Nothing Special   »   [go: up one dir, main page]

WO2012008559A1 - Separator for lithium ion secondary battery and lithium ion secondary battery using same - Google Patents

Separator for lithium ion secondary battery and lithium ion secondary battery using same Download PDF

Info

Publication number
WO2012008559A1
WO2012008559A1 PCT/JP2011/066172 JP2011066172W WO2012008559A1 WO 2012008559 A1 WO2012008559 A1 WO 2012008559A1 JP 2011066172 W JP2011066172 W JP 2011066172W WO 2012008559 A1 WO2012008559 A1 WO 2012008559A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
separator
ion secondary
lithium ion
secondary battery
Prior art date
Application number
PCT/JP2011/066172
Other languages
French (fr)
Japanese (ja)
Inventor
松岡 昌伸
友洋 佐藤
加寿美 加藤
誉子 笠井
緑川 正敏
伯志 松田
裕夫 鍛冶
山本 浩和
宏明 渡邉
佃 貴裕
郁夫 藤田
兵頭 建二
Original Assignee
三菱製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱製紙株式会社 filed Critical 三菱製紙株式会社
Priority to CN201180034584.9A priority Critical patent/CN102986060B/en
Priority to JP2012524600A priority patent/JP5767222B2/en
Publication of WO2012008559A1 publication Critical patent/WO2012008559A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a lithium ion secondary battery and a lithium ion secondary battery using the separator.
  • a lithium ion secondary battery using an organic electrolyte (non-aqueous electrolyte) has attracted attention.
  • the average voltage of the lithium ion secondary battery is 3.7 V, which is about three times that of the alkaline secondary battery, and the energy density is high.
  • an aqueous electrolyte solution cannot be used unlike the alkaline secondary battery.
  • a nonaqueous electrolytic solution having sufficient oxidation-reduction resistance is used.
  • a film-like porous film made of polyolefin is often used (see, for example, Patent Document 1), but has low ionic conductivity due to low electrolyte retention. There was a problem that the internal resistance increased.
  • a paper separator for example, see Patent Document 2 mainly composed of regenerated cellulose fiber beats has been proposed.
  • Lithium ion secondary batteries have a negative effect on battery characteristics if even a small amount of water is mixed in. Therefore, if a paper separator with a high moisture content is used for the separator, it will dry for a long time when producing lithium ion secondary batteries. Processing is required. Moreover, since the separator strength was weak, there was a problem that the separator could not be thinned.
  • separators for lithium ion secondary batteries nonwoven fabric separators made of synthetic fibers (see, for example, Patent Documents 3 to 5) have also been proposed.
  • these separators have low electrolyte retention and internal resistance. There is a problem that the high short-circuiting rate is high, the internal short-circuit defect rate is high, and the high rate characteristics and discharge characteristics are inferior.
  • JP 2002-105235 A Japanese Patent No. 3661104 JP 2003-123728 A JP 2007-317675 A JP 2006-19191 A International Publication No. 2005/101432 Pamphlet International Publication No. 1996/030954 Pamphlet JP 2004-146137 A
  • the present invention has been made in view of the above circumstances, and has a low moisture content, high mechanical strength, and excellent internal resistance and internal short-circuit failure rate, in particular, high-rate discharge characteristics and variations, and cycle characteristics.
  • the object is to provide a lithium ion secondary battery separator and a lithium ion secondary battery using the same.
  • the modified freeness measured in accordance with JIS P8121 is 0 ⁇ except that an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as the sieve plate, and the sample concentration is 0.1%.
  • a separator for a lithium ion secondary battery comprising a porous sheet containing 250-ml solvent-spun cellulose fiber of 10 to 90% by mass and synthetic fiber of 10 to 90% by mass.
  • the solvent-spun cellulose fiber has a maximum frequency peak between 0.00 and 1.00 mm in the length-weighted fiber length distribution histogram, and a fiber having a length-weighted fiber length of 1.00 mm or more.
  • the slope of the ratio of fibers having a length-weighted fiber length of 0.05 mm between 1.00 and 2.00 mm is ⁇ 3.0 or more
  • the separator for lithium ion secondary batteries according to (3) which is ⁇ 0.5 or less.
  • the solvent-spun cellulose fiber has a maximum frequency peak between 0.00 and 1.00 mm in the length-weighted fiber length distribution histogram, and a fiber having a length-weighted fiber length of 1.00 mm or more.
  • the porous sheet was measured according to JIS P8121, except that an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm was used as the sieve plate, and the sample concentration was 0.1%.
  • (11) The separator for a lithium ion secondary battery according to (10), wherein the core of the core-sheath type heat-sealing fiber is polyethylene terephthalate and the sheath is a polyester copolymer.
  • the value measured by the method defined in JIS B7502 is 6 to 50 ⁇ m.
  • the porous sheet has a multilayer structure, and at least two layers are layers containing solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml as essential components. Separator for use.
  • the separator for a lithium ion secondary battery of the present invention comprises a nonwoven fabric containing solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and synthetic fibers.
  • the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml and the synthetic fiber are entangled with each other, so that the liquid retaining property of the lithium ion secondary battery separator can be improved.
  • the resistance can be lowered, and the discharge characteristics at a particularly high rate can be made excellent.
  • the lithium ion secondary battery separator can be made dense, variations in internal short-circuit failure rate and discharge characteristics can be suppressed.
  • the moisture content of a separator can be restrained low by containing a synthetic fiber, and the drying process time at the time of battery manufacture can be shortened more.
  • the synthetic fiber is easily entangled with synthetic fibers and solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, and a fiber network is formed, whereby the strength of the separator can be increased, and the separator can be more dense and The internal resistance can be lowered, the internal short-circuit failure rate and the variation in discharge characteristics can be suppressed, and the cycle characteristics can be improved.
  • the lithium ion secondary battery separator of the present invention (hereinafter also referred to as “separator”) and a lithium ion secondary battery using the same will be described in detail.
  • the solvent-spun cellulose fiber in the present invention is different from the so-called regenerated cellulose fiber in which cellulose is once chemically converted into a cellulose derivative and then returned to cellulose like conventional viscose rayon or copper ammonia rayon.
  • This refers to a fiber in which cellulose is precipitated by dry and wet spinning of a spinning stock solution dissolved in amine oxide in water without chemical change, and is also referred to as “lyocell fiber”.
  • Solvent-spun cellulose fibers have a higher molecular arrangement in the fiber long axis direction than natural cellulose fibers, bacterial cellulose fibers, and rayon fibers, so when mechanical forces such as friction are applied in a wet state, It is easy to form, and fine and long fine fibers are formed.
  • the solvent-spun cellulose fibers that are refined are superior in liquid retention of the electrolyte solution compared to the refined products of natural cellulose fibers, bacterial cellulose fibers, and rayon fibers.
  • solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml are used.
  • the modified drainage degree of the solvent-spun cellulose fiber is more preferably 0 to 200 ml, and further preferably 0 to 160 ml.
  • the modified freeness is more than 250 ml, the density of the separator becomes insufficient and the internal short circuit defect rate becomes high.
  • the modified freeness in the present invention was measured in accordance with JIS P811, except that an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm was used as a sieve plate, and the sample concentration was 0.1%. It is a value.
  • the fiber length becomes shorter as the microfabrication progresses.
  • the sample concentration is low
  • the entanglement between fibers decreases and it becomes difficult to form a fiber network. Will slip through the holes in the sieve plate.
  • an accurate freeness cannot be measured by the measuring method of JIS P8121.
  • natural cellulose fibers are in a state where many fine fibrils are torn apart from the trunk of the fiber as the degree of refinement progresses. Therefore, the fibers are easily entangled with each other through the fibrils, and a fiber network is easily formed.
  • the solvent-spun cellulose fiber is easily finely divided in parallel to the long axis of the fiber by the refining treatment, and since the uniformity of the fiber diameter in each fiber after division is high, the shorter the average fiber length, It is considered that the fibers do not easily entangle with each other and it is difficult to form a fiber network. Therefore, in the present invention, in order to measure the exact freeness of the solvent-spun cellulose fiber, an 80-mesh wire mesh having a wire diameter of 0.14 mm and an opening of 0.18 mm is used as a sieve plate, and the sample concentration is 0.1%. A modified freeness measured in accordance with JIS P8121 was used.
  • the length weighted average fiber length of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml is preferably 0.20 to 3.00 mm, more preferably 0.20 to 2.00 mm, and 0.20 to 1. 60 mm is more preferable. If the length-weighted average fiber length is shorter than 0.20 mm, the separator may fall off, and if it is longer than 3.00 mm, the fibers may be tangled and become lumpy, resulting in uneven thickness.
  • 1 and 2 are length-weighted fiber length distribution histograms of solvent-spun cellulose fibers. As shown in FIGS. 1 and 2, in the length-weighted fiber length distribution histogram of solvent-spun cellulose fibers, the maximum frequency peak is between 0.00 and 1.00 mm, and the length-weighted fiber length is 1.00 mm or more. In the lithium ion secondary battery separator (3) in which the ratio of the fibers having 10% or more is easy to entangle the fibers and easily form a fiber network, the separator strength is increased and the internal short circuit rate is low. It is preferable.
  • the maximum frequency peak is between 0.30 and 0.70 mm, and the fiber having a length-weighted fiber length of 1.00 mm or more in terms of a decrease in internal short-circuit failure rate. More preferably, the ratio is 12% or more. A higher ratio of fibers having a length-weighted fiber length of 1.00 mm or more is preferable, but about 50% is sufficient.
  • the proportion of fibers having a length-weighted fiber length of every 0.05 mm between 1.00 and 2.00 mm The lithium ion secondary battery separator (4) having a slope of ⁇ 3.0 or more and ⁇ 0.5 or less is more preferable because of high mechanical strength of the separator and less variation in discharge capacity.
  • the inclination of the ratio of fibers having a length-weighted fiber length of 0.05 mm between 1.00 and 2.00 mm is ⁇ 2.5 or more and ⁇ 0.
  • the mechanical strength may be lowered.
  • the inclination exceeds ⁇ 0.5, the variation in discharge capacity may increase.
  • “large inclination” means that the length-weighted fiber length distribution of the solvent-spun cellulose fiber is wide, and “small inclination” means the length of the solvent-spun cellulose fiber.
  • the weighted fiber length distribution is narrow and the length weighted fiber lengths are more uniform.
  • the slope of the solvent-spun cellulose fiber [I] in FIG. 1 is ⁇ 2.9
  • the slope of the solvent-spun cellulose fiber [II] in FIG. 2 is ⁇ 0.6.
  • the “inclination of the proportion of fibers having a fiber length of every 0.05 mm between 1.00 and 2.00 mm” is 0 between 1.00 and 2.00 mm, as shown in FIG.
  • Approximate straight line is calculated by the method of least squares with respect to the value of the ratio of fibers having a length-weighted fiber length every .05 mm, and the inclination of the obtained approximate straight line is meant.
  • the length-weighted fiber length distribution histogram of solvent-spun cellulose fibers has a maximum frequency peak between 0.00 and 1.00 mm.
  • the proportion of fibers having a length-weighted fiber length of 00 mm or more is preferably 50% or more.
  • the porous sheet has a dense structure, the separator strength is strong, the internal short circuit failure rate is low, and the variation in discharge capacity can be reduced.
  • FIG. 4 shows the length weight of solvent-spun cellulose fibers having a maximum frequency peak between 0.00 and 1.00 mm, and the proportion of fibers having a length-weighted fiber length of 1.00 mm or more is 50% or more. It is a fiber length distribution histogram.
  • the ratio of fibers having a maximum frequency peak between 0.30 and 0.70 mm and having a length-weighted fiber length of 1.00 mm or more is It is preferable that it is 55% or more.
  • a higher proportion of fibers having a length-weighted fiber length of 1.00 mm or more is desirable, but about 70% is sufficient.
  • the lithium ion secondary battery separator (6) having a peak at 5 is preferable because the mechanical strength is increased and the variation in discharge capacity is reduced. Further, it preferably has a peak between 1.75 and 3.25 mm, and more preferably has a peak between 2.00 and 3.00 mm.
  • the length-weighted fiber length of peaks other than the maximum frequency peak is shorter than 1.50 mm, the mechanical strength may decrease. Moreover, when it exceeds 3.50 mm, the variation in discharge capacity may increase.
  • the solvent-spun cellulose fiber preferably has a length weighted average fiber length of 0.50 to 1.25 mm and an average curl degree of 25 or less. .
  • Good solvent retention of lithium-ion secondary battery separator by entanglement of solvent-spun cellulose fiber and synthetic fiber with length-weighted average fiber length of 0.50 to 1.25 mm and average curl of 25 or less As a result, the internal resistance can be lowered, and in particular, the discharge characteristics at a high rate can be made excellent. Furthermore, since the lithium ion secondary battery separator can be made dense, variations in internal short-circuit failure rate and discharge characteristics can be suppressed.
  • the solvent-spun cellulose fiber having a weight-weighted average fiber length of 0.50 to 1.25 mm and an average curl degree of 25 or less is easily entangled with the synthetic fiber, and a fiber network is formed.
  • the separator can be made denser and thinner, the internal resistance can be lowered, the internal short-circuit failure rate and the variation in discharge characteristics can be suppressed, and the cycle characteristics can be improved. It can be excellent.
  • the average curl degree of the solvent-spun cellulose fiber is more preferably 20 or less, and further preferably 15 or less. If the average curl degree of the solvent-spun cellulose fiber is larger than 25, the uniformity of the separator is impaired, and the internal short circuit defect rate may be increased, or the strength of the separator may be decreased.
  • the small numerical value of the average curl degree indicates that the degree of bending of the solvent-spun cellulose fiber is small, that is, closer to a straight line, and therefore there is no particular limitation on the lower limit of the average curl degree.
  • the length-weighted fiber length and length-weighted fiber length distribution histogram, length-weighted average fiber length, and average curl degree of the solvent-spun cellulose fiber of the present invention are as follows. According to 52 “Paper and pulp fiber length test method (optical automatic measurement method)”, it was measured using Kajaani Fiber Lab V3.5 (manufactured by Metso Automation).
  • the total true length (L) of the bent fiber and the shortest length (l) of both ends of the bent fiber are determined. Can be measured.
  • the “length-weighted average fiber length” is an average fiber length obtained by measuring and calculating the shortest length (l) of both ends of the bent fiber.
  • “Average curl degree” is calculated for each individual fiber by measuring the total true length (L) of the bent fiber and the shortest length (l) of both ends of the bent fiber, and calculating by the following formula: This is the average curl degree. As the degree of bending of the fiber increases, the “curl degree” increases.
  • a method for producing solvent-spun cellulose fibers having a degree of 0 to 250 ml, a length-weighted fiber length of 0.50 to 1.25 mm, and an average curl degree of 25 or less a refiner, a beater, a mill, or grinding Equipment, rotary blade homogenizer that applies shear force with a high-speed rotary blade, double-cylindrical high-speed homogenizer that generates shear force between a cylindrical inner blade that rotates at high speed and a fixed outer blade, by ultrasonic Ultrasonic crusher that is refined by impact, giving a pressure difference of at least 20 MPa to the fiber suspension, passing through a small-diameter orifice to a high speed, and colliding with this to rapidly decelerate
  • a method using a refiner is particularly preferable.
  • the type of beating / dispersing equipment and processing conditions fiber concentration, temperature, pressure, rotation speed, refiner blade shape, gap between refiner disks, number of treatments, etc.
  • the desired modified freeness Solvent-spun cellulose length-weighted fiber length, length-weighted fiber length distribution, and average curl degree can be achieved.
  • the separator for a lithium ion secondary battery of the present invention contains 10 to 90% by mass of solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml.
  • the content of the solvent-spun cellulose fiber is more preferably 20 to 70% by mass, and further preferably 30 to 60% by mass.
  • the content of the solvent-spun cellulose fiber is less than 10% by mass, the liquid retainability of the electrolytic solution is insufficient and the internal resistance is increased, or the separator is insufficiently dense and the internal short circuit defect rate is increased. To do.
  • the content of the solvent-spun cellulose fiber exceeds 90% by mass, the mechanical strength of the separator becomes weak and the moisture content of the separator increases.
  • the separator for a lithium ion secondary battery of the present invention contains 10 to 90% by mass of synthetic fiber.
  • the content of the synthetic fiber is more preferably 30 to 80% by mass, and further preferably 40 to 70% by mass.
  • the synthetic fiber content is less than 10% by mass, the strength of the separator is weakened.
  • the synthetic fiber content exceeds 90% by mass, the electrolyte retainability is insufficient and the internal resistance is high, the separator is insufficiently dense, and the internal short circuit failure rate and the variation in discharge characteristics are high. It becomes.
  • the porous sheet preferably contains 20% by mass or less of fibrillated natural cellulose fibers having a modified freeness of 0 to 400 ml.
  • the content of the fibrillated natural cellulose fiber is more preferably 10% by mass or less, and further preferably 5% by mass or less.
  • Fibrilized natural cellulose fibers tend to be less uniform in thickness of one fiber than solvent-spun cellulose fibers, but are characterized by strong physical entanglement between fibers and hydrogen bonding strength.
  • the content of the fibrillated natural cellulose fiber exceeds 20% by mass, a film is formed on the separator surface, and the ionic conductivity is inhibited, so that the internal resistance may be increased or the discharge characteristics may be decreased. .
  • Fibrilization refers to a fiber that is not film-like but has a fiber portion that is mainly finely divided in a direction parallel to the fiber axis, and at least a portion of which has a fiber diameter of 1 ⁇ m or less.
  • the aspect ratio of length to width is preferably in the range of about 20 to about 100,000.
  • the length-weighted plain fiber length is preferably in the range of 0.10 to 2.00 mm, more preferably 0.1 to 1.5 mm, and still more preferably 0.10 to 1.00 mm.
  • Natural cellulose fibers can be fibrillated by refiners, beaters, mills, milling devices, rotary blade homogenizers that apply shearing force with high-speed rotary blades, cylindrical inner blades that rotate at high speed, and outer blades that are fixed. Double-cylindrical high-speed homogenizer that generates a shearing force between the two, an ultrasonic crusher that is refined by ultrasonic shock, and a high pressure by passing a small-diameter orifice by applying a pressure difference of at least 20 MPa to the fiber suspension.
  • a method using a high-pressure homogenizer or the like that applies a shearing force or a cutting force to the fiber by causing it to collide with it and rapidly decelerate it. Among these, a method using a high-pressure homogenizer is particularly preferable.
  • Synthetic fibers include polyester, acrylic, polyolefin, wholly aromatic polyester, wholly aromatic polyester amide, polyamide, semi-aromatic polyamide, wholly aromatic polyamide, wholly aromatic polyether, wholly aromatic polycarbonate, polyimide, polyamideimide ( PAI), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), poly-p-phenylenebenzobisoxazole (PBO), polybenzimidazole (PBI), polytetrafluoroethylene (PTFE), ethylene-vinyl alcohol copolymer
  • PAI polyamideimide
  • PES polyetheretherketone
  • PPS polyphenylene sulfide
  • PBO poly-p-phenylenebenzobisoxazole
  • PBI polybenzimidazole
  • PTFE polytetrafluoroethylene
  • ethylene-vinyl alcohol copolymer examples thereof include single fibers and composite fibers made of a resin such as coalescence. These synthetic fibers may be used
  • polyester, acrylic, polyolefin, wholly aromatic polyester, wholly aromatic polyester amide, polyamide, semi-aromatic polyamide, and wholly aromatic polyamide are preferable, and polyester, acrylic, and polyolefin are more preferable.
  • polyester, acrylic, and polyolefin are used, each fiber and fibrillated solvent-spun cellulose fibers are more easily entangled with each other than other synthetic fibers to easily form a network structure.
  • a separator for a lithium ion secondary battery having excellent mechanical strength can be obtained.
  • the average fiber diameter of the synthetic fiber is preferably 0.1 to 20 ⁇ m, more preferably 0.1 to 15 ⁇ m, and further preferably 0.1 to 10 ⁇ m. If the average fiber diameter is less than 0.1 ⁇ m, the fibers may be too thin and fall off from the separator. If the average fiber diameter is larger than 20 ⁇ m, it may be difficult to reduce the thickness of the separator.
  • the average fiber diameter is an average value of 100 randomly selected fibers obtained by measuring the fiber diameter of the fibers forming the separator from a scanning electron micrograph of the separator.
  • the fiber length of the synthetic fiber is preferably 0.1 to 15 mm, more preferably 0.5 to 10 mm, and further preferably 2 to 5 mm.
  • the separator may fall off, and when the fiber length is longer than 15 mm, the fiber may be entangled, resulting in uneven thickness.
  • the separator for a lithium ion secondary battery of the present invention contains solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and synthetic fibers, and fibers other than fibrillated natural cellulose fibers having a modified freeness of 0 to 400 ml. Also good.
  • the porous sheet preferably contains carboxymethyl cellulose.
  • solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and synthetic fibers are allowed to contain carboxymethyl cellulose so that the carboxymethyl cellulose is adsorbed on these fibers, particularly cellulose fibers. While dispersibility improves, fiber twist is suppressed, the formation at the time of using a separator improves, and mechanical strength becomes strong.
  • the dehydrating property of the fibers can be adjusted moderately, the pores of the separator sheet can be easily controlled, the pore diameter distribution can be brought close to the desired value, and the separator can be made dense and homogeneous, so that the internal short circuit failure rate, discharge Variations in characteristics can be suppressed.
  • solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and synthetic fibers are easily entangled with each other, and carboxymethylcellulose improves the strength of the separator by forming a more homogeneous fiber network.
  • the separator can be made denser and thinner, the internal resistance can be lowered, the internal short-circuit failure rate and the variation in discharge characteristics can be suppressed, and the cycle characteristics can be improved. It has an excellent effect to make it better.
  • Carboxymethyl cellulose is a cellulose derivative synthesized by reacting monochloroacetic acid and the like using wood pulp, linter pulp and the like as raw materials, and is industrially obtained by a known production method such as a water medium method or a solvent method. is there.
  • Carboxymethylcellulose can be produced in various degrees of polymerization depending on the properties and production methods of the pulp fibers used, but the viscosity of a 1% by weight aqueous solution is 5 to 16,000 mPa ⁇ s (0.1 N-NaCl solvent, 25 ° C, B-type viscometer), average degree of polymerization of 100 to 4,500, and average molecular weight of 20,000 to 1,000,000.
  • carboxymethyl cellulose is a carboxylic acid sodium salt or potassium salt. To be precise, it is carboxymethyl cellulose sodium or carboxymethyl cellulose potassium, but the description of sodium or potassium is conventionally omitted, and carboxymethyl cellulose is simply used. Is displayed. In the present invention, it is preferable to use a sodium salt of carboxymethyl cellulose which is inexpensive and easily obtains the effects of the present invention.
  • a method in which fibers are added or dispersed sequentially or simultaneously in a solution in which carboxymethyl cellulose is dissolved in a solvent, usually water in advance, 1 in a solution in which carboxymethyl cellulose is dissolved in advance examples thereof include a method in which more than one type of fiber is introduced and mixed with another type of fiber slurry prepared elsewhere, or a method in which carboxymethyl cellulose is added to a slurry containing at least one type of fiber.
  • a method of preparing a fiber slurry in a solution in which carboxymethyl cellulose is dissolved is preferable.
  • the fibers may be added after forming a high-concentration slurry.
  • the concentration of carboxymethyl cellulose is preferably 0.5 to 5% by mass, more preferably 0.5 to 3% by mass. preferable.
  • an organic solvent for example, methanol, ethanol, etc.
  • an electrolyte such as mirabilite may be mixed within a range in which carboxymethylcellulose is stable.
  • Carboxymethylcellulose is particularly effective for the dispersion of cellulosic fibers such as solvent-spun cellulose fibers and fibrillated natural cellulose fibers, so even when carboxymethylcellulose is added in advance to the fiber slurry preparation liquid, Even when it is added during the preparation of the fiber slurry, it is preferably used in combination with at least a cellulosic fiber.
  • the addition rate of carboxymethylcellulose is preferably 0.5 to 2.0 mass%, more preferably 0.8 to 1.5 mass%, based on the total fiber mass used in the separator for lithium ion secondary batteries of the present invention.
  • the addition rate of carboxymethyl cellulose is less than 0.5% by mass, the effect of improving the formation may not be recognized.
  • the addition rate of carboxymethyl cellulose exceeds 2.0% by mass, the water retention of carboxymethyl cellulose Therefore, there is a case where a longer drying process is required or the moisture content of the lithium ion secondary battery separator is increased, which may adversely affect the battery characteristics. Furthermore, since the drainage is reduced, the productivity during papermaking may be reduced.
  • carboxymethylcellulose is synthesized by reacting monochloroacetic acid or the like with a pulp raw material, but polar carboxyl groups solubilize cellulose and facilitate chemical reaction.
  • the introduction ratio of monochloroacetic acid or the like to cellulose is represented by “degree of etherification”.
  • the dispersibility of the fiber can be improved by adsorbing carboxymethylcellulose to the fiber according to the present invention, particularly the cellulosic fiber, but the higher the degree of etherification in carboxymethylcellulose is, the better the dispersibility of the fiber is.
  • the degree of etherification of carboxymethylcellulose is preferably 0.5 or more, more preferably 0.7 or more.
  • a core-sheath type heat-fusible fiber having a non-thermal adhesive component in the core and a thermal adhesive component in the sheath is used as at least one synthetic fiber. It is preferable to contain.
  • the fibers can be bonded to each other with the core-sheath type heat-sealable fiber, and as a result, the self generated when stored for a long time in a charged state at a high voltage Since discharge can be suppressed, a separator having excellent voltage maintenance ratio characteristics can be obtained. Also.
  • a core-sheath type heat-sealing fiber is used to create a porous fiber network formed by entanglement between synthetic fibers and solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and synthetic fibers, and hydrogen bonds between solvent-spun celluloses. It is possible to increase the separator strength by heat bonding without damaging the quality structure.
  • the heat-fusible fiber examples include a core-sheath type, an eccentric type, a split type, a side-by-side type, a sea-island type, an orange type, a multi-bimetal type, a single component fiber (single fiber), and the like.
  • the core-sheath type heat-sealable fiber maintains the fiber shape of the core part, and softens, melts or wet-heat dissolves only the sheath part to thermally bond the fibers to each other, so that the porous structure of the separator is not impaired. It is suitable for adhering.
  • the resin component constituting the core and sheath of the core-sheath type heat-sealing fiber is not particularly limited, and any resin having fiber-forming ability may be used.
  • the core / sheath combination includes polyethylene terephthalate / polyester copolymer, polyethylene terephthalate / polyethylene, polyethylene terephthalate / polypropylene, polyethylene terephthalate / ethylene-propylene copolymer, polyethylene terephthalate / ethylene-vinyl alcohol copolymer. , Polypropylene / polyethylene, and high melting point polylactic acid / low melting point polylactic acid.
  • the melting point, softening point or wet heat melting temperature of the resin component in the core part is preferably 20 ° C. or more higher than the melting point or softening point of the resin component in the sheath part from the viewpoint of easy production of the nonwoven fabric.
  • the core-sheath type heat-sealing fiber used for the lithium ion secondary battery separator of the present invention a combination of core: polyethylene terephthalate / sheath: polyester copolymer is preferable because the separator strength becomes higher.
  • the polyester copolymer used for the sheath is a copolymer of polyethylene terephthalate and one or more compounds selected from isophthalic acid, sebacic acid, adipic acid, diethyl glycol, 1,4-butadiol and the like. preferable.
  • the core-sheath type heat-sealing fiber preferably has a fineness of 0.007 to 1.7 dtex, more preferably 0.02 to 1.1 dtex, and even more preferably 0.05 to 0.5 dtex. If the fineness is less than 0.007 dtex, it may be too thin and fall off from the separator. If the fineness exceeds 1.7 dtex, it will be difficult to get entangled with the fibrillated solvent-spun cellulose fiber, ensuring the required denseness. It may not be possible.
  • the fiber length of the core-sheath type heat-sealing fiber is preferably 0.1 to 15 mm, more preferably 0.5 to 10 mm, and further preferably 2 to 5 mm.
  • the separator may fall off, and when the fiber length is longer than 15 mm, the fiber may be entangled, resulting in uneven thickness.
  • the content of the core-sheath-type heat fusion fiber is preferably 5 to 40% by mass, and more preferably 8 to 30% by mass. Is more preferably 10 to 20% by mass. If the content is less than 5% by mass, the voltage maintenance rate characteristics and mechanical strength of the separator may be insufficient. If it exceeds 40% by mass, a film is formed on the separator surface, and the ion conductivity is inhibited, so that the internal resistance may increase or the discharge characteristics may decrease.
  • the separator for the lithium ion secondary battery of the present invention is a circular paper machine, a long paper machine, a short paper machine, an inclined paper machine, a combination paper machine formed by combining the same or different types of paper machines from these, and the like Can be produced by a wet method of wet paper making.
  • a dispersant, a thickener, an inorganic filler, an organic filler, an antifoaming agent, and the like are appropriately added to the raw material slurry as necessary, and a solid content concentration of about 5 to 0.001% by mass is added.
  • a raw material slurry is prepared. This raw slurry is further diluted to a predetermined concentration to make paper.
  • the separator for a lithium ion secondary battery obtained by papermaking is subjected to calendering, thermal calendering, heat treatment and the like as necessary.
  • the separator for lithium ion secondary battery obtained by blending the core-sheath-type heat-sealing fiber and heat-treating is subjected to heat treatment to increase the mechanical strength.
  • the heat treatment method include a heat treatment method using a heating device such as a hot air dryer, a heating roll, an infrared (IR) heater, or the like while continuously performing the heat treatment or pressurizing.
  • the heat treatment temperature is equal to or higher than the temperature at which the sheath portion of the core-sheath fiber is melted or softened, and lower than the temperature at which the core portion of the core-sheath fiber and other contained fibers are melted, softened or decomposed. It is preferable.
  • the thickness of the lithium ion secondary battery separator of the present invention is preferably 6 to 50 ⁇ m, more preferably 8 to 45 ⁇ m, and even more preferably 10 to 40 ⁇ m. If the thickness is less than 6 ⁇ m, sufficient mechanical strength cannot be obtained, insulation between the positive electrode and the negative electrode is insufficient, internal short-circuit failure rate, variation in discharge characteristics, and capacity maintenance ratio and cycle characteristics are low. It may get worse. If it is thicker than 50 ⁇ m, the internal resistance of the lithium ion secondary battery may increase or the discharge characteristics may decrease.
  • the thickness of the separator of the present invention means a value measured by a method defined in JIS B7502, that is, a value measured by an outer micrometer at a load of 5N.
  • the average pore diameter is 0.10 ⁇ m or more and the maximum pore diameter is 6.0 ⁇ m or less.
  • This pore diameter can be achieved by entanglement of solvent-spun cellulose fibers with a modified freeness of 0-250 ml with synthetic fibers. If the average pore diameter is less than 0.10 ⁇ m, the internal resistance of the lithium ion secondary battery may be high, or the discharge characteristics may be low. When the maximum pore diameter is 6 ⁇ m or more, the internal short-circuit failure rate and the variation in discharge characteristics of the lithium ion secondary battery may increase.
  • the average pore diameter is 0.10 ⁇ m or more and the maximum pore diameter is 4.0 ⁇ m or less, more preferably the minimum pore diameter is 0.15 ⁇ m or more and the maximum pore diameter is 3.0 ⁇ m or less. .
  • the basis weight of the lithium ion secondary battery separator of the present invention is preferably 5 ⁇ 40g / m 2, more preferably 7 ⁇ 30g / m 2, more preferably 10 ⁇ 20g / m 2. If it is less than 5 g / m 2 , sufficient mechanical strength may not be obtained, or insulation between the positive electrode and the negative electrode may be insufficient, resulting in increased internal short-circuit failure rate and variation in discharge characteristics. If it exceeds 40 g / m 2 , the internal resistance of the lithium ion secondary battery may increase or the discharge characteristics may decrease.
  • the layer structure of the lithium ion secondary battery separator of the present invention is not particularly limited, and may be a single layer structure or a multilayer structure such as two layers or three layers. From the viewpoint of suppression of generation, a multilayer structure such as two layers or three layers is more preferable. In the case of a multilayer structure, there are no particular restrictions on the method of laminating each layer, but since there is no delamination between the layers, a weaving method can be suitably used.
  • Wet-making method is a papermaking slurry in which fibers are dispersed in water to form a uniform papermaking slurry, and this papermaking slurry is made using a papermaking machine having at least two wires such as a circular net, a long net, and an inclined type.
  • each layer may have the same blending composition or may be different, but at least each layer is solvent-spun with a modified freeness of 0 to 250 ml.
  • a layer containing cellulose fibers as an essential component is preferred. If there is a layer containing no solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml, the peel strength between the layers is inferior, sufficient mechanical strength is not obtained, or the electrolyte retainability is insufficient.
  • the internal resistance may be high, or the separator may be insufficiently dense, resulting in a high internal short-circuit failure rate.
  • Examples of the negative electrode active material of the lithium ion secondary battery include carbon materials such as graphite and coke, metallic lithium, aluminum, silica, tin, nickel, and an alloy of lithium and lithium, SiO, SnO, Metal oxides such as Fe 2 O 3 , WO 2 , Nb 2 O 5 , Li 4/3 Ti 5/3 O 4 , and nitrides such as Li 0.4 CoN are used.
  • As the positive electrode active material lithium cobaltate, lithium manganate, lithium nickelate, lithium titanate, lithium nickel manganese oxide, or lithium iron phosphate is used.
  • the lithium iron phosphate may further be a composite with one or more metals selected from manganese, chromium, cobalt, copper, nickel, vanadium, molybdenum, titanium, zinc, aluminum, gallium, magnesium, boron, and niobium.
  • an electrolytic solution for a lithium ion secondary battery a solution obtained by dissolving a lithium salt in an organic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, dimethoxymethane, or a mixed solvent thereof is used.
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroborate
  • solid electrolyte what melt
  • Synthetic fiber B1 Polyethylene terephthalate fiber having an average fiber diameter of 3 ⁇ m and a fiber length of 3 mm was designated as synthetic fiber B1.
  • Synthetic fiber B2 An acrylic fiber having an average fiber diameter of 5 ⁇ m and a fiber length of 3 mm was designated as synthetic fiber B2.
  • ⁇ Synthetic fiber B3> A polypropylene fiber having an average fiber diameter of 4 ⁇ m and a fiber length of 3 mm was defined as a synthetic fiber B3.
  • Polyester core-sheath type heat-sealable fiber having an average fiber diameter of 10 ⁇ m, a fiber length of 5 mm, a polyethylene terephthalate (melting point: 253 ° C.) sheath and a polyethylene terephthalate-isophthalate copolymer (softening point: 75 ° C.) sheath B4.
  • Synthetic fiber B5 Polyethylene terephthalate fiber having an average fiber diameter of 20 ⁇ m and a fiber length of 5 mm was designated as synthetic fiber B5.
  • ⁇ Synthetic fiber B6> A polyethylene terephthalate fiber having an average fiber diameter of 22 ⁇ m and a fiber length of 5 mm was defined as a synthetic fiber B6.
  • ⁇ Synthetic fiber B7> A polyethylene terephthalate fiber having an average fiber diameter of 0.1 ⁇ m and a fiber length of 2 mm was defined as a synthetic fiber B7.
  • Synthetic fiber B8 A polyethylene terephthalate fiber having an average fiber diameter of 0.08 ⁇ m and a fiber length of 2 mm was designated as synthetic fiber B8.
  • ⁇ Fibrylated natural cellulose fiber C1> The linter was treated using a high-pressure homogenizer to produce a fibrillated natural cellulose fiber C1 having a modified freeness of 0 ml.
  • ⁇ Fibrylated natural cellulose fiber C2> The linter was treated with a high-pressure homogenizer to produce a fibrillated natural cellulose fiber C2 having a modified freeness of 270 ml.
  • ⁇ Fibrylated natural cellulose fiber C3> The linter was treated with a high-pressure homogenizer to produce a fibrillated natural cellulose fiber C3 having a modified freeness of 400 ml.
  • ⁇ Fibrylated natural cellulose fiber C4> The linter was treated using a high-pressure homogenizer to produce a fibrillated natural cellulose fiber C4 having a modified freeness of 500 ml.
  • fiber D1 Using a refiner, para-type wholly aromatic polyamide having an average fiber diameter of 10 ⁇ m and fiber length of 3 mm was treated, and fibrillated para-type wholly aromatic polyamide fiber having a modified freeness of 500 ml was designated as fiber D1.
  • Fiber E1 The hemp fiber having an average fiber diameter of 7 ⁇ m was designated as fiber E1.
  • Examples 1 to 24 and Comparative Examples 1 to 10 ⁇ Separator> According to the raw materials and contents shown in Table 1, a papermaking slurry was prepared, and wet papermaking was performed using a circular paper machine to prepare separators of Examples 1 to 24 and Comparative Examples 1 to 9. The thickness was adjusted by calendaring at room temperature. In addition, a porous polyethylene film (thickness 22 ⁇ m, porosity 40%) was used as the separator of Comparative Example 10.
  • ⁇ Lithium ion secondary battery A> [Preparation of Negative Electrode 1] A slurry in which 97% by mass of natural graphite and 3% by mass of polyvinylidene fluoride were mixed and dispersed in N-methyl-2-pyrrolidone was prepared, applied to both sides of a copper foil having a thickness of 15 ⁇ m, and rolled. A negative electrode for a lithium ion secondary battery having a thickness of 100 ⁇ m was produced by vacuum drying at a temperature of 2 ° C. for 2 hours.
  • a slurry in which 95% by mass of LiMn 2 O 4 , 2 % by mass of acetylene black and 3% by mass of polyvinylidene fluoride are mixed and dispersed in N-methyl-2-pyrrolidone is prepared, and both surfaces of an aluminum foil having a thickness of 20 ⁇ m are prepared. After being applied and rolled onto the substrate, it was vacuum-dried at 150 ° C. for 2 hours to produce a positive electrode for a lithium ion secondary battery having a thickness of 100 ⁇ m.
  • the negative electrode 1 and the positive electrode 1 are wound so that the separators of Examples 1 to 24 and Comparative Examples 1 to 7 and 9 are interposed between the electrodes, respectively, and stored in a cylindrical container made of aluminum alloy, and the lead body is welded. Went. Next, the whole cylindrical container was vacuum-dried at 150 ° C. for 10 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolyte solution was injected and sealed up, and lithium ion secondary batteries A of Examples 1 to 24 and Comparative Examples 1 to 7 and 9 were produced.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
  • the negative electrode 1 and the positive electrode 1 were each wound so that the separator of Comparative Example 8 was interposed between the electrodes, housed in a cylindrical container made of aluminum alloy, and the lead body was welded. Next, the whole cylindrical container was vacuum-dried at 110 ° C. for 24 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolytic solution was injected and sealed to prepare a lithium ion secondary battery A of Comparative Example 8.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
  • the negative electrode 1 and the positive electrode 1 were wound so that the separator of Comparative Example 10 was interposed between the electrodes, accommodated in a cylindrical container made of aluminum alloy, and the lead body was welded.
  • the whole cylindrical container was vacuum-dried at 80 ° C. for 10 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolytic solution was injected and sealed to prepare a lithium ion secondary battery A of Comparative Example 10.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
  • ⁇ Lithium ion secondary battery B> [Preparation of Negative Electrode 2] A slurry in which 81% by mass of mesocarbon microbeads, 14% by mass of acetylene black and 5% by mass of polytetrafluoroethylene were mixed and dispersed in N-methyl-2-pyrrolidone was prepared, and both sides of a copper foil having a thickness of 15 ⁇ m After being applied and rolled onto the substrate, it was vacuum-dried at 150 ° C. for 2 hours to produce a negative electrode for a lithium ion secondary battery having a thickness of 100 ⁇ m.
  • the separator of Comparative Example 8 the positive electrode 2, and the negative electrode 2 were bonded together in this order, and the lead wire was drawn out to produce a battery body.
  • the separator of Comparative Example 10 the positive electrode 2 and the negative electrode 2 were bonded together in this order, and the lead wires were drawn out to produce a battery body.
  • the battery body was vacuum-dried at 80 ° C. for 15 hours, allowed to cool to room temperature in a vacuum, and then inserted into an aluminum laminate film, and from 1M-LiPF 6 / EC + DEC (3: 7 vol%).
  • Basis weight The basis weight was measured in accordance with JIS P8124.
  • the thickness was measured by the method defined in JIS B7502, that is, by an outer micrometer at 5N load.
  • A The difference in discharge capacity is 1.0% or less with respect to the average value.
  • The difference in discharge capacity is more than 1.0% and 2.5% or less with respect to the average value.
  • delta The difference of discharge capacity exceeds 2.5% with respect to an average value, and is 5.0% or less.
  • X The difference of discharge capacity is over 5.0% with respect to the average value.
  • the separators for lithium ion secondary batteries of Examples 1 to 24 were 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and 10 to 90% by mass of synthetic fibers. Since it contained, the moisture content was low, the mechanical strength was strong, and it was excellent.
  • the separators for lithium ion secondary batteries of Examples 1 to 24 contain 10 to 90% by mass of synthetic fiber, they are contained in comparison with the paper separator made of solvent-spun cellulose and hemp fiber of Comparative Example 8. The moisture content could be kept low. Furthermore, the strength of the separator has increased because the fibers are easily entangled and a fiber network is easily formed.
  • the separator for the lithium ion secondary battery of Comparative Example 1 the content of the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the separator is more than 90% by mass, and the synthetic fiber contained in the separator is 10% by mass. Since it was less, the moisture content was high and the separator strength was weak.
  • the separator for the lithium ion secondary battery of Comparative Example 4 had a synthetic fiber content of less than 10% by mass in the separator, the separator strength was weak. Although the separator for the lithium ion secondary battery of Comparative Example 9 contained fibrillated heat-resistant fibers, the strength of the separator was weak because the modified freeness of solvent-spun cellulose fibers exceeded 250 ml.
  • the lithium ion secondary batteries of Examples 1 to 24 contain 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and 10 to 90% by mass of synthetic fibers. Since a separator made of a porous sheet is used, the internal resistance and internal short-circuit failure rate, in particular, the discharge characteristics at high rates, the variations thereof, and the cycle characteristics were excellent.
  • the separator contains 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, the liquid retention of the electrolyte is good. Since the ion conductivity can be improved, the internal resistance is low, and the discharge characteristics and the cycle characteristics are particularly excellent at a high rate. On the other hand, in the lithium ion secondary batteries of Comparative Examples 2 and 3, the content of the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml is less than 10% by mass. In the secondary battery, since the separator did not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, the electrolyte solution was inferior in liquid retention and had a high internal resistance.
  • the separator can be made dense. Therefore, the internal short circuit failure rate and the variation in discharge capacity were low and excellent.
  • the content of the solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml in the separator is less than 10% by mass, and the separator is insufficiently dense. , Internal short-circuit defect rate and discharge capacity variation increased.
  • the modified drainage degree of the solvent-spun cellulose fiber in the separator was larger than 0 to 250 ml, and the density of the separator was insufficient, so the internal short circuit defect rate was slightly increased. .
  • the separator does not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, the separator is insufficiently dense, and the internal short-circuit failure rate, Dispersion of discharge capacity became high.
  • the lithium ion secondary battery of Comparative Example 10 using a porous polyethylene film had a high internal resistance and a high rate discharge capacity.
  • the lithium ion secondary battery of Example 8 contains 5% by mass of fibrillated natural cellulose fibers having a modified freeness of 0 to 400 ml in the separator.
  • the separator contains 10% by mass of fibrillated natural cellulose fibers having a modified freeness of 0 to 400 ml.
  • 20% by mass of fibrillated natural cellulose fiber having a modified freeness of 0 to 400 ml was contained in the separator. Therefore, the separator can be made denser and thinner, and the lithium ion secondary batteries of Examples 8 to 13 have lower internal resistance and higher rate than the lithium ion secondary batteries of Examples 1 to 7 and 15 to 18. The discharge capacity of was high.
  • the lithium ion secondary batteries of Examples 9 to 12 use separators that are blended with fibrillated natural cellulose fibers C1 to C4 having the same basis weight and the same thickness and different modified drainage degrees.
  • the lithium ion secondary battery of Example 12 using the separator containing the fibrillated natural cellulose fiber C4 having a modified freeness greater than 400 ml was slightly lacking in denseness when the thickness of the separator was reduced.
  • the internal short circuit defect rate was slightly higher than that of the lithium ion secondary batteries of Examples 9 to 11 using separators containing fibrillated natural cellulose fibers C1 to C3 having a freeness of 0 to 400 ml.
  • the separator becomes slightly dense and the ion conductivity is increased.
  • the internal resistance was slightly higher than those of the lithium ion secondary batteries of Examples 1 to 13, 15 to 17, 19, and 20, and the high rate discharge capacity was slightly lower.
  • the lithium ion secondary battery of Example 18 has a slightly larger basis weight, a separator having a slightly larger thickness, and an average pore diameter slightly smaller, the lithium ion secondary batteries of Examples 1 to 13, 15 to 17, 19, and 20
  • the internal resistance was slightly higher than that of the battery, and the high-rate discharge capacity was slightly lower.
  • the lithium ion secondary battery of Example 20 has a slightly smaller basis weight, a thickness of the separator is slightly thinner, and the maximum pore diameter is slightly larger. Therefore, the internal short circuit is greater than that of the lithium ion secondary batteries of Examples 1 to 11 and 13 to 19. The variation in defective rate and discharge capacity was slightly increased.
  • the lithium ion secondary battery of Example 22 has a slightly larger average fiber diameter of the synthetic fibers used, so the separator strength is slightly weaker and the discharge capacity variation is slightly higher than that of the lithium ion secondary battery of Example 21. became.
  • the separator strength was slightly weaker than the lithium ion secondary battery of Example 23, and the cycle characteristics were slightly inferior.
  • Ratio of fibers having a length-weighted fiber length of 1.00 mm or more with respect to the solvent-spun cellulose fiber produced by the above method “Fiber ratio of 1.00 mm or more”
  • Length weighted fiber length of maximum frequency peak in length weighted fiber length distribution histogram “fiber length of maximum frequency peak”
  • Weighted fiber length “Fiber length of second peak”
  • Length-weighted average fiber length “Average fiber length” (5) Freeness measured according to JIS P8121, except that an 80-mesh wire mesh having a wire diameter of 0.14 mm and an aperture of 0.18 mm was used as the sieve plate, and the sample concentration was 0.1% by mass. Freeness " As shown in Table 5.
  • ⁇ Fibrylated natural cellulose fiber> The linter was treated using a high-pressure homogenizer to produce fibrillated natural cellulose fibers having a modified freeness of 0 ml, 270 ml, 400 ml, and 500 ml.
  • ⁇ Separator> A papermaking slurry was prepared according to the raw materials and contents shown in Tables 6 and 7, and wet papermaking was performed using a circular paper machine to produce separators of Examples and Comparative Examples. The thickness was adjusted by calendaring at room temperature.
  • Lithium ion secondary battery C The negative electrode 1 and the positive electrode 1 were wound so that the separators of Examples and Comparative Examples were interposed between the electrodes, respectively, and housed in a cylindrical container made of aluminum alloy, and the lead body was welded. Next, the whole cylindrical container was vacuum-dried at 110 ° C. for 15 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolytic solution was injected and sealed to prepare lithium ion secondary batteries C of Examples and Comparative Examples. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
  • Liquid retention (%) (Separator mass before immersion in propylene carbonate / Separator mass after holding for 15 minutes) ⁇ 100 As a result, the liquid retention rate was calculated and evaluated according to the following criteria.
  • the liquid retention rate is 200% or more.
  • The liquid retention rate is 150% or more and less than 200%.
  • The liquid retention rate is 50% or more and less than 150%.
  • X The liquid retention rate is less than 50%.
  • discharge capacity variation A: The difference in discharge capacity is 1.0% or less with respect to the average value.
  • The difference in discharge capacity is more than 1.0% and 2.5% or less with respect to the average value.
  • delta The difference of discharge capacity exceeds 2.5% with respect to an average value, and is 5.0% or less.
  • X The difference of discharge capacity is over 5.0% with respect to the average value.
  • the separators for lithium ion secondary batteries of Examples 26 to 59 have a modified freeness of 0 to 250 ml and a length weighted average fiber length of 0.20 to 2.00 mm. Since 10 to 90% by mass of a certain solvent-spun cellulose fiber and 10 to 90% by mass of a synthetic fiber are contained, the fibers are easily entangled and a fiber network is easily formed. Became stronger. Further, in the lithium ion secondary batteries of Examples 26 to 59, 10 solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and a length weighted average fiber length of 0.20 to 2.00 mm were used.
  • the electrolyte solution of the separator has a high liquid retentivity and good ion conductivity. Excellent discharge characteristics and cycle characteristics. Further, since the separator can be made dense, the internal short-circuit defect rate and the variation in discharge capacity were low and excellent.
  • the separator for the lithium ion secondary battery of Example 25 had a slightly weaker separator strength because the average fiber length of solvent-spun cellulose fibers in the separator was shorter than 0.20 mm.
  • the separator for the lithium ion secondary battery of Example 25 since the weighted average fiber length of the solvent-spun cellulose fiber in the separator is shorter than 0.20 mm, the fibers are hardly entangled and the fiber network is not easily formed. The short-circuit defect rate and discharge capacity variation were slightly higher.
  • the modified drainage of the solvent-spun cellulose fiber in the separator exceeds 250 ml and the average fiber length exceeds 2.00 mm.
  • the lithium ion secondary batteries of Comparative Examples 11 and 12 had high internal short-circuit failure rates and variations in discharge capacity. Since the separators for lithium ion secondary batteries of Comparative Examples 13 to 16 did not contain solvent-spun cellulose fibers, the liquid retention rate was low. In addition, since the lithium ion secondary batteries of Comparative Examples 13 to 16 used separators that did not contain solvent-spun cellulose fibers, the denseness of the separators became insufficient and the internal short-circuit defect rate increased.
  • the lithium ion secondary battery of Comparative Example 17 contained synthetic fibers in excess of 90% by mass, sufficient density was not obtained, the internal short circuit failure rate was high, and the liquid retention rate was low. Since the lithium ion secondary battery of Comparative Example 18 had a synthetic fiber content of less than 10% by mass, the separator strength was weak.
  • the lithium ion secondary batteries of Examples 36 and 39 have a maximum frequency peak longer than 0.00 to 1.00 mm in the fiber length distribution histogram of solvent-spun cellulose fibers.
  • the internal short-circuit defect rate was slightly higher than in Examples 26 to 35, and the variation in discharge capacity increased.
  • the lithium ion secondary batteries of Examples 37 and 38 in the fiber length distribution histogram of the solvent-spun cellulose fiber, the ratio of fibers having a fiber length of 1.00 mm or more is less than 10%, so the separator strength is slightly weakened.
  • the 5C discharge capacity was slightly lowered.
  • the lithium ion secondary batteries of Examples 26 to 29 and 31 to 34 were 0.05 mm between 1.00 and 2.00 mm in the fiber length distribution histogram of solvent-spun cellulose fibers. Since the inclination of the ratio of the fiber having each fiber length is ⁇ 3.0 or more and ⁇ 0.5 or less, the separator strength is high and the variation in the discharge capacity is small. In the lithium ion secondary battery of Example 30, in the fiber length distribution histogram of the solvent-spun cellulose fiber, the slope of the ratio of fibers having a fiber length of every 0.05 mm between 1.00 and 2.00 mm is ⁇ 3.
  • the lithium ion secondary batteries of Examples 40 to 48 had a maximum frequency peak between 0.00 and 1.00 mm in the fiber length distribution histogram of the solvent-spun cellulose fiber, Since the ratio of the fibers having a fiber length of 1.00 mm or more is 50% or more, it has a dense structure, a strong separator strength, a low internal short-circuit failure rate, and a small variation in discharge capacity. In the lithium ion secondary battery of Example 49, since the maximum frequency peak was longer than 0.00 to 1.00 mm in the fiber length distribution histogram of the solvent-spun cellulose fiber, the internal short circuit rate was slightly inferior.
  • the lithium ion secondary battery of Example 50 has a maximum frequency peak between 0.00 and 1.00 mm in the fiber length distribution histogram of the solvent-spun cellulose fiber, but the fiber having a fiber length of 1.00 mm or more. Since the ratio was less than 50%, the separator strength was weaker than in Examples 40 to 48.
  • the lithium ion secondary batteries of Examples 40 to 42 and 44 to 47 are 1.50 to 3.50 mm in addition to the maximum frequency peak in the fiber length distribution histogram of solvent-spun cellulose fibers. Since there is a peak between them, a fiber network is more easily formed, so the strength of the separator is strong, the internal short-circuit failure rate is low, and the variation in discharge capacity is small.
  • the lithium ion secondary battery of Example 43 has a peak other than the maximum frequency peak smaller than 1.50 mm, so compared with Examples 40 to 42 and 44 to 47, The separator strength was slightly weak and the discharge capacity variation was slightly large.
  • the lithium ion secondary battery of Example 48 is compared with Examples 40 to 42 and 44 to 47.
  • the internal short circuit failure rate was slightly high, and the variation in discharge capacity was slightly increased.
  • the separator can be made denser.
  • the internal short circuit defect rate was lower than that of the lithium ion secondary batteries of Examples 58 and 59.
  • the lithium ion secondary battery of Example 55 uses a separator having a modified freeness of 0 to 400 ml of fibrillated natural cellulose fiber of more than 20% by mass. The discharge capacity at a high rate and the capacity retention rate after 100 cycles showed slightly low values.
  • the modified drainage of the fibrillated natural cellulose fiber is larger than 400 ml, so that the density of the separator is slightly lowered, and the separator strength is higher than that of Examples 40 and 53. Declined.
  • ⁇ Separator> A papermaking slurry was prepared according to the raw materials and contents shown in Table 11, and wet papermaking was performed using a circular paper machine to produce separators of Examples 60 to 88 and Comparative Examples 19 to 21. The thickness was adjusted by calendaring at room temperature.
  • the “type” of the synthetic fiber is as follows.
  • PET Polyethylene terephthalate fiber
  • AA Acrylic fiber
  • PP Polypropylene fiber
  • PET / PEs-C Polyester-based sheath-heat-bonded fiber
  • Lithium ion secondary battery E The negative electrode 1 and the positive electrode 1 are wound so that the separators of Examples 60 to 88 and Comparative Examples 19 to 21 are interposed between the electrodes, respectively, and housed in a cylindrical container made of aluminum alloy, and the lead body is welded. It was. Next, the whole cylindrical container was vacuum-dried at 150 ° C. for 10 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolyte solution was injected and sealed up, and lithium ion secondary batteries E of Examples 60 to 88 and Comparative Examples 19 to 21 were produced.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
  • A The difference in discharge capacity is 1.0% or less with respect to the average value.
  • The difference in discharge capacity is more than 1.0% and 2.5% or less with respect to the average value.
  • delta The difference of discharge capacity exceeds 2.5% with respect to an average value, and is 5.0% or less.
  • X The difference of discharge capacity is over 5.0% with respect to the average value.
  • the separators for lithium ion secondary batteries of Examples 60 to 86 are solvent-spun cellulose fibers having a length-weighted average fiber length of 0.50 to 1.25 mm and an average curl degree of 2.5 or less. Since 10 to 90% by mass and 10 to 90% by mass of synthetic fiber were contained, the moisture content was low, and the mechanical strength was strong and excellent.
  • the solvent-spun cellulose fiber has a length-weighted average fiber length of 0.50 to 1.25 mm. It becomes easy to form and it turns out that separator strength becomes strong.
  • the solvent-spun cellulose fiber has a length-weighted average fiber length of less than 0.50 mm (Example 87), the fiber is likely to fall off the paper machine wire during the manufacture of the separator, and the strength of the separator is hardly exhibited.
  • the average curl degree of the solvent-spun cellulose fiber is 25 or less, so that the fiber network is easily entangled with each other, and the maximum pore diameter of the separator is increased. It can be seen that it is adjusted to be smaller.
  • the lithium ion secondary batteries of Examples 60 to 86 contain 10 to 90% by mass of solvent-spun cellulose fibers having a length weighted average fiber length of 0.50 to 1.25 mm and an average curl degree of 25 or less. Therefore, since the electrolyte solution has good liquid retention and good ion conductivity, it has a low internal resistance and is particularly excellent in discharge characteristics and cycle characteristics at a high rate.
  • the lithium ion secondary battery of Comparative Example 20 has a length weighted average fiber length of 0.50 to 1.25 mm, and the content of solvent-spun cellulose fibers having an average curl degree of 25 or less is less than 10% by mass. The liquid retention was inferior and the internal resistance was high.
  • the average curl degree of the solvent-spun cellulose fiber was greater than 25.
  • the uniformity of the mass of the separator was impaired, and the internal short circuit failure rate and the variation in discharge capacity were increased.
  • the lithium ion secondary batteries of Examples 80 to 83 10% by mass of fibrillated natural cellulose fibers having a modified freeness of 0 to 400 ml are contained in the separator. In this way, by adding fibrillated natural cellulose having a modified freeness of 0 to 400 ml to the separator, the strength of the separator can be increased and the separator can be made thinner. Compared to the secondary battery, the lithium ion secondary batteries of Examples 80 to 83 had a low internal resistance and a high discharge capacity at a high rate.
  • the separator is slightly too dense.
  • the average pore diameter is also reduced, the ion conductivity is slightly deteriorated, the internal resistance is slightly higher than those of the lithium ion secondary batteries of Examples 81 and 85, and the discharge rate at a high rate is slightly lower. The value is shown.
  • the lithium ion secondary batteries of Examples 64, 65, and 69 have a maximum pore diameter larger than 6.0 ⁇ m. Therefore, the lithium ions of Examples 60 to 63 and 70 to 71 were used. The internal short circuit failure rate and the variation in discharge capacity were slightly higher than those of the ion secondary battery.
  • the lithium ion secondary battery of Example 76 has a slightly larger average fiber diameter of the synthetic fibers used, so the separator strength is slightly weaker than that of the lithium ion secondary battery of Example 75, and the discharge capacity variation is slightly higher. became.
  • Carboxymethylcellulose having a degree of etherification of 0.7 (trade name: 1205, manufactured by Daicel Chemical Industries, Ltd.) was designated as CMC2.
  • ⁇ CDS cationic starch-based paper strength enhancer
  • a cationic starch-based paper strength enhancer (trade name: DD4280, manufactured by Seiko PMC) was used as CDS.
  • GGS Guar gum paper strength enhancer
  • PET Polyethylene terephthalate fiber
  • ⁇ Separator> A papermaking slurry was prepared according to the raw materials and blending amounts (based on the total fiber amount) shown in Table 13, and wet papermaking was performed using a circular paper machine to produce separators of Examples 89 to 103 and Comparative Examples 22 to 23. did. The thickness was adjusted by calendaring at room temperature.
  • ⁇ Lithium ion secondary battery G> The negative electrode 1 and the positive electrode 1 were wound so that the separators of Examples 89 to 103 and Comparative Examples 22 to 23 were interposed between the electrodes, respectively, and stored in a cylindrical container made of aluminum alloy, and the lead body was welded. It was. Next, the whole cylindrical container was vacuum-dried at 150 ° C. for 10 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolyte solution was injected and sealed up, and lithium ion secondary batteries G of Examples 89 to 103 and Comparative Examples 22 to 23 were produced.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 to 1.2 M in a mixed solvent composed of 30% by mass of ethylene carbonate (EC) and 70% by mass of diethyl carbonate (DEC) was used.
  • A The difference in discharge capacity is 1.0% or less with respect to the average value.
  • The difference in discharge capacity is more than 1.0% and 2.5% or less with respect to the average value.
  • delta The difference of discharge capacity exceeds 2.5% with respect to an average value, and is 5.0% or less.
  • X The difference of discharge capacity is over 5.0% with respect to the average value.
  • the separator for the lithium ion secondary battery of Example 89 is 10% by mass of solvent-spun cellulose fiber having a modified freeness of 0 ml per total fiber, 90% by mass of synthetic fiber per total fiber, and Since 1% by mass of carboxymethylcellulose having a degree of etherification of 0.5 was contained, the separator strength was superior to that of Example 1 in Table 1 that did not contain carboxymethylcellulose.
  • the separator for the lithium ion secondary battery of Example 90 has a modified freeness of 120 ml of solvent-spun cellulose fiber of 50% by mass per total fiber, a synthetic fiber of 50% by mass per total fiber, and a degree of etherification of 0.5. Since 1% by mass of carboxymethylcellulose is contained, the maximum pore diameter is reduced, the internal resistance and the internal short-circuit failure rate are reduced, the variation in discharge capacity is improved, and no carboxymethylcellulose is contained. Compared to Example 3 in Table 1, the separator strength was excellent.
  • the separator for the lithium ion secondary battery of Example 91 is 90 mass% of solvent-spun cellulose fibers having a modified freeness of 250 ml per total fiber, 10 mass% of synthetic fibers per total fiber, and a degree of etherification of 0.5. Since 1% by mass of carboxymethylcellulose is contained, the pore diameter and internal resistance are improved as in Example 90, and the separator strength is superior to Example 3 in Table 1 that does not contain carboxymethylcellulose. It was.
  • the separator for the lithium ion secondary battery of Example 92 has a modified freeness of 120 ml of solvent-spun cellulose fiber of 50 mass% per total fiber, a synthetic fiber of 50 mass% per total fiber, and a degree of etherification of 0.7. Since 1% by mass of carboxymethylcellulose was contained, the pore diameter and separator strength were further improved as compared with Example 90. Moreover, since the separator for lithium ion secondary batteries of Example 92 contains 1% by mass of carboxymethyl cellulose having a degree of etherification of 0.7, 1 each of cationic starch-based paper strength enhancer and guar gum paper strength enhancer. Compared to the lithium ion secondary battery separators of Example 102 and Example 103 containing mass%, it is understood that not only the separator strength is excellent, but also the discharge capacity at high rate and the variation in discharge capacity are excellent. .
  • the solvent-spun cellulose fiber having a modified freeness of 120 ml was 50% by mass per total fiber
  • the synthetic fiber was 50% by mass per total fiber
  • the degree of etherification was 0. No. 5 carboxymethyl cellulose was contained, and the moisture content of the separator, the strength of the separator, the battery characteristics and the like were satisfactory.
  • Example 93 when the content of carboxymethyl cellulose is 0.2% by mass relative to the total fiber mass, the effect of improving formation during papermaking is small, the separator strength is slightly lower, and the pore diameter is also small. There was a tendency to increase slightly.
  • Example 96 when the content of carboxymethyl cellulose is 3.0% by mass with respect to the total fiber mass, each separator performance reaches its peak, which is disadvantageous in terms of cost. Since the dehydration property was insufficient, the production efficiency was not good.
  • the separators for lithium ion secondary batteries of Examples 97 to 101 45 to 25% by mass of solvent-spun cellulose fiber having a modified freeness of 120 ml is used as the separator, 50% by mass of synthetic fiber per total fiber, and carboxymethyl cellulose. Is contained in an amount of 1.0% by mass based on the total fiber mass, and further, 5-25% by mass of fibrillated natural cellulose fiber having a modified freeness of 0 to 400 ml is contained per total fiber. Therefore, a high separator strength can be obtained even at a low basis weight, and thus the separator can be made denser and thinner. Therefore, the embodiment 97 is more preferable than the lithium ion secondary battery separator of the embodiment 90.
  • the ⁇ 101 lithium ion secondary battery separator had a low internal resistance and a high discharge capacity at a high rate.
  • the separator since the content of the fibrillated natural cellulose fiber having a modified freeness of 0 to 400 ml in the separator is more than 20% by mass per total fiber, the separator is slightly too dense, The ion conductivity was slightly deteriorated, the internal resistance was slightly higher than those of the lithium ion secondary batteries of Examples 97 to 99, and the high rate discharge capacity was slightly lower.
  • the solvent-spun cellulose fiber having a modified freeness of 120 ml is 40% by mass per total fiber
  • the synthetic fiber is 50% by mass per total fiber
  • the degree of etherification is 0.00.
  • 7 carboxymethyl cellulose is contained in an amount of 1.0% by mass relative to the total fiber mass
  • fibrillated natural cellulose fibers having a modified freeness of 270 ml are contained in an amount of 10% by mass. Therefore, the maximum pore diameter was smaller than in Example 98, and the separator strength was also increased.
  • the separator for the lithium ion secondary battery of Comparative Example 22 contains carboxymethyl cellulose in the separator, the content of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml in the separator is more than 90% by mass per total fiber. Many synthetic fibers were less than 10% by mass per total fiber, so the moisture content was high and the separator strength was weak.
  • the separator for the lithium ion secondary battery of Comparative Example 23 contains carboxymethyl cellulose in the separator, the content of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml in the separator is more than 10% by mass per total fiber. Since the amount of synthetic fibers is less than 90% by mass per total fiber, the maximum pore diameter is increased, and the internal short circuit defect rate is extremely increased.
  • ⁇ Heat-bonding fiber M1> A polyester core-sheath type heat-sealable fiber having a fineness of 0.5 dtex, a fiber length of 5 mm, a core of polyethylene terephthalate (melting point 253 ° C.), and a sheath of polyethylene terephthalate-isophthalate copolymer (softening point 75 ° C.) is heated. A fusion fiber M1 was obtained.
  • ⁇ Heat-bonding fiber M2> A polyester core-sheath type heat-sealable fiber having a fineness of 1.1 dtex, a fiber length of 5 mm, a core part of polyethylene terephthalate (melting point 253 ° C.), and a sheath part of a polyethylene terephthalate-isophthalate copolymer (softening point 75 ° C.) is heated. A fusion fiber M2 was obtained.
  • Heat-bonding fiber M3 A polyolefin core-sheath type heat-seal fiber having a fineness of 0.8 dtex, a fiber length of 5 mm, a core part of polypropylene (melting point 165 ° C.), and a sheath part of high-density polyethylene (melting point 135 ° C.) was designated as heat-seal fiber M3.
  • the fusing fiber was designated as heat fusing fiber M4.
  • Heat-bonding fiber M5 An unstretched polyethylene terephthalate fiber (melting point: 130 ° C.) having a fineness of 1.1 detex and a fiber length of 5 mm was designated as a heat-sealing fiber M5.
  • Heat-bonding fiber M6 An unstretched polyethylene terephthalate fiber (hot-pressure melting temperature 200 ° C.) having a fineness of 0.5 dtex and a fiber length of 5 mm was used as a heat-sealing fiber M6.
  • Heat-bonding fiber M7 Polyvinyl alcohol fiber (wet heat melting temperature 100 ° C.) having a fineness of 0.8 dtex and a fiber length of 5 mm was used as the heat fusion fiber M7.
  • Heat-bonding fiber M8 A split type composite fiber (16 splits) made of polypropylene (melting point 165 ° C.) and an ethylene-vinyl alcohol copolymer (wet heat melting temperature 100 ° C.) having a fineness of 2.2 dtex and a fiber length of 5 mm was used as a heat sealing fiber M8.
  • Papermaking slurries 1 to 16 were made up by a wet method using a circular paper machine, and heat-bonded fibers were thermally bonded by a cylinder dryer at 140 ° C. to prepare a nonwoven fabric. Next, supercalender treatment was performed to obtain lithium ion secondary battery separators of Examples 104 to 119.
  • Examples 120 and 121 The papermaking slurries 17 and 18 were made up by a wet method using a circular paper machine, and a heat-bonded fiber was thermally bonded by a cylinder dryer at 140 ° C. to produce a nonwoven fabric. Next, the nonwoven fabric was brought into contact with a heat roll having a diameter of 1.2 m heated to 200 ° C. at a speed of 20 m / min and heat-treated. Next, a super calendar process was performed to obtain lithium ion secondary battery separators of Examples 120 and 121.
  • Examples 122 to 124, Comparative Examples 24 to 29 The papermaking slurries 19 to 27 were made up by a wet method using a circular net paper machine, and heat-bonded fibers were thermally bonded by a cylinder dryer at 140 ° C. to prepare a nonwoven fabric. Next, supercalender treatment was performed to obtain lithium ion secondary battery separators of Examples 122 to 124 and Comparative Examples 24 to 29.
  • Example 125 The papermaking slurry 28 was made up using a wet method using a circular paper machine and dried with a cylinder dryer at 140 ° C. to produce a nonwoven fabric. Next, using a heat roll having a diameter of 1.2 m heated to 200 ° C., pressure heat treatment was performed at a pressure of 2 MPa and a speed of 10 m / min to thermally bond the heat-fusible fiber, and the lithium ion secondary battery of Example 125 A separator was used.
  • Example 126 Comparative Examples 30 and 31
  • the papermaking slurries 29 to 31 were made up using a wet method with a circular paper machine and dried with a cylinder dryer at 140 ° C. to produce a nonwoven fabric.
  • supercalender treatment was performed to obtain lithium ion secondary battery separators of Example 126 and Comparative Examples 30 and 31.
  • Lithium ion secondary battery I> The negative electrode 1 and the positive electrode 1 are wound so that the separators of Examples 104 to 126 and Comparative Examples 24 to 31 are interposed between the electrodes, respectively, and housed in a cylindrical container made of aluminum alloy, and the lead body is welded. It was. Next, the whole cylindrical container was vacuum-dried at 110 ° C. for 24 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolytic solution was injected and sealed up, and lithium ion secondary batteries I of Examples 102 to 124 and Comparative Examples 24 to 31 were produced.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
  • A The difference in discharge capacity is 1.0% or less with respect to the average value.
  • The difference in discharge capacity is more than 1.0% and 2.5% or less with respect to the average value.
  • delta The difference of discharge capacity exceeds 2.5% with respect to an average value, and is 5.0% or less.
  • X The difference of discharge capacity is over 5.0% with respect to the average value.
  • the voltage maintenance rate is 95% or more.
  • the voltage maintenance ratio is less than 95% and 90% or more.
  • X The voltage maintenance rate is less than 90%.
  • the separators for lithium ion secondary batteries of Examples 104 to 121 were 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and 10 to 90% by mass of synthetic fibers. Since it contains a low moisture content, it contains a core-sheath type heat-sealing fiber composed of a heat-sealing component and a non-heat-sealing component as at least one synthetic fiber, so the separator strength is strong. Was excellent.
  • the separators for lithium ion secondary batteries of Examples 104 to 121 contain 10 to 90% by mass of synthetic fiber, compared with the paper separator made of solvent-spun cellulose fiber and hemp fiber of Comparative Example 31, The moisture content could be kept low. Furthermore, the fibers are easily entangled with each other, and a fiber network is formed. The fiber is firmly heat-bonded with the core-sheath type heat-sealing fiber, so that the separator strength is increased.
  • the separator strength tends to increase.
  • the separators for lithium ion secondary batteries of Examples 120 and 121 subjected to the heat treatment tended to have higher strength. Since the separators for lithium ion secondary batteries of Examples 122 to 125 used heat fusion fibers other than the core-sheath type, the separators for lithium ion secondary batteries of Example 124 contained core-sheath type heat fusion fibers. As a result, the separator strength was slightly weakened.
  • the separators for lithium ion secondary batteries of Comparative Examples 24 and 25 the content of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml in the separator is more than 90% by mass, and the separator contains 10 synthetic fibers. Since it is less than mass%, the moisture content is high and the separator strength is weak. Since the separator for the lithium ion secondary battery of Comparative Example 31 had a synthetic fiber content of less than 10% by mass in the separator, the separator strength was weak.
  • the lithium ion secondary batteries of Examples 104 to 121 contain 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and 10 to 90% by mass of synthetic fibers. Since a separator made of a porous sheet containing a core-sheath-type heat-sealing fiber composed of a heat-sealing component and a non-heat-sealing component is used as at least one kind of synthetic fiber, internal resistance, internal short-circuit failure rate In particular, the discharge characteristics at a high rate and its variation, cycle characteristics, and voltage maintenance ratio characteristics were excellent.
  • the separator contains 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, the electrolyte solution retainability is good. Since the ion conductivity can be improved, the internal resistance is low, and the discharge characteristics and the cycle characteristics are particularly excellent at a high rate.
  • the lithium ion secondary batteries of Comparative Examples 26 and 27 have a content of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml of less than 10% by mass.
  • the lithium ion secondary battery of Comparative Example 28 is Since the separator did not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, the electrolyte solution was inferior in liquid retention and had a high internal resistance.
  • the separator can be made dense. Therefore, the internal short circuit failure rate and the variation in discharge capacity were low and excellent.
  • the content of the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the separator is less than 10% by mass, and the separator is insufficiently dense. , Internal short-circuit defect rate and discharge capacity variation increased.
  • the separator does not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, the separator is insufficiently dense, the internal short circuit failure rate, the discharge capacity The variation of was high.
  • the modified drainage degree of the solvent-spun cellulose fiber in the separator is larger than 0 to 250 ml, and the separator is insufficiently dense. Was slightly higher.
  • the lithium ion secondary batteries of Examples 104 to 121 contain 10 to 90% by mass of a synthetic fiber, and are core-sheath type heat fusion made of at least one synthetic fiber and comprising a heat fusion component and a non-heat fusion component. In order to heat-bond the fibers together without impairing the dense structure of the fiber network, the fibers had a low internal resistance and a high voltage retention rate.
  • the lithium ion secondary batteries of Examples 122 to 125 use a heat-sealable fiber other than the core-sheath-type heat-sealable fiber for the separator, so that the shape of the heat-sealable fiber is lost during thermal bonding.
  • the porosity of the separator was locally obstructed, so that the value of the internal resistance was slightly high and the discharge rate at a high rate was slightly low. Since the lithium ion secondary battery of Example 126 did not contain the core-sheath type fusion-bonded fiber in the separator, the voltage maintenance rate was slightly low.
  • Synthetic fiber B9 Polyethylene terephthalate fiber having a fiber diameter of 2.5 ⁇ m and a fiber length of 6 mm was designated as synthetic fiber B9.
  • Papermaking slurries were prepared according to the raw materials and contents shown in Table 18, and wet papermaking was performed using a circular paper machine to produce separators of Examples 127 to 132 and Comparative Examples 32 to 34. The thickness was adjusted by calendaring at room temperature.
  • Lithium ion secondary battery K The negative electrode 1 and the positive electrode 1 were wound so that the separators of Examples and Comparative Examples were interposed between the electrodes, respectively, and housed in a cylindrical container made of aluminum alloy, and the lead body was welded. Next, the whole cylindrical container was vacuum-dried at 110 ° C. for 15 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolytic solution was injected and sealed, to prepare lithium ion secondary batteries K of Examples and Comparative Examples.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
  • A The difference in discharge capacity is 1.0% or less with respect to the average value.
  • The difference in discharge capacity is more than 1.0% and 2.5% or less with respect to the average value.
  • delta The difference of discharge capacity exceeds 2.5% with respect to an average value, and is 5.0% or less.
  • X The difference of discharge capacity is over 5.0% with respect to the average value.
  • the separator for the lithium ion secondary battery of Example 127 has a two-layer structure, and a solvent-spun cellulose fiber having a modified freeness of 125 ml in each layer. Is 60% by mass per total fiber and 40% by mass of synthetic fiber per total fiber, the 5C discharge capacity and capacity retention rate were excellent.
  • the separator for the lithium ion secondary battery of Example 128 has a two-layer structure, and the layer A is 6% by mass of solvent-spun cellulose fiber having a modified freeness of 125 ml and 6% by mass of synthetic fiber per total fiber.
  • the layer B contains solvent-spun cellulose fibers having a modified freeness of 125 ml of 100% by mass per total fiber, so that the separator has a slightly lower separator strength than the example 125, but the maximum pore diameter The internal resistance was slightly improved.
  • the separator for the lithium ion secondary battery of Example 129 has a two-layer structure, and the layer A is a solvent-spun cellulose fiber having a modified freeness of 125 ml of 60% by mass per total fiber, and the synthetic fiber is 40% by mass per total fiber.
  • the layer B contains 90 mass% of solvent-spun cellulose fibers having a modified freeness of 125 ml per total fiber, and 40 mass% of synthetic fibers per total fiber.
  • the separator for the lithium ion secondary battery of Example 130 has a two-layer structure, and the layer A is 60% by mass of solvent-spun cellulose fibers having a modified freeness of 125 ml and 60% by mass of synthetic fibers per total fiber.
  • the layer B contains solvent-spun cellulose fibers having a modified freeness of 125 ml of 10% by mass per total fiber and 90% by mass of synthetic fibers per total fiber, compared to Example 125, Although the separator strength was slightly improved, the 5C discharge capacity and the capacity retention rate were slightly inferior.
  • the separator for the lithium ion secondary battery of Example 131 has a two-layer structure, and the layer A is 60% by mass of solvent-spun cellulose fibers having a modified freeness of 125 ml and 60% by mass of synthetic fibers per total fiber. Since the layer B contains 100% by mass of synthetic fiber per total fiber, the separator strength is slightly improved as compared with Example 125, but the 5C discharge capacity and capacity retention rate are slightly inferior. It was.
  • the separator for the lithium ion secondary battery of Comparative Example 32 has a two-layer structure
  • the content of the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the separator is more than 90% by mass
  • the synthetic fiber Is less than 10% by mass per total fiber the moisture content is high and the separator strength is weak.
  • the separator for the lithium ion secondary battery of Comparative Example 33 has a two-layer structure, the content of the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the separator is less than 10% by mass, and the synthetic fiber Is more than 90% by mass per total fiber, the maximum pore diameter is increased, and the internal short circuit defect rate is extremely increased.
  • the lithium ion secondary battery separator of Comparative Example 34 has a two-layer structure, it uses a solvent-spun cellulose fiber with a fiber diameter of 2.5 ⁇ m and a fiber length of 6 mm. Also, the discharge capacity at high rate was greatly inferior.
  • a lithium ion secondary battery separator and a lithium ion polymer secondary battery separator are suitable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Cell Separators (AREA)
  • Paper (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

