WO2012008672A1 - 전기 자동차를 이용하는 운송 시스템의 급집전장치 설계 방법 및 장치 - Google Patents
전기 자동차를 이용하는 운송 시스템의 급집전장치 설계 방법 및 장치 Download PDFInfo
- Publication number
- WO2012008672A1 WO2012008672A1 PCT/KR2011/000867 KR2011000867W WO2012008672A1 WO 2012008672 A1 WO2012008672 A1 WO 2012008672A1 KR 2011000867 W KR2011000867 W KR 2011000867W WO 2012008672 A1 WO2012008672 A1 WO 2012008672A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- design
- value
- current
- feeder
- current collector
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 78
- 238000013461 design Methods 0.000 claims abstract description 249
- 230000005672 electromagnetic field Effects 0.000 claims description 51
- 238000000926 separation method Methods 0.000 claims description 24
- 238000012938 design process Methods 0.000 claims description 17
- 238000004804 winding Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- 239000011162 core material Substances 0.000 description 54
- 230000033001 locomotion Effects 0.000 description 5
- 230000005611 electricity Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L5/00—Current collectors for power supply lines of electrically-propelled vehicles
- B60L5/005—Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60M—POWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
- B60M7/00—Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
- B60M7/003—Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
- H02J50/402—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/16—Driver interactions by display
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/147—Emission reduction of noise electro magnetic [EMI]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/91—Electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to a method and a device for designing a power supply device of a transportation system using an electric vehicle, and more particularly, can be used to charge the battery while traveling by using the power supplied from the outside during movement.
- the present invention relates to a power supply device for a transport system using an electric vehicle, and a method for designing a current collector installed in a vehicle, and a design device thereof.
- Vehicles using alternative energy include using electricity charged in batteries, using fuel cells composed of hydrogen and oxygen, and using solar heat. Vehicles using electricity charged in double batteries have been put into practical use.
- the problem to be solved by a vehicle using battery power is that it is difficult to travel long distances because the capacity of the battery is not large enough. For example, in order to have practicality for a vehicle using battery power in a domestic environment, a distance between Seoul and Busan, that is, about 400 km, must be driven with a single charge. However, the implementation of such a mileage by the existing technology increases the weight of the battery, reducing the efficiency of the electric vehicle. In addition, for vehicles using an internal combustion engine, it is sufficient to stop at a gas station briefly when refueling, but for an electric vehicle that uses battery power, it takes a long time to charge the battery. The problem is that it is difficult to replenish fuel in time.
- Applicant's patent 940,240 discloses a transportation system using a vehicle powered from a power feeder installed on a road.
- the online electric vehicle (OLEV) shown in this document is supplied with electric power from a power supply device installed underground and uses the electric power to operate a motor for driving wheels.
- On-line electric vehicles travel on electric power supplied from a power feeding device when driving on a road where a power feeding device is installed, and use electric power of a battery when driving on a road without a power feeding device.
- the supplied power can also be used to charge the battery of an online electric vehicle. This increases efficiency by eliminating the need for a large-capacity heavy battery for long distances, and recharging the battery while driving on roads with feeders, eliminating the need to stop for long periods of time. .
- a W-type or dual rail-type power feeding device has electrodes arranged in a direction perpendicular to the traveling direction of the vehicle, that is, the direction of extension of the road, Extends along the direction of travel.
- electrodes are arranged along the traveling direction of the vehicle.
- a U-type or mono-rail type power feeding device may also be implemented.
- the W-type power feeding device differs in that the electrodes are arranged at both sides and the center, but the U-type power feeding device is disposed only at both sides.
- the present invention is to provide a method for systematically and easily designing various types of power supply devices described above, and an apparatus for designing the same.
- a method for designing a power supply device for wirelessly supplying power to a vehicle having a current collector (a) receiving an interval between the power supply device and the current collector; (b) determining a feeding core width or an interval between two adjacent magnetic poles of the feeding device based on the distance between the feeding device and the current collecting device; (c) receiving a value required for the magnitude of the magnetic field generated by the power feeding device; And (d) determining the magnitude of the power to be supplied to the feeder based on the width of the feeder core determined in step (b) or the distance between two adjacent magnetic poles of the feeder, and the value required for the magnitude of the magnetic field. It includes a step.
- step (d1) may further comprise the step of determining the arrangement method of the wire for supplying power to the power feeding device.
- step (a) it may further comprise the step of receiving the direction of the arrangement of the magnetic poles of the power feeding device.
- the direction of arrangement of the magnetic poles of the power feeding device may be two or more magnetic poles extending in parallel with the vehicle traveling direction and parallel to each other.
- the direction of arrangement of the magnetic poles of the power feeding device may be one in which a plurality of magnetic poles are arranged in series along the vehicle traveling direction.
- (d2) may further comprise the step of determining the active or passive shielding against the electromagnetic field (EMF) generated in the power supply and the current collector.
- EMF electromagnetic field
- step (d3) may further comprise the step of determining the on-off state of the power supply switch.
- step (d4) may further include determining to resonate the current collector attached to the vehicle at the frequency of the alternating magnetic field generated in the power feeding device.
- a power feeding device and a method for designing a current collecting device for wirelessly supplying electric power to a vehicle having a current collecting device by generating a magnetic field include (a) a resonance frequency, a feed current value, a feed current collecting core width, Setting a design parameter including a current coil number of windings to an initial value; (b) receiving a minimum current collector value (hereinafter referred to as a current collector reference value) required for the current collector and a maximum EMF value allowed by the current collector (hereinafter referred to as an "EMF reference value”); (c) calculating current collection amount and generated electromagnetic wave (EMF) level from the currently set design parameters; (d) If the calculated current collector amount is lower than the current collector reference value or the generated EMF level is higher than the EMF reference value (hereinafter referred to as "design condition dissatisfaction”), the current collector amount and the generated EMF level are calculated while adjusting the feed current value among the set design parameters.
- a current collector reference value a minimum current collector value
- step (e) if there is a feed current value that satisfies the design condition, before determining the currently set design parameter value as the final design parameter, (e11) the currently set resonant frequency value is the maximum resonant frequency within the allowable range. If less than (hereinafter referred to as 'upper resonance frequency'), the maximum resonance that satisfies the design conditions by repeating the calculation of the current collector capacity and the generated EMF level while adjusting the resonance frequency of the design parameters in the range below the upper limit resonance frequency.
