Nothing Special   »   [go: up one dir, main page]

WO2012008115A1 - 浸漬型膜濾過ユニット及び浸漬型膜濾過装置 - Google Patents

浸漬型膜濾過ユニット及び浸漬型膜濾過装置 Download PDF

Info

Publication number
WO2012008115A1
WO2012008115A1 PCT/JP2011/003819 JP2011003819W WO2012008115A1 WO 2012008115 A1 WO2012008115 A1 WO 2012008115A1 JP 2011003819 W JP2011003819 W JP 2011003819W WO 2012008115 A1 WO2012008115 A1 WO 2012008115A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixing member
membrane
hollow fiber
filtration
lower fixing
Prior art date
Application number
PCT/JP2011/003819
Other languages
English (en)
French (fr)
Inventor
康二 福本
茂英 平田
津澤 正樹
昭彦 猪俣
洋士 山本
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN2011800280030A priority Critical patent/CN103118769A/zh
Priority to JP2012524417A priority patent/JPWO2012008115A1/ja
Publication of WO2012008115A1 publication Critical patent/WO2012008115A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/026Wafer type modules or flat-surface type modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/54Modularity of membrane module elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an immersion type membrane filtration unit and an immersion type membrane filtration device, and more specifically, an immersion type membrane filtration unit that achieves miniaturization and energy saving while maintaining the efficiency of scrubbing cleaning with bubbles, and the same.
  • the present invention relates to a submerged membrane filtration apparatus.
  • a filtration device comprising a submerged membrane filtration unit using a hollow fiber membrane effective for filtration of suspended matters in water and removal of impurities. It is becoming.
  • devices using hollow fiber membranes are used for the purpose of separating and removing yeasts used for fermentation and concentrating liquids. By using these devices that use hollow fiber membranes, water can be regenerated, filtered, concentrated, etc. with less energy, attracting attention from the standpoint of preventing global warming through recent energy savings. ing.
  • such a submerged membrane filtration unit has a filtration membrane module 10 in which a number of hollow fiber membranes 11 are bundled and fixed in a planar shape between an upper fixing member 21 and a lower fixing member 22.
  • the filtration unit 1 is configured by using a plurality of the filtration membrane modules 10.
  • FIG. 3A schematically shows the filtration unit 1 including the filtration membrane module 10, and several filtration membrane modules 10 shown in FIG. 3B are housed inside the surrounding casing 14. Yes.
  • the filtration membrane modules 10 are arranged at regular intervals.
  • An aeration pipe 16 for supplying air bubbles for aeration is provided between the filtration membrane modules 10 at the lower part of the surrounding casing 14. Air bubbles from the aeration pipe 16 cause a water flow to flow upward from the lower side in the surrounding casing 14 and air scrubbing cleaning of the hollow fiber membrane 11 is performed.
  • Such a filtration unit 1 is immersed in the water tank which stores sewage, such as sludge water, individually or in a line. The water contained in the sewage passes through the tube walls of the numerous hollow fiber membranes 11 of the filtration membrane module 10 to become purified treated water. The treated water after purification is collected and reused.
  • Patent Document 1 In order to improve the efficiency of air scrubbing cleaning, through holes are provided in the upper and lower bonding parts for fixing the hollow fiber membrane (Patent Document 1), and the packing density of the bundle of hollow fiber membranes is lowered during the membrane cleaning (patent Reference 2) has been studied, but the actual situation is that the aeration power during cleaning has not been sufficiently reduced.
  • the interval between adjacent filtration membrane modules 10 is reduced. It is possible to set.
  • the installation area (horizontal cross-sectional area) of the filtration unit 1 is reduced and the density per unit installation area of the hollow fiber membrane 11 is increased, so that the aeration efficiency is improved even with the same aeration air volume. As a result, the aeration power at the time of air scrubbing cleaning can be reduced.
  • the interval between the filtration membrane modules 10 is set to be extremely small, bubbles supplied from the aeration pipe 16 do not rise between the filtration membrane modules 10 and rise between the surrounding casing 14 and the filtration membrane module 10. In addition, the air bubbles pass outside the outer casing 14 and the effect of air scrubbing cleaning is greatly reduced. In addition, contaminants present in the sewage may be entangled with the upper and lower fixing members 21 and 22 and the hollow fiber membrane 11 to prevent scrubbing cleaning and cause troubles such as poor cleaning. In order to remove such impurities, the sewage is usually supplied to the filtration device after passing through a bar screen having an interval of about 1 mm in advance.
