Nothing Special   »   [go: up one dir, main page]

WO2012005158A1 - Lighting device and method for manufacturing same - Google Patents

Lighting device and method for manufacturing same Download PDF

Info

Publication number
WO2012005158A1
WO2012005158A1 PCT/JP2011/064975 JP2011064975W WO2012005158A1 WO 2012005158 A1 WO2012005158 A1 WO 2012005158A1 JP 2011064975 W JP2011064975 W JP 2011064975W WO 2012005158 A1 WO2012005158 A1 WO 2012005158A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
lighting
organic
light
cord
Prior art date
Application number
PCT/JP2011/064975
Other languages
French (fr)
Japanese (ja)
Inventor
山田 誠
悦昌 藤田
勇毅 小林
岡本 健
秀謙 尾方
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012005158A1 publication Critical patent/WO2012005158A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • F21V33/0004Personal or domestic articles
    • F21V33/0012Furniture
    • F21V33/0016Furnishing for windows and doors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/04Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures
    • F21S8/06Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures by suspension
    • F21S8/061Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures by suspension with a non-rigid pendant, i.e. a cable, wire or chain
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/02Controlling the distribution of the light emitted by adjustment of elements by movement of light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/82Interconnections, e.g. terminals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]

Definitions

  • the present invention relates to an integrated illumination device including a cord having a wiring function, and a manufacturing method thereof.
  • organic EL elements light source devices using organic electroluminescence elements
  • a light source device using an organic EL element has various excellent characteristics such as self-emission, wide viewing angle, and high-speed response.
  • An organic EL element generally has a structure in which an organic layer having a light emitting layer is disposed between a first electrode (anode) that is a transparent electrode and a second electrode (cathode) that is a reflective electrode. It is provided above.
  • the organic layer generally has a hole transport layer, an electron transport layer, and the like.
  • An organic EL element is an element that emits light by such a mechanism.
  • the type that extracts light emitted from the organic EL element from the first electrode and the transparent substrate side is called a bottom emission type, and conversely, the type that extracts light emitted from the organic EL element from the second electrode side is called a top emission type.
  • an organic EL element In using an organic EL element for a light source device, a large area of the organic EL element is required.
  • a vacuum process is mentioned as one of the manufacturing methods of the organic EL element, but it is difficult to produce a large organic EL element in the vacuum process. This is because it is technically difficult to produce an organic EL element using a large substrate, and enormous tact time is required.
  • the cost for introducing a manufacturing apparatus for producing a large organic EL element and the running cost of the manufacturing apparatus are high. In particular, there are no reports on the production of organic EL elements on the 8th and 10th generation substrates.
  • a method of producing a large light source device by mounting a plurality of small-area organic EL elements produced by a medium-scale vacuum film forming apparatus has been recently adopted. According to this, a large light source device can be manufactured by a simple method, and the performance of the obtained light source device is high and the manufacturing cost is not high.
  • a light source device in which a plurality of strip-shaped organic EL elements are mounted is called a blind illumination device or the like because of its shape, and is becoming widespread as a planar light source device.
  • a blind illumination device is a device that has an illumination function in addition to a so-called blind (sometimes referred to as a screen) function that can adjust the amount of light collected by being installed in a window.
  • FIG. 15 is a perspective view of a main part for explaining the configuration of the blind device disclosed in Patent Document 1.
  • the blind device 100 is a horizontal blind in which a large number of slats 102 shown in FIG. 15 are horizontally arranged. Each slat 102 is connected to a winding string 109 so that each slat 102 can be rolled up. A ladder cord 108 is coupled to the slat 102 and is configured to be rotatable forward and backward.
  • the slat 102 emits light when a solar cell 103 that converts solar energy into electric energy, a sheet-like polymer secondary battery 104 that stores the electric energy converted by the solar cell 103, and a voltage supply from the sheet-like polymer secondary battery 104.
  • the sheet-like surface light emitter 105 to be laminated has a three-layer structure in which these are laminated in this order.
  • the solar cell 103 includes a terminal for directly converting light energy into electric energy and storing the converted electric energy in the sheet-like polymer secondary battery 104.
  • the sheet-like polymer secondary battery 104 has a solid electrolyte made of a solid polymer, accumulates the electric energy converted by the solar cell 103, and supplies the accumulated electric energy to the sheet-like surface light emitter 105. Terminal.
  • the sheet-like surface light emitter 105 is an organic EL element or the like that uses an organic thin film for an electroluminescent layer.
  • the sheet-like surface light emitter 105 is provided with a terminal for receiving voltage supply, and emits light when supplied with the electrical energy accumulated from the sheet-like polymer secondary battery 104.
  • an electric wire 106 for sending a signal for controlling light emission of the sheet-like surface light emitter 105 is disposed on the short side of the slat 102, and each electric wire 106 is connected to a switch 107. Has been.
  • Such a blind device 100 is installed in the vicinity of the indoor window side, the solar cell 103 side of each slat 102 is disposed in a direction in which sunlight can be received, and the solar energy of the received sunlight is converted into electrical energy. Is stored in the sheet-like polymer secondary battery 104, and light is emitted by supplying a voltage to the sheet-like surface light emitter 105.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2001-82058 (published on March 27, 2001)
  • the winding string 109 that supports each slat, the wiring 106 that applies voltage to each slat 102, and the ladder cord are provided separately. Yes. If these are separate bodies, not only the configuration becomes complicated, but especially when paying attention to the illumination function, the winding cord 109, the wiring 106, and the ladder cord are all members directly related to illumination. Therefore, it is not desirable that a large number of such configurations are disposed, because the illumination is disturbed.
  • the present invention has been made in view of the above-described conventional problems, and its purpose is to reduce the load on the wiring of each lighting panel (slat) and prevent the deterioration of the wiring material and the protective cover material of the wiring.
  • Another object of the present invention is to provide an illuminating device that can be easily increased in area and a manufacturing method thereof.
  • the lighting device in order to solve the above-described problem, the lighting device according to the present invention
  • a plurality of lighting panels each having a light emitting element provided with an electrode and having a light emitting element that emits light when voltage or current is supplied to the electrode;
  • the winding cord In the state where the plurality of illumination panels are held and the plurality of illumination panels are aligned in parallel in the major axis direction, the winding cord extends along the arrangement direction, and is arranged in the arrangement direction.
  • a winding cord configured to be able to adjust the arrangement length of the lighting panel group extending along;
  • a support cord that varies the surface angle of the lighting panel while supporting the plurality of lighting panels;
  • a lighting device comprising: The support cord has conductivity, The electrode provided on the light emitting element is electrically connected to a conductive portion of the support cord.
  • the plurality of lighting panels are held by the winding cord. Further, the length of the winding cord can be changed. By changing the length of the winding cord, the length of the arranged lighting panels can be adjusted.
  • the multiple lighting panels are supported by a support cord.
  • the support cord can be moved by an instrument such as a rod to vary the surface angle of the lighting panel relative to a certain direction.
  • This support cord corresponds to a ladder cord used in a general blind device.
  • the arrangement position and the inclination of the plurality of lighting panels can be adjusted by moving the winding cord and the support cord with the instrument.
  • a rod or the like can be applied as the instrument.
  • the support cord is configured to supply voltage or current to the electrode of the light emitting element. That is, the support cord and the electrode of the light emitting element are electrically connected to each other.
  • a support cord that supports each lighting panel and a wiring cord that applies a voltage to each lighting panel are provided separately and outside the short side of the lighting panel. Since only one place is provided at the end of the panel as a wiring, a voltage drop phenomenon may occur and light emission spots may be generated.
  • a wiring function for supporting the lighting panel and supplying power to each lighting panel is added to the support cord that changes the inclination.
  • the manufacturing method of the illuminating device concerning this invention
  • a plurality of lighting panels each having a light emitting element provided with an electrode and having a light emitting element that emits light when voltage or current is supplied to the electrode;
  • the winding cords extend along the arrangement direction and are arranged.
  • a winding cord configured to be able to adjust the length of the lighting panel;
  • a support cord that varies the surface angle of the lighting panel while supporting the plurality of lighting panels;
  • a method of manufacturing a lighting device comprising: A lighting panel forming step for forming the lighting panel in which the light emitting element is disposed; A supporting cord having conductivity is prepared so that the supporting cord can supply voltage or current to the electrode provided on the light emitting element, and a conductive portion of the supporting cord and an electrode of the light emitting element are prepared. And a connecting step of electrically connecting the two.
  • the wiring function for supplying power to each lighting panel is added to the support cord that changes the inclination of the plurality of lighting panels. Accordingly, it is possible to avoid blocking the light emission of the lighting panel by the wiring cord as compared with the case where a wiring cord is separately provided, and the room where the lighting device is installed can be illuminated with high illuminance.
  • the lighting device of the present invention is as described above.
  • a plurality of lighting panels each having a light emitting element provided with an electrode and having a light emitting element that emits light when voltage or current is supplied to the electrode;
  • the winding cord extends along the arrangement direction, and is arranged in the arrangement direction.
  • a winding cord configured to be able to adjust the arrangement length of the lighting panel group extending along;
  • a support cord that varies the surface angle of the lighting panel while supporting the plurality of lighting panels;
  • a lighting device comprising: The support cord has conductivity, The electrode provided on the light emitting element is electrically connected to a conductive portion of the support cord.
  • a supporting cord having conductivity is prepared so that the supporting cord can supply voltage or current to the electrode provided on the light emitting element, and a conductive portion of the supporting cord and an electrode of the light emitting element are prepared.
  • the support cord supporting each lighting panel has a function as wiring for supplying power to each lighting panel. Therefore, it is not necessary to lay dedicated wiring, and the wiring cord can illuminate the room where the lighting device is installed without blocking the light emitted from the lighting panel, and can increase the high illuminance.
  • the range of designs is widened and can be diversified. This configuration enables low-cost manufacturing of the lighting device.
  • a large-area integrated lighting device can be realized by mounting a plurality of small light-emitting elements (organic EL elements), and the manufacturing cost can be reduced. .
  • FIG. It is a figure which shows the cross section of the organic electroluminescent illuminating device which has arrange
  • An organic EL lighting device that can indirectly illuminate by arranging a top emission type organic EL element on a first substrate according to an embodiment of the present invention and extracting light reflected from the reflective second substrate.
  • FIG. 6 illustrates an alternative form of one embodiment of the present invention.
  • FIG. 6 illustrates another alternative form of one embodiment of the present invention. It is a figure which shows a prior art.
  • organic electroluminescence lighting device (hereinafter referred to as an organic EL lighting device), which is an embodiment of a lighting device according to the present invention, will be described.
  • the organic EL lighting device is a blind type lighting device, and in addition to being able to adjust the amount of light collected by the inclination angle of the slats (blades) in the same manner as a general blind (device), Since the slat is a lighting panel having a light emitting function, it can also be used as a lighting device. Therefore, the organic EL lighting device 1 according to the present embodiment includes, for example, office lighting, store lighting, facility lighting, stage lighting, stage lighting, outdoor lighting, house lighting, display lighting (amusement equipment, pachinko machines, vending machines, Or, it can be suitably used for refrigeration / refrigeration showcases, etc.), equipment / furniture lighting, evacuation guidance lighting, or local lighting.
  • FIG. 1 is a perspective view showing the configuration of the organic EL lighting device 1.
  • the organic EL lighting device 1 includes a head box 2, a lifting / lowering cord (winding cord) 3, a bottom rail 4, a branch wiring 5, and a ladder as shown in FIG. It has a cord (support cord) 6, a rod (instrument) 7, and a lighting panel 10.
  • the lighting panel 10 corresponds to the slat (blade) described above.
  • the organic EL lighting device 1 according to the present embodiment is a type in which each lighting panel 10 is suspended horizontally (horizontal), that is, a Venetian type lighting device.
  • the organic EL lighting device is a type in which each lighting panel 10 is suspended horizontally (horizontal), that is, a Venetian type lighting device, but is not necessarily limited thereto.
  • a vertical type in which each lighting panel 10 is suspended vertically (vertical) can be employed.
  • a plurality of lighting panels 10 can be slid and wound up to the left and right (horizontal direction).
  • the angle (rotation angle) of the said lighting panel 10 can be adjusted by rotating each lighting panel 10 right and left, and the organic EL lighting device 1 can be made into direct illumination or indirect illumination.
  • a cord corresponding to the lifting cord 3 of the Venetian type is called a drive cord, and a vertically held blade (vertical) corresponding to the Venetian type slat (lighting panel 10 held horizontally).
  • the lighting panel 10) held in the box is called a louver.
  • the plurality of lighting panels 10 arranged in parallel are suspended and held by the lifting cord 3 extending from the head box 2.
  • the plurality of lighting panels 10 are maintained in a state of being aligned in parallel in the longitudinal direction by being suspended by the lifting / lowering cord 3.
  • FIG. 2 is a perspective view showing the positional relationship between one lighting panel 10, the lifting / lowering cord 3 and the ladder cord 6.
  • the lifting / lowering cords 3 are respectively disposed on one end side and the other end side in the major axis direction of the strip-shaped lighting panel 10.
  • this invention is not limited to this, The raising / lowering cord 3 should just be provided in the outer periphery of the illumination panel 10 at least.
  • the ladder code 6 shown in FIG. 2 has a function of supporting each lighting panel 10.
  • the ladder cord 6 bridges between a pair of first cords extending from the head box 2 and connected to the bottom rail 4, and one first cord of the pair and the other first cord. And a plurality of second cords provided.
  • the first cord of the pair and the first cord of the other are provided so as to face each other so as to sandwich the short axis of the strip-shaped lighting panel 10, and the second cord is just the lighting panel.
  • the shape extends along 10 minor axes.
  • the pair of first cords and the plurality of second cords provided so as to bridge them may be provided to face each other so as to sandwich the major axis of the strip-shaped lighting panel 10. I do not care.
  • the illumination panel 10 is square, it may be provided to face either one of the axes.
  • the ladder cord 6 is disposed at a plurality of positions where the pair of first cords of the ladder cord 6 has a predetermined interval at the end along the long axis direction of the lighting panel 10. It becomes the composition which is done.
  • a pair of first cords are disposed at the center of the end side along the long axis direction of the illumination panel 10, and on the right side and the left side across this.
  • Each lighting panel 10 is supported by being placed on each of the second cords, and in FIG. 2, the lighting panel 10 is placed at a total of three locations, the center and the right and left sides of the center. I support it.
  • the lifting / lowering cord 3 and the ladder cord 6 are connected to a rod 7 in the head box 2.
  • the rod 7 is an example of an instrument that winds the lifting / lowering cord 3 and changes the inclination of the lighting panel 10. It goes without saying that the organic EL lighting device 1 can adopt not only a multi-rod type but also a cord and rod type or a cord type. Furthermore, not only a manual switching method using the rod 7, but also an electric operation method such as a remote wireless operation using a switch or a remote controller or a sensitive operation method using a sensor or the like is naturally included.
  • the lifting / lowering cord 3 is rolled up in the vertical direction.
  • the bottom rail 4 and the plurality of lighting panels 10 is also wound up, and the arrangement length of the arranged lighting panels 10 group (length of the arranged portion) can be shortened.
  • the arrangement positions of the plurality of lighting panels 10 can be adjusted.
  • the surface angle of each lighting panel 10 with respect to a certain direction can be changed. Specifically, by slightly winding one of the pair of first cords provided on the ladder cord 6 or feeding the other one, the inclination angle of the second cord changes. The surface angle of the supporting illumination panel 10 can be changed by placing it on the second cord.
  • the lifting / lowering cord 3 passes through the outer periphery of each lighting panel 10.
  • the illumination panel 10 is merely placed on the ladder cord 6, and the illumination panel 10 and the ladder cord 6 are merely connected to each other by the branch wiring 5. Therefore, the illumination panel 10 is not fixed to the lifting / lowering cord 3 and the ladder cord 6. Therefore, it is possible to incline the illumination panel 10 up and down by moving the ladder cord 6 with the grip 21 at the tip of the rod 7 to rotate the illumination panel 10 and adjusting the rotation angle.
  • each lighting panel 10 can be rolled up by pulling the grip 21 at the tip of the rod 7.
  • the lifting / lowering cord 3 that suspends the plurality of lighting panels 10 is configured to be wound into the head box 2 at the same time as the bottom rail 4 and the lighting panel 10 are wound up. That is, the lifting / lowering cord 3 is configured to be wound into the head box 2 by the rod 7 or to be fed out from the head box 2.
  • a pair of first cords extending from the head box 2 to the bottom rail 4 and a bridge between one first cord of the pair and the other first cord were provided.
  • a plurality of ladder cords 6 composed of a plurality of second cords are illuminated by a rod 7 by slightly winding one of the first cords into the head box 2 and feeding it out.
  • the inclination of the panel 10 can be adjusted to an arbitrary angle such as horizontal or vertical.
  • the ladder cord 6 has conductivity and is configured to supply voltage or current to the electrode of the organic EL element provided in the lighting panel 10. This is a characteristic configuration. Specifically, the ladder cord 6 has a pair of first cords extending from the head box 2 and connected to the bottom rail 4 as described above, and a plurality of second cords. The cord has conductivity. As shown in FIG. 2, the branch wiring 5 is connected to the conductive portion of the first cord, and the branch wiring 5 is electrically connected to the electrode of the organic EL element. ing. The first cord of the ladder cord 6 is connected to a commercial power source provided in the head box 2. Note that the second cord does not need to have conductivity.
  • the contact point between the ladder cord 6 and the branch wiring 5 connected to the ladder cord 6 may be fixed as long as it is electrically connected, or may be made movable by sliding it. Also good. If the contact is fixed, power supply from the ladder cord 6 to the lighting panel 10 is stabilized. On the other hand, by configuring the contact so as to be movable, the lighting panel 10 can be slid when the plurality of lighting panels 10 are put together.
  • branch wiring 5 can be provided with a cover made of plastic or the like so as not to short-circuit the other wiring.
  • the ladder cord 6 has the strength and durability sufficient to support the lighting panel 10, the bottom rail 4, etc. and the weight of the ladder cord 6 itself, and the flexibility when the lifting / lowering cord 3 is wound up, as in general. It is required to have. Furthermore, in this patent, it is calculated
  • the concrete structure of the first cord of the ladder cord 6 is basically an insulated wire, and is simply composed of a core material, a conductive material, and an insulating coating layer. Furthermore, there may be a protective coating layer. Of course, a plurality of these components may be carried by a single material.
  • the core material supports the lighting panel 10, the bottom rail 4, and the like, and the weight of the ladder cord 6 itself, and may or may not have conductivity by itself.
  • the former includes Fe and alloys containing it, and the latter includes various plastics and glass fibers.
  • the core material may be not only a new circle but also an elliptical material, or a flat band shape such as a film. Furthermore, not only one but also a plurality of bundles may be bundled.
  • the conductive material is formed on the core material using a technique such as plating, thick film printing, photolithography, and vacuum deposition.
  • Specific materials include those made of the above metals such as Ni, Co, Ag, Pd, Ru, Sn, Pb, etc. in the case of a plating method, and Sn—Pb in the case of an alloy.
  • Thick film printing methods include Au, Ag, Pt, Ag—Pd, Ag—Pt, Ag—Pd—Pt, W, Cu, C, etc.
  • photolithography methods include Al, Cu, Mo, ITO, IZO, etc. Is mentioned.
  • the insulating coating layer is a cover for preventing short circuit and the like, and includes polyethylene, polypropylene, polyurethane, various vinyl compounds (polyvinyl chloride, etc.), rubber (silicon rubber, etc.), and the like.
  • the configuration of the conductive ladder cord 6 is not limited to the above-described configuration, and glass braiding or the like may be performed to increase the durability, or conversely, the coating layer may be eliminated.
  • FIG. 3 is a schematic view showing a configuration of a part of the illumination panel 10
  • FIG. 4 is a cross-sectional view taken along the line AA ′ showing the illumination panel 10 shown in FIG. It is.
  • the lifting / lowering cord 3 and the ladder cord 6 are shown in addition to the lighting panel 10.
  • the illumination panel 10 is obtained by covering the organic EL panel 10 ′ shown in FIG. 3 with a second substrate.
  • FIG. 3 does not show the second substrate.
  • the organic EL panel 10 ′ shown in FIG. 3 has two organic EL elements 20 arranged on the first substrate 17.
  • FIG. 3 shows a configuration in which the two organic EL elements 20 are arranged on the first substrate 17, but the present invention is not necessarily limited thereto.
  • one organic EL element 20 or three or more organic EL elements 20 may be arranged on the first substrate 17.
  • the lifting / lowering cord 3 is arranged at a location other than the center of the lighting panel 10 in order to take a large light emitting area of the lighting panel 10.
  • the lighting panel 10 includes a first substrate 17 having a plurality of organic EL elements 20 and a second substrate 18 disposed so as to face the first substrate 17.
  • the first substrate 17 and the second substrate 18 are connected by a resin 19.
  • the branch wiring 5 connected to the ladder cord 6 that supports the illumination panel 10 is formed on the first substrate 17 that is electrically connected to the organic EL element 20.
  • the conductive wiring 9 is connected to the organic EL element 20 via the connection wiring 8.
  • one ladder code 6 may have a plurality of wiring functions.
  • a single ladder cord 6 can be constituted by a plurality of wirings such as a positive wiring and a negative wiring.
  • the wiring function may be distributed using a plurality of ladder codes 6.
  • At least one of the first substrate 17 and the second substrate 18 is made of a light transmissive material.
  • a transparent material such as a glass substrate or a resin substrate is applicable.
  • an opaque metal material or the like can be used in the case where one of the substrates is formed using a material that does not transmit light.
  • the first substrate 17 and the second substrate 18 may be made of a flexible material such as PET or PEN. If the first substrate 17 and the second substrate 18 are configured using a flexible material, the first substrate 17 and the second substrate 18 can be bent even when the organic EL lighting device 1 is bent. We can cope without.
  • the first substrate 17 and the second substrate 18 may have a flat plate shape or a shape having a curved surface.
  • the light emission surface side of the organic EL lighting device 1 may be curved in a convex shape or may be curved in a concave shape.
  • the light emitting surface side of the organic EL lighting device 1 When the light emitting surface side of the organic EL lighting device 1 is curved in a convex shape, the light of the organic EL lighting device 1 can be easily diffused, and the room or space where the organic EL lighting device 1 is installed Can be illuminated over a wide area.
  • the light emission surface side of the organic EL lighting device 1 is curved in a concave shape, the light of the organic EL lighting device 1 can be easily condensed, and from the installation position of the organic EL lighting device 1 It is possible to illuminate a point or a surface that is close to each other in a concentrated manner.
  • an organic / inorganic hybrid layer or a multi-layered film of an organic layer and an inorganic layer is formed in order to increase gas barrier properties and mechanical strength and reduce gas permeability. May be.
  • substrate 18 can be made into the rectangular flat plate shape of width 70mm, length 1000mm, and thickness 0.7mm, for example, it is not necessarily limited to this.
  • the first substrate 17 and the second substrate 18 are arranged so as to sandwich the organic EL element 20, and the first substrate 17 and the second substrate 18 are connected via a resin 19 such as a thermosetting resin or a UV curable resin. ing.
  • a region surrounded by the first substrate 17 and the second substrate 18, that is, a region where the organic EL element 20 is sealed is adjusted, for example, under an inert gas such as nitrogen or argon, or under vacuum. In this way, oxygen or moisture from outside enters the organic EL layer 13 of the organic EL element 20 by filling the region between the substrates with an inert gas or by evacuating the region. Can be suppressed. Therefore, it is not necessary to perform a process for providing each organic EL element 20 with a gas barrier property.
  • a hygroscopic agent such as barium oxide may be blended in the region between both substrates. According to this, the periphery of the organic EL element 20 can be kept dry.
  • the region between both substrates is filled with a heat radiation resin having high thermal conductivity.
  • a heat radiation resin having high thermal conductivity for example, insulating acrylic rubber, ethylene propylene rubber, or the like can be applied. According to this, since the heat radiation resin having high thermal conductivity is filled, the heat in the region between the two substrates can be efficiently released to the outside or the thermal uniformity can be increased.
  • the substrate that is not on the light emitting surface side is preferably composed of a light reflective material or a material having a light reflective surface.
  • the gap between the first substrate 17 and the second substrate 18 is preferably surrounded and sealed with a light reflective material or a material having a light reflective surface. According to this, the light emitted from the surface other than the light emitting surface of the organic EL element 20 is reflected on the wall surface of the illumination panel 10 (the wall surface of the illumination panel 10 surrounding the organic EL element 20). Therefore, the light leaking from the organic EL element 20 can be extracted more effectively.
  • the conductive wiring 9 is formed on the surface of the first substrate 17 on the side where the organic EL element 20 is disposed.
  • the conductive wiring 9 is disposed so as to extend in the width direction of the organic EL element 20.
  • the conductive wiring 9 for example, ITO, IZO, alkali metal, alkaline earth metal, or the like is applicable.
  • the conductive wiring 9 can have a width of about 2 mm, a length of 20 mm, and a thickness of about 150 mm, for example, but is not necessarily limited thereto.
  • Two of these conductive wirings 9 form a set, one of which is connected to the first electrode 12 (FIG. 5) of the organic EL element 20 and the other is connected to the second electrode 14 (FIG. 5). .
  • a voltage can be applied to the organic EL element 20 by passing a current through the set of conductive wirings 9. It is preferable that each set of the conductive wirings 9 can be individually controlled. According to this, the organic EL element 20 connected to one set of conductive wiring 9 can be driven independently. Therefore, since each organic EL element 20 can be individually driven, it is possible to perform light control such as light emission intensity or color tone of the organic EL lighting device 1.
  • one organic EL element 20 is divided into a plurality of colors or a plurality of types having different emission colors.
  • the organic EL element 20 can be used.
  • a plurality of conductive wirings 9 are arranged in parallel to the major axis direction.
  • the lighting rate of the red light emitting organic EL element (R) is 30%
  • the green light emitting organic EL element (G) A voltage is preferably applied to each conductive wiring 9 so that the lighting rate is 22% and the lighting rate of the blue light-emitting organic EL element (B) is 48%.
  • the lighting rate means a ratio to the maximum current flowing through the anode or cathode of the lighting panel 10 (however, the duty ratio is 1/1).
  • connection wiring 8 electrically connects the branch wiring 5 and the organic EL element 20 via the connection wiring 8.
  • the connection wiring 8 is preferably formed of lead-free solder or silver paste.
  • an auxiliary electrode or an auxiliary wiring may be provided along the long side direction of the organic EL element 20. According to this, the voltage drop due to the resistance of the first electrode 12 and the second electrode 14 of the organic EL element 20 can be reduced, and the uneven emission can be suppressed.
  • the auxiliary electrode may be provided over the entire circumference of the organic EL element, or may be provided partially at one end or both ends of the long side.
  • the lifting / lowering cord 3 may have a wiring function. As a result, the supply of power is stabilized by securing a plurality of power supply sources. In addition, since power supply sources are prepared at short intervals, it is possible to prevent the occurrence of light emission spots due to a decrease in the voltage flowing from each cord.
  • (Configuration of organic EL element 20) 5 is a cross-sectional view taken along the arrow line BB ′ shown in FIG. FIG. 5 does not show the first substrate 17 and the second substrate 18 for convenience of explanation.
  • the organic EL element 20 has a configuration in which a first electrode 12, an organic EL layer 13, and a second electrode 14 are laminated in this order on a support substrate 11. Further, in order to protect both the electrodes and the organic EL layer 13, the protective layer 15 is provided so as to cover the surface of the second electrode 14, but this is not an essential configuration of the organic EL element 20.
  • the organic EL element 20 by applying a voltage to the first electrode 12 and the second electrode 14, holes are injected from one electrode and electrons are injected from the other electrode.
  • the organic EL layer 13 has a light emitting layer, and the organic EL element 20 emits light when the injected holes and electrons are recombined in the light emitting layer.
  • the organic EL element 20 can be formed into a rectangular flat plate having a width of about 50 mm, a length of 450 mm, and a thickness of about 0.7 mm, but is not necessarily limited thereto.
  • the support substrate 11 is preferably made of an insulating material.
  • the insulating material is, for example, a transparent plastic film such as stretched polypropylene (OPP), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), or polyphenylene sulfite (PPS).
  • OPP stretched polypropylene
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PPS polyphenylene sulfite
  • the support substrate 11 can be employed as the insulating film.
  • the present invention is not necessarily limited to this, and an insulating film may be separately provided on the support substrate 11.
  • a protective film such as a silicon oxide film is preferably formed on the support substrate 11. Thereby, it is possible to prevent the alkali oxide from being eluted from the inside of the support substrate 11.
  • the portion (first substrate 17) where the organic EL element 20 is disposed is curved, it can be disposed without any problem.
  • the light emission surface side of the organic EL element 20 is curved in a concave shape, the light of the organic EL element 20 can be easily diffused, and the room where the organic EL lighting device 1 is installed, or It becomes possible to illuminate the space extensively.
  • the light emitting surface side of the organic EL element 20 is curved in a convex shape, the light of the organic EL element 20 can be easily condensed and is close to the installation position of the organic EL lighting device 1.
  • a configuration may be provided in which an adjustment unit that can appropriately adjust the curvature of the support substrate 11 is provided. According to this, as described above, when the light emitting surface side of the organic EL element 20 is curved in a convex shape, the light of the organic EL element 20 can be easily diffused, and the organic EL element 20 The room or space where the mounted organic EL lighting device 1 is installed can be illuminated in a wide range.
  • the light emitting surface side of the organic EL element 20 is curved in a concave shape, the light of the organic EL element 20 is illuminated. Can be easily condensed, and it is possible to intensively illuminate a point or a surface that is close to the installation position of the organic EL lighting device 1 mounted with the organic EL element 20. As an adjustment means, there exists an aspect mentioned later.
  • the support substrate 11 has flexibility, the organic EL element 20 can be produced using a roll-to-roll method. As a result, it is possible to reduce initial investment for introducing the apparatus, running cost, and the like. Furthermore, by packing the support substrate 11 from both sides with a substrate having low oxygen permeability or low water permeability, an organic multilayer film or an inorganic multilayer film is unnecessary, and an inexpensive organic EL element 20 can be manufactured. Is possible. However, the present invention is not necessarily limited to this.
  • the support substrate 11 may be made of a material such as glass.
  • a light reflective material such as a metal film
  • a light reflective material such as a metal film
  • an insulating film such as silicon nitride (SiNx) having a thickness of about 500 nm is preferably formed on the surface by a synthetic resin such as an epoxy resin or a plasma CVD apparatus.
  • the support substrate 11 may further contain a light diffusing material.
  • the light diffusing material include methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, normal butyl methacrylate, normal butyl methyl methacrylate, methyl methacrylate, methyl acrylate, a copolymer or a terpolymer.
  • Acrylic particles such as polyethylene, polystyrene (PS), polypropylene and the like, or a copolymer of acrylic particles and olefin particles.
  • multilayer multi-component particles or the like in which another type of monomer is coated on the upper layer also have light diffusibility, and such particles are also applicable.
  • the organic EL element 20 is diffused and emitted. Therefore, usually, a microcavity (microresonator) structure is employed, and the light emitted from the organic EL element 20 is resonated and condensed by adjusting the optical path length. As a result, an improvement in luminous efficiency and an improvement in color purity can be realized, and light can have directivity and the like.
  • the emitted light passes through the light diffusing portion and is uniformly diffused and emitted from the light emitting surface. While improving the color purity and luminous efficiency of the EL lighting device 1, it is possible to realize a wide viewing angle.
  • first electrode 12 and the second electrode 14 will be described.
  • One of the first electrode 12 and the second electrode 14 is a cathode, and the other electrode is an anode.
  • the material for the anode include indium tin oxide (ITO) and indium zinc oxide (IZO).
  • examples of the material for the cathode include alkali metals or alkaline earth metals.
  • examples of the material for the cathode include alkali metals or alkaline earth metals.
  • the film is preferably composed of a film, a barium compound film, a cesium film, a cesium compound film, a fluorine compound film, or the like.
  • the first electrode 12 is formed of a light transmissive or light semi-transmissive material (transparent electrode), and the second electrode 14 is formed of a light reflective material. It is preferable to do.
  • the organic EL element 20 is a top emission type
  • the first electrode 12 is formed of a light-reflective material
  • the second electrode 14 is a light-transmitting or light-semi-transmissive material (transparent electrode or semi-transparent material). It is preferable to form with a transparent electrode. According to this, the light emitted from the organic EL element 20 is emitted from the transparent electrode side, and the light can be efficiently taken out of the element.
  • the electrode on the light extraction side a transparent electrode
  • light can be condensed by a microcavity (microresonator) effect.
  • microcavity microresonator
  • an improvement in luminous efficiency and an improvement in color purity can be realized, and light can have directivity and the like.
  • a reflective electrode for the electrode opposite to the light extraction side even if the light emitted from the organic EL element 20 is emitted to the non-light emitting surface side, it is reflected by the electrode having light reflectivity, It is emitted from the light exit surface side. As a result, the utilization efficiency of the light emitted from the organic EL element 20 can be increased.
  • the organic EL element 20 Since the organic EL element 20 has a light emission distribution whose light intensity is close to an isotropic Lambert distribution, the organic EL element 20 utilizes the microcavity effect obtained by sandwiching the organic layer between the reflective electrode and the transparent electrode. It is also possible to collect the light from the element 20. By using a transparent electrode on the light exit surface side and a reflective electrode on the opposite side, multiple reflection interference is repeated between the two electrodes to resonate and emphasize.
  • the light emission luminance of the organic EL element 20 can be increased by extracting only light that matches the optical path length between the electrodes. Thereby, unnecessary light deviating from the optical path length is weakened, and the spectrum of the light extracted to the outside becomes steep, so that the color purity of the organic EL element 20 is improved.
  • directivity can be given to light.
  • red light emission (R), green light emission (G), and blue light emission (B) since the wavelength of each light differs, it is necessary to adjust the film thickness of a transparent electrode or a semi-transparent electrode for every light source. .
  • Protective layer 15 examples of the material of the protective layer 15 include silicon oxynitride.
  • the protective layer 15 can have a thickness of about 100 nm, but is not necessarily limited thereto.
  • the diffusion resin layer is a binder resin containing a plurality of light diffusion particles inside.
  • the binder resin include acrylic resins, polyester resins, polyolefin resins, and polyurethane resins.
  • the light diffusing particles include methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, normal butyl methacrylate, normal butyl methyl methacrylate, methyl methacrylate, methyl acrylate, a copolymer or a terpolymer.
  • Acrylic particles polyethylene, polystyrene (PS), olefin particles such as polypropylene, or a copolymer of acrylic particles and olefin particles.
  • PS polystyrene
  • olefin particles such as polypropylene
  • a copolymer of acrylic particles and olefin particles after forming single polymer particles, multilayer multi-component particles or the like in which another type of monomer is coated on the upper layer also have light diffusibility, and such particles are also applicable.
  • PMMA polymethyl methacrylate
  • the diffusion resin layer can have a thickness of about 150 ⁇ m, for example, but is not necessarily limited thereto.
  • the diffusion resin layer may be a diffusion plate.
  • the diffusion plate include acrylic resin, polyester resin, polyolefin resin, polyurethane resin, crosslinked polymethyl methacrylate, or crosslinked polystyrene in which light diffusion particles are dispersed.
  • a wavelength conversion layer for converting the wavelength of light may be provided on the surface of the organic EL element 20 on the light extraction side.
  • the wavelength conversion layer may be formed of, for example, an inorganic phosphor such as yttrium / aluminum / garnet (YAG), a known organic phosphor preferably used in an organic EL element, or another phosphor. preferable.
  • YAG yttrium / aluminum / garnet
  • the light emitted from the organic EL element 20 can be converted into light having a desired wavelength.
  • the wavelength conversion layer can have a thickness of about 100 ⁇ m, for example, but is not necessarily limited thereto.
  • a circularly polarizing plate or a color filter can be provided on the light extraction side surface of the organic EL element 20.
  • the circularly polarizing plate can circularly polarize the light emitted from the organic EL element 20 and suppress external light reflection.
  • a circularly polarizing plate has a structure in which a retardation plate functioning as a 1 / 4 ⁇ plate is bonded to a linear polarizing plate, and the 1/4 retardation film is tilted by 45 degrees with respect to the absorption axis of the linear polarizing plate. It becomes a right-handed circularly polarizing plate.
  • a 1/4 retardation film is tilted 135 degrees (-45 degrees) with respect to the absorption axis of the linear polarizing plate, it becomes a left-rotating circularly polarizing plate.
  • the light transmitted through the linearly polarizing plate becomes light that rotates clockwise when passing through the right rotating circularly polarizing plate, and when the light is reflected by a glass surface or the like, The direction of rotation is reversed and the light turns counterclockwise and enters the right rotating circularly polarizing plate again.
  • the clockwise rotating circularly polarizing plate transmits only clockwise light, absorbs counterclockwise light, and finally the reflected light of outside light can be made substantially zero. Utilizing this property, the circularly polarizing plate can remove external light reflection in the organic EL lighting device 1.
  • the retardation plate is a film having a birefringence and can be produced by stretching a plastic film in a specific direction. Any material that is transparent and can be stretched may be used.
  • a polycarbonate polymer, a polyester polymer, a polysulfone polymer, a polystyrene polymer, a polyphenylene oxide polymer, or a polyolefin polymer can be used.
  • the color filter it is possible to emit only light having a desired wavelength from the light emitted from the organic EL element, and to obtain the effect of suppressing and reducing the reflection of external light.
  • the light emitted from the organic EL element 20 has a wide spectrum shape and a long tail on the long wavelength side compared to the light emitted from the inorganic EL element, which causes a problem when trying to reproduce high color purity.
  • the color filter is used in combination, the spectrum of the unnecessary region is cut, and the spectrum having a narrow width (approximately half the width) can be obtained.
  • the suppression and reduction effect of external light reflection of the color filter is not as high as that of the circularly polarizing plate.
  • the unnecessary region wavelength of the light emitted from the organic EL element 20 is removed. And the effect of increasing the color purity can be exhibited at the same time. Furthermore, since the light extraction efficiency is higher than that of the circularly polarizing plate, the light emission efficiency of the organic EL element 20 is relatively high, and the introduction into the organic EL lighting device 1 is very effective.
  • Organic EL layer 13 only needs to include at least a light emitting layer, and a plurality of hole injection layers, hole transport layers, electron blocking layers, light emitting layers, hole blocking layers, electron transport layers, and electron injection layers. It should just be comprised from. For example, a three-layer structure in which a hole transport layer, a light emitting layer, and an electron transport layer are stacked may be used.
  • a five-layer structure in which a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are laminated, or a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, Examples thereof include a seven-layer structure in which a hole blocking layer, an electron transport layer, and an electron injection layer are stacked.
  • the charge transporting and light emitting layer has a high hole transporting property and electron transporting property and has a good balance of holes and electrons.
  • the organic EL layer 13 may be configured from a single layer structure.
  • both charge transport materials can propagate the holes injected from the anode and the electrons injected from the cathode to the light emitting region with (1) high mobility and high balance, (2) Since the energy difference between the highest occupied level / the lowest empty level (HOMO / LUMO) is sufficiently large (about 3 eV) and is a wide gap material, high luminous efficiency can be obtained.
  • the hole and electron injection properties may be inferior. It has an injection region and an electron injection region.
  • the organic EL layer 13 may have at least a light emitting layer.
  • the light emitting layer is formed of a dual charge transporting material in which a host material such as a hole transporting material or an electron transporting material is doped with a light emitting dopant.
  • Examples of the host material include 4,4'-N, N'-dicarbazolylbiphenyl (hereinafter referred to as CBP), which has the following chemical structural formula.
  • a red light emitting dopant is used as the light emitting dopant.
  • the red light-emitting dopant include bis (1- (phenyl) isoquinolinato-N, C2 ′) iridium (III) (acetylacetonate) (hereinafter referred to as (piq) 2 Ir (acac), which has the following chemical structural formula. )) And other red phosphorescent dopants.
  • a red light emitting layer is obtained by co-evaporating the red light emitting dopant and the host material.
  • the red light emitting layer can have a thickness of about 5 nm, for example, but is not necessarily limited thereto.
  • a green light emitting dopant is used as the light emitting dopant.
  • the green light emitting dopant include green phosphorescent light emitting dopants such as (2-phenylpyridine) iridium (hereinafter, Ir (ppy) 3 ), which has the following chemical structural formula.
  • Ir (ppy) 3 green phosphorescent light emitting dopants
  • a green light emitting layer is obtained by co-evaporating the green light emitting dopant and the host material.
  • the green light emitting layer can have a thickness of about 20 nm, for example, but is not necessarily limited thereto.
  • a blue light emitting dopant is used as the light emitting dopant.
  • the blue light-emitting dopant include blue phosphorescent light-emitting dopants such as iridium (III) bis [(4,6-difluorophenyl) -pyridinate-N, C2] picolinate (hereinafter referred to as FIrpic).
  • FIrpic iridium (III) bis [(4,6-difluorophenyl) -pyridinate-N, C2] picolinate
  • a blue light-emitting layer is obtained by co-evaporating the blue light-emitting dopant and the host material.
  • the blue light-emitting layer can have a thickness of about 30 nm, but is not necessarily limited thereto.
  • the organic EL layer 13 can be provided with a hole injection layer, a hole transport layer, an electron blocking layer, an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the hole injection layer has a function of efficiently injecting holes received from the anode into the light emitting layer.
  • the hole injecting material for example, 4,4 ′, 4 ′′ -tris (N-3-methylphenyl-N-phenylamino) triphenylamine, a starburst amine having the following chemical structural formula ( Hereinafter, m-MTDATA) and the like can be mentioned.
  • the hole injection layer can have a thickness of about 30 nm, for example, but is not necessarily limited thereto.
  • the hole transport layer has a function of efficiently transporting holes received from the anode to the light emitting layer.
  • the hole transporting material include aromatic tertiary amines such as 4,4 ′, 4 ′′ -tri (N-carbazolyl) triphenylamine (hereinafter, TCTA), which have the following chemical structural formula. Compounds.
  • TCTA aromatic tertiary amines
  • the hole transport layer can have a thickness of about 10 nm, for example, but is not necessarily limited thereto.
  • the electron blocking layer has a function of blocking the movement of electrons to the anode side.
  • an electron blocking material for example, 4,4′-bis- [N, N ′-(3-tolyl) amino-3,3′-dimethylbiphenyl (hereinafter referred to as HMTPD) having the following chemical structural formula Etc.
  • HMTPD 4,4′-bis- [N, N ′-(3-tolyl) amino-3,3′-dimethylbiphenyl
  • Etc chemical structural formula
  • the electron blocking layer can have a thickness of about 10 nm, for example, but is not necessarily limited thereto.
  • the electron injection layer has a function of efficiently injecting electrons received from the cathode into the light emitting layer.
  • the electron injecting material include lithium fluoride (LiF).
  • the electron injection layer can have a thickness of about 1 nm, for example, but is not necessarily limited thereto.
  • LiF lithium fluoride
  • the electron transport layer has a function of efficiently transporting electrons received from the cathode to the light emitting layer.
  • the electron transporting material for example, tris (8-hydroxyquinoline) aluminum (hereinafter referred to as Alq 3 ) having a chemical structural formula shown below, or 3-phenyl-4 ( 1'-naphthyl) 5-phenyl-1,2,4-triazole (hereinafter TAZ) and the like.
  • the electron transport layer can have a thickness of about 30 nm, for example, but is not necessarily limited thereto.
  • the hole blocking layer has a function of blocking the movement of holes to the cathode side.
  • the hole blocking material include 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (hereinafter referred to as BCP), which has the following chemical structural formula.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • the hole blocking layer can have a thickness of about 10 nm, for example, but is not necessarily limited thereto.
  • a stable electron blocking layer and hole blocking layer can be formed by a simple method called vapor deposition polymerization.
  • the both charge transporting materials constituting the electron blocking layer are the lowest free orbit of the both charge transporting materials constituting the light emitting layer.
  • the holes propagated from the anode and the electrons propagated from the cathode are confined in the light emitting layer, the probability that the holes and electrons recombine in the light emitting layer is increased, and the driving voltage of the organic EL element 20 is increased. Can be reduced.
  • the organic EL element 20 since the probability of recombination of holes and electrons in the light emitting layer is increased, the internal quantum yield can be improved and the light emission efficiency can be improved. However, it is not always necessary to provide both the electron blocking layer and the hole blocking layer, and the probability of recombination of holes and electrons can be sufficiently increased by having only one of them. Therefore, it is possible to provide the organic EL element 20 that realizes high luminance, high efficiency, and long life.
  • the organic EL layer 13 may further include a charge generation layer.
  • a charge generation layer for example, a hole transport layer, a light emission layer, a charge generation layer, a hole transport layer, a light emission layer, and an electron transport layer are included.
  • the organic EL layer 13 is formed by stacking in this order. That is, the organic EL element 20 including a plurality of light emitting layers can be formed. By forming an equipotential surface between the light emitting layers adjacent to each other with the charge generation layer, the driving voltage is increased while the flowing current is reduced, and an excellent light emission lifetime can be obtained.
  • the material for the charge generation layer include vanadium pentoxide (V 2 O 5 ).
  • the charge generation layer can have a thickness of about 20 nm, for example, but is not necessarily limited thereto.
  • the illumination panel 10 used in this embodiment is basically composed of an organic EL element 20 that emits white light. However, a plurality of types of organic EL elements 20 that emit light having different wavelengths may be used in order to provide the organic EL lighting device 1 with dimming properties and toning properties.
  • the organic EL elements 20 may have the same shape or different shapes.
  • the length or width of the organic EL elements 20 may be different for each emission color.
  • the organic EL lighting device 1 that is superior in terms of power consumption, light emission luminance, and light emission lifetime can be realized by designing the light emitting dopant in an arbitrary width in consideration of characteristics such as light emission efficiency of each light emitting dopant.
  • the red light emitting organic EL element (R), the green light emitting organic EL element (G), and the blue light emitting organic EL element (B) The organic EL element 20 can be used.
  • the RGB organic EL elements 20 may be set as one set, and the set may be repeatedly arranged on the first substrate 17 as shown in FIG.
  • FIG. 6 is a diagram illustrating an arrangement example of the organic EL element 20. In this figure, in order to make the layout of the organic EL element 20 easier to understand, the figure is simplified.
  • an organic EL element 20 of an orange light-emitting organic EL element and a blue light-emitting organic EL element can be used.
  • one organic EL element 20 may be separately applied to a plurality of colors by a method such as mask patterning. According to this, it is possible to provide the organic EL lighting device 1 with dimming property and toning property with one organic EL element 20.
  • the organic EL elements 20 of the respective emission colors may be arranged in other layouts in addition to the parallel arrangement.
  • the RGB organic EL elements 20 may be set as one set, and the RGB organic EL elements 20 may be arranged in an L shape in each set. You may arrange
  • the configuration in which the organic EL elements 20 are juxtaposed is shown.
  • the present invention is not necessarily limited thereto.
  • the organic EL element 20 having a tandem structure in which light emitting layers of the respective colors are stacked may be used.
  • the support substrate 11 may be disposed so as to be in contact with the first substrate 17, or the second electrode 14 on the opposite side to the support substrate 11 is disposed so as to be in contact with the first substrate 17. May be.
  • the 2nd electrode 14 of the organic EL element 20 is arrange
  • substrate 17 may be contacted, the 2nd electrode 14 becomes a lower electrode and the 1st electrode 12 becomes an upper electrode. Therefore, when providing an insulating film for insulating the conductive wiring 9 on the first substrate 17 and the organic EL element 20, the insulating film is provided between the second electrode 14 and the first substrate 17.
  • the protective layer 15 may be adopted as an insulating film, but is not necessarily limited to this. An insulating film may be separately provided between the substrate 17.
  • the organic EL element 20 (Other arrangement examples of the organic EL element 20)
  • the configuration in which the organic EL element 20 is disposed on the first substrate 17 has been described above.
  • the present invention is not particularly limited thereto.
  • the organic EL element 20 is disposed on both the first substrate 17 and the second substrate 18. May be.
  • the configuration in which the organic EL element 20 is arranged so that the support substrate 11 and the first substrate 17 are in contact with each other is shown, but the present invention is not particularly limited thereto, and the second electrode 14 side is the first substrate 17 or the second substrate.
  • the structure which touches 18 may be sufficient. This will be described with reference to FIGS. FIG.
  • FIG. 7 is a view showing a cross section of the organic EL lighting device 1 in which the bottom emission type organic EL element 20 is arranged on the first substrate 17 and the top emission type organic EL element 20 is arranged on the second substrate 18.
  • FIG. 8 is a view showing a cross section of the organic EL lighting device 1 in which the bottom emission type organic EL elements 20 are arranged on the first substrate 17 and the second substrate 18.
  • FIG. 9 is a view showing a cross section of the organic EL lighting device 1 in which the top emission type organic EL element 20 is arranged on the first substrate 17.
  • the protective layer 15 is not shown in order to simplify the drawing.
  • the support substrate 11 of the bottom emission type organic EL element 20 is disposed so as to contact the first substrate 17, and the support substrate 11 of the top emission type organic EL element 20 is the second substrate 18.
  • a material having transparency is used for the first substrate 17, and a material having light reflectivity is used for the second substrate 18. Accordingly, light from the organic EL element 20 disposed on the first substrate 17 is emitted from the first substrate 17 side, and light from the organic EL element 20 disposed on the second substrate 18 is also emitted from the first substrate 17 side. Will be released.
  • the arrangement position of the organic EL element 20 on the first substrate 17 and the arrangement position of the organic EL element 20 on the second substrate 18 do not overlap each other. According to this, the substantial light emission area of the organic EL lighting device 1 can be increased.
  • the second substrate 18 may be disposed so that the second electrode 14 of the bottom emission type organic EL element 20 is in contact therewith. According to this, light from the organic EL element 20 disposed on the second substrate 18 is emitted from the first substrate 17 side.
  • the light emission surface of the organic EL element 20 is arranged on the first substrate 17 so as to face the first substrate 17 side.
  • the support substrate 11 of the top emission type organic EL element 20 may be disposed so as to be in contact with the first substrate 17.
  • the light emitted from the organic EL element 20 is reflected by the second substrate 18 having light reflectivity, and the reflected light is emitted from the first substrate 17 side.
  • the organic EL lighting device 1 can be an indirect lighting device.
  • the first substrate 17 may be disposed so that the second electrode 14 of the bottom emission type organic EL element 20 is in contact therewith.
  • both the first substrate 17 and the second substrate 18 are made of a transparent material, and the light of the organic EL element 20 is transmitted from both the first substrate 17 side and the second substrate 18 side. May be released. According to this, the double-sided organic EL lighting device 1 can be obtained. At this time, the bottom emission type organic EL element 20 is disposed on the first substrate 17 and the second substrate 18, but is not particularly limited thereto.
  • the organic EL element 20 may be sealed in a space configured in a columnar shape, a rectangular parallelepiped shape, a spherical shape, or the like by three or more substrates.
  • FIG. 11A is a diagram illustrating a process of preparing the support substrate 11.
  • FIG. 11B is a diagram illustrating a process of forming the first electrode 12.
  • FIG. 11C is a diagram illustrating a process of forming the organic EL layer 13.
  • FIG. 11D is a diagram illustrating a process of forming the second electrode 14.
  • FIG. 11E is a diagram illustrating a process of forming the protective layer 15.
  • FIG. 11F is a diagram illustrating a process of cutting off the organic EL element 20.
  • the manufacturing method of the organic EL element 20 is demonstrated using a specific example, it is not necessarily limited to this.
  • film tape 11 ' such as PET film used as the support substrate 11
  • the 1st electrode 12 the organic electroluminescent layer 13, and 2nd on the said film tape 11'.
  • the electrodes 14 and the like are sequentially formed.
  • a plurality of first electrodes 12 are formed on the film tape 11 ′, and the organic EL layer 13, the second electrode 14, and the like are stacked on each first electrode 12.
  • the manufacture of the organic EL element 20 is preferably performed in an environment where the moisture concentration is low, such as a glove box under dry air.
  • an ITO film (for example, a thickness of 150 nm) is formed by sputtering, and a part of the ITO film is etched by laser ablation to form the first electrode 12.
  • the surface of the first electrode 12 is cleaned by ultrasonic cleaning and UV-ozone cleaning.
  • the ultrasonic cleaning for example, cleaning is performed for about 10 minutes using acetone or isopropyl alcohol (IPA) as a cleaning liquid.
  • IPA isopropyl alcohol
  • UV-ozone cleaning for example, cleaning is performed for about 30 minutes using a UV-ozone cleaning machine.
  • an organic EL layer 13 is formed on the first electrode 12 by vacuum deposition.
  • a starburst amine m-MTDATA for example, a thickness of 30 nm
  • a TCTA for example, a thickness of 10 nm
  • the film thickness is preferably measured by a crystal resonator.
  • a green light emitting layer, a blue light emitting layer, and a red light emitting layer are laminated in this order on the hole transport layer as a light emitting layer.
  • These light emitting layers can be achieved by two-component co-evaporation.
  • the green light emitting layer co-deposits CBP (host material) and Ir (ppy) 3 (green light emitting dopant) while controlling the respective evaporation rate ratios to be 0.92: 0.08.
  • the film thickness is 5 nm.
  • the blue light emitting layer is co-deposited, for example, by controlling CBP (host material) and FIrpic (blue light emitting dopant) so that the respective evaporation rate ratios are 0.92: 0.08.
  • the film thickness is 30 nm.
  • the red light emitting layer is formed by, for example, forming CBP (host material) and (piq) 2 Ir (acac) (red light emitting dopant) with a deposition rate ratio of 0.92 respectively. : Co-deposited by controlling to be 0.08. For example, the film thickness is 5 nm.
  • a BCP for example, a thickness of 10 nm
  • an Alq (30 nm) is formed as an electron transport layer on the light emitting layer.
  • LiF 0.5 nm
  • an aluminum film for example, a thickness of 100 nm
  • a SiON film for example, a thickness of 100 nm
  • the above organic EL layer 13 is heat-treated or irradiated with ultraviolet rays at the same time as or after vapor deposition of at least one material constituting the organic EL layer 13 under vacuum conditions.
  • the substrate is heated by heat treatment or ultraviolet irradiation, the reaction is accelerated, (1) vapor deposition polymerization can be completed, and (2) the degree of polymerization can be controlled.
  • the molecular orientation in the deposited film can be controlled by heat treatment.
  • ultraviolet irradiation it is more preferable to perform heat treatment after the ultraviolet irradiation.
  • the substrate is heated by ultraviolet irradiation, the reaction is accelerated, (1) vapor deposition polymerization can be completed, and (2) the degree of polymerization can be controlled.
  • the molecular orientation in the deposited film can be controlled by performing the heat treatment thereafter.
  • it is also possible to form a pattern by transferring a pattern using a mask at the time of ultraviolet irradiation and removing a portion that has not been cured after ultraviolet irradiation.
  • the film tape 11 ' is divided into a predetermined length, and the organic EL elements 20 are cut one by one.
  • each organic EL element 20 is shifted in the major axis direction by making the length of the margin from the light emitting region to the end of the organic EL element 20 non-uniform. Even when it is provided, the positions of the light emitting regions can be aligned in the long axis direction.
  • FIG. 12A is a schematic view showing a roll-to-roll vapor deposition apparatus for forming the organic EL element 20 according to this embodiment.
  • FIG. 12B is a diagram showing a state in which the organic EL element 20 is disposed on the first substrate 17.
  • FIG. 12C is a diagram illustrating a process of manufacturing the lighting panel 10 by arranging the second substrate 18 so as to cover the first substrate 17.
  • FIG. 12D is a diagram illustrating a state in which a plurality of lighting panels 10 are disposed between the head box 2 and the bottom rail 4.
  • the film tape 11 'on which the plurality of first electrodes 12 are formed is installed in a roll-to-roll vapor deposition apparatus as shown in FIG.
  • the roll-to-roll vapor deposition apparatus includes two rolls 22 for winding the film tape 11 ', and a plurality of forming portions 23 for forming the organic EL layer 13, the second electrode 14, and the like.
  • the film tape 11 ′ is sent out at a constant speed of 1 m / sec so as to pass through each forming portion 23.
  • the organic EL layer 13 and the second electrode 14 are sequentially deposited on the first electrode 12 by the forming portion 23, and finally the film A plurality of layers in which the first electrode 12, the organic EL layer 13, and the second electrode 14 are laminated on the tape 11 ′ are formed.
  • the film tape 11 ′ wound on the roll 22 is divided into a predetermined length. To do. In this way, a plurality of organic EL elements 20 can be produced.
  • the produced organic EL element 20 is arranged on the first substrate 17 to form the organic EL panel 10 '.
  • the conductive wiring 9 is previously formed on the first substrate 17 by using a method such as a vacuum evaporation method using a mask, a sputtering method, or a photolithography technique. Then, for example, the organic EL element 20 disposed on the first substrate 17 is connected to the conductive wiring 9 via the connection wiring 8 formed of lead-free solder or the like.
  • the second substrate 18 is fixed on the first substrate 17 so as to cover the first substrate 17 on which the organic EL element 20 is arranged.
  • a UV curable resin can be used for fixing the second substrate 18.
  • epoxy resin such as 30Y-332 manufactured by ThreeBond Co., Ltd. can be applied.
  • a plurality of lighting panels 10 are arranged between the head box 2 and the bottom rail 4. Specifically, the lighting panel 10 is placed on the second cord of the ladder cord 6 extending from the head box 2, and the branch wiring 5 and the conductive wiring 9 connected to the ladder cord 6 are connected to the connection wiring 8 (FIG. Connect via 4). Thereafter, the lifting / lowering cord 3 is arranged near the short side of the lighting panel. In this way, the organic EL lighting device 1 can be manufactured.
  • the organic EL element 20 it is preferable to produce the organic EL element 20 using a roll-to-roll vapor deposition apparatus in this embodiment. This is because the roll-to-roll vapor deposition apparatus does not increase in size and has excellent material utilization efficiency.
  • the present invention is not particularly limited to this, and the organic EL element 20 may be manufactured using another device.
  • the ladder cord 6 has conductivity, and supplies voltage or current to the electrodes of the organic EL elements provided in the lighting panel 10. It is configured to be able to. Conventionally, a ladder cord that supports each lighting panel and a wiring cord that applies a voltage to each lighting panel are provided separately. Therefore, this has produced a negative effect in which the wiring configuring the lighting device is arranged on the front and side surfaces as seen from the light emitting surface of the lighting panel to block the illumination light.
  • the ladder code for supporting a plurality of lighting panels and changing their inclinations has a wiring function for supplying power to each lighting panel.
  • the configuration can be simplified as compared with the conventional configuration in which the ladder cord and the wiring cord for applying a voltage to each lighting panel are separately configured. Further, the light emission of the lighting panel is not interrupted by separately providing the wiring cord, and the illuminance of the room where the lighting device is installed can be increased efficiently.
  • the ladder code 6 exists in the edge part along the major axis direction in the some illumination panel 10, and has a predetermined space
  • the ladder cord 6 includes a pair of first cords, a second cord that bridges the two first cords, and the branch wiring 5
  • the present invention is not limited to this, the second cord is not provided, and the branch wiring 5 is electrically connected to the lighting panel 10 and is also physically connected to the lighting panel 10. It may be configured to support the lighting panel 10.
  • FIG. 13 is a diagram showing this form.
  • holes (guide portions) 16 are provided in the vicinity of both ends in the long axis direction of the illumination panel 10 (the first substrate 17 and the second substrate 18).
  • the lifting / lowering cord 3 passes through the hole 16 on one side of each lighting panel 10, and another one lifting / lowering cord 3 passes through the hole 16 on the other side of each lighting panel 10.
  • the lifting / lowering cord 3 only passes through the hole 16, and the lighting panel 10 and the lifting / lowering cord 3 do not fix each other. However, since the respective positional relationships are determined, stable winding is possible.
  • the air holes 16 are provided to serve as a mechanism for stabilizing the winding without fixing between the lifting / lowering cord 3 and the lighting panel 10. If you do, you will not be caught in the form of holes.
  • the other guide portions include a groove provided at the end of the lighting panel, a notch, a hook protruding from the end of the lighting panel, and the like.
  • the arrangement position is preferably within 10 mm inward from the edge (edge) of the lighting panel 10, and if it is a hook, the lighting panel It is preferable that it is provided within a range of 10 mm or less from the 10 end sides (edges). Thereby, the area of the light emission part of the organic EL element 20 can be taken widely in the illumination panel 10, and it becomes easy to earn required illumination intensity.
  • the holes 16 are provided in the first substrate 17 by using the holes 16 as positioning portions when the first substrate 17 and the second substrate 18 are connected.
  • the positions of the first substrate 17 and the second substrate 18 can be determined so that 16 and the holes 16 provided in the second substrate 18 coincide.
  • the lighting panel 10 can be formed by arranging the corresponding portions of the upper and lower substrates to coincide with each other.
  • the lighting panel 10 is provided in the vicinity of both ends in the long axis direction. It ’s fine. Accordingly, in addition to the vicinity of the both ends, for example, it may be provided in the center of the lighting panel 10, that is, between the two organic EL elements 20 and 20, or only one lifting cord 3 is provided. In the case of the configuration in which the lift cord 3 is provided, a hole may be provided only in the central portion, and the lifting cord 3 may be passed through the hole.
  • FIG. 14 is a diagram for explaining a mode in which adjustment means is provided
  • FIG. 14A is a diagram of the illumination panel 10 as viewed from the short side. Note that, based on the configuration of the present embodiment, the lifting / lowering cord 3 should be disposed at the center of each of the three lighting panels 10 shown in FIG. 3 is not shown.
  • FIG. 14 (b) shows only one illumination panel and the configuration in the vicinity thereof, and corresponds to a portion provided with a dashed line in FIG. 14 (a).
  • the adjusting means 30 is disposed on one side of the lighting panel 10 along the central axis portion along the longitudinal direction of the lighting panel 10. More specifically, it is arranged between one side of the lighting panel 10 and the ladder cord 6 that crosses the lighting panel 10 in the minor axis direction.
  • the length of the adjusting unit 30 along the short axis direction of the lighting panel 10 is one-tenth to one-half the length of the short axis of the lighting panel 10, illumination is performed by a mechanism described later. Since the panel 10 can be curved, it is preferable. If the ratio is less than one tenth, the slats cannot be sufficiently pressurized. If the ratio exceeds one half, only the central portion of the illumination panel 10 cannot be pressurized, so that it is difficult to curve the illumination panel 10. There is a fear.
  • the adjusting means 30 may be fixed to the ladder cord 6 that crosses the illumination panel 10 along the direction of the short axis.
  • the present invention is not limited to this, and may be fixed to one side of the lighting panel 10 or may be fixed to both the ladder cord 6 and one side of the lighting panel 10.
  • the illumination panel 10 of the present embodiment is configured to emit light upward when the surface of the illumination panel 10 is leveled as shown in FIG. To do.
  • the adjusting means 30 is on the side opposite to the light exit surface side (referred to as the back side) of the lighting panel 10 and receives the tension of the ladder code 6 that is close to the adjusting unit 30, and the back side of the lighting panel 10.
  • the lighting panel 10 is pressurized toward the light exit surface side.
  • the lighting panel 10 that has been pressed by the adjusting means 30 has a region facing the adjusting means 30, that is, only the central axis portion of the lighting panel 10 protrudes in the pressing direction, and is curved as shown in FIG. It will be in the state. Thereby, the light emitted from the illumination panel 10 becomes diffused light compared to the light emitted from the flat illumination panel 10 shown in FIG.
  • the diffused light can be used to illuminate the room widely.
  • the material of the adjusting means 30 is not particularly limited to organic and inorganic materials as long as the lighting panel 10 can be pressurized, but a plastic material is preferable.
  • a known material can be used as the plastic material, and examples thereof include polyethylene and polypropylene.
  • a material having light transmittance as the adjustment unit 30 is used.
  • the shape of the adjusting means 30 is not particularly limited as long as it is adhered to the ladder cord 6 that traverses the lighting panel 10 in the minor axis direction.
  • the lighting panel 10 having plasticity is curved according to the rotation of the lighting panel 10. That is, the illumination panel shape can be reversibly changed to an arbitrary curvature radius along the minor axis direction. By reversibly changing the illumination panel to the radius of curvature, the light emitted from the organic EL element disposed on the illumination panel can be diffused or condensed.
  • the adjusting means 30 As described above, when the light emitting surface side of the organic EL lighting device 1 is curved in a convex shape, the light of the organic EL lighting device 1 can be easily diffused, The room or space in which the organic EL lighting device 1 is installed can be illuminated in a wide range. On the other hand, when the light emission surface side of the organic EL lighting device 1 is curved in a concave shape, the light of the organic EL lighting device 1 Can be easily condensed, and it is possible to intensively illuminate a point or a surface that is close to the installation position of the organic EL lighting device 1.
  • illuminating devices such as an inorganic electroluminescent illuminating device, plasma illumination, or a field emission lamp (FEL; Field Emission Lamp), may be sufficient, for example.
  • the organic EL lighting device 1 may be used as a lighting device as an organic thin film solar cell, an organic transistor (organic FET), or the like. Even in these cases, the wiring function for supplying power to each panel is provided, and the voltage drop phenomenon can be prevented by laying many power supply source wirings at short intervals without increasing extra wiring. Uniform light emission lighting can be provided. In addition, the illuminance of the room where the lighting device is installed can be efficiently increased without blocking the light emitted from the lighting panel.
  • Example 1 An organic EL lighting device employing a strip-shaped RGB laminated white organic EL element having a length of 450 mm and a width of 50 mm was produced.
  • Example 1 glass substrates having a length of 1000 mm, a width of 70 mm, and a thickness of 0.7 mm were used as the first substrate 17 and the second substrate 18 shown in FIG.
  • Conductive wiring having a thickness of 100 nm was formed on the surface of the first substrate 17 under a water pressure of 6 ⁇ 10 ⁇ 4 Pa.
  • Two organic EL elements 20 were arranged on the first substrate 17, and the conductive wiring 9 of the first substrate 17 and the organic EL element 20 were connected. Then, the 1st board
  • the produced lighting panels were placed on a ladder cord connecting the head box and the bottom rail, and a lifting cord was arranged near the short side of each lighting panel, and then the ladder cord and the lighting panel were connected. Specifically, the conductive wiring of the lighting panel and the branch wiring connected to the ladder cord were connected by lead-free solder. In this way, an organic EL lighting device was obtained.
  • the lighting panel is tilted so as to be vertical (the organic EL lighting device is fully opened)
  • the height of the organic EL lighting device is 1550 mm.
  • the chromaticity of the obtained organic EL lighting device was measured using a color luminance meter BM-5A manufactured by Topcon Corporation, the chromaticity was (0.33, 0.33). Further, when the color temperature was measured with a spectral radiance meter MCPD-7000 manufactured by Otsuka Electronics Co., Ltd., the color temperature was 5600K daylight white light emission. The emission luminance measured by the luminance meter was 50000 cd / m 2 at 17V. Further, the entire luminance ratio including the vicinity of the electrode and the portion farthest from the electrode was within 3% in terms of the peak luminance ratio, and good light emission uniformity was obtained.
  • Example 2 Except that the holes 16 shown in FIG. 13 are bored one by one at 5 mm from the ends of both short sides of the lighting panel 10 and the lifting / lowering cords 3 are passed through the holes 16, respectively.
  • An organic EL lighting device was produced by exactly the same manufacturing method.
  • the obtained organic EL lighting device was wound up 10,000 times and unwound, and the organic EL lighting panel was stably wound up and down without being entangled with the lifting cord.
  • Example 3 Exactly the same production as in Example 1, except that the size of each organic EL element was reduced and densely arranged in the lighting panel, and that the ladder cord as well as the lifting / lowering cord had a wiring function. An organic EL lighting device was produced by this method.
  • the chromaticity of the obtained organic EL lighting device was measured, the chromaticity was (0.33, 0.33) regardless of the light emitting position such as the vicinity of the electrode or the position farthest from the electrode, and the color temperature was It was daylight white light emission of 5600K. Also, the light emission luminance was almost 50000 cd / m 2 at 17 V regardless of the light emission position, the overall peak luminance ratio was 1%, and even better light emission homogeneity was obtained.
  • Example 4 An organic EL lighting device that employs organic EL elements in which one organic EL element is painted in three colors (red, green, and blue) was produced. Other configurations are the same as those in the first embodiment. Voltage is applied to each conductive wiring so that the lighting rate of each of the red (R), green (G), and blue (B) emission colors of the manufactured organic EL lighting device is 30%, 22%, and 60%. Applied.
  • Example 2 In the same manner as in Example 1, the chromaticity and color temperature of the obtained organic EL lighting device were measured.
  • the chromaticity was (0.31, 0.33), and the color temperature was 6800K daylight emission.
  • Example 5 In the same manner as in Example 3, an organic EL lighting device using organic EL elements in which one organic EL element was applied in three colors was produced. However, in each of the conductive wirings, the lighting rate of each of the red (R), green (G), and blue (B) emission colors of the manufactured organic EL lighting device is 46%, 28%, and 50%. A voltage was applied. Other configurations are the same as those in the first embodiment.
  • Example 2 In the same manner as in Example 1, the chromaticity and color temperature of the obtained organic EL lighting device were measured.
  • the chromaticity was (0.40, 0.40), and the color temperature was 3800K bulb light emission.
  • Example 6 An organic EL lighting device employing three types of organic EL elements, a red light emitting organic EL element, a green light emitting organic EL element, and a blue light emitting organic EL element, was produced. Voltage is applied to each conductive wiring so that the lighting rate of each of the red light emitting organic EL element, the green light emitting organic EL element, and the blue light emitting organic EL element of the manufactured organic EL lighting device is 32%, 20%, and 58%. Applied. Other configurations are the same as those in the first embodiment.
  • Example 2 In the same manner as in Example 1, the chromaticity and color temperature of the obtained organic EL lighting device were measured.
  • the chromaticity was (0.31, 0.33), and the color temperature was 6800K daylight emission.
  • Example 7 In the same manner as in Example 3, an organic EL lighting device using organic EL elements in which one organic EL element was applied in three colors was produced. However, the lighting rate of each of the emission colors of red (R), green (G), and blue (B) of the produced organic EL lighting device was changed over time to an arbitrary value of 0 to 100%. As a result, the organic EL lighting device as a whole was able to emit light whose intensity and color were changed in gradation.
  • R red
  • G green
  • B blue
  • Example 8 In the same manner as in Example 3, an organic EL lighting device using organic EL elements in which one organic EL element was applied in three colors was produced. However, it set so that the lighting rate of each luminescent color of red (R), green (G), and blue (B) of the produced organic electroluminescent illuminating device could be controlled with a remote control device (remote controller). Then, during the lighting of the organic EL lighting device, the lighting rate of each emission color was set to an arbitrary value of 0 to 100% with the remote control device. As a result, it was possible to set the light emission intensity and the light emission color to desired values for the entire organic EL lighting device.
  • a remote control device remote controller
  • the chromaticity of the obtained organic EL lighting device of the comparative configuration was measured, the chromaticity was (0.33, 0.33) regardless of the light emitting position such as the vicinity of the electrode or the position farthest from the electrode.
  • the color temperature was 5600K daylight white light emission.
  • the emission luminance was 49000 cd / m 2 at 17 V in the vicinity of the electrode, it became darker as the distance from the electrode was increased, the overall peak luminance ratio was 15%, and emission spots were observed.
  • the organic EL lighting device moves the lifting / lowering cord from the center of the lighting panel to the vicinity of the panel outer periphery, and the ladder cord is provided with a wiring function, so that extra wiring is provided. It was possible to lay many power supply wirings at short intervals without increasing the voltage, preventing the voltage drop phenomenon. Moreover, the illumination intensity of the room in which the lighting device was installed could be efficiently increased without blocking the light emitted from the lighting panel.
  • the organic EL lighting device may use one organic EL element that is separately applied to RGB, or may use three types of RGB organic EL elements. In particular, by setting the lighting rate of each emission color to an arbitrary value, a desired emission intensity and emission color can be realized.
  • Example 7 various emission intensity and emission colors can be obtained by changing the lighting rate of each emission color of the organic EL lighting device to an arbitrary value over time. Furthermore, if the lighting rate of each luminescent color can be controlled like Example 8, it can be set as the structure which can select the lighting rate of each luminescent color of an organic electroluminescent illuminating device to arbitrary values at any time. That is, the organic EL lighting device can have a dimming function and a toning function.
  • the lighting device according to the present invention is as described above.
  • a plurality of lighting panels each having a light emitting element provided with an electrode and having a light emitting element that emits light when voltage or current is supplied to the electrode;
  • the winding cord extends along the arrangement direction, and is arranged in the arrangement direction.
  • a winding cord configured to be able to adjust the arrangement length of the lighting panel group extending along;
  • a support cord that varies the surface angle of the lighting panel while supporting the plurality of lighting panels;
  • a lighting device comprising: The support cord has conductivity, The electrode provided on the light emitting element is electrically connected to a conductive portion of the support cord.
  • the plurality of lighting panels are held by the winding cord. Further, the length of the winding cord can be changed. By changing the length of the winding cord, the length of the arranged lighting panels can be adjusted.
  • the multiple lighting panels are supported by a support cord.
  • the support cord can be moved by an instrument such as a rod to vary the surface angle of the lighting panel relative to a certain direction.
  • This support cord corresponds to a ladder cord used in a general blind device.
  • the arrangement position and the inclination of the plurality of lighting panels can be adjusted by moving the winding cord and the support cord with the instrument.
  • a rod or the like can be applied as the instrument.
  • the support cord is configured to supply voltage or current to the electrode of the light emitting element. That is, the support cord and the electrode of the light emitting element are electrically connected to each other.
  • a support cord that supports each lighting panel and a wiring cord that applies a voltage to each lighting panel are provided separately and outside the short side of the lighting panel. Since only one place is provided at the end of the panel as a wiring, a voltage drop phenomenon may occur and light emission spots may be generated.
  • a wiring function for supporting the lighting panel and supplying power to each lighting panel is added to the support cord that changes the inclination.
  • the illuminating device which concerns on this invention is It is connected to the winding cord, and includes a tool for adjusting the length of the arranged lighting panels by moving the winding cord, By winding or unwinding the winding cord, the instrument can move the plurality of lighting panels so as to overlap each other, and can move the lighting panels away from each other.
  • a plurality of lighting panels can be stacked and gathered.
  • the so-called blind type lighting device as in the present invention also has a function as a blind for a light-shielding interior in a normal window treatment. Therefore, by adopting the above configuration, when the blind illumination device is not used, it can be rolled up and folded.
  • the illuminating device which concerns on this invention is It is connected to the support cord, and has an instrument for moving the support cord to adjust the inclination of the arranged lighting panels, It is preferable that the plurality of lighting panels can be tilted together by the device taking up or feeding out the support cord, and can be returned to the horizontal or vertical direction from the tilted state.
  • the illuminating device which concerns on this invention is It is preferable that a plurality of the support cords are provided along the arrangement direction, and a plurality of the support cords are provided at a predetermined interval on an end side of the illumination panel along the long axis direction.
  • the wiring 106 is provided in the vicinity of the short side of the slat 102.
  • the distance between the wiring 106 and the conductive member (electrode) in the slat 102 becomes long and a voltage drop phenomenon occurs.
  • Such a voltage drop phenomenon causes light emission spots.
  • the support cords are present at the end portions along the long axis direction of the plurality of lighting panels, and a plurality of the support cords have a predetermined interval along the long axis direction. Is provided. Therefore, since the distance between the support cord (wiring) and the electrode of the lighting panel can be configured to be relatively short, the occurrence of a voltage drop phenomenon as in the conventional case can be avoided. Therefore, it is possible to realize good illumination without emission spots.
  • the illuminating device which concerns on this invention is
  • the support cord has a branch wiring connected to the electrode of the light emitting element, The contact point between the support cord and the branch wiring is preferably fixed.
  • the power supply from the support cord to each lighting panel is stabilized by fixing the contact point between the support cord and the branch wiring.
  • the illuminating device which concerns on this invention is It is preferable that the winding cord is disposed on the end side in the longitudinal direction of the plurality of strip-shaped lighting panels.
  • the winding string 109 is disposed through the hole provided in the central portion of the slat 102, whereas such a hole is formed. There is no need to provide it. Thereby, the area of the light emitting portion can be increased in terms of structure, and necessary illuminance can be easily obtained.
  • the light emitting element manufacturing process (panel manufacturing process) can be simplified.
  • the illuminating device which concerns on this invention is Each of the lighting panels is provided with one of a guide portion for a support cord that guides the support cord and a guide portion for a take-up cord that guides the take-up cord. It is preferable.
  • the cord can be connected to a desired position of each lighting panel using the guide portion formed on each lighting panel.
  • the illuminating device which concerns on this invention is It is preferable that the guide portion is provided outside a region where the light emitting element is formed in each of the lighting panels.
  • the guide portion is provided outside the region where the light emitting element is formed, the manufacturing process of the light emitting element is not hindered, and the cord is arranged at the position where the light emission is formed. Therefore, the light emitted from the light emitting element is not disturbed.
  • the guide part is preferably a hole, a groove, a cut, or a hook provided within 10 mm inside or 10 mm outside from the edge of the lighting panel.
  • the cord and each lighting panel can be connected through a hole, a groove, a cut, or a hook formed in each lighting panel.
  • the guide portion is formed at a location excluding the central portion of the lighting panel, a large light emitting portion can be provided in the central portion, that is, the guide portion is provided in the central portion. In this case, the area of the light emitting portion is narrowed accordingly. Therefore, brightness and illuminance can be increased.
  • the guide portion is for a winding cord
  • the guide portion is provided within 10 mm from the end of the lighting panel, so that the winding cord and the panel are in contact with each other when the lighting panel is rolled up, and the winding is stably performed. Is possible.
  • the illuminating device which concerns on this invention is
  • the light emitting element preferably includes a flexible substrate.
  • an organic EL element can be manufactured as the light-emitting element by using a roll-to-roll manufacturing method. Thereby, even when an organic EL element is mounted, it is possible to reduce the initial investment for introducing the apparatus, the running cost, and the like.
  • the illuminating device which concerns on this invention is Each of the lighting panels is preferably curved along the minor axis direction.
  • an illuminating device capable of making light emitted from the light emitting element into divergent light (diffused light) or condensing it.
  • the range of the lighting device design according to the present invention is widened.
  • the illuminating device which concerns on this invention is
  • the lighting panel is preferably curved with the light emitting surface side of the light emitting element convex.
  • the light of the lighting device can be easily diffused, and the room or space where the lighting device is installed can be illuminated over a wide area.
  • the illumination device according to the present invention is The illumination panel may be curved with the light emitting surface side of the light emitting element concave.
  • the illuminating device which concerns on this invention is It is preferable that the lighting panel is bendable along the minor axis direction, and further includes adjusting means for adjusting the curvature rate of the lighting panel.
  • the curvature of the illumination panel can be adjusted as appropriate, so that the curvature of the illumination panel can be set to a desired value. Therefore, when the light emission surface side of the light emitted from the light emitting element is curved in a convex shape, the emitted light can be easily diffused to illuminate a room or space where the integrated illumination device is installed over a wide area. In addition, when the light emitting surface side of the light emitted from the light emitting element is curved in a concave shape, the emitted light can be easily collected, and a point or surface close to the installation position of the integrated lighting device can be concentrated. It can be illuminated.
  • the illuminating device which concerns on this invention is It is preferable that the light emitting element is curved with the light emitting surface of the light emitting element convex along the minor axis direction of the lighting panel.
  • the light of the light emitting element can be diffused, and the room or space where the integrated lighting device is installed can be illuminated over a wide area.
  • the illumination device is The light emitting element may be curved along the minor axis direction of the lighting panel with the light emitting surface of the light emitting element being concave.
  • the light of the light emitting element can be easily condensed, and it becomes possible to intensively illuminate a point or a surface that is close to the installation position of the integrated illumination device.
  • the illuminating device which concerns on this invention is It is preferable that the light-emitting element is bendable along the minor axis direction of the lighting panel, and further includes an adjusting unit that adjusts the bending rate of the light-emitting element.
  • the curvature of the light emitting element can be adjusted as appropriate, the curvature of the light emitting element can be set to a desired value. Therefore, when the light emitting surface side of the light emitted from the light emitting element is curved in a convex shape, the emitted light can be easily diffused to illuminate a room or space where the lighting device is installed over a wide area. In addition, when the light exit surface side of the light emitted from the light emitting element is curved in a concave shape, the exit light can be easily condensed, and the points or surfaces close to the installation position of the illumination device are intensively illuminated. Is possible.
  • the illuminating device which concerns on this invention is
  • the plurality of lighting panels can be arranged with their longitudinal directions aligned horizontally, The plurality of lighting panels are configured to move in the vertical direction.
  • the illumination device according to the present invention is The plurality of lighting panels may be arranged with their longitudinal directions aligned vertically, and in this case, the plurality of lighting panels are configured to move in the horizontal direction. Yes.
  • the plurality of lighting panels can be moved together in a stacked manner and moved away from the combined state. Can do.
  • the illuminating device which concerns on this invention is
  • the light-emitting element preferably has a plurality of emission colors and is configured to be driven independently for each emission color.
  • the integrated lighting device can be provided with toning and dimming properties.
  • the illuminating device which concerns on this invention is
  • the electrodes are an anode and a cathode.
  • the electrode located on the side opposite to the light exit surface preferably comprises a light-reflective material.
  • the illuminating device which concerns on this invention is
  • the electrodes are an anode and a cathode, and at least one of the anode and the cathode is preferably a transparent electrode.
  • the light emitted from the light emitting element is emitted from the transparent electrode side, and the light can be efficiently taken out of the element. Further, by making the electrode on the light extraction side a transparent electrode, light can be condensed by a microcavity (microresonator) effect. As a result, an improvement in luminous efficiency and an improvement in color purity can be realized, and light can have directivity and the like.
  • microcavity microresonator
  • the illuminating device which concerns on this invention is
  • the lighting panel has a structure in which the light emitting element is disposed between a pair of opposing substrates.
  • the substrate located on the side opposite to the light emitting side is made of a light-reflective material or a material having a light-reflective surface.
  • the gap portion between the pair of substrates is preferably sealed with a light-reflective material or a material having a light-reflective surface.
  • the illuminating device which concerns on this invention is
  • the light emitting element preferably has a resin layer having light diffusibility on the light emitting surface side.
  • the illumination device may have a light diffusing plate having light diffusibility on the light emitting surface side.
  • a light diffusing resin layer is formed on the light emitting surface side or a light diffusing plate is introduced.
  • the emitted light passes through the light diffusing portion and is uniformly diffused and emitted from the light emitting surface, thereby improving the color purity and luminous efficiency of the illumination device and realizing a wide viewing angle. .
  • the substrate on the light emitting surface side may be made of a light diffusing material.
  • the substrate on the light emitting surface side is made of a light diffusing material.
  • the emitted light passes through the light diffusing portion and is uniformly diffused and emitted from the light emitting surface, thereby improving the color purity and luminous efficiency of the illumination device and realizing a wide viewing angle. .
  • the illuminating device which concerns on this invention is
  • the light emitting element preferably has a wavelength conversion layer on the light exit surface side.
  • the light emitted from the organic EL element can be converted into light having a desired wavelength by using the wavelength conversion layer.
  • the illuminating device which concerns on this invention is
  • the light-emitting element preferably has a circularly polarizing plate on the light exit surface side.
  • the circularly polarizing plate can circularly polarize the light emitted from the light emitting element and suppress external light reflection.
  • the illuminating device which concerns on this invention is
  • the light emitting element preferably has a color filter on the light emitting surface side.
  • the color filter can emit only light having a desired wavelength from the light emitted from the light emitting element, and can obtain the effect of suppressing or reducing the reflection of external light.
  • the illuminating device which concerns on this invention is
  • the light emitting element is an organic EL element having an anode and a cathode as the electrodes,
  • the organic EL device preferably further has a charge generation layer.
  • the holes propagated from the anode and the electrons propagated from the cathode can be efficiently propagated to the light emitting region.
  • the charge generation region is formed between the organic EL layers, and by forming an equipotential surface between adjacent light emitting regions, the driving current is increased while the flowing current is reduced, and the excellent light emission life Can be obtained.
  • the illuminating device which concerns on this invention is
  • the light emitting element is an organic EL element having an anode and a cathode as the electrodes,
  • the cathode is formed by co-evaporating magnesium and silver in a ratio of 1: 9.
  • the organic EL element preferably has an electron injection layer made of lithium fluoride.
  • the illuminating device which concerns on this invention is
  • the light emitting element is an organic EL element having an anode and a cathode as the electrodes
  • the organic EL element has an organic layer including a light emitting region, and the organic layer is preferably composed of a both charge transporting material.
  • both charge transport materials can propagate the hole inject
  • the illuminating device which concerns on this invention is
  • the light emitting element is an organic EL element having an anode and a cathode as the electrodes,
  • the light emitting region is formed by doping the both charge transporting materials with a light emitting dopant,
  • An electron blocking region formed by the both charge transporting material and the electron blocking material between the anode and the light emitting region;
  • a hole blocking region formed by the both charge transporting material and hole blocking material between the cathode and the light emitting region;
  • the first condition that the charge transporting material constituting the electron blocking region has a lowest empty orbit higher than the lowest empty orbit of the charge transporting material constituting the light emitting region, and the hole
  • the charge transporting material constituting the blocking region has at least any one of the second conditions that the highest occupied track is shallower than the highest occupied track of the charge transporting material constituting the light emitting region. It is preferable that these conditions are satisfied.
  • the electron blocking region for blocking the movement of electrons and the hole blocking region for blocking the movement of holes are provided across the light emitting region formed by both charge transport materials. For this reason, the holes propagated from the anode and the electrons propagated from the cathode are confined in the light emitting region, so that the probability that holes and electrons recombine in the light emitting region is increased, and the driving voltage of the organic EL element is reduced. Can be lowered.
  • the probability of recombination of holes and electrons in the light emitting region is increased, the internal quantum yield can be improved and the light emission efficiency can be improved.
  • the illuminating device which concerns on this invention is It is preferable that the winding cord is configured to supply a voltage or current to the electrodes provided in the light emitting element.
  • the take-up cord in addition to the support cord also has a wiring function, thereby securing more power supply sources, thereby stabilizing the power supply. Further, the occurrence of light emission spots due to a decrease in the voltage flowing from each cord is prevented, and more uniform light emission can be obtained.
  • the illuminating device which concerns on this invention is It is preferable that the winding cord has a branch wiring connected to the electrode of the light emitting element, and a branch start point of the branch wiring is fixed.
  • the power supply from the cord to each lighting panel is stabilized by fixing the contact point between the winding cord and its branch wiring.
  • the illumination device includes: The contact point between the support cord and the branch wiring may be movable.
  • the contact point between the cord and the branch wiring is movable, so that the lighting panel can be slid when the plurality of lighting panels are stacked together.
  • the manufacturing method of the lighting device according to the present invention is as described above.
  • a plurality of lighting panels each having a light emitting element provided with an electrode and having a light emitting element that emits light when voltage or current is supplied to the electrode;
  • the winding cords extend along the arrangement direction and are arranged.
  • a winding cord configured to be able to adjust the length of the lighting panel;
  • a support cord that varies the surface angle of the lighting panel while supporting the plurality of lighting panels;
  • a method of manufacturing a lighting device comprising: A lighting panel forming step for forming the lighting panel in which the light emitting element is disposed; A supporting cord having conductivity is prepared so that the supporting cord can supply voltage or current to the electrode provided on the light emitting element, and a conductive portion of the supporting cord and an electrode of the light emitting element are prepared. And a connecting step of electrically connecting the two.
  • the wiring function for supplying power to each lighting panel is added to the support cord that changes the inclination of the plurality of lighting panels. Accordingly, it is possible to avoid blocking the light emission of the lighting panel by the wiring cord as compared with the case where a wiring cord is separately provided, and the room where the lighting device is installed can be illuminated with high illuminance.
  • the lighting panel forming step includes an organic electroluminescent element forming step of forming, as the light emitting element, an organic electroluminescent element in which at least an anode, an organic layer including a light emitting region, and a cathode are formed in this order on the substrate.
  • the organic electroluminescence element is preferably formed by a roll-to-roll method.
  • an integrated illumination device having a large area can be realized, and the manufacturing cost can be kept low.
  • the lighting panel forming step includes an organic electroluminescent element forming step of forming, as the light emitting element, an organic electroluminescent element in which at least an anode, an organic layer including a light emitting region, and a cathode are formed in this order on the substrate.
  • the charge transporting material is doped with a light emitting dopant to form the light emitting region, and the charge transporting material and the electron blocking material are formed between the anode and the light emitting region.
  • An electron blocking region is formed between the cathode and the light emitting region by the charge transporting material and the hole blocking material, and the electron blocking region and the hole blocking region are formed. Of these, at least one of them is preferably formed by vapor deposition polymerization.
  • a stable electron blocking region and hole blocking region can be formed by a simple method called vapor deposition polymerization.
  • the lighting panel forming step includes an organic electroluminescent element forming step of forming, as the light emitting element, an organic electroluminescent element in which at least an anode, an organic layer including a light emitting region, and a cathode are formed in this order on the substrate. And In the organic electroluminescence element forming step, it is preferable to perform heat treatment at the same time as or after vapor deposition of at least one material constituting the organic layer under vacuum conditions.
  • the method of manufacturing the lighting device according to the present invention includes:
  • the lighting panel forming step includes an organic electroluminescent element forming step of forming, as the light emitting element, an organic electroluminescent element in which at least an anode, an organic layer including a light emitting region, and a cathode are formed in this order on the substrate.
  • the organic electroluminescence element forming step it is preferable to irradiate ultraviolet rays at the same time as or after vapor deposition of at least one material constituting the organic layer under vacuum conditions.
  • the substrate is heated by heat treatment or ultraviolet irradiation, the reaction is accelerated, (1) vapor deposition polymerization can be completed, and (2) the degree of polymerization can be controlled. Furthermore, the molecular orientation in the deposited film can be controlled by heat treatment.
  • the method of manufacturing the lighting device according to the present invention includes: In the organic electroluminescence element forming step, it is preferable to perform heat treatment after the irradiation with the ultraviolet rays.
  • the substrate is heated by ultraviolet irradiation, the reaction is accelerated, (1) vapor deposition polymerization can be completed, and (2) the degree of polymerization can be controlled. Then, the molecular orientation in the deposited film can be controlled by performing the heat treatment thereafter.
  • the method of manufacturing the lighting device according to the present invention includes: In the organic electroluminescence element forming step, it is preferable to form a pattern using a mask when the ultraviolet rays are irradiated.
  • the lighting device according to the present invention can be suitably used as a blind type lighting device, for example, as various lighting devices such as office lighting, store lighting, or facility lighting.
  • Organic EL lighting device (lighting device) 2 Headbox 3 Lifting cord (winding cord) 4 Bottom rail 5 Branch wiring 6 Ladder cord (support cord) 7 Rod (equipment) 8 Connection wiring 9 Conductive wiring 10 Illumination panel 10 ′ Organic EL panel 11 Support substrate 11 ′ Film tape 12 First electrode 13 Organic EL layer 14 Second electrode 15 Protective layer 16 Hole (guide part) 17 First substrate 18 Second substrate 19 Resin 20 Organic EL element (light emitting element) 21 grip 22 roll 23 forming part