Disclosed is a separator that is for a lithium ion secondary battery and that has low water content, strong mechanical strength, and an excellent internal resistance and rate of internal short-circuit failure, in particular, excellent cycle characteristics and excellent discharge characteristics and variation thereof at high rates. The separator comprises a porous sheet containing 10-90 mass% of a synthetic fiber and 10-90 mass% of a solvent-spun cellulose fiber having a modified freeness of 0-250 ml measured in compliance with JIS P8121 when the sample concentration is not 0.1%, and uses an 80 mesh wire screen having 0.18 mm apertures and a wire diameter of 0.14 mm as a plate sieve. Further disclosed is a lithium ion secondary battery using same.

Description

リチウムイオン二次電池用セパレータ及びそれを用いてなるリチウムイオン二次電池Lithium ion secondary battery separator and lithium ion secondary battery using the same
 本発明は、リチウムイオン二次電池用セパレータ及びそれを用いてなるリチウムイオン二次電池に関する。 The present invention relates to a separator for a lithium ion secondary battery and a lithium ion secondary battery using the separator.
 近年の携帯電子機器の普及及びその高性能化に伴い、高エネルギー密度を有する二次電池が望まれている。この種の電池として、有機電解液(非水電解液)を使用するリチウムイオン二次電池が注目されてきた。このリチウムイオン二次電池の平均電圧は、アルカリ二次電池の約3倍の3.7Vであり、高エネルギー密度となるが、アルカリ二次電池のように水系の電解液を用いることができないため、十分な耐酸化還元性を有する非水電解液を用いている。 With the recent spread of portable electronic devices and higher performance, secondary batteries having high energy density are desired. As this type of battery, a lithium ion secondary battery using an organic electrolyte (non-aqueous electrolyte) has attracted attention. The average voltage of the lithium ion secondary battery is 3.7 V, which is about three times that of the alkaline secondary battery, and the energy density is high. However, an aqueous electrolyte solution cannot be used unlike the alkaline secondary battery. A nonaqueous electrolytic solution having sufficient oxidation-reduction resistance is used.
 リチウムイオン二次電池用セパレータとしては、ポリオレフィンからなるフィルム状の多孔質フィルムが多く使用されているが(例えば、特許文献1参照)、電解液の保液性が低いため、イオン伝導性が低く、内部抵抗が高くなる問題があった。 As a separator for a lithium ion secondary battery, a film-like porous film made of polyolefin is often used (see, for example, Patent Document 1), but has low ionic conductivity due to low electrolyte retention. There was a problem that the internal resistance increased.
 また、リチウムイオン二次電池用セパレータとして、再生セルロース繊維の叩解物を主体とする紙製セパレータ(例えば、特許文献2参照)が提案されている。リチウムイオン二次電池においては、水分がわずかでも混入すると電池特性に悪影響を及ぼすことから、セパレータに含水分率の高い紙製セパレータを用いる場合、リチウムイオン二次電池製造の際に長時間の乾燥処理が必要となる。また、セパレータ強度が弱いため、セパレータを薄くできない問題があった。 Further, as a separator for a lithium ion secondary battery, a paper separator (for example, see Patent Document 2) mainly composed of regenerated cellulose fiber beats has been proposed. Lithium ion secondary batteries have a negative effect on battery characteristics if even a small amount of water is mixed in. Therefore, if a paper separator with a high moisture content is used for the separator, it will dry for a long time when producing lithium ion secondary batteries. Processing is required. Moreover, since the separator strength was weak, there was a problem that the separator could not be thinned.
 さらに、リチウムイオン二次電池用セパレータとして、合成繊維からなる不織布セパレータ(例えば、特許文献3~5参照)についても提案されているが、これらのセパレータは電解液の保液性が低く、内部抵抗が高くなる問題や、セパレータの緻密性が不十分であるため、内部短絡不良率が高くなる、高レート特性や放電特性及びそのバラツキに劣るといった問題があった。 Further, as separators for lithium ion secondary batteries, nonwoven fabric separators made of synthetic fibers (see, for example, Patent Documents 3 to 5) have also been proposed. However, these separators have low electrolyte retention and internal resistance. There is a problem that the high short-circuiting rate is high, the internal short-circuit defect rate is high, and the high rate characteristics and discharge characteristics are inferior.
 また、リチウムイオン二次電池用セパレータとして、フィブリル化耐熱性繊維、フィブリル化セルロース、非フィブリル化繊維からなるセパレータが提案されているが(例えば、特許文献6~8参照)、このセパレータでは、セパレータ強度にまだ改善の余地があった。 Further, as a separator for a lithium ion secondary battery, a separator made of fibrillated heat-resistant fiber, fibrillated cellulose, or non-fibrillated fiber has been proposed (see, for example, Patent Documents 6 to 8). There was still room for improvement in strength.
特開2002−105235号公報JP 2002-105235 A 特許3661104号公報Japanese Patent No. 3661104 特開2003−123728号公報JP 2003-123728 A 特開2007−317675号公報JP 2007-317675 A 特開2006−19191号公報JP 2006-19191 A 国際公開第2005/101432号パンフレットInternational Publication No. 2005/101432 Pamphlet 国際公開第1996/030954号パンフレットInternational Publication No. 1996/030954 Pamphlet 特開2004−146137号公報JP 2004-146137 A
 本発明は、上記実情を鑑みたものであって、含水分率が低く、機械強度が強く、内部抵抗、内部短絡不良率、特に、高レートでの放電特性及びそのバラツキ、サイクル特性に優れたリチウムイオン二次電池用セパレータと、それを用いてなるリチウムイオン二次電池を提供することにある。 The present invention has been made in view of the above circumstances, and has a low moisture content, high mechanical strength, and excellent internal resistance and internal short-circuit failure rate, in particular, high-rate discharge characteristics and variations, and cycle characteristics. The object is to provide a lithium ion secondary battery separator and a lithium ion secondary battery using the same.
 上記課題を解決するために鋭意研究した結果、下記リチウムイオン二次電池用セパレータ及びリチウムイオンに次電池を見出した。 As a result of diligent research to solve the above problems, the following batteries were found in the following lithium ion secondary battery separator and lithium ion.
(1)ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度が0~250mlの溶剤紡糸セルロース繊維を10~90質量%、合成繊維を10~90質量%含有する多孔質シートからなるリチウムイオン二次電池用セパレータ。
(2)溶剤紡糸セルロース繊維の長さ加重平均繊維長が0.20~2.00mmである(1)記載のリチウムイオン二次電池用セパレータ。
(3)溶剤紡糸セルロース繊維が、その長さ加重繊維長分布ヒストグラムにおいて、0.00~1.00mmの間に最大頻度ピークを有し、1.00mm以上の長さ加重繊維長を有する繊維の割合が10%以上である(1)又は(2)記載のリチウムイオン二次電池用セパレータ。
(4)溶剤紡糸セルロース繊維の長さ加重繊維長分布ヒストグラムにおいて、1.00~2.00mmの間における0.05mm毎の長さ加重繊維長を有する繊維の割合の傾きが−3.0以上−0.5以下である(3)記載のリチウムイオン二次電池用セパレータ。
(5)溶剤紡糸セルロース繊維が、その長さ加重繊維長分布ヒストグラムにおいて、0.00~1.00mmの間に最大頻度ピークを有し、1.00mm以上の長さ加重繊維長を有する繊維の割合が50%以上である(1)又は(2)記載のリチウムイオン二次電池用セパレータ。
(6)溶剤紡糸セルロース繊維の長さ加重繊維長分布ヒストグラムにおいて、最大頻度ピーク以外に1.50~3.50mmの間にピークを有する(5)記載のリチウムイオン二次電池用セパレータ。
(7)溶剤紡糸セルロース繊維の長さ加重平均繊維長が0.50~1.25mmであり、平均カール度が25以下である(1)又は(2)記載のリチウムイオン二次電池用セパレータ。
(8)さらに、多孔質シートが、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度0~400mlのフィブリル化天然セルロース繊維を20質量%以下含有してなる(1)~(7)のいずれかに記載のリチウムイオン二次電池用セパレータ。
(9)さらに、多孔質シートが、カルボキシメチルセルロースを含有してなる(1)記載のリチウムイオン二次電池用セパレータ。
(10)多孔質シートが、合成繊維の少なくとも1種として、熱融着成分及び非熱融着成分からなる芯鞘型熱融着繊維を含有してなる(1)記載のリチウムイオン二次電池用セパレータ。
(11)芯鞘型熱融着繊維の芯部がポリエチレンテレフタレートであり、鞘部がポリエステル共重合体である(10)に記載のリチウムイオン二次電池用セパレータ。
(12)多孔質シートが熱処理されてなる(10)又は(11)記載のリチウムイオン二次電池用セパレータ。
(13)多孔質シートの平均ポア径が0.10μm以上、かつ、最大ポア径が6.0μm以下である(1)~(12)のいずれかに記載のリチウムイオン二次電池用セパレータ。
(14)多孔質シートにおいて、JIS B7502に規定された方法により測定した値(5N荷重時の外側マイクロメーターにより測定されたシートの厚み)が6~50μmである(1)~(12)のいずれかに記載のリチウムイオン二次電池用セパレータ。
(15)多孔質シートの坪量が5~40g/mである(1)~(12)のいずれかに記載のリチウムイオン二次電池用セパレータ。
(16)合成繊維を構成する合成樹脂が、ポリエステル系樹脂、アクリル系樹脂、ポリオレフィン系樹脂から選ばれる少なくとも1種である(1)~(15)のいずれかに記載のリチウムイオン二次電池用セパレータ。
(17)合成繊維の平均繊維径が0.1~20μmである(1)~(16)のいずれかに記載のリチウムイオン二次電池用セパレータ。
(18)多孔質シートが多層構造からなり、少なくとも二層以上が変法濾水度0~250mlの溶剤紡糸セルロース繊維を必須成分として含有した層である(1)に記載のリチウムイオン二次電池用セパレータ。
(19)(1)~(18)のいずれかに記載のリチウムイオン二次電池用セパレータを用いてなるリチウムイオン二次電池。
(1) The modified freeness measured in accordance with JIS P8121 is 0 ~ except that an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as the sieve plate, and the sample concentration is 0.1%. A separator for a lithium ion secondary battery comprising a porous sheet containing 250-ml solvent-spun cellulose fiber of 10 to 90% by mass and synthetic fiber of 10 to 90% by mass.
(2) The separator for a lithium ion secondary battery according to (1), wherein the solvent-spun cellulose fiber has a length weighted average fiber length of 0.20 to 2.00 mm.
(3) The solvent-spun cellulose fiber has a maximum frequency peak between 0.00 and 1.00 mm in the length-weighted fiber length distribution histogram, and a fiber having a length-weighted fiber length of 1.00 mm or more. The separator for lithium ion secondary batteries according to (1) or (2), wherein the ratio is 10% or more.
(4) In the length-weighted fiber length distribution histogram of solvent-spun cellulose fibers, the slope of the ratio of fibers having a length-weighted fiber length of 0.05 mm between 1.00 and 2.00 mm is −3.0 or more The separator for lithium ion secondary batteries according to (3), which is −0.5 or less.
(5) The solvent-spun cellulose fiber has a maximum frequency peak between 0.00 and 1.00 mm in the length-weighted fiber length distribution histogram, and a fiber having a length-weighted fiber length of 1.00 mm or more. The separator for lithium ion secondary batteries according to (1) or (2), wherein the ratio is 50% or more.
(6) The separator for a lithium ion secondary battery according to (5), which has a peak between 1.50 and 3.50 mm in addition to the maximum frequency peak in a length-weighted fiber length distribution histogram of solvent-spun cellulose fibers.
(7) The separator for a lithium ion secondary battery according to (1) or (2), wherein the solvent-spun cellulose fiber has a length weighted average fiber length of 0.50 to 1.25 mm and an average curl degree of 25 or less.
(8) Furthermore, the porous sheet was measured according to JIS P8121, except that an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm was used as the sieve plate, and the sample concentration was 0.1%. The separator for a lithium ion secondary battery according to any one of (1) to (7), comprising 20% by mass or less of fibrillated natural cellulose fiber having a freeness of 0 to 400 ml.
(9) The separator for a lithium ion secondary battery according to (1), wherein the porous sheet further contains carboxymethylcellulose.
(10) The lithium ion secondary battery according to (1), wherein the porous sheet contains a core-sheath type heat-sealing fiber composed of a heat-seal component and a non-heat-seal component as at least one synthetic fiber. Separator.
(11) The separator for a lithium ion secondary battery according to (10), wherein the core of the core-sheath type heat-sealing fiber is polyethylene terephthalate and the sheath is a polyester copolymer.
(12) The separator for a lithium ion secondary battery according to (10) or (11), wherein the porous sheet is heat-treated.
(13) The separator for a lithium ion secondary battery according to any one of (1) to (12), wherein the porous sheet has an average pore diameter of 0.10 μm or more and a maximum pore diameter of 6.0 μm or less.
(14) In the porous sheet, the value measured by the method defined in JIS B7502 (the thickness of the sheet measured by an outer micrometer at 5 N load) is 6 to 50 μm. A separator for a lithium ion secondary battery according to claim 1.
(15) The separator for a lithium ion secondary battery according to any one of (1) to (12), wherein the basis weight of the porous sheet is 5 to 40 g / m 2 .
(16) The lithium ion secondary battery according to any one of (1) to (15), wherein the synthetic resin constituting the synthetic fiber is at least one selected from polyester resins, acrylic resins, and polyolefin resins. Separator.
(17) The separator for a lithium ion secondary battery according to any one of (1) to (16), wherein the synthetic fiber has an average fiber diameter of 0.1 to 20 μm.
(18) The lithium ion secondary battery according to (1), wherein the porous sheet has a multilayer structure, and at least two layers are layers containing solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml as essential components. Separator for use.
(19) A lithium ion secondary battery using the lithium ion secondary battery separator according to any one of (1) to (18).
 本発明のリチウムイオン二次電池用セパレータは、変法濾水度0~250mlの溶剤紡糸セルロース繊維と合成繊維とを含有した不織布からなる。変法濾水度0~250mlの溶剤紡糸セルロース繊維と合成繊維とが絡み合うことにより、リチウムイオン二次電池用セパレータの電解液の保液性を良好なものにすることができ、その結果、内部抵抗を低くすることができ、特に高レートでの放電特性を優れたものにすることができる。さらに、リチウムイオン二次電池用セパレータを緻密にできることから、内部短絡不良率、放電特性のバラツキを抑えることができる。また、合成繊維を含有することにより、セパレータの含水分率を低く抑えることができ、電池製造時の乾燥処理時間をより短くすることができる。 The separator for a lithium ion secondary battery of the present invention comprises a nonwoven fabric containing solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and synthetic fibers. The solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml and the synthetic fiber are entangled with each other, so that the liquid retaining property of the lithium ion secondary battery separator can be improved. The resistance can be lowered, and the discharge characteristics at a particularly high rate can be made excellent. Furthermore, since the lithium ion secondary battery separator can be made dense, variations in internal short-circuit failure rate and discharge characteristics can be suppressed. Moreover, the moisture content of a separator can be restrained low by containing a synthetic fiber, and the drying process time at the time of battery manufacture can be shortened more.
 さらに、合成繊維同士及び変法濾水度0~250mlの溶剤紡糸セルロース繊維と合成繊維とが絡みやすく、繊維ネットワークが形成されることにより、セパレータ強度を強くすることができ、セパレータをより緻密かつ薄くすることができ、内部抵抗を低くすることができると共に、内部短絡不良率、放電特性のバラツキを抑えたものにすることができ、サイクル特性を優れたものにすることができる。 Furthermore, the synthetic fiber is easily entangled with synthetic fibers and solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, and a fiber network is formed, whereby the strength of the separator can be increased, and the separator can be more dense and The internal resistance can be lowered, the internal short-circuit failure rate and the variation in discharge characteristics can be suppressed, and the cycle characteristics can be improved.
溶剤紡糸セルロース繊維[I]の長さ加重繊維長分布ヒストグラムである。It is a length weighted fiber length distribution histogram of solvent-spun cellulose fiber [I]. 溶剤紡糸セルロース繊維[II]の長さ加重繊維長分布ヒストグラムである。It is a length weighted fiber length distribution histogram of solvent-spun cellulose fiber [II]. 溶剤紡糸セルロース繊維[I]及び[II]の長さ加重繊維長分布ヒストグラムにおいて、1.00~2.00mmの間における0.05mm毎の長さ加重繊維長を有する繊維の割合のグラフと近似直線を示した図である。In the length-weighted fiber length distribution histogram of solvent-spun cellulose fibers [I] and [II], approximate to a graph of the proportion of fibers having a length-weighted fiber length of every 0.05 mm between 1.00 and 2.00 mm It is the figure which showed the straight line. 溶剤紡糸セルロース繊維[i]の長さ加重繊維長分布ヒストグラムである。It is a length weighted fiber length distribution histogram of solvent-spun cellulose fiber [i]. 溶剤紡糸セルロース繊維[ii]の長さ加重繊維長分布ヒストグラムである。It is a length weighted fiber length distribution histogram of solvent-spun cellulose fiber [ii].
 以下、本発明のリチウムイオン二次電池用セパレータ(以下、「セパレータ」と表記する場合もある)と、それを用いてなるリチウムイオン二次電池について詳説する。 Hereinafter, the lithium ion secondary battery separator of the present invention (hereinafter also referred to as “separator”) and a lithium ion secondary battery using the same will be described in detail.
 本発明における溶剤紡糸セルロース繊維とは、従来のビスコースレーヨンや銅アンモニアレーヨンのように、セルロースを一旦セルロース誘導体に化学的に変換させたのち再度セルロースに戻す、いわゆる再生セルロース繊維と異なり、セルロースを化学的に変化させることなく、アミンオキサイドに溶解させた紡糸原液を水中に乾湿式紡糸してセルロースを析出させた繊維を指し、「リヨセル繊維」とも呼ばれる。溶剤紡糸セルロース繊維は、天然セルロース繊維やバクテリアセルロース繊維、レーヨン繊維に比べ、繊維長軸方向に分子が高度に配列しているため、湿潤状態で摩擦等の機械的な力が加えられると、微細化しやすく、細くて長い微細繊維が生成する。この微細繊維間に電解液を強固に保持するため、天然セルロース繊維、バクテリアセルロース繊維、レーヨン繊維の微細化物に比べ、微細化された溶剤紡糸セルロース繊維は、電解液の保液性に優れる。 The solvent-spun cellulose fiber in the present invention is different from the so-called regenerated cellulose fiber in which cellulose is once chemically converted into a cellulose derivative and then returned to cellulose like conventional viscose rayon or copper ammonia rayon. This refers to a fiber in which cellulose is precipitated by dry and wet spinning of a spinning stock solution dissolved in amine oxide in water without chemical change, and is also referred to as “lyocell fiber”. Solvent-spun cellulose fibers have a higher molecular arrangement in the fiber long axis direction than natural cellulose fibers, bacterial cellulose fibers, and rayon fibers, so when mechanical forces such as friction are applied in a wet state, It is easy to form, and fine and long fine fibers are formed. In order to firmly hold the electrolyte solution between the fine fibers, the solvent-spun cellulose fibers that are refined are superior in liquid retention of the electrolyte solution compared to the refined products of natural cellulose fibers, bacterial cellulose fibers, and rayon fibers.
 本発明では、変法濾水度0~250mlの溶剤紡糸セルロース繊維が用いられる。溶剤紡糸セルロース繊維の変法濾水度は、0~200mlであることがより好ましく、0~160mlであることがさらに好ましい。変法濾水度が250mlより多いと、セパレータの緻密性が不十分になり、内部短絡不良率が高くなる。 In the present invention, solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml are used. The modified drainage degree of the solvent-spun cellulose fiber is more preferably 0 to 200 ml, and further preferably 0 to 160 ml. When the modified freeness is more than 250 ml, the density of the separator becomes insufficient and the internal short circuit defect rate becomes high.
 本発明における変法濾水度とは、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した値のことである。 The modified freeness in the present invention was measured in accordance with JIS P811, except that an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm was used as a sieve plate, and the sample concentration was 0.1%. It is a value.
 溶剤紡糸セルロース繊維の場合、微細化が進むに従って、繊維長が短くなっていき、特に試料濃度が薄いと、繊維同士の絡みが少なくなり、繊維ネットワークが形成されにくくなるため、溶剤紡糸セルロース繊維自体がふるい板の穴をすり抜けてしまう。つまり、微細化した溶剤紡糸セルロースの場合は、JIS P8121の測定方法では正確な濾水度が計測できないのである。より詳細に説明すると、天然セルロース繊維は、微細化の程度が進むほど、繊維の幹から細かいフィブリルが多数裂けた状態になるため、フィブリルを介して繊維同士が絡みやすく、繊維ネットワークを形成しやすいのに対し、溶剤紡糸セルロース繊維は微細化処理によって繊維の長軸に平行に細かく分割されやすく、分割後の繊維1本1本における繊維径の均一性が高いため、平均繊維長が短くなるほど、繊維同士が絡みにくくなり、繊維ネットワークを形成しにくいと考えられる。そこで、本発明では、溶剤紡糸セルロース繊維の正確な濾水度を測定するために、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定する変法濾水度を用いた。 In the case of solvent-spun cellulose fibers, the fiber length becomes shorter as the microfabrication progresses. In particular, when the sample concentration is low, the entanglement between fibers decreases and it becomes difficult to form a fiber network. Will slip through the holes in the sieve plate. In other words, in the case of finely solvent-spun cellulose, an accurate freeness cannot be measured by the measuring method of JIS P8121. In more detail, natural cellulose fibers are in a state where many fine fibrils are torn apart from the trunk of the fiber as the degree of refinement progresses. Therefore, the fibers are easily entangled with each other through the fibrils, and a fiber network is easily formed. On the other hand, the solvent-spun cellulose fiber is easily finely divided in parallel to the long axis of the fiber by the refining treatment, and since the uniformity of the fiber diameter in each fiber after division is high, the shorter the average fiber length, It is considered that the fibers do not easily entangle with each other and it is difficult to form a fiber network. Therefore, in the present invention, in order to measure the exact freeness of the solvent-spun cellulose fiber, an 80-mesh wire mesh having a wire diameter of 0.14 mm and an opening of 0.18 mm is used as a sieve plate, and the sample concentration is 0.1%. A modified freeness measured in accordance with JIS P8121 was used.
 また、変法濾水度0~250mlの溶剤紡糸セルロース繊維の長さ加重平均繊維長は0.20~3.00mmが好ましく、0.20~2.00mmがより好ましく、0.20~1.60mmがさらに好ましい。長さ加重平均繊維長が0.20mmより短いと、セパレータから脱落する場合があり、3.00mmより長いと、繊維がもつれてダマになることがあり、厚みむらが生じる場合がある。 The length weighted average fiber length of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml is preferably 0.20 to 3.00 mm, more preferably 0.20 to 2.00 mm, and 0.20 to 1. 60 mm is more preferable. If the length-weighted average fiber length is shorter than 0.20 mm, the separator may fall off, and if it is longer than 3.00 mm, the fibers may be tangled and become lumpy, resulting in uneven thickness.
 図1及び図2は、溶剤紡糸セルロース繊維の長さ加重繊維長分布ヒストグラムである。図1及び図2のように、溶剤紡糸セルロース繊維の長さ加重繊維長分布ヒストグラムにおいて、0.00~1.00mmの間に最大頻度ピークを有し、1.00mm以上の長さ加重繊維長を有する繊維の割合が10%以上であるリチウムイオン二次電池用セパレータ(3)は、繊維同士が絡みやすく、繊維ネットワークが形成されやすくなることから、セパレータ強度が強くなり、内部短絡率が低くなり、好ましい。内部短絡不良率の低下という点で、長さ加重繊維長分布ヒストグラムにおいて、0.30~0.70mmの間に最大頻度ピークを有し、1.00mm以上の長さ加重繊維長を有する繊維の割合が12%以上であることが、さらに好ましい。1.00mm以上の長さ加重繊維長を有する繊維の割合はより高い方が好ましいが、50%程度あれば十分である。 1 and 2 are length-weighted fiber length distribution histograms of solvent-spun cellulose fibers. As shown in FIGS. 1 and 2, in the length-weighted fiber length distribution histogram of solvent-spun cellulose fibers, the maximum frequency peak is between 0.00 and 1.00 mm, and the length-weighted fiber length is 1.00 mm or more. In the lithium ion secondary battery separator (3) in which the ratio of the fibers having 10% or more is easy to entangle the fibers and easily form a fiber network, the separator strength is increased and the internal short circuit rate is low. It is preferable. In the length-weighted fiber length distribution histogram, the maximum frequency peak is between 0.30 and 0.70 mm, and the fiber having a length-weighted fiber length of 1.00 mm or more in terms of a decrease in internal short-circuit failure rate. More preferably, the ratio is 12% or more. A higher ratio of fibers having a length-weighted fiber length of 1.00 mm or more is preferable, but about 50% is sufficient.
 リチウムイオン二次電池用セパレータ(3)の溶剤紡糸セルロース繊維の長さ加重繊維長分布ヒストグラムにおいて、1.00~2.00mmの間における0.05mm毎の長さ加重繊維長を有する繊維の割合の傾きが−3.0以上−0.5以下であるリチウムイオン二次電池用セパレータ(4)は、セパレータの機械的強度が高く、放電容量のバラつきが小さくなり、さらに好ましい。本発明のリチウムイオン二次電池用セパレータ(4)において、1.00~2.00mmの間における0.05mm毎の長さ加重繊維長を有する繊維の割合の傾きが−2.5以上−0.8以下であることがより好ましく、−2.0以上−1.0以下であることがさらに好ましい。傾きが−3.0より小さい場合、機械強度が低くなる場合がある。また傾きが−0.5を超えると放電容量のバラつきが大きくなる場合がある。図1及び図2に示すように、「傾きが大きい」とは、溶剤紡糸セルロース繊維の長さ加重繊維長分布が広いことをいい、「傾きが小さい」とは、溶剤紡糸セルロース繊維の長さ加重繊維長分布が狭く、長さ加重繊維長がより揃っている状態である。なお、図1の溶剤紡糸セルロース繊維[I]の傾きは、−2.9であり、図2の溶剤紡糸セルロース繊維[II]の傾きは、−0.6である。 In the length-weighted fiber length distribution histogram of the solvent-spun cellulose fiber of the separator for lithium ion secondary battery (3), the proportion of fibers having a length-weighted fiber length of every 0.05 mm between 1.00 and 2.00 mm The lithium ion secondary battery separator (4) having a slope of −3.0 or more and −0.5 or less is more preferable because of high mechanical strength of the separator and less variation in discharge capacity. In the lithium ion secondary battery separator (4) of the present invention, the inclination of the ratio of fibers having a length-weighted fiber length of 0.05 mm between 1.00 and 2.00 mm is −2.5 or more and −0. Is more preferably 0.8 or less, and further preferably -2.0 or more and -1.0 or less. When the inclination is smaller than −3.0, the mechanical strength may be lowered. Further, when the inclination exceeds −0.5, the variation in discharge capacity may increase. As shown in FIG. 1 and FIG. 2, “large inclination” means that the length-weighted fiber length distribution of the solvent-spun cellulose fiber is wide, and “small inclination” means the length of the solvent-spun cellulose fiber. The weighted fiber length distribution is narrow and the length weighted fiber lengths are more uniform. The slope of the solvent-spun cellulose fiber [I] in FIG. 1 is −2.9, and the slope of the solvent-spun cellulose fiber [II] in FIG. 2 is −0.6.
 なお、「1.00~2.00mmの間における0.05mm毎の繊維長を有する繊維の割合の傾き」とは、図3に示したように、1.00~2.00mmの間における0.05mm毎の長さ加重繊維長を有する繊維の割合の値に対し、最小二乗法により近似直線を算出し、得られた近似直線の傾きを意味する。 The “inclination of the proportion of fibers having a fiber length of every 0.05 mm between 1.00 and 2.00 mm” is 0 between 1.00 and 2.00 mm, as shown in FIG. Approximate straight line is calculated by the method of least squares with respect to the value of the ratio of fibers having a length-weighted fiber length every .05 mm, and the inclination of the obtained approximate straight line is meant.
 本発明のリチウムイオン二次電池用セパレータ(5)のように、溶剤紡糸セルロース繊維の長さ加重繊維長分布ヒストグラムにおいて、0.00~1.00mmの間に最大頻度ピークを有し、1.00mm以上の長さ加重繊維長を有する繊維の割合が50%以上であることが好ましい。リチウムイオン二次電池用セパレータ(5)では、多孔質シートが緻密な構造を有し、セパレータ強度が強く、内部短絡不良率が低く、放電容量のバラつきを小さくすることができる。 Like the lithium ion secondary battery separator (5) of the present invention, the length-weighted fiber length distribution histogram of solvent-spun cellulose fibers has a maximum frequency peak between 0.00 and 1.00 mm. The proportion of fibers having a length-weighted fiber length of 00 mm or more is preferably 50% or more. In the separator for lithium ion secondary batteries (5), the porous sheet has a dense structure, the separator strength is strong, the internal short circuit failure rate is low, and the variation in discharge capacity can be reduced.
 図4は、0.00~1.00mmの間に最大頻度ピークを有し、1.00mm以上の長さ加重繊維長を有する繊維の割合が50%以上である溶剤紡糸セルロース繊維の長さ加重繊維長分布ヒストグラムである。機械強度の向上という点において、長さ加重繊維長分布ヒストグラムにおいて、0.30~0.70mmの間に最大頻度ピークを有し、1.00mm以上の長さ加重繊維長を有する繊維の割合が55%以上であることが好ましい。1.00mm以上の長さ加重繊維長を有する繊維の割合は高い方が望ましいが、70%程度あれば十分である。 FIG. 4 shows the length weight of solvent-spun cellulose fibers having a maximum frequency peak between 0.00 and 1.00 mm, and the proportion of fibers having a length-weighted fiber length of 1.00 mm or more is 50% or more. It is a fiber length distribution histogram. In terms of improving mechanical strength, in the length-weighted fiber length distribution histogram, the ratio of fibers having a maximum frequency peak between 0.30 and 0.70 mm and having a length-weighted fiber length of 1.00 mm or more is It is preferable that it is 55% or more. A higher proportion of fibers having a length-weighted fiber length of 1.00 mm or more is desirable, but about 70% is sufficient.
 リチウムイオン二次電池用セパレータ(5)の溶剤紡糸セルロース繊維の長さ加重繊維長分布ヒストグラムにおいて、図5に示したように、上記の最大頻度ピーク以外に、1.50~3.50mmの間にピークを有するリチウムイオン二次電池用セパレータ(6)は機械強度が強くなり、放電容量のバラつきが小さくなるため、好ましい。また、1.75~3.25mmの間にピークを有することがより好ましく、2.00~3.00mmの間にピークを有することがさらに好ましい。最大頻度ピーク以外のピークの長さ加重繊維長が1.50mmより短い場合、機械強度が低下することがある。また、3.50mmを超えると、放電容量のバラつきが大きくなることがある。 In the length-weighted fiber length distribution histogram of the solvent-spun cellulose fiber of the lithium ion secondary battery separator (5), as shown in FIG. 5, between 1.50 and 3.50 mm in addition to the above maximum frequency peak. The lithium ion secondary battery separator (6) having a peak at 5 is preferable because the mechanical strength is increased and the variation in discharge capacity is reduced. Further, it preferably has a peak between 1.75 and 3.25 mm, and more preferably has a peak between 2.00 and 3.00 mm. When the length-weighted fiber length of peaks other than the maximum frequency peak is shorter than 1.50 mm, the mechanical strength may decrease. Moreover, when it exceeds 3.50 mm, the variation in discharge capacity may increase.
 本発明のリチウムイオン二次電池用セパレータ(7)のように、溶剤紡糸セルロース繊維の長さ加重平均繊維長が0.50~1.25mmであり、平均カール度が25以下であることが好ましい。長さ加重平均繊維長0.50~1.25mm、平均カール度が25以下の溶剤紡糸セルロース繊維と合成繊維とが絡み合うことにより、リチウムイオン二次電池用セパレータの電解液の保液性を良好なものにすることができ、その結果、内部抵抗を低くすることができ、特に高レートでの放電特性を優れたものにすることができる。さらに、リチウムイオン二次電池用セパレータを緻密にできることから、内部短絡不良率、放電特性のバラツキを抑えることができる。また、合成繊維同士及び長さ加重平均繊維長0.50~1.25mm、平均カール度が25以下の溶剤紡糸セルロース繊維と合成繊維とが絡みやすく、繊維ネットワークが形成されることより、セパレータ強度を強くすることができ、セパレータをより緻密かつ薄くすることができ、内部抵抗を低くすることができると共に、内部短絡不良率、放電特性のバラツキを抑えたものにすることができ、サイクル特性を優れたものにすることができる。 Like the lithium ion secondary battery separator (7) of the present invention, the solvent-spun cellulose fiber preferably has a length weighted average fiber length of 0.50 to 1.25 mm and an average curl degree of 25 or less. . Good solvent retention of lithium-ion secondary battery separator by entanglement of solvent-spun cellulose fiber and synthetic fiber with length-weighted average fiber length of 0.50 to 1.25 mm and average curl of 25 or less As a result, the internal resistance can be lowered, and in particular, the discharge characteristics at a high rate can be made excellent. Furthermore, since the lithium ion secondary battery separator can be made dense, variations in internal short-circuit failure rate and discharge characteristics can be suppressed. In addition, the solvent-spun cellulose fiber having a weight-weighted average fiber length of 0.50 to 1.25 mm and an average curl degree of 25 or less is easily entangled with the synthetic fiber, and a fiber network is formed. The separator can be made denser and thinner, the internal resistance can be lowered, the internal short-circuit failure rate and the variation in discharge characteristics can be suppressed, and the cycle characteristics can be improved. It can be excellent.
 溶剤紡糸セルロース繊維の平均カール度は、20以下であることがより好ましく、15以下であることがさらに好ましい。溶剤紡糸セルロース繊維の平均カール度が、25よりも大きいと、セパレータの均一性が損なわれ、内部短絡不良率が高くなる場合や、セパレータの強度が弱くなる場合がある。なお、平均カール度の数値が小さいことは、溶剤紡糸セルロース繊維の屈曲度合いが小さい、即ち、より直線状に近付くことを示しており、このことから、平均カール度の下限に特に制限はない。 The average curl degree of the solvent-spun cellulose fiber is more preferably 20 or less, and further preferably 15 or less. If the average curl degree of the solvent-spun cellulose fiber is larger than 25, the uniformity of the separator is impaired, and the internal short circuit defect rate may be increased, or the strength of the separator may be decreased. In addition, the small numerical value of the average curl degree indicates that the degree of bending of the solvent-spun cellulose fiber is small, that is, closer to a straight line, and therefore there is no particular limitation on the lower limit of the average curl degree.
 本発明の溶剤紡糸セルロース繊維の長さ加重繊維長及び長さ加重繊維長分布ヒストグラム、長さ加重平均繊維長、平均カール度は、JAPAN TAPPI 紙パルプ試験方法No.52「紙及びパルプの繊維長 試験方法(光学的自動計測法)」に準じて、KajaaniFiberLabV3.5(Metso Automation社製)を使用して測定した。 The length-weighted fiber length and length-weighted fiber length distribution histogram, length-weighted average fiber length, and average curl degree of the solvent-spun cellulose fiber of the present invention are as follows. According to 52 “Paper and pulp fiber length test method (optical automatic measurement method)”, it was measured using Kajaani Fiber Lab V3.5 (manufactured by Metso Automation).
 KajaaniFiberLabV3.5(Metso Automation社製)では、検出部を通過する個々の繊維について、屈曲した繊維の全体の真の長さ(L)と屈曲した繊維の両端部の最短の長さ(l)を測定することができる。「長さ加重平均繊維長」とは、屈曲した繊維の両端部の最短の長さ(l)を測定・算出した平均繊維長である。「平均カール度」とは、個々の繊維について、屈曲した繊維の全体の真の長さ(L)と屈曲した繊維の両端部の最短の長さ(l)を測定し、下式によって算出されたカール度を平均したものである。繊維の屈曲度合いが大きくなるにつれて、「カール度」は大きな値となる。 In Kajaani Fiber Lab V3.5 (Metso Automation Co., Ltd.), for each fiber passing through the detection unit, the total true length (L) of the bent fiber and the shortest length (l) of both ends of the bent fiber are determined. Can be measured. The “length-weighted average fiber length” is an average fiber length obtained by measuring and calculating the shortest length (l) of both ends of the bent fiber. “Average curl degree” is calculated for each individual fiber by measuring the total true length (L) of the bent fiber and the shortest length (l) of both ends of the bent fiber, and calculating by the following formula: This is the average curl degree. As the degree of bending of the fiber increases, the “curl degree” increases.
カール度=(L/l)−1                      (式1) Curling degree = (L / l) -1 (1) (1)
 変法濾水度0~250mlの溶剤紡糸セルロース繊維、変法濾水度0~250mlであり、かつ長さ加重繊維長が0.20~2.00mmである溶剤紡糸セルロース繊維、変法濾水度0~250mlであり、長さ加重繊維長が0.50~1.25mmであり、かつ平均カール度が25以下の溶剤紡糸セルロース繊維を作製する方法としては、リファイナー、ビーター、ミル、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、繊維懸濁液に少なくとも20MPaの圧力差を与えて小径のオリフィスを通過させて高速度とし、これを衝突させて急減速することにより繊維に剪断力、切断力を加える高圧ホモジナイザー等を用いる方法が挙げられる。この中でも特にリファイナーを用いる方法が好ましい。これら叩解・分散設備の種類、処理条件(繊維濃度、温度、圧力、回転数、リファイナーの刃の形状、リファイナーのディスク間のギャップ、処理回数等)の調整により、目的の変法濾水度、溶剤紡糸セルロース長さ加重繊維長及び長さ加重繊維長分布、平均カール度を達成することが可能となる。 Solvent-spun cellulose fiber having a modified drainage of 0 to 250 ml, solvent-spun cellulose fiber having a modified drainage of 0 to 250 ml and a length-weighted fiber length of 0.20 to 2.00 mm, modified drainage As a method for producing solvent-spun cellulose fibers having a degree of 0 to 250 ml, a length-weighted fiber length of 0.50 to 1.25 mm, and an average curl degree of 25 or less, a refiner, a beater, a mill, or grinding Equipment, rotary blade homogenizer that applies shear force with a high-speed rotary blade, double-cylindrical high-speed homogenizer that generates shear force between a cylindrical inner blade that rotates at high speed and a fixed outer blade, by ultrasonic Ultrasonic crusher that is refined by impact, giving a pressure difference of at least 20 MPa to the fiber suspension, passing through a small-diameter orifice to a high speed, and colliding with this to rapidly decelerate the fiber Shear force, a method using a high-pressure homogenizer or the like to apply the cutting force and the like. Among these, a method using a refiner is particularly preferable. By adjusting the type of beating / dispersing equipment and processing conditions (fiber concentration, temperature, pressure, rotation speed, refiner blade shape, gap between refiner disks, number of treatments, etc.), the desired modified freeness, Solvent-spun cellulose length-weighted fiber length, length-weighted fiber length distribution, and average curl degree can be achieved.
 変法濾水度0~250ml、長さ加重繊維長0.50~1.25mm、平均カール度25以下の溶剤紡糸セルロース繊維を調成する方法としては、リファイナーの刃型、粉砕機のローター、ステーターの形状を適宜選択すること、分散濃度2.0質量%以下の低濃度の状態で、上記に挙げた装置で、叩解・粉砕を行うことが有効な手段である。 As a method for preparing solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, a length-weighted fiber length of 0.50 to 1.25 mm, and an average curl of 25 or less, a refiner blade shape, a crusher rotor, It is an effective means to appropriately select the shape of the stator and perform beating and grinding with the above-mentioned apparatus in a low concentration state with a dispersion concentration of 2.0% by mass or less.
 本発明のリチウムイオン二次電池用セパレータは、変法濾水度0~250mlの溶剤紡糸セルロース繊維を10~90質量%含有する。該溶剤紡糸セルロース繊維の含有量は、20~70質量%がより好ましく、30~60質量%がさらに好ましい。該溶剤紡糸セルロース繊維の含有率が10質量%未満の場合、電解液の保液性が不十分で内部抵抗が高くなったり、セパレータの緻密性が不十分で、内部短絡不良率が高くなったりする。該溶剤紡糸セルロース繊維の含有率が90質量%を超える場合、セパレータの機械強度が弱くなり、セパレータの含水分率が多くなる。 The separator for a lithium ion secondary battery of the present invention contains 10 to 90% by mass of solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml. The content of the solvent-spun cellulose fiber is more preferably 20 to 70% by mass, and further preferably 30 to 60% by mass. When the content of the solvent-spun cellulose fiber is less than 10% by mass, the liquid retainability of the electrolytic solution is insufficient and the internal resistance is increased, or the separator is insufficiently dense and the internal short circuit defect rate is increased. To do. When the content of the solvent-spun cellulose fiber exceeds 90% by mass, the mechanical strength of the separator becomes weak and the moisture content of the separator increases.
 本発明のリチウムイオン二次電池用セパレータは、合成繊維を10~90質量%含有する。合成繊維の含有量は、30~80質量%がより好ましく、40~70質量%がさらに好ましい。合成繊維の含有率が10質量%未満の場合、セパレータの強度が弱くなる。合成繊維の含有率が90質量%を超える場合、電解液の保液性が不十分で内部抵抗が高くなったり、セパレータの緻密性が不十分で、内部短絡不良率や放電特性のバラツキが高くなったりする。 The separator for a lithium ion secondary battery of the present invention contains 10 to 90% by mass of synthetic fiber. The content of the synthetic fiber is more preferably 30 to 80% by mass, and further preferably 40 to 70% by mass. When the synthetic fiber content is less than 10% by mass, the strength of the separator is weakened. When the synthetic fiber content exceeds 90% by mass, the electrolyte retainability is insufficient and the internal resistance is high, the separator is insufficiently dense, and the internal short circuit failure rate and the variation in discharge characteristics are high. It becomes.
 本発明のリチウムイオン二次電池用セパレータ(8)のように、多孔質シートが、変法濾水度0~400mlのフィブリル化天然セルロース繊維を20質量%以下含有していることが好ましい。フィブリル化天然セルロース繊維の含有量は、10質量%以下がより好ましく、5質量%以下がさらに好ましい。フィブリル化天然セルロース繊維は、溶剤紡糸セルロース繊維に比べ、繊維1本の太さの均一性が劣る傾向にあるが、繊維間の物理的な絡みと水素結合力が強いという特徴を有する。フィブリル化天然セルロース繊維の含有率が20質量%を超えると、セパレータ表面にフィルムを形成し、イオン伝導性が阻害されることで、内部抵抗が高くなることや、放電特性が低くなることがある。 As in the lithium ion secondary battery separator (8) of the present invention, the porous sheet preferably contains 20% by mass or less of fibrillated natural cellulose fibers having a modified freeness of 0 to 400 ml. The content of the fibrillated natural cellulose fiber is more preferably 10% by mass or less, and further preferably 5% by mass or less. Fibrilized natural cellulose fibers tend to be less uniform in thickness of one fiber than solvent-spun cellulose fibers, but are characterized by strong physical entanglement between fibers and hydrogen bonding strength. When the content of the fibrillated natural cellulose fiber exceeds 20% by mass, a film is formed on the separator surface, and the ionic conductivity is inhibited, so that the internal resistance may be increased or the discharge characteristics may be decreased. .
 フィブリル化とは、フィルム状ではなく、主に繊維軸と平行な方向に非常に細かく分割された部分を有する繊維状で、少なくとも一部が繊維径1μm以下になっている繊維を指す。長さと巾のアスペクト比が約20~約100000の範囲にあることが好ましい。さらに、長さ加重平繊維長が0.10~2.00mmの範囲にあるものが好ましく、0.1~1.5mmのものがより好ましく、0.10~1.00mmのものがさらに好ましい。 Fibrilization refers to a fiber that is not film-like but has a fiber portion that is mainly finely divided in a direction parallel to the fiber axis, and at least a portion of which has a fiber diameter of 1 μm or less. The aspect ratio of length to width is preferably in the range of about 20 to about 100,000. Further, the length-weighted plain fiber length is preferably in the range of 0.10 to 2.00 mm, more preferably 0.1 to 1.5 mm, and still more preferably 0.10 to 1.00 mm.