- the method may further include obtaining a frequency, and then, (e12) the final resonant frequency determined in the step (e11), the feed current value of the step (e), and the other design parameter values currently set as final design parameters. Determining may include.
- step (e) if there is no feed current value that satisfies the design condition, before the currently set design parameter value is determined as the final design parameter, (e21) the feed current core width or the interval between the magnetic poles (' Repeating calculation of current collection capacity and calculation of generated EMF level while increasing the supply current collector core width ') within an allowable range and adjusting the feed current value; (e22) if the feeding core width and the feeding current value satisfying the design conditions do not exist, ending the feeding device design process, and if present, proceeding to step e23; (e23) If the currently set resonant frequency value is smaller than the maximum resonant frequency (hereinafter referred to as 'upper resonant frequency') within the allowable range, the current collection amount is calculated while adjusting the resonant frequency among the design parameters within the range below the upper limit resonant frequency.
- the feed current core width or the interval between the magnetic poles ' Repeating calculation of current collection capacity and calculation of generated EMF level while increasing the supply current collector core
- step (e24) the maximum resonance frequency determined in step (e23), and the feed current in step (e22). Determining the value and other currently set parameter values as final design parameters.
- the design parameter to be adjusted may further include the number of turns of the current collector coil, and in the step (e), the number of turns of the current collector coil is further added to the design parameter to determine the presence and determine as the final design parameter. It may include.
- the resonance frequency value is preferably determined to be larger than the maximum audible frequency value.
- the determination of whether the design condition is satisfied may further include determining whether the separation distance between the power supply device and the current collector is greater than or equal to a predetermined minimum separation distance.
- a method of designing a power supply device for wirelessly supplying electric power to a vehicle having a current collector by generating a magnetic field includes: (a) a resonance frequency, a feed current value, a feed current core width, and a current collector coil; Receiving a core structure type of the power supply device to determine a design parameter including the number of turns; (b) setting the design parameter to an initial value; (c) receiving a minimum current collector value (hereinafter referred to as a current collector reference value) required for the current collector and a maximum EMF value allowed by the current collector (hereinafter referred to as an "EMF reference value"); (d) calculating current collection amount and generated electromagnetic wave (EMF) level from the currently set design parameters; (e) If the calculated current collector amount is lower than the current collector reference value or the generated EMF level is higher than the EMF reference value (hereinafter referred to as "design condition dissatisfaction”), the current collector amount and the generated EMF level are calculated while adjusting
- steps (b) to (f) may be sequentially performed for each core structure type.
- step (f) if there is a feed current value that satisfies the design condition, before determining the currently set design parameter value as the final design parameter, (f11) the currently set resonant frequency value is the maximum resonant frequency within the allowable range. If less than (hereinafter referred to as 'upper resonance frequency'), the maximum resonance that satisfies the design conditions by repeating the calculation of the current collector capacity and the generated EMF level while adjusting the resonance frequency of the design parameters in the range below the upper limit resonance frequency.
- the method may further include obtaining a frequency, and then (f12) the maximum resonant frequency determined in the step (f11), the feed current value of the step (f), and the other design parameter values currently set as final design parameters. Determining may include.
- step (f) if there is no feed current value satisfying the design condition, before determining the currently set design parameter value as the final design parameter, (f21) the feed current core width or the interval between the magnetic poles (' Repeating calculation of current collection capacity and calculation of generated EMF level while increasing the supply current collector core width ') within an allowable range and adjusting the feed current value; (f22) if the feeding core width and the feeding current value satisfying the design conditions do not exist, ending the feeding device design process, and if present, proceeding to step f23; (f23) If the currently set resonant frequency value is smaller than the maximum resonant frequency (hereinafter referred to as 'upper resonant frequency') within the allowable range, the current collection amount is calculated while adjusting the resonant frequency among the design parameters in the range below the upper limit resonant frequency.
- 'upper resonant frequency' the maximum resonant frequency
- the design parameter to be adjusted may further include the number of turns of the current collector coil, and in the step (f), the number of turns of the current collector coil is further added to the design parameter to determine the presence and determine as the final design parameter. It may include.
- the resonance frequency value is preferably determined to be larger than the maximum audible frequency value.
- the determination of whether the design condition is satisfied may further include determining whether a separation distance between the power supply device and the current collector is greater than or equal to a predetermined minimum separation distance.
- a power supply device for wirelessly supplying electric power to a vehicle having a current collector by generating a magnetic field and a device for designing the current collector include a resonance frequency, a feed current value, a feed current collector core width, and a current collector coil.
- a current collector calculating unit configured to calculate a current collector capacity from a design parameter including the number of turns;
- An EMF level calculator configured to calculate an electromagnetic wave (EMF) level generated from the design parameters;
- a design parameter database for storing the design parameter value and the variable range value of each design parameter;
- An input unit configured to receive a design condition reference value including a value of each design parameter, a variable range value of each design parameter, a current collector amount, and an EMF level value from a user;
- a design screen providing unit which displays various data of a design process including data calculated in a design process, a design condition reference value, and a determined design parameter value; And in order to design a power supply device that satisfies a current collection amount and an EMF level within a predetermined range, calculating the current collection amount and the EMF level according to variation of each design parameter by controlling each component, and determining the design parameter accordingly. It includes a design process control unit for controlling.
- the design parameter may further include the power supply core structure type.
- the design condition reference value may further include a minimum separation distance value between the power feeding device and the current collecting device.
- the power supply device design device may further include a separation distance calculator configured to calculate a distance between the power supply device and the current collector from the design parameter.
- the online electric vehicle design method according to the present invention has an effect of making it possible to easily design a power feeding device because the functional requirements are decoupled.
- the design method according to the present invention has the effect that can be designed in an optimal manner to the various types of power supply device.
- FIG. 2 is a diagram schematically showing a U-type power feeding device.
- FIG. 3 is a diagram schematically showing an I-type power feeding device.
- Figure 4 is a flow chart showing a design method of the power feeding device according to the axiom design theory.
- FIG. 5 is a flowchart showing an optimal design method of a power supply device.
- FIG. 6 is a view showing an apparatus for designing a power supply device for supplying and collecting power in a magnetic induction manner.
- design parameters of a transportation system using an online electric vehicle can be determined as follows by the axiomatic design theory.
