurs standards), ou le nombre de vaisseaux sanguins fonctionnels irriguant l'organe visé (en le comparant à des données standards).  Within the meaning of the present invention, the "conditions of hypoxia" likely to affect a cell, a tissue, an organ or an individual are such that the level of oxygen supplied to said cell, tissue, or organ (especially via the blood stream ) is decreased by 30%, preferably 50%, even more preferably 80% or even 100% compared to a normal situation in vivo. Decreasing this oxygen level can be easily measured by determining the oxygen level in the individual's blood (and comparing it to standard values), or the number of functional blood vessels that irrigate the target organ. (by comparing it with standard data).
De manière préférée entre toutes, une « hypoxie » désigne une situation dans laquelle une cellule, un tissu, un organe ou un individu est complètement privé d'oxygène (par exemple lors d'une coupure de la circulation sanguine ou en milieu non aéré, par exemple en milieu sous-marin ou supra-atmosphérique), et ce pendant au moins 5 minutes, de préférence au moins 10 minutes, de manière préférée entre toutes au moins 15 minutes.  Most preferably, "hypoxia" refers to a situation in which a cell, tissue, organ or individual is completely deprived of oxygen (for example, during a cut in the bloodstream or in a non-ventilated medium, for example in submarine or super-atmospheric environment) for at least 5 minutes, preferably at least 10 minutes, most preferably at least 15 minutes.
On entend par « dérèglements d'un organe ayant subi une hypoxie ou ischémie » les mécanismes moléculaires induit par l'hypoxie et l'ischémie connus de l'homme du métier ainsi que les conséquences, ou séquelles, de ces mécanismes moléculaires sur l'état général de l'organe (dommages tissulaires, disfonctionnements). A titre d'exemples de séquelles/dérèglements, on peut citer encore une fois l'insuffisance rénale ou la nécrose corticale, l'insuffisance cardiaque, les séquelles neurologiques résultant de la nécrose des neurones ou de la réduction de leur fonctionnement, ou les dérèglements d'organes ou les dommages tissulaires affectant le foie, l'intestin, le cœur, le poumon ou le rein ou tout autre organe suite à leur transplantation, à l'alpinisme, aux activités aéronautiques ou à la plongée sous-marine. Ainsi, de manière préférée, la composition de l'invention - ou l'agent inhibiteur de l'hypusinylation de l'invention - est utilisé(e) pour traiter les pathologies induisant des conditions hypoxiques et/ou des lésions ischémiques, par exemple choisies parmi : l'accident vasculaire cérébral, trauma, l'arrêt cardiaque, la fibrillation auriculaire, les angiopathies, les microangiopathies périphériques et centrales, les thromboses, les infarctus ou encore les embolies pulmonaires. The term "disorders of an organ which has undergone hypoxia or ischemia" means the molecular mechanisms induced by hypoxia and ischemia known to those skilled in the art as well as the consequences, or sequelae, of these molecular mechanisms on the subject. general condition of the organ (tissue damage, malfunctions). As examples of sequelae / dysregulations, mention may again be made of renal insufficiency or cortical necrosis, cardiac insufficiency, neurological sequelae resulting from the necrosis of the neurons or the reduction of their functioning, or the disturbances organs or tissue damage affecting the liver, intestine, heart, lung or kidney or any organ after transplantation, mountaineering, aeronautical activities or scuba diving. Thus, preferably, the composition of the invention - or the hypusinylation inhibiting agent of the invention - is used to treat pathologies inducing hypoxic conditions and / or ischemic lesions, for example selected from: stroke, trauma, cardiac arrest, atrial fibrillation, angiopathies, peripheral and central microangiopathies , thrombosis, infarction or pulmonary embolism.
Les résultats fournis dans la présente demande démontrent la protection induite par le GC7 contre les séquelles d'une hypoxie/ischémie sur le rein et contre les séquelles d'un accident vasculaire cérébral. Ces résultats peuvent être raisonnablement étendus à d'autres organes susceptibles de subir une lésion ischémique ou hypoxique ou susceptible d'être transplanté, puisque tout organe est en souffrance dès que l'apport en oxygène diminue avec des conséquences fonctionnelles plus ou moins graves. Les organes tels que le cœur, le cerveau et le rein sont les plus sensibles en raison de leur incapacité à se régénérer en cas de stress hypoxique/ischémique. L'administration de GC7 ou plus largement de l'inhibiteur de la déoxyhypusine synthase (DHS), permet à l'organe de mieux résister à la privation d'oxygène, et celui-ci verra donc ses fonctions physiologiques préservées, améliorant son fonctionnement ultérieur.  The results provided in this application demonstrate the protection induced by GC7 against the sequelae of hypoxia / ischemia on the kidney and against the sequelae of a stroke. These results can be reasonably extended to other organs likely to undergo ischemic or hypoxic or transplantable injury, since any organ is suffering as soon as the oxygen supply decreases with more or less serious functional consequences. Organs such as the heart, brain and kidney are the most sensitive because of their inability to regenerate under hypoxic / ischemic stress. The administration of GC7 or more broadly the inhibitor of deoxyhypusine synthase (DHS), allows the organ to better resist the deprivation of oxygen, and it will see its physiological functions preserved, improving its subsequent functioning .
En effet, lors de la transplantation d'organes comme le foie, les intestins, le cœur ou les poumons, ces organes sont transportés parfois sur une certaine distance et pendant un temps plus ou moins long. Classiquement, les greffons sont conservés 4°C dans des solutions appropriées à chaque organe.  Indeed, during the transplantation of organs such as liver, intestines, heart or lungs, these organs are sometimes transported for a certain distance and for a longer or shorter time. Classically, the grafts are stored at 4 ° C. in appropriate solutions for each organ.
La durée d'ischémie froide (DIF) des organes prélevés est le délai pendant lequel le greffon est réfrigéré. Il a été montré que le risque d'échec de la greffe augmente avec l'augmentation de la DIF.  The duration of cold ischemia (FID) of organs removed is the time during which the graft is refrigerated. It has been shown that the risk of transplant failure increases with increasing FID.
La lésion ischémique ne doit généralement pas dépasser quelques heures, sous peine de séquelles irréversibles.  The ischemic lesion should not generally exceed a few hours, otherwise irreversible sequelae.
Dans un mode de réalisation particulier, la composition pharmaceutique de l'invention peut donc être utilisée pour augmenter la tolérance hypoxique des cellules de mammifère soumises à une lésion ischémique ou à des conditions hypoxiques.  In a particular embodiment, the pharmaceutical composition of the invention can therefore be used to increase the hypoxic tolerance of mammalian cells subjected to ischemic injury or hypoxic conditions.
Notamment, en ce qui concerne le don d'organe, la composition pharmaceutique de l'invention permet d'augmenter le temps limite d'attente de l'organe avant sa réoxygénation dans les tissus de l'individu transplanté (le DIF), avant que des séquelles n'apparaissent. Dans un mode de réalisation particulier, la composition pharmaceutique de l'invention est donc utilisée pour prévenir et/ou traiter les dérèglements des organes suite à leur transplantation. Plus précisément, la composition pharmaceutique de l'invention est utilisée pour améliorer la résistance de l'organe et pour limiter les dommages cellulaires et tissulaires dans l'organe pendant les différentes étapes de sa transplantation. Elle permet donc d'améliorer les fonctions de l'organe une fois après sa transplantation et la rémission du patient qui a subi la greffe. Elle peut donc également être utilisée pour traiter des patients ayant subi une greffe d'organe. In particular, with regard to organ donation, the pharmaceutical composition of the invention makes it possible to increase the waiting time of the organ before its reoxygenation in the tissues of the transplanted individual (DIF), before that sequelae do not appear. In a particular embodiment, the pharmaceutical composition of the invention is therefore used to prevent and / or treat disorders of the organs following their transplantation. More specifically, the pharmaceutical composition of the invention is used to improve the resistance of the organ and to limit cell and tissue damage in the organ during the various stages of its transplantation. It thus makes it possible to improve the functions of the organ once after its transplantation and the remission of the patient who has undergone the transplant. It can therefore also be used to treat patients who have undergone organ transplantation.
Dans un mode de réalisation préféré, l'agent inhibiteur de l'hypusinylation est présent dans le liquide de conservation des organes avant la transplantation dans l'individu hôte. Ainsi, les cellules sont protégées pendant le temps où l'oxygène leur fait défaut. La présente invention vise donc également l'utilisation de l'agent inhibiteur de l'hypusinylation décrit précédemment comme agent cytoprotecteur utilisé dans un liquide de conservation des organes, ainsi qu'un liquide pour la conservation des organes ex vivo contenant l'agent inhibiteur de l'hypusinylation décrit précédemment.  In a preferred embodiment, the hypusinylation inhibiting agent is present in the organ preservation fluid prior to transplantation into the host individual. Thus, the cells are protected during the time when oxygen is lacking. The present invention therefore also relates to the use of the hypusinylation inhibiting agent described above as a cytoprotective agent used in an organ preservation fluid, as well as a liquid for the preservation of ex vivo organs containing the inhibiting agent of the organism. hypusinylation previously described.