 天然セルロース繊維をフィブリル化する方法としては、リファイナー、ビーター、ミル、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、繊維懸濁液に少なくとも20MPaの圧力差を与えて小径のオリフィスを通過させて高速度とし、これを衝突させて急減速することにより繊維に剪断力、切断力を加える高圧ホモジナイザー等を用いる方法が挙げられる。この中でも、特に高圧ホモジナイザーを用いる方法が好ましい。 Natural cellulose fibers can be fibrillated by refiners, beaters, mills, milling devices, rotary blade homogenizers that apply shearing force with high-speed rotary blades, cylindrical inner blades that rotate at high speed, and outer blades that are fixed. Double-cylindrical high-speed homogenizer that generates a shearing force between the two, an ultrasonic crusher that is refined by ultrasonic shock, and a high pressure by passing a small-diameter orifice by applying a pressure difference of at least 20 MPa to the fiber suspension. A method using a high-pressure homogenizer or the like that applies a shearing force or a cutting force to the fiber by causing it to collide with it and rapidly decelerate it. Among these, a method using a high-pressure homogenizer is particularly preferable.
 合成繊維としては、ポリエステル、アクリル、ポリオレフィン、全芳香族ポリエステル、全芳香族ポリエステルアミド、ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド、全芳香族ポリエーテル、全芳香族ポリカーボネート、ポリイミド、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリ−p−フェニレンベンゾビスオキサゾール(PBO)、ポリベンゾイミダゾール(PBI)、ポリテトラフルオロエチレン(PTFE)、エチレン−ビニルアルコール共重合体などの樹脂からなる単繊維や複合繊維を挙げることができる。これらの合成繊維は、単独で使用しても良いし、2種類以上の組み合わせで使用しても良い。また、各種の分割型複合繊維を分割させたものを使用しても良い。この中でも、ポリエステル、アクリル、ポリオレフィン、全芳香族ポリエステル、全芳香族ポリエステルアミド、ポリアミド、半芳香族ポリアミド、全芳香族ポリアミドが好ましく、ポリエステル、アクリル、ポリオレフィンがさらに好ましい。ポリエステル、アクリル、ポリオレフィンを使用すると、他の合成繊維よりも各繊維とフィブリル化した溶剤紡糸セルロース繊維とが均一に絡み合ってネットワーク構造を形成しやすいため、表面の平滑性がより高く、緻密性や機械強度に優れたリチウムイオン二次電池用セパレータを得ることができる。 Synthetic fibers include polyester, acrylic, polyolefin, wholly aromatic polyester, wholly aromatic polyester amide, polyamide, semi-aromatic polyamide, wholly aromatic polyamide, wholly aromatic polyether, wholly aromatic polycarbonate, polyimide, polyamideimide ( PAI), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), poly-p-phenylenebenzobisoxazole (PBO), polybenzimidazole (PBI), polytetrafluoroethylene (PTFE), ethylene-vinyl alcohol copolymer Examples thereof include single fibers and composite fibers made of a resin such as coalescence. These synthetic fibers may be used alone or in combination of two or more. Moreover, you may use what divided | segmented various split type composite fibers. Among these, polyester, acrylic, polyolefin, wholly aromatic polyester, wholly aromatic polyester amide, polyamide, semi-aromatic polyamide, and wholly aromatic polyamide are preferable, and polyester, acrylic, and polyolefin are more preferable. When polyester, acrylic, and polyolefin are used, each fiber and fibrillated solvent-spun cellulose fibers are more easily entangled with each other than other synthetic fibers to easily form a network structure. A separator for a lithium ion secondary battery having excellent mechanical strength can be obtained.
 合成繊維の平均繊維径は0.1~20μmが好ましく、0.1~15μmがより好ましく、0.1~10μmがさらに好ましい。平均繊維径が0.1μm未満では、繊維が細すぎて、セパレータから脱落する場合があり、平均繊維径が20μmより太いと、セパレータの厚みを薄くすることが困難になる場合がある。平均繊維径は、セパレータの走査型電子顕微鏡写真より、セパレータを形成する繊維の繊維径を計測し、無作為に選んだ100本の平均値である。 The average fiber diameter of the synthetic fiber is preferably 0.1 to 20 μm, more preferably 0.1 to 15 μm, and further preferably 0.1 to 10 μm. If the average fiber diameter is less than 0.1 μm, the fibers may be too thin and fall off from the separator. If the average fiber diameter is larger than 20 μm, it may be difficult to reduce the thickness of the separator. The average fiber diameter is an average value of 100 randomly selected fibers obtained by measuring the fiber diameter of the fibers forming the separator from a scanning electron micrograph of the separator.
 合成繊維の繊維長は0.1~15mmが好ましく、0.5~10mmがより好ましく、2~5mmがさらに好ましい。繊維長が0.1mmより短いと、セパレータから脱落することがあり、15mmより長いと、繊維がもつれてダマになることがあり、厚みむらが生じる場合がある。 The fiber length of the synthetic fiber is preferably 0.1 to 15 mm, more preferably 0.5 to 10 mm, and further preferably 2 to 5 mm. When the fiber length is shorter than 0.1 mm, the separator may fall off, and when the fiber length is longer than 15 mm, the fiber may be entangled, resulting in uneven thickness.
 本発明のリチウムイオン二次電池用セパレータは、変法濾水度0~250mlの溶剤紡糸セルロース繊維と合成繊維、変法濾水度0~400mlのフィブリル化天然セルロース繊維以外の繊維を含有しても良い。例えば、天然セルロース繊維、天然セルロース繊維のパルプ化物、合成樹脂からなるフィブリッド、合成樹脂からなるパルプ化物、合成樹脂からなるフィブリル化物、無機繊維、変法濾水度が250ml超の溶剤紡糸セルロース繊維、変法濾水度400ml超のフィブリル化天然セルロース繊維等が挙げられる。 The separator for a lithium ion secondary battery of the present invention contains solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and synthetic fibers, and fibers other than fibrillated natural cellulose fibers having a modified freeness of 0 to 400 ml. Also good. For example, natural cellulose fibers, pulped natural cellulose fibers, fibrils made of synthetic resins, pulped products made of synthetic resins, fibrillated products made of synthetic resins, inorganic fibers, solvent-spun cellulose fibers having a modified freeness of more than 250 ml, Examples thereof include fibrillated natural cellulose fibers having a modified freeness of more than 400 ml.
 本発明のリチウムイオン二次電池用セパレータ(9)のように、多孔質シートがカルボキシメチルセルロースを含有することが好ましい。リチウムイオン二次電池用セパレータ形成時に、変法濾水度0~250mlの溶剤紡糸セルロース繊維及び合成繊維にカルボキシメチルセルロースを含有させることで、カルボキシメチルセルロースがこれら繊維、特にセルロース繊維に吸着して繊維の分散性が向上すると共に繊維よれが抑止され、セパレータとした際の地合が向上すると共に機械強度が強くなる。さらに、繊維の脱水性を適度に調節できるのでセパレータシートの細孔のコントロールが容易になり、所望のポア径分布に近づけることができ、セパレータを緻密かつ均質にできることから、内部短絡不良率、放電特性のバラツキを抑えることができる。 As in the lithium ion secondary battery separator (9) of the present invention, the porous sheet preferably contains carboxymethyl cellulose. When forming a separator for a lithium ion secondary battery, solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and synthetic fibers are allowed to contain carboxymethyl cellulose so that the carboxymethyl cellulose is adsorbed on these fibers, particularly cellulose fibers. While dispersibility improves, fiber twist is suppressed, the formation at the time of using a separator improves, and mechanical strength becomes strong. Furthermore, since the dehydrating property of the fibers can be adjusted moderately, the pores of the separator sheet can be easily controlled, the pore diameter distribution can be brought close to the desired value, and the separator can be made dense and homogeneous, so that the internal short circuit failure rate, discharge Variations in characteristics can be suppressed.
 また、合成繊維同士及び変法濾水度0~250mlの溶剤紡糸セルロース繊維と合成繊維とが絡みやすく、それをカルボキシメチルセルロースが向上させるので、一層均質な繊維ネットワークが形成されることより、セパレータ強度を強くすることができ、セパレータをより緻密かつ薄くすることができ、内部抵抗を低くすることができると共に、内部短絡不良率、放電特性のバラツキを抑えたものにすることができ、サイクル特性をより優れたものにする秀逸な効果を有する。 In addition, solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and synthetic fibers are easily entangled with each other, and carboxymethylcellulose improves the strength of the separator by forming a more homogeneous fiber network. The separator can be made denser and thinner, the internal resistance can be lowered, the internal short-circuit failure rate and the variation in discharge characteristics can be suppressed, and the cycle characteristics can be improved. It has an excellent effect to make it better.
 カルボキシメチルセルロースは、木材パルプ、リンターパルプなどを原料とし、モノクロロ酢酸などを反応させて合成されたセルロース誘導体であり、工業的には水媒法、溶媒法などの公知の製造方法で得られるものである。カルボキシメチルセルロースは、使用するパルプ繊維の性状や製造方法により様々な重合度のものが製造可能であるが、1質量%水溶液の粘度が5~16,000mPa・s(0.1N−NaCl溶媒、25℃、B型粘度計)、平均重合度が100~4,500、平均分子量が2万~100万の範囲のものである。本発明に係るカルボキシメチルセルロースは、殆どがカルボン酸ナトリウム塩あるいはカリウム塩であり、正確に記せば、カルボキシメチルセルロースナトリウムあるいはカルボキシメチルセルロースカリウムであるが、慣用上ナトリウムやカリウムの記載は省略し、単にカルボキシメチルセルロースと表示する。本発明には、安価で本発明の効果が得やすいカルボキシメチルセルロースのナトリウム塩を用いることが好ましい。 Carboxymethyl cellulose is a cellulose derivative synthesized by reacting monochloroacetic acid and the like using wood pulp, linter pulp and the like as raw materials, and is industrially obtained by a known production method such as a water medium method or a solvent method. is there. Carboxymethylcellulose can be produced in various degrees of polymerization depending on the properties and production methods of the pulp fibers used, but the viscosity of a 1% by weight aqueous solution is 5 to 16,000 mPa · s (0.1 N-NaCl solvent, 25 ° C, B-type viscometer), average degree of polymerization of 100 to 4,500, and average molecular weight of 20,000 to 1,000,000. Most of the carboxymethyl cellulose according to the present invention is a carboxylic acid sodium salt or potassium salt. To be precise, it is carboxymethyl cellulose sodium or carboxymethyl cellulose potassium, but the description of sodium or potassium is conventionally omitted, and carboxymethyl cellulose is simply used. Is displayed. In the present invention, it is preferable to use a sodium salt of carboxymethyl cellulose which is inexpensive and easily obtains the effects of the present invention.
 カルボキシメチルセルロースを含む繊維スラリーの調製に当たっては、予めカルボキシメチルセルロースを溶媒、通常は水に溶解させた溶液中に、繊維を順次若しくは同時に添加分散させる方法、予めカルボキシメチルセルロースを溶解させた溶液中に、1種以上の繊維を投入し、他で調製した別種の繊維スラリーと混合する方法、又は1種以上の繊維を含むスラリーにカルボキシメチルセルロースを添加する方法等が挙げられる。このうち、カルボキシメチルセルロースを溶解させた溶液中で繊維スラリーを調製する方法が好ましい。予めカルボキシメチルセルロースを溶解させた溶液中に、繊維を順次若しくは同時に添加分散させる場合は、繊維を高濃度スラリーとしてから添加しても良い。 In preparing a fiber slurry containing carboxymethyl cellulose, a method in which fibers are added or dispersed sequentially or simultaneously in a solution in which carboxymethyl cellulose is dissolved in a solvent, usually water in advance, 1 in a solution in which carboxymethyl cellulose is dissolved in advance. Examples thereof include a method in which more than one type of fiber is introduced and mixed with another type of fiber slurry prepared elsewhere, or a method in which carboxymethyl cellulose is added to a slurry containing at least one type of fiber. Among these, a method of preparing a fiber slurry in a solution in which carboxymethyl cellulose is dissolved is preferable. In the case where fibers are added and dispersed sequentially or simultaneously in a solution in which carboxymethyl cellulose is dissolved in advance, the fibers may be added after forming a high-concentration slurry.
 また、繊維スラリーへカルボキシメチルセルロースを添加する場合は、予めカルボキシメチルセルロースを溶解させた溶液を添加することが好ましい。その際、カルボキシメチルセルロースの濃度が高すぎると、粘性が高く、繊維スラリーへの拡散が悪くなるため、カルボキシメチルセルロースの濃度は0.5~5質量%が好ましく、0.5~3質量%がより好ましい。また、カルボキシメチルセルロースを溶解するにあたっては、カルボキシメチルセルロースが安定に溶解する範囲で、必要に応じて水と相溶性のある有機溶剤(例えば、メタノール、エタノール等)を水に対して10~30質量%の割合で混合してもよい。さらに、カルボキシメチルセルロースが安定する範囲で、芒硝などの電解質などの他の物質を混合してもよい。 In addition, when adding carboxymethyl cellulose to the fiber slurry, it is preferable to add a solution in which carboxymethyl cellulose is dissolved in advance. At that time, if the concentration of carboxymethyl cellulose is too high, the viscosity is high and the diffusion into the fiber slurry is poor. Therefore, the concentration of carboxymethyl cellulose is preferably 0.5 to 5% by mass, more preferably 0.5 to 3% by mass. preferable. Further, when dissolving carboxymethylcellulose, an organic solvent (for example, methanol, ethanol, etc.) that is compatible with water is added in an amount of 10 to 30% by mass with respect to water, as long as carboxymethylcellulose is stably dissolved. You may mix in the ratio. Furthermore, another substance such as an electrolyte such as mirabilite may be mixed within a range in which carboxymethylcellulose is stable.
 カルボキシメチルセルロースは溶剤紡糸セルロース繊維やフィブリル化天然セルロース繊維などのセルロース系繊維の分散に殊に効果を発揮するため、繊維スラリー調製用の液にカルボキシメチルセルロースを予め添加しておく場合であっても、繊維スラリー調製中に添加する場合であっても、少なくともセルロース系繊維と併用することが好ましい。 Carboxymethylcellulose is particularly effective for the dispersion of cellulosic fibers such as solvent-spun cellulose fibers and fibrillated natural cellulose fibers, so even when carboxymethylcellulose is added in advance to the fiber slurry preparation liquid, Even when it is added during the preparation of the fiber slurry, it is preferably used in combination with at least a cellulosic fiber.
 カルボキシメチルセルロースの添加率は、本発明のリチウムイオン二次電池用セパレータに用いる全繊維質量に対して0.5~2.0質量%が好ましく、0.8~1.5質量%がさらに好ましい。カルボキシメチルセルロースの添加率が0.5質量%未満では、地合などの向上効果が認められない場合がある、逆に、カルボキシメチルセルロースの添加率が2.0質量%を超えると、カルボキシメチルセルロースの保水性のため、より長時間の乾燥処理が必要となる場合や、リチウムイオン二次電池用セパレータの含水分率が高くなって、電池特性に悪影響を及ぼす場合がある。さらに、濾水性を低下させるため、抄紙時の生産性が低下する場合がある。 The addition rate of carboxymethylcellulose is preferably 0.5 to 2.0 mass%, more preferably 0.8 to 1.5 mass%, based on the total fiber mass used in the separator for lithium ion secondary batteries of the present invention. When the addition rate of carboxymethyl cellulose is less than 0.5% by mass, the effect of improving the formation may not be recognized. Conversely, when the addition rate of carboxymethyl cellulose exceeds 2.0% by mass, the water retention of carboxymethyl cellulose Therefore, there is a case where a longer drying process is required or the moisture content of the lithium ion secondary battery separator is increased, which may adversely affect the battery characteristics. Furthermore, since the drainage is reduced, the productivity during papermaking may be reduced.
 上述したように、カルボキシメチルセルロースは、パルプ原料にモノクロロ酢酸などを反応させて合成されるが、極性のカルボキシル基がセルロースを可溶化し、化学的に反応しやすくする。このとき、セルロースに対するモノクロロ酢酸などの導入率は、「エーテル化度」で表される。本発明に係る繊維、特にセルロース系繊維にカルボキシメチルセルロースが吸着して繊維の分散性を向上させることができるが、カルボキシメチルセルロースにおけるエーテル化度は高い方が繊維の分散性がより向上して好ましい。カルボキシメチルセルロースのエーテル化度は、0.5以上のものが好ましく、0.7以上のものがより好ましい。 As described above, carboxymethylcellulose is synthesized by reacting monochloroacetic acid or the like with a pulp raw material, but polar carboxyl groups solubilize cellulose and facilitate chemical reaction. At this time, the introduction ratio of monochloroacetic acid or the like to cellulose is represented by “degree of etherification”. The dispersibility of the fiber can be improved by adsorbing carboxymethylcellulose to the fiber according to the present invention, particularly the cellulosic fiber, but the higher the degree of etherification in carboxymethylcellulose is, the better the dispersibility of the fiber is. The degree of etherification of carboxymethylcellulose is preferably 0.5 or more, more preferably 0.7 or more.
 本発明のリチウムイオン二次電池用セパレータ(10)のように、合成繊維の少なくとも1種として、芯部に非熱接着成分、鞘部に熱接着成分を配した芯鞘型熱融着繊維を含有することが好ましい。芯鞘型熱融着繊維を含有することにより、繊維同士を芯鞘型熱融着繊維で接着させることができ、その結果、高電圧に充電された状態で長期保存された際に発生する自己放電を抑制することができるため、電圧維持率特性に優れたセパレータを得ることができる。また。芯鞘型熱融着繊維によって、合成繊維同士及び変法濾水度0~250mlの溶剤紡糸セルロース繊維と合成繊維との絡みや、溶剤紡糸セルロース間の水素結合によって形成された繊維ネットワークを、多孔質構造を損なうことなく熱接着し、セパレータ強度をより強くすることもができる。 As in the separator for lithium ion secondary battery (10) of the present invention, a core-sheath type heat-fusible fiber having a non-thermal adhesive component in the core and a thermal adhesive component in the sheath is used as at least one synthetic fiber. It is preferable to contain. By containing the core-sheath type heat-sealable fiber, the fibers can be bonded to each other with the core-sheath type heat-sealable fiber, and as a result, the self generated when stored for a long time in a charged state at a high voltage Since discharge can be suppressed, a separator having excellent voltage maintenance ratio characteristics can be obtained. Also. A core-sheath type heat-sealing fiber is used to create a porous fiber network formed by entanglement between synthetic fibers and solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and synthetic fibers, and hydrogen bonds between solvent-spun celluloses. It is possible to increase the separator strength by heat bonding without damaging the quality structure.
 熱融着繊維としては、芯鞘型、偏芯型、分割型、サイドバイサイド型、海島型、オレンジ型、多重バイメタル型の複合繊維、あるいは単一成分からなる繊維(単繊維)などが挙げられるが、芯鞘型熱融着繊維は、芯部の繊維形状を維持しつつ、鞘部のみを軟化、溶融又は湿熱溶解させて繊維同士を熱接着させるため、セパレータの多孔質構造を損なわず繊維同士を接着させるのに好適である。加熱又は湿熱加熱により、芯鞘型熱融着繊維の鞘部を軟化、溶融又は湿熱溶解させて、繊維同士を熱接着させることによって、高電圧に充電された状態で長期保存された際に発生する自己放電を抑制することができるため、電圧維持率特性に優れたセパレータを得ることができる。 Examples of the heat-fusible fiber include a core-sheath type, an eccentric type, a split type, a side-by-side type, a sea-island type, an orange type, a multi-bimetal type, a single component fiber (single fiber), and the like. The core-sheath type heat-sealable fiber maintains the fiber shape of the core part, and softens, melts or wet-heat dissolves only the sheath part to thermally bond the fibers to each other, so that the porous structure of the separator is not impaired. It is suitable for adhering. Occurs when the sheath of the core-sheath type heat-bonded fiber is softened, melted or wet-heat-dissolved by heating or moist heat, and the fibers are heat-bonded to each other and stored for a long time in a state of being charged at a high voltage. Since the self-discharge can be suppressed, a separator having excellent voltage retention characteristics can be obtained.
 芯鞘型熱融着繊維の芯部と鞘部を構成する樹脂成分は特に制限はなく、繊維形成能のある樹脂であればよい。例えば、芯部/鞘部の組み合わせとしては、ポリエチレンテレフタレート/ポリエステル共重合体、ポリエチレンテレフタレート/ポリエチレン、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/エチレン−プロピレン共重合体、ポリエチレンテレフタレート/エチレン−ビニルアルコール共重合体、ポリプロピレン/ポリエチレン、高融点ポリ乳酸/低融点ポリ乳酸などが挙げられる。芯部の樹脂成分の融点、軟化点又は湿熱溶解温度が鞘部の樹脂成分の融点又は軟化点よりも20℃以上高いことが、不織布製造を容易に行える点から好ましい。 The resin component constituting the core and sheath of the core-sheath type heat-sealing fiber is not particularly limited, and any resin having fiber-forming ability may be used. For example, the core / sheath combination includes polyethylene terephthalate / polyester copolymer, polyethylene terephthalate / polyethylene, polyethylene terephthalate / polypropylene, polyethylene terephthalate / ethylene-propylene copolymer, polyethylene terephthalate / ethylene-vinyl alcohol copolymer. , Polypropylene / polyethylene, and high melting point polylactic acid / low melting point polylactic acid. The melting point, softening point or wet heat melting temperature of the resin component in the core part is preferably 20 ° C. or more higher than the melting point or softening point of the resin component in the sheath part from the viewpoint of easy production of the nonwoven fabric.
 本発明のリチウムイオン二次電池セパレータに用いる芯鞘型熱融着繊維としては、芯部:ポリエチレンテレフタレート/鞘部:ポリエステル共重合体の組み合わせが、セパレータ強度がより高くなり好ましい。鞘部に用いるポリエステル共重合体としては、ポリエチレンテレフタレートにイソフタル酸、セバシン酸、アジピン酸、ジエチルグリコール、1,4−ブタジオール等から選ばれた1種あるいは2種以上の化合物を共重合したものが好ましい。 As the core-sheath type heat-sealing fiber used for the lithium ion secondary battery separator of the present invention, a combination of core: polyethylene terephthalate / sheath: polyester copolymer is preferable because the separator strength becomes higher. The polyester copolymer used for the sheath is a copolymer of polyethylene terephthalate and one or more compounds selected from isophthalic acid, sebacic acid, adipic acid, diethyl glycol, 1,4-butadiol and the like. preferable.
 芯鞘型熱融着繊維は、繊度が0.007~1.7dtexであることが好ましく、0.02~1.1dtexがより好ましく、0.05~0.5dtexがさらに好ましい。繊度が0.007dtex未満の場合、細すぎてセパレータから脱落する場合があり、繊度が1.7dtexを超えた場合、フィブリル化された溶剤紡糸セルロース繊維と絡みにくくなり、必要とする緻密性が確保できなくなる場合がある。 The core-sheath type heat-sealing fiber preferably has a fineness of 0.007 to 1.7 dtex, more preferably 0.02 to 1.1 dtex, and even more preferably 0.05 to 0.5 dtex. If the fineness is less than 0.007 dtex, it may be too thin and fall off from the separator. If the fineness exceeds 1.7 dtex, it will be difficult to get entangled with the fibrillated solvent-spun cellulose fiber, ensuring the required denseness. It may not be possible.
 芯鞘型熱融着繊維の繊維長は0.1~15mmが好ましく、0.5~10mmがより好ましく、2~5mmがさらに好ましい。繊維長が0.1mmより短いと、セパレータから脱落することがあり、15mmより長いと、繊維がもつれてダマになることがあり、厚みむらが生じる場合がある。 The fiber length of the core-sheath type heat-sealing fiber is preferably 0.1 to 15 mm, more preferably 0.5 to 10 mm, and further preferably 2 to 5 mm. When the fiber length is shorter than 0.1 mm, the separator may fall off, and when the fiber length is longer than 15 mm, the fiber may be entangled, resulting in uneven thickness.
 芯鞘型熱融着繊維本発明のリチウムイオン二次電池用セパレータでは、芯鞘型熱融着繊維の含有率は、5~40質量%であることが好ましく、8~30質量%であることがより好ましく、10~20質量%であることがさらに好ましい。含有率が5質量%未満だと、セパレータの電圧維持率特性や機械的強度が不十分となるおそれがある。40質量%を超えると、セパレータ表面にフィルムを形成し、イオン伝導性が阻害されることで、内部抵抗が高くなることや、放電特性が低くなることがある。 Core-sheath-type heat fusion fiber In the lithium ion secondary battery separator of the present invention, the content of the core-sheath-type heat fusion fiber is preferably 5 to 40% by mass, and more preferably 8 to 30% by mass. Is more preferably 10 to 20% by mass. If the content is less than 5% by mass, the voltage maintenance rate characteristics and mechanical strength of the separator may be insufficient. If it exceeds 40% by mass, a film is formed on the separator surface, and the ion conductivity is inhibited, so that the internal resistance may increase or the discharge characteristics may decrease.
 本発明のリチウムイオン二次電池用セパレータは、円網抄紙機、長網抄紙機、短網抄紙機、傾斜型抄紙機、これらの中から同種又は異種の抄紙機を組み合わせてなるコンビネーション抄紙機などを用いて湿式抄紙する湿式法によって製造することができる。原料スラリーには、繊維原料の他に、必要に応じて、分散剤、増粘剤、無機填料、有機填料、消泡剤などを適宜添加し、5~0.001質量%程度の固形分濃度に原料スラリーを調製する。この原料スラリーをさらに所定濃度に希釈して抄紙する。抄紙して得られたリチウムイオン二次電池用セパレータは、必要に応じて、カレンダー処理、熱カレンダー処理、熱処理などが施される。 The separator for the lithium ion secondary battery of the present invention is a circular paper machine, a long paper machine, a short paper machine, an inclined paper machine, a combination paper machine formed by combining the same or different types of paper machines from these, and the like Can be produced by a wet method of wet paper making. In addition to the fiber raw material, a dispersant, a thickener, an inorganic filler, an organic filler, an antifoaming agent, and the like are appropriately added to the raw material slurry as necessary, and a solid content concentration of about 5 to 0.001% by mass is added. A raw material slurry is prepared. This raw slurry is further diluted to a predetermined concentration to make paper. The separator for a lithium ion secondary battery obtained by papermaking is subjected to calendering, thermal calendering, heat treatment and the like as necessary.
 また、芯鞘型熱融着繊維を配合して抄紙して得られたリチウムイオン二次電池用セパレータに熱処理を施すと、機械的強度がより高くなり好ましい。熱処理方法としては、熱風乾燥機、加熱ロール、赤外線(IR)ヒーターなどの加熱装置を用い、連続的に加熱処理又は加圧しながら加熱処理する方法が挙げられる。熱処理温度としては、芯鞘型熱融着繊維の鞘部が溶融又は軟化する温度以上で、芯鞘型熱融着繊維の芯部及びその他の含有繊維が溶融、軟化又は分解する温度未満とすることが好ましい。 Also, it is preferable that the separator for lithium ion secondary battery obtained by blending the core-sheath-type heat-sealing fiber and heat-treating is subjected to heat treatment to increase the mechanical strength. Examples of the heat treatment method include a heat treatment method using a heating device such as a hot air dryer, a heating roll, an infrared (IR) heater, or the like while continuously performing the heat treatment or pressurizing. The heat treatment temperature is equal to or higher than the temperature at which the sheath portion of the core-sheath fiber is melted or softened, and lower than the temperature at which the core portion of the core-sheath fiber and other contained fibers are melted, softened or decomposed. It is preferable.
 本発明のリチウムイオン二次電池用セパレータの厚みは、6~50μmが好ましく、8~45μmがより好ましく、10~40μmがさらに好ましい。6μm未満では、十分な機械的強度が得られなかったり、正極と負極との間の絶縁性が不十分で、内部短絡不良率、放電特性のバラツキが高くなったり、容量維持率やサイクル特性が悪くなったりする場合がある。50μmより厚いと、リチウムイオン二次電池の内部抵抗が高くなる場合や、放電特性が低くなる場合がある。なお、本発明のセパレータの厚さはJIS B7502に規定された方法により測定した値、つまり、5N荷重時の外側マイクロメーターにより測定された値を意味する。 The thickness of the lithium ion secondary battery separator of the present invention is preferably 6 to 50 μm, more preferably 8 to 45 μm, and even more preferably 10 to 40 μm. If the thickness is less than 6 μm, sufficient mechanical strength cannot be obtained, insulation between the positive electrode and the negative electrode is insufficient, internal short-circuit failure rate, variation in discharge characteristics, and capacity maintenance ratio and cycle characteristics are low. It may get worse. If it is thicker than 50 μm, the internal resistance of the lithium ion secondary battery may increase or the discharge characteristics may decrease. The thickness of the separator of the present invention means a value measured by a method defined in JIS B7502, that is, a value measured by an outer micrometer at a load of 5N.
 本発明のリチウムイオン二次電池用セパレータにおいて、平均ポア径が0.10μm以上、かつ、最大ポア径が6.0μm以下であることが好ましい。変法濾水度0~250mlの溶剤紡糸セルロース繊維が合成繊維と絡み合うことによって、このポア径を達成することができる。平均ポア径が0.10μm未満では、リチウムイオン二次電池の内部抵抗が高くなる場合や、放電特性が低くなる場合がある。最大ポア径が6μm以上では、リチウムイオン二次電池の内部短絡不良率や放電特性のバラツキが大きくなる場合がある。平均ポア径が0.10μm以上、かつ、最大ポア径が4.0μm以下であることがより好ましく、さらに好ましくは最小ポア径が0.15μm以上、かつ、最大ポア径が3.0μm以下である。 In the separator for a lithium ion secondary battery of the present invention, it is preferable that the average pore diameter is 0.10 μm or more and the maximum pore diameter is 6.0 μm or less. This pore diameter can be achieved by entanglement of solvent-spun cellulose fibers with a modified freeness of 0-250 ml with synthetic fibers. If the average pore diameter is less than 0.10 μm, the internal resistance of the lithium ion secondary battery may be high, or the discharge characteristics may be low. When the maximum pore diameter is 6 μm or more, the internal short-circuit failure rate and the variation in discharge characteristics of the lithium ion secondary battery may increase. More preferably, the average pore diameter is 0.10 μm or more and the maximum pore diameter is 4.0 μm or less, more preferably the minimum pore diameter is 0.15 μm or more and the maximum pore diameter is 3.0 μm or less. .
 本発明のリチウムイオン二次電池用セパレータの坪量は、5~40g/mが好ましく、7~30g/mがより好ましく、10~20g/mがさらに好ましい。5g/m未満では、十分な機械的強度が得られない場合や、正極と負極との間の絶縁性が不十分で、内部短絡不良率や放電特性のバラツキが高くなる場合がある。40g/mを超えると、リチウムイオン二次電池の内部抵抗が高くなる場合や、放電特性が低くなる場合がある。 The basis weight of the lithium ion secondary battery separator of the present invention is preferably 5 ~ 40g / m 2, more preferably 7 ~ 30g / m 2, more preferably 10 ~ 20g / m 2. If it is less than 5 g / m 2 , sufficient mechanical strength may not be obtained, or insulation between the positive electrode and the negative electrode may be insufficient, resulting in increased internal short-circuit failure rate and variation in discharge characteristics. If it exceeds 40 g / m 2 , the internal resistance of the lithium ion secondary battery may increase or the discharge characteristics may decrease.
 本発明のリチウムイオン二次電池用セパレータの層構成に特に限定はなく、単層構造であっても良いし、二層、三層といった多層構造であっても良いが、微小孔(ピンホール)発生抑制の観点から、二層、三層といった多層構造がより好ましい。多層構造の場合、各層の積層方法には、特に制限はないが、層間での剥離もないことから、湿式法による抄き合わせ法を好適に用いることができる。湿式法による抄き合わせ法とは、繊維を水中に分散して均一な抄紙スラリーとし、この抄紙スラリーを円網、長網、傾斜式等のワイヤーを少なくとも2つ以上を有する抄紙機を用いて、繊維ウェブを得る方法である。また、例えば、表層、裏層からなる二層構造とした場合、各層は同じ配合組成であっても良いし、異なっていても良いが、少なくとも各層が変法濾水度0~250mlの溶剤紡糸セルロース繊維を必須成分として含有した層であることが好ましい。変法濾水度0~250mlの溶剤紡糸セルロース繊維を含有しない層が存在すると、層間の剥離強度に劣り、十分な機械的強度が得られなかったり、電解液の保液性が不十分で、内部抵抗が高くなったり、セパレータの緻密性が不十分で、内部短絡不良率が高くなったりする場合がある。 The layer structure of the lithium ion secondary battery separator of the present invention is not particularly limited, and may be a single layer structure or a multilayer structure such as two layers or three layers. From the viewpoint of suppression of generation, a multilayer structure such as two layers or three layers is more preferable. In the case of a multilayer structure, there are no particular restrictions on the method of laminating each layer, but since there is no delamination between the layers, a weaving method can be suitably used. Wet-making method is a papermaking slurry in which fibers are dispersed in water to form a uniform papermaking slurry, and this papermaking slurry is made using a papermaking machine having at least two wires such as a circular net, a long net, and an inclined type. This is a method for obtaining a fibrous web. Further, for example, when a two-layer structure consisting of a surface layer and a back layer is used, each layer may have the same blending composition or may be different, but at least each layer is solvent-spun with a modified freeness of 0 to 250 ml. A layer containing cellulose fibers as an essential component is preferred. If there is a layer containing no solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml, the peel strength between the layers is inferior, sufficient mechanical strength is not obtained, or the electrolyte retainability is insufficient. The internal resistance may be high, or the separator may be insufficiently dense, resulting in a high internal short-circuit failure rate.
 リチウムイオン二次電池の負極活物質としては、黒鉛やコークスなどの炭素材料、金属リチウム、アルミニウム、シリカ、スズ、ニッケル、鉛から選ばれる1種以上の金属とリチウムとの合金、SiO、SnO、Fe、WO、Nb、Li4/3Ti5/3等の金属酸化物、Li0.4CoNなどの窒化物が用いられる。正極活物質としては、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、チタン酸リチウム、リチウムニッケルマンガン酸化物、リン酸鉄リチウムが用いられる。リン酸鉄リチウムは、さらに、マンガン、クロム、コバルト、銅、ニッケル、バナジウム、モリブデン、チタン、亜鉛、アルミニウム、ガリウム、マグネシウム、ホウ素、ニオブから選ばれる1種以上の金属との複合物でも良い。 Examples of the negative electrode active material of the lithium ion secondary battery include carbon materials such as graphite and coke, metallic lithium, aluminum, silica, tin, nickel, and an alloy of lithium and lithium, SiO, SnO, Metal oxides such as Fe 2 O 3 , WO 2 , Nb 2 O 5 , Li 4/3 Ti 5/3 O 4 , and nitrides such as Li 0.4 CoN are used. As the positive electrode active material, lithium cobaltate, lithium manganate, lithium nickelate, lithium titanate, lithium nickel manganese oxide, or lithium iron phosphate is used. The lithium iron phosphate may further be a composite with one or more metals selected from manganese, chromium, cobalt, copper, nickel, vanadium, molybdenum, titanium, zinc, aluminum, gallium, magnesium, boron, and niobium.
 リチウムイオン二次電池の電解液には、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメトキシメタン、これらの混合溶媒などの有機溶媒にリチウム塩を溶解させたものが用いられる。リチウム塩としては、六フッ化リン酸リチウム(LiPF)や四フッ化ホウ酸リチウム(LiBF)等が挙げられる。固体電解質としては、ポリエチレングリコールやその誘導体、ポリメタクリル酸誘導体、ポリシロキサンやその誘導体、ポリフッ化ビニリデンなどのゲル状ポリマーにリチウム塩を溶解させたものが用いられる。 As an electrolytic solution for a lithium ion secondary battery, a solution obtained by dissolving a lithium salt in an organic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, dimethoxymethane, or a mixed solvent thereof is used. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ). As solid electrolyte, what melt | dissolved lithium salt in gel-like polymers, such as polyethyleneglycol, its derivative (s), polymethacrylic acid derivative, polysiloxane, its derivative (s), polyvinylidene fluoride, is used.
 以下、実施例により本発明をさらに詳しく説明するが、本発明は実施例に限定されるものではない。なお、実施例中における部や百分率は断りのない限り、すべて質量によるものである。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples. In the examples, all parts and percentages are by mass unless otherwise specified.
≪実施例1~24、比較例1~10≫
<繊維A1>
 リファイナーを用いて、平均繊維径10μm、繊維長4mmの溶剤紡糸セルロース繊維を処理し、変法濾水度0mlの溶剤紡糸セルロース繊維を繊維A1とした。
<< Examples 1 to 24, Comparative Examples 1 to 10 >>
<Fiber A1>
Using a refiner, solvent-spun cellulose fibers having an average fiber diameter of 10 μm and a fiber length of 4 mm were treated, and solvent-spun cellulose fibers having a modified freeness of 0 ml were designated as fiber A1.
<繊維A2>
 リファイナーを用いて、平均繊維径10μm、繊維長4mmの溶剤紡糸セルロース繊維を処理し、変法濾水度120mlの溶剤紡糸セルロース繊維を繊維A2とした。
<Fiber A2>
Using a refiner, solvent-spun cellulose fibers having an average fiber diameter of 10 μm and a fiber length of 4 mm were treated, and solvent-spun cellulose fibers having a modified freeness of 120 ml were designated as fiber A2.
<繊維A3>
 リファイナーを用いて、平均繊維径10μm、繊維長4mmの溶剤紡糸セルロース繊維を処理し、変法濾水度250mlの溶剤紡糸セルロース繊維を繊維A3とした。
<Fiber A3>
Using a refiner, solvent-spun cellulose fibers having an average fiber diameter of 10 μm and a fiber length of 4 mm were treated, and solvent-spun cellulose fibers having a modified freeness of 250 ml were designated as fiber A3.
<繊維A4>
 リファイナーを用いて、平均繊維径10μm、繊維長4mmの溶剤紡糸セルロース繊維を処理し、変法濾水度260mlの溶剤紡糸セルロース繊維を繊維A4とした。
<Fiber A4>
Using a refiner, solvent-spun cellulose fibers having an average fiber diameter of 10 μm and a fiber length of 4 mm were treated, and solvent-spun cellulose fibers having a modified freeness of 260 ml were designated as fiber A4.
<繊維A5>
 リファイナーを用いて、平均繊維径10μm、繊維長4mmの溶剤紡糸セルロース繊維を処理し、変法濾水度350mlの溶剤紡糸セルロース繊維を繊維A5とした。
<Fiber A5>
Using a refiner, solvent-spun cellulose fibers having an average fiber diameter of 10 μm and a fiber length of 4 mm were treated, and solvent-spun cellulose fibers having a modified freeness of 350 ml were designated as fiber A5.
<合成繊維B1>
 平均繊維径3μm、繊維長3mmのポリエチレンテレフタレート繊維を合成繊維B1とした。
<Synthetic fiber B1>
Polyethylene terephthalate fiber having an average fiber diameter of 3 μm and a fiber length of 3 mm was designated as synthetic fiber B1.
<合成繊維B2>
 平均繊維径5μm、繊維長3mmのアクリル繊維を合成繊維B2とした。
<Synthetic fiber B2>
An acrylic fiber having an average fiber diameter of 5 μm and a fiber length of 3 mm was designated as synthetic fiber B2.
<合成繊維B3>
 平均繊維径4μm、繊維長3mmのポリプロピレン繊維を合成繊維B3とした。
<Synthetic fiber B3>
A polypropylene fiber having an average fiber diameter of 4 μm and a fiber length of 3 mm was defined as a synthetic fiber B3.
<合成繊維B4>
 平均繊維径10μm、繊維長5mmの芯部がポリエチレンテレフタレート(融点253℃)、鞘部がポリエチレンテレフタレート−イソフタレート共重合体(軟化点75℃)のポリエステル系芯鞘型熱融着繊維を合成繊維B4とした。
<Synthetic fiber B4>
Polyester core-sheath type heat-sealable fiber having an average fiber diameter of 10 μm, a fiber length of 5 mm, a polyethylene terephthalate (melting point: 253 ° C.) sheath and a polyethylene terephthalate-isophthalate copolymer (softening point: 75 ° C.) sheath B4.
<合成繊維B5>
 平均繊維径20μm、繊維長5mmのポリエチレンテレフタレート繊維を合成繊維B5とした。
<Synthetic fiber B5>
Polyethylene terephthalate fiber having an average fiber diameter of 20 μm and a fiber length of 5 mm was designated as synthetic fiber B5.
<合成繊維B6>
 平均繊維径22μm、繊維長5mmのポリエチレンテレフタレート繊維を合成繊維B6とした。
<Synthetic fiber B6>
A polyethylene terephthalate fiber having an average fiber diameter of 22 μm and a fiber length of 5 mm was defined as a synthetic fiber B6.
<合成繊維B7>
 平均繊維径0.1μm、繊維長2mmのポリエチレンテレフタレート繊維を合成繊維B7とした。
<Synthetic fiber B7>
A polyethylene terephthalate fiber having an average fiber diameter of 0.1 μm and a fiber length of 2 mm was defined as a synthetic fiber B7.
<合成繊維B8>
 平均繊維径0.08μm、繊維長2mmのポリエチレンテレフタレート繊維を合成繊維B8とした。
<Synthetic fiber B8>
A polyethylene terephthalate fiber having an average fiber diameter of 0.08 μm and a fiber length of 2 mm was designated as synthetic fiber B8.
<フィブリル化天然セルロース繊維C1>
 高圧ホモジナイザーを用いてリンターを処理し、変法濾水度0mlのフィブリル化天然セルロース繊維C1を作製した。
<Fibrylated natural cellulose fiber C1>
The linter was treated using a high-pressure homogenizer to produce a fibrillated natural cellulose fiber C1 having a modified freeness of 0 ml.
<フィブリル化天然セルロース繊維C2>
 高圧ホモジナイザーを用いてリンターを処理し、変法濾水度270mlのフィブリル化天然セルロース繊維C2を作製した。
<Fibrylated natural cellulose fiber C2>
The linter was treated with a high-pressure homogenizer to produce a fibrillated natural cellulose fiber C2 having a modified freeness of 270 ml.
<フィブリル化天然セルロース繊維C3>
 高圧ホモジナイザーを用いてリンターを処理し、変法濾水度400mlのフィブリル化天然セルロース繊維C3を作製した。
<Fibrylated natural cellulose fiber C3>
The linter was treated with a high-pressure homogenizer to produce a fibrillated natural cellulose fiber C3 having a modified freeness of 400 ml.
<フィブリル化天然セルロース繊維C4>
 高圧ホモジナイザーを用いてリンターを処理し、変法濾水度500mlのフィブリル化天然セルロース繊維C4を作製した。
<Fibrylated natural cellulose fiber C4>
The linter was treated using a high-pressure homogenizer to produce a fibrillated natural cellulose fiber C4 having a modified freeness of 500 ml.
<繊維D1>
 リファイナーを用いて平均繊維径10μm、繊維長3mmのパラ系全芳香族ポリアミドを処理し、変法濾水度500mlのフィブリル化パラ系全芳香族ポリアミド繊維を繊維D1とした。
<Fiber D1>
Using a refiner, para-type wholly aromatic polyamide having an average fiber diameter of 10 μm and fiber length of 3 mm was treated, and fibrillated para-type wholly aromatic polyamide fiber having a modified freeness of 500 ml was designated as fiber D1.
<繊維E1>
 平均繊維径7μmの麻繊維を繊維E1とした。
<Fiber E1>
The hemp fiber having an average fiber diameter of 7 μm was designated as fiber E1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、合成繊維及びその他の繊維の「種類」は、下記のとおりである。
「PET」:ポリエチレンテレフタレート繊維
「AA」:アクリル繊維
「PP」:ポリプロピレン繊維
「PET/PEs−C」:ポリエステル系芯鞘型熱融着繊維
「PA」:フィブリル化パラ系全芳香族ポリアミド繊維
In Table 1, “kinds” of synthetic fibers and other fibers are as follows.
“PET”: Polyethylene terephthalate fiber “AA”: Acrylic fiber “PP”: Polypropylene fiber “PET / PEs-C”: Polyester core-sheath type heat-sealing fiber “PA”: fibrillated para-type wholly aromatic polyamide fiber
実施例1~24及び比較例1~10
<セパレータ>
 表1に示した原料と含有量に従って、抄紙用スラリーを調製し、円網抄紙機を用いて湿式抄紙し、実施例1~24及び比較例1~9のセパレータを作製した。厚みは室温でカレンダー処理して調整した。また、多孔性ポリエチレンフィルム(厚み22μm、空孔率40%)を比較例10のセパレータとした。
Examples 1 to 24 and Comparative Examples 1 to 10
<Separator>
According to the raw materials and contents shown in Table 1, a papermaking slurry was prepared, and wet papermaking was performed using a circular paper machine to prepare separators of Examples 1 to 24 and Comparative Examples 1 to 9. The thickness was adjusted by calendaring at room temperature. In addition, a porous polyethylene film (thickness 22 μm, porosity 40%) was used as the separator of Comparative Example 10.
<リチウムイオン二次電池A>
[負極1の作製]