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A lighting device is provided with: a ladder cord (6) on which lighting panels (10) are arranged and which can change the angle of the surfaces of the lighting panels (10); and a lifting/lowering cord (3) for adjusting the length of the arranged lighting panels (10). The ladder cord (6) is wiring configured so that the wiring can apply a voltage to the electrodes of organic EL elements provided to the lighting panels (10), the organic EL elements being light emitting elements.

Description

照明装置、およびその製造方法LIGHTING DEVICE AND MANUFACTURING METHOD THEREOF
 本発明は、配線機能を具備するコードを備えた集積型照明装置、およびその製造方法に関する。 The present invention relates to an integrated illumination device including a cord having a wiring function, and a manufacturing method thereof.
 近年、平面型の光源装置の一つとして、有機エレクトロルミネッセンス素子(以下、有機EL素子という)を用いた光源装置が注目を集めている。有機EL素子を用いた光源装置は、自発光、広視野角、および高速応答性等の種々の優れた特性を有する。 In recent years, light source devices using organic electroluminescence elements (hereinafter referred to as organic EL elements) have been attracting attention as one of planar light source devices. A light source device using an organic EL element has various excellent characteristics such as self-emission, wide viewing angle, and high-speed response.
 有機EL素子とは、一般的には、透明電極である第一電極(陽極)と、反射電極である第二電極(陰極)との間に発光層を有する有機層を配した構造を透明基板上に設けている。また、当該有機層は、発光層以外に、正孔輸送層、および電子輸送層等を有しているものが一般的である。このような構成の有機EL素子の第一電極と第二電極との間に数ボルトの電圧を印加することによって、第一電極から有機層に注入された正孔と、第二電極から有機層に注入された電子とが発光層内で再結合する。発光層内で正孔と電子とが再結合すると、エキシトンが生成され、当該エキシトンが基底状態に戻る際に発光する。有機EL素子はこのようなメカニズムで発光する素子である。また、有機EL素子が発した光を第一電極および透明基板側から取り出すタイプはボトムエミッション型、逆に、有機EL素子が発した光を第二電極側から取り出すタイプはトップエミッション型と呼ばれる。 An organic EL element generally has a structure in which an organic layer having a light emitting layer is disposed between a first electrode (anode) that is a transparent electrode and a second electrode (cathode) that is a reflective electrode. It is provided above. In addition to the light emitting layer, the organic layer generally has a hole transport layer, an electron transport layer, and the like. By applying a voltage of several volts between the first electrode and the second electrode of the organic EL element having such a configuration, holes injected from the first electrode into the organic layer, and from the second electrode to the organic layer Recombined with electrons injected into the light emitting layer. When holes and electrons recombine in the light emitting layer, excitons are generated, and light is emitted when the excitons return to the ground state. An organic EL element is an element that emits light by such a mechanism. In addition, the type that extracts light emitted from the organic EL element from the first electrode and the transparent substrate side is called a bottom emission type, and conversely, the type that extracts light emitted from the organic EL element from the second electrode side is called a top emission type.
 有機EL素子を光源装置に用いるにあたり、有機EL素子の大面積化が求められる。ここで、有機EL素子の製造方法の一つとして真空プロセスが挙げられるが、当該真空プロセスでは、大型の有機EL素子を作製するのが困難である。これは、大型基板を使用して有機EL素子を作製することが技術上難しく、膨大なタクトタイムを要してしまうためである。また、大型の有機EL素子を作製する製造装置を導入するためのコスト、更に当該製造装置のランニングコストが大きい。特に、第8世代および第10世代の基板での有機EL素子の作製報告例は未だない。 In using an organic EL element for a light source device, a large area of the organic EL element is required. Here, a vacuum process is mentioned as one of the manufacturing methods of the organic EL element, but it is difficult to produce a large organic EL element in the vacuum process. This is because it is technically difficult to produce an organic EL element using a large substrate, and enormous tact time is required. Moreover, the cost for introducing a manufacturing apparatus for producing a large organic EL element and the running cost of the manufacturing apparatus are high. In particular, there are no reports on the production of organic EL elements on the 8th and 10th generation substrates.
 一方、有機EL素子の他の製造方法として、ウェットプロセスが挙げられるが、当該ウェットプロセスでも、真空プロセスと同様に、大型の有機EL素子を作製することが技術上困難である。また、ウェットプロセスは真空プロセスと比較して技術開発が数年遅れており、その性能が劣るため、大型の有機EL素子の作製において、真空プロセスの代替方法として用いるには課題が多い。 On the other hand, as another manufacturing method of the organic EL element, a wet process can be cited. However, it is technically difficult to produce a large organic EL element in the wet process as well as the vacuum process. In addition, the technical development of the wet process is delayed for several years compared to the vacuum process, and its performance is inferior. Therefore, there are many problems in using the wet process as an alternative method of the vacuum process in the production of a large organic EL element.
 上記のような問題を解決するために、中規模の真空製膜装置によって作製した小面積の有機EL素子を複数搭載することによって大型の光源装置を作製する方法が最近では採られている。これによれば、大型の光源装置を簡易な方法で製造することができ、得られる光源装置の性能は高く、製造コストは高くないので、実現性が高い。特に、帯状の有機EL素子を複数搭載した光源装置は、その形状からブラインド型照明装置等と呼ばれ、平面型の光源装置として普及しつつある。 In order to solve the above problems, a method of producing a large light source device by mounting a plurality of small-area organic EL elements produced by a medium-scale vacuum film forming apparatus has been recently adopted. According to this, a large light source device can be manufactured by a simple method, and the performance of the obtained light source device is high and the manufacturing cost is not high. In particular, a light source device in which a plurality of strip-shaped organic EL elements are mounted is called a blind illumination device or the like because of its shape, and is becoming widespread as a planar light source device.
 また最近では、有機EL素子以外の発光素子を搭載したブラインド型照明装置も開発されている。ブラインド型照明装置とは、窓に設置することによって採光量を調節することができるいわゆるブラインド(スクリーンと称する場合もある)機能に加えて、照明機能も兼ね備えた装置のことである。このようなブラインド型照明装置の一例として、特許文献1には、太陽電池が生成した電気エネルギーを利用して発光する発光体を搭載した複数のスラット(=羽根)を集積したブラインド型照明装置が開示されている。図15は、特許文献1のブラインド装置の構成を説明する要部斜視図である。ブラインド装置100は、図15に示すスラット102を多数水平に並設させた横型ブラインドであり、各スラット102には巻き上げ紐109が結合して各スラット102を巻き上げ自在に構成されており、更に各スラット102にラダーコード108が結合していて前後に回動自在に構成されている。 Recently, blind-type lighting devices equipped with light-emitting elements other than organic EL elements have also been developed. A blind illumination device is a device that has an illumination function in addition to a so-called blind (sometimes referred to as a screen) function that can adjust the amount of light collected by being installed in a window. As an example of such a blind illumination device, Patent Document 1 discloses a blind illumination device in which a plurality of slats (= blades) mounted with a light emitter that emits light using electrical energy generated by a solar cell is integrated. It is disclosed. FIG. 15 is a perspective view of a main part for explaining the configuration of the blind device disclosed in Patent Document 1. The blind device 100 is a horizontal blind in which a large number of slats 102 shown in FIG. 15 are horizontally arranged. Each slat 102 is connected to a winding string 109 so that each slat 102 can be rolled up. A ladder cord 108 is coupled to the slat 102 and is configured to be rotatable forward and backward.
 スラット102は、太陽エネルギーを電気エネルギーに変換する太陽電池103と、太陽電池103で変換された電気エネルギーを蓄えるシート状ポリマー二次電池104と、シート状ポリマー二次電池104からの電圧供給で発光するシート状面発光体105とがこの順で積層された3層構造をなしている。太陽電池103は、光エネルギーを直接、電気エネルギーに変換し、変換した電気エネルギーをシート状ポリマー二次電池104へ蓄電するための端子を備えている。シート状ポリマー二次電池104は、固体のポリマーからなる固体電解質を有しており、太陽電池103によって変換された電気エネルギーを蓄積し、蓄積した電気エネルギーをシート状面発光体105に供給するための端子を備えている。シート状面発光体105は、有機薄膜を電界発光層に用いる有機EL素子等である。シート状面発光体105には電圧供給を受けるための端子が設けられており、シート状ポリマー二次電池104から蓄積した電気エネルギーの供給を受けることで発光する。 The slat 102 emits light when a solar cell 103 that converts solar energy into electric energy, a sheet-like polymer secondary battery 104 that stores the electric energy converted by the solar cell 103, and a voltage supply from the sheet-like polymer secondary battery 104. The sheet-like surface light emitter 105 to be laminated has a three-layer structure in which these are laminated in this order. The solar cell 103 includes a terminal for directly converting light energy into electric energy and storing the converted electric energy in the sheet-like polymer secondary battery 104. The sheet-like polymer secondary battery 104 has a solid electrolyte made of a solid polymer, accumulates the electric energy converted by the solar cell 103, and supplies the accumulated electric energy to the sheet-like surface light emitter 105. Terminal. The sheet-like surface light emitter 105 is an organic EL element or the like that uses an organic thin film for an electroluminescent layer. The sheet-like surface light emitter 105 is provided with a terminal for receiving voltage supply, and emits light when supplied with the electrical energy accumulated from the sheet-like polymer secondary battery 104.
 また、各スラット102からは、シート状面発光体105の発光を制御する信号を送るための電線106がスラット102の短辺側に配設されておりされ、さらに各電線106はスイッチ107と接続されている。 Further, from each slat 102, an electric wire 106 for sending a signal for controlling light emission of the sheet-like surface light emitter 105 is disposed on the short side of the slat 102, and each electric wire 106 is connected to a switch 107. Has been.
 このようなブラインド装置100を、室内の窓側近傍へ設置し、各スラット102の太陽電池103側を太陽光を受光できる方向に配置し、受光した太陽光の太陽エネルギーを電気エネルギーへ変換し、それをシート状ポリマー二次電池104で蓄電し、シート状面発光体105へ電圧を供給することで発光を行う。 Such a blind device 100 is installed in the vicinity of the indoor window side, the solar cell 103 side of each slat 102 is disposed in a direction in which sunlight can be received, and the solar energy of the received sunlight is converted into electrical energy. Is stored in the sheet-like polymer secondary battery 104, and light is emitted by supplying a voltage to the sheet-like surface light emitter 105.
日本国公開特許公報「特開2001-82058号公報(2001年3月27日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-82058” (published on March 27, 2001)
 しかしながら、図15に示した特許文献1のブラインド型照明装置は、各スラットを支える巻き上げ紐109と、各スラット102に電圧を印加する配線106と、ラダーコードとが、それぞれ別体で設けられている。これらがそれぞれ別体であると、構成が複雑化するだけでなく、特に照明機能に注目して考えれば、巻き上げ紐109と、配線106と、ラダーコードとは、いずれも照明に直接関係する部材ではないため、このような構成が多数配設されていることによって、照明を妨害することになるため望ましくない。 However, in the blind illumination device of Patent Document 1 shown in FIG. 15, the winding string 109 that supports each slat, the wiring 106 that applies voltage to each slat 102, and the ladder cord are provided separately. Yes. If these are separate bodies, not only the configuration becomes complicated, but especially when paying attention to the illumination function, the winding cord 109, the wiring 106, and the ladder cord are all members directly related to illumination. Therefore, it is not desirable that a large number of such configurations are disposed, because the illumination is disturbed.
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、各照明パネル(スラット)の配線への負荷を少なくし、配線材料および配線の保護カバー材料等の劣化を防ぐことができ、且つ、容易に大面積化を実現することが可能な照明装置、およびその製造方法を提供することにある。 The present invention has been made in view of the above-described conventional problems, and its purpose is to reduce the load on the wiring of each lighting panel (slat) and prevent the deterioration of the wiring material and the protective cover material of the wiring. Another object of the present invention is to provide an illuminating device that can be easily increased in area and a manufacturing method thereof.
 すなわち、本発明に係る照明装置は、上記の課題を解決するために、
 電極が設けられた発光素子であって、当該電極に電圧もしくは電流が供給されることによって発光する発光素子を有し、且つ、帯状をなしている複数の照明パネルと、
 上記複数の照明パネルを保持し、上記複数の照明パネル同士をその長軸方向に揃えて平行に配列させた状態において、当該配列方向に沿ってのびている巻き取りコードであって、当該配列方向に沿ってのびている照明パネル群の配列長を調整することができるように構成された巻き取りコードと、
 上記複数の照明パネルを支えつつ、当該照明パネルの表面角度を可変させる支持コードと、
を備えた照明装置であって、
 上記支持コードは導電性を有し、
 上記発光素子に設けられた上記電極は、上記支持コードの導電部分と電気的に接続していることを特徴としている。
That is, in order to solve the above-described problem, the lighting device according to the present invention
A plurality of lighting panels each having a light emitting element provided with an electrode and having a light emitting element that emits light when voltage or current is supplied to the electrode;
In the state where the plurality of illumination panels are held and the plurality of illumination panels are aligned in parallel in the major axis direction, the winding cord extends along the arrangement direction, and is arranged in the arrangement direction. A winding cord configured to be able to adjust the arrangement length of the lighting panel group extending along;
A support cord that varies the surface angle of the lighting panel while supporting the plurality of lighting panels;
A lighting device comprising:
The support cord has conductivity,
The electrode provided on the light emitting element is electrically connected to a conductive portion of the support cord.
 上記の構成によれば、複数の照明パネルは巻き取りコードによって保持されている。また、当該巻き取りコードは、のびている長さを変えることができる。巻き取りコードの長さが可変することによって、配列している照明パネルの長さを調整することができる。 According to the above configuration, the plurality of lighting panels are held by the winding cord. Further, the length of the winding cord can be changed. By changing the length of the winding cord, the length of the arranged lighting panels can be adjusted.
 複数の照明パネルは、支持コードによって支えられている。支持コードはロッドのような器具によって動かされることによって、或る方向に対する照明パネルの表面角度を可変させることができる。この支持コードは一般的なブラインド装置において用いられるラダーコードに相当する。 The multiple lighting panels are supported by a support cord. The support cord can be moved by an instrument such as a rod to vary the surface angle of the lighting panel relative to a certain direction. This support cord corresponds to a ladder cord used in a general blind device.
 すなわち、本発明に係る照明装置では、当該器具によって巻き取りコード、及び、支持コードを移動させることによって、複数の照明パネルの配置位置、及び、傾きを調整することができる。マルチロッド式の照明装置では、当該器具として、例えば、ロッド等を適用することができる。 That is, in the lighting device according to the present invention, the arrangement position and the inclination of the plurality of lighting panels can be adjusted by moving the winding cord and the support cord with the instrument. In the multi-rod lighting device, for example, a rod or the like can be applied as the instrument.
 特に本発明において注目すべきは、支持コードが発光素子の電極に対して電圧もしくは電流を供給することができるように構成されている点にある。すなわち、支持コードと発光素子の電極とが、互いに電気的に接続されている。 Particularly noteworthy in the present invention is that the support cord is configured to supply voltage or current to the electrode of the light emitting element. That is, the support cord and the electrode of the light emitting element are electrically connected to each other.
 従来では、各照明パネルを支える支持コードと、各照明パネルに電圧を印加する配線コードとが別々に、また、照明パネルの短辺側外側に設けられていた。パネル末端に一か所しか配線として設けていないことにより、電圧降下現象が生じ、発光斑が出来てしまう恐れがある。しかしながら、本発明の上記構成によれば、照明パネルを支え、且つ、傾きを変える支持コードに、各照明パネルに電力を供給する配線機能を付加させている。 Conventionally, a support cord that supports each lighting panel and a wiring cord that applies a voltage to each lighting panel are provided separately and outside the short side of the lighting panel. Since only one place is provided at the end of the panel as a wiring, a voltage drop phenomenon may occur and light emission spots may be generated. However, according to the above-described configuration of the present invention, a wiring function for supporting the lighting panel and supplying power to each lighting panel is added to the support cord that changes the inclination.
 これによって、支持コードと、各照明パネルに電圧を印加する配線コードとを別々に構成する従来のものに比べて、構成を簡略化することができる。また、配線コードを別途設けることによる照明パネルの発光の遮断がなく、照明装置を設置した部屋の照度を効率良く高めることが出来る。 This makes it possible to simplify the configuration as compared with the conventional configuration in which the support cord and the wiring cord for applying a voltage to each lighting panel are separately configured. Further, the light emission of the lighting panel is not interrupted by separately providing the wiring cord, and the illuminance of the room where the lighting device is installed can be increased efficiently.
 また、上記の効果と共に、小型の発光素子(有機EL素子)を複数搭載した照明パネルを複数配置することによって、大面積の集積型照明装置が実現され、製造コストも低く抑えることができる。 In addition to the above effects, by arranging a plurality of lighting panels on which a plurality of small light emitting elements (organic EL elements) are mounted, a large-area integrated lighting device can be realized and the manufacturing cost can be kept low.
 また、本発明に係る照明装置の製造方法は、上記の課題を解決するために、
 電極が設けられた発光素子であって、当該電極に電圧もしくは電流が供給されることによって発光する発光素子を有し、且つ、帯状をなしている複数の照明パネルと、
 上記複数の照明パネルを保持し、上記複数の照明パネル同士をその長軸方向に揃えて平行に配列させた状態において、当該配列方向に沿ってのびている巻き取りコードであって、配列している照明パネルの長さを調整することができるように構成された巻き取りコードと、
 上記複数の照明パネルを支えつつ、当該照明パネルの表面角度を可変させる支持コードと、
を備えた照明装置の製造方法であって、
 上記発光素子を配設した上記照明パネルを形成する照明パネル形成工程と、
 上記支持コードが上記発光素子に設けられた上記電極に対して電圧もしくは電流を供給することができるように、導電性を有する支持コードを準備し、当該支持コードの導電部分と上記発光素子の電極とを電気的に接続する接続工程とを含むことを特徴としている。
Moreover, in order to solve said subject, the manufacturing method of the illuminating device concerning this invention
A plurality of lighting panels each having a light emitting element provided with an electrode and having a light emitting element that emits light when voltage or current is supplied to the electrode;
In the state where the plurality of lighting panels are held and the plurality of lighting panels are aligned in parallel in the major axis direction, the winding cords extend along the arrangement direction and are arranged. A winding cord configured to be able to adjust the length of the lighting panel;
A support cord that varies the surface angle of the lighting panel while supporting the plurality of lighting panels;
A method of manufacturing a lighting device comprising:
A lighting panel forming step for forming the lighting panel in which the light emitting element is disposed;
A supporting cord having conductivity is prepared so that the supporting cord can supply voltage or current to the electrode provided on the light emitting element, and a conductive portion of the supporting cord and an electrode of the light emitting element are prepared. And a connecting step of electrically connecting the two.
 上記の方法によれば、複数の照明パネルの傾きを変える支持コードに、各照明パネルに電力を供給する配線機能を付加させている。これによって、配線コードを別途設ける場合と比較して当該配線コードによる照明パネルの発光の遮断を回避することができ、照明装置を設置した部屋を高い照度で照明することができる。 According to the above method, the wiring function for supplying power to each lighting panel is added to the support cord that changes the inclination of the plurality of lighting panels. Accordingly, it is possible to avoid blocking the light emission of the lighting panel by the wiring cord as compared with the case where a wiring cord is separately provided, and the room where the lighting device is installed can be illuminated with high illuminance.
 また、小型の発光素子(有機EL素子)を複数搭載した照明パネルを複数配置することによって、大面積の集積型照明装置が実現され、製造コストも低く抑えることができる。 Also, by arranging a plurality of lighting panels on which a plurality of small light emitting elements (organic EL elements) are mounted, a large-area integrated lighting device can be realized, and the manufacturing cost can be kept low.
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。 Other objects, features, and superior points of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
 本発明の照明装置は、以上のように、
 電極が設けられた発光素子であって、当該電極に電圧もしくは電流が供給されることによって発光する発光素子を有し、且つ、帯状をなしている複数の照明パネルと、
 上記複数の照明パネルを保持し、上記複数の照明パネル同士をその長軸方向に揃えて平行に配列させた状態において、当該配列方向に沿ってのびている巻き取りコードであって、当該配列方向に沿ってのびている照明パネル群の配列長を調整することができるように構成された巻き取りコードと、
 上記複数の照明パネルを支えつつ、当該照明パネルの表面角度を可変させる支持コードと、
を備えた照明装置であって、
 上記支持コードは導電性を有し、
 上記発光素子に設けられた上記電極は、上記支持コードの導電部分と電気的に接続していることを特徴としている。
The lighting device of the present invention is as described above.
A plurality of lighting panels each having a light emitting element provided with an electrode and having a light emitting element that emits light when voltage or current is supplied to the electrode;
In the state where the plurality of illumination panels are held and the plurality of illumination panels are aligned in parallel in the major axis direction, the winding cord extends along the arrangement direction, and is arranged in the arrangement direction. A winding cord configured to be able to adjust the arrangement length of the lighting panel group extending along;
A support cord that varies the surface angle of the lighting panel while supporting the plurality of lighting panels;
A lighting device comprising:
The support cord has conductivity,
The electrode provided on the light emitting element is electrically connected to a conductive portion of the support cord.
 また、本発明の照明装置の製造方法は、以上のように、
 上記発光を配設した上記照明パネルを形成する照明パネル形成工程と、
 上記支持コードが上記発光素子に設けられた上記電極に対して電圧もしくは電流を供給することができるように、導電性を有する支持コードを準備し、当該支持コードの導電部分と上記発光素子の電極とを電気的に接続する接続工程とを含むことを特徴としている。
Moreover, the manufacturing method of the lighting device of the present invention is as described above.
A lighting panel forming step for forming the lighting panel in which the light emission is disposed;
A supporting cord having conductivity is prepared so that the supporting cord can supply voltage or current to the electrode provided on the light emitting element, and a conductive portion of the supporting cord and an electrode of the light emitting element are prepared. And a connecting step of electrically connecting the two.
 上記の構成によれば、各照明パネルを支えている支持コードが、各照明パネルに電力を供給する配線としての機能を具備している。そのため、専用配線を敷設する必要が無くなり、当該配線コードが照明パネルの発する光を遮断することなく、照明装置を設置した部屋を照らし、高い照度を齎すことが出来る。また、デザインの幅も広がり、多様化も図れる。本構成により、照明装置の低コスト製造が可能となる。また、大型の有機EL装置の作製が困難を極める中、小型の発光素子(有機EL素子)を複数搭載することによって大面積の集積型照明装置が実現され、更に製造コストも低く抑えることができる。 According to the above configuration, the support cord supporting each lighting panel has a function as wiring for supplying power to each lighting panel. Therefore, it is not necessary to lay dedicated wiring, and the wiring cord can illuminate the room where the lighting device is installed without blocking the light emitted from the lighting panel, and can increase the high illuminance. In addition, the range of designs is widened and can be diversified. This configuration enables low-cost manufacturing of the lighting device. In addition, while it is extremely difficult to manufacture a large-sized organic EL device, a large-area integrated lighting device can be realized by mounting a plurality of small light-emitting elements (organic EL elements), and the manufacturing cost can be reduced. .
本発明の一実施形態に係る有機EL照明装置を示す概略図である。It is the schematic which shows the organic electroluminescent illuminating device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る有機ELパネルを示す概略図である。It is the schematic which shows the organic electroluminescent panel which concerns on one Embodiment of this invention. 本発明の一実施形態に係る照明パネルとラダーコード及び昇降コードの位置関係を示す概略図である。It is the schematic which shows the positional relationship of the illumination panel which concerns on one Embodiment of this invention, a ladder cord, and a raising / lowering cord. 本発明の一実施形態に係る照明パネルの断面を示す図である。It is a figure which shows the cross section of the illumination panel which concerns on one Embodiment of this invention. 本発明の一実施形態に係る有機EL素子の断面を示す図である。It is a figure which shows the cross section of the organic EL element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る有機EL素子の一配置例を示す図である。It is a figure which shows the example of 1 arrangement | positioning of the organic EL element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第一基板にボトムエミッション型の有機EL素子を配し、第二基板にトップエミッション型の有機EL素子を配し、発光部分を広げた有機EL照明装置の断面を示す図である。A cross section of an organic EL lighting device in which a bottom emission type organic EL element is arranged on a first substrate according to an embodiment of the present invention, a top emission type organic EL element is arranged on a second substrate, and a light emitting portion is widened. FIG. 本発明の一実施形態に係る第一基板および第二基板にボトムエミッション型の有機EL素子を配し、発光部分を広げた有機EL照明装置の断面を示す図である。It is a figure which shows the cross section of the organic electroluminescent illuminating device which has arrange | positioned the bottom emission type organic EL element to the 1st board | substrate and 2nd board | substrate which concerns on one Embodiment of this invention, and expanded the light emission part. 本発明の一実施形態に係る第一基板にトップエミッション型の有機EL素子を配し、反射性の第二基板ではね返った光を取り出すことによって、間接的に照らすことができる有機EL照明装置の断面を示す図である。An organic EL lighting device that can indirectly illuminate by arranging a top emission type organic EL element on a first substrate according to an embodiment of the present invention and extracting light reflected from the reflective second substrate. It is a figure which shows a cross section. 本発明の一実施形態に係る両面発光性の有機EL照明装置の断面を示す図である。It is a figure which shows the cross section of the organic electroluminescent illuminating device of double-sided light emission which concerns on one Embodiment of this invention. 図中の(a)は、支持基板を用意する工程を示す図であり、図中の(b)は、第一電極を形成する工程を示す図であり、図中の(c)は、有機EL層を形成する工程を示す図であり、図中の(d)は、第二電極を形成する工程を示す図であり、図中の(e)は、保護膜を形成する工程を示す図であり、図中の(f)は、有機EL素子を切り取る工程を示す図である。(A) in a figure is a figure which shows the process of preparing a support substrate, (b) in the figure is a figure which shows the process in which a 1st electrode is formed, (c) in a figure is organic It is a figure which shows the process of forming EL layer, (d) in a figure is a figure which shows the process of forming a 2nd electrode, (e) in the figure is a figure which shows the process of forming a protective film (F) in the figure is a diagram showing a step of cutting out the organic EL element. 図中の(a)は、有機EL素子を形成するロールツウロール蒸着装置を示す概略図であり、図中の(b)は、第一基板上に有機EL素子を配置した状態を示す図であり、図中の(c)は、第一基板を覆うようにして第二基板を配置する工程を示す図であり、図中の(d)は、ヘッドボックスとボトムレールとの間に、複数の照明パネルが配置された状態を示す図である。(A) in a figure is the schematic which shows the roll toe roll vapor deposition apparatus which forms an organic EL element, (b) in the figure is a figure which shows the state which has arrange | positioned the organic EL element on the 1st board | substrate. (C) in the drawing is a diagram showing a step of arranging the second substrate so as to cover the first substrate, and (d) in the drawing shows a plurality of steps between the head box and the bottom rail. It is a figure which shows the state by which the illumination panel of this is arrange | positioned. 本発明の一実施形態の代替形態を示した図である。FIG. 6 illustrates an alternative form of one embodiment of the present invention. 本発明の一実施形態の別の代替形態を示した図である。FIG. 6 illustrates another alternative form of one embodiment of the present invention. 従来技術を示す図である。It is a figure which shows a prior art.
 本発明に係る照明装置の一実施形態である有機エレクトロルミネッセンス照明装置(以下、有機EL照明装置)について説明する。 An organic electroluminescence lighting device (hereinafter referred to as an organic EL lighting device), which is an embodiment of a lighting device according to the present invention, will be described.
 本実施形態に係る有機EL照明装置は、ブラインド型照明装置であり、一般的なブラインド(装置)と同様に採光量をスラット(羽根)の傾斜角度によって調整することができるのに加えて、各スラットが発光機能を有した照明パネルとなっていることから照明装置としても用いることができる。そのため、本実施形態に係る有機EL照明装置1は、例えば、オフィス照明、店舗照明、施設照明、舞台照明、演出照明、屋外照明、住宅照明、ディスプレイ照明(アミューズメント機器、パチンコ機、自動販売機、または冷凍・冷蔵ショーケース等)、機器・什器組み込み照明、避難誘導照明、または局所照明等に好適に用いられる。 The organic EL lighting device according to this embodiment is a blind type lighting device, and in addition to being able to adjust the amount of light collected by the inclination angle of the slats (blades) in the same manner as a general blind (device), Since the slat is a lighting panel having a light emitting function, it can also be used as a lighting device. Therefore, the organic EL lighting device 1 according to the present embodiment includes, for example, office lighting, store lighting, facility lighting, stage lighting, stage lighting, outdoor lighting, house lighting, display lighting (amusement equipment, pachinko machines, vending machines, Or, it can be suitably used for refrigeration / refrigeration showcases, etc.), equipment / furniture lighting, evacuation guidance lighting, or local lighting.
 (有機EL照明装置の構成)
 図1は、有機EL照明装置1の構成を示す斜視図である。
(Configuration of organic EL lighting device)
FIG. 1 is a perspective view showing the configuration of the organic EL lighting device 1.
 上述した機能を実現するために、本実施形態に係る有機EL照明装置1は、図1に示すように、ヘッドボックス2、昇降コード(巻き取りコード)3、ボトムレール4、分岐配線5、ラダーコード(支持コード)6、ロッド(器具)7、および照明パネル10を有している。 In order to realize the above-described function, the organic EL lighting device 1 according to the present embodiment includes a head box 2, a lifting / lowering cord (winding cord) 3, a bottom rail 4, a branch wiring 5, and a ladder as shown in FIG. It has a cord (support cord) 6, a rod (instrument) 7, and a lighting panel 10.
 本実施形態に係る有機EL照明装置1では、照明パネル10が上述したスラット(羽根)に相当する。照明パネル10は複数在って、その各々は、互いに同一の構成を有した帯状の形状である。全ての照明パネル10は、ヘッドボックス2とボトムレール4との間において、照明パネル10同士がその長手方向に揃えて平行に配列している。すなわち、配列した照明パネル10群の一方の端に位置する照明パネル10側にヘッドボックス2が配設されており、他方の端に位置する照明パネル10側にボトムレール4が配設されている。本実施形態における有機EL照明装置1では、図1に示すように、各照明パネル10を横(水平)にして吊り下げている形式、すなわちベネシャン型の照明装置である。 In the organic EL lighting device 1 according to the present embodiment, the lighting panel 10 corresponds to the slat (blade) described above. There are a plurality of lighting panels 10, each of which has a strip shape having the same configuration. All the lighting panels 10 are arranged in parallel with each other between the lighting panels 10 in the longitudinal direction between the head box 2 and the bottom rail 4. That is, the head box 2 is disposed on the side of the lighting panel 10 positioned at one end of the group of lighting panels 10 arranged, and the bottom rail 4 is disposed on the side of the lighting panel 10 positioned at the other end. . As shown in FIG. 1, the organic EL lighting device 1 according to the present embodiment is a type in which each lighting panel 10 is suspended horizontally (horizontal), that is, a Venetian type lighting device.
 なお、本実施形態に係る有機EL照明装置では、各照明パネル10を横(水平)にして吊り下げている形式、すなわちベネシャン型の照明装置であるが、必ずしもこれに限定されるわけではない。例えば、各照明パネル10を縦(鉛直)にして吊り下げる形式、すなわちバーティカル型も採用できる。バーティカル型の場合には、複数の照明パネル10を左右(水平方向)にスライドして巻き取ることができる。そして、各照明パネル10を左右に回転させることによって当該照明パネル10の角度(回転角度)を調整して、有機EL照明装置1を直接照明にも間接照明にもすることができる。一般的に、バーティカル型ブラインドの場合、ベネシャン型での昇降コード3にあたるコードをドライブコードと呼び、ベネシャン型でのスラット(水平に保持された照明パネル10)にあたる、鉛直に保持された羽根(鉛直に保持された照明パネル10)をルーバーと呼んでいる。 The organic EL lighting device according to the present embodiment is a type in which each lighting panel 10 is suspended horizontally (horizontal), that is, a Venetian type lighting device, but is not necessarily limited thereto. For example, a vertical type in which each lighting panel 10 is suspended vertically (vertical) can be employed. In the case of the vertical type, a plurality of lighting panels 10 can be slid and wound up to the left and right (horizontal direction). And the angle (rotation angle) of the said lighting panel 10 can be adjusted by rotating each lighting panel 10 right and left, and the organic EL lighting device 1 can be made into direct illumination or indirect illumination. Generally, in the case of a vertical blind, a cord corresponding to the lifting cord 3 of the Venetian type is called a drive cord, and a vertically held blade (vertical) corresponding to the Venetian type slat (lighting panel 10 held horizontally). The lighting panel 10) held in the box is called a louver.
 本実施形態における有機EL照明装置1では、平行に配列している複数の照明パネル10は、ヘッドボックス2から伸びる昇降コード3によって吊り下げて保持されている。言い換えれば、昇降コード3によって吊り下げていることによって、複数の照明パネル10がその長手方向に揃えて平行に配列している状態を維持している。 In the organic EL lighting device 1 according to the present embodiment, the plurality of lighting panels 10 arranged in parallel are suspended and held by the lifting cord 3 extending from the head box 2. In other words, the plurality of lighting panels 10 are maintained in a state of being aligned in parallel in the longitudinal direction by being suspended by the lifting / lowering cord 3.
 昇降コード3の配設位置について、図2を用いて説明する。図2は、1枚の照明パネル10と、昇降コード3およびラダーコード6の配置関係を示した斜視図である。昇降コード3は、図2に示すように、帯状をなした照明パネル10の長軸方向の一方の端側と他方の端側とにそれぞれ配設されている。なお、本発明はこれに限定されるものではなく、昇降コード3は、照明パネル10の外周に、少なくとも1本設けていれば良い。 The position of the lifting / lowering cord 3 will be described with reference to FIG. FIG. 2 is a perspective view showing the positional relationship between one lighting panel 10, the lifting / lowering cord 3 and the ladder cord 6. As shown in FIG. 2, the lifting / lowering cords 3 are respectively disposed on one end side and the other end side in the major axis direction of the strip-shaped lighting panel 10. In addition, this invention is not limited to this, The raising / lowering cord 3 should just be provided in the outer periphery of the illumination panel 10 at least.
 次に図2に示すラダーコード6は、各照明パネル10を支持する機能を有している。ラダーコード6は、ヘッドボックス2から伸びてボトムレール4まで繋がった一対の第1のコードと、一対のうちの一方の第1のコードと他方の第1のコードとの間を橋渡しするように設けられた複数の第2のコードとを有している。一対のうちの一方の第1のコードと他方の第1のコードとは、帯状をなした照明パネル10の短軸を挟むように対向して設けられていて、第2のコードはちょうど照明パネル10の短軸に沿ってのびているかたちとなる。もちろん、上記一対の第1のコードと、それらを橋渡しするように設けられた複数の第2のコードは、帯状をなした照明パネル10の長軸を挟むように対向して設けられていても構わない。更に、照明パネル10が正方形の場合では、どちらか一方の軸に対向して設けていれば良い。 Next, the ladder code 6 shown in FIG. 2 has a function of supporting each lighting panel 10. The ladder cord 6 bridges between a pair of first cords extending from the head box 2 and connected to the bottom rail 4, and one first cord of the pair and the other first cord. And a plurality of second cords provided. The first cord of the pair and the first cord of the other are provided so as to face each other so as to sandwich the short axis of the strip-shaped lighting panel 10, and the second cord is just the lighting panel. The shape extends along 10 minor axes. Of course, the pair of first cords and the plurality of second cords provided so as to bridge them may be provided to face each other so as to sandwich the major axis of the strip-shaped lighting panel 10. I do not care. Furthermore, in the case where the illumination panel 10 is square, it may be provided to face either one of the axes.
 ラダーコード6の配設位置は、図2に示すように、ラダーコード6の一対の第1のコードが、照明パネル10における長軸方向に沿った端辺において所定の間隔を有して複数設けられている構成となっている。図2では、照明パネル10における長軸方向に沿った端辺の中央と、これを挟んで右側および左側とにそれぞれ一対の第1のコードが配設されている。各照明パネル10は、各上記第2のコードの上に載置されることで支持されており、図2では、中央と、これを挟んで右側および左側との計3箇所で照明パネル10を支持している。 As shown in FIG. 2, the ladder cord 6 is disposed at a plurality of positions where the pair of first cords of the ladder cord 6 has a predetermined interval at the end along the long axis direction of the lighting panel 10. It becomes the composition which is done. In FIG. 2, a pair of first cords are disposed at the center of the end side along the long axis direction of the illumination panel 10, and on the right side and the left side across this. Each lighting panel 10 is supported by being placed on each of the second cords, and in FIG. 2, the lighting panel 10 is placed at a total of three locations, the center and the right and left sides of the center. I support it.
 昇降コード3およびラダーコード6は、ヘッドボックス2内にあるロッド7に接続されている。なお、ロッド7は、昇降コード3を巻き取る、及び、照明パネル10の傾きを変える器具の一例である。有機EL照明装置1では、マルチロッド型だけでなく、コード&ロッド型、またはコード型等も採用できることは言うまでもない。さらに、ロッド7による手動での切り替え方法だけでなく、スイッチまたはリモコン等による遠隔無線操作等の電動式、またはセンサ等による感応式等の操作方法も当然含まれる。 The lifting / lowering cord 3 and the ladder cord 6 are connected to a rod 7 in the head box 2. The rod 7 is an example of an instrument that winds the lifting / lowering cord 3 and changes the inclination of the lighting panel 10. It goes without saying that the organic EL lighting device 1 can adopt not only a multi-rod type but also a cord and rod type or a cord type. Furthermore, not only a manual switching method using the rod 7, but also an electric operation method such as a remote wireless operation using a switch or a remote controller or a sensitive operation method using a sensor or the like is naturally included.
 ヘッドボックス2内の昇降コード3の先に接続されたロッド7の先端に設けられたグリップ21を引くことにより、昇降コード3が鉛直方向に巻き上げられ、その結果、ボトムレール4および複数の照明パネル10も巻き上げられて、配列している照明パネル10群の配列長(配列した部分の長さ)を短くすることができる構成になっている。このように、ロッド7先の昇降コード3を巻き上げることによって、複数の照明パネル10の配置位置を調整することができる。 By pulling the grip 21 provided at the tip of the rod 7 connected to the tip of the lifting / lowering cord 3 in the head box 2, the lifting / lowering cord 3 is rolled up in the vertical direction. As a result, the bottom rail 4 and the plurality of lighting panels 10 is also wound up, and the arrangement length of the arranged lighting panels 10 group (length of the arranged portion) can be shortened. Thus, by winding up the lifting / lowering cord 3 at the tip of the rod 7, the arrangement positions of the plurality of lighting panels 10 can be adjusted.
 また、ロッド7先端のグリップ21を軸回りに回転させれば、或る方向に対する各照明パネル10の表面角度を変えることができる。具体的には、ラダーコード6に設けられた一対の第1のコードのうちの一本を僅かに巻き上げるか、もしくは、もう一方を繰り出すことにより、上記第2のコードの傾斜角度が変化して、当該第2のコードの上に載置することによって支持している照明パネル10の表面角度を変えることができる。 Further, if the grip 21 at the tip of the rod 7 is rotated around the axis, the surface angle of each lighting panel 10 with respect to a certain direction can be changed. Specifically, by slightly winding one of the pair of first cords provided on the ladder cord 6 or feeding the other one, the inclination angle of the second cord changes. The surface angle of the supporting illumination panel 10 can be changed by placing it on the second cord.
 このように、本実施形態における有機EL照明装置1は、各照明パネル10の外周を昇降コード3が通過している。また、照明パネル10は、ラダーコード6上に載っているだけで、当該照明パネル10とラダーコード6とは互いに分岐配線5によって繋がれているだけである。従って、照明パネル10は昇降コード3およびラダーコード6に固定されていない。そのため、ロッド7先端のグリップ21によってラダーコード6を移動させて照明パネル10を回転させ、その回転角度を調整することによって、照明パネル10を上下に傾斜させることが可能である。当該照明パネル10の角度を調整可能な機能を備えれば、当該照明パネル10を所望の角度に調整することができ、有機EL照明装置1は直接照明にも間接照明にもなり得る。また、有機EL照明装置1を使用していないときには、ロッド7先端のグリップ21を引くことにより、各照明パネル10を巻き上げることができる。 Thus, in the organic EL lighting device 1 according to the present embodiment, the lifting / lowering cord 3 passes through the outer periphery of each lighting panel 10. Further, the illumination panel 10 is merely placed on the ladder cord 6, and the illumination panel 10 and the ladder cord 6 are merely connected to each other by the branch wiring 5. Therefore, the illumination panel 10 is not fixed to the lifting / lowering cord 3 and the ladder cord 6. Therefore, it is possible to incline the illumination panel 10 up and down by moving the ladder cord 6 with the grip 21 at the tip of the rod 7 to rotate the illumination panel 10 and adjusting the rotation angle. If the function which can adjust the angle of the said lighting panel 10 is provided, the said lighting panel 10 can be adjusted to a desired angle, and the organic electroluminescent illuminating device 1 can be a direct illumination or an indirect illumination. When the organic EL lighting device 1 is not used, each lighting panel 10 can be rolled up by pulling the grip 21 at the tip of the rod 7.
 複数の照明パネル10を吊るしている昇降コード3は、ボトムレール4および照明パネル10を巻き上げると同時に、ヘッドボックス2内に巻き取られる構成になっている。すなわち、昇降コード3は、ロッド7によってヘッドボックス2内に巻き取られたり、ヘッドボックス2内から繰り出されたりする構成になっている。一方、ヘッドボックス2から伸びてボトムレール4まで繋がった一対の第1のコードと、一対のうちの一方の第1のコードと他方の第1のコードとの間を橋渡しするように設けられた複数の第2のコードから構成されるラダーコード6は、ロッド7によって、第1のコードのうちの一方をヘッドボックス2内に僅かに巻き取る、及び、繰り出すことにより、複数設置されている照明パネル10の傾きを水平や垂直など任意の角度に調節することができる。 The lifting / lowering cord 3 that suspends the plurality of lighting panels 10 is configured to be wound into the head box 2 at the same time as the bottom rail 4 and the lighting panel 10 are wound up. That is, the lifting / lowering cord 3 is configured to be wound into the head box 2 by the rod 7 or to be fed out from the head box 2. On the other hand, a pair of first cords extending from the head box 2 to the bottom rail 4 and a bridge between one first cord of the pair and the other first cord were provided. A plurality of ladder cords 6 composed of a plurality of second cords are illuminated by a rod 7 by slightly winding one of the first cords into the head box 2 and feeding it out. The inclination of the panel 10 can be adjusted to an arbitrary angle such as horizontal or vertical.
 そして、このラダーコード6が導電性を有していて、照明パネル10に設けられた有機EL素子の電極に対して電圧もしくは電流を供給することができるように構成されている点が、本発明の特徴的構成である。具体的には、ラダーコード6は、上述したようにヘッドボックス2から伸びてボトムレール4まで繋がった一対の第1のコードと、複数の第2のコードとを有しているが、第1のコードが導電性を有している。そして、この第1のコードの導電部分に、図2に示すように、分岐配線5が接続されており、この分岐配線5が当該有機EL素子の電極と電気的に接続されている構成となっている。ラダーコード6の第1のコードは、ヘッドボックス2内に設けられている商用電源に繋がっている。なお、第2のコードは、導電性を有している必要はない。 The ladder cord 6 has conductivity and is configured to supply voltage or current to the electrode of the organic EL element provided in the lighting panel 10. This is a characteristic configuration. Specifically, the ladder cord 6 has a pair of first cords extending from the head box 2 and connected to the bottom rail 4 as described above, and a plurality of second cords. The cord has conductivity. As shown in FIG. 2, the branch wiring 5 is connected to the conductive portion of the first cord, and the branch wiring 5 is electrically connected to the electrode of the organic EL element. ing. The first cord of the ladder cord 6 is connected to a commercial power source provided in the head box 2. Note that the second cord does not need to have conductivity.