Les liquides de conservation d'organes sont bien connus de l'homme du métier, et l'agent cyto-protecteur de l'invention pourra donc être ajouté à n'importe lequel d'entre eux.  Organ preservation fluids are well known to those skilled in the art, and the cyto-protective agent of the invention may therefore be added to any of them.
Il est également possible d'administrer l'agent inhibiteur de l'hypusinylation ou la composition pharmaceutique de l'invention chez l'individu à qui l'organe va être prélevé, afin d'en imprégner l'organe avant qu'il ne soit coupé de la circulation sanguine.  It is also possible to administer the hypusinylation inhibiting agent or the pharmaceutical composition of the invention in the individual to whom the organ will be removed, in order to impregnate the organ before it is cut off from the bloodstream.
De manière préférée entre toutes, dans ce mode de réalisation particulier, la composition de l'invention comprend, en tant qu'agent cyto-protecteur, le Nl-Guanyl- 1,7-diaminoheptane (GC7).  Most preferably, in this particular embodiment, the composition of the invention comprises, as a cyto-protecting agent, Nl-Guanyl-1,7-diaminoheptane (GC7).
Les résultats présentés dans la présente demande démontrent également que le prétraitement de neurones in vitro au GC7 entraine une augmentation de leur survie de plus de 30% dans des conditions hypoxiques. Cet effet protecteur du GC7 sur les neurones a été confirmé in vivo sur des animaux ayant subi un AVC : le volume de l'infarctus chez les animaux traités au GC7 est bien moindre par rapport aux animaux contrôles. Ces expériences démontrent clairement un effet protecteur du GC7 sur les neurones contre les phénomènes hypoxiques et ischémiques. La composition de l'invention permet donc également de prévenir les séquelles neurologiques dues à une lésion ischémique ou hypoxique, par exemple dues à un accident vasculaire cérébral ou à un traumatisme. Par « séquelles », on entend à la fois les dommages faits aux neurones de manière directe et/ou indirecte (par exemple, nécrose des neurones, réduction de leur fonctionnement) et leurs conséquences sur l'individu et sa physiologie, à court, moyen et long terme (par exemple la survenue de la maladie d'Alzheimer, d'une dépression post-AVC, ou encore la réduction des facultés mentales et motrices). La composition de l'invention permet donc de prévenir la formation de lésions cellulaires et/ou tissulaires au niveau du cerveau, et donc de diminuer voir d'empêcher l'apparition de séquelles fonctionnelles, motrices et mentales (dépression post-AVC ou maladie d'Alzheimer par exemple) dues à la privation en oxygène des neurones du patient. The results presented in this application also demonstrate that in vitro pretreatment of GC7 neurons results in an increase in their survival of more than 30% under hypoxic conditions. This protective effect of GC7 on neurons has been confirmed in vivo in animals with stroke: the volume of infarction in animals treated with GC7 is much lower compared to control animals. These experiments clearly demonstrate a protective effect of GC7 on neurons against hypoxic and ischemic phenomena. The composition of the invention thus also makes it possible to prevent neurological sequelae due to ischemic or hypoxic injury, for example due to a cerebrovascular accident or to a trauma. By "sequelae" is meant both direct and / or indirect damage to neurons (eg necrosis of neurons, reduction of their functioning) and their consequences on the individual and his physiology, in the short, medium and and long-term (for example, the occurrence of Alzheimer's disease, post-stroke depression, or the reduction of mental and motor faculties). The composition of the invention thus makes it possible to prevent the formation of cellular and / or tissue lesions in the brain, and thus to reduce or even prevent the appearance of functional, motor and mental sequelae (post-stroke depression or diabetic disease). Alzheimer for example) due to the oxygen deprivation of the patient's neurons.
La composition de l'invention est également utile pour traiter toute pathologie susceptible d'induire une réduction et/ou une privation d'oxygène sur les cellules neuronales, notamment pour traiter les pathologies d'origine purement neurologique (neuropathologies), ou neuro- ou cérébro-vasculaire (type AVC et angiopathie).  The composition of the invention is also useful for treating any pathology likely to induce reduction and / or oxygen deprivation on neuronal cells, in particular to treat pathologies of purely neurological origin (neuropathologies), or neuro-or cerebrovascular (stroke type and angiopathy).
Dans un mode de réalisation particulier, la composition pharmaceutique de l'invention est utilisée pour prévenir et/ou traiter l'insuffisance cardiaque due à un infarctus chez un animal. Plus précisément, la composition pharmaceutique de l'invention est utilisée pour prévenir l'insuffisance cardiaque ou tout autre trouble ou dommage dus à un infarctus. Elle peut donc également être utilisée pour traiter des patients ayant subi un infarctus.  In a particular embodiment, the pharmaceutical composition of the invention is used to prevent and / or treat heart failure due to infarction in an animal. More specifically, the pharmaceutical composition of the invention is used to prevent heart failure or any other disorder or injury due to infarction. It can therefore also be used to treat patients who have suffered a heart attack.
De préférence, dans ce mode de réalisation particulier, la composition comprend alors, en tant qu'agent cyto-protecteur, le Nl-Guanyl-l,7-diaminoheptane (GC7).  Preferably, in this particular embodiment, the composition then comprises, as a cytopter protective agent, Nl-Guanyl-1,7-diaminoheptane (GC7).
Enfin, la composition de l'invention permet de diminuer de façon significative la consommation basale en oxygène des animaux traités. De façon surprenante, cette diminution de consommation en oxygène ne s'accompagne pas d'une diminution du niveau d'activité des animaux traités.  Finally, the composition of the invention makes it possible to significantly reduce the basal oxygen consumption of the treated animals. Surprisingly, this decrease in oxygen consumption is not accompanied by a decrease in the level of activity of the treated animals.
La composition de l'invention peut donc être utilisée dans toute activité où l'apport en oxygène est limitant, par exemple pour les activités en altitude (secourisme, alpinisme, activités aériennes, etc.), ou encore pour les activités sous-marines (plongée). Cette découverte est importante puisqu'il n'existe aucun autre moyen à ce jour de limiter la consommation d'oxygène d'un mammifère sans en diminuer l'activité physique. The composition of the invention can therefore be used in any activity where the oxygen supply is limiting, for example for activities at altitude (first aid, mountaineering, aerial activities, etc.), or even for underwater activities ( diving). This discovery is important because there is no other way to limit the oxygen consumption of a mammal without reducing physical activity.
La présente invention vise donc également plus particulièrement l'utilisation de la composition pharmaceutique de l'invention pour diminuer la consommation en oxygène d'un individu.  The present invention therefore also aims more particularly at the use of the pharmaceutical composition of the invention for reducing the oxygen consumption of an individual.
Dans un second aspect, la présente invention vise donc la composition pharmaceutique (ou l'agent inhibiteur de l'hypusinylation) de l'invention pour son utilisation pour diminuer la consommation en oxygène d'un individu qui en a besoin.  In a second aspect, the present invention is therefore directed to the pharmaceutical composition (or hypusinylation inhibiting agent) of the invention for use in decreasing the oxygen consumption of an individual in need thereof.
Sont également visées l'utilisation de la composition pharmaceutique (ou de l'agent inhibiteur de l'hypusinylation) de l'invention pour la fabrication d'un médicament destiné à diminuer la consommation en oxygène d'un individu qui en a besoin, ainsi qu'une méthode pour diminuer la consommation en oxygène d'un individu qui en a besoin, ladite méthode comprenant l'administration audit individu de la composition pharmaceutique (ou de l'agent inhibiteur de l'hypusinylation) de l'invention.  Also contemplated is the use of the pharmaceutical composition (or hypusinylation inhibiting agent) of the invention for the manufacture of a medicament for decreasing the oxygen consumption of an individual in need thereof, thereby a method for decreasing the oxygen consumption of an individual in need thereof, said method comprising administering to said individual the pharmaceutical composition (or hypusinylation inhibiting agent) of the invention.
Dans cet aspect de l'invention, ledit individu est de préférence un mammifère, de manière encore plus préférée un être humain.  In this aspect of the invention, said individual is preferably a mammal, even more preferably a human being.
Les présents inventeurs ont démontré que le GC7 permettait de protéger un mammifère des conséquences néfastes d'une insuffisance rénale causée par une lésion ischémique (voir exemples).  The present inventors have demonstrated that GC7 protects a mammal from the adverse consequences of renal failure caused by ischemic injury (see examples).