 天然黒鉛97質量%、ポリフッ化ビニリデン3質量%を混合し、これをN−メチル−2−ピロリドンに分散させたスラリーを調製し、厚み15μmの銅箔の両面に塗布して圧延した後、150℃で2時間真空乾燥して、厚み100μmのリチウムイオン二次電池用負極を作製し、これを負極1とした。
<Lithium ion secondary battery A>
[Preparation of Negative Electrode 1]
A slurry in which 97% by mass of natural graphite and 3% by mass of polyvinylidene fluoride were mixed and dispersed in N-methyl-2-pyrrolidone was prepared, applied to both sides of a copper foil having a thickness of 15 μm, and rolled. A negative electrode for a lithium ion secondary battery having a thickness of 100 μm was produced by vacuum drying at a temperature of 2 ° C. for 2 hours.
[正極1の作製]
 LiMnを95質量%、アセチレンブラック2質量%、ポリフッ化ビニリデン3質量%を混合し、これをN−メチル−2−ピロリドンに分散させたスラリーを調製し、厚み20μmのアルミニウム箔の両面に塗布して圧延した後、150℃で2時間真空乾燥して、厚み100μmのリチウムイオン二次電池用正極を作製し、これを正極1とした。
[Preparation of Positive Electrode 1]
A slurry in which 95% by mass of LiMn 2 O 4 , 2 % by mass of acetylene black and 3% by mass of polyvinylidene fluoride are mixed and dispersed in N-methyl-2-pyrrolidone is prepared, and both surfaces of an aluminum foil having a thickness of 20 μm are prepared. After being applied and rolled onto the substrate, it was vacuum-dried at 150 ° C. for 2 hours to produce a positive electrode for a lithium ion secondary battery having a thickness of 100 μm.
[リチウムイオン二次電池Aの作製]
 負極1と正極1とを、それぞれ実施例1~24及び比較例1~7、9のセパレータが電極間に介するように巻回し、アルミニウム合金製の円筒型容器に収納して、リード体の溶接を行った。次いで、円筒型容器ごと150℃で10時間真空乾燥した。これを真空中で室温まで放冷した後、電解液を注入して密栓し、実施例1~24及び比較例1~7、9のリチウムイオン二次電池Aを作製した。電解液には、エチレンカーボネート30質量%、ジエチルカーボネート70質量%からなる混合溶媒に、LiPFを1.2Mとなるように溶解させたものを用いた。
[Production of lithium ion secondary battery A]
The negative electrode 1 and the positive electrode 1 are wound so that the separators of Examples 1 to 24 and Comparative Examples 1 to 7 and 9 are interposed between the electrodes, respectively, and stored in a cylindrical container made of aluminum alloy, and the lead body is welded. Went. Next, the whole cylindrical container was vacuum-dried at 150 ° C. for 10 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolyte solution was injected and sealed up, and lithium ion secondary batteries A of Examples 1 to 24 and Comparative Examples 1 to 7 and 9 were produced. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
 負極1と正極1とを、それぞれ比較例8のセパレータが電極間に介するように巻回し、アルミニウム合金製の円筒型容器に収納して、リード体の溶接を行った。次いで、円筒型容器ごと110℃で24時間真空乾燥した。これを真空中で室温まで放冷した後、電解液を注入して密栓し、比較例8のリチウムイオン二次電池Aを作製した。電解液には、エチレンカーボネート30質量%、ジエチルカーボネート70質量%からなる混合溶媒に、LiPFを1.2Mとなるように溶解させたものを用いた。 The negative electrode 1 and the positive electrode 1 were each wound so that the separator of Comparative Example 8 was interposed between the electrodes, housed in a cylindrical container made of aluminum alloy, and the lead body was welded. Next, the whole cylindrical container was vacuum-dried at 110 ° C. for 24 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolytic solution was injected and sealed to prepare a lithium ion secondary battery A of Comparative Example 8. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
 また、負極1と正極1とを、比較例10のセパレータが電極間に介するように巻回し、アルミニウム合金製の円筒型容器に収納して、リード体の溶接を行った。次いで、円筒型容器ごと80℃で10時間真空乾燥した。これを真空中で室温まで放冷した後、電解液を注入して密栓し、比較例10のリチウムイオン二次電池Aを作製した。電解液には、エチレンカーボネート30質量%、ジエチルカーボネート70質量%からなる混合溶媒に、LiPFを1.2Mとなるように溶解させたものを用いた。 Moreover, the negative electrode 1 and the positive electrode 1 were wound so that the separator of Comparative Example 10 was interposed between the electrodes, accommodated in a cylindrical container made of aluminum alloy, and the lead body was welded. Next, the whole cylindrical container was vacuum-dried at 80 ° C. for 10 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolytic solution was injected and sealed to prepare a lithium ion secondary battery A of Comparative Example 10. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
<リチウムイオン二次電池B>
[負極2の作製]
 メソカーボンマイクロビーズ81質量%、アセチレンブラック14質量%、ポリテトラフルオロエチレン5質量%を混合し、これをN−メチル−2−ピロリドンに分散させたスラリーを調製し、厚み15μmの銅箔の両面に塗布して圧延した後、150℃で2時間真空乾燥して、厚み100μmのリチウムイオン二次電池用負極を作製し、これを負極2とした。
<Lithium ion secondary battery B>
[Preparation of Negative Electrode 2]
A slurry in which 81% by mass of mesocarbon microbeads, 14% by mass of acetylene black and 5% by mass of polytetrafluoroethylene were mixed and dispersed in N-methyl-2-pyrrolidone was prepared, and both sides of a copper foil having a thickness of 15 μm After being applied and rolled onto the substrate, it was vacuum-dried at 150 ° C. for 2 hours to produce a negative electrode for a lithium ion secondary battery having a thickness of 100 μm.
[正極2の作製]
 LiMnを95質量%、アセチレンブラック2質量%、ポリテトラフルオロエチレン3質量%を混合し、これをN−メチル−2−ピロリドンに分散させたスラリーを調製し、厚み20μmのアルミニウム箔の両面に塗布して圧延した後、150℃で2時間真空乾燥して、厚み100μmのリチウムイオン二次電池用正極を作製し、これを正極2とした。
[Preparation of positive electrode 2]
A slurry in which 95% by mass of LiMn 2 O 4 , 2 % by mass of acetylene black and 3% by mass of polytetrafluoroethylene were mixed and dispersed in N-methyl-2-pyrrolidone was prepared, and an aluminum foil having a thickness of 20 μm was prepared. After applying and rolling on both surfaces, vacuum drying was performed at 150 ° C. for 2 hours to prepare a positive electrode for a lithium ion secondary battery having a thickness of 100 μm.
[リチウムイオン二次電池Bの作製]
 実施例1~24及び比較例1~7、9のセパレータ、正極2、負極2の順に張り合わせ、リード線を外部に引き出し、電池本体部を作製した。次に、電池本体部を140℃で10時間真空乾燥し、これを真空中で室温まで放冷した後、アルミニウムのラミネートフィルム中に挿入し、1M−LiPF/EC+DEC(3:7vol%)からなる電解液を適当量注液、真空含浸後、余剰の電解液を除去密閉してリチウムイオン二次電池Bを作製した(電池容量=30mAh相当)。
[Preparation of lithium ion secondary battery B]
The separators of Examples 1 to 24 and Comparative Examples 1 to 7 and 9, the positive electrode 2 and the negative electrode 2 were bonded together in this order, and the lead wires were pulled out to produce a battery body. Next, the battery body was vacuum-dried at 140 ° C. for 10 hours, allowed to cool to room temperature in a vacuum, and then inserted into an aluminum laminate film. From 1M-LiPF 6 / EC + DEC (3: 7 vol%) An appropriate amount of the resulting electrolyte was poured and vacuum impregnated, and then the excess electrolyte was removed and sealed to prepare a lithium ion secondary battery B (battery capacity = 30 mAh equivalent).
 比較例8のセパレータ、正極2、負極2の順に張り合わせ、リード線を外部に引き出し、電池本体部を作製した。次に、電池本体部を110℃で24時間真空乾燥し、これを真空中で室温まで放冷した後、アルミニウムのラミネートフィルム中に挿入し、1M−LiPF/EC+DEC(3:7vol%)からなる電解液を適当量注液、真空含浸後、余剰の電解液を除去密閉してリチウムイオン二次電池Bを作製した(電池容量=30mAh相当)。 The separator of Comparative Example 8, the positive electrode 2, and the negative electrode 2 were bonded together in this order, and the lead wire was drawn out to produce a battery body. Next, the battery body was vacuum-dried at 110 ° C. for 24 hours, allowed to cool to room temperature in a vacuum, and then inserted into an aluminum laminate film. From 1M-LiPF 6 / EC + DEC (3: 7 vol%) An appropriate amount of the resulting electrolyte was poured and vacuum impregnated, and then the excess electrolyte was removed and sealed to prepare a lithium ion secondary battery B (battery capacity = 30 mAh equivalent).
 比較例10のセパレータ、正極2、負極2の順に張り合わせ、リード線を外部に引き出し、電池本体部を作製した。次に、電池本体部を80℃で15時間真空乾燥し、これを真空中で室温まで放冷した後、アルミニウムのラミネートフィルム中に挿入し、1M−LiPF/EC+DEC(3:7vol%)からなる電解液を適当量注液、真空含浸後、余剰の電解液を除去密閉してリチウムイオン二次電池Bを作製した(電池容量=30mAh相当)。 The separator of Comparative Example 10, the positive electrode 2 and the negative electrode 2 were bonded together in this order, and the lead wires were drawn out to produce a battery body. Next, the battery body was vacuum-dried at 80 ° C. for 15 hours, allowed to cool to room temperature in a vacuum, and then inserted into an aluminum laminate film, and from 1M-LiPF 6 / EC + DEC (3: 7 vol%). An appropriate amount of the resulting electrolyte was poured and vacuum impregnated, and then the excess electrolyte was removed and sealed to prepare a lithium ion secondary battery B (battery capacity = 30 mAh equivalent).
 実施例及び比較例のセパレータ及びリチウムイオン二次電池について、下記評価を行い、結果を表2及び表3に示した。 The following evaluation was performed on the separators and lithium ion secondary batteries of Examples and Comparative Examples, and the results are shown in Tables 2 and 3.
[坪量]
 JIS P8124に準拠して坪量を測定した。
[Basis weight]
The basis weight was measured in accordance with JIS P8124.
[厚み]
 JIS B7502に規定された方法、つまり、5N荷重時の外側マイクロメーターにより、厚みを測定した。
[Thickness]
The thickness was measured by the method defined in JIS B7502, that is, by an outer micrometer at 5N load.
[ポア径測定]
 作製したセパレータについて、PMI社製、商品名:パームポロメーターCFP−1500Aを用いて、JIS K3832、ASTM F316−86、ASTM E1294−89に準じて測定を行い、各基材の最大ポア径、平均ポア径を測定した。
[Pore diameter measurement]
About the produced separator, it measured according to JIS K3832, ASTM F316-86, and ASTM E1294-89 using the product name: Palm porometer CFP-1500A made from PMI, and the largest pore diameter of each base material and an average The pore diameter was measured.
[セパレータ含水分率]
 温度20℃、湿度55%の条件で2日放置したセパレータの試料質量を測定した後、105℃で4時間乾燥する。次いで、デシケータ中で放冷した後、質量を測定することで乾燥減量を求め、次式によりセパレータ含水分率を算出した。
セパレータ含水分率(%)=(乾燥減量(g)/試料質量(g))×100
[Separator moisture content]
After measuring the sample mass of the separator left for 2 days under the conditions of temperature 20 ° C. and humidity 55%, it is dried at 105 ° C. for 4 hours. Subsequently, after standing to cool in a desiccator, the weight loss was calculated | required by measuring mass, and the moisture content of the separator was computed by following Formula.
Separator moisture content (%) = (loss on drying (g) / sample mass (g)) × 100
[セパレータ強度]
 先端に曲率1.6の丸みをつけた直径1mmの金属針を卓上型材料試験機(株式会社オリエンテック製、商品名:STA−1150)に装着し、試料面に対して直角に1mm/sの一定速度で貫通するまで降ろした。このときの最大荷重(g)を計測し、これをセパレータ強度とした。
[Separator strength]
A metal needle having a diameter of 1 mm with a curvature of 1.6 at the tip is attached to a desktop material testing machine (trade name: STA-1150, manufactured by Orientec Co., Ltd.), and 1 mm / s perpendicular to the sample surface. It was lowered until it penetrated at a constant speed. The maximum load (g) at this time was measured and used as the separator strength.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[内部抵抗]
 実施例及び比較例のリチウムイオン二次電池A各100個を1Cで30分間充電した後、交流1kHzで内部抵抗を測定し、各平均値を算出した。
[Internal resistance]
After charging 100 lithium ion secondary batteries A of Examples and Comparative Examples for 30 minutes at 1 C, the internal resistance was measured at 1 kHz AC, and each average value was calculated.
[内部短絡不良率]
 実施例及び比較例のリチウムイオン二次電池A各100個を用い、充放電電圧範囲2.8~4.2V、充放電電流1Cで、定電流充放電を500サイクル繰り返した際の内部短絡不良率を算出した。
[Internal short-circuit failure rate]
Internal short circuit failure when repeating 100 cycles of constant current charging / discharging in the charging / discharging voltage range of 2.8-4.2V, charging / discharging current 1C using 100 lithium ion secondary batteries A of Examples and Comparative Examples The rate was calculated.
[Cレート放電試験(放電容量)]
 実施例及び比較例のリチウムイオン二次電池B各50個を用い、1Cで3サイクルエイジングを行った後、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、0.2C、0.5C、1C、3C、5Cと電流値を変えて、定電流放電試験(2.8Vカット)を行い、0.2Cと5C時の放電容量の各平均値を算出した。
[C rate discharge test (discharge capacity)]
Using 50 each of the lithium ion secondary batteries B of Examples and Comparative Examples, after performing 3 cycle aging at 1C, constant current and constant voltage charging (1 / 10C cut) at 1C, 4.2V, and then 0. The constant current discharge test (2.8V cut) was performed by changing the current values to 2C, 0.5C, 1C, 3C, and 5C, and the average values of the discharge capacities at 0.2C and 5C were calculated.
[Cレート放電試験(放電容量のバラツキ)]
 実施例及び比較例のリチウムイオン二次電池B各50個を用い、1Cで3サイクルエイジングを行った後、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、0.2C、0.5C、1C、3C、5Cと電流値を変えて定電流放電試験(2.8Vカット)を行い、0.2Cと5C時の放電容量を次の基準で評価した。
[C-rate discharge test (discharge capacity variation)]
Using 50 each of the lithium ion secondary batteries B of Examples and Comparative Examples, after performing 3 cycle aging at 1C, constant current and constant voltage charging (1 / 10C cut) at 1C, 4.2V, and then 0. The constant current discharge test (2.8V cut) was performed by changing the current value to 2C, 0.5C, 1C, 3C, and 5C, and the discharge capacity at 0.2C and 5C was evaluated according to the following criteria.
 ◎:放電容量の差が、平均値に対して1.0%以下である。
 ○:放電容量の差が、平均値に対して1.0%を超えて2.5%以下である。
 △:放電容量の差が、平均値に対して2.5%を超えて5.0%以下である。
 ×:放電容量の差が、平均値に対して5.0%を超えている。
A: The difference in discharge capacity is 1.0% or less with respect to the average value.
◯: The difference in discharge capacity is more than 1.0% and 2.5% or less with respect to the average value.
(Triangle | delta): The difference of discharge capacity exceeds 2.5% with respect to an average value, and is 5.0% or less.
X: The difference of discharge capacity is over 5.0% with respect to the average value.
[サイクル特性(100サイクル後の容量維持率)]
 実施例及び比較例のリチウムイオン二次電池B各20個を用い、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、1Cの条件で定電流放電試験(2.8Vカット)を行い、100サイクル後での容量維持率(100サイクル後/1サイクル容量)の平均値を算出した。
[Cycle characteristics (capacity retention rate after 100 cycles)]
Using 20 lithium ion secondary batteries B of Examples and Comparative Examples, constant current and constant voltage charge (1 / 10C cut) at 1C and 4.2V, followed by constant current discharge test (2.8V under the condition of 1C) The average capacity retention rate after 100 cycles (after 100 cycles / 1 cycle capacity) was calculated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示したとおり、実施例1~24のリチウムイオン二次電池用セパレータは、変法濾水度0~250mlの溶剤紡糸セルロース繊維を10~90質量%、合成繊維を10~90質量%含有しているため、含水分率が低く、機械強度が強く、優れていた。 As shown in Table 2, the separators for lithium ion secondary batteries of Examples 1 to 24 were 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and 10 to 90% by mass of synthetic fibers. Since it contained, the moisture content was low, the mechanical strength was strong, and it was excellent.
 即ち、実施例1~24のリチウムイオン二次電池用セパレータは、合成繊維を10~90質量%含有しているため、比較例8の溶剤紡糸セルロースと麻繊維からなる紙製セパレータに比べ、含水分率を低く抑えることができた。さらに、繊維同士が絡みやすく、繊維ネットワークが形成されやすくなることから、セパレータの強度は強くなった。一方、比較例1のリチウムイオン二次電池用セパレータは、セパレータにおける変法濾水度0~250mlの溶剤紡糸セルロース繊維の含有率が90質量%より多く、セパレータに含有する合成繊維が10質量%より少ないため、含水分率が高く、セパレータ強度は弱くなった。比較例4のリチウムイオン二次電池用セパレータは、セパレータにおける合成繊維の含有率が10質量%より少ないため、セパレータ強度は弱くなった。比較例9のリチウムイオン二次電池用セパレータは、フィブリル化耐熱性繊維を含有しているが、溶剤紡糸セルロース繊維の変法濾水度が250mlを超えているため、セパレータ強度は弱くなった。 That is, since the separators for lithium ion secondary batteries of Examples 1 to 24 contain 10 to 90% by mass of synthetic fiber, they are contained in comparison with the paper separator made of solvent-spun cellulose and hemp fiber of Comparative Example 8. The moisture content could be kept low. Furthermore, the strength of the separator has increased because the fibers are easily entangled and a fiber network is easily formed. On the other hand, in the separator for the lithium ion secondary battery of Comparative Example 1, the content of the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the separator is more than 90% by mass, and the synthetic fiber contained in the separator is 10% by mass. Since it was less, the moisture content was high and the separator strength was weak. Since the separator for the lithium ion secondary battery of Comparative Example 4 had a synthetic fiber content of less than 10% by mass in the separator, the separator strength was weak. Although the separator for the lithium ion secondary battery of Comparative Example 9 contained fibrillated heat-resistant fibers, the strength of the separator was weak because the modified freeness of solvent-spun cellulose fibers exceeded 250 ml.
 表3に示したとおり、実施例1~24のリチウムイオン二次電池は、変法濾水度0~250mlの溶剤紡糸セルロース繊維を10~90質量%、合成繊維を10~90質量%含有する多孔質シートからなるセパレータを用いているため、内部抵抗、内部短絡不良率、特に高レートでの放電特性及びそのバラツキ、サイクル特性に優れていた。 As shown in Table 3, the lithium ion secondary batteries of Examples 1 to 24 contain 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and 10 to 90% by mass of synthetic fibers. Since a separator made of a porous sheet is used, the internal resistance and internal short-circuit failure rate, in particular, the discharge characteristics at high rates, the variations thereof, and the cycle characteristics were excellent.
 即ち、実施例1~24のリチウムイオン二次電池は、セパレータが変法濾水度0~250mlの溶剤紡糸セルロース繊維を10~90質量%含有しているため、電解液の保液性が良く、イオン伝導性を良好なものにすることができることから、低い内部抵抗を示すと共に、特に高レートでの放電特性、サイクル特性に優れていた。一方、比較例2及び3のリチウムイオン二次電池は、変法濾水度0~250mlの溶剤紡糸セルロース繊維の含有率が10質量%より少ないため、比較例6、7、10のリチウムイオン二次電池は、セパレータが変法濾水度0~250mlの溶剤紡糸セルロース繊維を含有していないため、電解液の保液性に劣り、内部抵抗が高い値を示した。 That is, in the lithium ion secondary batteries of Examples 1 to 24, since the separator contains 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, the liquid retention of the electrolyte is good. Since the ion conductivity can be improved, the internal resistance is low, and the discharge characteristics and the cycle characteristics are particularly excellent at a high rate. On the other hand, in the lithium ion secondary batteries of Comparative Examples 2 and 3, the content of the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml is less than 10% by mass. In the secondary battery, since the separator did not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, the electrolyte solution was inferior in liquid retention and had a high internal resistance.
 実施例1~24のリチウムイオン二次電池は、セパレータに変法濾水度0~250mlの溶剤紡糸セルロース繊維を10~90質量%含有しているため、セパレータを緻密なものにすることができることから、内部短絡不良率、放電容量のバラツキが低く、優れていた。一方、比較例2、3のリチウムイオン二次電池は、セパレータにおける変法濾水度0~250mlの溶剤紡糸セルロース繊維の含有率が10質量%より少なく、セパレータの緻密性が不十分であるため、内部短絡不良率、放電容量のバラツキが高くなった。比較例5のリチウムイオン二次電池は、セパレータにおける溶剤紡糸セルロース繊維の変法濾水度が0~250mlより大きく、セパレータの緻密性が不十分であるため、内部短絡不良率が若干高くなった。比較例6、7のリチウムイオン二次電池は、セパレータが変法濾水度0~250mlの溶剤紡糸セルロース繊維を含有していないため、セパレータの緻密性が不十分であり、内部短絡不良率、放電容量のバラツキが高くなった。多孔性ポリエチレンフィルムを使用した比較例10のリチウムイオン二次電池は、内部抵抗が高く、高レートの放電容量が劣っていた。 Since the lithium ion secondary batteries of Examples 1 to 24 contain 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml in the separator, the separator can be made dense. Therefore, the internal short circuit failure rate and the variation in discharge capacity were low and excellent. On the other hand, in the lithium ion secondary batteries of Comparative Examples 2 and 3, the content of the solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml in the separator is less than 10% by mass, and the separator is insufficiently dense. , Internal short-circuit defect rate and discharge capacity variation increased. In the lithium ion secondary battery of Comparative Example 5, the modified drainage degree of the solvent-spun cellulose fiber in the separator was larger than 0 to 250 ml, and the density of the separator was insufficient, so the internal short circuit defect rate was slightly increased. . In the lithium ion secondary batteries of Comparative Examples 6 and 7, since the separator does not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, the separator is insufficiently dense, and the internal short-circuit failure rate, Dispersion of discharge capacity became high. The lithium ion secondary battery of Comparative Example 10 using a porous polyethylene film had a high internal resistance and a high rate discharge capacity.
 実施例8のリチウムイオン二次電池は、セパレータに変法濾水度0~400mlのフィブリル化天然セルロース繊維を5質量%含有させている。実施例9~12のリチウムイオン二次電池は、セパレータに変法濾水度0~400mlのフィブリル化天然セルロース繊維を10質量%含有させている。実施例13のリチウムイオン二次電池は、セパレータに変法濾水度0~400mlのフィブリル化天然セルロース繊維を20質量%含有させている。そのため、セパレータをより緻密かつ薄くすることができ、実施例1~7、15~18のリチウムイオン二次電池よりも、実施例8~13のリチウムイオン二次電池は内部抵抗が低く、高レートの放電容量が高い値を示した。 The lithium ion secondary battery of Example 8 contains 5% by mass of fibrillated natural cellulose fibers having a modified freeness of 0 to 400 ml in the separator. In the lithium ion secondary batteries of Examples 9 to 12, the separator contains 10% by mass of fibrillated natural cellulose fibers having a modified freeness of 0 to 400 ml. In the lithium ion secondary battery of Example 13, 20% by mass of fibrillated natural cellulose fiber having a modified freeness of 0 to 400 ml was contained in the separator. Therefore, the separator can be made denser and thinner, and the lithium ion secondary batteries of Examples 8 to 13 have lower internal resistance and higher rate than the lithium ion secondary batteries of Examples 1 to 7 and 15 to 18. The discharge capacity of was high.
 実施例9~12のリチウムイオン二次電池は、同一の坪量、同一の厚みで、それぞれ変法濾水度の異なるフィブリル化天然セルロース繊維C1~C4を配合したセパレータを用いている。変法濾水度が400mlより大きいフィブリル化天然セルロース繊維C4を配合したセパレータを用いた実施例12のリチウムイオン二次電池は、セパレータの厚みを薄くした際の緻密性が若干足りなくなり、変法濾水度が0~400mlのフィブリル化天然セルロース繊維C1~C3を配合したセパレータを用いた実施例9~11のリチウムイオン二次電池よりも、内部短絡不良率が若干高くなった。 The lithium ion secondary batteries of Examples 9 to 12 use separators that are blended with fibrillated natural cellulose fibers C1 to C4 having the same basis weight and the same thickness and different modified drainage degrees. The lithium ion secondary battery of Example 12 using the separator containing the fibrillated natural cellulose fiber C4 having a modified freeness greater than 400 ml was slightly lacking in denseness when the thickness of the separator was reduced. The internal short circuit defect rate was slightly higher than that of the lithium ion secondary batteries of Examples 9 to 11 using separators containing fibrillated natural cellulose fibers C1 to C3 having a freeness of 0 to 400 ml.
 実施例14のリチウムイオン二次電池は、セパレータにおける変法濾水度0~400mlのフィブリル化天然セルロース繊維の含有率が20質量%より多いため、セパレータが若干緻密になりすぎて、イオン伝導性が若干悪くなり、実施例1~13、15~17、19、20のリチウムイオン二次電池よりも、内部抵抗が若干高い値を示し、高レートの放電容量が若干低い値を示した。 In the lithium ion secondary battery of Example 14, since the content of the fibrillated natural cellulose fiber having a modified freeness of 0 to 400 ml in the separator is more than 20% by mass, the separator becomes slightly dense and the ion conductivity is increased. The internal resistance was slightly higher than those of the lithium ion secondary batteries of Examples 1 to 13, 15 to 17, 19, and 20, and the high rate discharge capacity was slightly lower.
 実施例18のリチウムイオン二次電池は、坪量が若干大きく、セパレータの厚みが若干厚く、平均ポア径が若干小さいため、実施例1~13、15~17、19、20のリチウムイオン二次電池より内部抵抗が若干高い値を示し、高レートの放電容量が若干低い値を示した。 Since the lithium ion secondary battery of Example 18 has a slightly larger basis weight, a separator having a slightly larger thickness, and an average pore diameter slightly smaller, the lithium ion secondary batteries of Examples 1 to 13, 15 to 17, 19, and 20 The internal resistance was slightly higher than that of the battery, and the high-rate discharge capacity was slightly lower.
 実施例20のリチウムイオン二次電池は、坪量が若干小さく、セパレータの厚みが若干薄く、最大ポア径が若干大きいため、実施例1~11、13~19のリチウムイオン二次電池より内部短絡不良率、放電容量のバラツキが若干高くなった。 The lithium ion secondary battery of Example 20 has a slightly smaller basis weight, a thickness of the separator is slightly thinner, and the maximum pore diameter is slightly larger. Therefore, the internal short circuit is greater than that of the lithium ion secondary batteries of Examples 1 to 11 and 13 to 19. The variation in defective rate and discharge capacity was slightly increased.
 実施例22のリチウムイオン二次電池は、使用している合成繊維の平均繊維径が若干太いため、実施例21のリチウムイオン二次電池より、セパレータ強度が若干弱く、放電容量のバラツキが若干高くなった。 The lithium ion secondary battery of Example 22 has a slightly larger average fiber diameter of the synthetic fibers used, so the separator strength is slightly weaker and the discharge capacity variation is slightly higher than that of the lithium ion secondary battery of Example 21. became.
 実施例24のリチウムイオン二次電池は、使用している合成繊維の平均繊維径が若干細いため、実施例23のリチウムイオン二次電池より、セパレータ強度が若干弱く、サイクル特性が若干劣った。 In the lithium ion secondary battery of Example 24, since the average fiber diameter of the synthetic fibers used was slightly thinner, the separator strength was slightly weaker than the lithium ion secondary battery of Example 23, and the cycle characteristics were slightly inferior.
≪実施例25~59、比較例11~18≫
<溶剤紡糸セルロース繊維>
 リファイナーを用いて、平均繊維径10μm、繊維長4mmの溶剤紡糸セルロース繊維を処理し、表4及び表5の物性を持つ溶剤紡糸セルロース繊維を作製した。
<< Examples 25 to 59, Comparative Examples 11 to 18 >>
<Solvent-spun cellulose fiber>
Using a refiner, solvent-spun cellulose fibers having an average fiber diameter of 10 μm and a fiber length of 4 mm were processed to produce solvent-spun cellulose fibers having the physical properties shown in Tables 4 and 5.
<溶剤紡糸セルロース繊維の物性値>
上記の方法で作製した溶剤紡糸セルロース繊維について
(1)1.00mm以上の長さ加重繊維長を有する繊維の割合:「1.00mm以上の繊維割合」
(2)長さ加重繊維長分布ヒストグラムにおける最大頻度ピークの長さ加重繊維長:「最大頻度ピークの繊維長」
(3)長さ加重繊維長分布ヒストグラムにおいて、1.00~2.00mmの間における0.05mm毎の長さ加重繊維長を有する繊維の割合の傾き:「割合の傾き」
(4)長さ加重平均繊維長:「平均繊維長」
(5)ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1質量%にした以外はJIS P8121に準拠して測定した濾水度:「変法濾水度」
として、表4に示す。
<Physical properties of solvent-spun cellulose fiber>
(1) Ratio of fibers having a length-weighted fiber length of 1.00 mm or more with respect to the solvent-spun cellulose fiber produced by the above method: “Fiber ratio of 1.00 mm or more”
(2) Length weighted fiber length of maximum frequency peak in length weighted fiber length distribution histogram: “fiber length of maximum frequency peak”
(3) In the length-weighted fiber length distribution histogram, the slope of the proportion of fibers having a length-weighted fiber length of every 0.05 mm between 1.00 and 2.00 mm: “ratio of the proportion”
(4) Length-weighted average fiber length: “Average fiber length”
(5) Freeness measured according to JIS P8121, except that an 80-mesh wire mesh having a wire diameter of 0.14 mm and an aperture of 0.18 mm was used as the sieve plate, and the sample concentration was 0.1% by mass. Freeness "
As shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
上記の方法で作製した溶剤紡糸セルロース繊維について
(1)1.00mm以上の長さ加重繊維長を有する繊維の割合:「1.00mm以上の繊維割合」
(2)長さ加重繊維長分布ヒストグラムにおける最大頻度ピークの長さ加重繊維長:「最大頻度ピークの繊維長」
(3)最大頻度ピーク以外のピークの長さ加重繊維長:「第2ピークの繊維長」
(4)長さ加重平均繊維長:「平均繊維長」
(5)ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1質量%にした以外はJIS P8121に準拠して測定した濾水度:「変法濾水度」
として、表5に示す。
(1) Ratio of fibers having a length-weighted fiber length of 1.00 mm or more with respect to the solvent-spun cellulose fiber produced by the above method: “Fiber ratio of 1.00 mm or more”
(2) Length weighted fiber length of maximum frequency peak in length weighted fiber length distribution histogram: “fiber length of maximum frequency peak”
(3) Length of peak other than maximum frequency peak Weighted fiber length: “Fiber length of second peak”
(4) Length-weighted average fiber length: “Average fiber length”
(5) Freeness measured according to JIS P8121, except that an 80-mesh wire mesh having a wire diameter of 0.14 mm and an aperture of 0.18 mm was used as the sieve plate, and the sample concentration was 0.1% by mass. Freeness "
As shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<フィブリル化天然セルロース繊維>
 高圧ホモジナイザーを用いてリンターを処理し、変法濾水度0ml、270ml、400ml、500mlのフィブリル化天然セルロース繊維を作製した。
<Fibrylated natural cellulose fiber>
The linter was treated using a high-pressure homogenizer to produce fibrillated natural cellulose fibers having a modified freeness of 0 ml, 270 ml, 400 ml, and 500 ml.
<セパレータ>
 表6及び表7に示した原料と含有量に従って、抄紙用スラリーを調製し、円網抄紙機を用いて湿式抄紙し、実施例及び比較例のセパレータを作製した。厚みは、室温でカレンダー処理して調整した。
<Separator>
A papermaking slurry was prepared according to the raw materials and contents shown in Tables 6 and 7, and wet papermaking was performed using a circular paper machine to produce separators of Examples and Comparative Examples. The thickness was adjusted by calendaring at room temperature.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6及び表7において、合成繊維1~3の「種類」は、下記のとおりである。
「PET」:ポリエチレンテレフタレート
「AA」:アクリル繊維
「PP」:ポリプロピレン繊維
「NY」:ナイロン66繊維
「PET−B1」:未延伸ポリエチレンテレフタレート繊維(融点130℃)
In Tables 6 and 7, “kinds” of the synthetic fibers 1 to 3 are as follows.
“PET”: polyethylene terephthalate “AA”: acrylic fiber “PP”: polypropylene fiber “NY”: nylon 66 fiber “PET-B1”: unstretched polyethylene terephthalate fiber (melting point 130 ° C.)
<リチウムイオン二次電池C>
 負極1と正極1とを、それぞれ実施例及び比較例のセパレータが電極間に介するように巻回し、アルミニウム合金製の円筒型容器に収納して、リード体の溶接を行った。次いで、円筒型容器ごと110℃で15時間真空乾燥した。これを真空中で室温まで放冷した後、電解液を注入して密栓し、実施例及び比較例のリチウムイオン二次電池Cを作製した。電解液には、エチレンカーボネート30質量%、ジエチルカーボネート70質量%からなる混合溶媒に、LiPFを1.2Mとなるように溶解させたものを用いた。
<Lithium ion secondary battery C>
The negative electrode 1 and the positive electrode 1 were wound so that the separators of Examples and Comparative Examples were interposed between the electrodes, respectively, and housed in a cylindrical container made of aluminum alloy, and the lead body was welded. Next, the whole cylindrical container was vacuum-dried at 110 ° C. for 15 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolytic solution was injected and sealed to prepare lithium ion secondary batteries C of Examples and Comparative Examples. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
<リチウムイオン二次電池D>
 実施例及び比較例のセパレータ、正極2、負極2の順に張り合わせ、リード線を外部に引き出し、電池本体部を作製した。次に、電池本体部を110℃で15時間真空乾燥し、これを真空中で室温まで放冷した後、アルミニウムのラミネートフィルム中に挿入し、1M−LiPF/EC+DEC(3:7vol%)からなる電解液を適当量注液、真空含浸後、余剰の電解液を除去密閉してリチウムイオン二次電池Dを作製した(電池容量=30mAh相当)。
<Lithium ion secondary battery D>
The separator of Example and Comparative Example, positive electrode 2 and negative electrode 2 were bonded together in this order, and the lead wires were drawn out to produce a battery body. Next, the battery main body was vacuum-dried at 110 ° C. for 15 hours, allowed to cool to room temperature in a vacuum, and then inserted into an aluminum laminate film. From 1M-LiPF 6 / EC + DEC (3: 7 vol%) An appropriate amount of the resulting electrolyte was poured and vacuum impregnated, and then the excess electrolyte was removed and sealed to prepare a lithium ion secondary battery D (corresponding to battery capacity = 30 mAh).
 実施例及び比較例のセパレータ及びリチウムイオン二次電池について、坪量、厚み、最大ポア径、平均ポア径、セパレータ強度、内部短絡不良率、5C放電容量、容量維持率、放電容量のバラつきの評価を行い、結果を表8に示した。 About the separator and lithium ion secondary battery of Example and Comparative Example, basis weight, thickness, maximum pore diameter, average pore diameter, separator strength, internal short-circuit failure rate, 5C discharge capacity, capacity maintenance ratio, evaluation of variation in discharge capacity The results are shown in Table 8.
[保液率]
 10cm角に裁断した実施例及び比較例のセパレータをプロピレンカーボネートに1分間浸漬した後、垂直に吊るして15分間保持した。
[Liquid retention rate]
The separators of Examples and Comparative Examples cut to 10 cm square were immersed in propylene carbonate for 1 minute, then suspended vertically and held for 15 minutes.
保液率(%)=(プロピレンカーボネート浸漬前のセパレータ質量/15分間保持後のセパレータ質量)×100
として保液率を算出し、次の基準で評価した。
Liquid retention (%) = (Separator mass before immersion in propylene carbonate / Separator mass after holding for 15 minutes) × 100
As a result, the liquid retention rate was calculated and evaluated according to the following criteria.
 ◎:保液率が、200%以上である。
 ○:保液率が、150%以上200%未満である。
 △:保液率が、50%以上150%未満である。
 ×:保液率が、50%未満である。
A: The liquid retention rate is 200% or more.
○: The liquid retention rate is 150% or more and less than 200%.
Δ: The liquid retention rate is 50% or more and less than 150%.
X: The liquid retention rate is less than 50%.
[内部短絡不良率]
 実施例及び比較例のリチウムイオン二次電池C各100個用い、充放電電圧範囲2.8~4.2V、充放電電流1Cで、定電流充放電を100サイクル繰り返した際の内部短絡不良率を算出した。
[Internal short-circuit failure rate]
Internal short-circuit failure rate when 100 cycles of constant-current charge / discharge were performed in each of 100 lithium ion secondary batteries C of Examples and Comparative Examples, with a charge / discharge voltage range of 2.8 to 4.2 V and a charge / discharge current of 1 C. Was calculated.
[Cレート放電試験(放電容量)(放電容量のバラつき)]
 実施例及び比較例のリチウムイオン二次電池D各50個を用い、1Cで3サイクルエイジングを行った後、1C、4.2Vで定電流定電圧充電(1/10Cカット)し、5Cで定電流放電試験(2.8Vカット)を行った。放電容量の平均値を算出した。また、放電容量のバラつきを算出し、次の基準で評価した。
[C rate discharge test (discharge capacity) (discharge capacity variation)]
Using 50 lithium ion secondary batteries D of Examples and Comparative Examples, after performing 3 cycle aging at 1C, constant current and constant voltage charging (1 / 10C cut) at 1C and 4.2V, and constant at 5C A current discharge test (2.8 V cut) was performed. The average value of the discharge capacity was calculated. Moreover, the variation in discharge capacity was calculated and evaluated according to the following criteria.
 (放電容量のバラつき)
 ◎:放電容量の差が、平均値に対して1.0%以下である。
 ○:放電容量の差が、平均値に対して1.0%を超えて2.5%以下である。
 △:放電容量の差が、平均値に対して2.5%を超えて5.0%以下である。
 ×:放電容量の差が、平均値に対して5.0%を超えている。
(Discharge capacity variation)
A: The difference in discharge capacity is 1.0% or less with respect to the average value.
◯: The difference in discharge capacity is more than 1.0% and 2.5% or less with respect to the average value.
(Triangle | delta): The difference of discharge capacity exceeds 2.5% with respect to an average value, and is 5.0% or less.
X: The difference of discharge capacity is over 5.0% with respect to the average value.
[サイクル特性(100サイクル後の容量維持率)]
 実施例及び比較例のリチウムイオン二次電池C各10個を用い、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、1Cの条件で定電流放電試験(2.8Vカット)を行った。100サイクル後での容量維持率(100サイクル後/1サイクル容量)の平均値を算出した。
[Cycle characteristics (capacity retention rate after 100 cycles)]
Using 10 each of the lithium ion secondary batteries C of Examples and Comparative Examples, constant current and constant voltage charge (1 / 10C cut) at 1C and 4.2V, and then a constant current discharge test (2.8V under the condition of 1C) Cut). The average value of the capacity retention rate after 100 cycles (after 100 cycles / 1 cycle capacity) was calculated.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示したとおり、実施例26~59のリチウムイオン二次電池用セパレータは、変法濾水度が0~250mlであり、かつ長さ加重平均繊維長が0.20~2.00mmである溶剤紡糸セルロース繊維を10~90質量%、合成繊維を10~90質量%含有しているため、繊維同士が絡みやすく繊維ネットワークが形成されやすくなることから、保液率が高く、セパレータの強度が強くなった。また、実施例26~59のリチウムイオン二次電池は、変法濾水度が0~250mlであり、かつ長さ加重平均繊維長が0.20~2.00mmである溶剤紡糸セルロース繊維を10~90質量%、合成繊維を10~90質量%含有するセパレータを用いているため、セパレータの電解液の保液率が高く、イオン伝導性を良好なものにすることができることから、特に高レートでの放電特性、サイクル特性に優れていた。また、セパレータを緻密なものにすることができることから、内部短絡不良率、放電容量のバラつきが低く、優れていた。 As shown in Table 8, the separators for lithium ion secondary batteries of Examples 26 to 59 have a modified freeness of 0 to 250 ml and a length weighted average fiber length of 0.20 to 2.00 mm. Since 10 to 90% by mass of a certain solvent-spun cellulose fiber and 10 to 90% by mass of a synthetic fiber are contained, the fibers are easily entangled and a fiber network is easily formed. Became stronger. Further, in the lithium ion secondary batteries of Examples 26 to 59, 10 solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and a length weighted average fiber length of 0.20 to 2.00 mm were used. Since a separator containing 90 to 90% by mass and 10 to 90% by mass of synthetic fiber is used, the electrolyte solution of the separator has a high liquid retentivity and good ion conductivity. Excellent discharge characteristics and cycle characteristics. Further, since the separator can be made dense, the internal short-circuit defect rate and the variation in discharge capacity were low and excellent.
 一方、実施例25のリチウムイオン二次電池用セパレータは、セパレータにおける溶剤紡糸セルロース繊維の平均繊維長が0.20mmよりも短いため、セパレータ強度が若干弱くなった。実施例25のリチウムイオン二次電池用セパレータは、セパレータにおける溶剤紡糸セルロース繊維の加重平均繊維長が0.20mmよりも短いため、繊維同士が絡みにくく、繊維ネットワークが形成されにくくなることから、内部短絡不良率、放電容量のバラつきが若干高目となった。 On the other hand, the separator for the lithium ion secondary battery of Example 25 had a slightly weaker separator strength because the average fiber length of solvent-spun cellulose fibers in the separator was shorter than 0.20 mm. In the separator for the lithium ion secondary battery of Example 25, since the weighted average fiber length of the solvent-spun cellulose fiber in the separator is shorter than 0.20 mm, the fibers are hardly entangled and the fiber network is not easily formed. The short-circuit defect rate and discharge capacity variation were slightly higher.
 比較例11及び12のリチウムイオン二次電池用セパレータは、セパレータにおける溶剤紡糸セルロース繊維の変法濾水度が250mlを超え、平均繊維長が2.00mmを超えているため、セパレータの緻密性が不十分となり、比較例11及び12のリチウムイオン二次電池は、内部短絡不良率、放電容量のバラつきが高くなった。比較例13~16のリチウムイオン二次電池用セパレータは、溶剤紡糸セルロース繊維を含有していないため、保液率が低くなった。また、比較例13~16のリチウムイオン二次電池は、溶剤紡糸セルロース繊維を含有していないセパレータを用いているため、セパレータの緻密性が不十分となり、内部短絡不良率が高くなった。比較例17のリチウムイオン二次電池は、90質量%を超えて合成繊維を含有してなるため、十分な緻密性が得られず、内部短絡不良率が高く、保液率が低くなった。比較例18のリチウムイオン二次電池は、合成繊維の含有率が10質量%未満であるため、セパレータ強度が弱くなった。 In the separators for lithium ion secondary batteries of Comparative Examples 11 and 12, the modified drainage of the solvent-spun cellulose fiber in the separator exceeds 250 ml and the average fiber length exceeds 2.00 mm. As a result, the lithium ion secondary batteries of Comparative Examples 11 and 12 had high internal short-circuit failure rates and variations in discharge capacity. Since the separators for lithium ion secondary batteries of Comparative Examples 13 to 16 did not contain solvent-spun cellulose fibers, the liquid retention rate was low. In addition, since the lithium ion secondary batteries of Comparative Examples 13 to 16 used separators that did not contain solvent-spun cellulose fibers, the denseness of the separators became insufficient and the internal short-circuit defect rate increased. Since the lithium ion secondary battery of Comparative Example 17 contained synthetic fibers in excess of 90% by mass, sufficient density was not obtained, the internal short circuit failure rate was high, and the liquid retention rate was low. Since the lithium ion secondary battery of Comparative Example 18 had a synthetic fiber content of less than 10% by mass, the separator strength was weak.