- FR2 Transfer electricity from underground electric cable to the vehicle
- FR8 Supply electric power to the underground cable
- the constraints (C) of the transportation system are:
- C2 price of online electric vehicles (should be competitive with cars with IC engines)
- the design parameters (DP) of the transport system that meet the functional requirements (FR) and constraints (C) above are:
- the functional requirements (FR) and design variables (DP) of the transport system given above are eight each.
- the design matrix is uncoupled.
- the functional requirements (FR) and design variables (DP) of these transport systems must be decomposed until the detailed design is completed.
- the present invention provides a method of designing a power feeding device used in a transportation system by decomposing the second functional requirement of the above-described transportation system (hereinafter referred to as "FR2") and the second design variable DP2. Rewriting FR2 and DP2 looks like this:
- FR2 Transfer electricity from underground electric cable to the vehicle
- FR2 can be broken down as follows:
- FR21 Generate an alternating magnetic field
- FR23 Shape the magnetic field to control the height of the field (H)
- FR26 Maximize the pick-up of the power in the alternating magnetic field created under the ground for use in the vehicle
- DP21 Underground power lines with AC field surrounding the magnetic core (ferrite)
- DP22 power level, i.e., product of current and voltage (Electric power level, i.e., current (I) times voltage (V))
- DP26 Pick-up unit mounted on the car that resonates the frequency of the alternating magnetic field
- A11 and A12 are given as constants (for linear systems) or as functions of design variables (for nonlinear systems) and represent the relationship between functional requirements and design variables.
- FR21 is associated with DP21
- FR22 is associated with DP22 and DP23
- FR23 is associated with DP23 only.
- Equation 1 the design according to the present invention is a decoupled design. It can also be seen that the relationship between the functional requirements ⁇ FR24, FR25, FR26 ⁇ and the design variables ⁇ DP24, DP25, DP26 ⁇ is uncoupled.
- each functional requirement can be determined sequentially as follows:
- a denotes the length of the vehicle
- b denotes the width of the vehicle
- W and L denote core widths for the U-type feeder and spacing between the cores for the I-type feeder, respectively. Indicates.
- the distance H between the ground and the current collecting device can be adjusted by setting the core width W.
- the power level i.e. current and voltage
- FR21 is affected by DP22 and DP23 and can be controlled by DP21.
- the number of power lines installed underground along the direction of movement of the vehicle may be DP21.
- the core (stimulus) is arranged along the moving direction of the vehicle, and has the following advantages.
- the I-type power feeding device allows the distance between the magnetic poles to be set larger along the length of the vehicle, that is, along the direction of movement of the vehicle. Also, as the distance between the magnetic poles increases, the distance H between the ground and the power feeding device of the vehicle may become larger.
- the magnetic field can be formed narrow with respect to the width direction of the vehicle. Accordingly, magnetic field shielding in the width direction of the vehicle is advantageous.
- the efficiency of power transmission can be improved by introducing a phase delay between power lines arranged along the moving direction of the vehicle to flatten the profile of the magnetic field.
- the following describes a method of designing a power supply device for wirelessly supplying power to a vehicle having a current collector according to the present invention.
- FIG. 4 is a flowchart showing a design method of a power feeding device according to the axiom design theory.
- the type of power feeding device is input. That is, a selection is made on which type of power supply device is selected from among a U-type power supply device, a W-type power supply device or an I-type power supply device, or a form in which such a form is improved in various ways (S401).
- the U-shape is a feed core structure shown in FIG. 2 and has two or more magnetic poles 211 extending in parallel with the vehicle traveling direction and parallel to each other.
- the cross section 213 perpendicular to the vehicle traveling direction of the core (left and right directions) is called a 'U' shape because of its 'U' shape.
- Type I is a feed core structure shown in Fig. 3, in which a plurality of magnetic poles 311 arranged in series along the vehicle traveling direction are arranged to form one or a plurality of rows in series along the vehicle traveling direction.
- the cross section perpendicular to the vehicle traveling direction of the magnetic pole is called an 'I' shape and thus is called an I shape.
- W type has a structure similar to that of the U type feed cores disposed adjacent to each other in parallel with the vehicle traveling direction. Accordingly, the cross section perpendicular to the vehicle traveling direction of the magnetic pole (“left” direction) becomes a “W” shape, so it is referred to as W shape.
- the distance H between the power feeding device and the current collecting device is input.
- the feeder is installed underground and the upper end of the core is almost coincident with the ground, resulting in the input between the ground and the current collector.
- the distance between two adjacent magnetic poles of the power supply device is determined based on the distance between the power supply device and the current collector (S411, S421).
- the width (W) of the core (stimulus) in the left-right direction perpendicular to the moving direction of the vehicle, that is, facing the road ahead. See FIG. 2
- the distance L between the I type cores (stimulated) arranged in series along the moving direction of the vehicle is determined. (See FIG. 3) (S421).
- a value required for the magnitude of the magnetic field generated in the power supply device is input.
- the size of the magnetic field is determined in consideration of power required for transportation of the vehicle, power transmission efficiency between the power supply device and the current collector.
- the amount of power to be supplied to the power feeding device is determined based on the value required for the distance between the power feeding device and the current collector and the size of the magnetic field determined above (S412, S422). For example, if the magnitude of the voltage is determined, the magnitude of the current to be supplied is determined.
- the method may further include determining an arrangement method of the wires for supplying power to the power feeding device. For example, the diameter of the power line and the number of power lines may be determined (S413 and S423).
- FIG. 5 is a flowchart illustrating an optimal design method of a power supply device.
- V c F ( f r , I s , N 1 , N 2 , g air , W c , S c , C c )
- each parameter is the resonant frequency f r , the feed current I s , the number of turns of the primary side (feeder) coil N 1 , the number of turns of the secondary side (current collector) coil N 2 , the separation distance g air between the feeder and the current collector Core width W c (magnitude spacing for type I), feeding current core structure S c (type U, type W, type I, improved type), feeding current core material properties C c (permeability, frequency characteristics). .
- V c is proportional to the following equation.
- the other purpose of the optimum design is to maximize the current collector efficiency.
- R c current collecting resistance
- Rs feed line resistance (feed line effective cross-sectional area, resonant frequency function, line length, conductivity).
- the separation distance g air is proportional to
- the g air is preferably 12cm or more in the case of a passenger car, and 20cm or more in the case of a large car such as a bus.