 この際、ラダーコード6と、当該ラダーコード6に接続された分岐配線5との接点は、電気的に接続されていれば、固定されていても良いし、スライドさせる等して可動式にしても良い。接点が固定されていれば、ラダーコード6から照明パネル10への電力供給が安定化される。一方、接点を可動できるように構成することによって、複数の照明パネル10を重ねてまとめる際に、照明パネル10をスライドさせることができる。 At this time, the contact point between the ladder cord 6 and the branch wiring 5 connected to the ladder cord 6 may be fixed as long as it is electrically connected, or may be made movable by sliding it. Also good. If the contact is fixed, power supply from the ladder cord 6 to the lighting panel 10 is stabilized. On the other hand, by configuring the contact so as to be movable, the lighting panel 10 can be slid when the plurality of lighting panels 10 are put together.
 また、分岐配線5には、他の配線に触れてショートしないために、プラスチック等のカバー等を設けることができる。 Also, the branch wiring 5 can be provided with a cover made of plastic or the like so as not to short-circuit the other wiring.
 ラダーコード6は、一般のそれと同様、照明パネル10、ボトムレール4などを、そして、ラダーコード6自体の自重を支えるだけの強度と耐久性、及び、昇降コード3を巻き上げた際の柔軟性を有することが求められる。更に、本特許では、導電性を有することも求められており、それらを兼ね備える構造を有する必要がある。 The ladder cord 6 has the strength and durability sufficient to support the lighting panel 10, the bottom rail 4, etc. and the weight of the ladder cord 6 itself, and the flexibility when the lifting / lowering cord 3 is wound up, as in general. It is required to have. Furthermore, in this patent, it is calculated | required to have electroconductivity, and it is necessary to have a structure which combines them.
 ラダーコード6の第1のコードの具体的な構造についてであるが、基本的には絶縁電線であり、単純には、芯材と導電性材料と絶縁被覆層により構成される。更に、保護被覆層が有っても良い。もちろん、これら構成要素のうち複数を一つの材料で担っても構わない。 The concrete structure of the first cord of the ladder cord 6 is basically an insulated wire, and is simply composed of a core material, a conductive material, and an insulating coating layer. Furthermore, there may be a protective coating layer. Of course, a plurality of these components may be carried by a single material.
 芯材は上記のように、照明パネル10、ボトムレール4などを、そして、ラダーコード6自体の自重を支える働きを担っており、それ単独では導電性を有していてもいなくてもよい。 As described above, the core material supports the lighting panel 10, the bottom rail 4, and the like, and the weight of the ladder cord 6 itself, and may or may not have conductivity by itself.
 前者としてはFeやそれを含んだ合金、後者としては各種プラスチック類、ガラスファイバー等が挙げられる。 The former includes Fe and alloys containing it, and the latter includes various plastics and glass fibers.
 芯材は、新円だけでなく、楕円の材料でも良く、また、フィルムなど平面帯状等の形状でも構わない。更に、一つで構成されるだけでなく、複数本束ねて構成しされていても構わない。 The core material may be not only a new circle but also an elliptical material, or a flat band shape such as a film. Furthermore, not only one but also a plurality of bundles may be bundled.
 導電性材料は、上記芯材に、鍍金、厚膜印刷法、フォトリソグラフィ、真空蒸着等の手法を用いて形成される。 The conductive material is formed on the core material using a technique such as plating, thick film printing, photolithography, and vacuum deposition.
 具体的材料としては、めっき法では、単体ではNi、Co、Ag、Pd、Ru、Sn、Pb等、合金ではSn-Pb等の上記金属からなるものが挙げられる。厚膜印刷法では、Au、Ag、Pt、Ag-Pd、Ag-Pt、Ag-Pd-Pt、W、Cu、C等があり、フォトリソグラフィ法では、Al、Cu、Mo、ITO、IZO等が挙げられる。 Specific materials include those made of the above metals such as Ni, Co, Ag, Pd, Ru, Sn, Pb, etc. in the case of a plating method, and Sn—Pb in the case of an alloy. Thick film printing methods include Au, Ag, Pt, Ag—Pd, Ag—Pt, Ag—Pd—Pt, W, Cu, C, etc., and photolithography methods include Al, Cu, Mo, ITO, IZO, etc. Is mentioned.
 もちろん、芯材と導電性材料の両者の性能を兼ね備えても良い。具体的には、金属線などが挙げられる。 Of course, you may combine the performance of both a core material and a conductive material. Specifically, a metal wire etc. are mentioned.
 絶縁被覆層としては、ショート等を防ぐためのカバーであり、ポリエチレン、ポリプロピレン、ポリウレタン等、各種ビニル化合物(ポリ塩化ビニル等)、ゴム(ケイ素ゴム等)などが挙げられる。 The insulating coating layer is a cover for preventing short circuit and the like, and includes polyethylene, polypropylene, polyurethane, various vinyl compounds (polyvinyl chloride, etc.), rubber (silicon rubber, etc.), and the like.
 導電性ラダーコード6の構成は、これらの上記の構成に限ったものではなく、耐久性を高めるために、ガラス編み込み等をしても良いし、逆に被覆層を無くしても構わない。 The configuration of the conductive ladder cord 6 is not limited to the above-described configuration, and glass braiding or the like may be performed to increase the durability, or conversely, the coating layer may be eliminated.
 以下、照明パネル10の詳細な構成とともに、本発明の特徴的構成について更に説明する。 Hereinafter, the detailed configuration of the lighting panel 10 and the characteristic configuration of the present invention will be further described.
 (照明パネル10の構成)
 図3は、照明パネル10の一部の構成を示した概略図であり、図4は、図2に示した照明パネル10を切断線A-A’で切断した状態を示した矢視断面図である。なお、図4には、説明の都合上、照明パネル10に加えて、昇降コード3およびラダーコード6を示している。
(Configuration of lighting panel 10)
FIG. 3 is a schematic view showing a configuration of a part of the illumination panel 10, and FIG. 4 is a cross-sectional view taken along the line AA ′ showing the illumination panel 10 shown in FIG. It is. In FIG. 4, for convenience of explanation, the lifting / lowering cord 3 and the ladder cord 6 are shown in addition to the lighting panel 10.
 照明パネル10は、図3に示す有機ELパネル10’を第二基板によって覆ったものである。説明の都合上、図3には、第二基板を示していない。 The illumination panel 10 is obtained by covering the organic EL panel 10 ′ shown in FIG. 3 with a second substrate. For convenience of explanation, FIG. 3 does not show the second substrate.
 図3に示す有機ELパネル10’は、二つの有機EL素子20を第一基板17上に配したものである。なお、図3では、二つの有機EL素子20が第一基板17上に配されている構成を示したが、必ずしもこれに限定されるわけではない。例えば、1つの有機EL素子20、または3つ以上の有機EL素子20を第一基板17上に配した構成でも良い。 The organic EL panel 10 ′ shown in FIG. 3 has two organic EL elements 20 arranged on the first substrate 17. FIG. 3 shows a configuration in which the two organic EL elements 20 are arranged on the first substrate 17, but the present invention is not necessarily limited thereto. For example, one organic EL element 20 or three or more organic EL elements 20 may be arranged on the first substrate 17.
 また、図4に示すように、昇降コード3は、照明パネル10の発光領域を大きく取るために、照明パネル10の中心以外の箇所に配設した構成としている。 Further, as shown in FIG. 4, the lifting / lowering cord 3 is arranged at a location other than the center of the lighting panel 10 in order to take a large light emitting area of the lighting panel 10.
 照明パネル10は、図4に示すように、複数の有機EL素子20を有する第一基板17と、これに対向するように配置された第二基板18とを備えている。第一基板17と第二基板18とは、樹脂19によって接続されている。 As shown in FIG. 4, the lighting panel 10 includes a first substrate 17 having a plurality of organic EL elements 20 and a second substrate 18 disposed so as to face the first substrate 17. The first substrate 17 and the second substrate 18 are connected by a resin 19.
 第一基板17および第二基板18の詳細については後述するが、照明パネル10を支えるラダーコード6に接続された分岐配線5は、有機EL素子20と電気的に接続した第一基板17上に配された導電配線9と繋がっており、有機EL素子20と接続配線8を介して接続されている。 Although details of the first substrate 17 and the second substrate 18 will be described later, the branch wiring 5 connected to the ladder cord 6 that supports the illumination panel 10 is formed on the first substrate 17 that is electrically connected to the organic EL element 20. The conductive wiring 9 is connected to the organic EL element 20 via the connection wiring 8.
 ここで、複数の有機EL素子20を並べた場合には、1本のラダーコード6に複数の配線機能を持たせても良い。例えば、1本のラダーコード6にプラスの配線とマイナスの配線と等、複数の配線で構成することも可能である。逆に、複数のラダーコード6を用いて、配線機能を分散させても良い。これによって、各ラダーコード6から供給される電圧の低下が防げ、電圧降下による発光斑を防止することができる。 Here, when a plurality of organic EL elements 20 are arranged, one ladder code 6 may have a plurality of wiring functions. For example, a single ladder cord 6 can be constituted by a plurality of wirings such as a positive wiring and a negative wiring. Conversely, the wiring function may be distributed using a plurality of ladder codes 6. As a result, the voltage supplied from each ladder cord 6 can be prevented from being lowered, and light emission spots due to the voltage drop can be prevented.
 以下では、照明パネル10を構成する各部材について、詳しく説明する。 Hereinafter, each member constituting the lighting panel 10 will be described in detail.
 (第一基板17および第二基板18の構成)
 第一基板17および第二基板18のうちの少なくとも一方は、光透過性を有する材料で構成されている。光透過性を有する材料としては、例えば、ガラス基板、または樹脂基板等の透明材料が適用可能である。なお、一方の基板を、光透過性を有しない材料で形成する場合には、不透明な金属材料等を適用できる。
(Configuration of the first substrate 17 and the second substrate 18)
At least one of the first substrate 17 and the second substrate 18 is made of a light transmissive material. As the material having optical transparency, for example, a transparent material such as a glass substrate or a resin substrate is applicable. Note that an opaque metal material or the like can be used in the case where one of the substrates is formed using a material that does not transmit light.
 第一基板17および第二基板18は、PETまたはPEN等の可撓性を有する材料で構成しても良い。可撓性材料を用いて第一基板17および第二基板18を構成すれば、有機EL照明装置1を湾曲させる場合にも、第一基板17および第二基板18が湾曲可能であるため、問題なく対応することができる。 The first substrate 17 and the second substrate 18 may be made of a flexible material such as PET or PEN. If the first substrate 17 and the second substrate 18 are configured using a flexible material, the first substrate 17 and the second substrate 18 can be bent even when the organic EL lighting device 1 is bent. We can cope without.
 このように、第一基板17および第二基板18は、平板状であっても良いし、曲面を有する形状であっても良い。この際、有機EL照明装置1の光出射面側を凸状に湾曲させても良いし、凹状に湾曲させても良い。 Thus, the first substrate 17 and the second substrate 18 may have a flat plate shape or a shape having a curved surface. At this time, the light emission surface side of the organic EL lighting device 1 may be curved in a convex shape or may be curved in a concave shape.
 有機EL照明装置1の光出射面側を凸状に湾曲させた場合には、有機EL照明装置1の光を容易に発散させることができ、当該有機EL照明装置1を設置した部屋、または空間を広範囲に照らすことが可能となる。 When the light emitting surface side of the organic EL lighting device 1 is curved in a convex shape, the light of the organic EL lighting device 1 can be easily diffused, and the room or space where the organic EL lighting device 1 is installed Can be illuminated over a wide area.
 反対に、有機EL照明装置1の光出射面側を凹状に湾曲させた場合には、有機EL照明装置1の光を容易に集光させることができ、当該有機EL照明装置1の設置位置からほど近い、点または面等を集中的に照らすことが可能となる。 On the contrary, when the light emission surface side of the organic EL lighting device 1 is curved in a concave shape, the light of the organic EL lighting device 1 can be easily condensed, and from the installation position of the organic EL lighting device 1 It is possible to illuminate a point or a surface that is close to each other in a concentrated manner.
 また、これらの可撓性材料の表面には、ガスバリア性および機械強度を高め、ガス透過性を低減するために、有機無機ハイブリッド層、または有機層と無機層との多積層膜等を形成しても良い。 In addition, on the surface of these flexible materials, an organic / inorganic hybrid layer or a multi-layered film of an organic layer and an inorganic layer is formed in order to increase gas barrier properties and mechanical strength and reduce gas permeability. May be.
 なお、第一基板17および第二基板18は、例えば、幅70mm、長さ1000mm、および厚さ0.7mm程度の矩形平板状にすることができるが、必ずしもこれに限定されるわけではない。 In addition, although the 1st board | substrate 17 and the 2nd board | substrate 18 can be made into the rectangular flat plate shape of width 70mm, length 1000mm, and thickness 0.7mm, for example, it is not necessarily limited to this.
 第一基板17および第二基板18は、有機EL素子20を挟むようにして配置されており、当該第一基板17および第二基板18は熱硬化樹脂またはUV硬化樹脂等の樹脂19を介して接続されている。第一基板17および第二基板18によって囲まれる領域、すなわち有機EL素子20が封止されている領域は、例えば、窒素またはアルゴン等の不活性ガス下、または真空下に調整されている。このように、両基板間の領域に不活性ガスを充填したり、当該領域を真空下にしたりすることによって、外部からの酸素または水分が有機EL素子20の有機EL層13に侵入するのを抑制することができる。従って、各有機EL素子20にガスバリア性を持たせるための処理を施す必要がない。 The first substrate 17 and the second substrate 18 are arranged so as to sandwich the organic EL element 20, and the first substrate 17 and the second substrate 18 are connected via a resin 19 such as a thermosetting resin or a UV curable resin. ing. A region surrounded by the first substrate 17 and the second substrate 18, that is, a region where the organic EL element 20 is sealed is adjusted, for example, under an inert gas such as nitrogen or argon, or under vacuum. In this way, oxygen or moisture from outside enters the organic EL layer 13 of the organic EL element 20 by filling the region between the substrates with an inert gas or by evacuating the region. Can be suppressed. Therefore, it is not necessary to perform a process for providing each organic EL element 20 with a gas barrier property.
 なお、両基板間の領域には、酸化バリウム等の吸湿剤が配合されていても良い。これによれば、有機EL素子20の周囲を乾燥した状態に保つことができる。 It should be noted that a hygroscopic agent such as barium oxide may be blended in the region between both substrates. According to this, the periphery of the organic EL element 20 can be kept dry.
 また、両基板間の領域に、熱伝導性が高い放熱樹脂を充填した構成にすることも可能である。放熱樹脂としては、例えば、絶縁性のアクリルゴム、またはエチレンプロピレンゴム等が適用できる。これによれば、熱伝導性が高い放熱樹脂が充填されていることによって、両基板間の領域内の熱を効率良く外部へ放出したり、均熱性を上げたりすることができる。 Also, it is possible to adopt a configuration in which the region between both substrates is filled with a heat radiation resin having high thermal conductivity. As the heat radiating resin, for example, insulating acrylic rubber, ethylene propylene rubber, or the like can be applied. According to this, since the heat radiation resin having high thermal conductivity is filled, the heat in the region between the two substrates can be efficiently released to the outside or the thermal uniformity can be increased.
 ここで、各照明パネルの第一基板17および第二基板18のうち、光出射面側ではない基板は、光反射性の材料、または光反射性の表面を有する材料で構成することが好ましい。更に、第一基板17と第二基板18との間隙部分は、光反射性の材料、または光反射性の表面を有する材料で囲まれ、封じられていることが好ましい。これによれば、有機EL素子20の光出射面以外の面から出射された光は、照明パネル10の壁面(有機EL素子20を取り囲む照明パネル10の壁面)に反射する。従って、より効果的に有機EL素子20から漏れ出た光を取り出すことができる。 Here, of the first substrate 17 and the second substrate 18 of each lighting panel, the substrate that is not on the light emitting surface side is preferably composed of a light reflective material or a material having a light reflective surface. Furthermore, the gap between the first substrate 17 and the second substrate 18 is preferably surrounded and sealed with a light reflective material or a material having a light reflective surface. According to this, the light emitted from the surface other than the light emitting surface of the organic EL element 20 is reflected on the wall surface of the illumination panel 10 (the wall surface of the illumination panel 10 surrounding the organic EL element 20). Therefore, the light leaking from the organic EL element 20 can be extracted more effectively.
 (各配線の概要)
 第一基板17の有機EL素子20が配設されている側の表面には、上記導電配線9が形成されている。導電配線9は、有機EL素子20の幅方向に伸びるように配置されている。
(Outline of each wiring)
The conductive wiring 9 is formed on the surface of the first substrate 17 on the side where the organic EL element 20 is disposed. The conductive wiring 9 is disposed so as to extend in the width direction of the organic EL element 20.
 導電配線9としては、例えば、ITO、IZO、アルカリ金属またはアルカリ土類金属等が適用可能である。導電配線9は、例えば、幅2mm、長さ20mm、および厚さ150mm程度にすることができるが、必ずしもこれに限定されるわけではない。 As the conductive wiring 9, for example, ITO, IZO, alkali metal, alkaline earth metal, or the like is applicable. The conductive wiring 9 can have a width of about 2 mm, a length of 20 mm, and a thickness of about 150 mm, for example, but is not necessarily limited thereto.
 これらの導電配線9は2つで1組を形成し、2つのうち一方が有機EL素子20の第一電極12(図5)に接続し、他方が第二電極14(図5)に接続する。この1組の導電配線9に電流を流すことによって有機EL素子20に電圧を引加することができる。導電配線9の各組を、それぞれ個別に制御できることが好ましい。これによれば、1組の導電配線9に接続された有機EL素子20を独立して駆動させることができる。従って、各有機EL素子20をそれぞれ個別に駆動させることができるので、有機EL照明装置1の発光強度または色調等の調光を行うことができる。 Two of these conductive wirings 9 form a set, one of which is connected to the first electrode 12 (FIG. 5) of the organic EL element 20 and the other is connected to the second electrode 14 (FIG. 5). . A voltage can be applied to the organic EL element 20 by passing a current through the set of conductive wirings 9. It is preferable that each set of the conductive wirings 9 can be individually controlled. According to this, the organic EL element 20 connected to one set of conductive wiring 9 can be driven independently. Therefore, since each organic EL element 20 can be individually driven, it is possible to perform light control such as light emission intensity or color tone of the organic EL lighting device 1.
 なお、後ほど詳しく説明するが、有機EL照明装置1に調光性および調色性を持たせるために、1つの有機EL素子20を複数色に塗り分けたり、互いに異なる発光色を持つ複数種類の有機EL素子20を使用したりすることができる。1つの有機EL素子20を複数色に塗り分ける場合には、複数本の導電配線9を長軸方向に平行に配置する。 As will be described in detail later, in order to provide the organic EL lighting device 1 with dimming properties and toning properties, one organic EL element 20 is divided into a plurality of colors or a plurality of types having different emission colors. The organic EL element 20 can be used. When coating one organic EL element 20 in a plurality of colors, a plurality of conductive wirings 9 are arranged in parallel to the major axis direction.
 例えば、3種類(赤色,緑色,青色)の有機EL素子20によって白色を調色する場合には、赤色発光有機EL素子(R)の点灯率を30%、緑色発光有機EL素子(G)の点灯率を22%、および青色発光有機EL素子(B)の点灯率を48%となるように、それぞれの導電配線9に電圧を印加すると良い。ここで、点灯率とは、照明パネル10のアノードまたはカソードに流れる最大電流に対する割合を意味する(ただし、デューティ比は1/1とする)。例えば、カソードに流れる最大電流を200mAとすれば、デューティ比1/1において、60mAの電流が流れていれば点灯率は30%(60/200=0.3)である。以上では、白色に調色する場合の例を示したが、必ずしもこれに限定されるわけではない。 For example, when white is toned with three types of organic EL elements 20 (red, green, and blue), the lighting rate of the red light emitting organic EL element (R) is 30%, and the green light emitting organic EL element (G) A voltage is preferably applied to each conductive wiring 9 so that the lighting rate is 22% and the lighting rate of the blue light-emitting organic EL element (B) is 48%. Here, the lighting rate means a ratio to the maximum current flowing through the anode or cathode of the lighting panel 10 (however, the duty ratio is 1/1). For example, if the maximum current flowing through the cathode is 200 mA, the lighting rate is 30% (60/200 = 0.3) when a current of 60 mA flows at a duty ratio of 1/1. In the above, an example in which toning is performed has been shown, but the present invention is not necessarily limited to this.
 導電配線9は、分岐配線5と、接続配線8を介して有機EL素子20とを電気的に接続する。この際、接続配線8は、無鉛ハンダまたは銀ペースト等によって形成されていることが好ましい。 The conductive wiring 9 electrically connects the branch wiring 5 and the organic EL element 20 via the connection wiring 8. At this time, the connection wiring 8 is preferably formed of lead-free solder or silver paste.
 ここで、矩形状の有機EL素子20を用いる場合には、当該有機EL素子20の長辺方向に沿って、補助電極または補助配線を設けても良い。これによれば、有機EL素子20の第一電極12および第二電極14の抵抗による電圧降下を低減して発光ムラを抑制することができる。補助電極は、有機EL素子の全周に渡って設けても良いし、長辺の一端または両端等に部分的に設けても良い。 Here, when the rectangular organic EL element 20 is used, an auxiliary electrode or an auxiliary wiring may be provided along the long side direction of the organic EL element 20. According to this, the voltage drop due to the resistance of the first electrode 12 and the second electrode 14 of the organic EL element 20 can be reduced, and the uneven emission can be suppressed. The auxiliary electrode may be provided over the entire circumference of the organic EL element, or may be provided partially at one end or both ends of the long side.
 また、ラダーコード6に加え、昇降コード3にも配線機能を持たせても良い。これにより電力供給元が複数確保されることにより、電力の供給が安定化される。また、短い間隔での電力供給元が用意されることから、各コードから流れる電圧の低下による発光斑の発生を防止することが出来る。 In addition to the ladder cord 6, the lifting / lowering cord 3 may have a wiring function. As a result, the supply of power is stabilized by securing a plurality of power supply sources. In addition, since power supply sources are prepared at short intervals, it is possible to prevent the occurrence of light emission spots due to a decrease in the voltage flowing from each cord.
 最後に、この有機EL素子20の詳細について図5を用いて説明する。 Finally, details of the organic EL element 20 will be described with reference to FIG.
 (有機EL素子20の構成)
 図5は、図2に示した切断線B-B’において切断した状態を示した矢視断面図である。なお、図5には、説明の便宜上、第一基板17および第二基板18は示していない。
(Configuration of organic EL element 20)
5 is a cross-sectional view taken along the arrow line BB ′ shown in FIG. FIG. 5 does not show the first substrate 17 and the second substrate 18 for convenience of explanation.
 有機EL素子20は、図5に示すように、支持基板11上に、第一電極12、有機EL層13、および第二電極14がこの順で積層された構成である。また、両電極および有機EL層13を保護するために、第二電極14の表面を覆うようにして保護層15を設けているが、これは有機EL素子20の必須構成ではない。 As shown in FIG. 5, the organic EL element 20 has a configuration in which a first electrode 12, an organic EL layer 13, and a second electrode 14 are laminated in this order on a support substrate 11. Further, in order to protect both the electrodes and the organic EL layer 13, the protective layer 15 is provided so as to cover the surface of the second electrode 14, but this is not an essential configuration of the organic EL element 20.
 有機EL素子20は、第一電極12および第二電極14に電圧を印加することによって、一方の電極から正孔が注入され、他方の電極から電子が注入される。有機EL層13は発光層を有しており、注入された正孔および電子が当該発光層において再結合することによって、有機EL素子20は発光する。 In the organic EL element 20, by applying a voltage to the first electrode 12 and the second electrode 14, holes are injected from one electrode and electrons are injected from the other electrode. The organic EL layer 13 has a light emitting layer, and the organic EL element 20 emits light when the injected holes and electrons are recombined in the light emitting layer.
 有機EL素子20は、例えば、幅50mm、長さ450mm、および厚さ0.7mm程度の矩形平板状にすることができるが、必ずしもこれに限定されるわけではない。 The organic EL element 20 can be formed into a rectangular flat plate having a width of about 50 mm, a length of 450 mm, and a thickness of about 0.7 mm, but is not necessarily limited thereto.
 ● 支持基板11
 支持基板11は、絶縁性を有する材料によって構成されていることが好ましい。絶縁性を有する材料とは、例えば、延伸ポリプロピレン(OPP)、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、またはポリフェニレンサルファイト(PPS)等の透明のプラスチックフィルム等である。このように、支持基板11として絶縁性の材料を用いる場合には、支持基板11を絶縁膜として採用することが可能となる。ただし、必ずしもこれに限定されるわけではなく、支持基板11上に絶縁膜を別途設けても良い。また、支持基板11上には、酸化ケイ素膜等の保護膜が形成されていることが好ましい。これによって、支持基板11の内部からアルカリ酸化物が溶出するのを防止することができる。
Support substrate 11
The support substrate 11 is preferably made of an insulating material. The insulating material is, for example, a transparent plastic film such as stretched polypropylene (OPP), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), or polyphenylene sulfite (PPS). Thus, when an insulating material is used as the support substrate 11, the support substrate 11 can be employed as the insulating film. However, the present invention is not necessarily limited to this, and an insulating film may be separately provided on the support substrate 11. Further, a protective film such as a silicon oxide film is preferably formed on the support substrate 11. Thereby, it is possible to prevent the alkali oxide from being eluted from the inside of the support substrate 11.
 また、上記したようなプラスチックフィルム等の可撓性を有する材料を用いることによって、有機EL素子20を配設する箇所(第一基板17)が湾曲していても問題なく配設することができる。これによれば、有機EL素子20の光出射面側を凹状に湾曲させた場合には、有機EL素子20の光を容易に発散させることができ、有機EL照明装置1を設置した部屋、または空間を広範囲に照らすことが可能となる。逆に、有機EL素子20の光出射面側を凸状に湾曲させた場合には、有機EL素子20の光を容易に集光させることができ、有機EL照明装置1の設置位置からほど近い、点または面等を集中的に照らすことが可能となる。更に、以上の構成によれば、照明パネル10自体が湾曲していない形状であっても、有機EL素子20を湾曲させるだけで上記した効果を奏することができる。
また、支持基板11の湾曲率を適宜調整できる調整手段を設けた構成にしても良い。これによれば、上述のように、有機EL素子20の光出射面側を凸状に湾曲させた場合には、有機EL素子20の光を容易に発散させることができ、当該有機EL素子20搭載の有機EL照明装置1を設置した部屋、または空間を広範囲に照らすことが可能となり、一方、有機EL素子20の光出射面側を凹状に湾曲させた場合には、有機EL素子20の光を容易に集光させることができ、当該有機EL素子20搭載の有機EL照明装置1の設置位置からほど近い、点または面等を集中的に照らすことが可能となる。調整手段としては、後述する態様がある。
Further, by using a flexible material such as a plastic film as described above, even if the portion (first substrate 17) where the organic EL element 20 is disposed is curved, it can be disposed without any problem. . According to this, when the light emission surface side of the organic EL element 20 is curved in a concave shape, the light of the organic EL element 20 can be easily diffused, and the room where the organic EL lighting device 1 is installed, or It becomes possible to illuminate the space extensively. On the contrary, when the light emitting surface side of the organic EL element 20 is curved in a convex shape, the light of the organic EL element 20 can be easily condensed and is close to the installation position of the organic EL lighting device 1. It becomes possible to illuminate a point or a surface intensively. Furthermore, according to the above configuration, even if the lighting panel 10 itself has a shape that is not curved, the above-described effects can be achieved by simply bending the organic EL element 20.
In addition, a configuration may be provided in which an adjustment unit that can appropriately adjust the curvature of the support substrate 11 is provided. According to this, as described above, when the light emitting surface side of the organic EL element 20 is curved in a convex shape, the light of the organic EL element 20 can be easily diffused, and the organic EL element 20 The room or space where the mounted organic EL lighting device 1 is installed can be illuminated in a wide range. On the other hand, when the light emitting surface side of the organic EL element 20 is curved in a concave shape, the light of the organic EL element 20 is illuminated. Can be easily condensed, and it is possible to intensively illuminate a point or a surface that is close to the installation position of the organic EL lighting device 1 mounted with the organic EL element 20. As an adjustment means, there exists an aspect mentioned later.
 また、支持基板11が可撓性を有することから、ロールツウロール法を用いて有機EL素子20を作製することができる。これによって、装置導入の初期投資、およびランニングコスト等を低減することが可能である。更に、支持基板11を酸素透過性または水透過性の低い基板等で両側からパッキングすることによって、有機多層膜または無機多層膜等が不要であり、かつ安価な有機EL素子20を製造することが可能である。しかし、必ずしもこれに限定されるわけではなく、例えば、ガラス等の材料で支持基板11を構成しても良い。 Moreover, since the support substrate 11 has flexibility, the organic EL element 20 can be produced using a roll-to-roll method. As a result, it is possible to reduce initial investment for introducing the apparatus, running cost, and the like. Furthermore, by packing the support substrate 11 from both sides with a substrate having low oxygen permeability or low water permeability, an organic multilayer film or an inorganic multilayer film is unnecessary, and an inexpensive organic EL element 20 can be manufactured. Is possible. However, the present invention is not necessarily limited to this. For example, the support substrate 11 may be made of a material such as glass.
 なお、支持基板11として、金属フィルム等の光反射性の材料を用いることが可能である。この場合には、エポキシ樹脂等の合成樹脂、またはプラズマCVD装置等により厚さ500nm程度の窒化シリコン(SiNx)等の絶縁膜を表面に形成することが好ましい。 In addition, as the support substrate 11, a light reflective material such as a metal film can be used. In this case, an insulating film such as silicon nitride (SiNx) having a thickness of about 500 nm is preferably formed on the surface by a synthetic resin such as an epoxy resin or a plasma CVD apparatus.
 支持基板11には、光拡散性を有する材料を更に添加していても良い。光拡散性を有する材料とは、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソブチル、メタクリル酸ノーマルブチル、メタクリル酸ノーマルブチルメチル、メタクリル酸メチル、アクリル酸メチル、共重合体または三元重合体等のアクリル系粒子、ポリエチレン、ポリスチレン(PS)、ポリプロピレン等のオレフィン系粒子、またはアクリル系粒子とオレフィン系粒子との共重合体等である。あるいは、単一重合体の粒子を形成した後、その上層に他種類の単量体をコーティングした多層多成分系粒子等も光拡散性を有するので、このような粒子も適用可能である。 The support substrate 11 may further contain a light diffusing material. Examples of the light diffusing material include methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, normal butyl methacrylate, normal butyl methyl methacrylate, methyl methacrylate, methyl acrylate, a copolymer or a terpolymer. Acrylic particles such as polyethylene, polystyrene (PS), polypropylene and the like, or a copolymer of acrylic particles and olefin particles. Alternatively, after forming single polymer particles, multilayer multi-component particles or the like in which another type of monomer is coated on the upper layer also have light diffusibility, and such particles are also applicable.
 一般的に、有機EL素子20が発した光は広く拡散されて出射される。そのため、通常はマイクロキャビティ(微小共振器)構造を採用し、光路長を調節することによって有機EL素子20が発した光を共振させ集光している。その結果、発光効率の向上、および色純度の向上が実現され、光に指向性等を持たせることができる。しかし、本実施形態では、上記のような光拡散性を有する材料を支持基板11に添加することによって、出射光は光拡散部分を通過し、光出射面から均一に拡散して出射され、有機EL照明装置1の色純度と発光効率とを向上させると共に、広視野角化を実現することができる。 Generally, light emitted from the organic EL element 20 is diffused and emitted. Therefore, usually, a microcavity (microresonator) structure is employed, and the light emitted from the organic EL element 20 is resonated and condensed by adjusting the optical path length. As a result, an improvement in luminous efficiency and an improvement in color purity can be realized, and light can have directivity and the like. However, in this embodiment, by adding the light diffusive material as described above to the support substrate 11, the emitted light passes through the light diffusing portion and is uniformly diffused and emitted from the light emitting surface. While improving the color purity and luminous efficiency of the EL lighting device 1, it is possible to realize a wide viewing angle.
 ● 第一電極12および第二電極14
 次に、第一電極12および第二電極14について説明する。当該第一電極12および第二電極14のうち、一方の電極が陰極であり、他方の電極が陽極である。陽極の材料としては、例えば、酸化インジウム錫(ITO)、または酸化インジウム亜鉛(IZO)等が挙げられる。
First electrode 12 and second electrode 14
Next, the first electrode 12 and the second electrode 14 will be described. One of the first electrode 12 and the second electrode 14 is a cathode, and the other electrode is an anode. Examples of the material for the anode include indium tin oxide (ITO) and indium zinc oxide (IZO).
 一方、陰極の材料としては、例えば、アルカリ金属またはアルカリ土類金属等が挙げられ、安定性の観点からは、カルシウム膜、アルミニウム膜、カルシウム膜とアルミニウム膜との積層膜、マグネシウム合金膜、バリウム膜、バリウム化合物膜、セシウム膜、セシウム化合物膜、またはフッ素化合物膜等で構成されていることが好ましい。 On the other hand, examples of the material for the cathode include alkali metals or alkaline earth metals. From the viewpoint of stability, calcium films, aluminum films, laminated films of calcium films and aluminum films, magnesium alloy films, barium The film is preferably composed of a film, a barium compound film, a cesium film, a cesium compound film, a fluorine compound film, or the like.
 なお、有機EL素子20がボトムエミッション型の場合には、第一電極12を光透過性または光半透過性の材料(透明電極)で形成し、第二電極14を光反射性の材料で形成することが好ましい。逆に、有機EL素子20がトップエミッション型の場合には、第一電極12を光反射性の材料で形成し、第二電極14を光透過性または光半透過性の材料(透明電極または半透明電極)で形成することが好ましい。これによれば、有機EL素子20が発した光は透明電極側から出射され、光を効率的に素子の外に取り出すことが可能となる。また、光取り出し側にある電極を透明電極とすることによって、マイクロキャビティ(微小共振器)効果で集光させることができる。その結果、発光効率の向上、および色純度の向上が実現され、光に指向性等を持たせることができる。また、光取り出し側とは反対側の電極には反射電極を用いることによって、有機EL素子20が発した光が非光出射面側に出射されても、光反射性を有する電極によって反射され、光出射面側から出射される。その結果、有機EL素子20が発した光の利用効率を高めることができる。 When the organic EL element 20 is a bottom emission type, the first electrode 12 is formed of a light transmissive or light semi-transmissive material (transparent electrode), and the second electrode 14 is formed of a light reflective material. It is preferable to do. Conversely, when the organic EL element 20 is a top emission type, the first electrode 12 is formed of a light-reflective material, and the second electrode 14 is a light-transmitting or light-semi-transmissive material (transparent electrode or semi-transparent material). It is preferable to form with a transparent electrode. According to this, the light emitted from the organic EL element 20 is emitted from the transparent electrode side, and the light can be efficiently taken out of the element. Further, by making the electrode on the light extraction side a transparent electrode, light can be condensed by a microcavity (microresonator) effect. As a result, an improvement in luminous efficiency and an improvement in color purity can be realized, and light can have directivity and the like. Further, by using a reflective electrode for the electrode opposite to the light extraction side, even if the light emitted from the organic EL element 20 is emitted to the non-light emitting surface side, it is reflected by the electrode having light reflectivity, It is emitted from the light exit surface side. As a result, the utilization efficiency of the light emitted from the organic EL element 20 can be increased.
 なお、有機EL素子20は、光強度が等方的なランバート分布に近い発光分布を持つため、反射電極と透明電極とで有機層を挟み込むことによって得られるマイクロキャビティ効果を利用して、有機EL素子20の光を集光させることも可能である。光の出射面側に透明電極を用い、その反対側に反射電極を用いることによって、2つの電極間で反射を繰り返す多重反射干渉をさせ、共振・強調させる。そして、両電極間の光路長に合致した光のみを取り出すことによって、有機EL素子20の発光輝度を高められる。これにより、光路長から外れた不要な光が弱められ、外部に取り出される光のスペクトルが急峻となることから、有機EL素子20の色純度が向上する。また、光に指向性を持たせることができる。ここで、赤色発光(R)、緑色発光(G)、および青色発光(B)では、それぞれの光の波長が異なるため、光源ごとに透明電極または半透明電極の膜厚を調整する必要がある。 Since the organic EL element 20 has a light emission distribution whose light intensity is close to an isotropic Lambert distribution, the organic EL element 20 utilizes the microcavity effect obtained by sandwiching the organic layer between the reflective electrode and the transparent electrode. It is also possible to collect the light from the element 20. By using a transparent electrode on the light exit surface side and a reflective electrode on the opposite side, multiple reflection interference is repeated between the two electrodes to resonate and emphasize. The light emission luminance of the organic EL element 20 can be increased by extracting only light that matches the optical path length between the electrodes. Thereby, unnecessary light deviating from the optical path length is weakened, and the spectrum of the light extracted to the outside becomes steep, so that the color purity of the organic EL element 20 is improved. Moreover, directivity can be given to light. Here, in red light emission (R), green light emission (G), and blue light emission (B), since the wavelength of each light differs, it is necessary to adjust the film thickness of a transparent electrode or a semi-transparent electrode for every light source. .
 ● 保護層15
 保護層15の材料としては、例えば、酸窒化珪素等が挙げられる。当該保護層15は、例えば、厚さ100nm程度にすることができるが、必ずしもこれに限定されるわけではない。
Protective layer 15
Examples of the material of the protective layer 15 include silicon oxynitride. For example, the protective layer 15 can have a thickness of about 100 nm, but is not necessarily limited thereto.
 なお、有機EL素子20の光取り出し側の面には、光拡散機能を有する拡散樹脂層が設けられていても良い。拡散樹脂層は、内部に複数の光拡散粒子を含有したバインダー樹脂である。当該バインダー樹脂としては、例えば、アクリル系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、またはポリウレタン系樹脂等が挙げられる。また、光拡散粒子としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソブチル、メタクリル酸ノーマルブチル、メタクリル酸ノーマルブチルメチル、メタクリル酸メチル、アクリル酸メチル、共重合体または三元重合体等のアクリル系粒子、ポリエチレン、ポリスチレン(PS)、ポリプロピレン等のオレフィン系粒子、またはアクリル系粒子とオレフィン系粒子との共重合体等である。あるいは、単一重合体の粒子を形成した後、その上層に他種類の単量体をコーティングした多層多成分系粒子等も光拡散性を有するので、このような粒子も適用可能である。特に、ポリメタクリル酸メチル(PMMA)の使用が好ましい。このような光拡散粒子がバインダー樹脂内に含有された拡散樹脂層を設けることによって、当該拡散樹脂層を通過する光を均一に拡散することができる。そのため、有機EL照明装置1の広視野角化が実現され、光取り出し効率が上がることから、有機EL照明装置1の輝度が向上する効果が得られる。当該拡散樹脂層は、例えば、厚さ150μm程度にすることができるが、必ずしもこれに限定されるわけではない。 Note that a diffusion resin layer having a light diffusion function may be provided on the light extraction side surface of the organic EL element 20. The diffusion resin layer is a binder resin containing a plurality of light diffusion particles inside. Examples of the binder resin include acrylic resins, polyester resins, polyolefin resins, and polyurethane resins. Examples of the light diffusing particles include methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, normal butyl methacrylate, normal butyl methyl methacrylate, methyl methacrylate, methyl acrylate, a copolymer or a terpolymer. Acrylic particles, polyethylene, polystyrene (PS), olefin particles such as polypropylene, or a copolymer of acrylic particles and olefin particles. Alternatively, after forming single polymer particles, multilayer multi-component particles or the like in which another type of monomer is coated on the upper layer also have light diffusibility, and such particles are also applicable. In particular, the use of polymethyl methacrylate (PMMA) is preferred. By providing the diffusion resin layer in which such light diffusion particles are contained in the binder resin, it is possible to uniformly diffuse the light passing through the diffusion resin layer. Therefore, the wide viewing angle of the organic EL lighting device 1 is realized and the light extraction efficiency is increased, so that an effect of improving the luminance of the organic EL lighting device 1 is obtained. The diffusion resin layer can have a thickness of about 150 μm, for example, but is not necessarily limited thereto.
 上記した拡散樹脂層を設ける場合には、当該拡散樹脂層は拡散板であっても良い。当該拡散板としては、例えば、光拡散粒子が分散されたアクリル系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、架橋ポリメタクリル酸メチル、または架橋ポリスチレン等が挙げられる。 When providing the diffusion resin layer described above, the diffusion resin layer may be a diffusion plate. Examples of the diffusion plate include acrylic resin, polyester resin, polyolefin resin, polyurethane resin, crosslinked polymethyl methacrylate, or crosslinked polystyrene in which light diffusion particles are dispersed.
 更に、有機EL素子20の光取り出し側の面には、光の波長を変換する波長変換層が設けられていても良い。当該波長変換層は、例えば、イットリウム・アルミニウム・ガーネット(YAG)等の無機蛍光体、有機EL素子に好的に用いられる公知の有機蛍光体、または他の蛍光体等で形成されていることが好ましい。波長変換層を用いることによって、有機EL素子20が発した光を所望の波長の光へと変換することができる。当該波長変換層は、例えば、厚さ100μm程度にすることができるが、必ずしもこれに限定されるわけではない。 Furthermore, a wavelength conversion layer for converting the wavelength of light may be provided on the surface of the organic EL element 20 on the light extraction side. The wavelength conversion layer may be formed of, for example, an inorganic phosphor such as yttrium / aluminum / garnet (YAG), a known organic phosphor preferably used in an organic EL element, or another phosphor. preferable. By using the wavelength conversion layer, the light emitted from the organic EL element 20 can be converted into light having a desired wavelength. The wavelength conversion layer can have a thickness of about 100 μm, for example, but is not necessarily limited thereto.
 また、有機EL素子20の光取り出し側の面には、円偏光板またはカラーフィルタを設けることも可能である。円偏光板によって、有機EL素子20が発した光を円偏光させ、外光反射を抑制することができる。円偏光板は、直線偏光板に1/4λ板として機能する位相差板を張り合わせた構造をしており、直線偏光板の吸収軸に対し、1/4位相差フィルムを45度だけ軸を傾けて貼れば右回転円偏光板になる。逆に、直線偏光板の吸収軸に対し、1/4位相差フィルムを135度(-45度)傾けて貼れば左回転円偏光板になる。例えば、右回転円偏光板を用いた場合には、直線偏光板を透過した光は、右回転円偏光板を通るときに右回りに回転する光となり、当該光がガラス面等で反射すると、回転方向が反転して左回りの光となって再び右回転円偏光板に入る。このようにして、右回転円偏光板は右回りの光だけを透過させ、左回りの光は吸収し、最終的に外光の反射光はほぼゼロにすることができる。この性質を利用し、円偏光板は、有機EL照明装置1における外光反射を除去することができる。 Further, a circularly polarizing plate or a color filter can be provided on the light extraction side surface of the organic EL element 20. The circularly polarizing plate can circularly polarize the light emitted from the organic EL element 20 and suppress external light reflection. A circularly polarizing plate has a structure in which a retardation plate functioning as a 1 / 4λ plate is bonded to a linear polarizing plate, and the 1/4 retardation film is tilted by 45 degrees with respect to the absorption axis of the linear polarizing plate. It becomes a right-handed circularly polarizing plate. Conversely, if a 1/4 retardation film is tilted 135 degrees (-45 degrees) with respect to the absorption axis of the linear polarizing plate, it becomes a left-rotating circularly polarizing plate. For example, when a right rotating circularly polarizing plate is used, the light transmitted through the linearly polarizing plate becomes light that rotates clockwise when passing through the right rotating circularly polarizing plate, and when the light is reflected by a glass surface or the like, The direction of rotation is reversed and the light turns counterclockwise and enters the right rotating circularly polarizing plate again. In this way, the clockwise rotating circularly polarizing plate transmits only clockwise light, absorbs counterclockwise light, and finally the reflected light of outside light can be made substantially zero. Utilizing this property, the circularly polarizing plate can remove external light reflection in the organic EL lighting device 1.
 位相差板は、複屈折率を持つフィルムであり、プラスチックフィルムを特定方向に延伸処理することによって作製することが可能である。材料としては、透明であり、延伸処理が可能な材料であれば良い。例えば、ポリカーボネート系高分子、ポリエステル系高分子、ポリスルホン系高分子、ポリスチレン系高分子、ポリフェニレンオキシド系高分子、またはポリオレフィン系高分子等を挙げることができる。 The retardation plate is a film having a birefringence and can be produced by stretching a plastic film in a specific direction. Any material that is transparent and can be stretched may be used. For example, a polycarbonate polymer, a polyester polymer, a polysulfone polymer, a polystyrene polymer, a polyphenylene oxide polymer, or a polyolefin polymer can be used.