La présente invention concerne donc en outre une composition pharmaceutique pour son utilisation pour prévenir et/ou traiter l'insuffisance rénale due à une lésion ischémique, ladite composition comprenant, en tant qu'agent cyto-protecteur, un agent inhibiteur de l'hypusinylation d'eIF5A, de préférence le Nl-Guanyl-1,7- diaminoheptane (GC7).  The present invention therefore furthermore relates to a pharmaceutical composition for its use for preventing and / or treating ischemic injury-related renal failure, said composition comprising, as a cyto-protective agent, an inhibitory agent for hypusinylation of eIF5A, preferably Nl-Guanyl-1,7-diaminoheptane (GC7).
En d'autres termes, la présente invention vise l'utilisation d'une composition pharmaceutique comprenant, en tant qu'agent cyto-protecteur, un agent inhibiteur de l'hypusinylation d'eIF5A, pour la fabrication d'un médicament destiné à prévenir et/ou traiter l'insuffisance rénale due à une lésion ischémique chez un animal, en particulier chez un mammifère.  In other words, the present invention is directed to the use of a pharmaceutical composition comprising, as a cytopterive agent, an eIF5A hypusinylation inhibiting agent, for the manufacture of a medicament for preventing and / or treating renal failure due to ischemic injury in an animal, particularly in a mammal.
De préférence, la composition pharmaceutique est utilisée pour prévenir l'apparition de troubles liés à l'insuffisance rénale. Par ailleurs, la présente invention vise l'agent inhibiteur de l'hypusinylation de l'invention, pour son utilisation pour prévenir et/ou traiter l'insuffisance rénale due à une lésion ischémique chez un animal, ou encore l'utilisation de cet agent inhibiteur pour la fabrication d'un médicament destiné à prévenir et/ou traiter l'insuffisance rénale due à une lésion ischémique chez un animal. Preferably, the pharmaceutical composition is used to prevent the occurrence of disorders related to renal failure. Furthermore, the present invention is directed to the hypusinylation inhibiting agent of the invention, for its use for preventing and / or treating renal failure due to ischemic injury in an animal, or the use of this agent. inhibitor for the manufacture of a medicament for preventing and / or treating renal failure due to ischemic injury in an animal.
De préférence ledit animal est un mammifère, en particulier l'homme.  Preferably said animal is a mammal, in particular man.
De préférence, ledit agent inhibiteur de l'hypusinylation de l'invention est le Nl- Guanyl-l,7-diaminoheptane (GC7).  Preferably, said hypusinylation inhibiting agent of the invention is N-Guanyl-1,7-diaminoheptane (GC7).
La présente invention vise enfin une méthode de prévention et/ou de traitement de l'insuffisance rénale due à une lésion ischémique chez un individu qui en souffre, comprenant l'étape d'administrer l'agent inhibiteur de l'hypusinylation de l'invention, ou une composition pharmaceutique comprenant, en tant qu'agent cyto-protecteur, l'agent inhibiteur de l'hypusinylation de l'invention, et un excipient acceptable sur le plan pharmaceutique.  The present invention finally provides a method of preventing and / or treating renal failure due to ischemic injury in an individual suffering from it, comprising the step of administering the hypusinylation inhibiting agent of the invention. or a pharmaceutical composition comprising, as a cyto-protective agent, the hypusinylation inhibiting agent of the invention, and a pharmaceutically acceptable carrier.
La présente invention vise également la composition pharmaceutique de l'invention, pour son utilisation pour - ou pour la fabrication d'un médicament destiné à - prévenir et/ou traiter les séquelles neurologiques dues à un accident vasculaire cérébral ou à un traumatisme chez un animal.  The present invention also relates to the pharmaceutical composition of the invention, for its use for - or for the manufacture of a medicament for - preventing and / or treating neurological sequelae due to a stroke or trauma in an animal .
Plus précisément, la présente invention vise l'agent inhibiteur de l'hypusinylation de l'invention, pour son utilisation pour - ou pour la fabrication d'un médicament destiné à - prévenir et/ou traiter les séquelles neurologiques dues à un accident vasculaire cérébral ou à un traumatisme chez un animal.  More specifically, the present invention relates to the hypusinylation inhibiting agent of the invention, for its use for - or for the manufacture of a medicament for - preventing and / or treating neurological sequelae due to a cerebrovascular accident or trauma in an animal.
Ledit animal est de préférence un mammifère, et en particulier l'homme.  Said animal is preferably a mammal, and in particular man.
La présente invention vise enfin une méthode de prévention et/ou de traitement des séquelles neurologiques dues à un accident vasculaire cérébral ou à un traumatisme chez un animal, comprenant l'étape d'administrer l'agent inhibiteur de l'hypusinylation de l'invention, ou une composition pharmaceutique le comprenant.  The present invention finally provides a method for preventing and / or treating neurological sequelae due to a stroke or trauma in an animal, comprising the step of administering the hypusinylation inhibiting agent of the invention , or a pharmaceutical composition comprising it.
De préférence, ladite composition comprend, en tant qu'agent cyto-protecteur, le N 1 -Guanyl- 1 ,7-diaminoheptane (GC7) .  Preferably, said composition comprises, as a cyto-protective agent, N 1 -Guanyl-1, 7-diaminoheptane (GC7).
Ledit animal est de préférence un mammifère, et en particulier l'homme. EXEMPLES Said animal is preferably a mammal, and in particular man. EXAMPLES
Les inventeurs ont évalué si et dans quelle mesure la désoxyhypusine synthase (DHS) pouvait être utilisée comme cible pharmacologique potentielle dans les indications d'hypoxie/ischémie chez une espèce mammifère, par exemple le rat.  The inventors have evaluated whether and to what extent deoxyhypusin synthase (DHS) could be used as a potential pharmacological target in hypoxia / ischemia indications in a mammalian species, for example the rat.
Pour ce faire, un modèle d'ischémie rénale par arrêt momentané du flot artériel To do this, a model of renal ischemia by temporary arrest of the arterial flow
(Wenzel et al., 1992, Basile et al., 2005) a été mis en place (figure 1). L'ischémie a été réalisée chirurgicalement par ligature de l'artère rénale gauche chez des rats femelles adultes anesthésiés à l'isoflurane. Après 40 minutes d'ischémie, le flux sanguin a été restauré. L'atteinte rénale a été évaluée par la mesure d'un marqueur de la soufrance rénale (NGAL, Neutrophil Gelatinase-Associated Lipocalin, par test ELISA) dans l'urine des rats. La fonction rénale a été évaluée par la méthode des clairances (Dworkin LD and Brenner BM 2000): des échantillons de plasma et d'urine ont été collectés et analysés pour déterminer l'excrétion fractionnelle de glucose, de sodium et de phosphate. (Wenzel et al., 1992, Basile et al., 2005) was implemented (Figure 1). Ischemia was surgically performed by ligation of the left renal artery in adult female rats anesthetized with isoflurane. After 40 minutes of ischemia, the blood flow was restored. Renal impairment was assessed by measuring a renal sulfur marker (NGAL, Neutrophil Gelatinase-Associated Lipocalin, by ELISA) in rat urine. Renal function was assessed by the clearance method (Dworkin LD and Brenner BM 2000): Plasma and urine samples were collected and analyzed for fractional excretion of glucose, sodium and phosphate.
Synthèse du GC 7  CG Summary 7
Le GC7 (Nl-guanyl-1,7 diaminoheptane), un inhibiteur de la désoxyhypusine synthase DHS, a été synthétisé selon la méthode décrite par Jalusionis et al. Cell Biochem Funct (2007). La structure du produit et sa pureté ont été évaluées par des méthodes d'analyse connues de l'homme du métier (RMN, spectrométrie de masse). La pureté obtenue est supérieure à 99 %. Le GC7 est soluble dans l'eau. Une solution 3 mg/ml a été préparée dans une solution saline physiologique.  GC7 (Nl-guanyl-1,7 diaminoheptane), an inhibitor of deoxyhypusine synthase DHS, was synthesized according to the method described by Jalusionis et al. Cell Biochem Funct (2007). The structure of the product and its purity were evaluated by analysis methods known to those skilled in the art (NMR, mass spectrometry). The purity obtained is greater than 99%. GC7 is soluble in water. A 3 mg / ml solution was prepared in physiological saline.
Production d'anticorps anti hypusine  Production of anti-hypusin antibodies
La L-hypusine a été synthétisée selon la technique décrite par Bergeron et al. ( Med Chem 1998) et incorporée dans le peptide : Cys-Thr-Gly-Hpu-His-Gly (Hpu = hypusine). Un anticorps polyclonal a été produit chez le lapin après couplage du peptide à l'ovalbumine. Il reconnaît dans des expériences de Western blot, une seule protéine au poids moléculaire attendu (17 kDa). Le sérum pré-immun est inactif. La dilution utilisée est 1/1000. I. Mesure du NGAL, un marqueur de l'atteinte rénale L-Hypusine was synthesized according to the technique described by Bergeron et al. (Med Chem 1998) and incorporated in the peptide: Cys-Thr-Gly-Hpu-His-Gly (Hpu = hypusine). A polyclonal antibody was produced in the rabbit after coupling the peptide to ovalbumin. It recognizes in Western blot experiments, a single protein with the expected molecular weight (17 kDa). The pre-immune serum is inactive. The dilution used is 1/1000. I. Measurement of NGAL, a marker of renal impairment