 実施例26~39を比較すると、実施例36及び39のリチウムイオン二次電池は、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、最大頻度ピークが0.00~1.00mmよりも長いため、セパレータの緻密性が不十分となり、実施例26~35と比較して内部短絡不良率が若干高くなり、放電容量のバラつきが大きくなった。実施例37及び38のリチウムイオン二次電池は、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、1.00mm以上の繊維長を有する繊維の割合が10%未満であるため、セパレータ強度が若干弱くなり、実施例26~35と比較して5C放電容量が若干低くなった。 Comparing Examples 26 to 39, the lithium ion secondary batteries of Examples 36 and 39 have a maximum frequency peak longer than 0.00 to 1.00 mm in the fiber length distribution histogram of solvent-spun cellulose fibers. As a result, the internal short-circuit defect rate was slightly higher than in Examples 26 to 35, and the variation in discharge capacity increased. In the lithium ion secondary batteries of Examples 37 and 38, in the fiber length distribution histogram of the solvent-spun cellulose fiber, the ratio of fibers having a fiber length of 1.00 mm or more is less than 10%, so the separator strength is slightly weakened. As compared with Examples 26 to 35, the 5C discharge capacity was slightly lowered.
 実施例26~35を比較すると、実施例26~29、31~34のリチウムイオン二次電池は、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、1.00~2.00mmの間における0.05mm毎の繊維長を有する繊維の割合の傾きが−3.0以上−0.5以下であるため、セパレータ強度が高く、放電容量のバラつきが小さくなった。実施例30のリチウムイオン二次電池は、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、1.00~2.00mmの間における0.05mm毎の繊維長を有する繊維の割合の傾きが−3.0以下であるため、実施例26~29、31~34と比較して、セパレータ強度が若干低く、放電容量のバラつきが大きくなった。傾きが−0.5超である実施例35のリチウムイオン二次電池は、実施例26~29、31~34と比較して、放電容量のバラつきが大きくなった。 Comparing Examples 26 to 35, the lithium ion secondary batteries of Examples 26 to 29 and 31 to 34 were 0.05 mm between 1.00 and 2.00 mm in the fiber length distribution histogram of solvent-spun cellulose fibers. Since the inclination of the ratio of the fiber having each fiber length is −3.0 or more and −0.5 or less, the separator strength is high and the variation in the discharge capacity is small. In the lithium ion secondary battery of Example 30, in the fiber length distribution histogram of the solvent-spun cellulose fiber, the slope of the ratio of fibers having a fiber length of every 0.05 mm between 1.00 and 2.00 mm is −3. Since it was 0 or less, compared with Examples 26 to 29 and 31 to 34, the separator strength was slightly low, and the variation in discharge capacity was large. In the lithium ion secondary battery of Example 35 having an inclination exceeding −0.5, the variation in the discharge capacity was larger than those of Examples 26 to 29 and 31 to 34.
 実施例40~50を比較すると、実施例40~48のリチウムイオン二次電池は、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、0.00~1.00mmの間に最大頻度ピークを有し、1.00mm以上の繊維長を有する繊維の割合が50%以上であるため、緻密な構造を有し、セパレータ強度が強く、内部短絡不良率が低く、放電容量のバラつきが小さくなった。実施例49のリチウムイオン二次電池は、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、最大頻度ピークが0.00~1.00mmよりも長いため、内部短絡率がやや劣った。実施例50のリチウムイオン二次電池は、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、0.00~1.00mmの間に最大頻度ピークを有するが、1.00mm以上の繊維長を有する繊維の割合が50%未満であるため、実施例40~48と比較して、セパレータ強度が弱くなった。 When comparing Examples 40 to 50, the lithium ion secondary batteries of Examples 40 to 48 had a maximum frequency peak between 0.00 and 1.00 mm in the fiber length distribution histogram of the solvent-spun cellulose fiber, Since the ratio of the fibers having a fiber length of 1.00 mm or more is 50% or more, it has a dense structure, a strong separator strength, a low internal short-circuit failure rate, and a small variation in discharge capacity. In the lithium ion secondary battery of Example 49, since the maximum frequency peak was longer than 0.00 to 1.00 mm in the fiber length distribution histogram of the solvent-spun cellulose fiber, the internal short circuit rate was slightly inferior. The lithium ion secondary battery of Example 50 has a maximum frequency peak between 0.00 and 1.00 mm in the fiber length distribution histogram of the solvent-spun cellulose fiber, but the fiber having a fiber length of 1.00 mm or more. Since the ratio was less than 50%, the separator strength was weaker than in Examples 40 to 48.
 実施例40~48を比較すると、実施例40~42、44~47のリチウムイオン二次電池は、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、最大頻度ピーク以外に1.50~3.50mmの間にピークを有するため、より繊維ネットワークが形成されやすくなることから、セパレータ強度が強く、内部短絡不良率が低く、放電容量のバラつきが小さくなった。実施例43のリチウムイオン二次電池は、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、最大頻度ピーク以外のピークが1.50mmより小さいため、実施例40~42、44~47と比較して、セパレータ強度が若干弱く、放電容量のバラつきが若干大きくなった。実施例48のリチウムイオン二次電池は、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、最大頻度ピーク以外のピークが3.50mmより大きいため、実施例40~42、44~47と比較して、内部短絡不良率が若干高く、放電容量のバラつきが若干大きくなった。 Comparing Examples 40 to 48, the lithium ion secondary batteries of Examples 40 to 42 and 44 to 47 are 1.50 to 3.50 mm in addition to the maximum frequency peak in the fiber length distribution histogram of solvent-spun cellulose fibers. Since there is a peak between them, a fiber network is more easily formed, so the strength of the separator is strong, the internal short-circuit failure rate is low, and the variation in discharge capacity is small. In the fiber length distribution histogram of the solvent-spun cellulose fiber, the lithium ion secondary battery of Example 43 has a peak other than the maximum frequency peak smaller than 1.50 mm, so compared with Examples 40 to 42 and 44 to 47, The separator strength was slightly weak and the discharge capacity variation was slightly large. In the fiber length distribution histogram of the solvent-spun cellulose fiber, since the peak other than the maximum frequency peak is larger than 3.50 mm, the lithium ion secondary battery of Example 48 is compared with Examples 40 to 42 and 44 to 47. The internal short circuit failure rate was slightly high, and the variation in discharge capacity was slightly increased.
 実施例26~54のリチウムイオン二次電池は、セパレータに変法濾水度0~400mlのフィブリル化天然セルロース繊維を20質量%以下含有させているため、セパレータをより緻密にすることができ、実施例58及び59のリチウムイオン二次電池よりも、内部短絡不良率が低くなった。実施例55のリチウムイオン二次電池は、変法濾水度0~400mlのフィブリル化天然セルロース繊維が20質量%より多いセパレータを用いているため、セパレータが若干緻密になりすぎて、イオン伝導性が若干悪くなり、高レートの放電容量及び100サイクル後の容量維持率が若干低い値を示した。実施例56のリチウムイオン二次電池は、フィブリル化天然セルロース繊維の変法濾水度が400mlより大きいために、セパレータの緻密性が若干下がり、実施例40及び53と比較して、セパレータ強度が低下した。 Since the lithium ion secondary batteries of Examples 26 to 54 contain 20% by mass or less of fibrillated natural cellulose fibers having a modified freeness of 0 to 400 ml in the separator, the separator can be made denser. The internal short circuit defect rate was lower than that of the lithium ion secondary batteries of Examples 58 and 59. The lithium ion secondary battery of Example 55 uses a separator having a modified freeness of 0 to 400 ml of fibrillated natural cellulose fiber of more than 20% by mass. The discharge capacity at a high rate and the capacity retention rate after 100 cycles showed slightly low values. In the lithium ion secondary battery of Example 56, the modified drainage of the fibrillated natural cellulose fiber is larger than 400 ml, so that the density of the separator is slightly lowered, and the separator strength is higher than that of Examples 40 and 53. Declined.
≪実施例60~88、比較例19~21≫ << Examples 60 to 88, Comparative Examples 19 to 21 >>
<溶剤紡糸セルロース繊維>
 平均繊維径10μm、繊維長4mmの未処理の溶剤紡糸セルロース繊維を表9記載の叩解濃度で分散した後、相川鉄工社製ダブルディスクリファイナーで処理時間を変えて、叩解処理を行った。各処理された溶剤紡糸セルロース繊維の長さ加重平均繊維長と平均カール度を表9に示す。
<Solvent-spun cellulose fiber>
After untreated solvent-spun cellulose fibers having an average fiber diameter of 10 μm and a fiber length of 4 mm were dispersed at the beating concentration shown in Table 9, beating treatment was performed by changing the treatment time with a double disc refiner manufactured by Aikawa Tekko. Table 9 shows the length weighted average fiber length and average curl degree of each treated solvent-spun cellulose fiber.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<フィブリル化天然セルロース繊維>
 東邦特殊パルプ社製綿パルプを高圧ホモジナイザーで処理回数を変えて、表10記載の長さ加重平均繊維長のフィブリル化天然セルロース繊維を調成した。
<Fibrylated natural cellulose fiber>
Cotton pulp manufactured by Toho Special Pulp Co., Ltd. was treated with a high-pressure homogenizer, and fibrillated natural cellulose fibers having a length-weighted average fiber length shown in Table 10 were prepared.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<セパレータ>
 表11に示した原料と含有量に従って、抄紙用スラリーを調製し、円網抄紙機を用いて湿式抄紙し、実施例60~88及び比較例19~21のセパレータを作製した。厚みは室温でカレンダー処理して調整した。
<Separator>
A papermaking slurry was prepared according to the raw materials and contents shown in Table 11, and wet papermaking was performed using a circular paper machine to produce separators of Examples 60 to 88 and Comparative Examples 19 to 21. The thickness was adjusted by calendaring at room temperature.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11において、合成繊維の「種類」は、下記のとおりである。
「PET」:ポリエチレンテレフタレート繊維
「AA」:アクリル繊維
「PP」:ポリプロピレン繊維
「PET/PEs−C」:ポリエステル系芯鞘型熱融着繊維
In Table 11, the “type” of the synthetic fiber is as follows.
“PET”: Polyethylene terephthalate fiber “AA”: Acrylic fiber “PP”: Polypropylene fiber “PET / PEs-C”: Polyester-based sheath-heat-bonded fiber
<リチウムイオン二次電池E>
 負極1と正極1とを、それぞれ実施例60~88及び比較例19~21のセパレータが電極間に介するように巻回し、アルミニウム合金製の円筒型容器に収納して、リード体の溶接を行った。次いで、円筒型容器ごと150℃で10時間真空乾燥した。これを真空中で室温まで放冷した後、電解液を注入して密栓し、実施例60~88及び比較例19~21のリチウムイオン二次電池Eを作製した。電解液には、エチレンカーボネート30質量%、ジエチルカーボネート70質量%からなる混合溶媒に、LiPFを1.2Mとなるように溶解させたものを用いた。
<Lithium ion secondary battery E>
The negative electrode 1 and the positive electrode 1 are wound so that the separators of Examples 60 to 88 and Comparative Examples 19 to 21 are interposed between the electrodes, respectively, and housed in a cylindrical container made of aluminum alloy, and the lead body is welded. It was. Next, the whole cylindrical container was vacuum-dried at 150 ° C. for 10 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolyte solution was injected and sealed up, and lithium ion secondary batteries E of Examples 60 to 88 and Comparative Examples 19 to 21 were produced. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
<リチウムイオン二次電池F>
 実施例及び比較例のセパレータ、正極2、負極2の順に張り合わせ、リード線を外部に引き出し、電池本体部を作製した。次に、電池本体部を110℃で15時間真空乾燥し、これを真空中で室温まで放冷した後、アルミニウムのラミネートフィルム中に挿入し、1M−LiPF/EC+DEC(3:7vol%)からなる電解液を適当量注液、真空含浸後、余剰の電解液を除去密閉してリチウムイオン二次電池Fを作製した(電池容量=30mAh相当)。
<Lithium ion secondary battery F>
The separator of Example and Comparative Example, positive electrode 2 and negative electrode 2 were bonded together in this order, and the lead wires were drawn out to produce a battery body. Next, the battery main body was vacuum-dried at 110 ° C. for 15 hours, allowed to cool to room temperature in a vacuum, and then inserted into an aluminum laminate film. From 1M-LiPF 6 / EC + DEC (3: 7 vol%) An appropriate amount of the resulting electrolyte solution was poured and vacuum impregnated, and then the excess electrolyte solution was removed and sealed to prepare a lithium ion secondary battery F (battery capacity = 30 mAh equivalent).
 実施例及び比較例のセパレータ及びリチウムイオン二次電池について、坪量、厚み、セパレータ含水分率、セパレータ強度、最大ポア径、平均ポア径、内部抵抗、内部短絡不良率、放電容量、放電容量のバラツキ、容量維持率の評価を行い、結果を表11及び表12に示した。 About the separator and lithium ion secondary battery of Examples and Comparative Examples, basis weight, thickness, separator moisture content, separator strength, maximum pore diameter, average pore diameter, internal resistance, internal short-circuit failure rate, discharge capacity, discharge capacity Variations and capacity maintenance rates were evaluated, and the results are shown in Tables 11 and 12.
[内部抵抗]
 実施例及び比較例のリチウムイオン二次電池E各100個を1Cで30分間充電した後、交流1kHzで内部抵抗を測定し、各平均値を算出した。
[Internal resistance]
After charging 100 lithium ion secondary batteries E of Examples and Comparative Examples at 1 C for 30 minutes, the internal resistance was measured at an alternating current of 1 kHz, and each average value was calculated.
[内部短絡不良率]
 実施例及び比較例のリチウムイオン二次電池E各100個を用い、充放電電圧範囲2.8~4.2V、充放電電流1Cで、定電流充放電を500サイクル繰り返した際の内部短絡不良率を算出した。
[Internal short-circuit failure rate]
Internal short circuit failure when repeating 100 cycles of constant current charging / discharging in the charging / discharging voltage range of 2.8-4.2V, charging / discharging current 1C, using 100 lithium ion secondary batteries E of Examples and Comparative Examples The rate was calculated.
[Cレート放電試験(放電容量)]
 実施例及び比較例のリチウムイオン二次電F各50個を用い、1Cで3サイクルエイジングを行った後、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、0.2C、0.5C、1C、3C、5Cと電流値を変えて、定電流放電試験(2.8Vカット)を行い、0.2Cと5C時の放電容量の各平均値を算出した。
[C rate discharge test (discharge capacity)]
Using 50 lithium ion secondary batteries F of Examples and Comparative Examples, after performing 3 cycle aging at 1C, constant current and constant voltage charging (1 / 10C cut) at 1C, 4.2V, and then 0. The constant current discharge test (2.8V cut) was performed by changing the current values to 2C, 0.5C, 1C, 3C, and 5C, and the average values of the discharge capacities at 0.2C and 5C were calculated.
[Cレート放電試験(放電容量のバラツキ)]
 実施例及び比較例のリチウムイオン二次電池F各50個を用い、1Cで3サイクルエイジングを行った後、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、0.2C、0.5C、1C、3C、5Cと電流値を変えて定電流放電試験(2.8Vカット)を行い、0.2Cと5C時の放電容量を次の基準で評価した。
[C-rate discharge test (discharge capacity variation)]
Using 50 lithium ion secondary batteries F of Examples and Comparative Examples, after performing three-cycle aging at 1C, charging at constant current and constant voltage at 1C and 4.2V (1 / 10C cut), then 0. The constant current discharge test (2.8V cut) was performed by changing the current value to 2C, 0.5C, 1C, 3C, and 5C, and the discharge capacity at 0.2C and 5C was evaluated according to the following criteria.
 ◎:放電容量の差が、平均値に対して1.0%以下である。
 ○:放電容量の差が、平均値に対して1.0%を超えて2.5%以下である。
 △:放電容量の差が、平均値に対して2.5%を超えて5.0%以下である。
 ×:放電容量の差が、平均値に対して5.0%を超えている。
A: The difference in discharge capacity is 1.0% or less with respect to the average value.
◯: The difference in discharge capacity is more than 1.0% and 2.5% or less with respect to the average value.
(Triangle | delta): The difference of discharge capacity exceeds 2.5% with respect to an average value, and is 5.0% or less.
X: The difference of discharge capacity is over 5.0% with respect to the average value.
[サイクル特性(100サイクル後の容量維持率)]
 実施例及び比較例のリチウムイオン二次電池F各20個を用い、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、1Cの条件で定電流放電試験(2.8Vカット)を行い、100サイクル後での容量維持率(100サイクル後/1サイクル容量)の平均値を算出した。
[Cycle characteristics (capacity retention rate after 100 cycles)]
Using 20 each of the lithium ion secondary batteries F of Examples and Comparative Examples, constant current and constant voltage charge (1 / 10C cut) at 1C and 4.2V, and then a constant current discharge test (2.8V under the condition of 1C) The average capacity retention rate after 100 cycles (after 100 cycles / 1 cycle capacity) was calculated.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表11に示したとおり、実施例60~86のリチウムイオン二次電池用セパレータは、長さ加重平均繊維長0.50~1.25mm、平均カール度が2.5以下の溶剤紡糸セルロース繊維を10~90質量%、合成繊維を10~90質量%含有しているため、含水分率が低く、機械強度が強く、優れていた。 As shown in Table 11, the separators for lithium ion secondary batteries of Examples 60 to 86 are solvent-spun cellulose fibers having a length-weighted average fiber length of 0.50 to 1.25 mm and an average curl degree of 2.5 or less. Since 10 to 90% by mass and 10 to 90% by mass of synthetic fiber were contained, the moisture content was low, and the mechanical strength was strong and excellent.
 実施例61、69~71と比較例20、21を比較することで、長さ加重平均繊維長0.50~1.25mm、平均カール度が25以下の溶剤紡糸セルロース繊維を10~90質量%、合成繊維を10~90質量%含有することで、セパレータの含水分率を低く抑えることができた。また、繊維同士が絡みやすく、繊維ネットワークが形成されやすくなることからセパレータの強度が強くなった。 By comparing Examples 61 and 69 to 71 with Comparative Examples 20 and 21, 10 to 90% by mass of solvent-spun cellulose fibers having a length weighted average fiber length of 0.50 to 1.25 mm and an average curl degree of 25 or less. By containing 10 to 90% by mass of synthetic fiber, the moisture content of the separator could be kept low. Further, the strength of the separator was increased because the fibers were easily entangled and a fiber network was easily formed.
 実施例60~65と実施例87、88を比較することで、溶剤紡糸セルロース繊維の長さ加重平均繊維長が0.50~1.25mmであることで、繊維同士が絡みやすく、繊維ネットワークが形成されやすくなり、セパレータ強度が強くなることがわかる。溶剤紡糸セルロース繊維の長さ加重平均繊維長が0.50mm未満の場合(実施例87)、セパレータ製造時に繊維が抄紙機のワイヤーから脱落しやすくなり、セパレータの強度が若干発現しにくい。溶剤紡糸セルロース繊維の長さ加重平均繊維長が1.25mm超の場合(実施例88)には、セパレータの質量の均一性が損なわれやすくなり、セパレータの強度が若干小さくなり、セパレータの最大ポア径が若干大きくなる。 By comparing Examples 60 to 65 and Examples 87 and 88, the solvent-spun cellulose fiber has a length-weighted average fiber length of 0.50 to 1.25 mm. It becomes easy to form and it turns out that separator strength becomes strong. When the solvent-spun cellulose fiber has a length-weighted average fiber length of less than 0.50 mm (Example 87), the fiber is likely to fall off the paper machine wire during the manufacture of the separator, and the strength of the separator is hardly exhibited. When the length weighted average fiber length of the solvent-spun cellulose fiber is more than 1.25 mm (Example 88), the uniformity of the mass of the separator tends to be impaired, the strength of the separator is slightly reduced, and the maximum pore size of the separator is reduced. The diameter becomes slightly larger.
 実施例61、66~68と比較例19を比較することで、溶剤紡糸セルロース繊維の平均カール度が25以下であることで、繊維同士の絡みやすく繊維ネットワークが形成されやすく、セパレータの最大ポア径も小さめに調整されることがわかる。 By comparing Examples 61 and 66 to 68 with Comparative Example 19, the average curl degree of the solvent-spun cellulose fiber is 25 or less, so that the fiber network is easily entangled with each other, and the maximum pore diameter of the separator is increased. It can be seen that it is adjusted to be smaller.
 表12に示したとおり、実施例60~86のリチウムイオン二次電池は、長さ加重平均繊維長0.50~1.25mm、平均カール度が25以下の溶剤紡糸セルロース繊維を10~90質量%、合成繊維を10~90質量%含有する多孔質シートからなるセパレータを用いているため、内部抵抗、内部短絡不良率、特に高レートでの放電特性及びそのバラツキ、サイクル特性に優れていた。 As shown in Table 12, in the lithium ion secondary batteries of Examples 60 to 86, 10 to 90 mass of solvent-spun cellulose fibers having a length weighted average fiber length of 0.50 to 1.25 mm and an average curl degree of 25 or less. %, And a separator made of a porous sheet containing 10 to 90% by mass of a synthetic fiber was used, the internal resistance and internal short circuit failure rate, in particular, the discharge characteristics at high rates and their variations and cycle characteristics were excellent.
 即ち、実施例60~86のリチウムイオン二次電池は、長さ加重平均繊維長0.50~1.25mm、平均カール度が25以下の溶剤紡糸セルロース繊維を10~90質量%含有しているため、電解液の保液性が良く、イオン伝導性を良好なものにすることができることから、低い内部抵抗を示すと共に、特に高レートでの放電特性、サイクル特性に優れていた。一方、比較例20のリチウムイオン二次電池は、長さ加重平均繊維長0.50~1.25mm、平均カール度が25以下の溶剤紡糸セルロース繊維の含有率が10質量%より少ないため、電解液の保液性に劣り、内部抵抗が高い値を示した。比較例19のリチウムイオン二次電池は、溶剤紡糸セルロース繊維の平均カール度が25よりも大きい結果、セパレータの質量の均一性が損なわれ、内部短絡不良率、放電容量のバラツキが高くなった。 That is, the lithium ion secondary batteries of Examples 60 to 86 contain 10 to 90% by mass of solvent-spun cellulose fibers having a length weighted average fiber length of 0.50 to 1.25 mm and an average curl degree of 25 or less. Therefore, since the electrolyte solution has good liquid retention and good ion conductivity, it has a low internal resistance and is particularly excellent in discharge characteristics and cycle characteristics at a high rate. On the other hand, the lithium ion secondary battery of Comparative Example 20 has a length weighted average fiber length of 0.50 to 1.25 mm, and the content of solvent-spun cellulose fibers having an average curl degree of 25 or less is less than 10% by mass. The liquid retention was inferior and the internal resistance was high. In the lithium ion secondary battery of Comparative Example 19, the average curl degree of the solvent-spun cellulose fiber was greater than 25. As a result, the uniformity of the mass of the separator was impaired, and the internal short circuit failure rate and the variation in discharge capacity were increased.
 実施例80~83のリチウムイオン二次電池は、セパレータに変法濾水度0~400mlのフィブリル化天然セルロース繊維を10質量%含有させている。このように、セパレータに変法濾水度0~400mlのフィブリル化天然セルロースを含有させることで、セパレータの強度を上げ、セパレータをより薄くすることができ、実施例61、79、84のリチウムイオン二次電池よりも、実施例80~83のリチウムイオン二次電池は、内部抵抗が低く、高レートの放電容量が高い値を示した。 In the lithium ion secondary batteries of Examples 80 to 83, 10% by mass of fibrillated natural cellulose fibers having a modified freeness of 0 to 400 ml are contained in the separator. In this way, by adding fibrillated natural cellulose having a modified freeness of 0 to 400 ml to the separator, the strength of the separator can be increased and the separator can be made thinner. Compared to the secondary battery, the lithium ion secondary batteries of Examples 80 to 83 had a low internal resistance and a high discharge capacity at a high rate.
 実施例86のリチウムイオン二次電池は、セパレータに長さ加重平均繊維長0.20~1.00mmのフィブリル化天然セルロース繊維の含有率が20質量%より多いため、セパレータが若干緻密になりすぎて、平均ポア径も小さくなり、イオン伝導性が若干悪くなり、実施例81、実施例85のリチウムイオン二次電池よりも、内部抵抗が若干高い値を示し、高レートの放電容量が若干低い値を示した。 In the lithium ion secondary battery of Example 86, since the content of fibrillated natural cellulose fibers having a length-weighted average fiber length of 0.20 to 1.00 mm is more than 20% by mass, the separator is slightly too dense. Thus, the average pore diameter is also reduced, the ion conductivity is slightly deteriorated, the internal resistance is slightly higher than those of the lithium ion secondary batteries of Examples 81 and 85, and the discharge rate at a high rate is slightly lower. The value is shown.
 実施例60~65、69~71の比較から、実施例64、65、69のリチウムイオン二次電池は、最大ポア径が6.0μmより大きいため、実施例60~63、70~71のリチウムイオン二次電池より内部短絡不良率、放電容量のバラツキが若干高くなった。 From the comparison of Examples 60 to 65 and 69 to 71, the lithium ion secondary batteries of Examples 64, 65, and 69 have a maximum pore diameter larger than 6.0 μm. Therefore, the lithium ions of Examples 60 to 63 and 70 to 71 were used. The internal short circuit failure rate and the variation in discharge capacity were slightly higher than those of the ion secondary battery.
 実施例76のリチウムイオン二次電池は、使用している合成繊維の平均繊維径が若干太いため、実施例75のリチウムイオン二次電池より、セパレータ強度が若干弱く、放電容量のバラツキが若干高くなった。 The lithium ion secondary battery of Example 76 has a slightly larger average fiber diameter of the synthetic fibers used, so the separator strength is slightly weaker than that of the lithium ion secondary battery of Example 75, and the discharge capacity variation is slightly higher. became.
 実施例78のリチウムイオン二次電池は、使用している合成繊維の平均繊維径が若干細いため、実施例77のリチウムイオン二次電池より、セパレータ強度が若干弱く、サイクル特性が若干劣った。 In the lithium ion secondary battery of Example 78, since the average fiber diameter of the synthetic fibers used is slightly thinner, the separator strength is slightly weaker and the cycle characteristics are slightly inferior to those of the lithium ion secondary battery of Example 77.
≪実施例89~103、比較例22~23≫ << Examples 89 to 103, Comparative Examples 22 to 23 >>
<カルボキシメチルセルロース(CMC1)>
 エーテル化度が0.5のカルボキシメチルセルロース(第一工業製薬社製、商品名:セロゲン(登録商標)PL−15)をCMC1とした。
<Carboxymethylcellulose (CMC1)>
Carboxymethylcellulose having a degree of etherification of 0.5 (Daiichi Kogyo Seiyaku Co., Ltd., trade name: Cellogen (registered trademark) PL-15) was designated as CMC1.
<カルボキシメチルセルロース(CMC2)>
 エーテル化度が0.7のカルボキシメチルセルロース(ダイセル化学工業社製、商品名:1205)をCMC2とした。
<Carboxymethylcellulose (CMC2)>
Carboxymethylcellulose having a degree of etherification of 0.7 (trade name: 1205, manufactured by Daicel Chemical Industries, Ltd.) was designated as CMC2.
<CDS(カチオン澱粉系紙力増強剤)>
 カチオン澱粉系の紙力増強剤(星光PMC社製、商品名:DD4280)をCDSとした。
<CDS (cationic starch-based paper strength enhancer)>
A cationic starch-based paper strength enhancer (trade name: DD4280, manufactured by Seiko PMC) was used as CDS.
<GGS(グァーガム紙力増強剤)>
 グァーガム紙力増強剤(メイホールケミカル社製、商品名:メイプロイド2066)をGGSとした。
<GGS (Guar gum paper strength enhancer)>
Guar gum paper strength enhancer (product name: MAYPROID 2066, manufactured by Mayhole Chemical Co., Ltd.) was designated as GGS.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表13において、合成繊維の「種類」は、下記のとおりである。
「PET」:ポリエチレンテレフタレート繊維
In Table 13, the “type” of the synthetic fiber is as follows.
"PET": Polyethylene terephthalate fiber
<セパレータ>
 表13に示した原料と配合量(全繊維量基準)に従って、抄紙用スラリーを調製し、円網抄紙機を用いて湿式抄紙し、実施例89~103及び比較例22~23のセパレータを作製した。厚みは室温でカレンダー処理して調整した。
<Separator>
A papermaking slurry was prepared according to the raw materials and blending amounts (based on the total fiber amount) shown in Table 13, and wet papermaking was performed using a circular paper machine to produce separators of Examples 89 to 103 and Comparative Examples 22 to 23. did. The thickness was adjusted by calendaring at room temperature.
<リチウムイオン二次電池G>
 負極1と正極1とを、それぞれ実施例89~103及び比較例22~23のセパレータが電極間に介するように巻回し、アルミニウム合金製の円筒型容器に収納して、リード体の溶接を行った。次いで、円筒型容器ごと150℃で10時間真空乾燥した。これを真空中で室温まで放冷した後、電解液を注入して密栓し、実施例89~103及び比較例22~23のリチウムイオン二次電池Gを作製した。電解液には、エチレンカーボネート(EC)30質量%、ジエチルカーボネート(DEC)70質量%からなる混合溶媒に、LiPFを1.2Mとなるように溶解させたものを用いた。
<Lithium ion secondary battery G>
The negative electrode 1 and the positive electrode 1 were wound so that the separators of Examples 89 to 103 and Comparative Examples 22 to 23 were interposed between the electrodes, respectively, and stored in a cylindrical container made of aluminum alloy, and the lead body was welded. It was. Next, the whole cylindrical container was vacuum-dried at 150 ° C. for 10 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolyte solution was injected and sealed up, and lithium ion secondary batteries G of Examples 89 to 103 and Comparative Examples 22 to 23 were produced. As the electrolytic solution, a solution obtained by dissolving LiPF 6 to 1.2 M in a mixed solvent composed of 30% by mass of ethylene carbonate (EC) and 70% by mass of diethyl carbonate (DEC) was used.
<リチウムイオン二次電池H>
 実施例89~103及び比較例22~23のセパレータ、正極2、負極2の順に貼り合わせ、リード線を外部に引き出し、電池本体部を作製した。次に、電池本体部を140℃で10時間真空乾燥し、これを真空中で室温まで放冷した後、アルミニウムのラミネートフィルム中に挿入し、1M−LiPF/EC+DEC(3:7vol%)からなる電解液を適当量注液、真空含浸後、余剰の電解液を除去密閉してリチウムイオン二次電池Hを作製した(電池容量=30mAh相当)。
<Lithium ion secondary battery H>
The separators of Examples 89 to 103 and Comparative Examples 22 to 23, the positive electrode 2, and the negative electrode 2 were bonded together in this order, and the lead wires were pulled out to produce a battery body. Next, the battery body was vacuum-dried at 140 ° C. for 10 hours, allowed to cool to room temperature in a vacuum, and then inserted into an aluminum laminate film. From 1M-LiPF 6 / EC + DEC (3: 7 vol%) An appropriate amount of the resulting electrolyte solution was poured and vacuum impregnated, and then the excess electrolyte solution was removed and sealed to prepare a lithium ion secondary battery H (battery capacity = 30 mAh equivalent).
 実施例及び比較例のセパレータ及びリチウムイオン二次電池について、坪量、厚み、最大ポア径、平均ポア径、セパレータ含水分率、セパレータ強度、内部抵抗、内部短絡不良率、放電容量、放電容量のバラツキ、容量維持率の評価を行い、結果を表14に示した。 About separator and lithium ion secondary battery of Example and Comparative Example, basis weight, thickness, maximum pore diameter, average pore diameter, separator moisture content, separator strength, internal resistance, internal short circuit failure rate, discharge capacity, discharge capacity The variation and capacity retention rate were evaluated, and the results are shown in Table 14.
[内部抵抗]
 実施例及び比較例のリチウムイオン二次電池G各100個を1Cで30分間充電した後、交流1kHzで内部抵抗を測定し、各平均値を算出した。
[Internal resistance]
After charging 100 lithium ion secondary batteries G of Examples and Comparative Examples at 1 C for 30 minutes, the internal resistance was measured at an alternating current of 1 kHz, and each average value was calculated.
[内部短絡不良率]
 実施例及び比較例のリチウムイオン二次電池G各100個を用い、充放電電圧範囲2.8~4.2V、充放電電流1Cで、定電流充放電を500サイクル繰り返した際の内部短絡不良率を算出した。
[Internal short-circuit failure rate]
Internal short circuit failure when repeating 100 cycles of constant current charging / discharging in the charging / discharging voltage range of 2.8-4.2V, charging / discharging current 1C using 100 lithium ion secondary batteries G of Examples and Comparative Examples The rate was calculated.
[Cレート放電試験(放電容量)]
 実施例及び比較例のリチウムイオン二次電池H各50個を用い、1Cで3サイクルエイジングを行った後、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、0.2C、0.5C、1C、3C、5Cと電流値を変えて、定電流放電試験(2.8Vカット)を行い、0.2Cと5C時の放電容量の各平均値を算出した。
[C rate discharge test (discharge capacity)]
Using 50 each of the lithium ion secondary batteries H of Examples and Comparative Examples, after performing three-cycle aging at 1C, charging at constant current and constant voltage at 1C and 4.2V (1 / 10C cut), then 0. The constant current discharge test (2.8V cut) was performed by changing the current values to 2C, 0.5C, 1C, 3C, and 5C, and the average values of the discharge capacities at 0.2C and 5C were calculated.
[Cレート放電試験(放電容量のバラツキ)]
 実施例及び比較例のリチウムイオン二次電池H各50個を用い、1Cで3サイクルエイジングを行った後、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、0.2C、0.5C、1C、3C、5Cと電流値を変えて定電流放電試験(2.8Vカット)を行い、0.2Cと5C時の放電容量を次の基準で評価した。
[C-rate discharge test (discharge capacity variation)]
Using 50 each of the lithium ion secondary batteries H of Examples and Comparative Examples, after performing three-cycle aging at 1C, charging at constant current and constant voltage at 1C and 4.2V (1 / 10C cut), then 0. The constant current discharge test (2.8V cut) was performed by changing the current value to 2C, 0.5C, 1C, 3C, and 5C, and the discharge capacity at 0.2C and 5C was evaluated according to the following criteria.
 ◎:放電容量の差が、平均値に対して1.0%以下である。
 ○:放電容量の差が、平均値に対して1.0%を超えて2.5%以下である。
 △:放電容量の差が、平均値に対して2.5%を超えて5.0%以下である。
 ×:放電容量の差が、平均値に対して5.0%を超えている。
A: The difference in discharge capacity is 1.0% or less with respect to the average value.
◯: The difference in discharge capacity is more than 1.0% and 2.5% or less with respect to the average value.
(Triangle | delta): The difference of discharge capacity exceeds 2.5% with respect to an average value, and is 5.0% or less.
X: The difference of discharge capacity is over 5.0% with respect to the average value.
[サイクル特性(100サイクル後の容量維持率)]
 実施例及び比較例のリチウムイオン二次電池H各20個を用い、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、1Cの条件で定電流放電試験(2.8Vカット)を行い、100サイクル後での容量維持率(100サイクル後/1サイクル容量)の平均値を算出した。
[Cycle characteristics (capacity retention rate after 100 cycles)]
Using 20 each of the lithium ion secondary batteries H of Examples and Comparative Examples, constant current and constant voltage charge (1 / 10C cut) at 1C and 4.2V, and then a constant current discharge test (2.8V under the condition of 1C) The average capacity retention rate after 100 cycles (after 100 cycles / 1 cycle capacity) was calculated.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表14に示したとおり、実施例89のリチウムイオン二次電池用セパレータは、変法濾水度0mlの溶剤紡糸セルロース繊維を全繊維あたり10質量%、合成繊維を全繊維あたり90質量%、かつエーテル化度0.5のカルボキシメチルセルロースを1質量%含有しているため、カルボキシメチルセルロースを含有していない表1の実施例1に比べて、セパレータ強度に優れていた。 As shown in Table 14, the separator for the lithium ion secondary battery of Example 89 is 10% by mass of solvent-spun cellulose fiber having a modified freeness of 0 ml per total fiber, 90% by mass of synthetic fiber per total fiber, and Since 1% by mass of carboxymethylcellulose having a degree of etherification of 0.5 was contained, the separator strength was superior to that of Example 1 in Table 1 that did not contain carboxymethylcellulose.
 実施例90のリチウムイオン二次電池用セパレータは、変法濾水度120mlの溶剤紡糸セルロース繊維を全繊維あたり50質量%、合成繊維を全繊維あたり50質量%、かつエーテル化度0.5のカルボキシメチルセルロースを1質量%含有しているため、最大ポア径が小さくなり、内部抵抗及び内部短絡不良率の減少が見られ、さらに放電容量のバラツキが改善されており、カルボキシメチルセルロースを含有していない表1の実施例3に比べてセパレータ強度に優れていた。 The separator for the lithium ion secondary battery of Example 90 has a modified freeness of 120 ml of solvent-spun cellulose fiber of 50% by mass per total fiber, a synthetic fiber of 50% by mass per total fiber, and a degree of etherification of 0.5. Since 1% by mass of carboxymethylcellulose is contained, the maximum pore diameter is reduced, the internal resistance and the internal short-circuit failure rate are reduced, the variation in discharge capacity is improved, and no carboxymethylcellulose is contained. Compared to Example 3 in Table 1, the separator strength was excellent.
 実施例91のリチウムイオン二次電池用セパレータは、変法濾水度250mlの溶剤紡糸セルロース繊維を全繊維あたり90質量%、合成繊維を全繊維あたり10質量%、かつエーテル化度0.5のカルボキシメチルセルロースを1質量%含有しているため、実施例90と同様に、ポア径や内部抵抗が改善されており、カルボキシメチルセルロースを含有していない表1の実施例3に比べてセパレータ強度に優れていた。 The separator for the lithium ion secondary battery of Example 91 is 90 mass% of solvent-spun cellulose fibers having a modified freeness of 250 ml per total fiber, 10 mass% of synthetic fibers per total fiber, and a degree of etherification of 0.5. Since 1% by mass of carboxymethylcellulose is contained, the pore diameter and internal resistance are improved as in Example 90, and the separator strength is superior to Example 3 in Table 1 that does not contain carboxymethylcellulose. It was.
 実施例92のリチウムイオン二次電池用セパレータは、変法濾水度120mlの溶剤紡糸セルロース繊維を全繊維あたり50質量%、合成繊維を全繊維あたり50質量%、かつエーテル化度0.7のカルボキシメチルセルロースを1質量%含有しているため、実施例90と比較して、ポア径やセパレータ強度がさらに改善されていた。また、実施例92のリチウムイオン二次電池用セパレータは、エーテル化度0.7のカルボキシメチルセルロースを1質量%含有しているため、カチオン澱粉系紙力増強剤やグァーガム紙力増強剤を各1質量%含有している実施例102及び実施例103のリチウムイオン二次電池用セパレータと比べて、セパレータ強度により優れるだけでなく、高レートでの放電容量及び放電容量のバラツキにも優れることがわかる。 The separator for the lithium ion secondary battery of Example 92 has a modified freeness of 120 ml of solvent-spun cellulose fiber of 50 mass% per total fiber, a synthetic fiber of 50 mass% per total fiber, and a degree of etherification of 0.7. Since 1% by mass of carboxymethylcellulose was contained, the pore diameter and separator strength were further improved as compared with Example 90. Moreover, since the separator for lithium ion secondary batteries of Example 92 contains 1% by mass of carboxymethyl cellulose having a degree of etherification of 0.7, 1 each of cationic starch-based paper strength enhancer and guar gum paper strength enhancer. Compared to the lithium ion secondary battery separators of Example 102 and Example 103 containing mass%, it is understood that not only the separator strength is excellent, but also the discharge capacity at high rate and the variation in discharge capacity are excellent. .
 実施例93~96のリチウムイオン二次電池用セパレータは、変法濾水度120mlの溶剤紡糸セルロース繊維を全繊維あたり50質量%、合成繊維を全繊維あたり50質量%、かつエーテル化度0.5のカルボキシメチルセルロースを含有しており、セパレータ含水分率、セパレータ強度及び電池特性等は満足できるものであった。しかし、実施例93のように、カルボキシメチルセルロースの含有量が全繊維質量に対して0.2質量%であると、抄紙時の地合改善効果が小さく、セパレータ強度が若干低めで、ポア径も若干大きくなる傾向にあった。また、実施例96のように、カルボキシメチルセルロースの含有量が全繊維質量に対して3.0質量%であると、各セパレータ性能が頭打ちとなるため、コスト面で不利となり、同時に、抄紙時の脱水性が不十分となることから、生産効率の点でも芳しくない結果であった。 In the separators for lithium ion secondary batteries of Examples 93 to 96, the solvent-spun cellulose fiber having a modified freeness of 120 ml was 50% by mass per total fiber, the synthetic fiber was 50% by mass per total fiber, and the degree of etherification was 0. No. 5 carboxymethyl cellulose was contained, and the moisture content of the separator, the strength of the separator, the battery characteristics and the like were satisfactory. However, as in Example 93, when the content of carboxymethyl cellulose is 0.2% by mass relative to the total fiber mass, the effect of improving formation during papermaking is small, the separator strength is slightly lower, and the pore diameter is also small. There was a tendency to increase slightly. Further, as in Example 96, when the content of carboxymethyl cellulose is 3.0% by mass with respect to the total fiber mass, each separator performance reaches its peak, which is disadvantageous in terms of cost. Since the dehydration property was insufficient, the production efficiency was not good.
 実施例97~101のリチウムイオン二次電池用セパレータは、セパレータに変法濾水度120mlの溶剤紡糸セルロース繊維を全繊維あたり45~25質量%、合成繊維を全繊維あたり50質量%、カルボキシメチルセルロースを全繊維質量に対して1.0質量%含有し、さらに、変法濾水度0~400mlのフィブリル化天然セルロース繊維を全繊維あたり5~25質量%含有している。そのため、低い坪量であっても高いセパレータ強度を出すことができ、それにより、セパレータをより緻密かつ薄くすることができるので、実施例90のリチウムイオン二次電池用セパレータよりも、実施例97~101のリチウムイオン二次電池用セパレータは内部抵抗が低く、高レートの放電容量が高い値を示した。実施例100のリチウムイオン二次電池は、セパレータにおける変法濾水度0~400mlのフィブリル化天然セルロース繊維の含有率が全繊維あたり20質量%より多いため、セパレータが若干緻密になりすぎて、イオン伝導性が若干悪くなり、実施例97~99のリチウムイオン二次電池よりも、内部抵抗が若干高い値を示し、高レートの放電容量が若干低い値を示した。 In the separators for lithium ion secondary batteries of Examples 97 to 101, 45 to 25% by mass of solvent-spun cellulose fiber having a modified freeness of 120 ml is used as the separator, 50% by mass of synthetic fiber per total fiber, and carboxymethyl cellulose. Is contained in an amount of 1.0% by mass based on the total fiber mass, and further, 5-25% by mass of fibrillated natural cellulose fiber having a modified freeness of 0 to 400 ml is contained per total fiber. Therefore, a high separator strength can be obtained even at a low basis weight, and thus the separator can be made denser and thinner. Therefore, the embodiment 97 is more preferable than the lithium ion secondary battery separator of the embodiment 90. The ~ 101 lithium ion secondary battery separator had a low internal resistance and a high discharge capacity at a high rate. In the lithium ion secondary battery of Example 100, since the content of the fibrillated natural cellulose fiber having a modified freeness of 0 to 400 ml in the separator is more than 20% by mass per total fiber, the separator is slightly too dense, The ion conductivity was slightly deteriorated, the internal resistance was slightly higher than those of the lithium ion secondary batteries of Examples 97 to 99, and the high rate discharge capacity was slightly lower.