 また、カラーフィルタを用いることによって、有機EL素子が発した光を所望の波長の光のみを出射させることができ、なおかつ外光反射の抑止および低減効果を得ることができる。有機EL素子20が発する光は、無機EL素子が発する光と比較して、スペクトル形状が幅広く、長波長側の裾が広いので高色純度を再現しようとする際に問題となる。しかしながら、カラーフィルタを併用することによって、不要領域のスペクトルがカットされ、狭い幅(およそ半分の幅)のスペクトルにすることができる。また、カラーフィルタの外光反射の抑止および低減効果は、円偏光板と比較して高くはないが、当該カラーフィルタを用いた場合は、有機EL素子20が発した光の不要領域波長を除去することができ、色純度を高める効果も同時に発現することができる。更に、円偏光板と比較して光取り出し効率が高いため、有機EL素子20の発光効率が相対的に高く、有機EL照明装置1への導入は非常に効果的である。 Further, by using the color filter, it is possible to emit only light having a desired wavelength from the light emitted from the organic EL element, and to obtain the effect of suppressing and reducing the reflection of external light. The light emitted from the organic EL element 20 has a wide spectrum shape and a long tail on the long wavelength side compared to the light emitted from the inorganic EL element, which causes a problem when trying to reproduce high color purity. However, when the color filter is used in combination, the spectrum of the unnecessary region is cut, and the spectrum having a narrow width (approximately half the width) can be obtained. In addition, the suppression and reduction effect of external light reflection of the color filter is not as high as that of the circularly polarizing plate. However, when the color filter is used, the unnecessary region wavelength of the light emitted from the organic EL element 20 is removed. And the effect of increasing the color purity can be exhibited at the same time. Furthermore, since the light extraction efficiency is higher than that of the circularly polarizing plate, the light emission efficiency of the organic EL element 20 is relatively high, and the introduction into the organic EL lighting device 1 is very effective.
 ● 有機EL層13
 有機EL層13は、少なくとも発光層を備えていれば良く、正孔注入層、正孔輸送層、電子阻止層、発光層、正孔阻止層、電子輸送層、および電子注入層のうちの複数から構成されていれば良い。例えば、正孔輸送層、発光層、および電子輸送層が積層された3層構造であっても良い。または、正孔注入層、正孔輸送層、発光層、電子輸送層、および電子注入層が積層された5層構造、あるいは、正孔注入層、正孔輸送層、電子阻止層、発光層、正孔阻止層、電子輸送層、および電子注入層が積層された7層構造などが挙げられる。
Organic EL layer 13
The organic EL layer 13 only needs to include at least a light emitting layer, and a plurality of hole injection layers, hole transport layers, electron blocking layers, light emitting layers, hole blocking layers, electron transport layers, and electron injection layers. It should just be comprised from. For example, a three-layer structure in which a hole transport layer, a light emitting layer, and an electron transport layer are stacked may be used. Or a five-layer structure in which a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are laminated, or a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, Examples thereof include a seven-layer structure in which a hole blocking layer, an electron transport layer, and an electron injection layer are stacked.
 また、上記したような各層ごとに機能を分離させた構造とは逆に、正孔輸送性および電子輸送性が高く、なおかつ正孔および電子のバランスが取れている両電荷輸送性発光層からなる単層構造から有機EL層13を構成しても良い。 Contrary to the structure in which the function is separated for each layer as described above, the charge transporting and light emitting layer has a high hole transporting property and electron transporting property and has a good balance of holes and electrons. The organic EL layer 13 may be configured from a single layer structure.
 これによれば、両電荷輸送材料が、陽極から注入された正孔、および陰極から注入された電子を、(1)高移動度かつ高バランスで発光領域にまで伝播することができ、また、(2)最高被占準位/最低空準位(HOMO/LUMO)エネルギー差が十分大きく(3eV程度)、なおかつワイドギャップ材料であることから、高い発光効率を得ることができる。 According to this, both charge transport materials can propagate the holes injected from the anode and the electrons injected from the cathode to the light emitting region with (1) high mobility and high balance, (2) Since the energy difference between the highest occupied level / the lowest empty level (HOMO / LUMO) is sufficiently large (about 3 eV) and is a wide gap material, high luminous efficiency can be obtained.
 上記の両電荷輸送材料を以っても、単層構成の場合、正孔及び電子の注入性が劣ることが有るため、当該単層の有機EL層13は、発光領域の他に、正孔注入領域、および電子注入領域を有する。 Even in the case of using both of the charge transport materials described above, in the case of a single layer configuration, the hole and electron injection properties may be inferior. It has an injection region and an electron injection region.
 上述したように、有機EL層13は、少なくとも発光層を有していれば良い。当該発光層は、正孔輸送性材料または電子輸送性材料等のホスト材料に、発光ドーパントをドープした両電荷輸送性材料で形成されている。 As described above, the organic EL layer 13 may have at least a light emitting layer. The light emitting layer is formed of a dual charge transporting material in which a host material such as a hole transporting material or an electron transporting material is doped with a light emitting dopant.
 上記ホスト材料としては、例えば、下記に化学構造式を示している4,4’-N,N’-ジカルバゾリルビフェニル(以下、CBP)等が挙げられる。 Examples of the host material include 4,4'-N, N'-dicarbazolylbiphenyl (hereinafter referred to as CBP), which has the following chemical structural formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 赤色発光する発光層を作製する場合には、上記発光ドーパントとして赤色発光ドーパントを用いる。赤色発光ドーパントとしては、例えば、下記に化学構造式を示しているビス(1-(フェニル)イソキノリナト-N,C2’)イリジウム(III)(アセチルアセトネート) (以下、(piq)Ir(acac))等の赤色燐光発光ドーパントが挙げられる。当該赤色発光ドーパントとホスト材料とを共蒸着することによって赤色発光層が得られる。赤色発光層は、例えば、厚さ5nm程度にすることができるが、必ずしもこれに限定されるわけではない。 In the case of producing a light emitting layer that emits red light, a red light emitting dopant is used as the light emitting dopant. Examples of the red light-emitting dopant include bis (1- (phenyl) isoquinolinato-N, C2 ′) iridium (III) (acetylacetonate) (hereinafter referred to as (piq) 2 Ir (acac), which has the following chemical structural formula. )) And other red phosphorescent dopants. A red light emitting layer is obtained by co-evaporating the red light emitting dopant and the host material. The red light emitting layer can have a thickness of about 5 nm, for example, but is not necessarily limited thereto.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 また、緑色発光する発光層を作製する場合には、上記発光ドーパントとして緑色発光ドーパントを用いる。緑色発光ドーパントとしては、例えば、下記に化学構造式を示している(2-フェニルピリジン)イリジウム (以下、Ir(ppy))等の緑色燐光発光ドーパントが挙げられる。当該緑色発光ドーパントとホスト材料とを共蒸着することによって緑色発光層が得られる。緑色発光層は、例えば、厚さ20nm程度にすることができるが、必ずしもこれに限定されるわけではない。 When a light emitting layer that emits green light is produced, a green light emitting dopant is used as the light emitting dopant. Examples of the green light emitting dopant include green phosphorescent light emitting dopants such as (2-phenylpyridine) iridium (hereinafter, Ir (ppy) 3 ), which has the following chemical structural formula. A green light emitting layer is obtained by co-evaporating the green light emitting dopant and the host material. The green light emitting layer can have a thickness of about 20 nm, for example, but is not necessarily limited thereto.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 また、青色発光する発光層を作製する場合には、上記発光ドーパントとして青色発光ドーパントを用いる。青色発光ドーパントとしては、例えば、イリジウム(III)ビス[(4,6-ジフルオロフェニル)-ピリジネート-N,C2]ピコリネート (以下、FIrpic)等の青色燐光発光ドーパントが挙げられる。当該青色発光ドーパントとホスト材料とを共蒸着することによって青色発光層が得られる。青色発光層は、例えば、厚さ30nm程度にすることができるが、必ずしもこれに限定されるわけではない。 Also, when a light emitting layer emitting blue light is produced, a blue light emitting dopant is used as the light emitting dopant. Examples of the blue light-emitting dopant include blue phosphorescent light-emitting dopants such as iridium (III) bis [(4,6-difluorophenyl) -pyridinate-N, C2] picolinate (hereinafter referred to as FIrpic). A blue light-emitting layer is obtained by co-evaporating the blue light-emitting dopant and the host material. For example, the blue light-emitting layer can have a thickness of about 30 nm, but is not necessarily limited thereto.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上述したように、有機EL層13には、正孔注入層、正孔輸送層、電子阻止層、電子注入層、電子輸送層、および正孔阻止層を設けることができる。 As described above, the organic EL layer 13 can be provided with a hole injection layer, a hole transport layer, an electron blocking layer, an electron injection layer, an electron transport layer, and a hole blocking layer.
 正孔注入層は、陽極から受け取った正孔を効率良く発光層へ注入する機能を有する。正孔注入性材料としては、例えば、下記に化学構造式を示しているスターバーストアミンの4,4’,4’’-トリス(N-3-メチルフェニル-N-フェニルアミノ)トリフェニルアミン (以下、m-MTDATA)等が挙げられる。当該正孔注入層は、例えば、厚さ30nm程度にすることができるが、必ずしもこれに限定されるわけではない。 The hole injection layer has a function of efficiently injecting holes received from the anode into the light emitting layer. As the hole injecting material, for example, 4,4 ′, 4 ″ -tris (N-3-methylphenyl-N-phenylamino) triphenylamine, a starburst amine having the following chemical structural formula ( Hereinafter, m-MTDATA) and the like can be mentioned. The hole injection layer can have a thickness of about 30 nm, for example, but is not necessarily limited thereto.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 正孔輸送層は、陽極から受け取った正孔を効率良く発光層へ輸送する機能を有する。正孔輸送性材料としては、例えば、下記に化学構造式を示している4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン (以下、TCTA)等の芳香族第三級アミン化合物が挙げられる。当該正孔輸送層は、例えば、厚さ10nm程度にすることができるが、必ずしもこれに限定されるわけではない。 The hole transport layer has a function of efficiently transporting holes received from the anode to the light emitting layer. Examples of the hole transporting material include aromatic tertiary amines such as 4,4 ′, 4 ″ -tri (N-carbazolyl) triphenylamine (hereinafter, TCTA), which have the following chemical structural formula. Compounds. The hole transport layer can have a thickness of about 10 nm, for example, but is not necessarily limited thereto.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 電子阻止層は、陽極側に電子が移動するのをブロックする機能を有する。電子阻止性材料としては、例えば、下記に化学構造式を示している4,4’-ビス-[N,N’-(3-トリル)アミノ-3,3’-ジメチルビフェニル (以下、HMTPD)等が挙げられる。当該電子阻止層は、例えば、厚さ10nm程度にすることができるが、必ずしもこれに限定されるわけではない。 The electron blocking layer has a function of blocking the movement of electrons to the anode side. As an electron blocking material, for example, 4,4′-bis- [N, N ′-(3-tolyl) amino-3,3′-dimethylbiphenyl (hereinafter referred to as HMTPD) having the following chemical structural formula Etc. The electron blocking layer can have a thickness of about 10 nm, for example, but is not necessarily limited thereto.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 電子注入層は、陰極から受け取った電子を効率良く発光層へ注入する機能を有する。電子注入性材料としては、例えば、フッ化リチウム(LiF)等が挙げられる。当該電子注入層は、例えば、厚さ1nm程度にすることができるが、必ずしもこれに限定されるわけではない。なお、電子注入層としてLiFを用いる場合には、陰極としては、マグネシウムと銀とを1対9の割合で共蒸着したものを用いるのが好ましい。 The electron injection layer has a function of efficiently injecting electrons received from the cathode into the light emitting layer. Examples of the electron injecting material include lithium fluoride (LiF). The electron injection layer can have a thickness of about 1 nm, for example, but is not necessarily limited thereto. When LiF is used for the electron injection layer, it is preferable to use a cathode in which magnesium and silver are co-deposited at a ratio of 1: 9.
 電子輸送層は、陰極から受け取った電子を効率良く発光層へ輸送する機能を有する。電子輸送性材料としては、例えば、下記に化学構造式を示しているトリス(8-ヒドロキシキノリン)アルミニウム (以下、Alq)、または、下記に化学構造式を示している3-フェニル-4(1’-ナフチル)5-フェニル-1,2,4-トリアゾール (以下、TAZ)等が挙げられる。当該電子輸送層は、例えば、厚さ30nm程度にすることができるが、必ずしもこれに限定されるわけではない。 The electron transport layer has a function of efficiently transporting electrons received from the cathode to the light emitting layer. As the electron transporting material, for example, tris (8-hydroxyquinoline) aluminum (hereinafter referred to as Alq 3 ) having a chemical structural formula shown below, or 3-phenyl-4 ( 1'-naphthyl) 5-phenyl-1,2,4-triazole (hereinafter TAZ) and the like. The electron transport layer can have a thickness of about 30 nm, for example, but is not necessarily limited thereto.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 正孔阻止層は、陰極側に正孔が移動するのをブロックする機能を有する。正孔阻止性材料としては、例えば、下記に化学構造式を示している2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン (以下、BCP)等が挙げられる。当該正孔阻止層は、例えば、厚さ10nm程度にすることができるが、必ずしもこれに限定されるわけではない。 The hole blocking layer has a function of blocking the movement of holes to the cathode side. Examples of the hole blocking material include 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (hereinafter referred to as BCP), which has the following chemical structural formula. The hole blocking layer can have a thickness of about 10 nm, for example, but is not necessarily limited thereto.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 なお、電子阻止層および正孔阻止層を設ける場合には、両阻止層のうち何れか一方は蒸着重合法によって形成することが好ましい。これによれば、蒸着重合法という簡易な方法によって、安定した電子阻止層、および正孔阻止層を形成することができる。 In addition, when providing an electron blocking layer and a hole blocking layer, it is preferable to form either one of both blocking layers by a vapor deposition polymerization method. According to this, a stable electron blocking layer and hole blocking layer can be formed by a simple method called vapor deposition polymerization.
 また、電子阻止層および正孔阻止層を両電荷輸送性材料によって構成する場合には、電子阻止層を構成する両電荷輸送性材料は、発光層を構成する両電荷輸送性材料の最低空軌道よりも高い最低空軌道を有しているという第一条件、および正孔阻止層を構成する両電荷輸送性材料は、発光層を構成する両電荷輸送性材料の最高被占軌道よりも低い最高被占軌道を有しているという第二条件のうち、少なくとも何れかの条件を満たしていることがより好ましい。これによれば、両電荷輸送材料によって構成されている発光層を挟んで、電子の移動を阻止する電子阻止層と、正孔の移動を阻止する正孔阻止層とが設けている。そのため、陽極から伝搬された正孔と、陰極から伝搬された電子とが、発光層内に閉じ込められるので、発光層において正孔および電子が再結合する確率が高まり、有機EL素子20の駆動電圧を低下することができる。 In addition, when the electron blocking layer and the hole blocking layer are composed of both charge transporting materials, the both charge transporting materials constituting the electron blocking layer are the lowest free orbit of the both charge transporting materials constituting the light emitting layer. The first condition that the lowest empty orbit is higher, and the charge transporting material constituting the hole blocking layer is lower than the highest occupied orbital of both charge transporting materials constituting the light emitting layer. More preferably, at least one of the second conditions of having an occupied track is satisfied. According to this, an electron blocking layer for blocking the movement of electrons and a hole blocking layer for blocking the movement of holes are provided with a light emitting layer formed of both charge transport materials interposed therebetween. Therefore, since the holes propagated from the anode and the electrons propagated from the cathode are confined in the light emitting layer, the probability that the holes and electrons recombine in the light emitting layer is increased, and the driving voltage of the organic EL element 20 is increased. Can be reduced.
 また、発光層において正孔および電子が再結合する確率が上がるので、内部量子収率は向上し、発光効率を向上させることができる。しかし、必ずしも電子阻止層と正孔阻止層との双方を具備する必要はなく、何れか一方を有しているだけでも、正孔および電子の再結合確率を十分に高めることができる。従って、高輝度、高効率および長寿命を実現する有機EL素子20を提供することができる。 In addition, since the probability of recombination of holes and electrons in the light emitting layer is increased, the internal quantum yield can be improved and the light emission efficiency can be improved. However, it is not always necessary to provide both the electron blocking layer and the hole blocking layer, and the probability of recombination of holes and electrons can be sufficiently increased by having only one of them. Therefore, it is possible to provide the organic EL element 20 that realizes high luminance, high efficiency, and long life.
 なお、有機EL層13は更に電荷発生層を含んでいても良く、この場合には、例えば、正孔輸送層、発光層、電荷発生層、正孔輸送層、発光層、および電子輸送層が、この順に積層されて有機EL層13が形成される。つまり、発光層を複数備えた有機EL素子20を形成することができる。電荷発生層が隣り合う発光層の間に等電位面を形成することにより、駆動電圧は高くなる一方で流れる電流が小さくなり、優れた発光寿命を得ることができる。電荷発生層の材料としては、例えば、五酸化バナジウム(V)等が挙げられる。当該電荷発生層は、例えば、厚さ20nm程度にすることができるが、必ずしもこれに限定されるわけではない。 The organic EL layer 13 may further include a charge generation layer. In this case, for example, a hole transport layer, a light emission layer, a charge generation layer, a hole transport layer, a light emission layer, and an electron transport layer are included. The organic EL layer 13 is formed by stacking in this order. That is, the organic EL element 20 including a plurality of light emitting layers can be formed. By forming an equipotential surface between the light emitting layers adjacent to each other with the charge generation layer, the driving voltage is increased while the flowing current is reduced, and an excellent light emission lifetime can be obtained. Examples of the material for the charge generation layer include vanadium pentoxide (V 2 O 5 ). The charge generation layer can have a thickness of about 20 nm, for example, but is not necessarily limited thereto.
 (有機EL素子20の配置)
 本実施形態で用いる照明パネル10は、白色発光する有機EL素子20からなることを基本とする。ただし、有機EL照明装置1に調光性および調色性を持たせるために、互いに異なる波長の光を発する複数種類の有機EL素子20を用いても良い。
(Arrangement of organic EL element 20)
The illumination panel 10 used in this embodiment is basically composed of an organic EL element 20 that emits white light. However, a plurality of types of organic EL elements 20 that emit light having different wavelengths may be used in order to provide the organic EL lighting device 1 with dimming properties and toning properties.
 ここで、それぞれの有機EL素子20は、互いに同一の形状であっても良いし、互いに異なる形状であっても良い。例えば、異なる波長の光を発する有機EL素子20から構成される照明パネル10の場合、発光色ごとに有機EL素子20の長さまたは幅を異ならせても良い。この場合には、各発光ドーパントの発光効率等の特性を考慮して、任意の幅に設計することにより、消費電力、発光輝度および発光寿命の点で優れた有機EL照明装置1が実現できる。 Here, the organic EL elements 20 may have the same shape or different shapes. For example, in the case of the illumination panel 10 including the organic EL elements 20 that emit light of different wavelengths, the length or width of the organic EL elements 20 may be different for each emission color. In this case, the organic EL lighting device 1 that is superior in terms of power consumption, light emission luminance, and light emission lifetime can be realized by designing the light emitting dopant in an arbitrary width in consideration of characteristics such as light emission efficiency of each light emitting dopant.
 例えば、互いに異なる波長の光を発する3種類の有機EL素子20を用いる場合には、赤色発光有機EL素子(R)、緑色発光有機EL素子(G)、および青色発光有機EL素子(B)の有機EL素子20を用いることができる。RGBの有機EL素子20を1セットとして、図6に示すように、当該セットが第一基板17上に繰り返し配列されたレイアウトにしても良い。図6は、有機EL素子20の一配置例を示す図である。本図では、有機EL素子20のレイアウトをより分かりやすくするために、図を簡略化している。 For example, when three types of organic EL elements 20 that emit light of different wavelengths are used, the red light emitting organic EL element (R), the green light emitting organic EL element (G), and the blue light emitting organic EL element (B) The organic EL element 20 can be used. The RGB organic EL elements 20 may be set as one set, and the set may be repeatedly arranged on the first substrate 17 as shown in FIG. FIG. 6 is a diagram illustrating an arrangement example of the organic EL element 20. In this figure, in order to make the layout of the organic EL element 20 easier to understand, the figure is simplified.
 また、例えば、互いに異なる波長の光を発する2種類の有機EL素子20を用いる場合には、橙色発光有機EL素子と青色発光有機EL素子との有機EL素子20を用いることができる。ここで、1つの有機EL素子で複数色の光を発するために、マスクパターニング等の方法で1つの有機EL素子20を複数色に塗り分けても良い。これによれば、1つの有機EL素子20で有機EL照明装置1に調光性および調色性を持たせることができる。 For example, when two types of organic EL elements 20 that emit light having different wavelengths are used, an organic EL element 20 of an orange light-emitting organic EL element and a blue light-emitting organic EL element can be used. Here, in order to emit light of a plurality of colors with one organic EL element, one organic EL element 20 may be separately applied to a plurality of colors by a method such as mask patterning. According to this, it is possible to provide the organic EL lighting device 1 with dimming property and toning property with one organic EL element 20.
 照明パネル10に複数色の有機EL素子20を配する場合には、各発光色の有機EL素子20を平行に並べる以外に、その他のレイアウトに配置しても良い。例えば、3種類(RGB)の有機EL素子20を用いる場合には、RGBの有機EL素子20を1セットとし、各セットにおいてRGBの有機EL素子20をL字型に配置しても良いし、放射状に配置しても良い。 When arranging the organic EL elements 20 of a plurality of colors on the lighting panel 10, the organic EL elements 20 of the respective emission colors may be arranged in other layouts in addition to the parallel arrangement. For example, when three types (RGB) of organic EL elements 20 are used, the RGB organic EL elements 20 may be set as one set, and the RGB organic EL elements 20 may be arranged in an L shape in each set. You may arrange | position radially.
 以上では、各有機EL素子20を並置する構成を示したが、必ずしもこれに限定されるわけではなく、例えば、各色の発光層が積層されたタンデム構造の有機EL素子20であっても良い。 In the above description, the configuration in which the organic EL elements 20 are juxtaposed is shown. However, the present invention is not necessarily limited thereto. For example, the organic EL element 20 having a tandem structure in which light emitting layers of the respective colors are stacked may be used.
 なお、有機EL素子20では、支持基板11が第一基板17に接するように配置されていても良いし、支持基板11とは反対側の第二電極14が第一基板17に接するように配置されていても良い。なお、有機EL素子20の第二電極14が第一基板17に接するように配置されている場合には、第二電極14が下部電極となり、第一電極12が上部電極となる。そのため、第一基板17上の導電配線9と有機EL素子20とを絶縁するための絶縁膜を設ける場合には、当該絶縁膜を第二電極14と第一基板17との間に設ける。また、有機EL素子20が保護層15を有している場合には、当該保護層15を絶縁膜として採用しても良いが、必ずしもこれに限定されるわけではなく、保護層15と第一基板17との間に絶縁膜を別途設けても良い。 In the organic EL element 20, the support substrate 11 may be disposed so as to be in contact with the first substrate 17, or the second electrode 14 on the opposite side to the support substrate 11 is disposed so as to be in contact with the first substrate 17. May be. In addition, when the 2nd electrode 14 of the organic EL element 20 is arrange | positioned so that the 1st board | substrate 17 may be contacted, the 2nd electrode 14 becomes a lower electrode and the 1st electrode 12 becomes an upper electrode. Therefore, when providing an insulating film for insulating the conductive wiring 9 on the first substrate 17 and the organic EL element 20, the insulating film is provided between the second electrode 14 and the first substrate 17. Further, when the organic EL element 20 has the protective layer 15, the protective layer 15 may be adopted as an insulating film, but is not necessarily limited to this. An insulating film may be separately provided between the substrate 17.
 (有機EL素子20の他の配置例)
 以上では、第一基板17に有機EL素子20が配された構成を説明したが、特にこれに限定されず、例えば、第一基板17および第二基板18の両方に有機EL素子20が配置されていても良い。また、支持基板11と第一基板17とが接するように有機EL素子20が配されている構成を示したが、特にこれに限定されず、第二電極14側が第一基板17または第二基板18に接するような構成でも良い。これについて、図7~図9を参照して説明する。図7は、第一基板17にボトムエミッション型の有機EL素子20を配し、第二基板18にトップエミッション型の有機EL素子20を配した有機EL照明装置1の断面を示す図である。図8は、第一基板17および第二基板18にボトムエミッション型の有機EL素子20を配した有機EL照明装置1の断面を示す図である。図9は、第一基板17にトップエミッション型の有機EL素子20を配した有機EL照明装置1の断面を示す図である。以上の図では、図を簡略化するために保護層15を図示していない。
(Other arrangement examples of the organic EL element 20)
The configuration in which the organic EL element 20 is disposed on the first substrate 17 has been described above. However, the present invention is not particularly limited thereto. For example, the organic EL element 20 is disposed on both the first substrate 17 and the second substrate 18. May be. Further, the configuration in which the organic EL element 20 is arranged so that the support substrate 11 and the first substrate 17 are in contact with each other is shown, but the present invention is not particularly limited thereto, and the second electrode 14 side is the first substrate 17 or the second substrate. The structure which touches 18 may be sufficient. This will be described with reference to FIGS. FIG. 7 is a view showing a cross section of the organic EL lighting device 1 in which the bottom emission type organic EL element 20 is arranged on the first substrate 17 and the top emission type organic EL element 20 is arranged on the second substrate 18. FIG. 8 is a view showing a cross section of the organic EL lighting device 1 in which the bottom emission type organic EL elements 20 are arranged on the first substrate 17 and the second substrate 18. FIG. 9 is a view showing a cross section of the organic EL lighting device 1 in which the top emission type organic EL element 20 is arranged on the first substrate 17. In the above drawings, the protective layer 15 is not shown in order to simplify the drawing.
 例えば、図7に示すように、ボトムエミッション型の有機EL素子20の支持基板11が第一基板17に接するように配置し、トップエミッション型の有機EL素子20の支持基板11が第二基板18に接するように配置しても良い。このとき、第一基板17には透明性を有する材料を用い、第二基板18には光反射性を有する材料を用いる。これによって、第一基板17に配された有機EL素子20からの光は第一基板17側から放出され、第二基板18に配された有機EL素子20からの光も第一基板17側から放出されることになる。また、第一基板17における有機EL素子20の配置位置と、第二基板18における有機EL素子20の配置位置とが重なり合わないようにすることが好ましい。これによれば、有機EL照明装置1の実質的な発光面積を増やすことができる。なお、図8に示すように、第二基板18には、ボトムエミッション型の有機EL素子20の第二電極14が接するように配置されていても良い。これによれば、第二基板18に配された有機EL素子20からの光は第一基板17側から放出される。 For example, as shown in FIG. 7, the support substrate 11 of the bottom emission type organic EL element 20 is disposed so as to contact the first substrate 17, and the support substrate 11 of the top emission type organic EL element 20 is the second substrate 18. You may arrange | position so that it may touch. At this time, a material having transparency is used for the first substrate 17, and a material having light reflectivity is used for the second substrate 18. Accordingly, light from the organic EL element 20 disposed on the first substrate 17 is emitted from the first substrate 17 side, and light from the organic EL element 20 disposed on the second substrate 18 is also emitted from the first substrate 17 side. Will be released. Further, it is preferable that the arrangement position of the organic EL element 20 on the first substrate 17 and the arrangement position of the organic EL element 20 on the second substrate 18 do not overlap each other. According to this, the substantial light emission area of the organic EL lighting device 1 can be increased. As shown in FIG. 8, the second substrate 18 may be disposed so that the second electrode 14 of the bottom emission type organic EL element 20 is in contact therewith. According to this, light from the organic EL element 20 disposed on the second substrate 18 is emitted from the first substrate 17 side.
 また、以上では、第一基板17には、有機EL素子20の光出射面が第一基板17側に面するように配置されているが、例えば、図9に示すように、光出射面が第二基板18側に面するように配置しても良い。すなわち、トップエミッション型の有機EL素子20の支持基板11が第一基板17に接するように配置しても良い。この場合、有機EL素子20から放出された光は、光反射性を有する第二基板18によって反射され、その反射光が第一基板17側から放出されることになる。つまり、有機EL照明装置1を間接照明装置にすることができる。なお、第一基板17には、ボトムエミッション型の有機EL素子20の第二電極14が接するように配置しても良い。 In the above description, the light emission surface of the organic EL element 20 is arranged on the first substrate 17 so as to face the first substrate 17 side. For example, as shown in FIG. You may arrange | position so that the 2nd board | substrate 18 side may be faced. That is, the support substrate 11 of the top emission type organic EL element 20 may be disposed so as to be in contact with the first substrate 17. In this case, the light emitted from the organic EL element 20 is reflected by the second substrate 18 having light reflectivity, and the reflected light is emitted from the first substrate 17 side. That is, the organic EL lighting device 1 can be an indirect lighting device. The first substrate 17 may be disposed so that the second electrode 14 of the bottom emission type organic EL element 20 is in contact therewith.
 更には、図10に示すように、第一基板17および第二基板18の双方を透明性の材料で構成し、第一基板17側および第二基板18側の双方から有機EL素子20の光が放出されるようにしても良い。これによれば、両面発光性の有機EL照明装置1が得られる。この際、第一基板17および第二基板18には、ボトムエミッション型の有機EL素子20を配しているが、特にこれに限定されるわけではない。 Furthermore, as shown in FIG. 10, both the first substrate 17 and the second substrate 18 are made of a transparent material, and the light of the organic EL element 20 is transmitted from both the first substrate 17 side and the second substrate 18 side. May be released. According to this, the double-sided organic EL lighting device 1 can be obtained. At this time, the bottom emission type organic EL element 20 is disposed on the first substrate 17 and the second substrate 18, but is not particularly limited thereto.
 以上では、第一基板17および第二基板18を対向するように配置した構成を示したが、必ずしもこれに限定されるわけではない。例えば、3枚以上の基板によって、柱状、直方体状、または球体状等に構成された空間内に有機EL素子20が封止された構成でも良い。 In the above, the configuration in which the first substrate 17 and the second substrate 18 are arranged to face each other has been shown, but the present invention is not necessarily limited thereto. For example, the organic EL element 20 may be sealed in a space configured in a columnar shape, a rectangular parallelepiped shape, a spherical shape, or the like by three or more substrates.
 (有機EL素子20の製造方法)
 以下では、本実施形態に係る有機EL照明装置1の製造方法について説明する。まず、有機EL素子20の製造方法について、図11を参照して説明する。図11の(a)は、支持基板11を用意する工程を示す図である。図11の(b)は、第一電極12を形成する工程を示す図である。図11の(c)は、有機EL層13を形成する工程を示す図である。図11の(d)は、第二電極14を形成する工程を示す図である。図11の(e)は、保護層15を形成する工程を示す図である。図11の(f)は、有機EL素子20を切り取る工程を示す図である。以下では、有機EL素子20の製造方法について、具体例を用いて説明するが、必ずしもこれに限定されるわけではない。
(Method for manufacturing organic EL element 20)
Below, the manufacturing method of the organic electroluminescent illuminating device 1 which concerns on this embodiment is demonstrated. First, a method for manufacturing the organic EL element 20 will be described with reference to FIG. FIG. 11A is a diagram illustrating a process of preparing the support substrate 11. FIG. 11B is a diagram illustrating a process of forming the first electrode 12. FIG. 11C is a diagram illustrating a process of forming the organic EL layer 13. FIG. 11D is a diagram illustrating a process of forming the second electrode 14. FIG. 11E is a diagram illustrating a process of forming the protective layer 15. FIG. 11F is a diagram illustrating a process of cutting off the organic EL element 20. Below, although the manufacturing method of the organic EL element 20 is demonstrated using a specific example, it is not necessarily limited to this.
 まず、図11の(a)に示すように、支持基板11となるPETフィルム等のフィルムテープ11’を用意し、当該フィルムテープ11’上に第一電極12、有機EL層13、および第二電極14等を順に形成していく。この際、フィルムテープ11’上に、複数の第一電極12を形成し、各第一電極12上に有機EL層13および第二電極14等を積層して形成していく。有機EL素子20の製造は、例えば、ドライエアー下のグローブボックス等、水分濃度が低い環境で行うことが好ましい。 First, as shown to (a) of FIG. 11, film tape 11 ', such as PET film used as the support substrate 11, is prepared, the 1st electrode 12, the organic electroluminescent layer 13, and 2nd on the said film tape 11'. The electrodes 14 and the like are sequentially formed. At this time, a plurality of first electrodes 12 are formed on the film tape 11 ′, and the organic EL layer 13, the second electrode 14, and the like are stacked on each first electrode 12. The manufacture of the organic EL element 20 is preferably performed in an environment where the moisture concentration is low, such as a glove box under dry air.
 次に、図11の(b)に示すように、スパッタ法を用いてITO膜(例えば、厚さ150nm)を成膜し、ITO膜の一部をレーザーアブレーションによってエッチングして第一電極12を形成する。そして、第一電極12の表面を超音波洗浄およびUV-オゾン洗浄によって洗浄する。超音波洗浄では、例えば、アセトン、またはイソプロピルアルコール(IPA)を洗浄液として10分間程度の洗浄を行う。また、UV-オゾン洗浄では、例えば、UV-オゾン洗浄機を用いて30分間程度の洗浄を行う。なお、支持基板11(フィルムテープ11’)を金属板等で形成する場合には、金属板表面にプラズマCVD処理等を施し、絶縁処理を行う。 Next, as shown in FIG. 11B, an ITO film (for example, a thickness of 150 nm) is formed by sputtering, and a part of the ITO film is etched by laser ablation to form the first electrode 12. Form. Then, the surface of the first electrode 12 is cleaned by ultrasonic cleaning and UV-ozone cleaning. In the ultrasonic cleaning, for example, cleaning is performed for about 10 minutes using acetone or isopropyl alcohol (IPA) as a cleaning liquid. In the UV-ozone cleaning, for example, cleaning is performed for about 30 minutes using a UV-ozone cleaning machine. When the support substrate 11 (film tape 11 ') is formed of a metal plate or the like, the surface of the metal plate is subjected to a plasma CVD process or the like to perform an insulation process.
 続いて、図11の(c)に示すように、真空蒸着法によって有機EL層13を第一電極12上に形成する。具体的には、第一電極12上に、正孔注入層としてスターバーストアミンのm-MTDATA(例えば、厚さ30nm)を成膜する。また、正孔注入層上には、正孔輸送層(電子阻止層)としてTCTA(例えば、厚さ10nm)を成膜する。なお、膜厚は水晶振動子によって測定することが好ましい。 Subsequently, as shown in FIG. 11C, an organic EL layer 13 is formed on the first electrode 12 by vacuum deposition. Specifically, a starburst amine m-MTDATA (for example, a thickness of 30 nm) is formed on the first electrode 12 as a hole injection layer. Further, a TCTA (for example, a thickness of 10 nm) is formed as a hole transport layer (electron blocking layer) on the hole injection layer. Note that the film thickness is preferably measured by a crystal resonator.
 次に、正孔輸送層上に、発光層として緑色発光層、青色発光層、および赤色発光層の順に積層する。これらの発光層は、2成分の共蒸着によって達成できる。緑色発光層は、例えば、CBP(ホスト材料)、およびIr(ppy)(緑色発光ドーパント)を、それぞれの蒸着速度比が0.92:0.08となるように制御して共蒸着する。例えば、膜厚は5nmである。 Next, a green light emitting layer, a blue light emitting layer, and a red light emitting layer are laminated in this order on the hole transport layer as a light emitting layer. These light emitting layers can be achieved by two-component co-evaporation. For example, the green light emitting layer co-deposits CBP (host material) and Ir (ppy) 3 (green light emitting dopant) while controlling the respective evaporation rate ratios to be 0.92: 0.08. For example, the film thickness is 5 nm.
 また、青色発光層は、例えば、CBP(ホスト材料)、およびFIrpic(青色発光ドーパント)を、それぞれの蒸着速度比が0.92:0.08となるように制御して共蒸着する。例えば、膜厚は30nmである。 Further, the blue light emitting layer is co-deposited, for example, by controlling CBP (host material) and FIrpic (blue light emitting dopant) so that the respective evaporation rate ratios are 0.92: 0.08. For example, the film thickness is 30 nm.
 同様に、赤色発光層は、例えば、赤色発光層の形成は、例えば、CBP(ホスト材料)、および(piq)Ir(acac)(赤色発光ドーパント)を、それぞれの蒸着速度比が0.92:0.08となるように制御して共蒸着する。例えば、膜厚は5nmである。 Similarly, for example, the red light emitting layer is formed by, for example, forming CBP (host material) and (piq) 2 Ir (acac) (red light emitting dopant) with a deposition rate ratio of 0.92 respectively. : Co-deposited by controlling to be 0.08. For example, the film thickness is 5 nm.
 続いて、発光層上に、正孔阻止層としてBCP(例えば、厚さ10nm)を成膜し、電子輸送層としてAlq(30nm)を成膜する。そして、電子輸送層上に、電子注入層としてLiF(0.5nm)を成膜する。 Subsequently, a BCP (for example, a thickness of 10 nm) is formed as a hole blocking layer and an Alq (30 nm) is formed as an electron transport layer on the light emitting layer. Then, LiF (0.5 nm) is formed as an electron injection layer on the electron transport layer.
 次に、図11の(d)に示すように、電子注入層上に、真空蒸着法によってアルミニウム膜(例えば、厚さ100nm)を成膜して第二電極14を形成する。その後、図11の(e)に示すように、第二電極14上に、保護層15としてSiON膜(例えば、厚さ100nm)を成膜する。なお、以上の有機EL層13は、当該有機EL層13を構成する材料の少なくとも1種類の材料を真空条件下で蒸着するのと同時、あるいは蒸着した後に、熱処理または紫外線照射することが好ましい。これによれば、熱処理または紫外線照射によって、基板が加熱され、反応が促進し、(1)蒸着重合を完遂させることができ、なおかつ(2)重合度をコントロールすることができる。さらに、熱処理によって、蒸着膜内の分子配向を制御することもできる。また、紫外線照射した場合には、紫外線照射した後に、熱処理を行うことがより好ましい。これによれば、紫外線照射によって基板が加熱され、反応が促進し、(1)蒸着重合を完遂させることができ、なおかつ(2)重合度をコントロールすることができる。そして、熱処理をその後に行うことによって、蒸着膜内の分子配向を制御することができる。さらに、紫外線照射時に、マスクを用いてパターンを転写し、紫外線照射後に硬化していない部分を除去すれば、パターン形成を行うことも可能である。 Next, as shown in FIG. 11 (d), an aluminum film (for example, a thickness of 100 nm) is formed on the electron injection layer by a vacuum deposition method to form the second electrode. Thereafter, as shown in FIG. 11E, a SiON film (for example, a thickness of 100 nm) is formed as the protective layer 15 on the second electrode 14. In addition, it is preferable that the above organic EL layer 13 is heat-treated or irradiated with ultraviolet rays at the same time as or after vapor deposition of at least one material constituting the organic EL layer 13 under vacuum conditions. According to this, the substrate is heated by heat treatment or ultraviolet irradiation, the reaction is accelerated, (1) vapor deposition polymerization can be completed, and (2) the degree of polymerization can be controlled. Furthermore, the molecular orientation in the deposited film can be controlled by heat treatment. In the case of ultraviolet irradiation, it is more preferable to perform heat treatment after the ultraviolet irradiation. According to this, the substrate is heated by ultraviolet irradiation, the reaction is accelerated, (1) vapor deposition polymerization can be completed, and (2) the degree of polymerization can be controlled. Then, the molecular orientation in the deposited film can be controlled by performing the heat treatment thereafter. Furthermore, it is also possible to form a pattern by transferring a pattern using a mask at the time of ultraviolet irradiation and removing a portion that has not been cured after ultraviolet irradiation.
 最後に、図11の(f)に示すように、フィルムテープ11’を所定の長さに分断して、有機EL素子20を1つ1つ切り分ける。 Finally, as shown in FIG. 11 (f), the film tape 11 'is divided into a predetermined length, and the organic EL elements 20 are cut one by one.
 複数色の有機EL素子20を用いる場合には、発光領域から有機EL素子20の端部までのマージンの長さを不均一にすることにより、各有機EL素子20を長軸方向にずらして配設した場合でも、各発光領域の位置を長軸方向に揃えることができる。 When using organic EL elements 20 of a plurality of colors, each organic EL element 20 is shifted in the major axis direction by making the length of the margin from the light emitting region to the end of the organic EL element 20 non-uniform. Even when it is provided, the positions of the light emitting regions can be aligned in the long axis direction.
 (有機EL照明装置1の製造方法)
 上述したように、本実施形態では、フィルムテープ11’上に複数の第一電極12を形成し、各第一電極12上に有機EL層13および第二電極14等を順に積層して形成している。有機EL層13および第二電極14等の形成は、ロールツウロール蒸着装置(リールツウリール蒸着装置)を用いている。これについて、図12を参照して説明する。図12の(a)は、本実施形態に係る有機EL素子20を形成するロールツウロール蒸着装置を示す概略図である。図12の(b)は、第一基板17上に有機EL素子20を配置した状態を示す図である。図12の(c)は、第一基板17を覆うようにして第二基板18を配置し照明パネル10を作製する工程を示す図である。図12の(d)は、ヘッドボックス2とボトムレール4との間に、複数の照明パネル10が配置された状態を示す図である。
(Manufacturing method of the organic EL lighting device 1)
As described above, in the present embodiment, a plurality of first electrodes 12 are formed on the film tape 11 ′, and the organic EL layer 13 and the second electrode 14 are sequentially stacked on each first electrode 12. ing. The formation of the organic EL layer 13, the second electrode 14, and the like uses a roll-to-roll vapor deposition apparatus (reel-to-reel vapor deposition apparatus). This will be described with reference to FIG. FIG. 12A is a schematic view showing a roll-to-roll vapor deposition apparatus for forming the organic EL element 20 according to this embodiment. FIG. 12B is a diagram showing a state in which the organic EL element 20 is disposed on the first substrate 17. FIG. 12C is a diagram illustrating a process of manufacturing the lighting panel 10 by arranging the second substrate 18 so as to cover the first substrate 17. FIG. 12D is a diagram illustrating a state in which a plurality of lighting panels 10 are disposed between the head box 2 and the bottom rail 4.
 複数の第一電極12が形成されたフィルムテープ11’を、図12の(a)に示すように、ロールツウロール蒸着装置に設置する。当該ロールツウロール蒸着装置は、フィルムテープ11’を巻き掛けるための2つのロール22と、有機EL層13および第二電極14等を形成する複数の形成部23を備えている。 The film tape 11 'on which the plurality of first electrodes 12 are formed is installed in a roll-to-roll vapor deposition apparatus as shown in FIG. The roll-to-roll vapor deposition apparatus includes two rolls 22 for winding the film tape 11 ', and a plurality of forming portions 23 for forming the organic EL layer 13, the second electrode 14, and the like.
 例えば、1m/secの定速でフィルムテープ11’が各形成部23を通過するように送り出す。これによって、フィルムテープ11’が各形成部23を通過する際に、当該形成部23によって第一電極12上に有機EL層13および第二電極14等が順に蒸着され、最終的には、フィルムテープ11’上に第一電極12、有機EL層13、および第二電極14が積層されたものが複数形成される。 For example, the film tape 11 ′ is sent out at a constant speed of 1 m / sec so as to pass through each forming portion 23. Thereby, when the film tape 11 ′ passes through each forming portion 23, the organic EL layer 13 and the second electrode 14 are sequentially deposited on the first electrode 12 by the forming portion 23, and finally the film A plurality of layers in which the first electrode 12, the organic EL layer 13, and the second electrode 14 are laminated on the tape 11 ′ are formed.
 第一電極12、有機EL層13、および第二電極14が積層されたフィルムテープ11’をロール22に巻き取った後、ロール22に巻き取られたフィルムテープ11’を所定の長さに分断する。このようにして、複数の有機EL素子20を作製することができる。ここで、公知の検査方法によって、作製した有機EL素子20の検査を行い、不良品を取り除くことが好ましい。 After winding the film tape 11 ′ on which the first electrode 12, the organic EL layer 13, and the second electrode 14 are stacked on a roll 22, the film tape 11 ′ wound on the roll 22 is divided into a predetermined length. To do. In this way, a plurality of organic EL elements 20 can be produced. Here, it is preferable to inspect the produced organic EL element 20 by a known inspection method to remove defective products.
 次に、図12の(b)に示すように、第一基板17上に、作製した有機EL素子20を配置して、有機ELパネル10’を形成する。この際、第一基板17上には、マスクを用いた真空蒸着法、スパッタ法、フォトリソグラフィ技術等の方法を用いて、予め導電配線9を形成しておく。そして、例えば、無鉛ハンダ等によって形成した接続配線8を介して、第一基板17上に配置した有機EL素子20を導電配線9と接続する。 Next, as shown in FIG. 12B, the produced organic EL element 20 is arranged on the first substrate 17 to form the organic EL panel 10 '. At this time, the conductive wiring 9 is previously formed on the first substrate 17 by using a method such as a vacuum evaporation method using a mask, a sputtering method, or a photolithography technique. Then, for example, the organic EL element 20 disposed on the first substrate 17 is connected to the conductive wiring 9 via the connection wiring 8 formed of lead-free solder or the like.