  • the scrubbing cleaning is hindered by being entangled with the fixing members 21 and 22 and the hollow fiber membrane 11 depending on the interval between the filtration membrane modules 10. Become. Considering this, the distance between the filtration membrane modules 10 is set to a value larger than necessary, such as about 12 mm. Therefore, a large amount of air is required for air scrubbing cleaning, and the effect of reducing aeration power is greatly increased. The fact is that we cannot do it.
  • the present invention provides a filtration membrane module in which a bundle of a large number of hollow fiber membranes is fixed between the upper fixing member and the lower fixing member in a plane, without interfering with the effect of the air scrubbing cleaning. It is an object of the present invention to reduce the size of the filtration membrane unit and reduce the aeration power in the membrane filtration to save energy by setting the interval between the two to be small.
  • the submerged membrane filtration unit includes a plurality of filtration membrane modules in which a bundle of a plurality of hollow fiber membranes is fixed in a plane between an upper fixing member and a lower fixing member, and a surrounding that surrounds the plurality of filtration membrane modules.
  • a submerged membrane filtration unit having a casing and an aeration pipe for supplying air bubbles from below the plurality of filtration membrane modules, wherein an interval between adjacent filtration membrane modules is in a range of 3 to 7 mm. To do.
  • the hollow fiber membrane oscillates greatly as the slack of the hollow fiber membrane increases, it is considered that the effect of the air scrubbing washing increases as the slack increases.
  • the slack of the hollow fiber membrane is too large, as shown in FIG. 2, the water flow generated by the bubbles is displaced to the side of the filtration membrane module 10 as indicated by the arrow 24, and the region indicated by reference numeral 25 in FIG. 2. Then the water flow becomes weak. As a result, the effect of air scrubbing cleaning is reduced, and dirt such as sludge remains without being cleaned. This soil grows further and eventually impedes filtration.
  • the hollow fiber membrane is moderately slack. Moreover, it is preferable that the looseness of the hollow fiber membrane is smaller as the distance between the upper fixing member and the lower fixing member is larger.
  • the distance between the upper fixing member and the lower fixing member is D
  • the length of the hollow fiber membrane fixed between the upper fixing member and the lower fixing member is L
  • 500 mm ⁇ In the case of D ⁇ 1000 mm, D / L ⁇ 0.96 is preferable, and in the case of 1000 mm ⁇ D ⁇ 1500 mm, D / L ⁇ 0.97 is preferable, and 1500 mm ⁇ D ⁇ 2000 mm.
  • D / L ⁇ 0.98 is preferable, and in the case of 2000 mm ⁇ D ⁇ 3000 mm, D / L ⁇ 0.99 is preferable.
  • the value of 2b + c represents the distance between the hollow fiber membranes of adjacent submerged membrane filtration units when the hollow fiber membrane is not slack.
  • the submerged membrane filtration apparatus of the present invention is characterized by comprising a plurality of any of the submerged membrane filtration units described above.
  • the closest distance between the fixing positions of the hollow fiber membranes of adjacent filtration membrane modules is set in the range of 3 to 7 mm, so that a plurality of bubbles are supplied from the aeration pipe.
  • the air membrane scrubbing cleaning effect is not hindered.
  • the entanglement of the foreign matter into the hollow fiber membrane does not occur.
  • the cross-sectional area can be made smaller than that of a conventional submerged membrane filtration unit, it is possible to reduce aeration power during air scrubbing cleaning.
  • FIG. 3 is a perspective view showing a state in which a water flow for scrubbing and washing a hollow fiber membrane is deflected to the side in a filtration membrane module in which hollow fiber membranes are arranged in a plane.
  • A is a perspective view which shows typically the filtration unit 1 provided with the filtration membrane module 10
  • (b) is a perspective view which shows typically the inside which removed the outer surrounding casing 14 in (a).