Le NGAL (Neutrophil Gelatinase-Associated Lipocalin) est considéré comme un marqueur fiable d'un état d'hypoxie tissulaire au niveau rénal (Mishra et al., 2003, 2004, Haase et al., 2009). Les taux urinaires de NGAL sont déterminés par un test ELISA commercial (Bioporto) et rapportés aux concentrations urinaires de créatinine.  Neutrophil Gelatinase-Associated Lipocalin (NGAL) is considered a reliable marker of renal tissue hypoxia (Mishra et al., 2003, 2004, Haase et al., 2009). The urine levels of NGAL are determined by a commercial ELISA test (Bioporto) and reported at urinary creatinine concentrations.
Les rats ont été répartis en deux groupes, l'un traité au GC7 (3 mg/kg intra péritonéal), l'autre avec le véhicule contrôle (même quantité de solution saline) pendant 4 jours avant que soit réalisée la lésion ischémique.  The rats were divided into two groups, one treated with GC7 (3 mg / kg intraperitoneal), the other with the control vehicle (same amount of saline) for 4 days before the ischemic injury.
Pour réaliser la lésion ischémique, les rats ont été anesthésiés avec de l'isoflurane, et l'artère rénale gauche a été ligaturée. Après 40 minutes d'ischémie, le flux sanguin est restauré. Les urines et un échantillon sanguin sont récoltés au temps zéro (avant l'ischémie) et après 24 heures de récupération.  To achieve the ischemic injury, the rats were anesthetized with isoflurane, and the left renal artery was ligated. After 40 minutes of ischemia, the blood flow is restored. Urine and a blood sample are collected at time zero (before ischemia) and after 24 hours of recovery.
a) dosage du NGAL urinaire  a) urinary NGAL assay
Le marqueur NGAL a été dosé dans les urines totales avant et 24 heures après le clampage (ligature temporaire) de 40 minutes de l'artère rénale gauche. Les résultats sont présentés sur la figure 2. Ces résultats démontrent que l'ischémie induit une production urinaire de NGAL chez les animaux contrôles (confirmant l'existence d'un état ischémique), et que cette production est inhibée par le GC7, indiquant un effet protecteur du GC7.  The NGAL marker was assayed in total urine before and 24 hours after 40-minute cross-clamping (temporal ligation) of the left renal artery. The results are shown in Figure 2. These results demonstrate that ischemia induces urine production of NGAL in control animals (confirming the existence of an ischemic state), and that this production is inhibited by GC7, indicating a protective effect of GC7.
La figure 2 montre également que l'administration de GC7 ne modifie pas l'excrétion urinaire de NGAL au temps 0 avant l'ischémie.  FIG. 2 also shows that the administration of GC7 does not modify the urinary excretion of NGAL at time 0 before ischemia.
b) dosage du NGAL plasmatique  b) plasma NGAL assay
Le NGAL plasmatique (provenant du rein ischémié) a été dosé 24 heures après le clampage (ligature temporaire) de 40 minutes de l'artère rénale gauche chez des rats contrôles ou traités par du GC7. Les résultats sont présentés sur la figure 3. Ces résultats démontrent que l'augmentation de NGAL plasmatique est plus significativement réduite chez les animaux traités au GC7, ce qui indique un effet protecteur.  Plasma NGAL (from the ischemic kidney) was assayed 24 hours after 40-minute cross-clamping (temporal ligation) of the left renal artery in control or GC7-treated rats. The results are shown in Figure 3. These results demonstrate that the increase in plasma NGAL is more significantly reduced in the GC7-treated animals, indicating a protective effect.
c) Fonction rénale  c) Renal function
La fonction rénale a été évaluée par une mesure de l'excrétion fractionnelle de glucose, de sodium et de phosphate Tous les rats ont été soumis à une ischémie de 40 minutes de l'artère rénale gauche puis reperfusés. Après 24 heures de récupération les expériences de clearance (Dworkin LD and BM Brenner, 2000) ont été réalisées indépendamment sur les reins droits (contrôle) et gauche (ischémiés) des rats anesthésiés. Le glucose sanguin et urinaire a été dosé par une technique spectrométrique (Randox, Kit Gluc HK). La figure 4 montre une altération de la réabsorption de glucose par les reins ischémiés. Le GC7 corrige signifie ativement ce défaut. Renal function was assessed by fractional excretion of glucose, sodium, and phosphate. All rats underwent 40-minute ischemia of the left renal artery and were reperfused. After 24 hours of recovery the clearance experiments (Dworkin LD and BM Brenner, 2000) were carried out independently on the right (control) and left (ischemic) kidneys of anesthetized rats. Blood and urine glucose was measured by a spectrometric technique (Randox, Kit Gluc HK). Figure 4 shows an alteration of glucose reabsorption by ischemic kidneys. The GC7 corrects this default meaningfully.
Le sodium plasmatique (Na) et urinaire a été mesuré par spectrométrie de flamme. Le phosphate plasmatique et urinaire a été dosé par chromatographie ionique (Dionex IonPac AS 11). La figure 5 montre une altération de de l'excrétion fractionnelle de sodium (A) et de phosphates (B) sur les reins gauches ischémiés. Ici encore les animaux traités par le GC7 sont protégés des conséquences néfastes induites par l'ischémie.  Plasma (Na) and urinary sodium were measured by flame spectrometry. Plasma and urine phosphate were determined by ion chromatography (Dionex IonPac AS 11). Figure 5 shows an alteration of the fractional excretion of sodium (A) and phosphates (B) on the ischemic left kidneys. Here again, the animals treated with GC7 are protected from the harmful consequences induced by ischemia.
d) Hypusinylation de eIF5A  d) Hypusinylation of eIF5A
Le GC7 est un inhibiteur spécifique de la desoxyhypusine synthase, l'enzyme qui permet l'hypusinylation (et la fonctionalisation de eIF5A). Il était important de vérifier que le traitement des rats par le GC7 réduisait effectivement l'hypusinylation de eIF5A. L'hypusinylation de eIF5A a été analysée par des expériences de « Western blot » en utilisant deux anticorps primaires :  GC7 is a specific inhibitor of desoxyhypusine synthase, the enzyme that allows hypusinylation (and functionalization of eIF5A). It was important to verify that treatment of rats with GC7 effectively reduced hypusinylation of eIF5A. Hypusinylation of eIF5A was analyzed by "Western blot" experiments using two primary antibodies:
1. un anticorps commercial (AbCam, Ref : ab32443) quireconnaît toutes les formes (hypusinylées ou non de eIF5A), et  1. a commercial antibody (AbCam, Ref: ab32443) which recognizes all forms (hypusinylated or otherwise of eIF5A), and
2. un anticorps polyclonal dirigé contre les formes hypusinylées de eIF5A qui a été produit chez le lapin à partir d'un peptide synthétique (Cys-Thr-Gly-Hpu-His-Gly) reproduisant la séquence de eIF5A autour du site d'hypusinylation.  2. A polyclonal antibody against the hypusinylated forms of eIF5A that was produced in rabbits from a synthetic peptide (Cys-Thr-Gly-Hpu-His-Gly) that mimics the eIF5A sequence around the hypusinylation site .
Les reins d'animaux contrôle ou traités au GC7 (3 mg/kg intra péritonéal pendant 3 jours) ont été homogénéisés dans un tampon de solubilisation (10 mM Phosphate, 3 % SDS, 3 % glycerol). Les expressions des formes totale et hypusynilée de eIF5A sont analysées par Western blot. Après numérisation des gels (figure 6A), le rapport des deux signaux obtenu après mesure densitométrique des bandes protéiques spécifiques est calculé. La Figure 6B montre quel' administration de GC7 diminue de manière significative la fraction hypusinylée d'eIF5A au niveau rénal. e) Conclusion Animal kidneys controlled or treated with GC7 (3 mg / kg intraperitoneal for 3 days) were homogenized in solubilization buffer (10 mM Phosphate, 3% SDS, 3% glycerol). The expressions of the total and hypusynilic forms of eIF5A are analyzed by Western blot. After digitizing the gels (FIG. 6A), the ratio of the two signals obtained after densitometric measurement of the specific protein bands is calculated. Figure 6B shows that administration of GC7 significantly decreases the hypusinylated eIF5A fraction at the renal level. e) Conclusion
Les résultats présentés ci-dessus indiquent que le GC7 inhibe bien l'hypusinylation d'eIF5A au niveau rénal. Par ailleurs, les présents inventeurs ont pu montrer que le GC7 protège l'atteinte rénale induite par une ischémie/reperfusion. Le GC7 protège donc en grande partie les animaux contre les conséquences rénales d'une ischémie.  The results presented above indicate that GC7 inhibits hypusinylation of eIF5A at the renal level. Moreover, the present inventors have been able to show that GC7 protects renal damage induced by ischemia / reperfusion. The GC7 therefore largely protects animals against the renal consequences of ischemia.
II. Protection par le GC7 de la perte de phosphate urinaire induite par l'hypoxie  II. GC7 protection of hypoxia-induced urinary phosphate loss
Le rein est l'organe responsable du maintien de l'homéostasie ionique de l'organisme et notamment de l'équilibre phospho-calcique. Cet équilibre est essentiel et il est décrit dans la littérature comme sensible à l'hypoxie (B aines AD et al 1998; Mimura Y and Knox FG. 1994; Brazy PC et al. 1984). Cette dernière induit une perte rapide des ions phosphates dans l'urine qui peut devenir problématique.  The kidney is the organ responsible for maintaining the ionic homeostasis of the body and especially the phospho-calcium balance. This balance is essential and is described in the literature as hypoxia-sensitive (Baines AD et al 1998, Mimura Y and Knox FG 1994, Brazy PC et al 1984). The latter induces a rapid loss of phosphate ions in the urine which can become problematic.