 続いて、図12の(c)に示すように、有機EL素子20を配置した第一基板17を覆うようにして、第二基板18を第一基板17上に固定する。なお、第二基板18の固定には、例えば、UV硬化樹脂を用いることができる。当該UV硬化樹脂として、例えば、スリーボンド社製の30Y-332等のエポキシ樹脂等が適用できる。 Subsequently, as shown in FIG. 12C, the second substrate 18 is fixed on the first substrate 17 so as to cover the first substrate 17 on which the organic EL element 20 is arranged. For example, a UV curable resin can be used for fixing the second substrate 18. As the UV curable resin, for example, epoxy resin such as 30Y-332 manufactured by ThreeBond Co., Ltd. can be applied.
 最後に、図12の(d)に示すように、ヘッドボックス2とボトムレール4との間に、複数の照明パネル10を配置する。具体的には、ヘッドボックス2から伸びたラダーコード6の上記第2のコード上に照明パネル10を載せ、当該ラダーコード6に接続された分岐配線5と導電配線9とを接続配線8(図4)を介して接続する。その後、昇降コード3を照明パネル短辺近傍に配する。このようにして、有機EL照明装置1を作製することができる。 Finally, as shown in FIG. 12D, a plurality of lighting panels 10 are arranged between the head box 2 and the bottom rail 4. Specifically, the lighting panel 10 is placed on the second cord of the ladder cord 6 extending from the head box 2, and the branch wiring 5 and the conductive wiring 9 connected to the ladder cord 6 are connected to the connection wiring 8 (FIG. Connect via 4). Thereafter, the lifting / lowering cord 3 is arranged near the short side of the lighting panel. In this way, the organic EL lighting device 1 can be manufactured.
 なお、上述したように、本実施形態においてはロールツウロール蒸着装置を用いて有機EL素子20を作製することが好ましい。これは、ロールツウロール蒸着装置では、装置が大型化せず、かつ材料の利用効率が優れているためである。しかしながら、特にこれに限定されるわけではなく、他の装置を用いて有機EL素子20を作製しても良い。 In addition, as above-mentioned, it is preferable to produce the organic EL element 20 using a roll-to-roll vapor deposition apparatus in this embodiment. This is because the roll-to-roll vapor deposition apparatus does not increase in size and has excellent material utilization efficiency. However, the present invention is not particularly limited to this, and the organic EL element 20 may be manufactured using another device.
 (本実施の形態の作用効果)
 以上のように、本実施形態における有機EL照明装置1は、ラダーコード6が導電性を有しており、照明パネル10に設けられた有機EL素子の電極に対して電圧もしくは電流を供給することができるように構成されている。従来では、各照明パネルを支えるラダーコードと、各照明パネルに電圧を印加する配線コードとが別々に設けられていた。そのため、これにより、照明装置を構成する配線が照明パネルの発光面からみて、正面及び側面等に配され、照明光を遮断するという、ネガティブな効果をも生み出していた。しかしながら、本実施形態に係る有機EL照明装置1では、複数の照明パネルを支えてこれらの傾きを変えるためのラダーコードが、各照明パネルに電力を供給する配線機能を具備している。これによって、ラダーコードと、各照明パネルに電圧を印加する配線コードとを別々に構成する従来のものに比べて、構成を簡略化することができる。また、配線コードを別途設けることによる照明パネルの発光の遮断がなく、照明装置を設置した部屋の照度を効率良く高めることが出来る。
(Operational effect of the present embodiment)
As described above, in the organic EL lighting device 1 according to this embodiment, the ladder cord 6 has conductivity, and supplies voltage or current to the electrodes of the organic EL elements provided in the lighting panel 10. It is configured to be able to. Conventionally, a ladder cord that supports each lighting panel and a wiring cord that applies a voltage to each lighting panel are provided separately. Therefore, this has produced a negative effect in which the wiring configuring the lighting device is arranged on the front and side surfaces as seen from the light emitting surface of the lighting panel to block the illumination light. However, in the organic EL lighting device 1 according to the present embodiment, the ladder code for supporting a plurality of lighting panels and changing their inclinations has a wiring function for supplying power to each lighting panel. Accordingly, the configuration can be simplified as compared with the conventional configuration in which the ladder cord and the wiring cord for applying a voltage to each lighting panel are separately configured. Further, the light emission of the lighting panel is not interrupted by separately providing the wiring cord, and the illuminance of the room where the lighting device is installed can be increased efficiently.
 また、本発明の構成によれば、ラダーコード6が、複数の照明パネル10における長軸方向に沿った端部に在って、且つ、当該長軸方向に沿って所定の間隔を有して複数設けられている。そのため、ラダーコード6(配線)と照明パネル10の電極との間の距離を比較的短く構成することができる。ラダーコード(配線)と照明パネルの電極との間の距離が離れていると電圧降下現象が発生してしまう。しかし、本構成によれば、ラダーコード(配線)と照明パネル10の電極との間の距離を比較的短く構成することによって、そのような現象を回避することができる。したがって、発光斑の無い、良好な照明を実現することができる。 Moreover, according to the structure of this invention, the ladder code 6 exists in the edge part along the major axis direction in the some illumination panel 10, and has a predetermined space | interval along the said major axis direction. A plurality are provided. Therefore, the distance between the ladder cord 6 (wiring) and the electrode of the lighting panel 10 can be configured to be relatively short. If the distance between the ladder cord (wiring) and the electrode of the lighting panel is increased, a voltage drop phenomenon occurs. However, according to the present configuration, such a phenomenon can be avoided by configuring the distance between the ladder cord (wiring) and the electrode of the lighting panel 10 to be relatively short. Therefore, it is possible to realize good illumination without emission spots.
 また、上記の効果と共に、小型の有機EL素子を複数搭載した照明パネルを複数配置することによって、大面積の集積型照明装置が実現され、製造コストも低く抑えることができる。 In addition to the above effects, by arranging a plurality of lighting panels on which a plurality of small organic EL elements are mounted, a large-area integrated lighting device can be realized, and the manufacturing cost can be kept low.
 なお、本実施形態では、ラダーコード6が、二本一組の第1のコードと、この2本の第1のコードを橋渡しする第2のコードと、分岐配線5とを備えた構成について説明したが、本発明はこれに限定されるものではなく、当該第2のコードを設けず、分岐配線5が照明パネル10に電気的に接続されているとともに、照明パネル10に物理的にも接続されていて照明パネル10を支持するように構成されていてもよい。 In the present embodiment, a configuration in which the ladder cord 6 includes a pair of first cords, a second cord that bridges the two first cords, and the branch wiring 5 will be described. However, the present invention is not limited to this, the second cord is not provided, and the branch wiring 5 is electrically connected to the lighting panel 10 and is also physically connected to the lighting panel 10. It may be configured to support the lighting panel 10.
 (代替形態1)
 以上で説明した本実施形態では、照明パネル10(第一基板17および第二基板18)には空孔が一切設けられていない。しかしながら、必ずしもこれに限定されるわけではなく、照明パネル10(第一基板17および第二基板18)に複数の空孔が設けられており、当該空孔内を昇降コード3が通るように構成されていてもよい。図13は、この形態について示した図である。
(Alternative form 1)
In the present embodiment described above, no holes are provided in the lighting panel 10 (the first substrate 17 and the second substrate 18). However, the present invention is not necessarily limited to this, and the lighting panel 10 (the first substrate 17 and the second substrate 18) is provided with a plurality of holes, and the lifting / lowering cord 3 passes through the holes. May be. FIG. 13 is a diagram showing this form.
 この形態では、図13に示すように、照明パネル10(第一基板17および第二基板18)の長軸方向の両端付近に、空孔(ガイド部)16が設けられており、1本の昇降コード3が各照明パネル10の一方側の空孔16を通っており、別の1本の昇降コード3が各照明パネル10の他方側の空孔16を通っている。昇降コード3は空孔16内を通っているだけで、照明パネル10と昇降コード3とが互いを固定しているわけではない。しかしながら、それぞれの位置関係が定まるため、安定した巻き取りが可能となる。 In this embodiment, as shown in FIG. 13, holes (guide portions) 16 are provided in the vicinity of both ends in the long axis direction of the illumination panel 10 (the first substrate 17 and the second substrate 18). The lifting / lowering cord 3 passes through the hole 16 on one side of each lighting panel 10, and another one lifting / lowering cord 3 passes through the hole 16 on the other side of each lighting panel 10. The lifting / lowering cord 3 only passes through the hole 16, and the lighting panel 10 and the lifting / lowering cord 3 do not fix each other. However, since the respective positional relationships are determined, stable winding is possible.
 なお、この空孔16は、昇降コード3と照明パネル10との間を固定化せずに巻き取りを安定化する機構としての働きを具備するために設けたものであり、そのような働きをすれば空孔という形式に捕らわれない。他のガイド部としては、照明パネルの端部に設けた溝、切り込み、及び、照明パネル端部より出たフック等が挙げられる。 The air holes 16 are provided to serve as a mechanism for stabilizing the winding without fixing between the lifting / lowering cord 3 and the lighting panel 10. If you do, you will not be caught in the form of holes. Examples of the other guide portions include a groove provided at the end of the lighting panel, a notch, a hook protruding from the end of the lighting panel, and the like.
 ここで、空孔、溝、または切り込みであれば、その配設位置は、照明パネル10の端辺(縁)から内側に10mm以内の範囲内であることが好ましく、フックであれば、照明パネル10の端辺(縁)から外側に10mm以内の範囲内に設けられていることが好ましい。これにより、照明パネル10中において有機EL素子20の発光部分の面積を広く取ることが出来、また、必要な照度を稼ぐことが容易となる。 Here, if it is a hole, a groove, or a notch, the arrangement position is preferably within 10 mm inward from the edge (edge) of the lighting panel 10, and if it is a hook, the lighting panel It is preferable that it is provided within a range of 10 mm or less from the 10 end sides (edges). Thereby, the area of the light emission part of the organic EL element 20 can be taken widely in the illumination panel 10, and it becomes easy to earn required illumination intensity.
 また、空孔16が設けられている場合には、第一基板17と第二基板18とを接続する際に、この空孔16を位置決め部として用いて、第一基板17に設けた空孔16と、第二基板18に設けた空孔16とが一致するようにして第一基板17と第二基板18との位置を決めることができる。なお、溝、切り込み、フックなどが形成されている場合でも同様に上下基板の該当部が一致するよう配置して照明パネル10を形成することができる。 Further, when the holes 16 are provided, the holes 16 are provided in the first substrate 17 by using the holes 16 as positioning portions when the first substrate 17 and the second substrate 18 are connected. The positions of the first substrate 17 and the second substrate 18 can be determined so that 16 and the holes 16 provided in the second substrate 18 coincide. Even when grooves, cuts, hooks, or the like are formed, the lighting panel 10 can be formed by arranging the corresponding portions of the upper and lower substrates to coincide with each other.
 なお、図13では、照明パネル10の長軸方向の両端付近に設けた構成としたが、本発明はこれに限定されるものではなく、有機EL素子20の形成に支障がない位置に設ければ良い。従って、上記両端付近に加えて、例えば、照明パネル10の中央部、すなわち、2つの有機EL素子20と有機EL素子20との間にも設けても良く、あるいは、1本の昇降コード3のみを設ける構成の場合には、この中央部のみに空孔を設けて、これに当該昇降コード3を通しても良い。 In FIG. 13, the lighting panel 10 is provided in the vicinity of both ends in the long axis direction. It ’s fine. Accordingly, in addition to the vicinity of the both ends, for example, it may be provided in the center of the lighting panel 10, that is, between the two organic EL elements 20 and 20, or only one lifting cord 3 is provided. In the case of the configuration in which the lift cord 3 is provided, a hole may be provided only in the central portion, and the lifting cord 3 may be passed through the hole.
 (代替形態2)
 本実施形態に設けられた照明パネル10の第一基板17および第二基板18は、湾曲できる構成としているが、これに更に、第一基板17および第二基板18の湾曲率を適宜調整することが調整手段を設けた構成であっても良い。
(Alternative form 2)
Although the 1st board | substrate 17 and the 2nd board | substrate 18 of the illumination panel 10 provided in this embodiment are set as the structure which can be bent, in addition to this, the curvature rate of the 1st board | substrate 17 and the 2nd board | substrate 18 is adjusted suitably. However, a configuration provided with adjusting means may be used.
 図14は、調整手段を設けた態様を説明する図であり、図14の(a)は、照明パネル10を、その短辺側からみた図である。なお、本実施形態の構成に基づけば、図14の(a)に示す3つの照明パネル10のそれぞれの中心部分に昇降コード3が配設されているはずであるが、説明の便宜上、昇降コード3は図示を省略する。また、図14の(b)は、1つの照明パネルとその近傍の構成だけを抜粋して示したものであり、図14の(a)に破線で囲みを設けた箇所に相当する。 FIG. 14 is a diagram for explaining a mode in which adjustment means is provided, and FIG. 14A is a diagram of the illumination panel 10 as viewed from the short side. Note that, based on the configuration of the present embodiment, the lifting / lowering cord 3 should be disposed at the center of each of the three lighting panels 10 shown in FIG. 3 is not shown. FIG. 14 (b) shows only one illumination panel and the configuration in the vicinity thereof, and corresponds to a portion provided with a dashed line in FIG. 14 (a).
 本形態では、照明パネル10の片面側に、照明パネル10の長手方向に沿った中心軸部分に沿って調整手段30が配設されている。より具体的には、照明パネル10の片面と、照明パネル10をその短軸方向に横断するラダーコード6との間に配置されている。 In this embodiment, the adjusting means 30 is disposed on one side of the lighting panel 10 along the central axis portion along the longitudinal direction of the lighting panel 10. More specifically, it is arranged between one side of the lighting panel 10 and the ladder cord 6 that crosses the lighting panel 10 in the minor axis direction.
 調整手段30の、照明パネル10の上記短軸の方向に沿った長さは、照明パネル10の上記短軸の長さの10分の1~2分の1であれば、後述する仕組みによって照明パネル10を湾曲させることができるため好ましい。10分の1を下回ると充分にスラットを加圧することができず、2分の1を上回ると照明パネル10の中心部分のみを加圧することができないため照明パネル10を湾曲させることが困難になる虞がある。 If the length of the adjusting unit 30 along the short axis direction of the lighting panel 10 is one-tenth to one-half the length of the short axis of the lighting panel 10, illumination is performed by a mechanism described later. Since the panel 10 can be curved, it is preferable. If the ratio is less than one tenth, the slats cannot be sufficiently pressurized. If the ratio exceeds one half, only the central portion of the illumination panel 10 cannot be pressurized, so that it is difficult to curve the illumination panel 10. There is a fear.
 調整手段30は、短軸の方向に沿って照明パネル10を横断するラダーコード6に固定されていれば良い。しかしながら、これに限定されるものではなく、照明パネル10の片面に固定されていてもよく、ラダーコード6および照明パネル10の片面の両方に固定されていてもよい。 The adjusting means 30 may be fixed to the ladder cord 6 that crosses the illumination panel 10 along the direction of the short axis. However, the present invention is not limited to this, and may be fixed to one side of the lighting panel 10 or may be fixed to both the ladder cord 6 and one side of the lighting panel 10.
 以下、本実施形態の照明パネル10が、図14の(a)のように照明パネル10の表面を水平にしたときに、上方に向いて光が出射されるように構成されているものとして説明する。 Hereinafter, it is assumed that the illumination panel 10 of the present embodiment is configured to emit light upward when the surface of the illumination panel 10 is leveled as shown in FIG. To do.
 図14の(a)の状態の場合、ラダーコード6が撓んでおり、調整手段30は照明パネル10に対して押圧を加えていない。 14 (a), the ladder cord 6 is bent and the adjusting means 30 does not press the lighting panel 10.
 そこで、図14の(a)の状態から、照明パネル10の上記表面角度を変化させるためにラダーコード6を動かすと、例えば図14の(b)に示すように、照明パネル10の光出射面側が紙面右側に向き、紙面右側に向けて光を出射することができる。この傾斜状態において、調整手段30は、照明パネル10における光出射面側とは反対側(背面側と称する)に在って、近接するラダーコード6の張力を受けて、照明パネル10の背面側から照明パネル10を光出射面側に向けて加圧する。 Therefore, when the ladder cord 6 is moved in order to change the surface angle of the lighting panel 10 from the state of FIG. 14A, for example, as shown in FIG. Light can be emitted toward the right side of the drawing and toward the right side of the drawing. In this inclined state, the adjusting means 30 is on the side opposite to the light exit surface side (referred to as the back side) of the lighting panel 10 and receives the tension of the ladder code 6 that is close to the adjusting unit 30, and the back side of the lighting panel 10. The lighting panel 10 is pressurized toward the light exit surface side.
 調整手段30から押圧を受けた照明パネル10は、調整手段30に対向する領域、すなわち照明パネル10の上記中心軸部分のみが押圧方向に向けて突出し、図14の(b)に示すように湾曲した状態となる。これにより、この照明パネル10から出射される光は、図14の(a)に示すフラットな照明パネル10から出射される光に比べて、拡散光となる。 The lighting panel 10 that has been pressed by the adjusting means 30 has a region facing the adjusting means 30, that is, only the central axis portion of the lighting panel 10 protrudes in the pressing direction, and is curved as shown in FIG. It will be in the state. Thereby, the light emitted from the illumination panel 10 becomes diffused light compared to the light emitted from the flat illumination panel 10 shown in FIG.
 このように拡散光とすることで室内を広く照明することができる。 The diffused light can be used to illuminate the room widely.
 調整手段30の材料としては、照明パネル10を加圧できるものであれば特に有機・無機材料に限定されないが、好適にはプラスチック材料が好ましい。プラスチック材料としては公知の材料を使用でき、例えばポリエチレンやポリプロピレンなどが挙げられる。 The material of the adjusting means 30 is not particularly limited to organic and inorganic materials as long as the lighting panel 10 can be pressurized, but a plastic material is preferable. A known material can be used as the plastic material, and examples thereof include polyethylene and polypropylene.
 なお、後述する変形例において説明するボトムエミッション型のスラットを用いる場合には、照明パネル10における調整手段30側から光が出射されるので、その場合には調整手段30として光透過性を有する材料を用いる。また調整手段30の形状は、照明パネル10をその短軸方向に横断するラダーコード6に接着されていれば特に限定されない。 In the case of using a bottom emission type slat described in a modified example to be described later, since light is emitted from the adjustment unit 30 side in the lighting panel 10, in this case, a material having light transmittance as the adjustment unit 30. Is used. The shape of the adjusting means 30 is not particularly limited as long as it is adhered to the ladder cord 6 that traverses the lighting panel 10 in the minor axis direction.
 このように、調整手段30を備えることにより、可塑性を有する照明パネル10は、照明パネル10の回動に応じて、湾曲する。すなわち、照明パネル形状を短軸方向に沿って任意の曲率半径に可逆的に変化させることができる。照明パネルを曲率半径に可逆的に変化させることで、照明パネルに配設した有機EL素子から出射される光を拡散させたり、集光させたりすることができる。 Thus, by providing the adjusting means 30, the lighting panel 10 having plasticity is curved according to the rotation of the lighting panel 10. That is, the illumination panel shape can be reversibly changed to an arbitrary curvature radius along the minor axis direction. By reversibly changing the illumination panel to the radius of curvature, the light emitted from the organic EL element disposed on the illumination panel can be diffused or condensed.
 上述のように調整手段30を設けることによって、有機EL照明装置1の光出射面側を凸状に湾曲させた場合には、有機EL照明装置1の光を容易に発散させることができ、当該有機EL照明装置1を設置した部屋、または空間を広範囲に照らすことが可能となり、一方、有機EL照明装置1の光出射面側を凹状に湾曲させた場合には、有機EL照明装置1の光を容易に集光させることができ、当該有機EL照明装置1の設置位置からほど近い、点または面等を集中的に照らすことが可能となる。 By providing the adjusting means 30 as described above, when the light emitting surface side of the organic EL lighting device 1 is curved in a convex shape, the light of the organic EL lighting device 1 can be easily diffused, The room or space in which the organic EL lighting device 1 is installed can be illuminated in a wide range. On the other hand, when the light emission surface side of the organic EL lighting device 1 is curved in a concave shape, the light of the organic EL lighting device 1 Can be easily condensed, and it is possible to intensively illuminate a point or a surface that is close to the installation position of the organic EL lighting device 1.
 更に、有機EL照明装置1自体のデザインの幅が広がる。 Furthermore, the range of the design of the organic EL lighting device 1 itself is expanded.
 (代替形態3)
 本実施形態は有機EL照明装置について説明したが、例えば、無機EL照明装置、プラズマ照明、または電界放出型ランプ(FEL;Field Emission Lamp)等の照明装置であっても良い。また、本実施形態では、有機EL照明装置1を照明装置として用いる場合を示したが、例えば、有機薄膜太陽電池または有機トランジスタ(有機FET)等として用いても良い。これらの場合でも、各パネルに電力を供給する配線機能具備し、また、余計な配線を増やさずに電力供給元の配線を多く短い間隔で敷設したことにより、電圧降下現象を防ぐことが出来、均一発光照明を提供出来る。また、当該配線コードが照明パネルの発する光を遮断することなく、照明装置を設置した部屋の照度を効率良く高めることも出来る。
(Alternative form 3)
Although this embodiment demonstrated the organic electroluminescent illuminating device, illuminating devices, such as an inorganic electroluminescent illuminating device, plasma illumination, or a field emission lamp (FEL; Field Emission Lamp), may be sufficient, for example. Moreover, although the case where the organic EL lighting device 1 is used as a lighting device has been described in the present embodiment, for example, it may be used as an organic thin film solar cell, an organic transistor (organic FET), or the like. Even in these cases, the wiring function for supplying power to each panel is provided, and the voltage drop phenomenon can be prevented by laying many power supply source wirings at short intervals without increasing extra wiring. Uniform light emission lighting can be provided. In addition, the illuminance of the room where the lighting device is installed can be efficiently increased without blocking the light emitted from the lighting panel.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope indicated in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
 以下、実施例を挙げて本発明をさらに詳しく説明するが、本発明はその要旨を超えない限り、これら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.
 〔実施例1〕
 長さ450mm、および幅50mmの帯状のRGB積層型白色有機EL素子を採用した有機EL照明装置を作製した。
[Example 1]
An organic EL lighting device employing a strip-shaped RGB laminated white organic EL element having a length of 450 mm and a width of 50 mm was produced.
 具体的には、本実施例1では、図4に示した第一基板17および第二基板18として、縦1000mm、横70mm、および厚さ0.7mmのガラス基板を用いた。第一基板17の表面には、水圧6×10-4Paの下で厚さ100nmの導電配線の形成を行った。当該第一基板17上に2個の有機EL素子20を配置し、第一基板17の導電配線9と有機EL素子20とを接続させた。その後、第一基板17と第二基板18とを樹脂19を介して貼りあわせ、照明パネル10を作製した。 Specifically, in Example 1, glass substrates having a length of 1000 mm, a width of 70 mm, and a thickness of 0.7 mm were used as the first substrate 17 and the second substrate 18 shown in FIG. Conductive wiring having a thickness of 100 nm was formed on the surface of the first substrate 17 under a water pressure of 6 × 10 −4 Pa. Two organic EL elements 20 were arranged on the first substrate 17, and the conductive wiring 9 of the first substrate 17 and the organic EL element 20 were connected. Then, the 1st board | substrate 17 and the 2nd board | substrate 18 were bonded together through resin 19, and the illumination panel 10 was produced.
 作製した25個の照明パネルを、ヘッドボックスとボトムレールとを繋ぐラダーコード上に載せ、各照明パネルの短辺側付近に昇降コードを配置して、その後ラダーコードと照明パネルを接続した。具体的には、照明パネルの導電配線と、ラダーコードに接続された分岐配線とを、無鉛ハンダによって接続した。このようにして有機EL照明装置を得た。照明パネルを傾けて垂直になる(有機EL照明装置が全開になる)ようにすると、上下に並ぶ2つの照明パネルは10mm重なる。そのため、得られた有機EL照明装置の高さは、1510mm(幅60mm×25枚+端の重ならない部分10mm)となる。ここで、ヘッドボックス(幅40mm)およびボトムレール(幅10mm)を考慮すると、有機EL照明装置の高さは、1550mmとなる。 25 The produced lighting panels were placed on a ladder cord connecting the head box and the bottom rail, and a lifting cord was arranged near the short side of each lighting panel, and then the ladder cord and the lighting panel were connected. Specifically, the conductive wiring of the lighting panel and the branch wiring connected to the ladder cord were connected by lead-free solder. In this way, an organic EL lighting device was obtained. When the lighting panel is tilted so as to be vertical (the organic EL lighting device is fully opened), the two lighting panels arranged vertically overlap each other by 10 mm. Therefore, the height of the obtained organic EL lighting device is 1510 mm (width 60 mm × 25 sheets + endless portion 10 mm). Here, when considering the head box (width 40 mm) and the bottom rail (width 10 mm), the height of the organic EL lighting device is 1550 mm.
 得られた有機EL照明装置の色度を株式会社トプコン製の色彩輝度計BM-5Aを用いて測定したところ、色度は(0.33,0.33)であった。また、色温度を大塚電子株式会社製の分光放射輝度計MCPD-7000によって測定したところ、色温度は5600Kの昼白色発光であった。そして、上記輝度計によって測定した発光輝度は、17V時において50000cd/mであった。また、電極近傍と電極から最も離れた箇所を含めた全体の輝度比は、ピーク輝度比で3%以内であり、良好な発光均質性が得られた。 When the chromaticity of the obtained organic EL lighting device was measured using a color luminance meter BM-5A manufactured by Topcon Corporation, the chromaticity was (0.33, 0.33). Further, when the color temperature was measured with a spectral radiance meter MCPD-7000 manufactured by Otsuka Electronics Co., Ltd., the color temperature was 5600K daylight white light emission. The emission luminance measured by the luminance meter was 50000 cd / m 2 at 17V. Further, the entire luminance ratio including the vicinity of the electrode and the portion farthest from the electrode was within 3% in terms of the peak luminance ratio, and good light emission uniformity was obtained.
 〔実施例2〕
 図13に示した空孔16を照明パネル10の両短辺の端より5mmのところに一つずつ穿ち、その空孔16にそれぞれ昇降コード3を通したことを除いては、実施例1と全く同じ製造方法で有機EL照明装置を作製した。
[Example 2]
Except that the holes 16 shown in FIG. 13 are bored one by one at 5 mm from the ends of both short sides of the lighting panel 10 and the lifting / lowering cords 3 are passed through the holes 16, respectively. An organic EL lighting device was produced by exactly the same manufacturing method.
 これにより、照明パネルの巻き取りにおいて巻き取りコードとパネルの接触が確保され、安定した巻き取りが可能となった。 This ensures the contact between the winding cord and the panel in winding the lighting panel, and enables stable winding.
 得られた有機EL照明装置を10000回巻き上げ、巻き下ろす試験を行ったが、有機EL照明パネルは昇降コードに絡み付くことなく、安定した巻き上げ、巻き下ろしが達成された。 The obtained organic EL lighting device was wound up 10,000 times and unwound, and the organic EL lighting panel was stably wound up and down without being entangled with the lifting cord.
 〔実施例3〕
 個々の有機EL素子の大きさを小さくして照明パネル内に密に配したこと、及び、ラダーコードだけでなく昇降コードも配線機能を具備したことを除いては、実施例1と全く同じ製造方法で有機EL照明装置を作製した。
Example 3
Exactly the same production as in Example 1, except that the size of each organic EL element was reduced and densely arranged in the lighting panel, and that the ladder cord as well as the lifting / lowering cord had a wiring function. An organic EL lighting device was produced by this method.
 得られた有機EL照明装置の色度を測定したところ、電極近傍や、電極から最も離れた箇所など発光位置に因らず、色度は(0.33,0.33)で、色温度は5600Kの昼白色発光であった。また、発光輝度も発光位置に因らず、17V時においてほぼ50000cd/mであり、全体のピーク輝度比は1%であり、更に良好な発光の均質性が得られた。 When the chromaticity of the obtained organic EL lighting device was measured, the chromaticity was (0.33, 0.33) regardless of the light emitting position such as the vicinity of the electrode or the position farthest from the electrode, and the color temperature was It was daylight white light emission of 5600K. Also, the light emission luminance was almost 50000 cd / m 2 at 17 V regardless of the light emission position, the overall peak luminance ratio was 1%, and even better light emission homogeneity was obtained.
 〔実施例4〕
 1つの有機EL素子を3色(赤色,緑色,青色)に塗り分けた有機EL素子を採用した有機EL照明装置を作製した。それ以外の構成は、実施例1と同様である。作製した有機EL照明装置の赤色(R)、緑色(G)、および青色(B)のそれぞれの発光色の点灯率が30%、22%および60%となるようにそれぞれの導電配線に電圧を印加した。
Example 4
An organic EL lighting device that employs organic EL elements in which one organic EL element is painted in three colors (red, green, and blue) was produced. Other configurations are the same as those in the first embodiment. Voltage is applied to each conductive wiring so that the lighting rate of each of the red (R), green (G), and blue (B) emission colors of the manufactured organic EL lighting device is 30%, 22%, and 60%. Applied.
 実施例1と同様に、得られた有機EL照明装置の色度および色温度を測定した。色度は(0.31,0.33)であって、色温度は6800Kの昼光色発光であった。 In the same manner as in Example 1, the chromaticity and color temperature of the obtained organic EL lighting device were measured. The chromaticity was (0.31, 0.33), and the color temperature was 6800K daylight emission.
 〔実施例5〕
 実施例3と同様に、1つの有機EL素子を3色に塗り分けた有機EL素子を採用した有機EL照明装置を作製した。ただし、作製した有機EL照明装置の赤色(R)、緑色(G)、および青色(B)のそれぞれの発光色の点灯率が46%、28%および50%となるようにそれぞれの導電配線に電圧を印加した。それ以外の構成は、実施例1と同様である。
Example 5
In the same manner as in Example 3, an organic EL lighting device using organic EL elements in which one organic EL element was applied in three colors was produced. However, in each of the conductive wirings, the lighting rate of each of the red (R), green (G), and blue (B) emission colors of the manufactured organic EL lighting device is 46%, 28%, and 50%. A voltage was applied. Other configurations are the same as those in the first embodiment.
 実施例1と同様に、得られた有機EL照明装置の色度および色温度を測定した。色度は(0.40,0.40)であって、色温度は3800Kの電球色発光であった。 In the same manner as in Example 1, the chromaticity and color temperature of the obtained organic EL lighting device were measured. The chromaticity was (0.40, 0.40), and the color temperature was 3800K bulb light emission.
 〔実施例6〕
 赤色発光有機EL素子、緑色発光有機EL素子、および青色発光有機EL素子の3種類の有機EL素子を採用した有機EL照明装置を作製した。作製した有機EL照明装置の赤色発光有機EL素子、緑色発光有機EL素子、および青色発光有機EL素子のそれぞれの点灯率が32%、20%および58%となるようにそれぞれの導電配線に電圧を印加した。それ以外の構成は、実施例1と同様である。
Example 6
An organic EL lighting device employing three types of organic EL elements, a red light emitting organic EL element, a green light emitting organic EL element, and a blue light emitting organic EL element, was produced. Voltage is applied to each conductive wiring so that the lighting rate of each of the red light emitting organic EL element, the green light emitting organic EL element, and the blue light emitting organic EL element of the manufactured organic EL lighting device is 32%, 20%, and 58%. Applied. Other configurations are the same as those in the first embodiment.
 実施例1と同様に、得られた有機EL照明装置の色度および色温度を測定した。色度は(0.31,0.33)であって、色温度は6800Kの昼光色発光であった。 In the same manner as in Example 1, the chromaticity and color temperature of the obtained organic EL lighting device were measured. The chromaticity was (0.31, 0.33), and the color temperature was 6800K daylight emission.
 〔実施例7〕
 実施例3と同様に、1つの有機EL素子を3色に塗り分けた有機EL素子を採用した有機EL照明装置を作製した。ただし、作製した有機EL照明装置の赤色(R)、緑色(G)、および青色(B)のそれぞれの発光色の点灯率を0~100%の任意の値に経時的に変化させた。その結果、有機EL照明装置全体として、発光強度および発光色共にグラデーション変化する発光が得られた。
Example 7
In the same manner as in Example 3, an organic EL lighting device using organic EL elements in which one organic EL element was applied in three colors was produced. However, the lighting rate of each of the emission colors of red (R), green (G), and blue (B) of the produced organic EL lighting device was changed over time to an arbitrary value of 0 to 100%. As a result, the organic EL lighting device as a whole was able to emit light whose intensity and color were changed in gradation.
 〔実施例8〕
 実施例3と同様に、1つの有機EL素子を3色に塗り分けた有機EL素子を採用した有機EL照明装置を作製した。ただし、遠隔操作装置(リモートコントローラ)によって、作製した有機EL照明装置の赤色(R)、緑色(G)、および青色(B)のそれぞれの発光色の点灯率を制御できるように設定した。そして、有機EL照明装置の点灯中に、各発光色の点灯率を上記遠隔操作装置で0~100%の任意の値に設定した。その結果、有機EL照明装置全体として、発光強度および発光色共に所望の値に設定することができた。
Example 8
In the same manner as in Example 3, an organic EL lighting device using organic EL elements in which one organic EL element was applied in three colors was produced. However, it set so that the lighting rate of each luminescent color of red (R), green (G), and blue (B) of the produced organic electroluminescent illuminating device could be controlled with a remote control device (remote controller). Then, during the lighting of the organic EL lighting device, the lighting rate of each emission color was set to an arbitrary value of 0 to 100% with the remote control device. As a result, it was possible to set the light emission intensity and the light emission color to desired values for the entire organic EL lighting device.
 〔比較例〕
 ラダーコードに配線機能を具備させず、かつ、照明パネルの短辺側一辺にのみ配線を敷設したことを除いては、実施例1と全く同じ製造方法で作製した有機EL照明装置を比較構成とした。
[Comparative Example]
The organic EL lighting device manufactured by the same manufacturing method as in Example 1 is compared with the comparative configuration except that the ladder cord is not provided with a wiring function and wiring is laid only on one side of the short side of the lighting panel. did.
 得られた比較構成の有機EL照明装置の色度を測定したところ、電極近傍や、電極から最も離れた箇所など発光位置に因らず、色度は(0.33,0.33)で、色温度は5600Kの昼白色発光であった。しかし、発光輝度は、電極近傍において17V時において49000cd/mであったものの、電極から離れるほど暗くなり、全体のピーク輝度比は15%で、且つ、発光斑が見られた。 When the chromaticity of the obtained organic EL lighting device of the comparative configuration was measured, the chromaticity was (0.33, 0.33) regardless of the light emitting position such as the vicinity of the electrode or the position farthest from the electrode. The color temperature was 5600K daylight white light emission. However, although the emission luminance was 49000 cd / m 2 at 17 V in the vicinity of the electrode, it became darker as the distance from the electrode was increased, the overall peak luminance ratio was 15%, and emission spots were observed.
 以上の各実施例で示したように、上記有機EL照明装置は、昇降コードを照明パネル中央よりパネル外周付近に移動し、且つ、ラダーコードに配線機能を具備させたことによって、余計な配線を増やさずに電力供給元の配線を多く短い間隔で敷設することが出来、電圧降下現象を防ぐことが出来た。また、当該配線コードが照明パネルの発する光を遮断することなく、照明装置を設置した部屋の照度を効率良く高めることが出来た。 As shown in each of the above embodiments, the organic EL lighting device moves the lifting / lowering cord from the center of the lighting panel to the vicinity of the panel outer periphery, and the ladder cord is provided with a wiring function, so that extra wiring is provided. It was possible to lay many power supply wirings at short intervals without increasing the voltage, preventing the voltage drop phenomenon. Moreover, the illumination intensity of the room in which the lighting device was installed could be efficiently increased without blocking the light emitted from the lighting panel.
 また、実施例2によれば、通常は照明パネルの中央に在る昇降コードを通す空孔を端のみに設けたことにより、発光面積を損なうことなく、より安定な巻き上げ、巻き下ろしが達成された。実施例3によれば、ラダーコードだけでなく昇降コードにも配線機能を具備し、かつ、有機EL素子の発光面積を微小化することにより、発光斑を更に押さえることができた。実施例4~6によれば、有機EL照明装置には、1つの有機EL素子をRGBに塗り分けたものを用いても、RGBの3種類の有機EL素子を用いても良い。特に、各発光色の点灯率を任意の値に設定することによって、所望の発光強度および発光色を実現することができる。 Further, according to the second embodiment, by providing a hole through the lifting / lowering cord that is normally located at the center of the lighting panel only at the end, more stable winding and unwinding can be achieved without impairing the light emitting area. It was. According to Example 3, not only the ladder code but also the lifting / lowering code has a wiring function, and the emission area of the organic EL element can be reduced to further suppress the emission spots. According to Examples 4 to 6, the organic EL lighting device may use one organic EL element that is separately applied to RGB, or may use three types of RGB organic EL elements. In particular, by setting the lighting rate of each emission color to an arbitrary value, a desired emission intensity and emission color can be realized.
 実施例7によれば、有機EL照明装置の各発光色の点灯率を任意の値に経時的に変化させることによって、様々な発光強度および発光色が得られる。さらに、実施例8のように、各発光色の点灯率を制御することができれば、有機EL照明装置の各発光色の点灯率を任意の値に随時選択可能な構成にすることができる。すなわち、有機EL照明装置に調光性機能および調色性機能を持たせることができる。 According to Example 7, various emission intensity and emission colors can be obtained by changing the lighting rate of each emission color of the organic EL lighting device to an arbitrary value over time. Furthermore, if the lighting rate of each luminescent color can be controlled like Example 8, it can be set as the structure which can select the lighting rate of each luminescent color of an organic electroluminescent illuminating device to arbitrary values at any time. That is, the organic EL lighting device can have a dimming function and a toning function.
 なお、本発明は上述した各実施形態に限定されるものではない。当業者は、請求項に示した範囲内において、本発明をいろいろと変更できる。すなわち、請求項に示した範囲内において、適宜変更された技術的手段を組み合わせれば、新たな実施形態が得られる。すなわち、発明の詳細な説明の項においてなされた具体的な実施形態は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。 In addition, this invention is not limited to each embodiment mentioned above. Those skilled in the art can make various modifications to the present invention within the scope of the claims. That is, a new embodiment can be obtained by combining appropriately changed technical means within the scope of the claims. In other words, the specific embodiments made in the detailed description section of the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples and are interpreted narrowly. It should be understood that the invention can be practiced with various modifications within the spirit of the invention and within the scope of the following claims.
 (本発明の総括)
 本発明に係る照明装置は、以上のように、
 電極が設けられた発光素子であって、当該電極に電圧もしくは電流が供給されることによって発光する発光素子を有し、且つ、帯状をなしている複数の照明パネルと、
 上記複数の照明パネルを保持し、上記複数の照明パネル同士をその長軸方向に揃えて平行に配列させた状態において、当該配列方向に沿ってのびている巻き取りコードであって、当該配列方向に沿ってのびている照明パネル群の配列長を調整することができるように構成された巻き取りコードと、
 上記複数の照明パネルを支えつつ、当該照明パネルの表面角度を可変させる支持コードと、
を備えた照明装置であって、
 上記支持コードは導電性を有し、
 上記発光素子に設けられた上記電極は、上記支持コードの導電部分と電気的に接続していることを特徴としている。
(Summary of the present invention)
The lighting device according to the present invention is as described above.
A plurality of lighting panels each having a light emitting element provided with an electrode and having a light emitting element that emits light when voltage or current is supplied to the electrode;
In the state where the plurality of illumination panels are held and the plurality of illumination panels are aligned in parallel in the major axis direction, the winding cord extends along the arrangement direction, and is arranged in the arrangement direction. A winding cord configured to be able to adjust the arrangement length of the lighting panel group extending along;
A support cord that varies the surface angle of the lighting panel while supporting the plurality of lighting panels;
A lighting device comprising:
The support cord has conductivity,
The electrode provided on the light emitting element is electrically connected to a conductive portion of the support cord.
 上記の構成によれば、複数の照明パネルは巻き取りコードによって保持されている。また、当該巻き取りコードは、のびている長さを変えることができる。巻き取りコードの長さが可変することによって、配列している照明パネルの長さを調整することができる。 According to the above configuration, the plurality of lighting panels are held by the winding cord. Further, the length of the winding cord can be changed. By changing the length of the winding cord, the length of the arranged lighting panels can be adjusted.
 複数の照明パネルは、支持コードによって支えられている。支持コードはロッドのような器具によって動かされることによって、或る方向に対する照明パネルの表面角度を可変させることができる。この支持コードは一般的なブラインド装置において用いられるラダーコードに相当する。 The multiple lighting panels are supported by a support cord. The support cord can be moved by an instrument such as a rod to vary the surface angle of the lighting panel relative to a certain direction. This support cord corresponds to a ladder cord used in a general blind device.
 すなわち、本発明に係る照明装置では、当該器具によって巻き取りコード、及び、支持コードを移動させることによって、複数の照明パネルの配置位置、及び、傾きを調整することができる。マルチロッド式の照明装置では、当該器具として、例えば、ロッド等を適用することができる。 That is, in the lighting device according to the present invention, the arrangement position and the inclination of the plurality of lighting panels can be adjusted by moving the winding cord and the support cord with the instrument. In the multi-rod lighting device, for example, a rod or the like can be applied as the instrument.
 特に本発明において注目すべきは、支持コードが発光素子の電極に対して電圧もしくは電流を供給することができるように構成されている点にある。すなわち、支持コードと発光素子の電極とが、互いに電気的に接続されている。 Particularly noteworthy in the present invention is that the support cord is configured to supply voltage or current to the electrode of the light emitting element. That is, the support cord and the electrode of the light emitting element are electrically connected to each other.
 従来では、各照明パネルを支える支持コードと、各照明パネルに電圧を印加する配線コードとが別々に、また、照明パネルの短辺側外側に設けられていた。パネル末端に一か所しか配線として設けていないことにより、電圧降下現象が生じ、発光斑が出来てしまう恐れがある。しかしながら、本発明の上記構成によれば、照明パネルを支え、且つ、傾きを変える支持コードに、各照明パネルに電力を供給する配線機能を付加させている。 Conventionally, a support cord that supports each lighting panel and a wiring cord that applies a voltage to each lighting panel are provided separately and outside the short side of the lighting panel. Since only one place is provided at the end of the panel as a wiring, a voltage drop phenomenon may occur and light emission spots may be generated. However, according to the above-described configuration of the present invention, a wiring function for supporting the lighting panel and supplying power to each lighting panel is added to the support cord that changes the inclination.
 これによって、支持コードと、各照明パネルに電圧を印加する配線コードとを別々に構成する従来のものに比べて、構成を簡略化することができる。また、配線コードを別途設けることによる照明パネルの発光の遮断がなく、照明装置を設置した部屋の照度を効率良く高めることが出来る。 This makes it possible to simplify the configuration as compared with the conventional configuration in which the support cord and the wiring cord for applying a voltage to each lighting panel are separately configured. Further, the light emission of the lighting panel is not interrupted by separately providing the wiring cord, and the illuminance of the room where the lighting device is installed can be increased efficiently.
 また、上記の効果と共に、小型の発光素子(有機EL素子)を複数搭載した照明パネルを複数配置することによって、大面積の集積型照明装置が実現され、製造コストも低く抑えることができる。 In addition to the above effects, by arranging a plurality of lighting panels on which a plurality of small light emitting elements (organic EL elements) are mounted, a large-area integrated lighting device can be realized and the manufacturing cost can be kept low.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記巻き取りコードに繋がっていて、当該巻き取りコードを動かして、上記配列している照明パネルの長さを調整する器具を備え、
 上記器具が、上記巻き取りコードを巻き取る、または繰り出すことによって、上記複数の照明パネルを重ねてまとめるようにして移動させ、且つ、まとめた状態から互いに離すようにして移動させることができる。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
It is connected to the winding cord, and includes a tool for adjusting the length of the arranged lighting panels by moving the winding cord,
By winding or unwinding the winding cord, the instrument can move the plurality of lighting panels so as to overlap each other, and can move the lighting panels away from each other.
 上記の構成によれば、照明装置を使用していない時には、複数の照明パネルを重ねてまとめることができる。 According to the above configuration, when a lighting device is not used, a plurality of lighting panels can be stacked and gathered.
 本発明のような、いわゆるブラインド型照明装置は、通常のウィンドウトリートメントでの遮光インテリアのブラインドとしての機能も兼ね備えている。そのため、上記の構成を採用することにより、当該ブラインド型照明装置を使用していないときには巻き上げて折りたたむことができる。 The so-called blind type lighting device as in the present invention also has a function as a blind for a light-shielding interior in a normal window treatment. Therefore, by adopting the above configuration, when the blind illumination device is not used, it can be rolled up and folded.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記支持コードに繋がっていて、当該支持コードを動かして、上記配列している照明パネルの傾きを調整する器具を有し、
 上記器具が、上記支持コードを巻き取る、または繰り出すことによって、上記複数の照明パネルをまとめて傾けることができ、且つ、傾いた状態から水平や垂直方向に戻すことができることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
It is connected to the support cord, and has an instrument for moving the support cord to adjust the inclination of the arranged lighting panels,