  • FIG. 4 is a cross-sectional view of the submerged membrane filtration unit according to the embodiment of the present invention taken along line PP in FIG. 3.
  • FIG.4 It is sectional drawing which shows the fixing position of the hollow fiber membrane in the lower side fixing member of the immersion type membrane filtration unit of FIG. It is a figure which shows the test result which actually performed sewage treatment using the immersion type membrane filtration unit shown in FIG.4 and FIG.5.
  • the submerged membrane filtration unit 1 has a schematic configuration similar to that of FIG. 3 described above, and includes a plurality of filtration membrane modules 10 schematically shown in the perspective view of FIG.
  • a bundle of a large number of hollow fiber membranes 11 is fixed between the upper fixing member 21 and the lower fixing member 22, and the upper fixing member 21 and the lower fixing member 22 are composed of two support columns. 26 is held and fixed at a constant distance.
  • the hollow fiber membrane 11 is a hollow fine thread having a filtration membrane as a tube wall, and sewage is filtered when passing from the outside to the inside of the hollow fiber membrane 11.
  • FIG. 4 is a cross-sectional view taken along the line PP of the submerged membrane filtration unit 1 shown in FIG. Although three filtration membrane modules 10 are depicted in FIG. 4, the actual submerged membrane filtration unit 1 has about 50 filtration membrane modules 10.
  • a membrane unit SADF1590R manufactured by Mitsubishi Rayon Engineering Co., Ltd. was used as the filtration membrane module 10.
  • the hollow fiber membrane 11 is slackened between the upper fixing member 21 and the lower fixing member 22.
  • the scrubbing can be cleaned appropriately by aeration.
  • the hollow fiber membrane 11 can be continuously filtered without being clogged.
  • FIG. 5 shows the arrangement of the lower fixing member 22 in the lower part of the submerged membrane filtration unit 1.
  • the hollow fiber membrane 11 does not exist in the 5 mm portion.
  • the distance c between adjacent lower fixing members 22 is set to 5 mm. In such an arrangement, the distance 2b + c between the hollow fiber membranes of adjacent submerged membrane filtration units when the hollow fiber membrane is not slack is 15 mm.
  • the sewage filtration test was actually performed using the submerged membrane filtration unit 1 of FIG. 5 having such an arrangement, and the result is shown in FIG.
  • the horizontal axis represents the number of days from the start of the test.
  • the filtration flux is set to a constant value of about 0.6 m / d, and the aeration air volume is adjusted so that the superficial velocity in the filtration unit is the same.
  • the ratio of the aeration air volume of the submerged membrane filtration unit of the present invention when the aeration air volume was 1 was measured.
  • the filtration differential pressure is a measured value that serves as an index of dirt (clogging) of the hollow fiber membrane 11 due to filtration, and the filtration differential pressure increases as the dirt of the hollow fiber membrane 11 increases.
  • the ratio of the aeration air volume of the submerged membrane filtration unit of the present invention to the aeration air volume of the conventional submerged membrane filtration apparatus is about 0.84. It can be seen that the aeration power is reduced. Moreover, regarding the behavior of the filtration differential pressure, the air scrubbing cleaning effect was not reduced due to the reduction of the aeration air volume, and the same result as the conventional apparatus was obtained. Furthermore, during this test, in any of the conventional and submerged membrane filtration devices of the present invention, no entanglement of impurities on the upper fixing member 21, the lower fixing member 22, and the hollow fiber membrane 11 was observed.
  • the submerged membrane filtration unit 1 using three filtration membrane modules 10 has been described, but it goes without saying that more filtration membrane modules 10 are used in an actual apparatus. Further, the size of the filtration membrane module 10, in other words, the number and length of the hollow fiber membranes 11 can be changed according to the purpose of use.
  • the submerged membrane filtration unit of the present invention is used in water treatment such as drinking water production, water purification treatment, wastewater treatment, etc., especially in the field of water treatment using MBR (Membrane Bioreactor, membrane separation activated sludge method) Available in the field.
  • MBR Membrane Bioreactor, membrane separation activated sludge method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