La perte urinaire de phosphate a été étudiée chez des souris traitées au GC-7 : Des souris mâles et femelles ont été injectées (3 fois à 1 jour d'intervalle) soit avec un placebo soit avec du GC7 à 3 mg/kg en IP. Le 3eme jour, ces animaux ont été maintenus soit en normoxie (21 % 02) soit en hypoxie (6-8 % 02) dans des conditions normobariques pendant 24 heures. Des échantillons d'urine ont été alors recueillis sur chaque animal et analysés pour leur contenu en phosphate inorganique (P04) et en créatinine. La figure 7 donne pour chaque catégorie d'animaux la moyenne des rapports P04/créatinine sur (n) souris. Le rapport à la créatinine permet de s'affranchir du taux de dilution des urines propre à chaque animal et sa condition physiologique à l'instant de la mesure. The urinary loss of phosphate was studied in mice treated with GC-7: Male and female mice were injected (3 times at 1 day intervals) either with a placebo or with GC7 at 3 mg / kg in IP . The 3rd day, the animals were kept either in normoxic (21% 0 2) or hypoxia (6-8% 0 2) in normobariques conditions for 24 hours. Urine samples were then collected from each animal and analyzed for inorganic phosphate (PO 4 ) and creatinine content. FIG. 7 gives for each animal category the average of the PO 4 / creatinine ratios on (n) mice. The ratio to creatinine eliminates the urine dilution rate specific to each animal and its physiological condition at the moment of measurement.
Il a été démontré que :  It has been shown that:
- l'hypoxie induit une perte urinaire massive de phosphate,  hypoxia induces a massive urinary loss of phosphate,
le GC7 ne modifie pas l'excrétion urinaire de phosphates dans des conditions normoxiques, et  GC7 does not modify the urinary excretion of phosphates under normoxic conditions, and
le GC7 atténue très significativement la perte urinaire de phosphate induite par l'hypoxie.  GC7 significantly attenuates hypoxia-induced urinary phosphate loss.
La réabsorption du phosphate chez les mammifères étant localisée essentiellement au niveau du segment proximal du néphron, ces résultats prouvent que le GC7 protège cette fonction essentielle du rein en cas d'hypoxie. III. Le GC7 diminue la consommation d'oxygène basale d'un mammifère. Since phosphate reabsorption in mammals is located mainly in the proximal segment of the nephron, these results prove that GC7 protects this essential function of the kidney in cases of hypoxia. III. GC7 decreases the basal oxygen consumption of a mammal.
III.1. Résultats in vitro  III.1. In vitro results
Dans des conditions physiologiques in vitro, la consommation en glucose de cellules rénales issues du tubule proximal de souris exposées au GC7 est fortement accrue (Figure 8C). Parallèlement la production de lactate par ces mêmes cellules augmentent (figure 8D). La consommation en oxygène des mêmes cellules est très significativement diminuée (Figure 8A). Malgré la modification drastique de ces paramètres le taux intracellulaire d'ATP reste constant (Figure 8B).  Under physiological conditions in vitro, the glucose consumption of renal cells derived from the proximal tubule of GC7-exposed mice is greatly increased (FIG. 8C). At the same time, the production of lactate by these same cells increases (FIG. 8D). The oxygen consumption of the same cells is very significantly decreased (Figure 8A). Despite the drastic modification of these parameters, the intracellular level of ATP remains constant (FIG. 8B).
Ces données suggèrent que le GC7 induit un "shift" des cellules vers un métabolisme glycolytique anaérobie, expliquant pourquoi les cellules rénales traitées au GC7 souffrent moins de l'absence d'oxygène durant l'ischémie.  These data suggest that GC7 induces a "shift" of cells to anaerobic glycolytic metabolism, explaining why GC7-treated kidney cells suffer less from the absence of oxygen during ischemia.
III.2. Résultats in vivo  III.2. In vivo results
Ces données ont été validées sur un modèle in vivo.  These data have been validated on an in vivo model.
La consommation basale en oxygène de souris injectées en IP avec le placebo (NaCl 0,9 %) ou avec du GC-7 à 3 mg/kg a été étudiée :  The basal oxygen consumption of mice injected with placebo (NaCl 0.9%) or with GC-7 at 3 mg / kg was investigated:
Des souris mâles (figure 9 A) et femelles (figure 9B) ont été traitées par une injection IP de placebo NaCl 0,9 % (contrôle, n = 5) ou de GC7 à 3 mg/kg (GC7, n = 4) dans du NaCl à 0,9 % la veille et le jour de la mesure. Pour la mesure les animaux ont été placés individuellement dans une enceinte de 500 cm contenant un dispositif (solution d'hydroxyde de baryum) capable de piéger le C02 expiré par les animaux. La consommation d'oxygène a été enregistrée pendant environ 30 minutes (1 point toutes les 5 minutes) à l'aide d'un oxymètre oxybaby® (Witt). Les consommations indiquées ont été exprimées en ml d'02 par heure et par gramme de poids corporel. Les expériences ont été stoppées quand le taux d'oxygène du container atteignait 10 % d'02. Male (Figure 9A) and female (Figure 9B) mice were treated with an IP injection of placebo NaCl 0.9% (control, n = 5) or GC7 at 3 mg / kg (GC7, n = 4). in 0.9% NaCl the day before and the day of measurement. For measurement the animals were placed individually in a 500 cm enclosure containing a device (barium hydroxide solution) capable of trapping the C0 2 exhaled by the animals. The oxygen consumption was recorded for about 30 minutes (1 point every 5 minutes) using an oxybaby® (Witt) oximeter. The indicated consumptions were expressed in ml of 0 2 per hour and per gram of body weight. The experiments were stopped when the oxygen level of the container reached 10% of 0 2 .
La synthèse des résultats est illustrée par la figure 9.  The summary of the results is illustrated in Figure 9.
Ils démontrent que :  They demonstrate that:
le GC7 induit une diminution significative de la consommation basale en oxygène d'un mammifère maie ou femelle ; cet effet du GC7 sur la consommation d'oxygène in vitro et in vivo s'explique par un shift métabolique rendant le mammifère moins dépendant de l'oxygène ; cette moindre dépendance vis à vis de l'oxygène explique la résistance du rein à un épisode hypoxique/ischémique ; et cette diminution de la consommation d'oxygène ne modifie pas le niveau de veille des animaux qui gardent un comportement normal. GC7 induces a significant decrease in the basal oxygen consumption of a male or female mammal; this effect of GC7 on oxygen consumption in vitro and in vivo is explained by a metabolic shift making the mammal less dependent on oxygen; this less dependence on oxygen explains the resistance of the kidney to a hypoxic / ischemic episode; and this decrease in oxygen consumption does not change the level of sleep of animals that maintain normal behavior.
IV. Le GC7 protège les neurones contre l'ischémie  IV. GC7 protects neurons from ischemia
IV.1. In vitro : le GC7 augmente la résistance neuronale contre l'ischémie reperfusion  IV.1. In vitro: GC7 increases neuronal resistance against ischemia reperfusion
Des cultures primaires dites « mixtes » ont été réalisées : elles contiennent 55 % de neurones, cultivés sur un tapis astrocytaire représentant 45 % du nombre total de cellules. Dans ces conditions, les neurones qui sont matures et différenciés présentent les mêmes fonctionnalités que les neurones cérébraux in vivo (Gouix et al., 2009). Sur ces cultures, l'AVC a été mimé par une privation en oxygène et en glucose (modèle dit « OGD » pour « oxygen glucose deprivation ») de 60 min (Goldberg et al., 1993). Les cultures ont ensuite été replacées en milieu normalement glucosé et oxygéné pour reproduire la reperfusion pendant 24 heures et le nombre de cellules neuronales a été quantifié. Pour la quantification, quatre champs microscopiques par puits (un champ = 1,6 mm ) ont sélectionnés de manière aléatoire par un expérimentateur ignorant les conditions expérimentales. Les résultats présentés sur la figure 10 proviennent de 3 expériences distinctes (cultures primaires totalement indépendantes) pour un total de 24 puits par conditions analysées. Au préalable à l'OGD, les cultures ont été prétraitées ou non pendant 12 heures avec 30 μΜ de GC7.  Primary cultures called "mixed" were carried out: they contain 55% of neurons, grown on an astrocytic carpet representing 45% of the total number of cells. Under these conditions, neurons that are mature and differentiated have the same functionalities as cerebral neurons in vivo (Gouix et al., 2009). On these cultures, stroke was mimicked by oxygen and glucose deprivation ("OGD" model for "oxygen glucose deprivation") of 60 min (Goldberg et al., 1993). The cultures were then replaced in a normally glucose and oxygenated medium to reproduce the reperfusion for 24 hours and the number of neuronal cells was quantified. For quantification, four microscopic fields per well (one field = 1.6 mm) were randomly selected by an experimenter ignoring the experimental conditions. The results presented in Figure 10 come from 3 separate experiments (totally independent primary cultures) for a total of 24 wells per analyzed conditions. Before the OGD, the cultures were pretreated or not for 12 hours with 30 μl of GC7.
différent du contrôle (p < 0,001) et $$$, différent de la condition OGD non traité au GC7, (p < 0,001).  different from the control (p <0.001) and $$$, different from the untreated GMO condition at GC7, (p <0.001).
La figure 10 montre que la privation d'oxygène et de glucose pendant 60 minutes entraine la mort de 32 % des neurones. (Condition contrôle : 90,28 + 2,48 versus condition OGD : 61,40 + 1,35 neurones par champs). L'OGD n'entraine que 11% de perte neuronale lorsque les cellules ont été prétraité au GC7 (Condition contrôle + GC7 : 86,74 + 1,58 versus condition OGD + prétraitement GC7 : 77,27 + 1,7).  Figure 10 shows that deprivation of oxygen and glucose for 60 minutes results in the death of 32% of neurons. (Control condition: 90.28 + 2.48 versus OGD condition: 61.40 + 1.35 neurons per field). The OGD leads to only 11% neuronal loss when the cells were pre-treated with GC7 (Condition control + GC7: 86.74 + 1.58 versus condition OGD + pretreatment GC7: 77,27 + 1,7).