 実施例101のリチウムイオン二次電池用セパレータは、セパレータに変法濾水度120mlの溶剤紡糸セルロース繊維を全繊維あたり40質量%、合成繊維を全繊維あたり50質量%、かつエーテル化度0.7のカルボキシメチルセルロースを全繊維質量に対して1.0質量%含有し、さらに、変法濾水度270mlのフィブリル化天然セルロース繊維を全繊維あたり10質量%含有している。よって、実施例98より最大ポア径が小さくなり、セパレータ強度も増加していた。 In the separator for the lithium ion secondary battery of Example 101, the solvent-spun cellulose fiber having a modified freeness of 120 ml is 40% by mass per total fiber, the synthetic fiber is 50% by mass per total fiber, and the degree of etherification is 0.00. 7 carboxymethyl cellulose is contained in an amount of 1.0% by mass relative to the total fiber mass, and further, fibrillated natural cellulose fibers having a modified freeness of 270 ml are contained in an amount of 10% by mass. Therefore, the maximum pore diameter was smaller than in Example 98, and the separator strength was also increased.
 比較例22のリチウムイオン二次電池用セパレータは、セパレータにカルボキシメチルセルロースを含有しているものの、セパレータにおける変法濾水度0~250mlの溶剤紡糸セルロース繊維の含有率が全繊維あたり90質量%より多く、合成繊維が全繊維あたり10質量%より少ないため、含水分率が高く、セパレータ強度は弱くなった。比較例23のリチウムイオン二次電池用セパレータは、セパレータにカルボキシメチルセルロースを含有しているものの、セパレータにおける変法濾水度0~250mlの溶剤紡糸セルロース繊維の含有率が全繊維あたり10質量%より少なく、合成繊維が全繊維あたり90質量%より多いため、最大ポア径が大きくなり、内部短絡不良率が極端に増加した。 Although the separator for the lithium ion secondary battery of Comparative Example 22 contains carboxymethyl cellulose in the separator, the content of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml in the separator is more than 90% by mass per total fiber. Many synthetic fibers were less than 10% by mass per total fiber, so the moisture content was high and the separator strength was weak. Although the separator for the lithium ion secondary battery of Comparative Example 23 contains carboxymethyl cellulose in the separator, the content of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml in the separator is more than 10% by mass per total fiber. Since the amount of synthetic fibers is less than 90% by mass per total fiber, the maximum pore diameter is increased, and the internal short circuit defect rate is extremely increased.
≪実施例104~126、比較例24~31≫ << Examples 104 to 126, Comparative Examples 24 to 31 >>
<熱融着繊維M1>
 繊度0.5dtex、繊維長5mmの、芯部がポリエチレンテレフタレート(融点253℃)、鞘部がポリエチレンテレフタレート−イソフタレート共重合体(軟化点75℃)のポリエステル系芯鞘型熱融着繊維を熱融着繊維M1とした。
<Heat-bonding fiber M1>
A polyester core-sheath type heat-sealable fiber having a fineness of 0.5 dtex, a fiber length of 5 mm, a core of polyethylene terephthalate (melting point 253 ° C.), and a sheath of polyethylene terephthalate-isophthalate copolymer (softening point 75 ° C.) is heated. A fusion fiber M1 was obtained.
<熱融着繊維M2>
 繊度1.1dtex、繊維長5mmの、芯部がポリエチレンテレフタレート(融点253℃)、鞘部がポリエチレンテレフタレート−イソフタレート共重合体(軟化点75℃)のポリエステル系芯鞘型熱融着繊維を熱融着繊維M2とした。
<Heat-bonding fiber M2>
A polyester core-sheath type heat-sealable fiber having a fineness of 1.1 dtex, a fiber length of 5 mm, a core part of polyethylene terephthalate (melting point 253 ° C.), and a sheath part of a polyethylene terephthalate-isophthalate copolymer (softening point 75 ° C.) is heated. A fusion fiber M2 was obtained.
<熱融着繊維M3>
 繊度0.8dtex、繊維長5mmの、芯部がポリプロピレン(融点165℃)、鞘部が高密度ポリエチレン(融点135℃)のポリオレフィン系芯鞘型熱融着繊維を熱融着繊維M3とした。
<Heat-bonding fiber M3>
A polyolefin core-sheath type heat-seal fiber having a fineness of 0.8 dtex, a fiber length of 5 mm, a core part of polypropylene (melting point 165 ° C.), and a sheath part of high-density polyethylene (melting point 135 ° C.) was designated as heat-seal fiber M3.
<熱融着繊維M4>
 繊度1.1dtex、繊維長5mmの、芯部がポリエチレンテレフタレート(融点253℃)、鞘部がエチレン−ビニルアルコール共重合体(湿熱溶融温度100℃)のポリエステル/エチレン−ビニルアルコール系芯鞘型熱融着繊維を熱融着繊維M4とした。
<Heat-bonding fiber M4>
Polyester / ethylene-vinyl alcohol core / sheath with a fineness of 1.1 dtex, fiber length of 5 mm, core of polyethylene terephthalate (melting point 253 ° C.), and sheath of ethylene-vinyl alcohol copolymer (wet heat melting temperature 100 ° C.) The fusing fiber was designated as heat fusing fiber M4.
<熱融着繊維M5>
 繊度1.1detx、繊維長5mmの、未延伸ポリエチレンテレフタレート繊維(融点130℃)を熱融着繊維M5とした。
<Heat-bonding fiber M5>
An unstretched polyethylene terephthalate fiber (melting point: 130 ° C.) having a fineness of 1.1 detex and a fiber length of 5 mm was designated as a heat-sealing fiber M5.
<熱融着繊維M6>
 繊度0.5dtex、繊維長5mmの未延伸ポリエチレンテレフタレート繊維(熱圧溶融温度200℃)を熱融着繊維M6とした。
<Heat-bonding fiber M6>
An unstretched polyethylene terephthalate fiber (hot-pressure melting temperature 200 ° C.) having a fineness of 0.5 dtex and a fiber length of 5 mm was used as a heat-sealing fiber M6.
<熱融着繊維M7>
 繊度0.8dtex、繊維長5mmのポリビニールアルコール繊維(湿熱溶融温度100℃)を熱融着繊維M7とした。
<Heat-bonding fiber M7>
Polyvinyl alcohol fiber (wet heat melting temperature 100 ° C.) having a fineness of 0.8 dtex and a fiber length of 5 mm was used as the heat fusion fiber M7.
<熱融着繊維M8>
 繊度2.2dtex、繊維長5mmの、ポリプロピレン(融点165℃)とエチレン−ビニルアルコール共重合体(湿熱溶融温度100℃)からなる分割型複合繊維(16分割)を熱融着繊維M8とした。
<Heat-bonding fiber M8>
A split type composite fiber (16 splits) made of polypropylene (melting point 165 ° C.) and an ethylene-vinyl alcohol copolymer (wet heat melting temperature 100 ° C.) having a fineness of 2.2 dtex and a fiber length of 5 mm was used as a heat sealing fiber M8.
 表15に示した原料と含有量に従って、0.1%濃度の抄造用スラリーを調製した。 According to the raw materials and contents shown in Table 15, a 0.1% concentration papermaking slurry was prepared.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表15において、合成繊維、熱融着繊維及びその他の繊維の「種類」は、下記のとおりである。
「PET」:ポリエチレンテレフタレート繊維
「AA」:アクリル繊維
「PP」:ポリプロピレン繊維
「PET/PEs−C」:ポリエステル系芯鞘型熱融着繊維
「PP/PE」:ポリオレフィン系芯鞘型熱融着繊維
「PET/EvOH」:ポリエステル/エチレン−ビニルアルコール系芯鞘型熱融着繊維
「PET−B1」:未延伸ポリエチレンテレフタレート繊維(融点130℃)
「PET−B2」:未延伸ポリエチレンテレフタレート繊維(熱圧溶融温度200℃)
「PVA」:ポリビニールアルコール繊維
「PP−EvOH」:ポリプロピレン/エチレン−ビニルアルコール系分割型熱融着繊維
「PA」:フィブリル化パラ系全芳香族ポリアミド繊維
In Table 15, “types” of synthetic fibers, heat-sealing fibers and other fibers are as follows.
“PET”: Polyethylene terephthalate fiber “AA”: Acrylic fiber “PP”: Polypropylene fiber “PET / PEs-C”: Polyester core-sheath type heat-sealable fiber “PP / PE”: Polyolefin-type core-sheath type heat-seal Fiber “PET / EvOH”: Polyester / ethylene-vinyl alcohol-based core-sheath type heat-sealing fiber “PET-B1”: Unstretched polyethylene terephthalate fiber (melting point: 130 ° C.)
“PET-B2”: unstretched polyethylene terephthalate fiber (hot-pressure melting temperature 200 ° C.)
“PVA”: Polyvinyl alcohol fiber “PP-EvOH”: Polypropylene / ethylene-vinyl alcohol-based heat-bonding fiber “PA”: fibrillated para-type wholly aromatic polyamide fiber
<セパレータ>
実施例104~119
 抄造用スラリー1~16を円網抄紙機による湿式法を用いて抄き上げ、140℃のシリンダードライヤーによって、熱融着繊維を熱接着させて不織布を作製した。次に、スーパーカレンダー処理を行い、実施例104~119のリチウムイオン二次電池用セパレータとした。
<Separator>
Examples 104-119
Papermaking slurries 1 to 16 were made up by a wet method using a circular paper machine, and heat-bonded fibers were thermally bonded by a cylinder dryer at 140 ° C. to prepare a nonwoven fabric. Next, supercalender treatment was performed to obtain lithium ion secondary battery separators of Examples 104 to 119.
実施例120、121
 抄造用スラリー17、18を円網抄紙機による湿式法を用いて抄き上げ、140℃のシリンダードライヤーによって、熱融着繊維を熱接着させて不織布を作製した。次いで、200℃に加熱した直径1.2mの熱ロールに、速度20m/minで、不織布を接触させて熱処理した。次に、スーパーカレンダー処理を行い、実施例120、121のリチウムイオン二次電池用セパレータとした。
Examples 120 and 121
The papermaking slurries 17 and 18 were made up by a wet method using a circular paper machine, and a heat-bonded fiber was thermally bonded by a cylinder dryer at 140 ° C. to produce a nonwoven fabric. Next, the nonwoven fabric was brought into contact with a heat roll having a diameter of 1.2 m heated to 200 ° C. at a speed of 20 m / min and heat-treated. Next, a super calendar process was performed to obtain lithium ion secondary battery separators of Examples 120 and 121.
(実施例122~124、比較例24~29)
 抄造用スラリー19~27を円網抄紙機による湿式法を用いて抄き上げ、140℃のシリンダードライヤーによって、熱融着繊維を熱接着させて不織布を作製した。次に、スーパーカレンダー処理を行い、実施例122~124、比較例24~29のリチウムイオン二次電池用セパレータとした。
(Examples 122 to 124, Comparative Examples 24 to 29)
The papermaking slurries 19 to 27 were made up by a wet method using a circular net paper machine, and heat-bonded fibers were thermally bonded by a cylinder dryer at 140 ° C. to prepare a nonwoven fabric. Next, supercalender treatment was performed to obtain lithium ion secondary battery separators of Examples 122 to 124 and Comparative Examples 24 to 29.
(実施例125)
 抄造用スラリー28を円網抄紙機による湿式法を用いて抄き上げ、140℃のシリンダードライヤーによって乾燥して不織布を作製した。次に、200℃に加熱した直径1.2mの熱ロールを用い、圧力2MPa、速度10m/minで加圧熱処理し、熱融着繊維を熱接着させて、実施例125のリチウムイオン二次電池用セパレータとした。
(Example 125)
The papermaking slurry 28 was made up using a wet method using a circular paper machine and dried with a cylinder dryer at 140 ° C. to produce a nonwoven fabric. Next, using a heat roll having a diameter of 1.2 m heated to 200 ° C., pressure heat treatment was performed at a pressure of 2 MPa and a speed of 10 m / min to thermally bond the heat-fusible fiber, and the lithium ion secondary battery of Example 125 A separator was used.
(実施例126、比較例30、31)
 抄造用スラリー29~31を円網抄紙機による湿式法を用いて抄き上げ、140℃のシリンダードライヤーによって乾燥して不織布を作製した。次に、スーパーカレンダー処理を行い、実施例126、比較例30、31のリチウムイオン二次電池用セパレータとした。
(Example 126, Comparative Examples 30 and 31)
The papermaking slurries 29 to 31 were made up using a wet method with a circular paper machine and dried with a cylinder dryer at 140 ° C. to produce a nonwoven fabric. Next, supercalender treatment was performed to obtain lithium ion secondary battery separators of Example 126 and Comparative Examples 30 and 31.
<リチウムイオン二次電池I>
 負極1と正極1とを、それぞれ実施例104~126及び比較例24~31のセパレータが電極間に介するように巻回し、アルミニウム合金製の円筒型容器に収納して、リード体の溶接を行った。次いで、円筒型容器ごと110℃で24時間真空乾燥した。これを真空中で室温まで放冷した後、電解液を注入して密栓し、実施例102~124及び比較例24~31のリチウムイオン二次電池Iを作製した。電解液には、エチレンカーボネート30質量%、ジエチルカーボネート70質量%からなる混合溶媒に、LiPFを1.2Mとなるように溶解させたものを用いた。
<Lithium ion secondary battery I>
The negative electrode 1 and the positive electrode 1 are wound so that the separators of Examples 104 to 126 and Comparative Examples 24 to 31 are interposed between the electrodes, respectively, and housed in a cylindrical container made of aluminum alloy, and the lead body is welded. It was. Next, the whole cylindrical container was vacuum-dried at 110 ° C. for 24 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolytic solution was injected and sealed up, and lithium ion secondary batteries I of Examples 102 to 124 and Comparative Examples 24 to 31 were produced. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
<リチウムイオン二次電池J>
 実施例及び比較例のセパレータ、正極2、負極2の順に張り合わせ、リード線を外部に引き出し、電池本体部を作製した。次に、電池本体部を110℃で15時間真空乾燥し、これを真空中で室温まで放冷した後、アルミニウムのラミネートフィルム中に挿入し、1M−LiPF/EC+DEC(3:7vol%)からなる電解液を適当量注液、真空含浸後、余剰の電解液を除去密閉してリチウムイオン二次電池Jを作製した(電池容量=30mAh相当)。
<Lithium ion secondary battery J>
The separator of Example and Comparative Example, positive electrode 2 and negative electrode 2 were bonded together in this order, and the lead wires were drawn out to produce a battery body. Next, the battery main body was vacuum-dried at 110 ° C. for 15 hours, allowed to cool to room temperature in a vacuum, and then inserted into an aluminum laminate film. From 1M-LiPF 6 / EC + DEC (3: 7 vol%) An appropriate amount of the resulting electrolyte solution was poured and vacuum impregnated, and then the excess electrolyte solution was removed and sealed to prepare a lithium ion secondary battery J (battery capacity = 30 mAh equivalent).
 実施例及び比較例のセパレータ及びリチウムイオン二次電池について、坪量、厚み、最大ポア径、平均ポア径、セパレータ含水分率、セパレータ強度、内部抵抗、内部短絡不良率、放電容量、放電容量のバラツキ、容量維持率、電圧維持率の評価を行い、結果を表16及び表17に示した。 About separator and lithium ion secondary battery of Example and Comparative Example, basis weight, thickness, maximum pore diameter, average pore diameter, separator moisture content, separator strength, internal resistance, internal short circuit failure rate, discharge capacity, discharge capacity The variation, capacity maintenance rate, and voltage maintenance rate were evaluated, and the results are shown in Table 16 and Table 17.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
[内部抵抗]
 実施例及び比較例のリチウムイオン二次電池I各100個を1Cで30分間充電した後、交流1kHzで内部抵抗を測定し、各平均値を算出した。
[Internal resistance]
After charging 100 lithium ion secondary batteries I of Examples and Comparative Examples at 1 C for 30 minutes, the internal resistance was measured at 1 kHz AC, and each average value was calculated.
[内部短絡不良率]
 実施例及び比較例のリチウムイオン二次電池I各100個を用い、充放電電圧範囲2.8~4.2V、充放電電流1Cで、定電流充放電を500サイクル繰り返した際の内部短絡不良率を算出した。
[Internal short-circuit failure rate]
Internal short circuit failure when repeating 100 cycles of constant current charging / discharging in the charging / discharging voltage range of 2.8-4.2V, charging / discharging current 1C using 100 lithium ion secondary batteries I of Examples and Comparative Examples The rate was calculated.
[Cレート放電試験(放電容量)]
 実施例及び比較例のリチウムイオン二次電池J各50を用い、1Cで3サイクルエイジングを行った後、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、0.2C、0.5C、1C、3C、5Cと電流値を変えて、定電流放電試験(2.8Vカット)を行い、0.2Cと5C時の放電容量の各平均値を算出した。
[C rate discharge test (discharge capacity)]
Using 50 each of the lithium ion secondary batteries J of Examples and Comparative Examples, after performing 3 cycle aging at 1C, after performing constant current and constant voltage charging (1 / 10C cut) at 1C and 4.2V, 0.2C , 0.5C, 1C, 3C, and 5C, the constant current discharge test (2.8V cut) was performed, and the average values of the discharge capacities at 0.2C and 5C were calculated.
[Cレート放電試験(放電容量のバラツキ)]
 実施例及び比較例のリチウムイオン二次電池J各50個を用い、1Cで3サイクルエイジングを行った後、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、0.2C、0.5C、1C、3C、5Cと電流値を変えて定電流放電試験(2.8Vカット)を行い、0.2Cと5C時の放電容量を次の基準で評価した。
[C-rate discharge test (discharge capacity variation)]
Using 50 lithium ion secondary batteries J of Examples and Comparative Examples, after performing 3 cycle aging at 1C, constant current and constant voltage charging (1 / 10C cut) at 1C, 4.2V, and then 0. The constant current discharge test (2.8V cut) was performed by changing the current value to 2C, 0.5C, 1C, 3C, and 5C, and the discharge capacity at 0.2C and 5C was evaluated according to the following criteria.
 ◎:放電容量の差が、平均値に対して1.0%以下である。
 ○:放電容量の差が、平均値に対して1.0%を超えて2.5%以下である。
 △:放電容量の差が、平均値に対して2.5%を超えて5.0%以下である。
 ×:放電容量の差が、平均値に対して5.0%を超えている。
A: The difference in discharge capacity is 1.0% or less with respect to the average value.
◯: The difference in discharge capacity is more than 1.0% and 2.5% or less with respect to the average value.
(Triangle | delta): The difference of discharge capacity exceeds 2.5% with respect to an average value, and is 5.0% or less.
X: The difference of discharge capacity is over 5.0% with respect to the average value.
[サイクル特性(100サイクル後の容量維持率)]
 実施例及び比較例のリチウムイオン二次電池J20個を用い、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、1Cの条件で定電流放電試験(2.8Vカット)を行い、100サイクル後での容量維持率(100サイクル後/1サイクル容量)の平均値を算出した。
[Cycle characteristics (capacity retention rate after 100 cycles)]
Using 20 lithium ion secondary batteries of Examples and Comparative Examples, constant current and constant voltage charge (1 / 10C cut) at 1C and 4.2V, and then constant current discharge test (2.8V cut) under the condition of 1C And the average value of the capacity retention rate after 100 cycles (after 100 cycles / 1 cycle capacity) was calculated.
[電圧維持率]
 実施例及び比較例のリチウムイオン二次電池J50個を用い、1Cで3サイクルエイジングを行った後、0.2C、4.2Vで定電流定電圧充電(1/10Cカット)したリチウムイオン二次電池について、60℃に設定した恒温槽内に30日間保存した後、リチウムイオン二次電池の電圧を測定し、保存前後の電圧維持率の平均値を算出した。電圧維持率を次の基準で評価した。
[Voltage maintenance ratio]
Using 50 lithium ion secondary batteries of Examples and Comparative Examples, after performing 3 cycle aging at 1C, the lithium ion secondary was charged with constant current and constant voltage (1 / 10C cut) at 0.2C and 4.2V. The battery was stored in a thermostat set at 60 ° C. for 30 days, then the voltage of the lithium ion secondary battery was measured, and the average value of the voltage maintenance ratio before and after storage was calculated. The voltage maintenance rate was evaluated according to the following criteria.
 ○:電圧維持率が、95%以上である。
 △:電圧維持率が、95%未満で90%以上である。
 ×:電圧維持率が、90%未満である。
○: The voltage maintenance rate is 95% or more.
Δ: The voltage maintenance ratio is less than 95% and 90% or more.
X: The voltage maintenance rate is less than 90%.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表16に示したとおり、実施例104~121のリチウムイオン二次電池用セパレータは、変法濾水度0~250mlの溶剤紡糸セルロース繊維を10~90質量%、合成繊維を10~90質量%含有していることから含水分率が低く、合成繊維の少なくとも1種として、熱融着成分及び非熱融着成分からなる芯鞘型熱融着繊維を含有しているため、セパレータ強度が強く、優れていた。 As shown in Table 16, the separators for lithium ion secondary batteries of Examples 104 to 121 were 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and 10 to 90% by mass of synthetic fibers. Since it contains a low moisture content, it contains a core-sheath type heat-sealing fiber composed of a heat-sealing component and a non-heat-sealing component as at least one synthetic fiber, so the separator strength is strong. Was excellent.
 即ち、実施例104~121のリチウムイオン二次電池用セパレータは、合成繊維を10~90質量%含有しているため、比較例31の溶剤紡糸セルロース繊維と麻繊維からなる紙製セパレータに比べ、含水分率を低く抑えることができた。さらに、繊維同士が絡みやすく繊維ネットワークが形成され、それを芯鞘型熱融着繊維で強固に熱接着するため、セパレータ強度は強くなった。 That is, since the separators for lithium ion secondary batteries of Examples 104 to 121 contain 10 to 90% by mass of synthetic fiber, compared with the paper separator made of solvent-spun cellulose fiber and hemp fiber of Comparative Example 31, The moisture content could be kept low. Furthermore, the fibers are easily entangled with each other, and a fiber network is formed. The fiber is firmly heat-bonded with the core-sheath type heat-sealing fiber, so that the separator strength is increased.
 また、実施例110及び111、112の比較から、芯部がポリエチレンテレフタレート、鞘部がポリエステル共重合体である芯鞘型熱融着繊維を用いると、セパレータ強度が強くなる傾向が見られた。熱処理を施した実施例120及び121のリチウムイオン二次電池用セパレータは、さらに強度が強くなる傾向が見られた。実施例122~125のリチウムイオン二次電池用セパレータは、芯鞘型以外の熱融着繊維を用いたため、実施例124のリチウムイオン二次電池用セパレータは、芯鞘型熱融着繊維を含有しないため、セパレータ強度が若干弱くなった。 In addition, from the comparison of Examples 110, 111, and 112, when using a core-sheath type heat-bonded fiber in which the core part is polyethylene terephthalate and the sheath part is a polyester copolymer, the separator strength tends to increase. The separators for lithium ion secondary batteries of Examples 120 and 121 subjected to the heat treatment tended to have higher strength. Since the separators for lithium ion secondary batteries of Examples 122 to 125 used heat fusion fibers other than the core-sheath type, the separators for lithium ion secondary batteries of Example 124 contained core-sheath type heat fusion fibers. As a result, the separator strength was slightly weakened.
 一方、比較例24及び25のリチウムイオン二次電池用セパレータは、セパレータにおける変法濾水度0~250mlの溶剤紡糸セルロース繊維の含有率が90質量%より多く、セパレータに含有する合成繊維が10質量%より少ないため、含水分率が高く、セパレータ強度は弱くなった。比較例31のリチウムイオン二次電池用セパレータは、セパレータにおける合成繊維の含有率が10質量%より少ないため、セパレータ強度は弱くなった。 On the other hand, in the separators for lithium ion secondary batteries of Comparative Examples 24 and 25, the content of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml in the separator is more than 90% by mass, and the separator contains 10 synthetic fibers. Since it is less than mass%, the moisture content is high and the separator strength is weak. Since the separator for the lithium ion secondary battery of Comparative Example 31 had a synthetic fiber content of less than 10% by mass in the separator, the separator strength was weak.
 表17に示したとおり、実施例104~121のリチウムイオン二次電池は、変法濾水度0~250mlの溶剤紡糸セルロース繊維を10~90質量%、合成繊維を10~90質量%含有し、合成繊維の少なくとも1種として、熱融着成分及び非熱融着成分からなる芯鞘型熱融着繊維を含有する多孔質シートからなるセパレータを用いているため、内部抵抗、内部短絡不良率、特に高レートでの放電特性及びそのバラツキ、サイクル特性、電圧維持率特性に優れていた。 As shown in Table 17, the lithium ion secondary batteries of Examples 104 to 121 contain 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and 10 to 90% by mass of synthetic fibers. Since a separator made of a porous sheet containing a core-sheath-type heat-sealing fiber composed of a heat-sealing component and a non-heat-sealing component is used as at least one kind of synthetic fiber, internal resistance, internal short-circuit failure rate In particular, the discharge characteristics at a high rate and its variation, cycle characteristics, and voltage maintenance ratio characteristics were excellent.
 即ち、実施例104~121のリチウムイオン二次電池は、セパレータが変法濾水度0~250mlの溶剤紡糸セルロース繊維を10~90質量%含有しているため、電解液の保液性が良く、イオン伝導性を良好なものにすることができることから、低い内部抵抗を示すと共に、特に高レートでの放電特性、サイクル特性に優れていた。一方、比較例26及び27のリチウムイオン二次電池は、変法濾水度0~250mlの溶剤紡糸セルロース繊維の含有率が10質量%より少ないため、比較例28のリチウムイオン二次電池は、セパレータが変法濾水度0~250mlの溶剤紡糸セルロース繊維を含有していないため、電解液の保液性に劣り、内部抵抗が高い値を示した。 That is, in the lithium ion secondary batteries of Examples 104 to 121, since the separator contains 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, the electrolyte solution retainability is good. Since the ion conductivity can be improved, the internal resistance is low, and the discharge characteristics and the cycle characteristics are particularly excellent at a high rate. On the other hand, the lithium ion secondary batteries of Comparative Examples 26 and 27 have a content of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml of less than 10% by mass. Therefore, the lithium ion secondary battery of Comparative Example 28 is Since the separator did not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, the electrolyte solution was inferior in liquid retention and had a high internal resistance.
 実施例104~121のリチウムイオン二次電池は、セパレータに変法濾水度0~250mlの溶剤紡糸セルロース繊維を10~90質量%含有しているため、セパレータを緻密なものにすることができることから、内部短絡不良率、放電容量のバラツキが低く、優れていた。一方、比較例26及び27のリチウムイオン二次電池は、セパレータにおける変法濾水度0~250mlの溶剤紡糸セルロース繊維の含有率が10質量%より少なく、セパレータの緻密性が不十分であるため、内部短絡不良率、放電容量のバラツキが高くなった。比較例28のリチウムイオン二次電池は、セパレータが変法濾水度0~250mlの溶剤紡糸セルロース繊維を含有していないため、セパレータの緻密性が不十分であり、内部短絡不良率、放電容量のバラツキが高くなった。比較例29のリチウムイオン二次電池は、セパレータにおける溶剤紡糸セルロース繊維の変法濾水度が0~250mlより大きく、セパレータの緻密性が不十分であるため、内部短絡不良率、放電容量のバラツキが若干高くなった。 Since the lithium ion secondary batteries of Examples 104 to 121 contain 10 to 90% by mass of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml in the separator, the separator can be made dense. Therefore, the internal short circuit failure rate and the variation in discharge capacity were low and excellent. On the other hand, in the lithium ion secondary batteries of Comparative Examples 26 and 27, the content of the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the separator is less than 10% by mass, and the separator is insufficiently dense. , Internal short-circuit defect rate and discharge capacity variation increased. In the lithium ion secondary battery of Comparative Example 28, since the separator does not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, the separator is insufficiently dense, the internal short circuit failure rate, the discharge capacity The variation of was high. In the lithium ion secondary battery of Comparative Example 29, the modified drainage degree of the solvent-spun cellulose fiber in the separator is larger than 0 to 250 ml, and the separator is insufficiently dense. Was slightly higher.
 実施例104~121のリチウムイオン二次電池は、合成繊維を10~90質量%含有し、合成繊維の少なくとも1種として、熱融着成分及び非熱融着成分からなる芯鞘型熱融着繊維を含有し、繊維ネットワークの緻密な構造を損なうことなく繊維同士を熱接着させるため、低い内部抵抗を維持すると共に、高い電圧維持率を示した。一方、実施例122~125のリチウムイオン二次電池は、セパレータに芯鞘型熱融着繊維以外の熱融着繊維を用いているため、熱接着の際に熱融着繊維の形状が喪失することにより、セパレータの多孔質性が局部的に阻害されるため、内部抵抗の値が若干高く、高レートの放電容量が若干低い値を示した。実施例126のリチウムイオン二次電池は、セパレータに芯鞘型熱融着繊維を含有しないため、電圧維持率が若干低い値を示す結果となった。 The lithium ion secondary batteries of Examples 104 to 121 contain 10 to 90% by mass of a synthetic fiber, and are core-sheath type heat fusion made of at least one synthetic fiber and comprising a heat fusion component and a non-heat fusion component. In order to heat-bond the fibers together without impairing the dense structure of the fiber network, the fibers had a low internal resistance and a high voltage retention rate. On the other hand, the lithium ion secondary batteries of Examples 122 to 125 use a heat-sealable fiber other than the core-sheath-type heat-sealable fiber for the separator, so that the shape of the heat-sealable fiber is lost during thermal bonding. As a result, the porosity of the separator was locally obstructed, so that the value of the internal resistance was slightly high and the discharge rate at a high rate was slightly low. Since the lithium ion secondary battery of Example 126 did not contain the core-sheath type fusion-bonded fiber in the separator, the voltage maintenance rate was slightly low.
≪実施例127~132、比較例32~34≫ << Examples 127 to 132, Comparative Examples 32 to 34 >>
<繊維A18>
 リファイナーを用いて、平均繊維径10μm、繊維長4mmの溶剤紡糸セルロース繊維を処理し、変法濾水度125mlの溶剤紡糸セルロース繊維を繊維A18とした。
<Fiber A18>
Using a refiner, solvent-spun cellulose fibers having an average fiber diameter of 10 μm and a fiber length of 4 mm were treated, and solvent-spun cellulose fibers having a modified freeness of 125 ml were designated as fiber A18.
<繊維A19>
 リファイナーを用いて、平均繊維径10μm、繊維長10mmの溶剤紡糸セルロース繊維を処理し、繊維径2.5μm、繊維長6mmの溶剤紡糸セルロース繊維を繊維A19とした。
<Fiber A19>
Using a refiner, solvent-spun cellulose fibers having an average fiber diameter of 10 μm and a fiber length of 10 mm were treated, and solvent-spun cellulose fibers having a fiber diameter of 2.5 μm and a fiber length of 6 mm were designated as fiber A19.
<合成繊維B9>
 繊維径2.5μm、繊維長6mmのポリエチレンテレフタレート繊維を合成繊維B9とした。
<Synthetic fiber B9>
Polyethylene terephthalate fiber having a fiber diameter of 2.5 μm and a fiber length of 6 mm was designated as synthetic fiber B9.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
<セパレータ>
 表18に示した原料と含有量に従って、抄紙用スラリーを調製し、円網抄紙機を用いて湿式抄紙し、実施例127~132及び比較例32~34のセパレータを作製した。厚みは室温でカレンダー処理して調整した。
<Separator>
Papermaking slurries were prepared according to the raw materials and contents shown in Table 18, and wet papermaking was performed using a circular paper machine to produce separators of Examples 127 to 132 and Comparative Examples 32 to 34. The thickness was adjusted by calendaring at room temperature.
<リチウムイオン二次電池K>
 負極1と正極1とを、それぞれ実施例及び比較例のセパレータが電極間に介するように巻回し、アルミニウム合金製の円筒型容器に収納して、リード体の溶接を行った。次いで、円筒型容器ごと110℃で15時間真空乾燥した。これを真空中で室温まで放冷した後、電解液を注入して密栓し、実施例及び比較例のリチウムイオン二次電池Kを作製した。電解液には、エチレンカーボネート30質量%、ジエチルカーボネート70質量%からなる混合溶媒に、LiPFを1.2Mとなるように溶解させたものを用いた。
<Lithium ion secondary battery K>
The negative electrode 1 and the positive electrode 1 were wound so that the separators of Examples and Comparative Examples were interposed between the electrodes, respectively, and housed in a cylindrical container made of aluminum alloy, and the lead body was welded. Next, the whole cylindrical container was vacuum-dried at 110 ° C. for 15 hours. This was allowed to cool to room temperature in a vacuum, and then an electrolytic solution was injected and sealed, to prepare lithium ion secondary batteries K of Examples and Comparative Examples. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solvent composed of 30% by mass of ethylene carbonate and 70% by mass of diethyl carbonate so as to be 1.2M was used.
<リチウムイオン二次電池L>
 実施例127~132及び比較例33~34のセパレータ、正極2、負極2の順に、A層が負極側に、B層が正極側になるように貼り合わせ、リード線を外部に引き出し、電池本体部を作製した。次に、電池本体部を140℃で10時間真空乾燥し、これを真空中で室温まで放冷した後、アルミニウムのラミネートフィルム中に挿入し、1M−LiPF6/EC+DEC(3:7vol%)からなる電解液を適当量注液、真空含浸後、余剰の電解液を除去密閉してリチウムイオン二次電池Lを作製した(電池容量=30mAh相当)。
<Lithium ion secondary battery L>
The separators of Examples 127 to 132 and Comparative Examples 33 to 34 were bonded together in order of the positive electrode 2 and the negative electrode 2 so that the A layer was on the negative electrode side and the B layer was on the positive electrode side. Part was produced. Next, the battery body was vacuum-dried at 140 ° C. for 10 hours, allowed to cool to room temperature in a vacuum, and then inserted into an aluminum laminate film to be composed of 1M-LiPF6 / EC + DEC (3: 7 vol%) An appropriate amount of electrolyte solution was poured and vacuum impregnated, and then the excess electrolyte solution was removed and sealed to produce a lithium ion secondary battery L (battery capacity = 30 mAh equivalent).
 実施例及び比較例のセパレータ並びにリチウムイオン二次電池について、坪量、厚み、最大ポア径、平均ポア径、セパレータ含水分率、セパレータ強度、内部抵抗、内部短絡不良率、放電容量、放電容量のバラツキ、容量維持率の評価を行い、結果を表19に示した。 For the separators and lithium ion secondary batteries of Examples and Comparative Examples, the basis weight, thickness, maximum pore diameter, average pore diameter, separator moisture content, separator strength, internal resistance, internal short circuit failure rate, discharge capacity, discharge capacity The variation and capacity retention rate were evaluated, and the results are shown in Table 19.
[内部抵抗]
 実施例及び比較例のリチウムイオン二次電池K各100個を1Cで30分間充電した後、交流1kHzで内部抵抗を測定し、各平均値を算出した。
[Internal resistance]
After charging 100 lithium ion secondary batteries K of Examples and Comparative Examples at 1 C for 30 minutes, the internal resistance was measured at AC 1 kHz, and each average value was calculated.
[内部短絡不良率]
 実施例及び比較例のリチウムイオン二次電池K各100個を用い、充放電電圧範囲2.8~4.2V、充放電電流1Cで、定電流充放電を500サイクル繰り返した際の内部短絡不良率を算出した。
[Internal short-circuit failure rate]
Internal short circuit failure when 100 cycles of constant current charge / discharge were repeated with charge / discharge voltage range of 2.8-4.2V, charge / discharge current of 1C using 100 lithium ion secondary batteries K of Examples and Comparative Examples The rate was calculated.
[Cレート放電試験(放電容量)]
 実施例及び比較例のリチウムイオン二次電池L各50個を用い、1Cで3サイクルエイジングを行った後、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、0.2C、0.5C、1C、3C、5Cと電流値を変えて、定電流放電試験(2.8Vカット)を行い、0.2Cと5C時の放電容量の各平均値を算出した。
[C rate discharge test (discharge capacity)]
Using 50 each of the lithium ion secondary batteries L of Examples and Comparative Examples, after performing 3 cycle aging at 1C, charging at constant current and constant voltage at 1C and 4.2V (1 / 10C cut), then 0. The constant current discharge test (2.8V cut) was performed by changing the current values to 2C, 0.5C, 1C, 3C, and 5C, and the average values of the discharge capacities at 0.2C and 5C were calculated.
[Cレート放電試験(放電容量のバラツキ)]
 実施例及び比較例のリチウムイオン二次電池L各50個を用い、1Cで3サイクルエイジングを行った後、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、0.2C、0.5C、1C、3C、5Cと電流値を変えて定電流放電試験(2.8Vカット)を行い、0.2Cと5C時の放電容量を次の基準で評価した。
[C-rate discharge test (discharge capacity variation)]
Using 50 each of the lithium ion secondary batteries L of Examples and Comparative Examples, after performing 3 cycle aging at 1C, charging at constant current and constant voltage at 1C and 4.2V (1 / 10C cut), then 0. The constant current discharge test (2.8V cut) was performed by changing the current value to 2C, 0.5C, 1C, 3C, and 5C, and the discharge capacity at 0.2C and 5C was evaluated according to the following criteria.
 ◎:放電容量の差が、平均値に対して1.0%以下である。
 ○:放電容量の差が、平均値に対して1.0%を超えて2.5%以下である。
 △:放電容量の差が、平均値に対して2.5%を超えて5.0%以下である。
 ×:放電容量の差が、平均値に対して5.0%を超えている。
A: The difference in discharge capacity is 1.0% or less with respect to the average value.
◯: The difference in discharge capacity is more than 1.0% and 2.5% or less with respect to the average value.
(Triangle | delta): The difference of discharge capacity exceeds 2.5% with respect to an average value, and is 5.0% or less.
X: The difference of discharge capacity is over 5.0% with respect to the average value.
[サイクル特性(100サイクル後の容量維持率)]
 実施例及び比較例のリチウムイオン二次電池L20個を用い、1C、4.2Vで定電流定電圧充電(1/10Cカット)した後、1Cの条件で定電流放電試験(2.8Vカット)を行い、100サイクル後での容量維持率(100サイクル後/1サイクル容量)の平均値を算出した。
[Cycle characteristics (capacity retention rate after 100 cycles)]
Using 20 lithium ion secondary batteries of Examples and Comparative Examples, constant current and constant voltage charge (1 / 10C cut) at 1C and 4.2V, and then constant current discharge test (2.8V cut) under the condition of 1C And the average value of the capacity retention rate after 100 cycles (after 100 cycles / 1 cycle capacity) was calculated.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表19に示したとおり、実施例127と実施例132を比較すると、実施例127のリチウムイオン二次電池用セパレータは、二層構造であり、各層に変法濾水度125mlの溶剤紡糸セルロース繊維を全繊維あたり60質量%、合成繊維を全繊維あたり40質量%含有しているため、5C放電容量及び容量維持率に優れていた。 As shown in Table 19, when Example 127 and Example 132 are compared, the separator for the lithium ion secondary battery of Example 127 has a two-layer structure, and a solvent-spun cellulose fiber having a modified freeness of 125 ml in each layer. Is 60% by mass per total fiber and 40% by mass of synthetic fiber per total fiber, the 5C discharge capacity and capacity retention rate were excellent.
 実施例128のリチウムイオン二次電池用セパレータは、二層構造であり、A層は変法濾水度125mlの溶剤紡糸セルロース繊維を全繊維あたり6質量%、合成繊維を全繊維あたり40質量%含有しており、B層は変法濾水度125mlの溶剤紡糸セルロース繊維を全繊維あたり100質量%含有しているため、実施例125に比較して、セパレータ強度が若干劣るものの、最大ポア径が小さくなり、内部抵抗が若干改善されていた。 The separator for the lithium ion secondary battery of Example 128 has a two-layer structure, and the layer A is 6% by mass of solvent-spun cellulose fiber having a modified freeness of 125 ml and 6% by mass of synthetic fiber per total fiber. The layer B contains solvent-spun cellulose fibers having a modified freeness of 125 ml of 100% by mass per total fiber, so that the separator has a slightly lower separator strength than the example 125, but the maximum pore diameter The internal resistance was slightly improved.
 実施例129のリチウムイオン二次電池用セパレータは、二層構造であり、A層は変法濾水度125mlの溶剤紡糸セルロース繊維を全繊維あたり60質量%、合成繊維を全繊維あたり40質量%含有しており、B層は変法濾水度125mlの溶剤紡糸セルロース繊維を全繊維あたり90質量%、合成繊維を全繊維あたり40質量%含有しているため、実施例125に比較して、セパレータ強度が若干劣るものの、最大ポア径が小さくなり、内部抵抗が若干改善されていた。 The separator for the lithium ion secondary battery of Example 129 has a two-layer structure, and the layer A is a solvent-spun cellulose fiber having a modified freeness of 125 ml of 60% by mass per total fiber, and the synthetic fiber is 40% by mass per total fiber. The layer B contains 90 mass% of solvent-spun cellulose fibers having a modified freeness of 125 ml per total fiber, and 40 mass% of synthetic fibers per total fiber. Although the separator strength was slightly inferior, the maximum pore diameter was reduced and the internal resistance was slightly improved.
 実施例130のリチウムイオン二次電池用セパレータは、二層構造であり、A層は変法濾水度125mlの溶剤紡糸セルロース繊維を全繊維あたり60質量%、合成繊維を全繊維あたり40質量%含有しており、B層は変法濾水度125mlの溶剤紡糸セルロース繊維を全繊維あたり10質量%、合成繊維を全繊維あたり90質量%含有しているため、実施例125に比較して、セパレータ強度が若干改善されるものの、5C放電容量及び容量維持率が若干劣っていた。 The separator for the lithium ion secondary battery of Example 130 has a two-layer structure, and the layer A is 60% by mass of solvent-spun cellulose fibers having a modified freeness of 125 ml and 60% by mass of synthetic fibers per total fiber. The layer B contains solvent-spun cellulose fibers having a modified freeness of 125 ml of 10% by mass per total fiber and 90% by mass of synthetic fibers per total fiber, compared to Example 125, Although the separator strength was slightly improved, the 5C discharge capacity and the capacity retention rate were slightly inferior.
 実施例131のリチウムイオン二次電池用セパレータは、二層構造であり、A層は変法濾水度125mlの溶剤紡糸セルロース繊維を全繊維あたり60質量%、合成繊維を全繊維あたり40質量%含有しており、B層は合成繊維を全繊維あたり100質量%含有しているため、実施例125に比較して、セパレータ強度が若干改善されるものの、5C放電容量及び容量維持率が若干劣っていた。 The separator for the lithium ion secondary battery of Example 131 has a two-layer structure, and the layer A is 60% by mass of solvent-spun cellulose fibers having a modified freeness of 125 ml and 60% by mass of synthetic fibers per total fiber. Since the layer B contains 100% by mass of synthetic fiber per total fiber, the separator strength is slightly improved as compared with Example 125, but the 5C discharge capacity and capacity retention rate are slightly inferior. It was.
 比較例32のリチウムイオン二次電池用セパレータは、二層構造であるものの、セパレータにおける変法濾水度0~250mlの溶剤紡糸セルロース繊維の含有率が全繊維あたり90質量%より多く、合成繊維が全繊維あたり10質量%より少ないため、含水分率が高く、セパレータ強度は弱くなった。比較例33のリチウムイオン二次電池用セパレータは、二層構造であるものの、セパレータにおける変法濾水度0~250mlの溶剤紡糸セルロース繊維の含有率が全繊維あたり10質量%より少なく、合成繊維が全繊維あたり90質量%より多いため、最大ポア径が大きくなり、内部短絡不良率が極端に増加した。比較例34のリチウムイオン二次電池用セパレータは、二層構造であるものの、繊維径2.5μm、繊維長6mmの溶剤紡糸セルロース繊維を使用しているため、内部短絡不良率が極端に増加し、高レートでの放電容量も大きく劣った。 Although the separator for the lithium ion secondary battery of Comparative Example 32 has a two-layer structure, the content of the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the separator is more than 90% by mass, and the synthetic fiber Is less than 10% by mass per total fiber, the moisture content is high and the separator strength is weak. Although the separator for the lithium ion secondary battery of Comparative Example 33 has a two-layer structure, the content of the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the separator is less than 10% by mass, and the synthetic fiber Is more than 90% by mass per total fiber, the maximum pore diameter is increased, and the internal short circuit defect rate is extremely increased. Although the lithium ion secondary battery separator of Comparative Example 34 has a two-layer structure, it uses a solvent-spun cellulose fiber with a fiber diameter of 2.5 μm and a fiber length of 6 mm. Also, the discharge capacity at high rate was greatly inferior.
 本発明の活用例としては、リチウムイオン二次電池用セパレータ、リチウムイオンポリマー二次電池用セパレータが好適である。 As a utilization example of the present invention, a lithium ion secondary battery separator and a lithium ion polymer secondary battery separator are suitable.