多数の中空糸膜の束を上側固定部材及び下側固定部材の間に平面状に固定した濾過膜モジュールを有する浸漬型膜濾過ユニットにおいて、エアースクラビング洗浄の効果を妨げることなく、曝気動力の低減を図るために、浸漬型膜濾過ユニットにおける濾過膜モジュール(10)を以下のように配する。中空糸膜(11)を固定する上側固定部材(21)と下側固定部材(22)との間の距離D=1150mm、中空糸膜(11)の最大長さL=1185mmである濾過膜モジュール(10)を、中空糸膜(11)を固定する複数の下側固定部材(22)の厚さd=30mmとし、下側固定部材(22)の厚さ方向の中央に幅a=約20mmで中空糸膜(11)の束を固定する。下側固定部材(22)の厚さ方向の両側の中空糸膜(11)が存在しない部分の幅b=5mmとし、更に、隣接する下側固定部材(22)の間の距離c=3~7mmに設定する。

Description

浸漬型膜濾過ユニット及び浸漬型膜濾過装置
 本発明は浸漬型膜濾過ユニット及び浸漬型膜濾過装置に関し、より詳細には、気泡によるスクラビング洗浄の効率を維持しつつ小型化及び省エネルギー化を図った浸漬型膜濾過ユニット、及びこれを用いた浸漬型膜濾過装置に関する。
 近年、飲料水製造、浄水処理、排水処理などの水処理分野において、水中の浮遊物の濾過や不純物の除去に有効な中空糸膜を用いた浸漬型膜濾過ユニットからなる濾過装置が用いられるようになってきている。また、食品工業の分野においては、発酵に用いた酵母の分離除去や液体の濃縮を目的として、中空糸膜を用いた装置が用いられている。中空糸膜を用いたこれらの装置を使用することにより、少ないエネルギーで水の再生、濾過、濃縮等を行うことができるので、近時の省エネルギーによる地球温暖化防止の観点からも、注目を集めている。
 このような浸漬型膜濾過ユニットは、図1に示すように、多数の中空糸膜11を束ねて上側固定部材21及び下側固定部材22の間に平面状に固定した濾過膜モジュール10を有しており、この濾過膜モジュール10を更に複数枚使用することにより濾過ユニット1が構成されている。
 図3(a)は濾過膜モジュール10を備えた濾過ユニット1を模式的に表しており、囲繞ケーシング14の内側には、図3(b)に示す数枚の濾過膜モジュール10が収められている。各濾過膜モジュール10は一定の間隔で並べられている。囲繞ケーシング14の下部には、濾過膜モジュール10の間に曝気用の気泡を供給するための曝気パイプ16が設けられている。曝気パイプ16からの気泡により、囲繞ケーシング14内に下方から上方に抜ける水流が発生するとともに、中空糸膜11のエアースクラビング洗浄が行われる。このような濾過ユニット1は、単独又は複数並べて汚泥水等の汚水を貯留する水槽に浸漬される。汚水に含まれる水は、濾過膜モジュール10の多数の中空糸膜11の管壁を通過することにより、浄化された処理水となる。浄化後の処理水は集められ、再利用等に供されることになる。
 このような濾過ユニット1では、継続運転により中空糸膜11の表面に固形物が次第に堆積してくる。このような堆積物を除去するため、上述のようにエアースクラビング洗浄が行われる。このエアースクラビング洗浄時の曝気動力は、漬型膜濾過装置の全体の消費動力において大きな割合を占めており、従って、エアースクラビング洗浄の効率を改善すれば曝気動力の低減を図ることができ、浸漬型膜濾過装置の消費動力の低減に大きく寄与すると考えられる。
 エアースクラビング洗浄の効率を改善するために、中空糸膜を固定する上下のボンディング部に貫通孔を設けること(特許文献1)や、膜洗浄時に中空糸膜の束の充填密度を下げること(特許文献2)が検討されているが、洗浄時の曝気動力の十分な低減には至っていないのが実情である。
 図1に示す平面状に中空糸膜を並べた濾過膜モジュール10を多数枚用いた濾過ユニット1の場合、洗浄時の曝気動力を低減するために、隣接する濾過膜モジュール10間の間隔を小さく設定することが考えられる。濾過膜モジュール10間の間隔が小さいと、濾過ユニット1の設置面積(水平断面積)が小さくなり中空糸膜11の単位設置面積あたりの密度が大きくなるため、同じ曝気風量でも曝気効率が向上し、結果としてエアースクラビング洗浄時の曝気動力を低減させることができる。