Le prétraitement au GC7 entraine donc une augmentation de la survie neuronale de plus de 30 %. Ces expériences démontrent clairement un effet protecteur du GC7 sur les neurones contre les phénomènes ischémiques. Elles montrent aussi qu'en condition physiologique, un prétraitement avec le GC7 n'a pas d'effet délétère sur les neurones en culture (Condition contrôle : 90,28 + 2,48 versus Condition contrôle + GC7 : 86,74 + 1,58, NS - pas de différence significative). IV.2. In vivo : le GC7 protège de l'AVC ischemique transitoire Pretreatment with GC7 therefore leads to an increase in neuronal survival of more than 30%. These experiments clearly demonstrate a protective effect of GC7 on neurons against ischemic phenomena. They also show that, under physiological conditions, pretreatment with GC7 has no deleterious effect on cultured neurons (control condition: 90.28 + 2.48 versus Condition control + GC7: 86.74 + 1, 58, NS - no significant difference). IV.2. In vivo: GC7 protects against transient ischemic stroke
Les résultats présentés sur la figure 11 ont été obtenus avec des souris mâles C57B1/6 d'un poids minimal de 20 g. Les animaux ont eu libre accès à la nourriture et à l'eau et été maintenus en cycle circadien (12 h de lumière/12 h d'obscurité) dans notre animalerie agréée. Pour reproduire l'accident ischémique cérébral focal, le modèle d'ischémie focale transitoire (modèle dit « MCAO ») a été utilisé. Il consiste en l'occlusion de l'artère cérébrale moyenne (MCA) par l'introduction intraluminale d'un filament en nylon. L'artère cérébrale moyenne correspond à l'artère sylvienne chez l'homme, dont l'occlusion serait responsable d'environ 80 % des accidents vasculaires cérébraux. Le temps d'occlusion a été de 60 min (Blondeau et al ., 2009 ; Nguemeni et al., 2010). La taille de l'infarctus, le taux de mortalité, le pourcentage de cas de reperfusion spontanée ont été caractérisés selon une méthode publiée (Nguemeni et al., 2010). L'approche préventive a consisté en 3 injections répétées de GC7 (3 mg/kg de poids corporel) espacées de 24 h, la dernière injection a été réalisée 30 minutes avant l'induction de l'AVC. Le même protocole a été réalisé pour le placébo.  The results presented in FIG. 11 were obtained with male C57B1 / 6 mice with a minimum weight of 20 g. The animals had free access to food and water and were kept in the circadian cycle (12 h of light / 12 h of darkness) in our licensed pet shop. To reproduce the focal ischemic stroke, the model of transient focal ischemia (so-called MCAO model) was used. It consists of the occlusion of the middle cerebral artery (MCA) by the intraluminal introduction of a nylon filament. The average cerebral artery corresponds to the sylvian artery in humans, whose occlusion is responsible for approximately 80% of strokes. The occlusion time was 60 min (Blondeau et al., 2009, Nguemeni et al., 2010). The size of the infarct, the mortality rate, the percentage of cases of spontaneous reperfusion were characterized according to a published method (Nguemeni et al., 2010). The preventive approach consisted of 3 repeated injections of GC7 (3 mg / kg body weight) spaced 24 hours apart, the last injection was performed 30 minutes before the induction of stroke. The same protocol was performed for placebo.
Tableau 1 :  Table 1:
Figure imgf000026_0001
Figure imgf000026_0001
Ces résultats ont montré que le prétraitement au GC7 diminue clairement le taux de mortalité des animaux 24 heures après l'occlusion de la carotide en doublant le taux de survie des animaux le premier jour post-AVC. De même, le traitement au GC7 augmente le taux de reperfusion spontanée post-AVC. Ces deux facteurs sont les premières indications d'une augmentation par le GC7 de la résistance à un AVC ischémique transitoire. En effet, la mortalité est la première conséquence de l'AVC et la non-reperfusion est le pronostic le plus défavorable de l'AVC. La mortalité est la conséquence d'une lésion cérébrale/infarctus/perte neuronale trop importante et l'absence de reperfusion entraîne une expansion du volume lésionnel. Les présents résultats suggèrent que le prétraitement au GC7 réduit la taille de l'infarctus d'environ 30 %. Les différentes régions cérébrales présentent des sensibilités différentes à l'AVC et la sévérité de la lésion tissulaire est liée à sa proximité de l'occlusion vasculaire. Aussi, il est admis dans l'ischémie de l'artère cérébrale moyenne que le cœur ischémique affecte principalement les régions sous-corticales, alors que la pénombre ischémique cible des thérapeutiques serait corticale. L'analyse plus fine de la protection induite par le GC7 suggère que la protection du GC7 s'effectue aussi au niveau cortical (Figure 11). L'effet du GC7 sur la reperfusion pouvant influer sur la protection, nous avons analysé les effets du GC7 uniquement chez les animaux ayant reperfusé. Le prétraitement avec le GC7 réduit aussi de 30 % l'infarctus cérébral des animaux reperfusés (contrôle : 26,4 + 4.2 mm versus GC7 : 18,3 + 2,6, p < 0,05). These results showed that GC7 pretreatment clearly decreases the animal mortality rate 24 hours after carotid occlusion by doubling the survival rate of animals on the first day post-stroke. Similarly, GC7 treatment increases spontaneous reperfusion rate after stroke. These two factors are the first indications of a GC7 increase in resistance to transient ischemic stroke. Indeed, mortality is the first consequence of stroke and non-reperfusion is the most unfavorable prognosis for stroke. Mortality is a consequence of excessive brain damage / infarction / neuronal loss and the absence of reperfusion results in an expansion of the lesional volume. The present results suggest that pretreatment with GC7 reduces infarct size by about 30%. The different brain regions have different sensitivities to stroke and the severity of the tissue injury is related to its proximity to vascular occlusion. Also, it is admitted in the ischemia of the middle cerebral artery that the ischemic heart mainly affects the subcortical regions, whereas the target ischemic penumbra of the therapeutics would be cortical. The finer analysis of GC7-induced protection suggests that GC7 protection also occurs at the cortical level (Figure 11). Since the effect of GC7 on reperfusion may affect protection, we analyzed the effects of GC7 only in reperfused animals. Pretreatment with GC7 also reduced cerebral infarction by 30% in reperfused animals (control: 26.4 + 4.2 mm versus GC7: 18.3 + 2.6, p <0.05).
En conclusion, le prétraitement au GC7 augmente la survie neuronale d'environ 30 % dans des modèles in vivo et in vitro reproduisant l'AVC ischémique. In conclusion, pretreatment with GC7 increases neuronal survival by approximately 30% in in vivo and in vitro models reproducing ischemic stroke.
RÉFÉRENCES BIBLIOGRAPHIQUES BIBLIOGRAPHIC REFERENCES
Baines AD et al. Am.J. Physiol. 1998; (274) Balabanov S et al, Blood, 2007, 109(4): 1701-11. Baines AD et al. Am.J. Physiol. 1998; (274) Balabanov S et al, Blood, 2007, 109 (4): 1701-11.
Basile et al, Am J Physiol Regul Integr Comp PhysioL, 2005, 289(6): R1770-6. Bergeron RJ, et al., J Med Chem., 1998, 41 : 3888-3900. Basile et al, Am J Physiol Regul Integr Comp Physiol, 2005, 289 (6): R1770-6. Bergeron RJ, et al., J Med Chem., 1998, 41: 3888-3900.
Blondeau N et al, Neuropsychopharmacology. 2009 Nov;34(12):2548-59. Brazy PC et al. Am.J.Physiol 1984; (247) Blondeau N et al, Neuropsychopharmacology. 2009 Nov; 34 (12): 2548-59. Brazy PC et al. Am.J.Physiol 1984; (247)
Dworkin LD and Brenner BM. The Kidney, physiology and physiopathology, 2000, 3rd édition Vol 1, 749-769 Goldberg et al. J Neurosci. 1993 Aug; 13(8):3510-24. Dworkin LD and Brenner BM. The Kidney Physiology and Physiopathology, 2000, 3rd Edition Vol 1, 749-769 Goldberg et al. J Neurosci. 1993 Aug; 13 (8): 3510-24.
Gouix E et al. Mol Cell Neurosci. 2009 Apr;40(4):463-73. Gouix E et al. Mol Cell Neurosci. 2009 Apr; 40 (4): 463-73.
Haase M, et al., Am J Kidney Dis,. 2009, 54 : 1012-1024. Haase M, et al., Am J Kidney Dis ,. 2009, 54: 1012-1024.
Huang Y et al., PNAS 2007 Mar 6; 104(10):4194-9 Huang Y et al., PNAS 2007 Mar 6; 104 (10): 4194-9
Jasiulionis MG. et al. Cell Biochem Funct., 2007, 25: 109-14. Kersher B et al, Amino Acids 2010 Jasiulionis MG. et al. Cell Biochem Funct., 2007, 25: 109-14. Kersher B et al, 2010 Amino Acids
Lee Y.B. et Folk J.E., Bioorganic & médicinal chemistry 1998, 253-270 Lee Y.B. and Folk J.E., Bioorganic & Medicinal Chemistry 1998, 253-270
Li AL, J. Biol. Chem. 2004, 279(47) : 49251-8 Li AL, J. Biol. Chem. 2004, 279 (47): 49251-8
Mimura Y and Knox FG Am.J.Physiol. 1994; (266) Mimura Y and Knox FG Am.J.Physiol. 1994; (266)
Mishra J. et al., J Am Soc Nephrol, 2003, 14 : 2534-2543. Mishra, J., et al.,. J Am Soc Nephrol, 2004, 15 : 3073-3082 Mishra J. et al., J Am Soc Nephrol, 2003, 14: 2534-2543. Mishra, J., et al. J Am Soc Nephrol, 2004, 15: 3073-3082
Nguemeni C et al. Pharmacol Res. 2010 Mar;61(3):226-33 Park M.H. et al, J. Biochem. , 2006, 139(2) : 161-9 Park MH et al, Amino Acids, 2010, 38(2) :491-500 Semenza GL, Science, 2007 ; 318(5847) : 62-4 Nguemeni C et al. Pharmacol Res. 2010 Mar; 61 (3): 226-33 Park MH et al., J. Biochem. , 2006, 139 (2): 161-9 Park MH et al., Amino Acids, 2010, 38 (2): 491-500 Semenza GL, Science, 2007; 318 (5847): 62-4
Sun Z, J. Cell Physiol, 2010, 223(3) :798-809 Sun Z, J. Cell Physiol, 2010, 223 (3): 798-809
Taylor CA, Exp Cell Res, 2007, 313(3) :437-49 Taylor CA, Exp Cell Res, 2007, 313 (3): 437-49
Vigne P, et al, Mech Ageing Dev, 2007, 128(5-6) : 401-6 Vigne P, et al., Mech Ageing Dev, 2007, 128 (5-6): 401-6
Vigne P. et al, BMC Physiology, 2008, 8 : 22 Vigne P. et al, BMC Physiology, 2008, 8:22
Wenzel et al, Hypertension, 1992 Aug; 20(2) : 233-41  Wenzel et al, Hypertension, 1992 Aug; 20 (2): 233-41