- the generated electromagnetic wave (EMF) level should be less than a certain value. That is, when the emf level that occurs is called L emf
- a core structure type of a power supply device for determining a design parameter including a resonance frequency, a power supply current value, a power supply core width, and a current coil number of windings is input (S501).
- the feed core structure type may be an I type, a U type, a W type, or a type type improved by some modification of each of these types. This feeding core structure type has been described above with reference to FIGS. 2 to 4.
- This design parameter is set to an initial value (S502).
- the design parameter may have various parameters in addition to the above parameters.
- the minimum current collector value required for the current collector hereinafter referred to as the current collector reference value
- the maximum EMF value allowed by the current collector hereinafter referred to as the "EMF reference value”
- the input value may further include a minimum separation distance value between the power feeding device and the current collecting device.
- the current collecting capacity and the generated electromagnetic wave (EMF) level are calculated from the currently set design parameters, and when the calculated current collecting amount is less than the current collecting capacity reference value or exceeds the EMF reference value (hereinafter referred to as "design condition dissatisfaction")
- the current collection amount and the generated EMF level calculation are repeated while adjusting the current value (S504).
- the adjusting design parameter may further include the number of turns of the current collector coil.
- the determination of whether the design condition is satisfied may further include a determination of whether the separation distance between the power supply device and the current collector is greater than or equal to a predetermined minimum separation distance. The same applies when determining whether all design conditions are satisfied.
- the minimum separation distance may be set to, for example, 12 cm for a passenger car and 20 cm for a large car such as a bus.
- the feed current value, current coil number, and other design parameter values currently set may be determined as final design parameters for the core structure type (S507).
- the resonant frequency value among the design parameters is smaller than the maximum resonant frequency (hereinafter referred to as 'upper resonant frequency') within the allowable range (S506), the resonant frequency of the design parameters is within the range below the upper limit resonant frequency.
- the current collector capacity and calculate the generated EMF level while adjusting upward, and find the maximum resonant frequency within the range that satisfies the design condition (S510), the resonant frequency, the feed current value at that time, the current coil number and current setting.
- the other design parameter value may be determined as the final design parameter (S507).
- the feed current collector core width can be increased within the allowable range.
- feeder core width is uniformly illustrated, hereinafter, 'feeder core width' is a movement of a vehicle in the case of a U-type, W-type power feeding device, or an improved type of U-type or W-type feeding device.
- the power supply core width value is increased, and the current collection amount calculation and the generated EMF level calculation are repeated while adjusting the power supply current value, the current coil number, and the like (S508). From this, if there are values (solution) such as the feeder core width, the feeder current value, and the number of coils of the current collector to satisfy the design conditions (S509), the process proceeds to the next step (S506), but if not present (S509), the design process is terminated. .
- step S509 if the currently set resonant frequency value among the design parameters is less than the maximum resonant frequency (hereinafter referred to as 'upper resonant frequency') within the allowable range (S506), the resonant frequency among the design parameters is the upper limit.
- the maximum resonance frequency satisfying the design condition is obtained (S510), the resonance frequency, the feed current value determined in the above steps, and the current collector coil.
- the number of turns, the current collector core width, and other currently set parameter values may be determined as final design parameters (S507).
- This design process may be configured to be automatically performed sequentially for each core structure type when two or more core structure types are initially input.
- the resonance frequency value is preferably determined to be greater than the maximum audible frequency value (20 kHz) in order to reduce noise.
- FIG. 6 is a diagram illustrating a power feeding device for supplying and collecting power in a magnetic induction method and an apparatus 600 for designing a current collecting device.
- the design process control unit 610 controls each component to calculate current collection amount and EMF level according to variation of each design parameter, and Control the determination of the design parameters accordingly.
- the current collector calculator 620 calculates the current collector capacity from design parameters including a resonance frequency, a power supply current value, a power supply core width, and a current coil number of turns.
- the EMF level calculator 630 calculates an electromagnetic wave (EMF) level generated from the design parameter.
- EMF electromagnetic wave
- the separation distance calculator 640 calculates the separation distance between the power feeding device and the current collecting device from the design parameter.
- the design parameter database 650 stores the design parameter value and the variable range value of each design parameter.
- the input unit 660 receives a design condition reference value including a value of each design parameter, a variable range value of each design parameter, a current collector amount, an EMF level value, and a minimum separation distance value between the power supply device and the current collector from the user. Receive input.
- the design screen providing unit 670 displays various data of the design process including data calculated in the design process, design condition reference values, and determined design parameter values.
- the data calculated during the design process includes a current collection amount calculated by the current design parameter, an generated EMF level calculated by the current design parameter, and a separation distance between the power supply device and the current collector calculated by the current design parameter. Etc. may be included.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
- Architecture (AREA)
- Software Systems (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
Description
Claims (25)
- 집전장치를 갖는 차량에 무선으로 전력을 공급하기 위한 급전장치를 설계하는 방법으로서,(a) 급전장치와 집전장치 사이의 간격을 입력받는 단계;(b) 상기 급전장치와 집전장치 사이의 간격에 기초하여 급집전 코어 폭 또는 급전장치의 인접하는 두 자극 사이의 간격을 결정하는 단계;(c) 급전장치에서 발생되는 자기장의 크기에 대해 요구되는 값을 입력받는 단계; 및(d) 상기 단계(b)에서 결정된 급집전 코어 폭 또는 급전장치의 인접하는 두 자극 사이의 간격, 및 상기 자기장의 크기에 대해 요구되는 값에 기초하여 급전장치에 공급될 전력의 크기를 결정하는 단계를 포함하는 것을 특징으로 하는 급전장치 설계 방법.
- 청구항 1에 있어서,상기 단계(d) 이후에,(d1) 급전장치에 전력을 공급하는 전선의 배치 방법을 결정하는 단계를 더 포함하는 것을 특징으로 하는 급전장치 설계 방법.
- 청구항 1에 있어서,상기 단계(a) 이전에,급전장치의 자극의 배열 방향을 입력받는 단계를 더 포함하는 것을 특징으로 하는 급전장치 설계 방법.
- 청구항 3에 있어서,급전장치의 자극의 배열 방향은,둘 이상의 자극이 차량 진행방향과 평행하게 연장되고 서로 나란한 것을 특징으로 하는 급전장치 설계 방법.