 しかし、濾過膜モジュール10間の間隔を極端に小さく設定すると、曝気パイプ16から供給される気泡は濾過膜モジュール10の間を上昇せず、囲繞ケーシング14と濾過膜モジュール10との間を上昇してしまい、更には、気泡が囲繞ケーシング14の外側を通過してしまい、エアースクラビング洗浄の効果が大きく低下してしまうことになる。また、汚水中に存在する夾雑物が上下の固定部材21及び22や中空糸膜11に絡まってスクラビング洗浄を妨げ、洗浄不良等のトラブルを引き起こすことがある。このような夾雑物を除去するために、通常、汚水は予め1mm程度の間隔のバースクリーンを通した後に濾過装置に供給される。しかし、バースクリーンを設けても夾雑物は完全には除去され得ないため、濾過膜モジュール10間の間隔によっては、固定部材21及び22や中空糸膜11に絡まってスクラビング洗浄が妨げられることになる。このようなことを考慮して、濾過膜モジュール10間の間隔は12mm程度の必要以上に大きな値に設定されており、そのためエアースクラビング洗浄に多量のエアーが必要となり、曝気動力の低減効果を大きくすることはできないのが実情である。
国際公開WO2007/040035号 特開平9-262443
 従って、本発明は、多数の中空糸膜の束を上側固定部材及び下側固定部材の間に平面状に固定した濾過膜モジュールにおいて、エアースクラビング洗浄の効果を妨げることなく、濾過膜モジュール10間の間隔を小さく設定することにより、濾過膜ユニットを小型化し、膜濾過における曝気動力の低減して、省エネルギーを図ることを目的とする。
 本発明の浸漬型膜濾過ユニットは、多数の中空糸膜の束を上側固定部材及び下側固定部材の間に平面状に固定した複数の濾過膜モジュールと、該複数の濾過膜モジュールを取り囲む囲繞ケーシングと、該複数の濾過膜モジュールの下方から気泡を供給する曝気パイプとを有する浸漬型膜濾過ユニットであって、隣接する濾過膜モジュール間の間隔が3~7mmの範囲であることを特徴とする。
 ここで、中空糸膜の弛みが大きいほど中空糸膜が大きく揺れ動くため、この弛みが大きいほどエアースクラビング洗浄の効果は高くなると考えられる。しかし、中空糸膜の弛みが大きすぎると、図2に示すように、気泡により生じる水流が矢印24に示すように濾過膜モジュール10の側方に逸れてしまい、図2の符号25で示す領域では水流が弱くなってしまう。その結果、エアースクラビング洗浄の効果が低くなり、汚泥などの汚れが洗浄されずに付着したまま残存する。この汚れはさらに成長し、最終的には濾過に支障をきたす。
 従って、中空糸膜の弛みは適度であることが好ましい。また、上側固定部材及び下側固定部材間の距離が大きいほど、中空糸膜の弛みが小さいことが好ましい。具体的には、前記上側固定部材及び前記下側固定部材間の距離をD、前記上側固定部材及び前記下側固定部材間に固定される中空糸膜の長さをLとした場合、500mm≦D≦1000mmの場合には、D/L≧0.96であることが好ましく、1000mm<D≦1500mmの場合には、D/L≧0.97であることが好ましく、1500mm<D≦2000mmの場合には、D/L≧0.98であることが好ましく、2000mm<D≦3000mmの場合には、D/L≧0.99であることが好ましい。
 また、上記においては、隣接する濾過膜モジュール間において、隣接する濾過膜モジュール間の距離をc、前記上側固定部材及び前記下側固定部材のそれぞれにおける厚さ方向における端面から中空糸膜の固定位置までの距離をbとした場合に、2b+c=13~17mmであることが好ましい。この2b+cの値は、中空糸膜に弛みが生じていないとした場合における隣接する浸漬型膜濾過ユニットの中空糸膜間の距離を表している。
 更に、本発明の浸漬型膜濾過装置は、上記何れかの浸漬型膜濾過ユニットを複数備えたことを特徴とする。
 本発明の浸漬型膜濾過ユニットでは、隣接する濾過膜モジュールの中空糸膜の固定位置の間の最近接距離が3~7mmの範囲に設定されているため、曝気パイプから供給される気泡は複数の濾過膜モジュールの間を下方から上方に向かって上昇し、エアースクラビング洗浄の効果が妨げられることはない。しかも、夾雑物の中空糸膜への絡まりは発生しない。更に、従来の浸漬型膜濾過ユニットよりも断面積を小さくすることができるので、エアースクラビング洗浄時の曝気動力の低減を図ることが可能となっている。
本発明及び従来の浸漬型膜濾過ユニットに使用される濾過膜モジュールを模式的に示す斜視図である。 平面状に中空糸膜を並べた濾過膜モジュールにおいて、中空糸膜をスクラビング洗浄する水流が側方に逸れる様子を示す斜視図である。 (a)は、濾過膜モジュール10を備えた濾過ユニット1を模式的に示す斜視図、(b)は、(a)における外側の囲繞ケーシング14を取り去った内部を模式的に示す斜視図である。 本発明の一実施形態に係る浸漬型膜濾過ユニットの、図3におけるP-P線矢視断面図である。 図4の浸漬型膜濾過ユニットの下側固定部材における中空糸膜の固定位置を示す断面図である。 図4及び図5に示す浸漬型膜濾過ユニットを用いて実際に汚水処理を行った試験結果を示す図である。