Claims

REVENDICATIONS
Composition pharmaceutique pour son utilisation pour prévenir et/ou traiter les troubles liés à des conditions hypoxiques et/ou à des lésions ischémiques chez un mammifère, ladite composition comprenant en tant qu'agent cyto-protecteur un agent inhibiteur de l'hypusinylation d'eIF5A capable d'inhiber la synthèse de l'hypusine. A pharmaceutical composition for use in preventing and / or treating disorders related to hypoxic conditions and / or ischemic injury in a mammal, said composition comprising as cytopterant agent an eIF5A hypusinylation inhibitor capable of inhibiting the synthesis of hypusine.
Composition pharmaceutique selon la revendication 1, caractérisée en ce que ledit agent inhibiteur de l'hypusinylation d'eIF5A inhibe la désoxyhypusine synthase (DHS) ou la désoxyhypusine hydrolase (DHH). Pharmaceutical composition according to Claim 1, characterized in that the said inhibitor of hypusinylation of eIF5A inhibits deoxyhypusine synthase (DHS) or deoxyhypusine hydrolase (DHH).
Composition pharmaceutique selon l'une des revendications 1 ou 2, caractérisée en ce que ledit agent inhibiteur de l'hypusinylation d'eIF5A est choisi parmi les dérivés du 1,7-diaminoheptane (DAH), les dérivés du 1,3 diazacyclohexane et les dérivés du 1,3 diazacyclo-l-hexene. Pharmaceutical composition according to one of Claims 1 or 2, characterized in that the said agent for inhibiting the hypusinylation of eIF5A is chosen from the derivatives of 1,7-diaminoheptane (DAH), the 1,3-diazacyclohexane derivatives and the 1,3-diazacyclo-1-hexene derivatives.
Composition pharmaceutique selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ledit agent inhibiteur de l'hypusinylation d'eIF5A est choisi parmi les dérivés du 1,7-diaminoheptane (DAH), le 1,3 diazacyclohexane et le 1,3 diazacyclo-l-hexene. Pharmaceutical composition according to any one of Claims 1 to 3, characterized in that the said agent for inhibiting hypusinylation of eIF5A is chosen from the derivatives of 1,7-diaminoheptane (DAH), 1,3-diazacyclohexane and 1-diazacyclohexane. , 3-diazacyclo-1-hexene.
Composition pharmaceutique selon l'une quelconque des revendications 1 à 4, dans laquelle ledit agent inhibiteur de l'hypusinylation d'eIF5A est un dérivé du 1,7-diaminoheptane (DAH) choisi parmi le Nl-Guanyl- 1,7-diaminoheptane (GC7), le 1,7-diguanidinoheptane (GC7G), le 1,7 diaminoheptane (C7), le 7- amino-l-guanidinooctane, le l,7-diamino-iran5-hept-3-ene, le GC6, le GC8, le GC6G, le GC8G, le CNI-1493. A pharmaceutical composition according to any one of claims 1 to 4, wherein said eIF5A hypusinylation inhibiting agent is a 1,7-diaminoheptane (DAH) derivative selected from Nl-Guanyl-1,7-diaminoheptane ( GC7), 1,7-diguanidinoheptane (GC7G), 1,7 diaminoheptane (C7), 7-amino-1-guanidinooctane, 1,7-diamino-iran5-hept-3-ene, GC6, GC8, GC6G, GC8G, CNI-1493.
Composition pharmaceutique selon l'une quelconque des revendications 1 à 5, dans laquelle ledit agent inhibiteur de l'hypusinylation d'eIF5A est le Nl- Guanyl- 1,7-diaminoheptane (GC7). The pharmaceutical composition according to any one of claims 1 to 5, wherein said eIF5A hypusinylation inhibitory agent is N1-Guanyl-1,7-diaminoheptane (GC7).
7. Composition pharmaceutique selon l'une quelconque des revendications 1 à 6, caractérisée en ce que lesdits troubles résultent de conditions hypoxiques et/ou de lésions ischémiques. 7. Pharmaceutical composition according to any one of claims 1 to 6, characterized in that said disorders result from hypoxic conditions and / or ischemic lesions.
8. Composition pharmaceutique selon la revendication 7, caractérisée en ce que lesdits troubles sont choisis parmi : l'insuffisance rénale, l'insuffisance cardiaque, les séquelles neurologiques, ou les dérèglements d'un organe tel que le foie, l'intestin, le cœur, le poumon ou le rein suite à sa transplantation. 8. Pharmaceutical composition according to claim 7, characterized in that said disorders are chosen from: renal insufficiency, heart failure, neurological sequelae, or disorders of an organ such as the liver, intestine, intestines heart, lung or kidney following transplantation.
9. Composition pharmaceutique selon la revendication 1, caractérisée en ce que lesdits troubles induisent des conditions hypoxiques et/ou des lésions ischémiques et sont choisis parmi l'accident vasculaire cérébral, le trauma cérébral, l'arrêt cardiaque, la fibrillation auriculaire, les angiopathies, les microangiopathies périphériques et centrales, les thromboses, les infarctus ou encore les embolies pulmonaires. 9. Pharmaceutical composition according to claim 1, characterized in that said disorders induce hypoxic conditions and / or ischemic lesions and are selected from cerebrovascular accident, cerebral trauma, cardiac arrest, atrial fibrillation, angiopathies. , peripheral and central microangiopathies, thromboses, infarcts or pulmonary embolisms.
10. Composition pharmaceutique telle que définie dans l'une quelconque des revendications 1 à 6, pour son utilisation pour augmenter la tolérance hypoxique des cellules de mammifère soumises à une lésion ischémique ou à des conditions hypoxiques. 10. The pharmaceutical composition as defined in any one of claims 1 to 6 for use in increasing the hypoxic tolerance of mammalian cells subject to ischemic injury or hypoxic conditions.
11. Composition pharmaceutique selon l'une quelconque des revendications 1 à 6, pour son utilisation pour prévenir et/ou traiter l'insuffisance rénale due à une lésion ischémique chez un animal. The pharmaceutical composition according to any one of claims 1 to 6 for use in preventing and / or treating renal failure due to ischemic injury in an animal.
12. Composition pharmaceutique selon l'une quelconque des revendications 1 à 6, pour son utilisation pour prévenir et/ou traiter les séquelles neurologiques dues à un accident vasculaire cérébral ou à un traumatisme chez un animal. 12. Pharmaceutical composition according to any one of claims 1 to 6, for its use for preventing and / or treating neurological sequelae due to a stroke or trauma in an animal.
13. Composition pharmaceutique selon l'une quelconque des revendications 1 à 6, pour son utilisation pour prévenir et/ou traiter l'insuffisance cardiaque due à un infarctus chez un animal. 13. A pharmaceutical composition according to any one of claims 1 to 6 for use in preventing and / or treating heart failure due to infarction in an animal.
14. Composition pharmaceutique selon l'une quelconque des revendications 1 à 6, pour son utilisation pour prévenir et/ou traiter les dérèglements d'un organe suite à sa transplantation. 14. Pharmaceutical composition according to any one of claims 1 to 6, for its use for preventing and / or treating disorders of an organ following its transplantation.
15. Utilisation de l'agent inhibiteur de l'hypusinylation décrit dans les revendications 1 à 6, comme agent cytoprotecteur dans un liquide de conservation des organes. 15. Use of the hypusinylation inhibiting agent described in claims 1 to 6 as a cytoprotective agent in an organ preservation fluid.
16. Liquide pour la conservation des organes ex vivo, contenant l'agent inhibiteur de l'hypusinylation décrit dans les revendications 1 à 6. 16. Liquid for the preservation of ex vivo organs, containing the hypusinylation inhibiting agent described in claims 1 to 6.
17. Utilisation de la composition telle que définie dans les revendications 1 à 6, pour diminuer la consommation en oxygène d'un individu. 17. Use of the composition as defined in claims 1 to 6, to reduce the oxygen consumption of an individual.
18. Utilisation selon la revendication 17, dans laquelle ledit individu est un être humain. 18. The use of claim 17, wherein said individual is a human being.
19. Composition pharmaceutique telle que définie dans l'une quelconque des revendications 1 à 6, pour son utilisation pour prévenir et/ou traiter les dérèglements d'un organe ayant subi une hypoxie. 19. A pharmaceutical composition as defined in any one of claims 1 to 6 for use in preventing and / or treating disorders of a hypoxia-affected organ.
PCT/EP2011/062469 2010-07-20 2011-07-20 Pharmaceutical composition for increasing cellular hypoxic tolerance WO2012010641A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1055910A FR2962906A1 (en) 2010-07-20 2010-07-20 USE OF INHIBITORS OF HYPUSINYLATION OF eIF5A TO TREAT ISCHEMIC AND HYPOXIC DISEASES
FR1055910 2010-07-20

Publications (2)

Publication Number Publication Date
WO2012010641A2 true WO2012010641A2 (en) 2012-01-26
WO2012010641A3 WO2012010641A3 (en) 2012-04-12