- 청구항 3에 있어서,급전장치의 자극의 배열 방향은,다수의 자극이 차량 진행방향을 따라 직렬로 배열된 것을 특징으로 하는 급전장치 설계 방법.
- 청구항 1에 있어서,상기 단계(d) 이후에,(d2) 급전장치 및 집전장치에서 발생하는 전자기장(EMF)에 대한 능동 또는 수동 차폐 방식을 결정하는 단계를 더 포함하는 것을 특징으로 하는 급전장치 설계 방법.
- 청구항 1에 있어서,상기 단계(d) 이후에,(d3) 급전장치 스위치의 온오프 상태를 결정하는 단계를 더 포함하는 것을 특징으로 하는 급전장치 설계 방법.
- 청구항 1에 있어서,상기 단계(d) 이후에,(d4) 급전장치에서 발생하는 교류 자기장의 주파수에, 차량에 부착된 집전장치를 공진시킬 것을 결정하는 단계를 더 포함하는 것을 특징으로 하는 급전장치 설계 방법.
- 자기장을 발생시킴으로써 집전장치를 갖는 차량에 무선으로 전력을 공급하는 급전장치 및 집전장치를 설계하는 방법으로서,(a) 공진주파수, 급전전류값, 급집전 코어 폭 및 집전코일 권수를 포함하는 설계 파라미터를 초기값으로 설정하는 단계;(b) 집전장치에 요구되는 최소 집전용량 값(이하 '집전용량 기준값'이라 한다) 및 급집전장치에서 발생허용되는 최대 EMF 값(이하 'EMF 기준값'이라 한다)을 입력받는 단계;(c) 현재 설정된 설계 파라미터로부터 집전용량 및 발생하는 전자파(EMF) 레벨을 산출하는 단계;(d) 산출된 집전용량이 상기 집전용량 기준값 미만이거나 발생 EMF 레벨이 EMF 기준값 초과(이하 "설계조건 불만족"이라 한다)인 경우 설정된 설계 파라미터 중 급전전류값을 조정하면서 집전용량 및 발생 EMF 레벨 산출을 반복하는 단계; 및(e) 산출된 집전용량이 상기 집전용량 기준값 이상이고 발생하는 전자파(EMF) 레벨이 상기 EMF 기준값 이하(이하 "설계조건 만족"이라 한다)가 되게하는 급전전류값이 존재하는 경우, 그 급전전류값 및 현재 설정되어 있는 타 설계 파라미터 값을 최종 설계 파라미터로서 결정하는 단계를 포함하는 급집전장치 설계 방법.
- 청구항 9에 있어서,상기 단계(e)에서,설계조건 만족시키는 급전전류값이 존재하는 경우, 현재 설정되어 있는 설계 파라미터 값을 최종 설계 파라미터로서 결정하기 전에,(e11) 현재 설정된 공진주파수 값이 허용 범위 내의 최대 공진주파수(이하 '상한 공진주파수'라 한다)보다 작으면, 상기 설계 파라미터 중 공진주파수를 상기 상한 공진주파수 이하의 범위에서 상향 조정하면서 집전용량 산출 및 발생되는 EMF 레벨 산출을 반복하여 설계조건 만족시키는 최대 공진주파수를 구하는 단계를 더 포함하고, 이후,(e12) 상기 단계(e11)에서 결정된 최대 공진주파수, 상기 단계(e)의 급전전류값 및 현재 설정되어 있는 타 설계 파라미터 값을 최종 설계 파라미터로서 결정하는 단계를 포함하는 것을 특징으로 하는 급집전장치 설계 방법.
- 청구항 9에 있어서,상기 단계(e)에서,설계조건 만족시키는 급전전류값이 존재하지 않는 경우, 현재 설정되어 있는 설계 파라미터 값을 최종 설계 파라미터로서 결정하기 전에,(e21) 급집전 코어 폭 또는 자극간 간격(이하 '급집전 코어 폭'으로 통칭한다)을 허용범위 내에서 증가시키고 급전전류값을 조정하면서 집전용량 산출 및 발생되는 EMF 레벨 산출을 반복하는 단계;(e22) 설계조건 만족시키는 급집전 코어 폭 및 급전전류값이 존재하지 않으면 급전장치 설계과정을 종료하고, 존재하는 경우 단계(e23)으로 진행하는 단계;(e23) 현재 설정된 공진주파수 값이 허용 범위 내의 최대 공진주파수(이하 '상한 공진주파수'라 한다)보다 작으면, 상기 설계 파라미터 중 공진주파수를 상기 상한 공진주파수 이하의 범위에서 상향 조정하면서 집전용량 산출 및 발생되는 EMF 레벨 산출을 반복하여 설계조건 만족시키는 최대 공진주파수를 구하는 단계를 더 포함하고, 이후,(e24) 상기 단계(e23)에서 결정된 최대 공진주파수, 상기 단계(e22)의 급전전류값 및 현재 설정되어 있는 타 설계 파라미터 값을 최종 설계 파라미터로서 결정하는 단계를 포함하는 것을 특징으로 하는 급집전장치 설계 방법.
- 청구항 9에 있어서,상기 단계(d)에서, 조정하는 설계 파라미터에는 집전코일의 권수를 더 포함하고,상기 단계(e)에서, 존재여부를 판단하고 최종 설계 파라미터로서 결정하는 설계 파라미터에는 집전코일의 권수를 더 포함하는 것을 특징으로 하는 급집전장치 설계 방법.
- 청구항 9에 있어서,상기 공진 주파수 값은,최대 가청 주파수 값보다 큰 값으로 결정하는 것을 특징으로 하는 급집전장치 설계 방법.
- 청구항 9 내지 청구항 13 중 어느 한 항에 있어서,설계조건 만족 여부의 판단에는,급전장치와 집전장치 간의 이격거리가, 기 설정된 최소 이격거리 이상이 되는지에 대한 판단이 더 포함되는 것을 특징으로 하는 급집전장치 설계 방법.