 本発明の実施形態について、図面を参照しながら以下に説明するが、本発明は以下の記載に限定されるものではない。本発明の一実施形態に係る浸漬型膜濾過ユニット1は、前述の図3と同様の概略構成を有し、図1の斜視図に模式的に示す濾過膜モジュール10を複数枚備えている。濾過膜モジュール10では、前述のように多数の中空糸膜11の束が上側固定部材21及び下側固定部材22の間に固定され、上側固定部材21及び下側固定部材22は2本の支柱26によって一定の距離に保持されて固定されている。中空糸膜11は濾過膜を管壁とする中空の微細な糸であり、汚水は中空糸膜11の外部から内部に通過する際に濾過される。
 図4は図3に示す浸漬型膜濾過ユニット1のP-P線矢視断面図である。図4では3枚の濾過膜モジュール10が画かれているが、実際の浸漬型膜濾過ユニット1は、約50枚の濾過膜モジュール10を有している。本実施形態においては、濾過膜モジュール10として、三菱レイヨン・エンジニアリング(株)製の膜ユニットSADF1590Rを使用した。この濾過膜モジュール10は、図1及び図4に示すように、上側固定部材21と下側固定部材22との間の距離D=1150mmであり、上側固定部材21と下側固定部材22との間には、外径約2.8mm、長さL=1185mm(最長)の中空糸膜11が張られている。従って、距離Dと長さLとの比D/L=0.97である。
 上述のように、本実施形態では中空糸膜の長さL>上下の固定部材間の距離Dの関係にあるので、中空糸膜11は上側固定部材21及び下側固定部材22の間に弛みが生じるように固定されることとなり、これにより曝気による適切なスクラビング洗浄が可能となっている。これにより、中空糸膜11は目詰まりすることなく継続して濾過を行うことが可能となる。
 図5は、浸漬型膜濾過ユニット1の下部における下側固定部材22の配置を表している。本実施形態の浸漬型膜濾過ユニット1では、3つの下側固定部材22は、それぞれ厚さd=30mmであり、上側固定部材21も同じ厚さを有している。また、下側固定部材22においては、その厚さ方向の中央に中空糸膜11の束が幅a=約20mmで固定されており、下側固定部材22の厚さ方向の両側の幅b=5mmの部分には中空糸膜11が存在していない。更に、隣接する下側固定部材22の間の距離c=5mmに設定されている。このような配置では、中空糸膜に弛みが生じていないとした場合における隣接する浸漬型膜濾過ユニットの中空糸膜間の距離2b+cは、15mmとなる。
 このような配置を有する図5の浸漬型膜濾過ユニット1を用いて、実際に汚水の濾過試験を行い、その結果を図6に示した。横軸は試験開始からの日数であり、最初に、隣接するモジュール10間の距離c=12mmである従来の浸漬型膜濾過ユニットについての試験(図6の左側)を31日間行い、続いて隣接するモジュール10間の距離c=5mmである本発明の浸漬型膜濾過ユニットについての試験(図6の右側)31日間を行った。本試験においては、濾過流束を約0.6m/dの一定値に設定するとともに、濾過ユニット内の空塔速度が同じとなるように曝気風量を調整し、従来の浸漬型膜濾過ユニットについての曝気風量を1とした場合の本発明の浸漬型膜濾過ユニットの曝気風量の比を測定した。濾過差圧は濾過による中空糸膜11の汚れ(目詰まり)の指標となる測定値であり、中空糸膜11の汚れが多くなるほど濾過差圧は大きくなる。
 これらの試験結果から、図6に示すように、従来の浸漬型膜濾過装置の曝気風量に対する本発明の浸漬型膜濾過ユニットの曝気風量の比は約0.84となり、本発明の装置の方が曝気動力が低減されていることが分かる。また、濾過差圧の挙動に関しても、曝気風量の低下によるエアースクラビング洗浄効果の低下はなく、従来の装置と同等の結果が得られた。更に、この試験の間、従来及び本発明の浸漬型膜濾過装置の何れにおいても、夾雑物の上側固定部材21、下側固定部材22及び中空糸膜11への絡まりなどは観察されなかった。
 本実施形態では、3枚の濾過膜モジュール10を用いた浸漬型膜濾過ユニット1について説明したが、実際の装置では、更に多くの濾過膜モジュール10が使用されることは言うまでもない。また、濾過膜モジュール10の大きさ、換言すれば中空糸膜11の本数及び長さも、使用目的に応じて変更することができる。
 本発明の浸漬型膜濾過ユニットは、飲料水製造、浄水処理、排水処理などの水処理、特に、MBR(Membrane Bio Reactor、膜分離活性汚泥法)を用いた水処理の分野や、食品工業の分野で利用可能である。
  1 浸漬型膜濾過ユニット
 10 濾過膜モジュール
 11 中空糸膜
 14 囲繞ケーシング
 16 曝気パイプ
 21 上側固定部材
 22 下側固定部材
 26 支柱