Claims (19)

  1.  ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度が0~250mlの溶剤紡糸セルロース繊維を10~90質量%、合成繊維を10~90質量%含有する多孔質シートからなるリチウムイオン二次電池用セパレータ。 A solvent having a modified freeness of 0 to 250 ml measured according to JIS P8121, except that an 80-mesh wire mesh with a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as the sieve plate, and the sample concentration is 0.1%. A separator for a lithium ion secondary battery comprising a porous sheet containing 10 to 90% by mass of a spun cellulose fiber and 10 to 90% by mass of a synthetic fiber.
  2.  溶剤紡糸セルロース繊維の長さ加重平均繊維長が0.20~2.00mmである請求項1記載のリチウムイオン二次電池用セパレータ。 2. The separator for a lithium ion secondary battery according to claim 1, wherein the solvent-spun cellulose fiber has a length weighted average fiber length of 0.20 to 2.00 mm.
  3.  溶剤紡糸セルロース繊維が、その長さ加重繊維長分布ヒストグラムにおいて、0.00~1.00mmの間に最大頻度ピークを有し、1.00mm以上の長さ加重繊維長を有する繊維の割合が10%以上である請求項1又は2記載のリチウムイオン二次電池用セパレータ。 The solvent-spun cellulose fiber has a maximum frequency peak between 0.00 and 1.00 mm in the length-weighted fiber length distribution histogram, and the ratio of fibers having a length-weighted fiber length of 1.00 mm or more is 10 The separator for a lithium ion secondary battery according to claim 1 or 2, wherein the separator is at least%.
  4.  溶剤紡糸セルロース繊維の長さ加重繊維長分布ヒストグラムにおいて、1.00~2.00mmの間における0.05mm毎の長さ加重繊維長を有する繊維の割合の傾きが−3.0以上−0.5以下である請求項3記載のリチウムイオン二次電池用セパレータ。 In the length-weighted fiber length distribution histogram of solvent-spun cellulose fibers, the slope of the ratio of fibers having a length-weighted fiber length of 0.05 mm between 1.00 and 2.00 mm is −3.0 or more and −0. The separator for a lithium ion secondary battery according to claim 3, which is 5 or less.
  5.  溶剤紡糸セルロース繊維が、その長さ加重繊維長分布ヒストグラムにおいて、0.00~1.00mmの間に最大頻度ピークを有し、1.00mm以上の長さ加重繊維長を有する繊維の割合が50%以上である請求項1又は2記載のリチウムイオン二次電池用セパレータ。 The solvent-spun cellulose fiber has a maximum frequency peak between 0.00 and 1.00 mm in the length-weighted fiber length distribution histogram, and the proportion of fibers having a length-weighted fiber length of 1.00 mm or more is 50. The separator for a lithium ion secondary battery according to claim 1 or 2, wherein the separator is at least%.
  6.  溶剤紡糸セルロース繊維の長さ加重繊維長分布ヒストグラムにおいて、最大頻度ピーク以外に1.50~3.50mmの間にピークを有する請求項5記載のリチウムイオン二次電池用セパレータ。 6. The separator for a lithium ion secondary battery according to claim 5, wherein the length-weighted fiber length distribution histogram of the solvent-spun cellulose fiber has a peak between 1.50 and 3.50 mm in addition to the maximum frequency peak.
  7.  溶剤紡糸セルロース繊維の長さ加重平均繊維長が0.50~1.25mmであり、平均カール度が25以下である請求項1又は2記載のリチウムイオン二次電池用セパレータ。 The separator for a lithium ion secondary battery according to claim 1 or 2, wherein the solvent-spun cellulose fiber has a length weighted average fiber length of 0.50 to 1.25 mm and an average curl degree of 25 or less.
  8.  さらに、多孔質シートが、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度0~400mlのフィブリル化天然セルロース繊維を20質量%以下含有してなる請求項1~7のいずれかに記載のリチウムイオン二次電池用セパレータ。 Furthermore, the modified drainage measured according to JIS P8121 except that the porous sheet uses an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm as a sieve plate, and the sample concentration is 0.1%. The separator for a lithium ion secondary battery according to any one of claims 1 to 7, comprising 20% by mass or less of fibrillated natural cellulose fibers having a degree of 0 to 400 ml.
  9.  さらに、多孔質シートが、カルボキシメチルセルロースを含有してなる請求項1記載のリチウムイオン二次電池用セパレータ。 Furthermore, the separator for lithium ion secondary batteries according to claim 1, wherein the porous sheet contains carboxymethyl cellulose.
  10.  多孔質シートが、合成繊維の少なくとも1種として、熱融着成分及び非熱融着成分からなる芯鞘型熱融着繊維を含有してなる請求項1記載のリチウムイオン二次電池用セパレータ。 The separator for a lithium ion secondary battery according to claim 1, wherein the porous sheet contains a core-sheath type heat fusion fiber comprising a heat fusion component and a non-heat fusion component as at least one synthetic fiber.
  11.  芯鞘型熱融着繊維の芯部がポリエチレンテレフタレートであり、鞘部がポリエステル共重合体である請求項10に記載のリチウムイオン二次電池用セパレータ。 The separator for a lithium ion secondary battery according to claim 10, wherein the core portion of the core-sheath type heat-sealing fiber is polyethylene terephthalate, and the sheath portion is a polyester copolymer.
  12.  多孔質シートが熱処理されてなる請求項10又は11記載のリチウムイオン二次電池用セパレータ。 The separator for a lithium ion secondary battery according to claim 10 or 11, wherein the porous sheet is heat-treated.
  13.  多孔質シートの平均ポア径が0.10μm以上、かつ、最大ポア径が6.0μm以下である請求項1~12のいずれかに記載のリチウムイオン二次電池用セパレータ。 The separator for a lithium ion secondary battery according to any one of claims 1 to 12, wherein the porous sheet has an average pore diameter of 0.10 µm or more and a maximum pore diameter of 6.0 µm or less.
  14.  多孔質シートにおいて、JIS B7502に規定された方法により測定した値(5N荷重時の外側マイクロメーターにより測定されたシートの厚み)が6~50μmである請求項1~12のいずれかに記載のリチウムイオン二次電池用セパレータ。 The lithium sheet according to any one of claims 1 to 12, wherein the porous sheet has a value (the thickness of the sheet measured by an outer micrometer at a load of 5 N) measured by a method defined in JIS B7502 of 6 to 50 µm. Separator for ion secondary battery.
  15.  多孔質シートの坪量が5~40g/mである請求項1~12のいずれかに記載のリチウムイオン二次電池用セパレータ。 Lithium-ion secondary battery separator according to any one of claims 1 to 12 basis weight of the porous sheet is 5 ~ 40g / m 2.
  16.  合成繊維を構成する合成樹脂が、ポリエステル系樹脂、アクリル系樹脂、ポリオレフィン系樹脂から選ばれる少なくとも1種である請求項1~15のいずれかに記載のリチウムイオン二次電池用セパレータ。 The separator for a lithium ion secondary battery according to any one of claims 1 to 15, wherein the synthetic resin constituting the synthetic fiber is at least one selected from a polyester resin, an acrylic resin, and a polyolefin resin.
  17.  合成繊維の平均繊維径が0.1~20μmである請求項1~16のいずれかに記載のリチウムイオン二次電池用セパレータ。 The separator for a lithium ion secondary battery according to any one of claims 1 to 16, wherein the synthetic fiber has an average fiber diameter of 0.1 to 20 µm.
  18.  多孔質シートが多層構造からなり、少なくとも二層以上が変法濾水度0~250mlの溶剤紡糸セルロース繊維を必須成分として含有した層である請求項1に記載のリチウムイオン二次電池用セパレータ。 The separator for a lithium ion secondary battery according to claim 1, wherein the porous sheet has a multilayer structure, and at least two layers are layers containing solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml as essential components.
  19.  請求項1~18のいずれかに記載のリチウムイオン二次電池用セパレータを用いてなるリチウムイオン二次電池。 A lithium ion secondary battery using the lithium ion secondary battery separator according to any one of claims 1 to 18.
PCT/JP2011/066172 2010-07-14 2011-07-08 Separator for lithium ion secondary battery and lithium ion secondary battery using same WO2012008559A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180034584.9A CN102986060B (en) 2010-07-14 2011-07-08 Separator for lithium ion secondary battery and use its lithium rechargeable battery
JP2012524600A JP5767222B2 (en) 2010-07-14 2011-07-08 Lithium ion secondary battery separator and lithium ion secondary battery using the same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2010159777 2010-07-14
JP2010-159777 2010-07-14
JP2010225508 2010-10-05
JP2010-225508 2010-10-05
JP2011-035347 2011-02-22
JP2011035347 2011-02-22
JP2011-062496 2011-03-22
JP2011062496 2011-03-22
JP2011-071492 2011-03-29
JP2011071492 2011-03-29
JP2011-082636 2011-04-04
JP2011082636 2011-04-04