- 자기장을 발생시킴으로써 집전장치를 갖는 차량에 무선으로 전력을 공급하는 급전장치를 설계하는 방법으로서,(a) 공진주파수, 급전전류값, 급집전 코어 폭 및 집전코일 권수를 포함하는 설계 파라미터를 결정할 급집전장치의 코어 구조 타입(type)을 입력받는 단계;(b) 상기 설계 파라미터를 초기값으로 설정하는 단계;(c) 집전장치에 요구되는 최소 집전용량 값(이하 '집전용량 기준값'이라 한다) 및 급집전장치에서 발생허용되는 최대 EMF 값(이하 'EMF 기준값'이라 한다)을 입력받는 단계;(d) 현재 설정된 설계 파라미터로부터 집전용량 및 발생하는 전자파(EMF) 레벨을 산출하는 단계;(e) 산출된 집전용량이 상기 집전용량 기준값 미만이거나 발생 EMF 레벨이 EMF 기준값 초과(이하 "설계조건 불만족"이라 한다)인 경우 설정된 설계 파라미터 중 급전전류값을 조정하면서 집전용량 및 발생 EMF 레벨 산출을 반복하는 단계; 및(f) 산출된 집전용량이 상기 집전용량 기준값 이상이고 발생하는 전자파(EMF) 레벨이 상기 EMF 기준값 이하(이하 "설계조건 만족"이라 한다)가 되게 하는 급전전류값이 존재하는 경우, 그 급전전류값 및 현재 설정되어 있는 타 설계 파라미터 값을 상기 코어 구조 타입에 대한 최종 설계 파라미터로서 결정하는 단계를 포함하는 급집전장치 설계 방법.
- 청구항 15에 있어서,상기 단계(a)에서, 둘 이상의 코어 구조 타입이 입력된 경우,각 코어 구조 타입에 대하여 순차적으로 상기 단계(b) 내지 단계(f)를 수행하는 것을 특징으로 하는 급집전장치 설계 방법.
- 청구항 15에 있어서,상기 단계(f)에서,설계조건 만족시키는 급전전류값이 존재하는 경우, 현재 설정되어 있는 설계 파라미터 값을 최종 설계 파라미터로서 결정하기 전에,(f11) 현재 설정된 공진주파수 값이 허용 범위 내의 최대 공진주파수(이하 '상한 공진주파수'라 한다)보다 작으면, 상기 설계 파라미터 중 공진주파수를 상기 상한 공진주파수 이하의 범위에서 상향 조정하면서 집전용량 산출 및 발생되는 EMF 레벨 산출을 반복하여 설계조건 만족시키는 최대 공진주파수를 구하는 단계를 더 포함하고, 이후,(f12) 상기 단계(f11)에서 결정된 최대 공진주파수, 상기 단계(f)의 급전전류값 및 현재 설정되어 있는 타 설계 파라미터 값을 최종 설계 파라미터로서 결정하는 단계를 포함하는 것을 특징으로 하는 급집전장치 설계 방법.
- 청구항 15에 있어서,상기 단계(f)에서,설계조건 만족시키는 급전전류값이 존재하지 않는 경우, 현재 설정되어 있는 설계 파라미터 값을 최종 설계 파라미터로서 결정하기 전에,(f21) 급집전 코어 폭 또는 자극간 간격(이하 '급집전 코어 폭'으로 통칭한다)을 허용범위 내에서 증가시키고 급전전류값을 조정하면서 집전용량 산출 및 발생되는 EMF 레벨 산출을 반복하는 단계;(f22) 설계조건 만족시키는 급집전 코어 폭 및 급전전류값이 존재하지 않으면 급전장치 설계과정을 종료하고, 존재하는 경우 단계(f23)으로 진행하는 단계;(f23) 현재 설정된 공진주파수 값이 허용 범위 내의 최대 공진주파수(이하 '상한 공진주파수'라 한다)보다 작으면, 상기 설계 파라미터 중 공진주파수를 상기 상한 공진주파수 이하의 범위에서 상향 조정하면서 집전용량 산출 및 발생되는 EMF 레벨 산출을 반복하여 설계조건 만족시키는 최대 공진주파수를 구하는 단계를 더 포함하고, 이후,(f24) 상기 단계(f23)에서 결정된 최대 공진주파수, 상기 단계(f22)의 급전전류값 및 현재 설정되어 있는 타 설계 파라미터 값을 최종 설계 파라미터로서 결정하는 단계를 포함하는 것을 특징으로 하는 급집전장치 설계 방법.
- 청구항 15에 있어서,상기 단계(e)에서, 조정하는 설계 파라미터에는 집전코일의 권수를 더 포함하고,상기 단계(f)에서, 존재여부를 판단하고 최종 설계 파라미터로서 결정하는 설계 파라미터에는 집전코일의 권수를 더 포함하는 것을 특징으로 하는 급집전장치 설계 방법.
- 청구항 15에 있어서,상기 공진 주파수 값은,최대 가청 주파수 값보다 큰 값으로 결정하는 것을 특징으로 하는 급집전장치 설계 방법.
- 청구항 15 내지 청구항 20 중 어느 한 항에 있어서,설계조건 만족 여부의 판단에는,급전장치와 집전장치 간의 이격거리가, 기 설정된 최소 이격거리 이상이 되는지에 대한 판단이 더 포함되는 것을 특징으로 하는 급집전장치 설계 방법.
- 자기장을 발생시킴으로써 집전장치를 갖는 차량에 무선으로 전력을 공급하는 급전장치 및 집전장치를 설계하는 장치로서,공진주파수, 급전전류값, 급집전 코어 폭 및 집전코일 권수를 포함하는 설계 파라미터로부터 집전용량을 산출하는 집전용량 산출부;상기 설계 파라미터로부터 발생하는 전자파(EMF) 레벨을 산출하는 EMF 레벨 산출부;상기 설계 파라미터 값 및 상기 각 설계 파라미터의 변동가능 범위값을 저장하는 설계 파라미터 데이터베이스;사용자로부터 상기 각 설계 파라미터 값, 상기 각 설계 파라미터의 변동가능 범위값 및, 요청되는 집전용량 및 EMF 레벨 값을 포함하는 설계조건 기준값을 입력받는 입력부;설계과정에서 산출되는 데이터, 설계조건 기준값 및 결정되는 설계 파라미터 값을 포함하는 설계과정의 각종 데이터를 디스플레이해 주는 설계화면 제공부; 및기 설정된 범위의 집전용량 및 EMF 레벨을 만족하는 급집전장치를 설계하기 위하여, 상기 각 구성요소를 제어하여 각 설계 파라미터의 변동에 따른 집전용량 및 EMF 레벨 산출 및, 이에 따른 설계 파라미터의 결정 과정을 제어하는 설계 프로세스 제어부를 포함하는 급집전장치 설계 장치.