Claims (7)

  1.  多数の中空糸膜の束を上側固定部材及び下側固定部材の間に平面状に固定した複数の濾過膜モジュールと、該複数の濾過膜モジュールを取り囲む囲繞ケーシングと、該複数の濾過膜モジュールの下方から気泡を供給する曝気パイプとを有する浸漬型膜濾過ユニットであって、隣接する濾過膜モジュール間の間隔が3~7mmの範囲であることを特徴とする浸漬型膜濾過ユニット。
  2.  前記上側固定部材及び前記下側固定部材間の距離をD、前記上側固定部材及び前記下側固定部材間に固定される中空糸膜の長さをLとした場合に、500mm≦D≦1000mm、D/L≧0.96である請求項1に記載の浸漬型膜濾過ユニット。
  3.  前記上側固定部材及び前記下側固定部材間の距離をD、前記上側固定部材及び前記下側固定部材間に固定される中空糸膜の長さをLとした場合に、1000mm<D≦1500mm、D/L≧0.97である請求項1に記載の浸漬型膜濾過ユニット。
  4.  前記上側固定部材及び前記下側固定部材間の距離をD、前記上側固定部材及び前記下側固定部材間に固定される中空糸膜の長さをLとした場合に、1500mm<D≦2000mm、D/L≧0.98である請求項1に記載の浸漬型膜濾過ユニット。
  5.  前記上側固定部材及び前記下側固定部材間の距離をD、前記上側固定部材及び前記下側固定部材間に固定される中空糸膜の長さをLとした場合に、2000mm<D≦3000mm、D/L≧0.99である請求項1に記載の浸漬型膜濾過ユニット。
  6.  隣接する濾過膜モジュール間において、隣接する濾過膜モジュール間の距離をc、前記上側固定部材及び前記下側固定部材のそれぞれの厚さ方向における端面から中空糸膜の固定位置までの距離をbとした場合に、2b+c=13~17mmであることを特徴とする請求項1~5の何れかに記載の浸漬型膜濾過ユニット。
  7.  請求項1~6の何れかに記載の浸漬型膜濾過ユニットを複数備えたことを特徴とする浸漬型膜濾過装置。
PCT/JP2011/003819 2010-07-13 2011-07-04 浸漬型膜濾過ユニット及び浸漬型膜濾過装置 WO2012008115A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800280030A CN103118769A (zh) 2010-07-13 2011-07-04 浸渍型膜过滤单元及浸渍型膜过滤装置
JP2012524417A JPWO2012008115A1 (ja) 2010-07-13 2011-07-04 浸漬型膜濾過ユニット及び浸漬型膜濾過装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010158440 2010-07-13
JP2010-158440 2010-07-13

Publications (1)

Publication Number Publication Date
WO2012008115A1 true WO2012008115A1 (ja) 2012-01-19

Family

ID=45469134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003819 WO2012008115A1 (ja) 2010-07-13 2011-07-04 浸漬型膜濾過ユニット及び浸漬型膜濾過装置

Country Status (3)