It is preferable that the plurality of lighting panels can be tilted together by the device taking up or feeding out the support cord, and can be returned to the horizontal or vertical direction from the tilted state.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記支持コードは、上記配列方向に沿ってのびており、照明パネルにおける上記長軸方向に沿った端辺において所定の間隔を有して複数設けられていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
It is preferable that a plurality of the support cords are provided along the arrangement direction, and a plurality of the support cords are provided at a predetermined interval on an end side of the illumination panel along the long axis direction.
 図15に示した特許文献1のブラインド型照明装置は、配線106がスラット102の短辺側近傍に設けられている。図15のように配線106がスラット102末端に一か所しか設けていないので、配線106とスラット102内の導電部材(電極)との間の距離が長くなり電圧降下現象が生じてしまう。このような電圧降下現象は、発光斑を生じる原因となる。しかしながら、本発明の上記構成によれば、支持コードが、複数の照明パネルにおける長軸方向に沿った端部に在って、且つ、当該長軸方向に沿って所定の間隔を有して複数設けられている。そのため、支持コード(配線)と照明パネルの電極との間の距離を比較的短く構成することができるため、従来のような電圧降下現象の発生を回避することができる。したがって、発光斑の無い、良好な照明を実現することができる。 In the blind illumination device of Patent Document 1 shown in FIG. 15, the wiring 106 is provided in the vicinity of the short side of the slat 102. As shown in FIG. 15, since the wiring 106 is provided only at one end of the slat 102, the distance between the wiring 106 and the conductive member (electrode) in the slat 102 becomes long and a voltage drop phenomenon occurs. Such a voltage drop phenomenon causes light emission spots. However, according to the above-described configuration of the present invention, the support cords are present at the end portions along the long axis direction of the plurality of lighting panels, and a plurality of the support cords have a predetermined interval along the long axis direction. Is provided. Therefore, since the distance between the support cord (wiring) and the electrode of the lighting panel can be configured to be relatively short, the occurrence of a voltage drop phenomenon as in the conventional case can be avoided. Therefore, it is possible to realize good illumination without emission spots.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記支持コードは、上記発光素子の電極と接続する分岐配線を有しており、
 上記支持コードと上記分岐配線との接点は固定されていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The support cord has a branch wiring connected to the electrode of the light emitting element,
The contact point between the support cord and the branch wiring is preferably fixed.
 上記の構成によれば、上記支持コードと上記分岐配線との接点が固定されていることによって、支持コードから各照明パネルへの電力供給が安定化される。 According to the above configuration, the power supply from the support cord to each lighting panel is stabilized by fixing the contact point between the support cord and the branch wiring.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記巻き取りコードが、帯状の上記複数の照明パネルの長手方向の端部側に配設されていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
It is preferable that the winding cord is disposed on the end side in the longitudinal direction of the plurality of strip-shaped lighting panels.
 上記の構成によれば、例えば図15に示した従来構成では巻き取り紐109がスラット102の中央部に設けられた穴を貫通して配設されているのに対して、そのような穴を設ける必要が無くなる。これにより、構造上発光部分の面積を広く取ることができ、また、必要な照度を稼ぐことが容易となる。 According to the above configuration, for example, in the conventional configuration shown in FIG. 15, the winding string 109 is disposed through the hole provided in the central portion of the slat 102, whereas such a hole is formed. There is no need to provide it. Thereby, the area of the light emitting portion can be increased in terms of structure, and necessary illuminance can be easily obtained.
 更に、パネル中央に穴を設ける必要が無いため、発光素子製造プロセス(パネル製造プロセス)が簡略化できる。 Furthermore, since there is no need to provide a hole in the center of the panel, the light emitting element manufacturing process (panel manufacturing process) can be simplified.
 また、本発明に係る照明装置は、上記の構成に加えて、
 各上記照明パネルには、上記支持コードをガイドする支持コード用のガイド部、および、上記巻き取りコードをガイドする巻き取りコード用のガイド部のうちの何れか一方のガイド部が設けられていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
Each of the lighting panels is provided with one of a guide portion for a support cord that guides the support cord and a guide portion for a take-up cord that guides the take-up cord. It is preferable.
 上記の構成によれば、各照明パネルに形成されたガイド部を用いて、各照明パネルの所望の位置にコードを接続することできる。 According to the above configuration, the cord can be connected to a desired position of each lighting panel using the guide portion formed on each lighting panel.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記ガイド部は、各上記照明パネルにおける上記発光素子の形成領域の外に設けられていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
It is preferable that the guide portion is provided outside a region where the light emitting element is formed in each of the lighting panels.
 上記の構成によれば、ガイド部が上記発光素子の形成領域の外に設けられているため、上記発光素子の製造プロセスを妨げることがなく、且つ、上記発光が形成された位置にコードが配されないため上記発光素子から発する光を妨害することがない。 According to the above configuration, since the guide portion is provided outside the region where the light emitting element is formed, the manufacturing process of the light emitting element is not hindered, and the cord is arranged at the position where the light emission is formed. Therefore, the light emitted from the light emitting element is not disturbed.
 具体的には、上記ガイド部は、上記照明パネルの縁部から内側10mm以内または外側10mm以内に設けられた空孔、溝、切り込み、または、フックであることが好ましい。 Specifically, the guide part is preferably a hole, a groove, a cut, or a hook provided within 10 mm inside or 10 mm outside from the edge of the lighting panel.
 上記の構成によれば、各照明パネルに形成された空孔、溝、切り込み、または、フックにコードを通して、当該コードと各照明パネルとを接続することできる。 According to the above configuration, the cord and each lighting panel can be connected through a hole, a groove, a cut, or a hook formed in each lighting panel.
 また、上記の構成によれば、ガイド部が照明パネルの中央部分を除いた箇所に形成されるので、当該中央部分において発光部分を大きく設けることができる、すなわち、当該中央部分にガイド部が設けられた場合、その分、発光部分の領域は狭くなる。そのため、輝度および照度を高めることができる。 In addition, according to the above configuration, since the guide portion is formed at a location excluding the central portion of the lighting panel, a large light emitting portion can be provided in the central portion, that is, the guide portion is provided in the central portion. In this case, the area of the light emitting portion is narrowed accordingly. Therefore, brightness and illuminance can be increased.
 また、上記ガイド部が巻き取りコード用である場合、当該ガイド部を照明パネルの端部から10mm以内に設けることによって、照明パネルの巻き上げ時に巻き取りコードとパネルの接触が確保され、安定した巻き上げが可能となる。 Further, when the guide portion is for a winding cord, the guide portion is provided within 10 mm from the end of the lighting panel, so that the winding cord and the panel are in contact with each other when the lighting panel is rolled up, and the winding is stably performed. Is possible.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記発光素子は、可撓性の基板を備えていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The light emitting element preferably includes a flexible substrate.
 上記の構成によれば、基板が可撓性を有することから、ロールツウロール(roll to roll)製法を用いて有機EL素子を上記発光素子として作製することができる。これによって、有機EL素子を搭載する場合であっても、装置導入の初期投資、およびランニングコスト等を低減することが可能である。 According to the above configuration, since the substrate has flexibility, an organic EL element can be manufactured as the light-emitting element by using a roll-to-roll manufacturing method. Thereby, even when an organic EL element is mounted, it is possible to reduce the initial investment for introducing the apparatus, the running cost, and the like.
 また、本発明に係る照明装置は、上記の構成に加えて、
 各上記照明パネルは、短軸方向に沿って湾曲していることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
Each of the lighting panels is preferably curved along the minor axis direction.
 上記の構成によれば、発光素子が発した光を発散光(拡散光)としたり、集光させることができる照明装置を実現することができる。 According to the above configuration, it is possible to realize an illuminating device capable of making light emitted from the light emitting element into divergent light (diffused light) or condensing it.
 また、照明パネルが湾曲している照明装置が実現されるので、本発明に係る照明装置のデザインの幅が広がる。 Also, since the lighting device having a curved lighting panel is realized, the range of the lighting device design according to the present invention is widened.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記照明パネルは、上記発光素子の光出射面側を凸状にして湾曲していることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The lighting panel is preferably curved with the light emitting surface side of the light emitting element convex.
 上記の構成によれば、照明装置の光を容易に発散させることができ、当該照明装置を設置した部屋、または空間を広範囲に照らすことが可能となる。 According to the above configuration, the light of the lighting device can be easily diffused, and the room or space where the lighting device is installed can be illuminated over a wide area.
 しかしながら上記の構成に代えて、本発明に係る照明装置は、
 上記照明パネルは、上記発光素子の光出射面側を凹状にして湾曲していてもよい。
However, instead of the above configuration, the illumination device according to the present invention is
The illumination panel may be curved with the light emitting surface side of the light emitting element concave.
 上記の構成によれば、照明装置の光を容易に集光させることができ、当該照明装置の設置位置からほど近い、点または面等を集中的に照らすことが可能となる。 According to the above configuration, it is possible to easily collect the light of the lighting device, and it is possible to intensively illuminate a point or a surface that is close to the installation position of the lighting device.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記照明パネルは短軸方向に沿って湾曲可能であり、当該照明パネルの湾曲率を調整する調整手段をさらに備えていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
It is preferable that the lighting panel is bendable along the minor axis direction, and further includes adjusting means for adjusting the curvature rate of the lighting panel.
 上記の構成によれば、照明パネルの湾曲率を適宜調整することができるため、照明パネルの湾曲率を、所望の値に設定することができる。従って、発光素子が発した光の出射面側を凸状に湾曲させたときには、容易に出射光を発散させ、集積型照明装置を設置した部屋、または空間を広範囲に照らすことが可能となる。また、発光素子が発した光の出射面側を凹状に湾曲させたときには、容易に出射光を集光させることができ、集積型照明装置の設置位置からほど近い、点または面等を集中的に照らすことが可能となる。 According to the above configuration, the curvature of the illumination panel can be adjusted as appropriate, so that the curvature of the illumination panel can be set to a desired value. Therefore, when the light emission surface side of the light emitted from the light emitting element is curved in a convex shape, the emitted light can be easily diffused to illuminate a room or space where the integrated illumination device is installed over a wide area. In addition, when the light emitting surface side of the light emitted from the light emitting element is curved in a concave shape, the emitted light can be easily collected, and a point or surface close to the installation position of the integrated lighting device can be concentrated. It can be illuminated.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記照明パネルの短軸方向に沿って、上記発光素子が、当該発光素子の光出射面を凸状にして湾曲していることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
It is preferable that the light emitting element is curved with the light emitting surface of the light emitting element convex along the minor axis direction of the lighting panel.
 上記の構成によれば、発光素子の光を発散させることができ、集積型照明装置を設置した部屋、または空間を広範囲に照らすことが可能となる。 According to the above configuration, the light of the light emitting element can be diffused, and the room or space where the integrated lighting device is installed can be illuminated over a wide area.
 また、上記の構成によれば、照明パネル自体が湾曲していない形状であっても、発光素子を湾曲させるだけで上記した効果を奏することができる。 Further, according to the above configuration, even if the lighting panel itself is not curved, the above-described effects can be achieved by simply bending the light emitting element.
 しかしながら上記の構成に代えて、本発明に係る照明装置は、
 上記照明パネルの短軸方向に沿って、上記発光素子が、当該発光素子の光出射面を凹状にして湾曲していてもよい。
However, instead of the above configuration, the illumination device according to the present invention is
The light emitting element may be curved along the minor axis direction of the lighting panel with the light emitting surface of the light emitting element being concave.
 上記の構成によれば、発光素子の光を容易に集光させることができ、集積型照明装置の設置位置からほど近い、点または面等を集中的に照らすことが可能となる。 According to the above configuration, the light of the light emitting element can be easily condensed, and it becomes possible to intensively illuminate a point or a surface that is close to the installation position of the integrated illumination device.
 また、上記の構成の場合も、照明パネル自体が湾曲していない形状であっても、発光素子を湾曲させるだけで上記した効果を奏することができる。 Also, in the case of the above configuration, even if the lighting panel itself is not curved, the above-described effects can be achieved by simply bending the light emitting element.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記照明パネルの短軸方向に沿って上記発光素子は湾曲可能であり、当該発光素子の湾曲率を調整する調整手段をさらに備えていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
It is preferable that the light-emitting element is bendable along the minor axis direction of the lighting panel, and further includes an adjusting unit that adjusts the bending rate of the light-emitting element.
 上記の構成によれば、発光素子の湾曲率を適宜調整することができるため、発光素子の湾曲率を、所望の値に設定することができる。従って、発光素子が発した光の出射面側を凸状に湾曲させたときには、容易に出射光を発散させ、照明装置を設置した部屋、または空間を広範囲に照らすことが可能となる。また、発光素子が発した光の出射面側を凹状に湾曲させたときには、容易に出射光を集光させることができ、照明装置の設置位置からほど近い、点または面等を集中的に照らすことが可能となる。 According to the above configuration, since the curvature of the light emitting element can be adjusted as appropriate, the curvature of the light emitting element can be set to a desired value. Therefore, when the light emitting surface side of the light emitted from the light emitting element is curved in a convex shape, the emitted light can be easily diffused to illuminate a room or space where the lighting device is installed over a wide area. In addition, when the light exit surface side of the light emitted from the light emitting element is curved in a concave shape, the exit light can be easily condensed, and the points or surfaces close to the installation position of the illumination device are intensively illuminated. Is possible.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記複数の照明パネル同士をその長手方向を水平に揃えて配列した構成とすることができ、
 上記複数の照明パネルは、鉛直方向に移動するように構成されている。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The plurality of lighting panels can be arranged with their longitudinal directions aligned horizontally,
The plurality of lighting panels are configured to move in the vertical direction.
 しかしながら上記の構成に代えて、本発明に係る照明装置は、
 上記複数の照明パネル同士をその長手方向を鉛直に揃えて配列した構成としてもよく、この場合、複数の照明パネルを水平方向に移動させるように構成されている。い。
However, instead of the above configuration, the illumination device according to the present invention is
The plurality of lighting panels may be arranged with their longitudinal directions aligned vertically, and in this case, the plurality of lighting panels are configured to move in the horizontal direction. Yes.
 上記の構成によれば、器具で巻き取りコードを巻き取ったり、繰り出したりすることによって、複数の照明パネルを重ねてまとめるようにして移動させ、かつまとめた状態から互いに離すようにして移動させることができる。 According to the above configuration, by winding or unwinding the winding cord with an instrument, the plurality of lighting panels can be moved together in a stacked manner and moved away from the combined state. Can do.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記発光素子は、複数の発光色を有しており、当該発光色ごとに、独立して駆動することができるように構成されていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The light-emitting element preferably has a plurality of emission colors and is configured to be driven independently for each emission color.
 上記の構成によれば、集積型照明装置に調色性および調光性を持たせることができる。 According to the above configuration, the integrated lighting device can be provided with toning and dimming properties.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記電極は陽極および陰極であり、当該陽極および陰極のうち、光の出射面とは反対側に位置する電極は、光反射性の材料を含んでなることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The electrodes are an anode and a cathode. Of the anode and the cathode, the electrode located on the side opposite to the light exit surface preferably comprises a light-reflective material.
 上記の構成によれば、発光素子が発した光が非光出射面側に出射されても、光反射性を有する電極によって反射され、光出射面側から出射される。その結果、発光素子が発した光の利用効率を高めることができる。 According to the above configuration, even if the light emitted from the light emitting element is emitted to the non-light emitting surface side, it is reflected by the electrode having light reflectivity and emitted from the light emitting surface side. As a result, utilization efficiency of light emitted from the light emitting element can be increased.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記電極は陽極および陰極であり、当該陽極および陰極のうちの少なくとも一方を透明電極とすることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The electrodes are an anode and a cathode, and at least one of the anode and the cathode is preferably a transparent electrode.
 上記の構成によれば、発光素子が発した光は、透明電極側から出射され、光を効率的に素子の外に取り出すことが可能となる。また、光取り出し側にある電極を透明電極とすることによって、マイクロキャビティ(微小共振器)効果で集光させることができる。その結果、発光効率の向上、および色純度の向上が実現され、光に指向性等を持たせることができる。 According to the above configuration, the light emitted from the light emitting element is emitted from the transparent electrode side, and the light can be efficiently taken out of the element. Further, by making the electrode on the light extraction side a transparent electrode, light can be condensed by a microcavity (microresonator) effect. As a result, an improvement in luminous efficiency and an improvement in color purity can be realized, and light can have directivity and the like.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記照明パネルは、対向する1対の基板の間に、上記発光素子を配設した構造となっており、
 上記1対の基板のうち、光の出射側とは反対側に位置する基板は、光反射性の材料、または光反射性の表面を有する材料から構成されており、
 上記1対の基板の間隙部分は、光反射性の材料、または光反射性の表面を有する材料で封じられていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The lighting panel has a structure in which the light emitting element is disposed between a pair of opposing substrates.
Of the pair of substrates, the substrate located on the side opposite to the light emitting side is made of a light-reflective material or a material having a light-reflective surface.
The gap portion between the pair of substrates is preferably sealed with a light-reflective material or a material having a light-reflective surface.
 上記の構成によれば、発光素子の光出射面以外の面から出射された光は、照明パネルの壁面(有機EL素子を取り囲む照明パネルの壁面)に反射する。従って、より効果的に発光素子から漏れ出た光を取り出すことができる。 According to the above configuration, light emitted from a surface other than the light emitting surface of the light emitting element is reflected on the wall surface of the illumination panel (the wall surface of the illumination panel surrounding the organic EL element). Therefore, the light leaking from the light emitting element can be extracted more effectively.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記発光素子は、その光出射面側に、光拡散性を有する樹脂層を有していることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The light emitting element preferably has a resin layer having light diffusibility on the light emitting surface side.
 しかしながら上記の構成に代えて、本発明に係る照明装置は、
 上記発光素子が、その光出射面側に、光拡散性を有する光拡散板を有していてもよい。
However, instead of the above configuration, the illumination device according to the present invention is
The light emitting element may have a light diffusing plate having light diffusibility on the light emitting surface side.
 発光素子の一例である有機EL素子の場合、一般的に、発した光は広く拡散されて出射される。そのため、通常はマイクロキャビティ(微小共振器)構造を採用し、光路長を調節することによって共振させ集光させている。その結果、発光効率の向上、および色純度の向上が実現され、光に指向性等を持たせることができる。 In the case of an organic EL element which is an example of a light emitting element, generally, emitted light is widely diffused and emitted. For this reason, a microcavity (microresonator) structure is usually employed, and light is resonated and condensed by adjusting the optical path length. As a result, an improvement in luminous efficiency and an improvement in color purity can be realized, and light can have directivity and the like.
 上記の構成によれば、光出射面側に光拡散性の樹脂層を形成、または、光拡散板を導入している。これによって、出射光は、光拡散部分を通過し、光出射面から均一に拡散して出射され、照明装置の色純度と発光効率とを向上させると共に、広視野角化を実現することができる。 According to the above configuration, a light diffusing resin layer is formed on the light emitting surface side or a light diffusing plate is introduced. As a result, the emitted light passes through the light diffusing portion and is uniformly diffused and emitted from the light emitting surface, thereby improving the color purity and luminous efficiency of the illumination device and realizing a wide viewing angle. .
 あるいは、本発明に係る照明装置は、上記の構成に代えて、
 上記1対の基板のうち、光出射面側の基板が、光拡散性の材料で構成されていてもよい。
Or the illuminating device which concerns on this invention replaces with said structure,
Of the pair of substrates, the substrate on the light emitting surface side may be made of a light diffusing material.
 上記の構成によれば、光出射面側の基板を光拡散性の材料で構成している。これによって、出射光は、光拡散部分を通過し、光出射面から均一に拡散して出射され、照明装置の色純度と発光効率とを向上させると共に、広視野角化を実現することができる。 According to the above configuration, the substrate on the light emitting surface side is made of a light diffusing material. As a result, the emitted light passes through the light diffusing portion and is uniformly diffused and emitted from the light emitting surface, thereby improving the color purity and luminous efficiency of the illumination device and realizing a wide viewing angle. .
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記発光素子は、その光出射面側に、波長変換層を有していることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The light emitting element preferably has a wavelength conversion layer on the light exit surface side.
 上記の構成によれば、波長変換層を用いることによって、有機EL素子が発した光を所望の波長の光へと変換することができる。 According to the above configuration, the light emitted from the organic EL element can be converted into light having a desired wavelength by using the wavelength conversion layer.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記発光素子は、その光出射面側に、円偏光板を有していることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The light-emitting element preferably has a circularly polarizing plate on the light exit surface side.
 上記の構成によれば、円偏光板によって、発光素子が発した光を円偏光させ、外光反射を抑制することができる。 According to the above configuration, the circularly polarizing plate can circularly polarize the light emitted from the light emitting element and suppress external light reflection.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記発光素子は、その光出射面側に、カラーフィルタを有していることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The light emitting element preferably has a color filter on the light emitting surface side.
 上記の構成によれば、カラーフィルタによって、発光素子が発した光を所望の波長の光のみを出射させることができ、なおかつ外光反射の抑止・低減効果を得ることができる。 According to the above configuration, the color filter can emit only light having a desired wavelength from the light emitted from the light emitting element, and can obtain the effect of suppressing or reducing the reflection of external light.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記発光素子は、上記電極として陽極および陰極を有している、有機EL素子であり、
 上記有機EL素子は、更に、電荷発生層を有していることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The light emitting element is an organic EL element having an anode and a cathode as the electrodes,
The organic EL device preferably further has a charge generation layer.
 上記の構成によれば、陽極から伝搬された正孔と、陰極から伝搬された電子とを、効率的に発光領域に伝播することができる。そして、電荷発生領域が有機EL層の間に形成されており隣り合う各発光領域の間に等電位面を形成することにより、駆動電圧は高くなる一方で流れる電流が小さくなり、優れた発光寿命を得ることができる。 According to the above configuration, the holes propagated from the anode and the electrons propagated from the cathode can be efficiently propagated to the light emitting region. The charge generation region is formed between the organic EL layers, and by forming an equipotential surface between adjacent light emitting regions, the driving current is increased while the flowing current is reduced, and the excellent light emission life Can be obtained.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記発光素子は、上記電極として陽極および陰極を有している、有機EL素子であり、
 上記陰極は、マグネシウムと銀とを1対9の割合で共蒸着して形成されてなり、
 上記有機EL素子は、フッ化リチウムからなる電子注入層を有していることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The light emitting element is an organic EL element having an anode and a cathode as the electrodes,
The cathode is formed by co-evaporating magnesium and silver in a ratio of 1: 9.
The organic EL element preferably has an electron injection layer made of lithium fluoride.
 上記の構成によれば、陰極から注入される電子を、効率良く発光領域に注入することができる。 According to the above configuration, electrons injected from the cathode can be efficiently injected into the light emitting region.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記発光素子は、上記電極として陽極および陰極を有している、有機EL素子であり、
 上記有機EL素子は、発光領域を含む有機層を有しており、当該有機層は、両電荷輸送性材料で構成されていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The light emitting element is an organic EL element having an anode and a cathode as the electrodes,
The organic EL element has an organic layer including a light emitting region, and the organic layer is preferably composed of a both charge transporting material.
 上記の構成によれば、両電荷輸送材料が、陽極から注入された正孔、および陰極から注入された電子を、(1)高移動度かつ高バランスで発光領域にまで伝播することができ、また、(2)最高被占準位/最低空準位(HOMO/LUMO)エネルギー差が十分大きく(3eV程度)、なおかつワイドギャップ材料であることから、高い発光効率を得ることができる。 According to said structure, both charge transport materials can propagate the hole inject | poured from the anode, and the electron inject | poured from the cathode to the light emission area | region with (1) high mobility and high balance, In addition, (2) the highest occupied level / lowest empty level (HOMO / LUMO) energy difference is sufficiently large (about 3 eV), and since it is a wide gap material, high luminous efficiency can be obtained.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記発光素子は、上記電極として陽極および陰極を有している、有機EL素子であり、
 上記発光領域は、上記両電荷輸送性材料に発光ドーパントをドープして形成されており、
 上記陽極および上記発光領域の間に、上記両電荷輸送性材料と電子阻止性材料とによって形成された電子阻止領域と、
 上記陰極および上記発光領域の間に、上記両電荷輸送性材料と正孔阻止性材料とによって形成された正孔阻止領域と、
をさらに有しており、
 上記電子阻止領域を構成する上記両電荷輸送性材料は、上記発光領域を構成する両電荷輸送性材料の最低空軌道よりも高い最低空軌道を有しているという第一条件、および上記正孔阻止領域を構成する上記両電荷輸送性材料は、上記発光領域を構成する両電荷輸送性材料の最高被占軌道よりも浅い最高被占軌道を有しているという第二条件
のうち、少なくとも何れかの条件を満たしていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
The light emitting element is an organic EL element having an anode and a cathode as the electrodes,
The light emitting region is formed by doping the both charge transporting materials with a light emitting dopant,
An electron blocking region formed by the both charge transporting material and the electron blocking material between the anode and the light emitting region;
A hole blocking region formed by the both charge transporting material and hole blocking material between the cathode and the light emitting region;
In addition,
The first condition that the charge transporting material constituting the electron blocking region has a lowest empty orbit higher than the lowest empty orbit of the charge transporting material constituting the light emitting region, and the hole The charge transporting material constituting the blocking region has at least any one of the second conditions that the highest occupied track is shallower than the highest occupied track of the charge transporting material constituting the light emitting region. It is preferable that these conditions are satisfied.
 上記の構成によれば、両電荷輸送材料によって構成されている発光領域を挟んで、電子の移動を阻止する電子阻止領域と、正孔の移動を阻止する正孔阻止領域とが設けている。そのため、陽極から伝搬された正孔と、陰極から伝搬された電子とが、発光領域内に閉じ込められるので、発光領域において正孔および電子が再結合する確率が高まり、有機EL素子の駆動電圧を低下することができる。 According to the above configuration, the electron blocking region for blocking the movement of electrons and the hole blocking region for blocking the movement of holes are provided across the light emitting region formed by both charge transport materials. For this reason, the holes propagated from the anode and the electrons propagated from the cathode are confined in the light emitting region, so that the probability that holes and electrons recombine in the light emitting region is increased, and the driving voltage of the organic EL element is reduced. Can be lowered.
 また、発光領域において正孔および電子が再結合する確率が上がるので、内部量子収率は向上し、発光効率を向上させることができる。しかし、必ずしも電子阻止領域と正孔阻止領域との双方を具備する必要はなく、何れか一方を有しているだけでも、正孔および電子の再結合確率を十分に高めることができる。従って、高輝度、高効率および長寿命を実現する有機EL素子を提供することができる。 In addition, since the probability of recombination of holes and electrons in the light emitting region is increased, the internal quantum yield can be improved and the light emission efficiency can be improved. However, it is not always necessary to have both an electron blocking region and a hole blocking region, and the recombination probability of holes and electrons can be sufficiently increased by having only one of them. Therefore, it is possible to provide an organic EL element that realizes high luminance, high efficiency, and long life.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記巻き取りコードは、上記発光素子に設けられた上記電極に対して電圧もしくは電流を供給することができるように構成されていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
It is preferable that the winding cord is configured to supply a voltage or current to the electrodes provided in the light emitting element.
 上記の構成によれば、支持コードに加え巻き取りコードも配線機能を有することになり、これにより電力供給元が更に多く確保されることにより、電力の供給が安定化される。また、各コードから流れる電圧の低下による発光斑の発生を防止され、より均一な発光が得られる。 According to the above configuration, the take-up cord in addition to the support cord also has a wiring function, thereby securing more power supply sources, thereby stabilizing the power supply. Further, the occurrence of light emission spots due to a decrease in the voltage flowing from each cord is prevented, and more uniform light emission can be obtained.
 また、本発明に係る照明装置は、上記の構成に加えて、
 上記巻き取りコードは、上記発光素子の電極と接続する分岐配線を有しており、当該分岐配線の分岐起点は固定されていることが好ましい。
Moreover, in addition to said structure, the illuminating device which concerns on this invention is
It is preferable that the winding cord has a branch wiring connected to the electrode of the light emitting element, and a branch start point of the branch wiring is fixed.
 上記の構成によれば、上記の構成によれば、巻き取りコードとその分岐配線との接点が固定されていることによって、コードから各照明パネルへの電力供給が安定化される。 According to the above configuration, according to the above configuration, the power supply from the cord to each lighting panel is stabilized by fixing the contact point between the winding cord and its branch wiring.
 また、本発明に係る照明装置は、
 上記支持コードと上記分岐配線との接点は可動であってもよい。
Moreover, the illumination device according to the present invention includes:
The contact point between the support cord and the branch wiring may be movable.
 上記の構成によれば、上記の構成によれば、コードと分岐配線との接点が可動であることによって、複数の照明パネルを重ねてまとめる際に、照明パネルをスライドさせることができる。 According to the above configuration, according to the above configuration, the contact point between the cord and the branch wiring is movable, so that the lighting panel can be slid when the plurality of lighting panels are stacked together.
 また、本発明に係る照明装置の製造方法は、以上のように、
 電極が設けられた発光素子であって、当該電極に電圧もしくは電流が供給されることによって発光する発光素子を有し、且つ、帯状をなしている複数の照明パネルと、
 上記複数の照明パネルを保持し、上記複数の照明パネル同士をその長軸方向に揃えて平行に配列させた状態において、当該配列方向に沿ってのびている巻き取りコードであって、配列している照明パネルの長さを調整することができるように構成された巻き取りコードと、
 上記複数の照明パネルを支えつつ、当該照明パネルの表面角度を可変させる支持コードと、
を備えた照明装置の製造方法であって、
 上記発光素子を配設した上記照明パネルを形成する照明パネル形成工程と、
 上記支持コードが上記発光素子に設けられた上記電極に対して電圧もしくは電流を供給することができるように、導電性を有する支持コードを準備し、当該支持コードの導電部分と上記発光素子の電極とを電気的に接続する接続工程とを含むことを特徴としている。
Moreover, the manufacturing method of the lighting device according to the present invention is as described above.
A plurality of lighting panels each having a light emitting element provided with an electrode and having a light emitting element that emits light when voltage or current is supplied to the electrode;
In the state where the plurality of lighting panels are held and the plurality of lighting panels are aligned in parallel in the major axis direction, the winding cords extend along the arrangement direction and are arranged. A winding cord configured to be able to adjust the length of the lighting panel;
A support cord that varies the surface angle of the lighting panel while supporting the plurality of lighting panels;
A method of manufacturing a lighting device comprising:
A lighting panel forming step for forming the lighting panel in which the light emitting element is disposed;
A supporting cord having conductivity is prepared so that the supporting cord can supply voltage or current to the electrode provided on the light emitting element, and a conductive portion of the supporting cord and an electrode of the light emitting element are prepared. And a connecting step of electrically connecting the two.
 上記の方法によれば、複数の照明パネルの傾きを変える支持コードに、各照明パネルに電力を供給する配線機能を付加させている。これによって、配線コードを別途設ける場合と比較して当該配線コードによる照明パネルの発光の遮断を回避することができ、照明装置を設置した部屋を高い照度で照明することができる。 According to the above method, the wiring function for supplying power to each lighting panel is added to the support cord that changes the inclination of the plurality of lighting panels. Accordingly, it is possible to avoid blocking the light emission of the lighting panel by the wiring cord as compared with the case where a wiring cord is separately provided, and the room where the lighting device is installed can be illuminated with high illuminance.
 また、小型の発光素子(有機EL素子)を複数搭載した照明パネルを複数配置することによって、大面積の集積型照明装置が実現され、製造コストも低く抑えることができる。 Also, by arranging a plurality of lighting panels on which a plurality of small light emitting elements (organic EL elements) are mounted, a large-area integrated lighting device can be realized, and the manufacturing cost can be kept low.
 また、本発明に係る照明装置の製造方法は、上記の構成に加えて、
 上記照明パネル形成工程には、少なくとも陽極、発光領域を含む有機層、および陰極をこの順で基板上に形成した有機エレクトロルミネッセンス素子を上記発光素子として形成する有機エレクトロルミネッセンス素子形成工程が含まれており、
 有機エレクトロルミネッセンス素子形成工程は、上記有機エレクトロルミネッセンス素子をロールツウロール法によって形成することが好ましい。
Moreover, the manufacturing method of the illuminating device which concerns on this invention is added to said structure,
The lighting panel forming step includes an organic electroluminescent element forming step of forming, as the light emitting element, an organic electroluminescent element in which at least an anode, an organic layer including a light emitting region, and a cathode are formed in this order on the substrate. And
In the organic electroluminescence element forming step, the organic electroluminescence element is preferably formed by a roll-to-roll method.
 上記の方法によれば、大面積の集積型照明装置が実現され、製造コストも低く抑えることができる。 According to the above method, an integrated illumination device having a large area can be realized, and the manufacturing cost can be kept low.
 また、本発明に係る照明装置の製造方法は、上記の構成に加えて、
 上記照明パネル形成工程には、少なくとも陽極、発光領域を含む有機層、および陰極をこの順で基板上に形成した有機エレクトロルミネッセンス素子を上記発光素子として形成する有機エレクトロルミネッセンス素子形成工程が含まれており、
 上記有機エレクトロルミネッセンス素子形成工程では、両電荷輸送性材料に発光ドーパントをドープして上記発光領域を形成し、上記陽極および上記発光領域の間に、上記両電荷輸送性材料と電子阻止性材料とによって電子阻止領域を形成し、上記陰極および上記発光領域の間に、上記両電荷輸送性材料と正孔阻止性材料とによって正孔阻止領域を形成し、当該電子阻止領域および当該正孔阻止領域のうち、少なくとも何れか一方を蒸着重合法によって形成することが好ましい。
Moreover, the manufacturing method of the illuminating device which concerns on this invention is added to said structure,
The lighting panel forming step includes an organic electroluminescent element forming step of forming, as the light emitting element, an organic electroluminescent element in which at least an anode, an organic layer including a light emitting region, and a cathode are formed in this order on the substrate. And
In the organic electroluminescence element forming step, the charge transporting material is doped with a light emitting dopant to form the light emitting region, and the charge transporting material and the electron blocking material are formed between the anode and the light emitting region. An electron blocking region is formed between the cathode and the light emitting region by the charge transporting material and the hole blocking material, and the electron blocking region and the hole blocking region are formed. Of these, at least one of them is preferably formed by vapor deposition polymerization.
 上記の方法によれば、蒸着重合法という簡易な方法によって、安定した電子阻止領域、および正孔阻止領域を形成することができる。 According to the above method, a stable electron blocking region and hole blocking region can be formed by a simple method called vapor deposition polymerization.
 また、本発明に係る照明装置の製造方法は、上記の構成に加えて、
 上記照明パネル形成工程には、少なくとも陽極、発光領域を含む有機層、および陰極をこの順で基板上に形成した有機エレクトロルミネッセンス素子を上記発光素子として形成する有機エレクトロルミネッセンス素子形成工程が含まれており、
 上記有機エレクトロルミネッセンス素子形成工程では、上記有機層を構成する材料の少なくとも1種類の材料を真空条件下で蒸着するのと同時に、あるいは蒸着した後に、熱処理を行なうことが好ましい。
Moreover, the manufacturing method of the illuminating device which concerns on this invention is added to said structure,
The lighting panel forming step includes an organic electroluminescent element forming step of forming, as the light emitting element, an organic electroluminescent element in which at least an anode, an organic layer including a light emitting region, and a cathode are formed in this order on the substrate. And
In the organic electroluminescence element forming step, it is preferable to perform heat treatment at the same time as or after vapor deposition of at least one material constituting the organic layer under vacuum conditions.
 また、上記の方法に加えて、本発明に係る照明装置の製造方法は、
 上記照明パネル形成工程には、少なくとも陽極、発光領域を含む有機層、および陰極をこの順で基板上に形成した有機エレクトロルミネッセンス素子を上記発光素子として形成する有機エレクトロルミネッセンス素子形成工程が含まれており、
 上記有機エレクトロルミネッセンス素子形成工程では、上記有機層を構成する材料の少なくとも1種類の材料を真空条件下で蒸着するのと同時に、あるいは蒸着した後に、紫外線を照射することが好ましい。
In addition to the above method, the method of manufacturing the lighting device according to the present invention includes:
The lighting panel forming step includes an organic electroluminescent element forming step of forming, as the light emitting element, an organic electroluminescent element in which at least an anode, an organic layer including a light emitting region, and a cathode are formed in this order on the substrate. And
In the organic electroluminescence element forming step, it is preferable to irradiate ultraviolet rays at the same time as or after vapor deposition of at least one material constituting the organic layer under vacuum conditions.
 上記の方法によれば、熱処理または紫外線照射によって、基板が加熱され、反応が促進し、(1)蒸着重合を完遂させることができ、なおかつ(2)重合度をコントロールすることができる。さらに、熱処理によって、蒸着膜内の分子配向を制御することもできる。 According to the above method, the substrate is heated by heat treatment or ultraviolet irradiation, the reaction is accelerated, (1) vapor deposition polymerization can be completed, and (2) the degree of polymerization can be controlled. Furthermore, the molecular orientation in the deposited film can be controlled by heat treatment.
 また、上記の方法に加えて、本発明に係る照明装置の製造方法は、
 上記有機エレクトロルミネッセンス素子形成工程では、上記紫外線を照射した後に、熱処理を行うことが好ましい。
In addition to the above method, the method of manufacturing the lighting device according to the present invention includes:
In the organic electroluminescence element forming step, it is preferable to perform heat treatment after the irradiation with the ultraviolet rays.
 上記の方法によれば、紫外線照射によって基板が加熱され、反応が促進し、(1)蒸着重合を完遂させることができ、なおかつ(2)重合度をコントロールすることができる。そして、熱処理をその後に行うことによって、蒸着膜内の分子配向を制御することができる。 According to the above method, the substrate is heated by ultraviolet irradiation, the reaction is accelerated, (1) vapor deposition polymerization can be completed, and (2) the degree of polymerization can be controlled. Then, the molecular orientation in the deposited film can be controlled by performing the heat treatment thereafter.
 また、上記の方法に加えて、本発明に係る照明装置の製造方法は、
 上記有機エレクトロルミネッセンス素子形成工程では、上記紫外線を照射する時に、マスクを用いてパターン形成することが好ましい。
In addition to the above method, the method of manufacturing the lighting device according to the present invention includes:
In the organic electroluminescence element forming step, it is preferable to form a pattern using a mask when the ultraviolet rays are irradiated.
 上記の方法によれば、有機層の表面にパターンを形成する場合には、効率的にパターニングすることができる。 According to the above method, when a pattern is formed on the surface of the organic layer, it can be efficiently patterned.
 本発明に係る照明装置は、ブラインド型照明装置として、例えば、オフィス照明、店舗照明、または施設照明等の各種照明機器として好適に用いることができる。 The lighting device according to the present invention can be suitably used as a blind type lighting device, for example, as various lighting devices such as office lighting, store lighting, or facility lighting.
1 有機EL照明装置(照明装置)
2 ヘッドボックス
3 昇降コード(巻き取りコード)
4 ボトムレール
5 分岐配線
6 ラダーコード(支持コード)
7 ロッド(器具)
8 接続配線
9 導電配線
10 照明パネル
10’ 有機ELパネル
11 支持基板
11’ フィルムテープ
12 第一電極
13 有機EL層
14 第二電極
15 保護層
16 空孔(ガイド部)
17 第一基板
18 第二基板
19 樹脂
20 有機EL素子(発光素子)
21 グリップ
22 ロール
23 形成部
1 Organic EL lighting device (lighting device)
2 Headbox 3 Lifting cord (winding cord)
4 Bottom rail 5 Branch wiring 6 Ladder cord (support cord)
7 Rod (equipment)
8 Connection wiring 9 Conductive wiring 10 Illumination panel 10 ′ Organic EL panel 11 Support substrate 11 ′ Film tape 12 First electrode 13 Organic EL layer 14 Second electrode 15 Protective layer 16 Hole (guide part)
17 First substrate 18 Second substrate 19 Resin 20 Organic EL element (light emitting element)
21 grip 22 roll 23 forming part