- 청구항 22에 있어서,상기 설계 파라미터에는,상기 급집전 코어 구조 타입을 더 포함하는 것을 특징으로 하는 급집전장치 설계 장치.
- 청구항 22에 있어서,상기 설계조건 기준값에는,급전장치와 집전장치 간의 최소 이격거리 값이 더 포함되는 것을 특징으로 하는 급집전장치 설계 장치.
- 청구항 22에 있어서,상기 설계 파라미터로부터 급전장치와 집전장치 간의 이격거리를 산출하는 이격거리 산출부를 더 포함하는 것을 특징으로 하는 급집전장치 설계 장치.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/810,066 US9747391B2 (en) | 2010-07-15 | 2011-02-09 | Method and device for designing a current supply and collection device for a transportation system using an electric vehicle |
SG2013003264A SG187089A1 (en) | 2010-07-15 | 2011-02-09 | Method and device for designing a current supply and collection device for a transportation system using an electric vehicle |
CN201180034518.1A CN103003091B (zh) | 2010-07-15 | 2011-02-09 | 利用电动车的运输系统的供集、电装置的设计方法及装置 |
AU2011277322A AU2011277322B2 (en) | 2010-07-15 | 2011-02-09 | Method and device for designing a current supply and collection device for a transportation system using an electric vehicle |
JP2013519562A JP2013538541A (ja) | 2010-07-15 | 2011-02-09 | 電気自動車を用いる運送システムの給集電装置設計方法及び装置 |
EP11806957.4A EP2594425A4 (en) | 2010-07-15 | 2011-02-09 | Method and device for designing a current supply and collection device for a transportation system using an electric vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100068470A KR101156034B1 (ko) | 2010-07-15 | 2010-07-15 | 전기 자동차를 이용하는 운송 시스템의 급집전장치 설계 방법 및 장치 |
KR10-2010-0068470 | 2010-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012008672A1 true WO2012008672A1 (ko) | 2012-01-19 |
Family
ID=45469645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/000867 WO2012008672A1 (ko) | 2010-07-15 | 2011-02-09 | 전기 자동차를 이용하는 운송 시스템의 급집전장치 설계 방법 및 장치 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9747391B2 (ko) |
EP (1) | EP2594425A4 (ko) |
JP (2) | JP2013538541A (ko) |
KR (1) | KR101156034B1 (ko) |
CN (1) | CN103003091B (ko) |
AU (1) | AU2011277322B2 (ko) |
SG (1) | SG187089A1 (ko) |
WO (1) | WO2012008672A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2502084A (en) * | 2012-05-14 | 2013-11-20 | Bombardier Transp Gmbh | Arrangement for providing vehicles with energy comprising magnetisable material |
JP2014053984A (ja) * | 2012-09-05 | 2014-03-20 | Showa Aircraft Ind Co Ltd | 移動給電式の非接触給電装置 |
JPWO2013168241A1 (ja) * | 2012-05-09 | 2015-12-24 | トヨタ自動車株式会社 | 車両 |
US9287505B2 (en) | 2010-07-08 | 2016-03-15 | Merck Patent Gmbh | Semiconducting polymers |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10065515B2 (en) | 2014-03-04 | 2018-09-04 | Technova Inc. | System for wirelessly supplying power during moving |
US20170046452A1 (en) * | 2015-08-14 | 2017-02-16 | VERTICA Lukasz Rutkiewicz | Device for digital modeling of actual surfaces |
WO2017046946A1 (ja) * | 2015-09-18 | 2017-03-23 | 富士機械製造株式会社 | 非接触給電装置 |
KR101879938B1 (ko) * | 2016-06-29 | 2018-07-18 | 한국기술교육대학교 산학협력단 | 역자기장선을 이용한 전기자동차용 급전장치 구조 |
KR102205485B1 (ko) * | 2017-07-18 | 2021-01-21 | 한국과학기술원 | 전기적으로 독립적인 복수개의 코일을 갖는 무선 집전장치 및 이의 제어방법 |
CN108683272B (zh) * | 2018-06-25 | 2021-07-30 | 哈尔滨工业大学 | 一种用于动态无线充电的双极型发射导轨 |
WO2022224525A1 (ja) * | 2021-04-23 | 2022-10-27 | ソニーグループ株式会社 | 光検出装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000092615A (ja) * | 1998-09-09 | 2000-03-31 | Harness Syst Tech Res Ltd | 電気自動車用充電システムにおける充電カプラーの位置検出方法及びその装置 |
JP2003189508A (ja) * | 2001-12-14 | 2003-07-04 | Furukawa Electric Co Ltd:The | 非接触電力供給装置 |
US20040236551A1 (en) * | 1999-02-03 | 2004-11-25 | Kabushiki Kaisha Toshiba | Computer-aided designing assistant apparatus and method of assisting designing of environmentally conscious product |
KR20090067715A (ko) | 2007-12-21 | 2009-06-25 | 김국진 | 내구성이 강한 신발 |
KR20090091802A (ko) | 2006-12-20 | 2009-08-28 | 말레 인터내셔널 게엠베하 | 내연 기관의 실린더 슬리브용 또는 실린더용 인서트 |
KR100940240B1 (ko) | 2008-09-02 | 2010-02-04 | 한국과학기술원 | 전기 자동차를 이용하는 운송 시스템 |
KR100944113B1 (ko) * | 2009-02-27 | 2010-02-24 | 한국과학기술원 | 전기자동차용 전원공급 시스템 및 방법 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0210886D0 (en) * | 2002-05-13 | 2002-06-19 | Zap Wireless Technologies Ltd | Improvements relating to contact-less power transfer |
US20080250330A1 (en) * | 2003-02-26 | 2008-10-09 | Carl Thompson | Portable action processing software module with pre-designed expert action plans |
US7272809B2 (en) * | 2003-11-13 | 2007-09-18 | International Business Machines Corporation | Method, apparatus and computer program product for implementing enhanced high frequency return current paths utilizing decoupling capacitors in a package design |
US8030888B2 (en) * | 2007-08-13 | 2011-10-04 | Pandya Ravi A | Wireless charging system for vehicles |
JP5329929B2 (ja) * | 2008-12-02 | 2013-10-30 | 昭和飛行機工業株式会社 | 非接触給電装置 |
-
2010
- 2010-07-15 KR KR1020100068470A patent/KR101156034B1/ko active IP Right Grant
-
2011
- 2011-02-09 CN CN201180034518.1A patent/CN103003091B/zh not_active Expired - Fee Related