Family

ID=43416485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/062469 WO2012010641A2 (en) 2010-07-20 2011-07-20 Pharmaceutical composition for increasing cellular hypoxic tolerance

Country Status (2)

Country Link
FR (1) FR2962906A1 (en)
WO (1) WO2012010641A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3578180A1 (en) 2018-06-05 2019-12-11 Centre National de la Recherche Scientifique (CNRS) Modulators of seryl-trna synthase and pharmaceutical compositions comprising the same for increasing cell hypoxic tolerance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106433A1 (en) 2002-06-12 2003-12-24 Viaxxel Biotech Gmbh Deoxyhypusine-synthase inhibitors, pharmaceuticals comprising said inhibitors and uses thereof
EP1959010A2 (en) 2004-12-03 2008-08-20 Senesco Technologies, Inc. Apoptosis-specific eif-5A and polynucleotides encoding same
WO2009144933A1 (en) 2008-05-27 2009-12-03 国立大学法人東京大学 Apoptosis inducer
WO2010118224A1 (en) 2009-04-08 2010-10-14 Indiana University Research And Technology Corporation Preventing islet inflammation and dysfunction and maintaining proper glucose levels by controlling elf5a and its hypusination

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282909A1 (en) * 2003-11-14 2005-12-22 Diks Sander H Guanylhydrazones in methods of treatment or diagnosis as modulators of signal transduction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106433A1 (en) 2002-06-12 2003-12-24 Viaxxel Biotech Gmbh Deoxyhypusine-synthase inhibitors, pharmaceuticals comprising said inhibitors and uses thereof
EP1959010A2 (en) 2004-12-03 2008-08-20 Senesco Technologies, Inc. Apoptosis-specific eif-5A and polynucleotides encoding same
WO2009144933A1 (en) 2008-05-27 2009-12-03 国立大学法人東京大学 Apoptosis inducer
WO2010118224A1 (en) 2009-04-08 2010-10-14 Indiana University Research And Technology Corporation Preventing islet inflammation and dysfunction and maintaining proper glucose levels by controlling elf5a and its hypusination

Non-Patent Citations (40)

* Cited by examiner, † Cited by third party
Title
BAINES AD ET AL., AM.J.PHYSIOL., 1998
BALABANOV S ET AL., BLOOD, 2007
BALABANOV S ET AL., BLOOD, vol. 109, no. 4, 2007, pages 1701 - 11
BASILE ET AL., AM J PHYSIOL REGUL INTEGR COMP PHYSIOL., vol. 289, no. 6, 2005, pages R1770 - 6
BERGERON ET AL., J MED CHEM, 1998
BERGERON RJ ET AL., JMED CHEM., vol. 41, 1998, pages 3888 - 3900
BLONDEAU N ET AL., NEUROPSYCHOPHARMACOLOGY, vol. 34, no. 12, November 2009 (2009-11-01), pages 2548 - 59
BRAZY PC ET AL., AM.J.PHYSIOL, 1984
DWORKIN LD, BRENNER BM: "The Kidney, physiology and physiopathology", vol. L, 2000, pages: 749 - 769
GOLDBERG ET AL., JNEUROSCI., vol. 13, no. 8, August 1993 (1993-08-01), pages 3510 - 24
GOUIX E ET AL., MOL CELL NEUROSCI., vol. 40, no. 4, April 2009 (2009-04-01), pages 463 - 73
HAASE M ET AL., AM J KIDNEY DIS, vol. 54, 2009, pages 1012 - 1024
HUANG Y ET AL., PNAS, vol. 104, no. 10, 6 March 2007 (2007-03-06), pages 4194 - 9
JALUSIONIS ET AL., CELL BIOCHEM FUNCT, 2007
JASIULIONIS M.G. ET AL., CELL BIOCHEM. FUNCT., 2007
JASIULIONIS MG ET AL., CELL BIOCHEM FUNCT., vol. 25, 2007, pages 109 - 14
KERSHER B ET AL., AMINO ACIDS, 2010
LEE Y.B., FOLK J.E., BIOORGANIC & MEDICINAL CHEMISTRY, 1998, pages 253 - 270
LI AL, J. BIOL. CHEM., 2004
LI AL, J. BIOL. CHEM., vol. 279, no. 47, 2004, pages 49251 - 8
MIMURA Y, KNOX FG, AM.J.PHYSIOL., 1994
MISHRA J. ET AL., JAM SOC NEPHROL., vol. 14, 2003, pages 2534 - 2543
MISHRA, J. ET AL., J AM SOC NEPHROL, vol. 15, 2004, pages 3073 - 3082
NGUEMENI C ET AL., PHARMACOL RES., vol. 61, no. 3, March 2010 (2010-03-01), pages 226 - 33
PARK ET AL., AMINO ACIDS, 2010
PARK M.H. ET AL., J. BIOCHEM., 2006
PARK M.H. ET AL., J. BIOCHEM., vol. 139, no. 2, 2006, pages 161 - 9
PARK MH ET AL., AMINO ACIDS, 2010
PARK MH ET AL., AMINO ACIDS, vol. 38, no. 2, 2010, pages 491 - 500
SEMENZA GL ET AL., SCIENCE, 2007
SEMENZA GL, SCIENCE, vol. 318, no. 5847, 2007, pages 62 - 4
SUN Z, J. CELL PHYSIOL, 2010
SUN Z, J. CELL PHYSIOL, vol. 223, no. 3, 2010, pages 798 - 809
TAYLOR CA, EXP CELL RES, 2007
TAYLOR CA, EXP CELL RES, vol. 313, no. 3, 2007, pages 437 - 49
VIGNE P ET AL., BMC PHYSIOLOGY, 2008
VIGNE P ET AL., MECH AGEING DEV, 2007
VIGNE P ET AL., MECH AGEING DEV, vol. 128, no. 5-6, 2007, pages 401 - 6
VIGNE P. ET AL., BMC PHYSIOLOGY, vol. 8, 2008, pages 22
WENZEL ET AL., HYPERTENSION, vol. 20, no. 2, August 1992 (1992-08-01), pages 233 - 41

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3578180A1 (en) 2018-06-05 2019-12-11 Centre National de la Recherche Scientifique (CNRS) Modulators of seryl-trna synthase and pharmaceutical compositions comprising the same for increasing cell hypoxic tolerance
WO2019234125A1 (en) 2018-06-05 2019-12-12 Centre National De La Recherche Scientifique (Cnrs) Modulators and pharmaceutical compositions comprising the same for increasing cell hypoxic tolerance

Also Published As

Publication number Publication date
FR2962906A1 (en) 2012-01-27
WO2012010641A3 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
Kluge et al. Mitochondria and endothelial function
Bayeva et al. Mitochondria as a therapeutic target in heart failure
Sadi et al. Resveratrol improves hepatic insulin signaling and reduces the inflammatory response in streptozotocin-induced diabetes
Sindler et al. Inorganic nitrite supplementation for healthy arterial aging
Guo et al. Ischemic postconditioning attenuates liver warm ischemia-reperfusion injury through Akt-eNOS-NO-HIF pathway
Barreto-Torres et al. The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARα-cyclophilin D interaction in cardiomyocytes
Tessari Nitric oxide in the normal kidney and in patients with diabetic nephropathy
Kane et al. Endothelium-derived contracting factors mediate the Ang II-induced endothelial dysfunction in the rat aorta: preventive effect of red wine polyphenols
Aziz et al. Signaling mechanisms of a water soluble curcumin derivative in experimental type 1 diabetes with cardiomyopathy
Erdely et al. Protection of wistar furth rats from chronic renal disease is associated with maintained renal nitric oxide synthase
Gang et al. Protection of NAD (P) H: quinone oxidoreductase 1 against renal ischemia/reperfusion injury in mice
WO1998051291A1 (en) Use of a pharmaceutical composition for treating and/or preventing ischemia
Li et al. Pituitary adenylate cyclase-activating polypeptide prevents cisplatin-induced renal failure
Moreira et al. Mitochondria as potential targets in antidiabetic therapy
Zhang et al. Involvement of glucose-regulated protein 78 and spliced X-box binding protein 1 in the protective effect of gliclazide in diabetic nephropathy
Lin et al. Nicotinamide retains Klotho expression and ameliorates rhabdomyolysis-induced acute kidney injury
Khan et al. Sulfaphenazole protects heart against ischemia–reperfusion injury and cardiac dysfunction by overexpression of iNOS, leading to enhancement of nitric oxide bioavailability and tissue oxygenation
Condezo-Hoyos et al. Liver growth factor treatment reverses vascular and plasmatic oxidative stress in spontaneously hypertensive rats
Yamagishi et al. Role of asymmetric dimethylarginine (ADMA) in diabetic vascular complications
Meister et al. Berry consumption mitigates the hypertensive effects of a high-fat, high-sucrose diet via attenuation of renal and aortic AT1R expression resulting in improved endothelium-derived NO bioavailability
Shirhan et al. Influence of selective nitric oxide synthetase inhibitor for treatment of refractory haemorrhagic shock
WO2012010641A2 (en) Pharmaceutical composition for increasing cellular hypoxic tolerance
Nordquist et al. Diabetes-induced alterations in renal medullary microcirculation and metabolism
Nikolaeva et al. Nitric oxide, its role in diabetes mellitus and methods to improve endothelial function
Masha et al. Endothelial dysfunction in metabolic diseases: role of oxidation and possible therapeutic employment of N-acetylcysteine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736342

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736342

Country of ref document: EP

Kind code of ref document: A2