Publications (1)

Publication Number Publication Date
WO2012008559A1 true WO2012008559A1 (en) 2012-01-19

Family

ID=45469554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066172 WO2012008559A1 (en) 2010-07-14 2011-07-08 Separator for lithium ion secondary battery and lithium ion secondary battery using same

Country Status (3)

Country Link
JP (1) JP5767222B2 (en)
CN (1) CN102986060B (en)
WO (1) WO2012008559A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179526A1 (en) * 2012-05-30 2013-12-05 パナソニック株式会社 Cell, cell separator, and method for production of cell separator
JP2013246926A (en) * 2012-05-24 2013-12-09 Mitsubishi Paper Mills Ltd Separator for electrochemical element and electrochemical element including the same
JP2014026877A (en) * 2012-07-27 2014-02-06 Nippon Kodoshi Corp Alkali battery separator, and alkali battery
JP2014035850A (en) * 2012-08-08 2014-02-24 Mitsubishi Paper Mills Ltd Separator for lithium secondary battery and lithium secondary battery
JP2014073432A (en) * 2012-10-03 2014-04-24 Mitsubishi Paper Mills Ltd Filter medium
JP2014175232A (en) * 2013-03-12 2014-09-22 Mitsubishi Paper Mills Ltd Cell separator
CN104067410A (en) * 2012-02-09 2014-09-24 三菱制纸株式会社 Base for lithium ion secondary battery separators, method for producing base for lithium ion secondary battery separators, and lithium ion secondary battery separator
JP2015060702A (en) * 2013-09-18 2015-03-30 三菱製紙株式会社 Lithium ion secondary battery separator and lithium ion secondary battery using the same
JP2015065153A (en) * 2013-08-30 2015-04-09 三菱製紙株式会社 Separator for electrochemical element, method of manufacturing separator for electrochemical element, and electrochemical element
JP2015088460A (en) * 2013-09-26 2015-05-07 三菱製紙株式会社 Base material for lithium secondary battery separator, and separator for lithium secondary battery
JP2015162281A (en) * 2014-02-26 2015-09-07 三菱製紙株式会社 Separator for lithium ion secondary battery and lithium ion secondary battery using the same
CN105190953A (en) * 2013-03-05 2015-12-23 赛昂能源有限公司 Electrochemical cells comprising fibril materials, such as fibril cellulose materials
JP2016001672A (en) * 2014-06-12 2016-01-07 三菱製紙株式会社 Separator for capacitor
WO2017170065A1 (en) 2016-03-28 2017-10-05 ニッポン高度紙工業株式会社 Separator for electrochemical element and electrochemical element
WO2018002986A1 (en) 2016-06-27 2018-01-04 ニッポン高度紙工業株式会社 Separator for electrochemical element, electrochemical element, automobile, and electronic device
JP6305497B1 (en) * 2016-11-18 2018-04-04 ニッポン高度紙工業株式会社 Aluminum electrolytic capacitor separator and aluminum electrolytic capacitor
WO2018074442A1 (en) * 2016-10-17 2018-04-26 三菱製紙株式会社 Separator for electrochemical elements, and electrochemical element comprising same
WO2018123689A1 (en) * 2016-12-27 2018-07-05 三菱製紙株式会社 Lithium ion battery separator and lithium ion battery
WO2018193915A1 (en) 2017-04-19 2018-10-25 ニッポン高度紙工業株式会社 Separator for electrochemical element, and electrochemical element
WO2019102958A1 (en) 2017-11-21 2019-05-31 ニッポン高度紙工業株式会社 Separator for electrochemical elements, and electrochemical element
EP3457420A4 (en) * 2016-05-09 2020-01-22 Mitsubishi Paper Mills Limited Separator for electrochemical elements, and electrochemical element using same
CN111918999A (en) * 2018-03-30 2020-11-10 日本制纸株式会社 Carboxymethylated microfibrillated cellulose fibres and compositions thereof
CN114447524A (en) * 2022-03-09 2022-05-06 民丰特种纸股份有限公司 Sesbania gum lithium ion battery diaphragm and preparation method and application thereof
US20220271392A1 (en) * 2016-09-08 2022-08-25 Mitsubishi Paper Mills Limited Substrate for lithium ion battery separators and lithium ion battery separator
WO2023091474A1 (en) * 2021-11-17 2023-05-25 Celgard, Llc Battery separators and methods for testing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016143801A1 (en) * 2015-03-09 2017-12-21 ニッポン高度紙工業株式会社 Separator and non-aqueous battery
JP6649022B2 (en) * 2015-09-28 2020-02-19 ニッポン高度紙工業株式会社 Separator for electrochemical device and electrochemical device
US20210036290A1 (en) * 2018-04-09 2021-02-04 Asahi Kasei Kabushiki Kaisha Porous Body, Separator for Lead Acid Storage Batteries, and Lead Acid Storage Battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163324A (en) * 1992-11-27 1994-06-10 Kuraray Co Ltd Separator for electrolytic capacitor
JP2000003834A (en) * 1998-06-16 2000-01-07 Nippon Kodoshi Corp Electric double-layer capacitor
JP2000331663A (en) * 1999-05-18 2000-11-30 Nippon Kodoshi Corp Separator, and electrolytic capacitor, electric double layer capacitor, nonaqueous battery using the separator
JP2007067389A (en) * 2005-08-03 2007-03-15 Mitsubishi Paper Mills Ltd Separator for electrochemical element
WO2007061108A1 (en) * 2005-11-28 2007-05-31 Mitsubishi Paper Mills Limited Separator for electric double layer capacitor
JP2008186707A (en) * 2007-01-30 2008-08-14 Tomoegawa Paper Co Ltd Separator for electrochemical element
WO2009060988A1 (en) * 2007-11-08 2009-05-14 Dupont Teijin Advanced Papers, Ltd. Foliate material, method for production of the foliate material, and electrical/electronic component comprising the foliate material
WO2010044264A1 (en) * 2008-10-15 2010-04-22 株式会社巴川製紙所 Power storage device separator
JP2010251215A (en) * 2009-04-17 2010-11-04 Nippon Kodoshi Corp Separator for battery, and the battery
WO2011046066A1 (en) * 2009-10-15 2011-04-21 三菱製紙株式会社 Substrate for lithium secondary battery, and separator for lithium secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032748B2 (en) * 2005-02-25 2012-09-26 株式会社クラレ Alkaline battery separator and alkaline primary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163324A (en) * 1992-11-27 1994-06-10 Kuraray Co Ltd Separator for electrolytic capacitor
JP2000003834A (en) * 1998-06-16 2000-01-07 Nippon Kodoshi Corp Electric double-layer capacitor
JP2000331663A (en) * 1999-05-18 2000-11-30 Nippon Kodoshi Corp Separator, and electrolytic capacitor, electric double layer capacitor, nonaqueous battery using the separator
JP2007067389A (en) * 2005-08-03 2007-03-15 Mitsubishi Paper Mills Ltd Separator for electrochemical element
WO2007061108A1 (en) * 2005-11-28 2007-05-31 Mitsubishi Paper Mills Limited Separator for electric double layer capacitor
JP2008186707A (en) * 2007-01-30 2008-08-14 Tomoegawa Paper Co Ltd Separator for electrochemical element
WO2009060988A1 (en) * 2007-11-08 2009-05-14 Dupont Teijin Advanced Papers, Ltd. Foliate material, method for production of the foliate material, and electrical/electronic component comprising the foliate material
WO2010044264A1 (en) * 2008-10-15 2010-04-22 株式会社巴川製紙所 Power storage device separator
JP2010251215A (en) * 2009-04-17 2010-11-04 Nippon Kodoshi Corp Separator for battery, and the battery
WO2011046066A1 (en) * 2009-10-15 2011-04-21 三菱製紙株式会社 Substrate for lithium secondary battery, and separator for lithium secondary battery

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067410A (en) * 2012-02-09 2014-09-24 三菱制纸株式会社 Base for lithium ion secondary battery separators, method for producing base for lithium ion secondary battery separators, and lithium ion secondary battery separator
US9570726B2 (en) 2012-02-09 2017-02-14 Mitsubishi Paper Mills Limited Base for lithium ion secondary battery separators, method for producing base for lithium ion secondary battery separators, and lithium ion secondary battery separator
EP2814085A4 (en) * 2012-02-09 2015-07-15 Mitsubishi Paper Mills Ltd Base for lithium ion secondary battery separators, method for producing base for lithium ion secondary battery separators, and lithium ion secondary battery separator
JP2013246926A (en) * 2012-05-24 2013-12-09 Mitsubishi Paper Mills Ltd Separator for electrochemical element and electrochemical element including the same
US9059453B2 (en) 2012-05-30 2015-06-16 Panasonic Intellectual Property Management Co., Ltd. Battery, battery separator and method for producing battery separator
WO2013179526A1 (en) * 2012-05-30 2013-12-05 パナソニック株式会社 Cell, cell separator, and method for production of cell separator
JP2014026877A (en) * 2012-07-27 2014-02-06 Nippon Kodoshi Corp Alkali battery separator, and alkali battery
JP2014035850A (en) * 2012-08-08 2014-02-24 Mitsubishi Paper Mills Ltd Separator for lithium secondary battery and lithium secondary battery
JP2014073432A (en) * 2012-10-03 2014-04-24 Mitsubishi Paper Mills Ltd Filter medium
US10461333B2 (en) 2013-03-05 2019-10-29 Sion Power Corporation Electrochemical cells comprising fibril materials
US9490478B2 (en) 2013-03-05 2016-11-08 Sion Power Corporation Electrochemical cells comprising fibril materials
EP2965370A4 (en) * 2013-03-05 2016-09-21 Sion Power Corp Electrochemical cells comprising fibril materials, such as fibril cellulose materials
CN105190953A (en) * 2013-03-05 2015-12-23 赛昂能源有限公司 Electrochemical cells comprising fibril materials, such as fibril cellulose materials
JP2014175232A (en) * 2013-03-12 2014-09-22 Mitsubishi Paper Mills Ltd Cell separator
JP2015065153A (en) * 2013-08-30 2015-04-09 三菱製紙株式会社 Separator for electrochemical element, method of manufacturing separator for electrochemical element, and electrochemical element
US9653717B2 (en) 2013-08-30 2017-05-16 Mitsubishi Paper Mills Limited Separator for electrochemical element, process for producing separator and electrochemical element using separator
JP2015060702A (en) * 2013-09-18 2015-03-30 三菱製紙株式会社 Lithium ion secondary battery separator and lithium ion secondary battery using the same
JP2015088460A (en) * 2013-09-26 2015-05-07 三菱製紙株式会社 Base material for lithium secondary battery separator, and separator for lithium secondary battery
JP2015162281A (en) * 2014-02-26 2015-09-07 三菱製紙株式会社 Separator for lithium ion secondary battery and lithium ion secondary battery using the same
JP2016001672A (en) * 2014-06-12 2016-01-07 三菱製紙株式会社 Separator for capacitor
WO2017170065A1 (en) 2016-03-28 2017-10-05 ニッポン高度紙工業株式会社 Separator for electrochemical element and electrochemical element
US10818898B2 (en) 2016-05-09 2020-10-27 Mitsubishi Paper Mills Limited Separator for electrochemical elements and electrochemical element including separator for electrochemical elements
EP3457420A4 (en) * 2016-05-09 2020-01-22 Mitsubishi Paper Mills Limited Separator for electrochemical elements, and electrochemical element using same
US10892456B2 (en) 2016-06-27 2021-01-12 Nippon Kodoshi Corporation Separator for electrochemical element, electrochemical element, automobile, and electronic device
KR20190022543A (en) 2016-06-27 2019-03-06 닛폰 고도시 코포레이션 Separator and electrochemical device for electrochemical device, automobile, electronic device
WO2018002986A1 (en) 2016-06-27 2018-01-04 ニッポン高度紙工業株式会社 Separator for electrochemical element, electrochemical element, automobile, and electronic device
US20220271392A1 (en) * 2016-09-08 2022-08-25 Mitsubishi Paper Mills Limited Substrate for lithium ion battery separators and lithium ion battery separator
WO2018074442A1 (en) * 2016-10-17 2018-04-26 三菱製紙株式会社 Separator for electrochemical elements, and electrochemical element comprising same
US10964986B2 (en) 2016-10-17 2021-03-30 Mitsubishi Paper Mills Limited Separator for electrochemical elements, and electrochemical element comprising same
JP2019046776A (en) * 2016-10-17 2019-03-22 三菱製紙株式会社 Separator for electrochemical element and electrochemical element including the same
JP6349021B1 (en) * 2016-10-17 2018-06-27 三菱製紙株式会社 Electrochemical element separator and electrochemical element including the same
JP6305497B1 (en) * 2016-11-18 2018-04-04 ニッポン高度紙工業株式会社 Aluminum electrolytic capacitor separator and aluminum electrolytic capacitor
WO2018123689A1 (en) * 2016-12-27 2018-07-05 三菱製紙株式会社 Lithium ion battery separator and lithium ion battery
JPWO2018123689A1 (en) * 2016-12-27 2018-12-27 三菱製紙株式会社 Lithium ion battery separator and lithium ion battery
US11335972B2 (en) 2016-12-27 2022-05-17 Mitsubishi Paper Mills Limited Lithium ion battery separator and lithium ion battery
WO2018193915A1 (en) 2017-04-19 2018-10-25 ニッポン高度紙工業株式会社 Separator for electrochemical element, and electrochemical element
US11588207B2 (en) 2017-04-19 2023-02-21 Nippon Kodoshi Corporation Separator for electrochemical element and electrochemical element
WO2019102958A1 (en) 2017-11-21 2019-05-31 ニッポン高度紙工業株式会社 Separator for electrochemical elements, and electrochemical element
US11538639B2 (en) 2017-11-21 2022-12-27 Nippon Kodoshi Corporation Separator for electrochemical elements, and electrochemical element
CN111918999A (en) * 2018-03-30 2020-11-10 日本制纸株式会社 Carboxymethylated microfibrillated cellulose fibres and compositions thereof
WO2023091474A1 (en) * 2021-11-17 2023-05-25 Celgard, Llc Battery separators and methods for testing the same
CN114447524A (en) * 2022-03-09 2022-05-06 民丰特种纸股份有限公司 Sesbania gum lithium ion battery diaphragm and preparation method and application thereof
CN114447524B (en) * 2022-03-09 2024-01-30 民丰特种纸股份有限公司 Sesbania gum lithium ion battery diaphragm and preparation method and application thereof

Also Published As

Publication number Publication date
JP5767222B2 (en) 2015-08-19
CN102986060A (en) 2013-03-20
CN102986060B (en) 2016-04-27
JPWO2012008559A1 (en) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5767222B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery using the same
JP4244294B2 (en) Separator for electrochemical device and manufacturing method thereof
JP6292626B2 (en) Nonwoven fabric substrate for lithium ion secondary battery separator and lithium ion secondary battery separator
CN104425791B (en) Separator for Electrochemical Element, Process for Producing Separator and Electrochemical Element Using Separator
JP6349021B1 (en) Electrochemical element separator and electrochemical element including the same
CN107230765B (en) Lithium ion battery separator
WO2018047742A1 (en) Substrate for lithium ion battery separators, and lithium ion battery separator
JP6317556B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery using the same
JP6076278B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery using the same
JP2002266281A (en) Wet type nonwoven fabric, separator for electrochemical element and separator for electric double layer capacitor by using the same fabric
WO2017195690A1 (en) Separator for electrochemical elements, and electrochemical element using same
JP6497832B2 (en) Lithium ion battery separator and lithium ion battery
JP2016171048A (en) Lithium ion secondary battery separator and lithium ion secondary battery arranged by use thereof
JP2012155941A (en) Separator for electrochemical element, and electrochemical element using the same
JP5848630B2 (en) Capacitor separator and capacitor using the same
JP7309650B2 (en) Separator for electrochemical device
JP6581512B2 (en) Separator for lithium ion secondary battery
JP2015061036A (en) Separator for capacitor
JP2018206671A (en) Lithium ion battery separator substrate, and lithium ion battery separator
JP2019207775A (en) Lithium ion battery separator and lithium ion battery
JP2019212492A (en) Lithium ion battery separator and lithium ion battery
JP2015046287A (en) Separator for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2019212491A (en) Lithium ion battery separator and lithium ion battery
JP2011134930A (en) Non-electric double layer type capacitor
JP2014175108A (en) Cell separator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034584.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524600

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806889

Country of ref document: EP

Kind code of ref document: A1