- 2011-02-09 US US13/810,066 patent/US9747391B2/en active Active
- 2011-02-09 EP EP11806957.4A patent/EP2594425A4/en not_active Withdrawn
- 2011-02-09 AU AU2011277322A patent/AU2011277322B2/en active Active
- 2011-02-09 SG SG2013003264A patent/SG187089A1/en unknown
- 2011-02-09 WO PCT/KR2011/000867 patent/WO2012008672A1/ko active Application Filing
- 2011-02-09 JP JP2013519562A patent/JP2013538541A/ja active Pending
-
2015
- 2015-03-17 JP JP2015053758A patent/JP2015164394A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000092615A (ja) * | 1998-09-09 | 2000-03-31 | Harness Syst Tech Res Ltd | 電気自動車用充電システムにおける充電カプラーの位置検出方法及びその装置 |
US20040236551A1 (en) * | 1999-02-03 | 2004-11-25 | Kabushiki Kaisha Toshiba | Computer-aided designing assistant apparatus and method of assisting designing of environmentally conscious product |
JP2003189508A (ja) * | 2001-12-14 | 2003-07-04 | Furukawa Electric Co Ltd:The | 非接触電力供給装置 |
KR20090091802A (ko) | 2006-12-20 | 2009-08-28 | 말레 인터내셔널 게엠베하 | 내연 기관의 실린더 슬리브용 또는 실린더용 인서트 |
KR20090067715A (ko) | 2007-12-21 | 2009-06-25 | 김국진 | 내구성이 강한 신발 |
KR100940240B1 (ko) | 2008-09-02 | 2010-02-04 | 한국과학기술원 | 전기 자동차를 이용하는 운송 시스템 |
KR100944113B1 (ko) * | 2009-02-27 | 2010-02-24 | 한국과학기술원 | 전기자동차용 전원공급 시스템 및 방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2594425A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9287505B2 (en) | 2010-07-08 | 2016-03-15 | Merck Patent Gmbh | Semiconducting polymers |
JPWO2013168241A1 (ja) * | 2012-05-09 | 2015-12-24 | トヨタ自動車株式会社 | 車両 |
GB2502084A (en) * | 2012-05-14 | 2013-11-20 | Bombardier Transp Gmbh | Arrangement for providing vehicles with energy comprising magnetisable material |
US9793040B2 (en) | 2012-05-14 | 2017-10-17 | Bombardier Transportation Gmbh | Arrangement for providing vehicles with energy comprising magnetizable material |
JP2014053984A (ja) * | 2012-09-05 | 2014-03-20 | Showa Aircraft Ind Co Ltd | 移動給電式の非接触給電装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103003091B (zh) | 2015-10-21 |
CN103003091A (zh) | 2013-03-27 |
EP2594425A1 (en) | 2013-05-22 |
EP2594425A4 (en) | 2018-02-28 |
AU2011277322A1 (en) | 2013-02-07 |
US20130304443A1 (en) | 2013-11-14 |
SG187089A1 (en) | 2013-02-28 |
KR20120007775A (ko) | 2012-01-25 |
JP2013538541A (ja) | 2013-10-10 |
US9747391B2 (en) | 2017-08-29 |
JP2015164394A (ja) | 2015-09-10 |
AU2011277322B2 (en) | 2014-09-18 |
KR101156034B1 (ko) | 2012-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012008672A1 (ko) | 전기 자동차를 이용하는 운송 시스템의 급집전장치 설계 방법 및 장치 | |
WO2013048092A2 (ko) | 공진주파수 변화에도 전송효율 안정성을 유지하는 급집전 시스템 | |
Lukic et al. | Cutting the cord: Static and dynamic inductive wireless charging of electric vehicles | |
WO2011046414A2 (en) | Power supply apparatus for on-line electric vehicle, method for forming same and magnetic field cancelation apparatus | |
JP4536131B2 (ja) | 移動体用絶縁式給電装置 | |
WO2013015511A1 (ko) | 차량 에너지 관리 시스템, 이를 위한 방법 및 장치 | |
RU2408476C2 (ru) | Способ беспроводной передачи электрической энергии и устройство для его осуществления (варианты) | |
WO2014204116A1 (ko) | 비행체 운용시스템 | |
WO2011016736A2 (en) | Roadway powered electric vehicle system | |
WO2014073863A1 (en) | Wireless power receiving device and power control method thereof | |
JPS648832A (en) | Co-generation system | |
WO2020218810A1 (ko) | Ev 사용자 인가 방법 및 시스템 | |
EP2909824A1 (en) | Wireless power transmitter and receiver, and method for transmitting emergency information in a wireless charging network | |
Shu et al. | Capacitive power tapping from insulated shield wire of overhead high voltage transmission lines with tuning | |
CN209958168U (zh) | 一种具有无线充电单元的装配式太阳能发电路面 | |
WO2021025306A1 (ko) | 전력 전송에서의 페어링 제어 방법 및 장치 | |
FI945244A (fi) | Maanpinnan yläpuolella oleva optinen lähetysjärjestelmä | |
Vasquez-Arnez et al. | Tap-off power from the overhead shield wires of an HV transmission line | |
WO2011081457A9 (ko) | 전자유도를 이용한 온라인 전기자동차의 자기장 통신장치 | |
CN208337240U (zh) | 一种用于交通工具的无线供电系统及交通运输系统 | |
RU2490146C2 (ru) | Устройство и способ бесконтактной передачи электрической энергии на электротранспортное средство | |
WO2023191451A1 (ko) | 무선 전력 전송을 위한 코일 구조를 포함하는 무선 전력 전송 장치 및 방법 | |
WO2024053981A1 (ko) | 무선 전력 전송을 위한 자성체 코어 구조, 코어 구조를 이용하는 무선 전력 전송 장치 및 방법 | |
CN108448733A (zh) | 一种用于交通工具的无线供电系统及交通运输系统 | |
WO2024117406A1 (ko) | 이동식 충전 장치를 이용한 방문식 전기 차량 충전 서비스 제공 방법, 장치 및 컴퓨터 프로그램 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11806957 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013519562 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011277322 Country of ref document: AU Date of ref document: 20110209 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011806957 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13810066 Country of ref document: US |