Claims (43)

  1.  電極が設けられた発光素子であって、当該電極に電圧もしくは電流が供給されることによって発光する発光素子を有し、且つ、帯状をなしている複数の照明パネルと、
     上記複数の照明パネルを保持し、上記複数の照明パネル同士をその長軸方向に揃えて平行に配列させた状態において、当該配列方向に沿ってのびている巻き取りコードであって、当該配列方向に沿ってのびている照明パネル群の配列長を調整することができるように構成された巻き取りコードと、
     上記複数の照明パネルを支えつつ、当該照明パネルの表面角度を可変させる支持コードと、
    を備えた照明装置であって、
     上記支持コードは導電性を有し、
     上記発光素子に設けられた上記電極は、上記支持コードの導電部分と電気的に接続していることを特徴とする照明装置。
    A plurality of lighting panels each having a light emitting element provided with an electrode and having a light emitting element that emits light when voltage or current is supplied to the electrode;
    In the state where the plurality of illumination panels are held and the plurality of illumination panels are aligned in parallel in the major axis direction, the winding cord extends along the arrangement direction, and is arranged in the arrangement direction. A winding cord configured to be able to adjust the arrangement length of the lighting panel group extending along;
    A support cord that varies the surface angle of the lighting panel while supporting the plurality of lighting panels;
    A lighting device comprising:
    The support cord has conductivity,
    The lighting device, wherein the electrode provided on the light emitting element is electrically connected to a conductive portion of the support cord.
  2.  上記巻き取りコードに繋がっていて、当該巻き取りコードを動かして、上記配列している照明パネルの長さを調整する器具を備え、
     上記器具が、上記巻き取りコードを巻き取る、または繰り出すことによって、上記複数の照明パネルを重ねてまとめるようにして移動させ、且つ、まとめた状態から互いに離すようにして移動させることを特徴とする請求項1に記載の照明装置。
    It is connected to the winding cord, and includes a tool for adjusting the length of the arranged lighting panels by moving the winding cord,
    The apparatus is configured to move the plurality of lighting panels so as to overlap each other by winding or unwinding the winding cord, and to move the plurality of lighting panels away from each other. The lighting device according to claim 1.
  3.  上記支持コードに繋がっていて、当該支持コードを動かして、上記配列している照明パネルの傾きを調整する器具を有し、
     上記器具が、上記支持コードを巻き取る、または繰り出すことによって、上記複数の照明パネルをまとめて傾けることができ、且つ、傾いた状態から水平や垂直方向に戻すことができることを特徴とする請求項1に記載の照明装置。
    It is connected to the support cord, and has an instrument for moving the support cord to adjust the inclination of the arranged lighting panels,
    The apparatus is capable of tilting the plurality of lighting panels together by winding or unwinding the support cord, and returning the tilted state to a horizontal or vertical direction. The lighting device according to 1.
  4.  上記支持コードは、上記配列方向に沿ってのびており、照明パネルにおける上記長軸方向に沿った端辺において所定の間隔を有して複数設けられていることを特徴とする請求項1から3までの何れか1項に記載の照明装置。 The support cord extends along the arrangement direction, and a plurality of the support cords are provided at a predetermined interval on an end side of the lighting panel along the major axis direction. The lighting device according to any one of the above.
  5.  上記支持コードは、上記発光素子の電極と接続する分岐配線を有しており、
     上記支持コードと上記分岐配線との接点は固定されていることを特徴とする請求項1から4までの何れか1項に記載の照明装置。
    The support cord has a branch wiring connected to the electrode of the light emitting element,
    The lighting device according to any one of claims 1 to 4, wherein a contact point between the support cord and the branch wiring is fixed.
  6.  上記巻き取りコードが、帯状の上記複数の照明パネルの長手方向の端部側に配設されている請求項1から5までの何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 5, wherein the winding cord is disposed on a longitudinal end side of the plurality of strip-shaped lighting panels.
  7.  各上記照明パネルには、上記支持コードをガイドする支持コード用のガイド部、および、上記巻き取りコードをガイドする巻き取りコード用のガイド部のうちの何れか一方のガイド部が設けられていることを特徴とする請求項1から6までの何れか1項に記載の照明装置。 Each of the lighting panels is provided with one of a guide portion for a support cord that guides the support cord and a guide portion for a take-up cord that guides the take-up cord. The illumination device according to claim 1, wherein the illumination device is a light source.
  8.  上記ガイド部は、各上記照明パネルにおける上記発光素子の形成領域の外に設けられていることを特徴とする請求項7に記載の照明装置。 The lighting device according to claim 7, wherein the guide portion is provided outside a region where the light emitting element is formed in each of the lighting panels.
  9.  上記ガイド部は、上記照明パネルの縁部から内側10mm以内または外側10mm以内に設けられた空孔、溝、切り込み、または、フックであることを特徴とする請求項7または8に記載の照明装置。 9. The lighting device according to claim 7, wherein the guide portion is a hole, a groove, a cut, or a hook provided within 10 mm on the inner side or within 10 mm on the outer side from the edge of the lighting panel. .
  10.  上記発光素子は、可撓性の基板を備えていることを特徴とする請求項1から9までの何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 9, wherein the light-emitting element includes a flexible substrate.
  11.  各上記照明パネルは、短軸方向に沿って湾曲していることを特徴とする請求項1から10までの何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 10, wherein each of the lighting panels is curved along a minor axis direction.
  12.  上記照明パネルは、上記発光素子の光出射面側を凸状にして湾曲していることを特徴とする請求項1から11までの何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 11, wherein the lighting panel is curved with a light emitting surface side of the light emitting element convex.
  13.  上記照明パネルは、上記発光素子の光出射面側を凹状にして湾曲していることを特徴とする請求項1から11までの何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 11, wherein the lighting panel is curved with a light emitting surface side of the light emitting element being concave.
  14.  上記照明パネルは短軸方向に沿って湾曲可能な構成となっており、当該照明パネルの当該湾曲率を調整する調整手段をさらに備えていることを特徴とする請求項1から13までの何れか1項に記載の照明装置。 14. The lighting panel according to claim 1, wherein the lighting panel is configured to be bendable along a minor axis direction, and further includes adjusting means for adjusting the bending rate of the lighting panel. The lighting device according to item 1.
  15.  上記照明パネルの短軸方向に沿って、上記発光素子が、当該発光素子の光出射面を凸状にして湾曲していることを特徴とする請求項1から14までの何れか1項に記載の照明装置。 15. The light emitting device according to claim 1, wherein the light emitting element is curved along a minor axis direction of the lighting panel with a light emitting surface of the light emitting element being convex. Lighting equipment.
  16.  上記照明パネルの短軸方向に沿って、上記発光素子が、当該発光素子の光出射面を凹状にして湾曲していることを特徴とする請求項1から14までの何れか1項に記載の照明装置。 15. The light-emitting element according to claim 1, wherein the light-emitting element is curved along a minor axis direction of the lighting panel with a light-emitting surface of the light-emitting element being concave. Lighting device.
  17.  上記照明パネルの短軸方向に沿って上記発光素子は湾曲可能であり、当該発光素子の湾曲率を調整する調整手段をさらに備えていることを特徴とする請求項1から16までの何れか1項に記載の照明装置。 The light-emitting element can be bent along the minor axis direction of the lighting panel, and further includes an adjusting unit that adjusts a bending rate of the light-emitting element. The lighting device according to item.
  18.  上記複数の照明パネル同士をその長手方向を水平に揃えて配列しており、
     上記複数の照明パネルは、鉛直方向に移動するように構成されていることを特徴とする請求項1から17までの何れか1項に記載の照明装置。
    The plurality of lighting panels are arranged with their longitudinal directions aligned horizontally,
    The lighting device according to any one of claims 1 to 17, wherein the plurality of lighting panels are configured to move in a vertical direction.
  19.  上記複数の照明パネル同士をその長手方向を鉛直に揃えて配列しており、
     上記複数の照明パネルは、水平方向に移動するように構成されていることを特徴とする請求項1から17までの何れか1項に記載の照明装置。
    The plurality of lighting panels are arranged with their longitudinal directions aligned vertically,
    The lighting device according to any one of claims 1 to 17, wherein the plurality of lighting panels are configured to move in a horizontal direction.
  20.  上記発光素子は、複数の発光色を有しており、当該発光色ごとに、独立して駆動することができるように構成されていることを特徴とする請求項1から19までの何れか1項に記載の照明装置。 21. The light emitting device according to claim 1, wherein the light emitting element has a plurality of light emission colors and can be driven independently for each of the light emission colors. The lighting device according to item.
  21.  上記電極は陽極および陰極であり、当該陽極および陰極のうち、光の出射面とは反対側に位置する電極は、光反射性の材料を含んでなることを特徴とする請求項1から20までの何れか1項に記載の照明装置。 21. The electrode according to any one of claims 1 to 20, wherein the electrode is an anode and a cathode, and an electrode located on a side opposite to the light emission surface of the anode and the cathode includes a light reflective material. The lighting device according to any one of the above.
  22.  上記電極は陽極および陰極であり、当該陽極および陰極のうちの少なくとも一方は透明電極であることを特徴としていることを特徴とする請求項1から20までの何れか1項に記載の照明装置。 21. The lighting device according to claim 1, wherein the electrode is an anode and a cathode, and at least one of the anode and the cathode is a transparent electrode.
  23.  上記照明パネルは、対向する1対の基板の間に、上記発光素子を配設した構造となっており、
     上記1対の基板のうち、光の出射側とは反対側に位置する基板は、光反射性の材料、または光反射性の表面を有する材料から構成されており、
     上記1対の基板の間隙部分は、光反射性の材料、または光反射性の表面を有する材料で封じられていることを特徴とする請求項1から22までの何れか1項に記載の照明装置。
    The lighting panel has a structure in which the light emitting element is disposed between a pair of opposing substrates.
    Of the pair of substrates, the substrate located on the side opposite to the light emitting side is made of a light-reflective material or a material having a light-reflective surface.
    23. The illumination according to any one of claims 1 to 22, wherein a gap portion between the pair of substrates is sealed with a light-reflective material or a material having a light-reflective surface. apparatus.
  24.  上記発光素子は、その光出射面側に、光拡散性を有する樹脂層を有していることを特徴とする請求項1から23までの何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 23, wherein the light emitting element has a resin layer having light diffusibility on the light emitting surface side.
  25.  上記発光素子は、その光出射面側に、光拡散性を有する光拡散板を有していることを特徴とする請求項1から23までの何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 23, wherein the light emitting element has a light diffusing plate having light diffusibility on the light emitting surface side.
  26.  上記1対の基板のうち、光出射面側の基板が、光拡散性の材料で構成されていることを特徴とする請求項23に記載の照明装置。 24. The illumination device according to claim 23, wherein the substrate on the light emitting surface side of the pair of substrates is made of a light diffusing material.
  27.  上記発光素子は、その光出射面側に、波長変換層を有していることを特徴とする請求項1から26までの何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 26, wherein the light emitting element has a wavelength conversion layer on a light emitting surface side thereof.
  28.  上記発光素子は、その光出射面側に、円偏光板を有していることを特徴とする請求項1から27までの何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 27, wherein the light emitting element has a circularly polarizing plate on a light emitting surface side thereof.
  29.  上記発光素子は、その光出射面側に、カラーフィルタを有していることを特徴とする請求項1から28までの何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 28, wherein the light emitting element has a color filter on a light emitting surface side thereof.
  30.  上記発光素子は、上記電極として陽極および陰極を有している、有機エレクトロルミネッセンス素子であり、
     上記有機エレクトロルミネッセンス素子は、更に、電荷発生層を有していることを特徴とする請求項1から29までの何れか1項に記載の照明装置。
    The light emitting element is an organic electroluminescence element having an anode and a cathode as the electrodes,
    30. The lighting device according to any one of claims 1 to 29, wherein the organic electroluminescence element further has a charge generation layer.
  31.  上記発光素子は、上記電極として陽極および陰極を有している、有機エレクトロルミネッセンス素子であり、
     上記陰極は、マグネシウムと銀とを1対9の割合で共蒸着して形成されてなり、
     上記有機エレクトロルミネッセンス素子は、フッ化リチウムからなる電子注入層を有していることを特徴とする請求項1から30までの何れか1項に記載の照明装置。
    The light emitting element is an organic electroluminescence element having an anode and a cathode as the electrodes,
    The cathode is formed by co-evaporating magnesium and silver in a ratio of 1: 9.
    The said organic electroluminescent element has an electron injection layer which consists of lithium fluoride, The illuminating device of any one of Claim 1-30 characterized by the above-mentioned.
  32.  上記発光素子は、上記電極として陽極および陰極を有している、有機エレクトロルミネッセンス素子であり、
     上記有機エレクトロルミネッセンス素子は、発光領域を含む有機層を有しており、当該有機層は、両電荷輸送性材料で構成されていることを特徴とする請求項1から31までの何れか1項に記載の照明装置。
    The light emitting element is an organic electroluminescence element having an anode and a cathode as the electrodes,
    32. The organic electroluminescence device according to claim 1, wherein the organic electroluminescence device has an organic layer including a light emitting region, and the organic layer is composed of both charge transport materials. The lighting device described in 1.
  33.  上記発光素子は、上記電極として陽極および陰極を有している、有機エレクトロルミネッセンス素子であり、
     上記発光領域は、上記両電荷輸送性材料に発光ドーパントをドープして形成されており、
     上記陽極および上記発光領域の間に、上記両電荷輸送性材料と電子阻止性材料とによって形成された電子阻止領域と、
     上記陰極および上記発光領域の間に、上記両電荷輸送性材料と正孔阻止性材料とによって形成された正孔阻止領域と、
    をさらに有しており、
     上記電子阻止領域を構成する上記両電荷輸送性材料は、上記発光領域を構成する両電荷輸送性材料の最低空軌道よりも高い最低空軌道を有しているという第一条件、および上記正孔阻止領域を構成する上記両電荷輸送性材料は、上記発光領域を構成する両電荷輸送性材料の最高被占軌道よりも浅い最高被占軌道を有しているという第二条件
    のうち、少なくとも何れかの条件を満たしていることを特徴とする請求項32に記載の照明装置。
    The light emitting element is an organic electroluminescence element having an anode and a cathode as the electrodes,
    The light emitting region is formed by doping the both charge transporting materials with a light emitting dopant,
    An electron blocking region formed by the both charge transporting material and the electron blocking material between the anode and the light emitting region;
    A hole blocking region formed by the both charge transporting material and hole blocking material between the cathode and the light emitting region;
    In addition,
    The first condition that the charge transporting material constituting the electron blocking region has a lowest empty orbit higher than the lowest empty orbit of the charge transporting material constituting the light emitting region, and the hole The charge transporting material constituting the blocking region has at least any one of the second conditions that the highest occupied track is shallower than the highest occupied track of the charge transporting material constituting the light emitting region. The lighting device according to claim 32, wherein the above condition is satisfied.
  34.  上記巻き取りコードは、上記発光素子に設けられた上記電極に対して電圧もしくは電流を供給することができるように構成されていることを特徴とする請求項1から33までの何れか1項に記載の照明装置。 34. The winding cord according to any one of claims 1 to 33, wherein the winding cord is configured to supply a voltage or a current to the electrode provided in the light emitting element. The lighting device described.
  35.  上記巻き取りコードは、上記発光素子の電極と接続する分岐配線を有しており、当該分岐配線の分岐起点は固定されていることを特徴とする請求項34に記載の照明装置。 The lighting device according to claim 34, wherein the winding cord has a branch wiring connected to the electrode of the light emitting element, and a branch start point of the branch wiring is fixed.
  36.  上記支持コードと上記分岐配線との接点は可動であることを特徴とする請求項1または2に記載の照明装置。 The lighting device according to claim 1 or 2, wherein a contact point between the support cord and the branch wiring is movable.
  37.  電極が設けられた発光素子であって、当該電源に電圧もしくは電流が供給されることによって発光する発光素子を有し、且つ、帯状をなしている複数の照明パネルと、
     上記複数の照明パネルを保持し、上記複数の照明パネル同士をその長手方向に揃えて平行に配列させた状態において、当該配列方向に沿ってのびている巻き取りコードであって、配列している照明パネルの長さを調整することができるように構成された巻き取りコードと、
     上記複数の照明パネルを支えつつ、当該照明パネルの表面角度を可変させる支持コードと、
    を備えた照明装置の製造方法であって、
     上記発光素子を配設した照明パネルを形成する照明パネル形成工程と、
     上記支持コードが上記発光素子に設けられた上記電極に対して電圧もしくは電流を供給することができるように、導電性を有する支持コードを準備し、当該支持コードの導電部分と上記発光素子の電極とを電気的に接続する接続工程とを含むことを特徴とする照明装置の製造方法。
    A light-emitting element provided with an electrode, the light-emitting element that emits light when a voltage or a current is supplied to the power source, and a plurality of lighting panels having a strip shape;
    In the state where the plurality of illumination panels are held and the plurality of illumination panels are aligned in parallel in the longitudinal direction, the winding cords extend along the arrangement direction and are arranged A take-up cord configured to be able to adjust the length of the panel;
    A support cord that varies the surface angle of the lighting panel while supporting the plurality of lighting panels;
    A method of manufacturing a lighting device comprising:
    An illumination panel forming step of forming an illumination panel in which the light emitting element is disposed;
    A supporting cord having conductivity is prepared so that the supporting cord can supply voltage or current to the electrode provided on the light emitting element, and a conductive portion of the supporting cord and an electrode of the light emitting element are prepared. And a connecting step of electrically connecting the lighting device and the lighting device.
  38.  上記照明パネル形成工程には、少なくとも陽極、発光領域を含む有機層、および陰極をこの順で基板上に形成した有機エレクトロルミネッセンス素子を上記発光素子として形成する有機エレクトロルミネッセンス素子形成工程が含まれており、
     有機エレクトロルミネッセンス素子形成工程は、上記有機エレクトロルミネッセンス素子をロールツウロール法によって形成することを特徴とする請求項37に記載の照明装置の製造方法。
    The lighting panel forming step includes an organic electroluminescent element forming step of forming, as the light emitting element, an organic electroluminescent element in which at least an anode, an organic layer including a light emitting region, and a cathode are formed in this order on the substrate. And
    38. The method of manufacturing an illumination device according to claim 37, wherein the organic electroluminescence element forming step forms the organic electroluminescence element by a roll-to-roll method.
  39.  上記照明パネル形成工程には、少なくとも陽極、発光領域を含む有機層、および陰極をこの順で基板上に形成した有機エレクトロルミネッセンス素子を上記発光素子として形成する有機エレクトロルミネッセンス素子形成工程が含まれており、
     上記有機エレクトロルミネッセンス素子形成工程では、両電荷輸送性材料に発光ドーパントをドープして上記発光領域を形成し、上記陽極および上記発光領域の間に、上記両電荷輸送性材料と電子阻止性材料とによって電子阻止領域を形成し、上記陰極および上記発光領域の間に、上記両電荷輸送性材料と正孔阻止性材料とによって正孔阻止領域を形成し、当該電子阻止領域および当該正孔阻止領域のうち、少なくとも何れか一方を蒸着重合法によって形成することを特徴とする請求項37または38に記載の照明装置の製造方法。
    The lighting panel forming step includes an organic electroluminescent element forming step of forming, as the light emitting element, an organic electroluminescent element in which at least an anode, an organic layer including a light emitting region, and a cathode are formed in this order on the substrate. And
    In the organic electroluminescence element forming step, the charge transporting material is doped with a light emitting dopant to form the light emitting region, and the charge transporting material and the electron blocking material are formed between the anode and the light emitting region. An electron blocking region is formed between the cathode and the light emitting region by the charge transporting material and the hole blocking material, and the electron blocking region and the hole blocking region are formed. 39. The method for manufacturing a lighting device according to claim 37 or 38, wherein at least one of them is formed by vapor deposition polymerization.
  40.  上記照明パネル形成工程には、少なくとも陽極、発光領域を含む有機層、および陰極をこの順で基板上に形成した有機エレクトロルミネッセンス素子を上記発光素子として形成する有機エレクトロルミネッセンス素子形成工程が含まれており、
     上記有機エレクトロルミネッセンス素子形成工程では、上記有機層を構成する材料の少なくとも1種類の材料を真空条件下で蒸着するのと同時に、あるいは蒸着した後に、熱処理を行なうことを特徴とする請求項37に記載の照明装置の製造方法。
    The lighting panel forming step includes an organic electroluminescent element forming step of forming, as the light emitting element, an organic electroluminescent element in which at least an anode, an organic layer including a light emitting region, and a cathode are formed in this order on the substrate. And
    38. In the organic electroluminescence element forming step, heat treatment is performed simultaneously with or after vapor deposition of at least one material constituting the organic layer under vacuum conditions. The manufacturing method of the illuminating device of description.
  41.  上記照明パネル形成工程には、少なくとも陽極、発光領域を含む有機層、および陰極をこの順で基板上に形成した有機エレクトロルミネッセンス素子を上記発光素子として形成する有機エレクトロルミネッセンス素子形成工程が含まれており、
     上記有機エレクトロルミネッセンス素子形成工程では、上記有機層を構成する材料の少なくとも1種類の材料を真空条件下で蒸着するのと同時に、あるいは蒸着した後に、紫外線を照射することを特徴とする請求項37に記載の照明装置の製造方法。
    The lighting panel forming step includes an organic electroluminescent element forming step of forming, as the light emitting element, an organic electroluminescent element in which at least an anode, an organic layer including a light emitting region, and a cathode are formed in this order on the substrate. And
    38. In the organic electroluminescence element forming step, at least one kind of material constituting the organic layer is vapor-deposited under vacuum conditions at the same time or after vapor deposition, and then irradiated with ultraviolet rays. The manufacturing method of the illuminating device of description.
  42.  上記有機エレクトロルミネッセンス素子形成工程では、上記紫外線を照射した後に、熱処理を行うことを特徴とする請求項41に記載の照明装置の製造方法。 42. The method of manufacturing an illuminating device according to claim 41, wherein in the organic electroluminescence element forming step, heat treatment is performed after the ultraviolet ray is irradiated.
  43.  上記有機エレクトロルミネッセンス素子形成工程では、上記紫外線を照射する時に、マスクを用いてパターン形成することを特徴とする請求項41に記載の照明装置の製造方法。 42. The method of manufacturing an illuminating device according to claim 41, wherein in the organic electroluminescence element forming step, a pattern is formed using a mask when the ultraviolet ray is irradiated.
PCT/JP2011/064975 2010-07-06 2011-06-29 Lighting device and method for manufacturing same WO2012005158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-154187 2010-07-06
JP2010154187 2010-07-06