Country Link
JP (1) JPWO2012008115A1 (ja)
CN (1) CN103118769A (ja)
WO (1) WO2012008115A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187513A1 (ja) * 2012-06-15 2013-12-19 旭化成ケミカルズ株式会社 浸漬膜ユニット
CN105597545A (zh) * 2012-04-02 2016-05-25 三菱丽阳株式会社 中空纤维膜组件的制造方法和具有中空纤维膜组件的中空纤维膜单元
WO2016171011A1 (ja) * 2015-04-24 2016-10-27 住友電気工業株式会社 濾過装置
WO2016181803A1 (ja) * 2015-05-11 2016-11-17 住友電気工業株式会社 濾過装置
WO2016199440A1 (ja) * 2015-06-08 2016-12-15 住友電気工業株式会社 濾過装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319463B2 (ja) * 2015-11-10 2018-05-09 三菱ケミカル株式会社 膜ろ過ユニットおよび水処理方法
CN112957827B (zh) * 2021-01-27 2023-04-18 浙江东大环境工程有限公司 一种聚四氟乙烯中空纤维膜空气过滤装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257372A (ja) * 1995-03-22 1996-10-08 Mitsubishi Rayon Eng Co Ltd 中空糸膜モジュール組立体
JPH10146520A (ja) * 1996-11-20 1998-06-02 Kurita Water Ind Ltd 浸漬型膜分離装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69316325T2 (de) * 1992-02-12 1998-05-28 Mitsubishi Rayon Co Hohlfasermembranemodul
US6656356B2 (en) * 1998-10-09 2003-12-02 Zenon Environmental Inc. Aerated immersed membrane system
JPH10263371A (ja) * 1997-03-28 1998-10-06 Yuasa Corp 浸漬型濾過膜エレメント
EP2145674B1 (en) * 2000-12-18 2012-02-15 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane module and method of manufacturing the same
JP2007044666A (ja) * 2005-08-12 2007-02-22 Toray Ind Inc 中空糸膜モジュール
CN1951547A (zh) * 2005-10-21 2007-04-25 天津工业大学 帘式中空纤维膜组件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257372A (ja) * 1995-03-22 1996-10-08 Mitsubishi Rayon Eng Co Ltd 中空糸膜モジュール組立体
JPH10146520A (ja) * 1996-11-20 1998-06-02 Kurita Water Ind Ltd 浸漬型膜分離装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597545A (zh) * 2012-04-02 2016-05-25 三菱丽阳株式会社 中空纤维膜组件的制造方法和具有中空纤维膜组件的中空纤维膜单元
EP2835174A4 (en) * 2012-04-02 2016-08-03 Mitsubishi Rayon Co HOLLOW FIBER MEMBRANE MODULE AND METHOD FOR MANUFACTURING THE SAME, AND HOLLOW FIBER MEMBRANE UNIT HAVING THE SAME
WO2013187513A1 (ja) * 2012-06-15 2013-12-19 旭化成ケミカルズ株式会社 浸漬膜ユニット
WO2016171011A1 (ja) * 2015-04-24 2016-10-27 住友電気工業株式会社 濾過装置
WO2016181803A1 (ja) * 2015-05-11 2016-11-17 住友電気工業株式会社 濾過装置
WO2016199440A1 (ja) * 2015-06-08 2016-12-15 住友電気工業株式会社 濾過装置
JPWO2016199440A1 (ja) * 2015-06-08 2018-03-29 住友電気工業株式会社 濾過装置

Also Published As

Publication number Publication date
CN103118769A (zh) 2013-05-22
JPWO2012008115A1 (ja) 2013-09-05

Similar Documents

Publication Publication Date Title
WO2012008115A1 (ja) 浸漬型膜濾過ユニット及び浸漬型膜濾過装置
JP4860843B2 (ja) 外圧型中空糸膜モジュール
KR100974912B1 (ko) 배관 일체형 분리막 프레임 구조물 및 이를 이용한 분리막유니트
JP2008518748A (ja) 浸漬クロスフロー濾過
US20140076806A1 (en) Aerator device, filter system including an aerator device, and method of aerating a filter using an aerator device
JP5803293B2 (ja) 散気装置
KR100932739B1 (ko) 산기배관 일체형 분리막 프레임 구조물 및 흡입배관 일체형 분리막 모듈을 구비하는 분리막 유니트
JP5472312B2 (ja) 膜モジュール、膜ユニット及び膜分離装置
WO2007083723A1 (ja) 膜ろ過処理装置及びその運転方法
KR20120111207A (ko) 여과막 모듈 및 이것을 포함하는 여과 시스템
JP5837985B2 (ja) ろ過装置
JP2010125348A (ja) 膜分離装置
JP2008110306A (ja) 膜モジュール、水処理装置及び膜分離システム
KR101594197B1 (ko) 세정기능을 갖는 일체형 여과장치
KR100881629B1 (ko) 중공사막을 이용한 오폐수 처리장치
JP5294555B2 (ja) 下水処理装置
JP5334510B2 (ja) 濾過フィルター材およびそれを用いた濾過方法
JP5238128B2 (ja) 固液混合処理液の固液分離装置
KR101417292B1 (ko) 산기관 및 초음파 발생장치가 일체형으로 부착된 막모듈
WO2015092835A1 (ja) 膜分離装置
KR100340450B1 (ko) 중공사를 이용한 수처리용 분리막
JP2009233571A (ja) エレメント配列固定具および膜分離装置
KR101059956B1 (ko) 폐수처리용 침지형 평막모듈의 초음파와 역류를 이용한 세정장치
JP4929220B2 (ja) 浸漬型膜分離装置
JPH11104469A (ja) スパイラル型膜エレメント、これを用いた膜モジュール及び水処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028003.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806451

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012524417

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3707/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806451

Country of ref document: EP

Kind code of ref document: A1