Publications (1)

Publication Number Publication Date
WO2012005158A1 true WO2012005158A1 (en) 2012-01-12

Family

ID=45441140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064975 WO2012005158A1 (en) 2010-07-06 2011-06-29 Lighting device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2012005158A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076060A1 (en) * 2013-11-20 2015-05-28 シャープ株式会社 Organic light emitting element, organic light emitting element manufacturing method, lighting apparatus, and organic light emitting display element
WO2018184889A1 (en) * 2017-04-06 2018-10-11 Philips Lighting Holding B.V. Lighting device
WO2019078318A1 (en) * 2017-10-20 2019-04-25 パイオニア株式会社 Light-emitting device and light-emitting module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173358U (en) * 1981-04-27 1982-11-01
JPH0893356A (en) * 1994-09-27 1996-04-09 Nichibei Co Ltd Blind-built-in double glazing
JP2000303758A (en) * 1999-04-22 2000-10-31 Ono:Kk Light emitting blind
JP2001082058A (en) * 1999-09-09 2001-03-27 Sony Corp Blind device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173358U (en) * 1981-04-27 1982-11-01
JPH0893356A (en) * 1994-09-27 1996-04-09 Nichibei Co Ltd Blind-built-in double glazing
JP2000303758A (en) * 1999-04-22 2000-10-31 Ono:Kk Light emitting blind
JP2001082058A (en) * 1999-09-09 2001-03-27 Sony Corp Blind device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076060A1 (en) * 2013-11-20 2015-05-28 シャープ株式会社 Organic light emitting element, organic light emitting element manufacturing method, lighting apparatus, and organic light emitting display element
WO2018184889A1 (en) * 2017-04-06 2018-10-11 Philips Lighting Holding B.V. Lighting device
CN110494691A (en) * 2017-04-06 2019-11-22 昕诺飞控股有限公司 Lighting apparatus
WO2019078318A1 (en) * 2017-10-20 2019-04-25 パイオニア株式会社 Light-emitting device and light-emitting module
JPWO2019078318A1 (en) * 2017-10-20 2020-11-05 パイオニア株式会社 Light emitting device
US11417854B2 (en) 2017-10-20 2022-08-16 Pioneer Corporation Light-emitting device and light-emitting module
US11943950B2 (en) 2017-10-20 2024-03-26 Pioneer Corporation Light-emitting device and light-emitting module

Similar Documents

Publication Publication Date Title
WO2011102389A1 (en) Integrated illumination apparatus and method of manufacturing same
WO2011083620A1 (en) Illumination device having multiple light emitting panels
JP5889730B2 (en) Organic electroluminescent device and lighting device
JP5676867B2 (en) Organic electroluminescence device
KR20120102482A (en) Organic electroluminescent device and illumination apparatus
JP5735162B1 (en) Organic electroluminescent device and lighting device
WO2014013990A1 (en) Illumination apparatus
WO2011039911A1 (en) Organic el lighting device and manufacturing method therefor
JP2012099319A (en) Illumination device and its manufacturing method
US20130032841A1 (en) Light-Emitting Device and Lighting Device
US8525163B2 (en) Organic EL device, method for fabricating organic EL device, and organic EL illumination system
US9016894B2 (en) Color mixing using the reflective properties of OLEDs
US8547013B2 (en) Organic EL display device with a color converting layer
WO2012081536A1 (en) Light-emitting device, display device, electronic apparatus, and illumination device
JP2006155940A (en) Organic electroluminescent light source device and lighting system having light adjustable and color adjustable characteristics
WO2012005158A1 (en) Lighting device and method for manufacturing same
JP2017027734A (en) Luminaire
WO2013038970A1 (en) Light emitting device, display device, and illumination device
JP5857006B2 (en) Organic electroluminescent device and lighting device
JP2014225328A (en) Light-emitting device, display device and luminaire
WO2012005045A1 (en) Illumination device and manufacturing method thereof
JP6022015B2 (en) Organic electroluminescent device and lighting device
WO2011052209A1 (en) Electro-optic device and method for manufacturing same
US9853247B2 (en) Electrophosphorescent organic light emitting concentrator
JP2014225330A (en) Light-emitting device, luminaire and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP