Nothing Special   »   [go: up one dir, main page]

WO2012005050A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2012005050A1
WO2012005050A1 PCT/JP2011/060736 JP2011060736W WO2012005050A1 WO 2012005050 A1 WO2012005050 A1 WO 2012005050A1 JP 2011060736 W JP2011060736 W JP 2011060736W WO 2012005050 A1 WO2012005050 A1 WO 2012005050A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polarizing plate
display device
crystal display
optical element
Prior art date
Application number
PCT/JP2011/060736
Other languages
English (en)
French (fr)
Inventor
雅浩 長谷川
坂井 彰
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/808,330 priority Critical patent/US8913217B2/en
Priority to CN201180033409.8A priority patent/CN102971664B/zh
Publication of WO2012005050A1 publication Critical patent/WO2012005050A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133567Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device suitable for a liquid crystal display device having a front polarizing plate, a liquid crystal cell, a back polarizing plate, and an optical element having a polarization degree in this order.
  • a liquid crystal display device is an element that displays characters and images using the electro-optical characteristics of liquid crystal molecules, and is widely used in mobile phones, notebook computers, liquid crystal televisions, and the like.
  • Liquid crystal display devices generally use a liquid crystal panel in which polarizing plates (front polarizing plate and back polarizing plate) are arranged on both sides of a liquid crystal cell. For example, in the normally black method, a black image is displayed when no voltage is applied. Can be displayed. 2. Description of the Related Art In recent years, liquid crystal display devices have been required to be liquid crystal panels having a high contrast ratio capable of drawing characters and images more clearly as the definition becomes higher and the applications are diversified.
  • a method for improving the front contrast ratio of a liquid crystal panel there are a method for reducing the scattering component inside the liquid crystal cell and a method for improving the degree of polarization by reducing the transmittance of the polarizing plate.
  • the method for reducing the scattering component inside the liquid crystal cell is not easy to take countermeasures, such as a design change of the cell structure.
  • the method of reducing the transmittance of the polarizing plate and improving the degree of polarization can be taken by changing the production conditions of the polarizing plate, so that the front contrast ratio can be improved relatively easily.
  • a liquid crystal cell for example, as a technique for improving the front contrast ratio, a liquid crystal cell, a first polarizing plate disposed on one side of the liquid crystal cell, and a second polarizing plate disposed on the other side of the liquid crystal cell
  • a liquid crystal panel in which the transmittance of the second polarizing plate is larger than the transmittance of the first polarizing plate (see, for example, Patent Documents 1 to 5).
  • the liquid crystal cell As for the technology for adjusting the transmittance of the pair of polarizing plates, the liquid crystal cell, the first polarizing plate disposed on one side of the liquid crystal cell, and the first disposed on the other side of the liquid crystal cell.
  • Two polarizing plates the first polarizing plate including a first polarizer and a first retardation layer disposed on the liquid crystal cell side of the first polarizer
  • the second polarizing plate includes a second polarizer and a second retardation layer disposed on the liquid crystal cell side of the second polarizer, and the refractive index ellipse of the first retardation layer.
  • the body shows a relationship of nx> ny ⁇ nz
  • the transmittance (T1) of the first polarizing plate is A liquid crystal panel larger than the transmittance (T2) of the second polarizing plate is disclosed (for example, see Patent Document 6).
  • liquid crystal display devices including a brightness enhancement film and a wire grid polarizer have been developed as optical elements having a degree of polarization. More specifically, with respect to a liquid crystal display device including a wire grid polarizer or the like, by forming a metal film on a transparent and flexible substrate and stretching the substrate and the metal film below the melting point of the metal film, A structure composed of a metal part having a typical shape and a dielectric part is formed, and the length in the short direction of the structure is shorter than the wavelength of light, and the length in the long direction is longer than the wavelength of light.
  • a liquid crystal display device using a wire-type polarizing optical element is disclosed (for example, see Patent Document 7).
  • Patent Document 6 is a technique for realizing a liquid crystal display device in which light leakage is small in an oblique direction, and is not a technique for improving the front contrast ratio.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a liquid crystal display device capable of achieving both a front contrast ratio and a front white luminance.
  • the present inventors have made various studies on a liquid crystal display device capable of achieving both a front contrast ratio and a front white luminance, and have focused on optical elements having a degree of polarization, such as a brightness enhancement film and a wire grid polarizer.
  • the contrast of the back polarizing plate is made smaller than that of the front polarizing plate, and air (gas) is prevented from entering between the back polarizing plate and the optical element having the polarization degree.
  • the present inventors have found that the front white luminance can be improved while maintaining the front contrast ratio, and have conceived that the above-mentioned problems can be solved brilliantly, and have reached the present invention.
  • one aspect of the present invention is a liquid crystal display device having a front polarizing plate, a liquid crystal cell, a back polarizing plate, and an optical element having a polarization degree in this order, and the contrast of the back polarizing plate is
  • the liquid crystal display device has an air layer that is smaller than the contrast of the front polarizing plate and substantially does not have an air layer between the back polarizing plate and the optical element having the polarization degree.
  • the front white luminance can be improved while maintaining the front contrast ratio of the liquid crystal display device. That is, both the front contrast ratio and the front white luminance can be achieved.
  • substantially no air layer is present between the back polarizing plate and the optical element having the degree of polarization, and air may not be present between the two, and within the scope of the effects of the present invention. If so, some air may exist between them. In the latter form, there may be air that is generated when both are bonded to each other.
  • the configuration of the liquid crystal display device is not particularly limited as long as such a component is formed as essential, and may or may not include other components.
  • a preferred embodiment of the liquid crystal display device will be described in detail below. In addition, each form shown below may be combined suitably.
  • the back polarizing plate includes a protective layer on the side of the optical element having the polarization degree, and the optical element having the polarization degree is attached to the protective layer (hereinafter also referred to as “first form”). There may be. Further, the optical element having the polarization degree may be in a form (hereinafter, also referred to as “second form”) attached to a polarizer of the back polarizing plate. Accordingly, the liquid crystal display device can be easily realized. According to the first embodiment, the liquid crystal display device can be manufactured using a commercially available polarizing plate and a commercially available optical element having a polarization degree, that is, using a general-purpose member. According to the second embodiment, since one protective film can be omitted, the apparatus can be thinned.
  • the optical element having the polarization degree is preferably attached to the protective layer via an adhesive layer.
  • the optical element having the polarization degree is preferably attached to the polarizing element via an adhesive layer. Moreover, it can prevent effectively that an air interface arises between the optical element with the said polarization degree, and the polarizing element of the said back polarizing plate. For this reason, a decrease in white luminance due to interface reflection that occurs between the optical element having the degree of polarization and the protective layer of the back polarizing plate is effectively improved.
  • An isotropic film may be disposed between the back polarizing plate and the optical element having the polarization degree. Further, there may be a birefringent layer between the back polarizing plate and the optical element having the polarization degree. Even in this case, the slow axis of the birefringent layer has the back polarizing plate and the polarization degree. By setting it in a direction that is substantially parallel or substantially orthogonal to the transmission axis of each optical element, the birefringence function of the birefringent layer is substantially disabled, and between the back polarizing plate and the optical element having the degree of polarization. The same effect as when the birefringent layer is not provided can be obtained.
  • the birefringent layer is a layer having optical anisotropy, and is an absolute value of the in-plane retardation value Re [550] and the absolute value of the thickness direction retardation value Rth [550]. Any one of them has a value of 10 nm or more, and preferably has a value of 20 nm or more.
  • the isotropic film is one in which both of the absolute value of the in-plane retardation value Re [550] and the absolute value of the thickness direction retardation value Rth [550] Rth have a value of 10 nm or less. Meaning, preferably 5 nm or less, more preferably 2 nm or less.
  • the contrast of the back polarizing plate is 300 or more, and the difference between the contrast of the front polarizing plate and the contrast of the back polarizing plate is preferably 3500 or more. Thereby, the effect of this invention can be show
  • the back polarizing plate may have a contrast smaller than the panel contrast. Also by this, the effect of the present invention can be sufficiently achieved.
  • the optical element having the polarization degree preferably has a moth-eye structure on the side opposite to the liquid crystal cell.
  • the transmittance of the back polarizing plate is preferably larger than the transmittance of the front polarizing plate.
  • the optical element having the degree of polarization preferably has a main transmittance k1 of 80 to 86% and a main transmittance k2 of 2 to 8%. Thereby, the effect of this invention can be show
  • At least one of the front polarizing plate and the rear polarizing plate preferably includes a retardation layer on the liquid crystal cell side.
  • the liquid crystal cell preferably includes a liquid crystal layer including liquid crystal molecules aligned in a homeotropic alignment in the absence of an electric field.
  • the retardation layer is preferably a retardation film whose refractive index ellipsoid satisfies the condition of nx ⁇ ny> nz.
  • the back polarizing plate includes a retardation layer on the liquid crystal cell side, and the liquid crystal cell is aligned in a homeotropic alignment in the absence of an electric field.
  • the form (henceforth the 3rd form) provided with the liquid crystal layer containing is preferable.
  • the back polarizing plate preferably includes a negative C plate on the optical element side having the polarization degree.
  • the main transmittance k1 of the optical element having the polarization degree is preferably 82 to 84%.
  • the main transmittance k2 of the optical element having the polarization degree is preferably 2 to 6%.
  • the transmittance of the front polarizing plate is preferably 40 to 45%, and more preferably 42 to 44%.
  • the transmittance of the back polarizing plate is preferably 42 to 48%, more preferably 43 to 46%.
  • the optical element having the polarization degree is preferably a brightness enhancement film or a wire grid polarizer.
  • liquid crystal display device capable of achieving both a front contrast ratio and a front white luminance.
  • FIG. 2 is a schematic cross-sectional view of the liquid crystal display device of Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view of a modification of the liquid crystal display device of Embodiment 1.
  • 6 is a schematic cross-sectional view of a liquid crystal display device of Embodiment 2.
  • FIG. It is a cross-sectional schematic diagram of the liquid crystal display device of Embodiment 3.
  • 6 is a schematic cross-sectional view of a liquid crystal display device of Embodiment 4.
  • the transmittance (single transmittance) is obtained by measuring the Y value after the visibility correction, using the two-degree field of view (C light source) defined in JIS Z8701-1982.
  • the measuring instrument include an ultraviolet-visible spectrophotometer (trade name “V-7100” manufactured by JASCO Corporation).
  • the parallel transmittance (Tp) is obtained by superposing two polarizing elements of the same type (the front polarizing plate, the back polarizing plate or the optical element having the polarization degree) so that their absorption axes are parallel to each other. It is the value of the transmittance of the produced parallel laminated polarizing element.
  • the parallel transmittance (Tp) is obtained from the formula: (k1 2 + k2 2 ) / 2.
  • the main transmittance k1 and k2 are referred to as main transmittances.
  • the main transmittance k1 refers to the transmittance when a linearly polarized light is incident on the polarizing element and the vibration direction of the linearly polarized light is parallel to the transmission axis of the polarizing element.
  • the main transmittance k2 refers to the transmittance when a linearly polarized light is incident on the polarizing element and the vibration direction of the linearly polarized light is parallel to the absorption axis of the polarizing element.
  • the orthogonal transmittance (Tc) was prepared by superposing two polarizing elements of the same type (the front polarizing plate, the back polarizing plate or the optical element having the polarization degree) so that the absorption axes are orthogonal to each other. It is the value of the transmittance of the orthogonal laminated polarizing element.
  • Tc orthogonal transmittance
  • the main transmittance k1 and the main transmittance k2 are obtained by measuring the Y value after the visibility correction, using the two-degree field of view (C light source) defined in JIS Z8701-1982.
  • the measuring instrument include an ultraviolet-visible spectrophotometer (trade name “V-7100” manufactured by JASCO Corporation).
  • Main refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), “ny” is the refractive index in the direction perpendicular to the slow axis in the plane, and “nz” “Is the refractive index in the thickness direction.
  • In-plane retardation value An in-plane retardation value (Re [ ⁇ ]) refers to an in-plane retardation value at a wavelength ⁇ (nm) at 23 ° C.
  • the liquid crystal display device includes a liquid crystal panel 10 and a backlight 20 disposed behind the liquid crystal panel 10.
  • the backlight 20 includes a cold cathode tube 21 that is a light source, a housing 22 that holds the cold cathode tube 21, a diffusion plate 23 and a plurality of optical sheets 24 provided above the cold cathode tube 21 on the liquid crystal panel 10 side.
  • the diffusion plate 23 and the plurality of optical sheets 24 are arranged in this order from the cold cathode tube 21 side to the liquid crystal panel 10 side.
  • the liquid crystal panel 10 includes a VA mode liquid crystal cell 11, a front polarizing plate (observation surface side polarizing plate) 12 disposed on the front main surface side (observation surface side) of the liquid crystal cell 11, and a back main surface of the liquid crystal cell 11.
  • a back polarizing plate (backlight side polarizing plate) 13 disposed on the side (backlight 20 side), and an optical element (optical member) 30 having a degree of polarization provided on the backlight 20 side of the back polarizing plate 13.
  • the front polarizing plate 12 includes a first polarizer 1a, a first protective layer 2a, and a second protective layer 2b.
  • the protective layer 2a, the polarizer 1a, and the protective layer 2b are stacked in this order from the liquid crystal cell 11 side. Is done.
  • the back polarizing plate 13 includes a second polarizer 1b, a third protective layer 2c, and a fourth protective layer 2d.
  • the protective layer 2c, the polarizer 1b, and the protective layer 2d are stacked in this order from the liquid crystal cell 11 side. Is done.
  • the front polarizing plate 12 is attached to the liquid crystal cell 11 through the first adhesive layer 3a
  • the back polarizing plate 13 is attached to the liquid crystal cell 11 through the second adhesive layer 3b and has a degree of polarization.
  • the optical element 30 is affixed to the back polarizing plate 13 through the third adhesive layer 3c.
  • the backlight 20 further includes a light guide plate and a light reflector.
  • the contrast of the back polarizing plate 13 is lower than the contrast of the front polarizing plate 12, and an air layer is substantially formed between the back polarizing plate 13 and the optical element 30 having a degree of polarization. not exist.
  • the front white luminance can be improved while maintaining the front contrast ratio (contrast ratio in the front direction, that is, the normal direction of the panel surface) of the liquid crystal display device.
  • the liquid crystal panel 10 is preferably of a normally black type.
  • the “normally black method” refers to a liquid crystal panel that is designed so that the transmittance is minimized when the voltage is not applied (the screen becomes black) and the transmittance is increased when the voltage is applied.
  • the effect of the present invention is particularly remarkable in a normally black liquid crystal panel that performs black display when no voltage is applied. It is considered that the effect obtained by using two polarizing plates 12 and 13 having different contrasts is not hindered by driving of liquid crystal molecules.
  • the transmission axis of the front polarizing plate 12 and the transmission axis of the back polarizing plate 13 are arranged so as to be substantially orthogonal when the liquid crystal panel 10 is viewed in plan. That is, the front polarizing plate 12 and the back polarizing plate 13 are preferably arranged in crossed Nicols. Further, the transmission axis of the back polarizing plate 13 and the transmission axis of the optical element 30 having the degree of polarization are arranged so as to be substantially parallel when the liquid crystal panel 10 is viewed in plan.
  • the angle formed by the transmission axis of the front polarizing plate 12 and the transmission axis of the back polarizing plate 13 is 90 ° ⁇ 1 ° (more preferably, 90 °
  • the angle between the transmission axis of the back polarizing plate 13 and the transmission axis of the optical element 30 having the degree of polarization is 0 ° ⁇ 1 ° (more preferably, 0 ° ⁇ 0.3 °) is preferable. Note that when the angle is shifted from 90 ° or 0 ° beyond 1 °, that is, outside these numerical ranges, a decrease in contrast may be confirmed at the viewing angle from the front.
  • Arbitrary layers may be disposed between the constituent members of the liquid crystal panel 10.
  • an arbitrary retardation film can be disposed between the front polarizing plate 12 and / or the back polarizing plate 13 and the liquid crystal cell 11.
  • any appropriate positional relationship can be selected as the relationship between the slow axis of the retardation film and the absorption axis of the adjacent polarizing plate depending on the driving mode of the liquid crystal cell.
  • the transmittance (T2) of the back polarizing plate 13 is preferably higher than the transmittance (T1) of the front polarizing plate 12. Thereby, the contrast of the polarizing plates 12 and 13 can be easily set to the above-described relationship.
  • T2 and T1 are preferably 0.5 to 6.0%, more preferably 2.0 to 4.0%. If ⁇ T is less than 0.5%, the effect of improving the front white luminance may not be sufficiently obtained. On the other hand, if ⁇ T exceeds 6.0%, the front contrast ratio may decrease.
  • liquid crystal cell 11 Any appropriate liquid crystal cell 11 can be adopted. Examples of the liquid crystal cell 11 include an active matrix type using a thin film transistor and a simple matrix type represented by a super twist nematic liquid crystal display device.
  • the liquid crystal cell 11 has a pair of substrates and a liquid crystal layer as a display medium sandwiched between the pair of substrates.
  • One substrate active matrix substrate
  • a switching element typically a TFT
  • the other substrate color filter substrate
  • the color filter may be provided on the active matrix substrate.
  • an RGB three-color light source is used for the illumination means of the liquid crystal display device as in the field sequential method, the color filter can be omitted.
  • the distance between the two substrates is controlled by a spacer.
  • an alignment film made of polyimide is provided on the side of each substrate in contact with the liquid crystal layer.
  • the liquid crystal cell 11 includes a liquid crystal layer (VA liquid crystal) including liquid crystal molecules aligned in a homeotropic alignment in the absence of an electric field.
  • VA liquid crystal liquid crystal
  • the influence of liquid crystal molecules on polarized light (transmitted light) in a state where no electric field is present (black display) can be almost eliminated, and the polarization is eliminated between the front polarizing plate 12 and the back polarizing plate 13.
  • “homeotropic alignment” means that the alignment vector of liquid crystal molecules is perpendicular and uniform with respect to the substrate plane as a result of the interaction between the aligned and unaligned substrate and the liquid crystal molecules. It is in a state of being oriented.
  • the homeotropic alignment includes the case where the liquid crystal molecules are slightly inclined with respect to the substrate plane, that is, the case where the liquid crystal molecules have a pretilt angle.
  • Typical examples of the liquid crystal cell 11 include a vertical alignment (VA) mode, a vertical alignment twisted nematic (VATN) mode, and the like according to the classification according to the drive mode.
  • VA mode liquid crystal cell may be multi-domained by using an electrode in which a slit is formed or a base material in which a protrusion is formed on the surface.
  • a VATN mode liquid crystal cell may also be multi-domained.
  • Rth [550] of the liquid crystal cell 11 in the absence of an electric field is preferably ⁇ 270 to ⁇ 360 nm, more preferably ⁇ 290 to ⁇ 340 nm.
  • the cell gap (interval between substrates) of the liquid crystal cell 11 is usually 2.0 to 4.0 ⁇ m (preferably 2.5 to 3.5 ⁇ m).
  • Polarizing plate refers to a material that converts natural light or polarized light into linearly polarized light.
  • the polarizing plate has a function of separating incident light into two orthogonally polarized components, transmitting one polarized component, and absorbing, reflecting and / or scattering the other polarized component.
  • the thicknesses of the front polarizing plate 12 and the back polarizing plate 13 are not particularly limited, and include the general concepts of thin films, films, and sheets.
  • the thickness of the front polarizing plate 12 and the back polarizing plate 13 is preferably 1 to 250 ⁇ m, more preferably 20 to 250 ⁇ m.
  • the transmittance (T1) of the front polarizing plate 12 is preferably 40 to 45%, more preferably 42 to 44%.
  • T1 is less than 40%, the front white luminance improvement effect may not be sufficiently obtained.
  • T1 exceeds 45%, the front contrast ratio may decrease.
  • the transmittance (T2) of the back polarizing plate 13 is preferably 42 to 48%, more preferably 43 to 46%. If the T1 is less than 42%, the front contrast ratio may be lowered. On the other hand, if T1 exceeds 48%, the effect of improving the front white luminance may not be sufficiently obtained.
  • the contrast (CR1) of the front polarizing plate 12 can be appropriately set within the range of 2000 to 60000. If CR1 is less than 2000, the effect of the present invention can be obtained, but the front contrast ratio of the liquid crystal display device may be too low. On the other hand, when CR1 exceeds 60,000, the front white luminance may decrease.
  • the contrast (CR2) of the back polarizing plate 13 can usually be appropriately set within 300 to 35000. If CR2 is less than 300, the front contrast ratio may be lowered. On the other hand, when CR2 exceeds 35000, the effect of the present invention is obtained, but the front white luminance may be lowered.
  • the liquid crystal panel 10 can be produced by, for example, selecting commercially available polarizing plates having different contrasts and combining them appropriately.
  • the liquid crystal panel 10 is manufactured by appropriately adjusting the contrast of the front polarizing plate 12 and the back polarizing plate 13 so as to increase the front contrast ratio in accordance with the driving mode and application of the liquid crystal cell 11.
  • a polarizer mainly composed of a polyvinyl alcohol resin containing iodine is used as the polarizers 1a and 1b.
  • a method of adjusting the content of iodine in the polarizer can be mentioned.
  • the transmittance of the front polarizing plate 12 and the back polarizing plate 13 is low and the contrast can be increased, and when the iodine content in the polarizer is decreased, The transmittance of the polarizing plate 12 and the back polarizing plate 13 is high, and the contrast can be lowered. Note that this method can be applied to the production of roll-shaped front and rear polarizing plates as well as to the production of single-wafer front and rear polarizing plates.
  • each of the polarizers 1a and 1b is mainly composed of a polyvinyl alcohol-based resin containing iodine.
  • the front polarizing plate 12 and the back polarizing plate 13 can have excellent optical characteristics.
  • the polarizers 1a and 1b can usually be obtained by adding iodine to a polymer film (PVA film) containing a polyvinyl alcohol-based resin as a main component and then stretching it.
  • PVA film polymer film
  • PVA film a commercially available PVA film can also be used as it is.
  • examples of commercially available PVA films include the product name “Kuraray Vinylon Film” manufactured by Kuraray Co., Ltd., the product name “Tosero Vinylon Film” manufactured by Mitsui Chemicals Tosero Co., Ltd., and the product name “Nippon Vinylon Film manufactured by Nippon Synthetic Chemical Industries, Ltd. Or the like.
  • the front polarizing plate 12 includes a polarizer 1a and protective layers 2a and 2b disposed on both sides of the polarizer 1a.
  • the back polarizing plate 13 includes a polarizer 1b and protective layers 2c and 2d disposed on both sides of the polarizer 1b.
  • the protective layers 2a to 2d can prevent, for example, the polarizers 1a and 1b from contracting or expanding, and can prevent the polarizers 1a and 1b from being deteriorated by ultraviolet rays. Durability can be improved.
  • Each of the protective layers 2a and 2b is attached to the polarizer 1a via any appropriate adhesive layer (not shown).
  • the protective layers 2c and 2d are each attached to the polarizer 1b via any appropriate adhesive layer (not shown).
  • the “adhesive layer” refers to a layer that joins surfaces of adjacent optical members and integrates them with practically sufficient adhesive force and adhesion time.
  • the material for forming the adhesive layer include an adhesive and an anchor coat agent.
  • the adhesive layer may have a multilayer structure in which an anchor coat layer is formed on the surface of an adherend and an adhesive layer is formed thereon. Further, it may be a thin layer (also referred to as a hairline) that cannot be visually recognized.
  • the material for forming the adhesive layer is preferably a water-soluble adhesive.
  • the water-soluble adhesive is preferably a water-soluble adhesive mainly composed of a polyvinyl alcohol resin.
  • the adhesive layer can also be formed using a commercially available adhesive as it is. Or a solvent and an additive can also be mixed and used for a commercially available adhesive agent.
  • an adhesive mainly composed of a commercially available polyvinyl alcohol-based resin for example, “GOHSEIMER Z200” manufactured by Nippon Synthetic Chemical Industry Co., Ltd. may be mentioned.
  • the water-soluble adhesive may further contain a crosslinking agent as an additive.
  • the crosslinking agent include amine compounds, aldehyde compounds, methylol compounds, epoxy compounds, isocyanate compounds, and polyvalent metal salts.
  • a commercially available crosslinking agent can be used as it is.
  • commercially available crosslinking agents include aldehyde compounds manufactured by Nippon Synthetic Chemical Industry Co., Ltd., and trade name “glyoxazal”.
  • the amount of the crosslinking agent added can be appropriately adjusted according to the purpose, but is usually more than 0 and 10 parts by weight or less with respect to 100 parts by weight of the solid content of the water-soluble adhesive.
  • the first protective layer 2a is disposed on the liquid crystal cell 11 side of the polarizer 1a. Any appropriate value can be selected as the thickness of the protective layer 2a according to the purpose.
  • the thickness of the protective layer 2a is preferably 20 to 100 ⁇ m. By setting the thickness of the protective layer 2a within the above range, a polarizing plate excellent in mechanical strength and durability can be obtained.
  • the protective layer 2a is disposed between the polarizers 1a and 1b, its optical characteristics may affect the display characteristics of the liquid crystal display device. Accordingly, the protective layer 2a is preferably optically highly transparent, and preferably has a suitable retardation value. That is, the protective layer 2a may also have a function of expanding the viewing angle of the liquid crystal cell 11 (a layer having such a function is also referred to as an optical compensation layer). From the viewpoint of improving the durability of the polarizer 1a, those excellent in heat resistance, moisture permeability and mechanical strength are preferred. From the viewpoint of improving the adhesion with the polarizer 1a, surface smoothness and adhesion with an adhesive are preferred. From the viewpoint of improving the adhesiveness with the liquid crystal cell 11, those having excellent adhesiveness with the pressure-sensitive adhesive are preferable.
  • any appropriate material can be adopted as the material for forming the protective layer 2a.
  • a polymer film made of a norbornene resin, a polymer film made of a cellulose resin, and the like can be given.
  • a polymer film made of a norbornene resin from the viewpoint of suppressing the occurrence of unevenness in light leakage during black display due to temperature unevenness and the like, it is most preferable to use a polymer film made of a norbornene resin.
  • a commercially available film can be used as it is.
  • a commercially available film subjected to secondary processing such as stretching treatment and / or shrinking treatment can be used in order to provide a retardation film function for optical compensation.
  • Examples of the polymer film made of a commercially available cellulose resin include “Fujitac” manufactured by Fuji Photo Film Co., “KC8UX2M” manufactured by Konica Minolta Opto, and the like.
  • Examples of the polymer film made of a norbornene-based resin include a trade name “ZEONOR FILM” manufactured by Nippon Zeon Co., Ltd. and a product name “ARTON” manufactured by JSR Corporation.
  • the second protective layer 2b is disposed on the opposite side of the polarizer 1a from the liquid crystal cell 11 side. Any appropriate layer can be adopted as the protective layer 2b. From the viewpoint of improving the durability of the polarizer 1a, the protective layer 2b is preferably excellent in heat resistance, moisture permeability and mechanical strength. From the viewpoint of improving adhesion with the polarizer 1a, the surface smoothness and The thing excellent in adhesiveness with an adhesive agent is preferable.
  • the protective layer 2b is a polymer film made of a cellulose resin from the viewpoint of adhesion to the polarizer 1a.
  • the polymer film made of the cellulose resin is preferably the same as that described for the protective layer 2a.
  • any appropriate surface treatment may be applied to the surface thereof.
  • a commercially available polymer film subjected to surface treatment can be used as it is.
  • a commercially available polymer film can be used after any surface treatment.
  • the surface treatment include diffusion treatment (antiglare treatment), antireflection treatment (antireflection treatment), hard coat treatment, and antistatic treatment.
  • Examples of commercially available diffusion-treated (anti-glare-treated) products include AG150, AGS1, AGS2, and AGT1 manufactured by Nitto Denko Corporation.
  • Examples of commercially available antireflection treatment (anti-reflection treatment) products include ARS and ARC manufactured by Nitto Denko Corporation.
  • Examples of commercially available films that have been subjected to hard coat treatment and antistatic treatment include trade name “KC8UX-HA” manufactured by Konica Minolta Opto.
  • a surface treatment layer may be provided on the side of the protective layer 2b opposite to the polarizer 1a side. Any appropriate layer can be adopted as the surface treatment layer depending on the purpose. For example, a diffusion treatment (antiglare treatment) layer, an antireflection treatment (antireflection treatment) layer, a hard coat treatment layer, an antistatic treatment layer and the like can be mentioned. These surface treatment layers are used for the purpose of preventing the screen from being soiled or damaged, or preventing the display image from becoming difficult to see due to the reflection of indoor fluorescent light or sunlight on the screen. In general, the surface treatment layer is obtained by fixing the treatment agent for forming the treatment layer on the surface of the base film. The base film may also serve as the protective layer 2b.
  • the surface treatment layer may have a multilayer structure in which, for example, a hard coat treatment layer is laminated on the antistatic treatment layer.
  • a hard coat treatment layer is laminated on the antistatic treatment layer.
  • Examples of the commercially available surface-treated layer subjected to the antireflection treatment include the ReaLook series manufactured by NOF Corporation.
  • the surface treatment layer preferably has a moth-eye structure.
  • the moth-eye structure is, for example, a fine concavo-convex pattern in which the concavo-convex period is controlled to be equal to or less than the wavelength of visible light.
  • the concavo-convex pattern is usually formed on the surface of the resin layer, and the resin layer is usually provided on the base film.
  • the said moth eye structure can be arbitrarily produced, for example by the method of international publication 2006/059686.
  • the third protective layer 2c is disposed on the liquid crystal cell 11 side of the polarizer 1b.
  • the protective layer 2c any appropriate one can be adopted from the materials, characteristics, conditions, and the like described in the protective layer 2a.
  • the protective layer 2a and the protective layer 2c may be the same as or different from each other.
  • the fourth protective layer 2d is disposed on the opposite side of the polarizer 1b from the liquid crystal cell 11 side. Any appropriate layer can be adopted as the protective layer 2d from the materials, characteristics, conditions, and the like described in the protective layer 2b described above.
  • the protective layer 2b and the protective layer 2d may be the same as or different from each other.
  • the thickness direction retardation value Rth [550] of the protective layer 2d is preferably 100 nm (more preferably 70 nm) or less. If it exceeds 100 nm, the contrast of the oblique viewing angle may be lowered.
  • the retardation value Re [550] of the protective layer 2d is not necessarily 0 nm as long as the effect of the present invention can be obtained, and is preferably 10 nm (more preferably 5 nm) or less. If it exceeds 10 nm, the front contrast may be lowered due to the influence of the axial angle with the polarizer 1b.
  • At least one of the protective layers 2a and 2c also serves as a retardation film (optical compensation layer) for optical compensation (viewing angle compensation).
  • optical compensation layer optical compensation layer
  • light leakage in an oblique direction at the time of black display can be reduced, so that the light emitted in the front direction can be reduced by being emitted obliquely and scattered by the surface treatment layer or the like. Can do. Therefore, the effect of the present invention can be achieved more effectively.
  • the main refractive indexes nx, ny, and nz preferably satisfy the relationship of nx ⁇ ny> nz.
  • one retardation film satisfying the relationship of nx> ny> nz is disposed as the first protective layer or the third protective layer.
  • a mode in which the film is arranged as the other of the first protective layer and the third protective layer, and one retardation film satisfying the relationship of nx> ny> nz is arranged as the first protective layer, and nx> ny> It can be realized by a form in which one retardation film satisfying the relationship of nz is disposed as the third protective layer.
  • a specific retardation value if it is the design by which the light leakage of a diagonal direction is reduced, it will not specifically limit, It can set arbitr
  • the front polarizing plate 12 and the back polarizing plate 13 may be formed only from a single layer (polarizer) having a polarizing function.
  • the front polarizing plate 12 and the back polarizing plate 13 may be a laminate including two or more polarizers.
  • Adhesive layer> As a material for forming the adhesive layers 3a to 3c, an appropriate adhesive is selected, and an anchor coat agent may be included.
  • the pressure-sensitive adhesive is a viscoelastic substance that shows an adhesive force that can be sensed by pressure contact at room temperature.
  • the material forming the adhesive layers 3a to 3c is an acrylic adhesive having an acrylic polymer as a base polymer. This is because it is excellent in transparency, adhesiveness, weather resistance and heat resistance.
  • the thickness of the pressure-sensitive adhesive layers 3a to 3c can be appropriately adjusted according to the material and application of the adherend, but is usually 5 to 50 ⁇ m (preferably 10 to 30 ⁇ m) and is thicker than the adhesive layer.
  • the optical element 30 having a degree of polarization may be any element as long as it has a function of separating incident light into two orthogonal polarization components, transmitting one polarization component, and absorbing or reflecting the other polarization component.
  • Examples include wire grid polarizers, iodine-based polarizers, dye-based polarizers, etc., but from the viewpoint of further improving the luminance (white luminance) when displaying a white image on a liquid crystal display device, it is not transmitted. It is preferable to use a brightness enhancement film or a wire grid polarizer having a function of reflecting the polarization component. Thereby, since the light which does not permeate
  • the optical element 30 having a degree of polarization has a main transmittance k1 of 80 to 86% (more preferably 82 to 84%) and a main transmittance k2 of 2 to 8% (more preferably 2 to 6). %). Thereby, the effect of this invention can be exhibited more effectively.
  • the orthogonal transmittance of the optical element 30 having the degree of polarization is high. Therefore, when the optical element 30 having a polarization degree is combined with the back polarizing plate 13, a high contrast polarizing plate is required as the back polarizing plate 13 in order to maintain the contrast of the liquid crystal display device. Therefore, it is necessary to use a polarizing plate having a low transmittance as much as the back polarizing plate 13, and it is considered that the front white luminance is hardly improved.
  • the orthogonal transmittance of the optical element 30 having the polarization degree is low. Therefore, it is not necessary to use a high-contrast polarizing plate as the back polarizing plate 13 in order to maintain the contrast of the liquid crystal display device. Therefore, since a polarizing plate having a high transmittance can be used as the back polarizing plate 13, it is considered that the front white luminance can be easily improved.
  • main transmittance k1 If the main transmittance k1 is less than 80%, the front white luminance may decrease. On the other hand, when the main transmittance k1 exceeds 86%, it becomes difficult to achieve the main transmittance k2.
  • the front contrast ratio may decrease.
  • the main transmittance k2 is less than 2%, the front white luminance may be reduced.
  • the surface treatment layer 31 has the above-described moth-eye structure on the surface on the backlight 20 side. Therefore, since reflection at the interface between the optical element 30 having the degree of polarization and the air layer can be significantly reduced, the front white luminance can be effectively improved.
  • the surface treatment layer 31 may be directly formed on the optical element 30 having a polarization degree, or may be attached via an adhesive layer or the like.
  • the brightness enhancement film is used in order to improve the white brightness of a liquid crystal display device.
  • the brightness enhancement film is a laminate including a thermoplastic resin layer (A) and a thermoplastic resin layer (B).
  • the brightness enhancement film is one in which a thermoplastic resin layer (A) and a thermoplastic resin layer (B) are alternately arranged (ABABAB).
  • the number of layers constituting the brightness enhancement film is preferably 2 to 20 layers, and more preferably 2 to 15 layers.
  • the brightness enhancement film having such a structure is produced, for example, by co-extruding two kinds of resins and stretching the extruded film.
  • the total thickness of the brightness enhancement film is preferably 20 to 800 ⁇ m.
  • the thermoplastic resin layer (A) exhibits optical anisotropy.
  • the in-plane birefringence index ( ⁇ nA) of the thermoplastic resin (A) is preferably 0.05 or more, more preferably 0.1 or more, and further preferably 0.15 or more. From the viewpoint of optical uniformity, the upper limit value of ⁇ nA is preferably 0.2.
  • ⁇ nA represents a difference (nxA ⁇ nyA) between nxA (refractive index in the slow axis direction) and nyA (refractive index in the fast axis direction).
  • the thermoplastic resin layer (B) is preferably substantially optically isotropic.
  • the in-plane birefringence ( ⁇ nB) of the thermoplastic resin (B) is preferably 5 ⁇ 10 ⁇ 4 or less, more preferably 1 ⁇ 10 ⁇ 4 or less, and further preferably 0.5 ⁇ 10 10. -4 or less.
  • the lower limit value of ⁇ nB is preferably 0.01 ⁇ 10 ⁇ 4 .
  • ⁇ nB represents a difference (nxB ⁇ nyB) between nxB (refractive index in the slow axis direction) and nyB (refractive index in the fast axis direction).
  • nyA of the thermoplastic resin layer (A) and nyB of the thermoplastic resin layer (B) are substantially the same.
  • the absolute value of the difference between nyA and nyB is preferably 5 ⁇ 10 ⁇ 4 or less, more preferably 1 ⁇ 10 ⁇ 4 or less, and further preferably 0.5 ⁇ 10 ⁇ 4 or less.
  • the brightness enhancement film having such optical characteristics is excellent in the function of reflecting the polarization component.
  • thermoplastic resin layer (A) preferably contains a polyethylene terephthalate resin, a polytrimethylene terephthalate resin, a polybutylene terephthalate resin, a polyethylene naphthalate resin, a polybutylene naphthalate resin, or a mixture thereof. . These resins are excellent in the expression of birefringence due to stretching and excellent in the stability of birefringence after stretching.
  • thermoplastic resin layer (B) preferably contains a polystyrene resin, a polymethyl methacrylate resin, a polystyrene glycidyl methacrylate resin, or a mixture thereof.
  • a halogen group such as chlorine, bromine or iodine may be introduced in order to increase the refractive index.
  • said resin may contain arbitrary additives, in order to adjust a refractive index.
  • the wire grid polarizer is used to improve the white luminance of the liquid crystal display device.
  • conductor wires such as metal are preferably arranged in a slit shape at a specific pitch on the substrate. If the pitch is considerably smaller than the incident light (for example, the wavelength of visible light of 400 to 800 nm) (for example, half or less), the electric field vector component that oscillates in parallel to the conductor line. Is reflected and almost perpendicular to the electric field vector component, so that a single polarized light can be created.
  • the wire grid polarizer can be arbitrarily produced by, for example, the method described in JP-A-2005-70456.
  • the performance (transmittance and contrast) of the wire grid polarizer can be changed by adjusting the width, period (pitch) and height (thickness) of the conductor wire (metal wire). More specifically, in this embodiment, the ratio W / P of the conductor wire width W and period (pitch) P is preferably 25 to 50%, and more preferably 30 to 42%.
  • the period (pitch) of the conductor wire is preferably 500 nm or less, and more preferably 200 nm or less. Further, the thickness of the conductor wire is preferably 10 to 300 nm, more preferably 80 to 150 nm.
  • the conductor wire material gold, silver, copper, aluminum, iron, nickel, titanium, tungsten, or an alloy thereof can be used.
  • the reflectance is high, and the wavelength dependency on visible light. From the viewpoint of flatness and easy maintenance of high reflectivity against changes over time (cloudiness), it is most preferable to use aluminum.
  • optical sheet 24 The number and type of the optical sheet 24 are not particularly limited and can be arbitrarily selected. As described above, as long as the optical member exemplified in FIG. 1 exhibits the effects of the present invention, a part of the optical member such as an illumination method of the liquid crystal display device and a driving mode of the liquid crystal cell may be omitted depending on the use. Other optical members can be substituted. Examples of the optical sheet 24 include a prism sheet (for example, trade name “BEF” manufactured by Sumitomo 3M), a diffusion sheet (for example, trade name “Opulse” manufactured by Eiwa Co., Ltd.), and the like.
  • a prism sheet for example, trade name “BEF” manufactured by Sumitomo 3M
  • diffusion sheet for example, trade name “Opulse” manufactured by Eiwa Co., Ltd.
  • the prism sheet is used to improve the white luminance in the normal direction of the liquid crystal panel by regularly changing the light emission angle.
  • the diffusion sheet is for changing the light emission angle irregularly to improve the white luminance in the normal direction of the liquid crystal panel and to make the luminance unevenness of the cold cathode tube 21 less noticeable.
  • the diffusion plate 23 causes surface emission by diffusing the light emitted from the cold cathode tube 21.
  • the diffusion plate 23 diffuses the light emitted from the cold cathode tube 21 in the surface direction, thereby making the luminance unevenness of the cold cathode tube 21 inconspicuous.
  • the diffusion plate 23 is made of, for example, a polycarbonate resin, an acrylic resin, or the like.
  • the material, thickness, haze value, etc. constituting the diffusion plate 23 are not particularly limited.
  • the liquid crystal display device of this embodiment is used for any appropriate application.
  • Applications include, for example, OA devices such as personal computer monitors, notebook computers, and copy machines, mobile phones, watches, digital cameras, personal digital assistants (PDAs), portable devices such as portable game machines, video cameras, televisions, microwave ovens, etc.
  • the use of the liquid crystal display device of this embodiment is a television.
  • the screen size of the TV is preferably a wide 17 type (373 mm ⁇ 224 mm) or more, more preferably a wide 23 type (499 mm ⁇ 300 mm) or more, and further preferably a wide 32 type (687 mm ⁇ 412 mm) or more. .
  • the liquid crystal display device of Embodiment 2 does not include the protective layer 2d, except that the optical element 30 having a polarization degree is directly attached to the polarizer 1b via the adhesive layer 204. This is the same as the liquid crystal display device of the first embodiment.
  • the adhesive layer 204 can be formed in the same manner as the adhesive layer between the protective layer 2d and the polarizer 1a described in the first embodiment. That is, as the adhesive layer 204, any appropriate one can be adopted from the materials, characteristics, conditions, and the like described in the above-described adhesive layer.
  • the front white luminance can be improved while maintaining the front contrast ratio (contrast ratio in the front direction) of the liquid crystal display device.
  • the liquid crystal display device of this embodiment is not provided with the protective layer 2d, it can be made thinner than the liquid crystal display device of Embodiment 1.
  • the liquid crystal display device according to the third embodiment has a liquid crystal cell 311, a first protective layer 302 a, a third liquid crystal instead of the liquid crystal cell 11, the first protective layer 2 a, and the third protective layer 2 c.
  • the liquid crystal display device of the first embodiment is the same as the liquid crystal display device of the first embodiment except that the protective layer 302c is disposed.
  • the liquid crystal cell 311 is different from the liquid crystal cell 11 in the following points, but is otherwise the same as the liquid crystal cell 11.
  • the protective layers 302a and 302c are the same as the protective layers 2a and 2c, respectively, except for the following points.
  • the liquid crystal cell 311 includes a liquid crystal layer (horizontal alignment liquid crystal layer) including liquid crystal molecules aligned in a homogeneous alignment in the absence of an electric field.
  • the “homogeneous alignment” means a state in which the alignment vector of the liquid crystal molecules is aligned in parallel and uniformly with respect to the substrate plane as a result of the interaction between the aligned substrate and the liquid crystal molecules.
  • the homogeneous alignment includes the case where the liquid crystal molecules are slightly inclined with respect to the substrate plane, that is, the case where the liquid crystal molecules have a pretilt angle.
  • Typical examples of the liquid crystal cell 311 include an in-plane switching (IPS) mode, a fringe field switching (FFS) mode, a ferroelectric liquid crystal (FLC) mode, and the like, according to the classification according to the driving mode.
  • IPS mode and FFS mode liquid crystal cells may have electrodes such as a V-shaped electrode and a zigzag electrode.
  • the liquid crystal cell 311 may be a so-called O mode or a so-called E mode, but is preferably an E mode. By using the E mode, the front contrast ratio can be further improved.
  • the liquid crystal cell 311 is in the O mode, the absorption axis direction of the back polarizing plate 13 and the initial alignment direction of the liquid crystal cell 311 (the direction in which the in-plane refractive index of the liquid crystal cell 311 becomes maximum in the absence of an electric field) Is substantially parallel.
  • the absorption axis direction of the back polarizing plate 13 and the initial alignment direction of the liquid crystal cell 311 are substantially orthogonal.
  • the first protective layer 302a preferably exhibits substantially optical isotropy.
  • substantially optically isotropic means that Re [550] is less than 10 nm and the absolute value of the retardation value in the thickness direction (
  • Re [550] of the protective layer 302a is preferably less than 10 nm, more preferably 8 nm or less, and even more preferably 5 nm or less. By setting Re [550] in the above range, it is possible to suppress the occurrence of color shift in an oblique direction.
  • (absolute value of Rth [550]) of the protective layer 302a is preferably less than 10 nm, more preferably 8 nm or less, and even more preferably 5 nm or less.
  • the protective layer 302a is a polymer film containing a cellulose resin. Since the cellulose-based resin is excellent in adhesiveness with the polarizer, it is possible to suppress the occurrence of floating or peeling between the polarizer and the protective layer even in a high temperature and high humidity environment.
  • a commercially available film can be used as it is.
  • a commercially available film subjected to secondary processing such as stretching treatment and / or shrinking treatment can be used in order to provide a retardation film function for optical compensation.
  • Examples of the polymer film made of a commercially available cellulose resin include “Fujitac” manufactured by Fuji Photo Film Co., “KC8UX2M” manufactured by Konica Minolta Opto, and the like.
  • the third protective layer 302c any appropriate one can be adopted from the materials, characteristics, conditions, and the like described in the above-described protective layer 302a.
  • the protective layer 302a and the protective layer 302c may be the same as or different from each other.
  • the protective layer 302c is substantially optically isotropic.
  • Embodiment 4 As shown in FIG. 5, in the liquid crystal display device of Embodiment 4, the protective layer 2d is not provided, and the optical element 30 having a polarization degree is directly attached to the polarizer 1b via the adhesive layer 204 described in Embodiment 2.
  • the liquid crystal display device of the third embodiment is the same as that of the third embodiment except for the addition.
  • the front white luminance can be improved while maintaining the front contrast ratio (contrast ratio in the front direction) of the liquid crystal display device.
  • liquid crystal display device of the present embodiment does not include the protective layer 2d, it can be made thinner than the liquid crystal display device of the third embodiment.
  • Example 1 A method for manufacturing the liquid crystal display device of Example 1 will be described below.
  • a front polarizing plate was attached to the main surface on the observation surface side of the VA mode liquid crystal cell via an acrylic pressure-sensitive adhesive (thickness 20 ⁇ m).
  • Rth [550] of the liquid crystal cell was 315 nm.
  • the front polarizing plate was provided with a polarizer A, which is a PVA film containing iodine, and two TAC films attached to both main surfaces of the polarizer A by roll-to-roll.
  • the TAC films each had a thickness of 80 ⁇ m, Re [550] of 2 nm, and Rth [550] of 60 nm.
  • the back polarizing plate includes a polarizer B, which is a PVA film containing iodine, a retardation film attached to one main surface of the polarizer B by roll-to-roll, and a roll on the other main surface of the polarizer B. And a TAC film attached with a toe roll.
  • the retardation film had a thickness of 60 ⁇ m, satisfied a relationship of nx> ny> nz, Re [550] was 54.8 nm, and Rth [550] was 124.5 nm.
  • the retardation film was disposed so that the in-plane slow axis was parallel to the absorption axis of the back polarizing plate.
  • the TAC film had a thickness of 80 ⁇ m, Re [550] of 2 nm, and Rth [550] of 49 nm.
  • the retardation film was placed on the liquid crystal cell side, and the TAC film was placed on the backlight side.
  • the front polarizing plate and the back polarizing plate were arranged in crossed Nicols so that the absorption axis directions thereof were orthogonal to each other.
  • the absorption axes of the front polarizing plate and the rear polarizing plate were respectively arranged in a direction formed by approximately 45 ° with respect to the direction in which the liquid crystal molecules were inclined by voltage application when the liquid crystal cell was viewed in plan.
  • a liquid crystal panel is attached to the main surface on the backlight side of the back polarizing plate by attaching a brightness enhancement film (trade name “DBEF” manufactured by Sumitomo 3M Co.) via an acrylic adhesive (thickness 20 ⁇ m).
  • DBEF brightness enhancement film
  • the back polarizing plate and the brightness enhancement film were arranged in parallel Nicols so that their absorption axis directions were parallel to each other.
  • Example 2 A liquid crystal display device of Example 2 was produced in the same manner as Example 1 except that Polarizer C was used instead of Polarizer B.
  • the polarizer C is a PVA film containing iodine.
  • Example 3 A liquid crystal display device of Example 3 was produced in the same manner as Example 1 except that the polarizer D was used instead of the polarizer B. It is a PVA film containing a polarizer D and iodine.
  • Example 4 A liquid crystal display device of Example 4 was produced in the same manner as in Example 1 except that the polarizer B was used instead of the polarizer A, and the polarizer C was used instead of the polarizer B.
  • Example 5 A liquid crystal display device of Example 5 was produced in the same manner as Example 4 except that the polarizer D was used instead of the polarizer C.
  • Example 6 A liquid crystal display device of Example 6 was produced in the same manner as in Example 1 except that the polarizer C was used instead of the polarizer A, and the polarizer D was used instead of the polarizer B.
  • Comparative Example 1 A liquid crystal display device of Comparative Example 1 was produced in the same manner as in Example 1 except that the polarizer A was used instead of the polarizer B and the brightness enhancement film was not attached to the back polarizing plate. In this comparative example, the liquid crystal panel is simply placed directly on the brightness enhancement film.
  • Comparative Example 2 A liquid crystal display device of Comparative Example 2 was produced in the same manner as Example 1 except that Polarizer A was used instead of Polarizer B.
  • Comparative Example 3 A liquid crystal display device of Comparative Example 3 was produced in the same manner as in Example 4 except that Polarizer A was used instead of Polarizer C.
  • Comparative Example 4 A liquid crystal display device of Comparative Example 4 was produced in the same manner as in Example 4 except that Polarizer B was used instead of Polarizer C.
  • Comparative Example 5 A liquid crystal display device of Comparative Example 5 was produced in the same manner as in Example 6 except that Polarizer A was used instead of Polarizer D.
  • Comparative Example 6 A liquid crystal display device of Comparative Example 6 was produced in the same manner as Example 6 except that Polarizer B was used instead of Polarizer D.
  • Comparative Example 7 A liquid crystal display device of Comparative Example 7 was produced in the same manner as in Example 6 except that the polarizer C was used instead of the polarizer D.
  • each polarizing plate The characteristics of each polarizing plate are shown in Table 1 below.
  • Table 1 When the front polarizing plate and the back polarizing plate contain the same polarizer, the characteristics of the front polarizing plate and the back polarizing plate are the same in principle. Therefore, in Table 1, it has described without distinguishing a front polarizing plate and a back polarizing plate.
  • Table 2 shows the results of measuring front white luminance, front black luminance, and panel contrast for each example and comparative example.
  • the front white luminance is described as white luminance
  • the front black luminance is described as black luminance.
  • the white luminance increase rate indicates the ratio of the white luminance of each example or comparative example to the white luminance of comparative example 1.
  • the panel contrast is a front contrast ratio of a liquid crystal panel, that is, a member from a surface polarizing plate to a brightness enhancement film (an optical element having a polarization degree).
  • the front white luminance and front black luminance are measured from a location 40 cm away from the liquid crystal panel with a single field of view. did.
  • the front white luminance can be improved by attaching the brightness enhancement film to the back polarizing plate and preventing air from entering between the both. Further, when comparing the front polarizing plate having the same polarizer, and the comparative example, the front white brightness is maintained while maintaining the panel contrast as much as possible by lowering the CR of the back polarizing plate than the CR of the front polarizing plate. It was found that can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

本発明は、正面コントラスト比、及び、正面白輝度の両立が可能である液晶表示装置を提供する。本発明は、表偏光板(12)と、VAモードの液晶セル(11)と、裏偏光板(13)と、偏光度を持つ光学素子(30)と、バックライト(20)をこの順に有する液晶表示装置である。前記裏偏光板(13)のコントラストは、前記表偏光板(12)のコントラストよりも小さく、前記裏偏光板(13)と、前記偏光度を持つ光学素子(30)との間には空気層が実質的に存在しない。偏光素子(前記表偏光板、前記裏偏光板及び前記偏光度を持つ光学素子)のコントラスト(CR)は、偏光素子の平行透過率(Tp)及び直交透過率(Tc)を測定し、式:CR=Tp/Tcより求める。前記偏光度を持つ光学素子(30)として、輝度向上フィルム又はワイヤーグリッド偏光子を用いることが、光の有効利用の観点から好ましい。

Description

液晶表示装置
本発明は、液晶表示装置に関する。より詳しくは、表偏光板、液晶セル、裏偏光板及び偏光度を持つ光学素子をこの順に有する液晶表示装置に好適な液晶表示装置に関するものである。
液晶表示装置は、液晶分子の電気光学特性を利用して、文字や画像を表示する素子であり、携帯電話やノートパソコン、液晶テレビ等に広く普及している。液晶表示装置は、通常、液晶セルの両側に偏光板(表偏光板及び裏偏光板)が配置された液晶パネルが用いられており、例えば、ノーマリーブラック方式では、電圧無印加時に黒画像を表示することができる。近年、液晶表示装置は、高精細化が進み、用途が多岐にわたるにつれて、文字や画像をより鮮明に描くことのできる、高いコントラスト比を示す液晶パネルが求められている。
従来、液晶パネルの正面コントラスト比を向上させる方法としては、液晶セル内部の散乱成分を少なくする方法と、偏光板の透過率を低下させ偏光度を向上させる方法とが挙げられる。液晶セル内部の散乱成分を少なくする方法は、セル構造の設計変更が必要になる等、その対策は容易ではない。一方、偏光板の透過率を低下させ偏光度を向上させる方法は、偏光板の作製条件を変更するだけで対策が可能であるため、比較的容易に正面コントラスト比を向上させることができる方法として知られている。
例えば、正面コントラスト比を向上させる技術として、液晶セルと、該液晶セルの一方の側に配置された第1の偏光板と、該液晶セルの他方の側に配置された第2の偏光板とを備え、該第2の偏光板の透過率が、該第1の偏光板の透過率よりも大きい液晶パネルが開示されている(例えば、特許文献1~5参照。)。
なお、一対の偏光板の透過率を調節する技術に関しては、液晶セルと、該液晶セルの一方の側に配置された第1の偏光板と、該液晶セルの他方の側に配置された第2の偏光板とを少なくとも備え、該第1の偏光板は、第1の偏光子と、該第1の偏光子の該液晶セル側に配置された第1の位相差層とを含み、該第2の偏光板は、第2の偏光子と、該第2の偏光子の該液晶セル側に配置された第2の位相差層とを含み、該第1の位相差層の屈折率楕円体は、nx>ny≧nzの関係を示し、該第2の位相差層の屈折率楕円体は、nx=ny>nzの関係を示し、該第1の偏光板の透過率(T1)は、該第2の偏光板の透過率(T2)よりも大きい液晶パネルが開示されている(例えば、特許文献6参照。)。
また、偏光板以外にも偏光度を持つ光学素子として、輝度向上フィルムやワイヤーグリッド偏光子等を備える液晶表示装置が開発されている。より具体的には、ワイヤーグリッド偏光子等を備える液晶表示装置に関して、透明で柔軟な基板上に金属膜を形成し、金属膜の融点以下で基板と金属膜とを延伸することにより、異方的な形状を有する金属部分と誘電体部分とからなる構造が形成されてなり、該構造の短い方向の長さが光の波長より短く、長い方向の長さが光の波長より長い構造であるワイヤーリッド型偏光光学素子を用いた液晶表示装置が開示されている(例えば、特許文献7参照。)。
特開2007-298958号公報 特開2008-9388号公報 特開2008-15307号公報 特開2008-33250号公報 特開2008-58980号公報 特開2007-328217号公報 特開2001-74935号公報
しかしながら、上述の特許文献1~5に記載の偏光板の透過率を調整する方法は、正面コントラスト比を向上させることは可能であるが、偏光板の透過率を低下させる必要が生じ、同時に正面白輝度を低下させてしまうという点で改善の余地があった。
更に、特許文献6に記載の技術は、斜め方向において光漏れが小さい液晶表示装置を実現するための技術であり、正面コントラスト比を向上させるための技術ではなかった。
本発明は、上記現状に鑑みてなされたものであり、正面コントラスト比及び正面白輝度の両立が可能である液晶表示装置を提供することを目的とするものである。
本発明者らは、正面コントラスト比及び正面白輝度の両立が可能である液晶表示装置について種々検討したところ、輝度向上フィルムやワイヤーグリッド偏光子等の偏光度を持つ光学素子に着目した。そして、裏偏光板のコントラストを表偏光板のコントラストよりも小さくするとともに、裏偏光板と、偏光度を持つ光学素子との間に空気(気体)が入らないようにすることにより、液晶表示装置の正面コントラスト比を維持しつつ正面白輝度を向上できることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一側面は、表偏光板と、液晶セルと、裏偏光板と、偏光度を持つ光学素子とをこの順に有する液晶表示装置であって、前記裏偏光板のコントラストは、前記表偏光板のコントラストよりも小さく、前記裏偏光板と、前記偏光度を持つ光学素子との間に空気層が実質的に存在しない液晶表示装置である。
これにより、液晶表示装置の正面コントラスト比を維持しつつ正面白輝度を向上できる。すなわち、正面コントラスト比及び正面白輝度の両立が可能になる。
なお、裏偏光板と偏光度を持つ光学素子との間に空気層が実質的に存在しないとは、両者の間に空気が全く存在しなくてもよいし、本発明の効果を奏する範囲内であれば両者の間に多少の空気が存在してもよい。後者の形態においては、両者を互いに貼り合わせた場合に発生する程度の空気が存在してもよい。
前記液晶表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素を含んでいても含んでいなくてもよく、特に限定されるものではない。
前記液晶表示装置における好ましい形態について以下に詳しく説明する。なお、以下に示す各形態は、適宜組み合わされてもよい。
前記裏偏光板は、前記偏光度を持つ光学素子側に保護層を備え、前記偏光度を持つ光学素子は、前記保護層に貼り付けられる形態(以下、「第一形態」とも言う。)であってもよい。また、前記偏光度を持つ光学素子は、前記裏偏光板の偏光子に貼り付けられる形態(以下、「第二形態」とも言う。)であってもよい。これらにより、前記液晶表示装置を容易に実現することができる。また、第一形態によれば、市販の偏光板と、市販の偏光度を持つ光学素子とを用いて、すなわち汎用の部材を用いて前記液晶表示装置を作製することができる。第二形態によれば、一枚の保護フィルムを省略することができるので、装置を薄くすることができる。
第一形態において、前記偏光度を持つ光学素子は、好適には、粘着層を介して前記保護層に貼り付けられる。これにより、前記偏光度を持つ光学素子と前記裏偏光板の保護層との間に空気界面が発生するのを効果的に防止できる。そのため、偏光度を持つ光学素子と裏偏光板の保護層との間の界面反射に起因する白輝度の低下が効果的に改善される。
偏光素子の耐久性を向上させる観点からは、第二形態において、前記偏光度を持つ光学素子は、好適には、接着層を介して前記偏光素子に貼り付けられる。また、これにより、前記偏光度を持つ光学素子と前記裏偏光板の偏光素子との間に空気界面が発生するのを効果的に防止できる。そのため、偏光度を持つ光学素子と裏偏光板の保護層との間で発生する界面反射に起因する白輝度の低下が効果的に改善される。
なお、前記裏偏光板と、前記偏光度を持つ光学素子との間には等方性フィルムが配置されてもよい。また、前記裏偏光板と、前記偏光度を持つ光学素子との間に複屈折層があってもよく、この場合でも、該複屈折層の遅相軸を、裏偏光板及び偏光度を持つ光学素子それぞれの透過軸と略平行又は略直交をなす方向に設定することで、該複屈折層の複屈折機能を実質的に無効化し、裏偏光板と偏光度を持つ光学素子との間に複屈折層が設けられていない場合と同様の効果を得ることができる。
なお、複屈折層とは、光学的異方性を有する層のことであり、面内の位相差値Re[550]の絶対値と、厚み方向位相差値Rth[550]の絶対値とのいずれか一方が10nm以上の値を有するものを意味し、好ましくは20nm以上の値を有するものを意味する。
また、等方性フィルムとは、面内の位相差値Re[550]の絶対値と、厚み方向位相差値Rth[550]Rthの絶対値とのいずれもが10nm以下の値を有するものを意味し、好ましくは5nm以下、より好ましくは2nm以下の値を有するものを意味する。
前記裏偏光板のコントラストは、300以上であり、前記表偏光板のコントラストと前記裏偏光板のコントラストとの差は、3500以上であることが好ましい。これにより、本発明の効果を効果的に奏することができる。
前記裏偏光板のコントラストは、パネルコントラストよりも小さくてもよい。これによっても、本発明の効果を充分に奏することができる。
前記偏光度を持つ光学素子は、前記液晶セルとは反対側にモスアイ構造を有することが好ましい。これにより、本発明の効果を効果的に奏することができる。
前記裏偏光板の透過率は、前記表偏光板の透過率よりも大きいことが好ましい。これにより、本発明の効果を効果的に奏することができる。
前記偏光度を持つ光学素子は、主透過率k1が80~86%であり、主透過率k2が2~8%であることが好ましい。これにより、本発明の効果を効果的に奏することができる。
前記表偏光板及び裏偏光板の少なくとも一方は、前記液晶セル側に位相差層を備えることが好ましい。
前記液晶セルは、電界が存在しない状態で、ホメオトロピック配列に配向させた液晶分子を含む液晶層を備えることが好ましい。
前記位相差層は、屈折率楕円体がnx≧ny>nzの条件を満たす位相差フィルムであることが好ましい。
斜め視野角におけるコントラストを向上する観点からは、前記裏偏光板は、前記液晶セル側に位相差層を備え、前記液晶セルは、電界が存在しない状態で、ホメオトロピック配列に配向させた液晶分子を含む液晶層を備える形態(以下、第三形態とも言う。)が好ましい。
また、斜め視野角におけるコントラストをより効果的に向上する観点からは、第三形態において、前記裏偏光板は、前記偏光度を持つ光学素子側にネガティブCプレートを備えることが好ましい。
前記偏光度を持つ光学素子の主透過率k1は、82~84%であることが好ましい。
前記偏光度を持つ光学素子の主透過率k2は、2~6%であることが好ましい。
前記表偏光板の透過率は、40~45%であることが好ましく、42~44%であることがより好ましい。
前記裏偏光板の透過率は、42~48%であることが好ましく、43~46%であることがより好ましい。
前記偏光度を持つ光学素子は、輝度向上フィルム又はワイヤーグリッド偏光子であることが好ましい。
本発明によれば、正面コントラスト比及び正面白輝度の両立が可能である液晶表示装置を実現することができる。
実施形態1の液晶表示装置の断面模式図である。 実施形態1の液晶表示装置の変形例の断面模式図である。 実施形態2の液晶表示装置の断面模式図である。 実施形態3の液晶表示装置の断面模式図である。 実施形態4の液晶表示装置の断面模式図である。
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
なお、本明細書で透過率(単体透過率)は、JIS Z8701-1982に規定の2度視野(C光源)により、視感度補正を行ったY値を測定することにより求める。測定機器としては、例えば、紫外可視分光光度計(日本分光社製、商品名「V-7100」)が挙げられる。
本明細書で偏光度は、例えば前記紫外可視分光光度計を用いて、偏光板の平行透過率(Tp)及び直交透過率(Tc)を測定し、式:偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100より求める。
平行透過率(Tp)は、同じ種類の2枚の偏光素子(前記表偏光板、前記裏偏光板又は前記偏光度を持つ光学素子)を、互いの吸収軸が平行となるように重ね合わせて作製した平行型積層偏光素子の透過率の値である。
また、平行透過率(Tp)は、式:(k1+k2)/2より求める。
k1及びk2は主透過率といい、主透過率k1は、ある直線偏光を偏光素子に入射させたとき、その直線偏光の振動方向が偏光素子の透過軸と平行なときの透過率をいう。主透過率k2は、ある直線偏光を偏光素子に入射させたとき、その直線偏光の振動方向が偏光素子の吸収軸と平行なときの透過率をいう。
直交透過率(Tc)は、同じ種類の2枚の偏光素子(前記表偏光板、前記裏偏光板又は前記偏光度を持つ光学素子)を、互いに吸収軸が直交するように重ね合わせて作製した直交型積層偏光素子の透過率の値である。
また、直交透過率(Tc)は、式:k1×k2より求める。
主透過率k1及び主透過率k2は、JIS Z8701-1982に規定の2度視野(C光源)により、視感度補正を行ったY値を測定することにより求める。測定機器としては、例えば、紫外可視分光光度計(日本分光社製、商品名「V-7100」)が挙げられる。
本明細書で偏光素子(前記表偏光板、前記裏偏光板及び前記偏光度を持つ光学素子)のコントラスト(CR)は、偏光素子の平行透過率(Tp)及び直交透過率(Tc)を測定し、式:CR=Tp/Tcより求める。
その他、本明細書における用語及び記号の定義は下記の通りである。
(1)主屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大となる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内の位相差値
面内の位相差値(Re[λ])は、23℃で波長λ(nm)におけるフィルムの面内の位相差値をいう。Re[λ]は、フィルムの厚みをd(nm)としたとき、Re[λ]=(nx-ny)×dによって求められる。
(3)厚み方向の位相差値
厚み方向の位相差値(Rth[λ])は、23℃で波長λ(nm)におけるフィルムの厚み方向の位相差値をいう。Re[λ]は、フィルムの厚みをd(nm)としたとき、Rth[λ]=(nx-nz)×dによって求められる。
(実施形態1)
本実施形態の液晶表示装置は、図1に示すように、液晶パネル10と、液晶パネル10の後方に配置されたバックライト20とを備える。バックライト20は、光源である冷陰極管21と、冷陰極管21を保持する筐体22と、冷陰極管21の液晶パネル10側の上方に設けられた拡散板23及び複数の光学シート24とを備える。拡散板23及び複数の光学シート24は、冷陰極管21側から液晶パネル10側にこの順に配置されている。液晶パネル10は、VAモードの液晶セル11と、液晶セル11の表主面側(観察面側)に配置された表偏光板(観察面側偏光板)12と、液晶セル11の裏主面側(バックライト20側)に配置された裏偏光板(バックライト側偏光板)13と、裏偏光板13のバックライト20側に設けられた偏光度を持つ光学素子(光学部材)30とを備える。
表偏光板12は、第一の偏光子1a、第一の保護層2a及び第二の保護層2bを含み、保護層2a、偏光子1a及び保護層2bは、液晶セル11側からこの順に積層される。
裏偏光板13は、第二の偏光子1b、第三の保護層2c及び第四の保護層2dを含み、保護層2c、偏光子1b及び保護層2dは、液晶セル11側からこの順に積層される。
表偏光板12は、第一の粘着層3aを介して液晶セル11に貼り付けられ、裏偏光板13は、第二の粘着層3bを介して液晶セル11に貼り付けられ、偏光度を持つ光学素子30は、第三の粘着層3cを介して裏偏光板13に貼り付けられる。
なお、図示例では、バックライト20として、直下方式が採用された場合を示しているが、これは例えば、サイドライト方式のものであってもよい。サイドライト方式が採用される場合、好ましくは、バックライト20は、導光板と、ライトリフレクターとを更に備える。
本実施形態の液晶表示装置において、裏偏光板13のコントラストは、表偏光板12のコントラストよりも低く、裏偏光板13と、偏光度を持つ光学素子30との間に空気層が実質的に存在しない。これにより、液晶表示装置の正面コントラスト比(正面方向、すなわちパネル表面の法線方向におけるコントラスト比)を維持しつつ正面白輝度を向上することができる。
以下、本実施形態の液晶表示装置の各構成についてより詳細に説明する。
<A.液晶パネルの概要>
液晶パネル10は、好ましくは、ノーマリーブラック方式である。なお、本明細書において「ノーマリーブラック方式」とは、電圧無印加時に透過率が最小(画面が黒くなる状態)になり、電圧印加時に透過率が高くなるように設計されている液晶パネルをいう。本発明の効果は、電圧無印加時に黒表示を行う、ノーマリーブラック方式の液晶パネルにおいて、特に顕著である。コントラストの異なる2枚の偏光板12、13を用いて得られる効果が、液晶分子の駆動によって阻害されないためであると考えられる。
このような観点から、表偏光板12の透過軸と裏偏光板13の透過軸とは、液晶パネル10を平面視したときに略直交するように配置されることが好ましい。すなわち、表偏光板12及び裏偏光板13は、クロスニコルに配置されることが好ましい。また、裏偏光板13の透過軸と偏光度を持つ光学素子30の透過軸とは、液晶パネル10を平面視したときに略平行になるように配置されている。より具体的には、液晶パネル10を平面視したときに、表偏光板12の透過軸と裏偏光板13の透過軸とのなす角は、90°±1°(より好適には、90°±0.3°)の範囲内であることが好ましく、裏偏光板13の透過軸と偏光度を持つ光学素子30の透過軸とのなす角は、0°±1°(より好適には、0°±0.3°)の範囲内であることが好ましい。なお、90°又は0°から1°を超えてずれると、すなわちこれらの数値範囲を外れると、正面からの視角において、コントラストの低下が確認されることがある。
液晶パネル10の各構成部材の間には、任意の層が配置され得る。例えば、表偏光板12及び/又は裏偏光板13と、液晶セル11との間には、任意の位相差フィルムが配置され得る。位相差フィルムが用いられる場合、位相差フィルムの遅相軸と隣接する偏光板の吸収軸との関係は、液晶セルの駆動モードに応じて、任意の適切な位置関係が選択され得る。
裏偏光板13の透過率(T2)は、表偏光板12の透過率(T1)よりも高いことが好ましい。これにより、偏光板12、13の互いのコントラストを上述の関係に容易に設定することができる。
T2とT1の差(ΔT=T2-T1)は、好ましくは0.5~6.0%であり、より好ましくは2.0~4.0%である。ΔTが0.5%未満であると、正面白輝度の向上効果が充分に得られないことがある。一方、ΔTが6.0%を超えると、正面コントラスト比が低下することがある。
裏偏光板13のコントラスト(CR2)と、表偏光板12のコントラスト(CR1)との差(ΔCR=CR1-CR2)は、通常、2000~30000内で適宜設定することができる。ΔCRが2000未満であると、正面白輝度の向上効果が充分に得られないことがある。一方、ΔCRが30000を超えると、正面コントラスト比が低下することがある。
<B.液晶セル>
液晶セル11としては、任意の適切なものが採用され得る。液晶セル11としては、例えば、薄膜トランジスタを用いたアクティブマトリクス型のもの、スーパーツイストネマチック液晶表示装置に代表される単純マトリクス型のもの等が挙げられる。
液晶セル11は、一対の基板と、該一対の基板に挟持された表示媒体としての液晶層とを有する。一方の基板(アクティブマトリクス基板)には、液晶の電気光学特性を制御するスイッチング素子(代表的には、TFT)と、このスイッチング素子にゲート信号を与える走査線及びソース信号を与える信号線とが設けられる。他方の基板(カラーフィルター基板)には、カラーフィルターが設けられる。上記カラーフィルターは、上記アクティブマトリクス基板に設けてもよい。あるいは、フィールドシーケンシャル方式のように液晶表示装置の照明手段にRGB3色光源が用いられる場合は、上記カラーフィルターは省略され得る。2つの基板の間隔は、スペーサーによって制御される。各基板の液晶層と接する側には、例えば、ポリイミドからなる配向膜が設けられる。
液晶セル11は、電界が存在しない状態で、ホメオトロピック配列に配向させた液晶分子を含む液晶層(VA液晶)を備える。これにより、正面方向において、電界が存在しない状態(黒表示)での偏光(透過光)への液晶分子の影響をほとんどなくすことができ、表偏光板12及び裏偏光板13の間における偏光解消を起こす要因を低減することができる。そのため、本発明の効果をより効果的に発揮することができる。ここで、「ホメオトロピック配列」とは、配向処理された、又は配向処理されていない基板と液晶分子との相互作用の結果として、液晶分子の配向ベクトルが、基板平面に対し、垂直且つ一様に配向した状態のものをいう。なお、本明細書において、上記ホメオトロピック配列は、液晶分子が基板平面に対し、わずかに傾いている場合、すなわち、液晶分子がプレチルト角を持つ場合も包含する。
液晶セル11の屈折率楕円体は、nz>nx=nyの関係を有する。ここで、nx=nyは、nxとnyとが完全に同一である場合だけでなく、nxとnyとが実質的に同一である場合も包含する。液晶セル11の代表例としては、駆動モードによる分類によれば、垂直配向(VA)モード、垂直配向ねじれネマチック(VATN)モード等が挙げられる。VAモードの液晶セルは、スリットが形成された電極や表面に突起が形成された基材を用いることによって、マルチドメイン化されてもよい。VATNモードの液晶セルも、マルチドメイン化されてもよい。
液晶セル11の、電界が存在しない状態におけるRth[550]は、好ましくは-270~-360nmであり、より好ましくは-290~-340nmである。液晶セル11のセルギャップ(基板間隔)は、通常、2.0~4.0μm(好適には2.5~3.5μm)である。
<C.偏光板>
表偏光板12及び裏偏光板13は、コントラストが上記の関係を満足するものであれば、任意の適切なものが採用され得る。本明細書において、「偏光板」は、自然光又は偏光を直線偏光に変換するものをいう。好ましくは、上記偏光板は、入射する光を直交する2つの偏光成分に分離し、一方の偏光成分を透過させ、他方の偏光成分を、吸収、反射及び/又は散乱させる機能を有する。
表偏光板12及び裏偏光板13の厚みは、特に限定されず、薄膜、フィルム、シートの一般的な概念を包含する。表偏光板12及び裏偏光板13の厚みは、好ましくは1~250μmであり、より好ましくは20~250μmである。表偏光板12及び裏偏光板13の厚みを上記の範囲とすることによって、機械的強度に優れるものが得られ得る。
表偏光板12の透過率(T1)は、好ましくは40~45%であり、より好ましくは42~44%である。T1が40%未満であると、正面白輝度の向上効果が充分に得られないことがある。一方、T1が45%を超えると、正面コントラスト比が低下することがある。
裏偏光板13の透過率(T2)は、好ましくは42~48%であり、より好ましくは43~46%である。T1が42%未満であると、正面コントラスト比が低下することがある。一方、T1が48%を超えると、正面白輝度の向上効果が充分に得られないことがある。
表偏光板12のコントラスト(CR1)は、通常、2000~60000内で適宜設定することができる。CR1が2000未満であると、本発明の効果は得られるが、液晶表示装置の正面コントラスト比が低くなりすぎることがある。一方、CR1が60000を超えると、正面白輝度が低下することがある。
裏偏光板13のコントラスト(CR2)は、通常、300~35000内で適宜設定することができる。CR2が300未満であると、正面コントラスト比が低下することがある。一方、CR2が35000を超えると、本発明の効果は得られるが、正面白輝度が低下することがある。
液晶パネル10は、例えば、市販の偏光板のなかから、コントラストの異なるものを選択し、適宜、組み合せて作製することができる。好ましくは、液晶パネル10は、液晶セル11の駆動モードや用途等に合せて、正面コントラスト比が高くなるように、表偏光板12及び裏偏光板13のコントラストを、適切に調整して作製される。
表偏光板12及び裏偏光板13の透過率及びコントラストを増加又は減少させる方法としては、例えば、偏光子1a及び1bとして、ヨウ素を含有するポリビニルアルコール系樹脂を主成分とする偏光子が用いられる場合、偏光子中のヨウ素の含有量を調整する方法が挙げられる。偏光子中のヨウ素の含有量を増加させると、表偏光板12及び裏偏光板13の透過率は低く、コントラストは高くすることができ、偏光子中のヨウ素の含有量を減少させると、表偏光板12及び裏偏光板13の透過率は高く、コントラストは低くすることができる。なお、この方法は、ロール状の表偏光板及び裏偏光板の作製にも、枚葉の表偏光板及び裏偏光板の作製にも適用可能である。
<C-1.偏光子>
偏光子1a及び1bとしては、任意の適切なものが採用され得る。好ましくは、偏光子1a及び1bはそれぞれ、ヨウ素を含有するポリビニルアルコール系樹脂を主成分とする。これにより、表偏光板12及び裏偏光板13は、優れた光学特性を持つことができる。なお、この場合、偏光子1a及び1bは、通常、ポリビニルアルコール系樹脂を主成分とする高分子フィルム(PVAフィルム)にヨウ素を含有させた後、それを延伸して得ることができる。
上記PVAフィルムとしては、市販のPVAフィルムをそのまま用いることもできる。市販のPVAフィルムとしては、例えば、クラレ社製の商品名「クラレビニロンフィルム」、三井化学東セロ社製の商品名「トーセロビニロンフィルム」、日本合成化学工業社製の商品名「日合ビニロンフィルム」等が挙げられる。
<C-2.保護層>
表偏光板12は、偏光子1aと、偏光子1aの両側に配置された保護層2a及び2bとを備える。裏偏光板13は、偏光子1bと、偏光子1bの両側に配置された保護層2c及び2dとを備える。保護層2a~2dは、例えば、偏光子1a及び1bが収縮や膨張することを防いだり、紫外線により劣化することを防いだりすることができ、その結果、表偏光板12及び裏偏光板13の耐久性を向上することができる。
保護層2a及び2bはそれぞれ、任意の適切な接着層(図示せず)を介して偏光子1aに貼り付けられる。また、保護層2c及び2dはそれぞれ、任意の適切な接着層(図示せず)を介して偏光子1bに貼り付けられる。
本明細書において、「接着層」とは、隣り合う光学部材の面と面とを接合し、実用上充分な接着力と接着時間で一体化させるものをいう。上記接着層を形成する材料としては、例えば、接着剤、アンカーコート剤が挙げられる。上記接着層は、被着体の表面にアンカーコート層が形成され、その上に接着剤層が形成されたような、多層構造であってもよい。また、肉眼的に認知できないような薄い層(ヘアーラインともいう)であってもよい。
偏光子1a及び1bが、ヨウ素を含有するポリビニルアルコール系樹脂を主成分とする場合、上記接着層を形成する材料としては、好ましくは、水溶性接着剤である。上記水溶性接着剤としては、好ましくは、ポリビニルアルコール系樹脂を主成分とする水溶性接着剤である。上記接着層は、市販の接着剤をそのまま用いて形成することもできる。あるいは、市販の接着剤に溶剤や添加剤を混合して用いることもできる。市販のポリビニルアルコール系樹脂を主成分とする接着剤としては、例えば、日本合成化学工業社製の商品名「ゴーセファイマーZ200」が挙げられる。
上記水溶性接着剤は、添加剤として、架橋剤を更に含有し得る。架橋剤の種類としては、例えば、アミン化合物、アルデヒド化合物、メチロール化合物、エポキシ化合物、イソシアネート化合物、多価金属塩等が挙げられる。上記架橋剤は、市販のものをそのまま用いることもできる。市販の架橋剤としては、日本合成化学工業社製のアルデヒド化合物、商品名「グリオキサザール」が挙げられる。上記架橋剤の添加量は、目的に応じて、適宜、調整され得るが、通常、水溶性接着剤の固形分100重量部に対して、0を超え10重量部以下である。
〔第1の保護層〕
第1の保護層2aは、偏光子1aの液晶セル11側に配置される。保護層2aの厚みは、目的に応じて、任意の適切な値が選択され得る。保護層2aの厚みは、好ましくは、20~100μmである。保護層2aの厚みを上記の範囲とすることによって、機械的強度や耐久性に優れた偏光板が得られ得る。
保護層2aは、偏光子1a及び1bの間に配置されるため、その光学特性が液晶表示装置の表示特性に影響を与える場合がある。したがって、保護層2aは、光学的に透明性が高いものが好ましく、適切な位相差値を有するものを用いることが好ましい。すなわち、保護層2aは、液晶セル11の視野角を拡大する機能を兼ねていてもよい(このような機能を有する層を、光学補償層ともいう)。偏光子1aの耐久性向上の観点からは、耐熱性、透湿性及び機械強度に優れているものが好ましく、偏光子1aとの密着性向上の観点からは、表面平滑性及び接着剤との密着性に優れているものが好ましく、液晶セル11との密着性向上の観点からは、粘着剤との密着性に優れているものが好ましい。
保護層2aを形成する材料としては、任意の適切なものが採用され得る。例えば、ノルボルネン系樹脂からなる高分子フィルム、セルロース系樹脂からなる高分子フィルム等が挙げられる。なかでも、温度ムラ等に起因して黒表示時の光漏れにムラが生じることを抑える観点からは、ノルボルネン系樹脂からなる高分子フィルムを用いることが最も好ましい。
保護層2aは、市販のフィルムをそのまま用いることができる。あるいは、光学補償のための位相差フィルムの機能を持たせるために、市販のフィルムに延伸処理及び/又は収縮処理等の2次的加工を施したものを用いることができる。市販のセルロース系樹脂からなる高分子フィルムとしては、例えば、富士写真フイルム社製の商品名「フジタック」、コニカミノルタオプト社製の商品名「KC8UX2M」等が挙げられる。ノルボルネン系樹脂からなる高分子フィルムとしては、例えば、日本ゼオン社製の商品名「ゼオノアフィルム」や、JSR社製の商品名「ARTON」等が挙げられる。
〔第2の保護層〕
第2の保護層2bは、偏光子1aの液晶セル11側とは反対側に配置される。保護層2bとしては、任意の適切なものが採用され得る。保護層2bは、偏光子1aの耐久性向上の観点からは、耐熱性、透湿性及び機械強度に優れているものが好ましく、偏光子1aとの密着性向上の観点からは、表面平滑性及び接着剤との密着性に優れているものが好ましい。
保護層2bを形成する材料としては、任意の適切なものが採用され得る。好ましくは、保護層2bは、偏光子1aとの密着性の観点からは、セルロース系樹脂からなる高分子フィルムである。上記セルロース系樹脂からなる高分子フィルムは、好ましくは、保護層2aで記載したものと同様のものが用いられる。
保護層2bは、上記コントラストの関係を満足する限り、その表面に任意の適切な表面処理が施されてもよい。例えば、保護層2bとして、表面処理が施された市販の高分子フィルムをそのまま用いることができる。あるいは、市販の高分子フィルムに任意の表面処理を施して用いることもできる。表面処理としては、拡散処理(アンチグレア処理)、反射防止処理(アンチリフレクション処理)、ハードコート処理、帯電防止処理等が挙げられる。市販の拡散処理(アンチグレア処理)品としては、例えば、日東電工社製のAG150、AGS1、AGS2、AGT1等が挙げられる。市販の反射防止処理(アンチリフレクション処理)品としては、日東電工社製のARS、ARC等が挙げられる。ハードコート処理及び帯電防止処理が施された市販のフィルムとしては、例えば、コニカミノルタオプト社製の商品名「KC8UX-HA」等が挙げられる。
〔表面処理層〕
必要に応じて、保護層2bの偏光子1a側とは反対側に、表面処理層を設けてもよい。上記表面処理層は、目的に応じて、任意の適切なものを採用し得る。例えば、拡散処理(アンチグレア処理)層、反射防止処理(アンチリフレクション処理)層、ハードコート処理層、帯電防止処理層等が挙げられる。これらの表面処理層は、画面の汚れや傷つきを防止したり、室内の蛍光灯や太陽光線が画面に写り込むことによって、表示画像が見え難くなることを防止したりする目的で使用される。表面処理層は、一般的には、ベースフィルムの表面に上記の処理層を形成する処理剤を固着させたものが用いられる。上記ベースフィルムは、保護層2bを兼ねていてもよい。更に、表面処理層は、例えば、帯電防止処理層の上にハードコート処理層を積層したような多層構造を有してもよい。反射防止処理が施された市販の表面処理層としては、例えば、日油社製のReaLookシリーズ等が挙げられる。
また、上記表面処理層は、モスアイ構造を有していることが好ましい。これにより、白輝度の向上が更に得られ、本発明の効果が更に発揮される。更に、明室において表面反射が低減され、本発明の効果が明室においても充分に発揮される。上記モスアイ構造は、例えば、凹凸の周期が可視光の波長以下に制御された微細な凹凸パターンである。該凹凸パターンは、通常、樹脂層の表面に形成され、該樹脂層は、通常、ベースフィルム上に設けられる。なお、上記モスアイ構造は、例えば、国際公開2006/059686号に記載の方法により、任意に作製することができる。
〔第3の保護層〕
第3の保護層2cは、偏光子1bの液晶セル11側に配置される。保護層2cとしては、上述した保護層2aに記載した材料、特性、条件等から任意の適切なものが採用され得る。保護層2aと保護層2cとは、互いに同一であってもよいし、異なっていてもよい。
〔第4の保護層〕
第4の保護層2dは、偏光子1bの液晶セル11側とは反対側に配置される。保護層2dとしては、上述した保護層2bに記載した材料、特性、条件等から任意の適切なものが採用され得る。保護層2bと保護層2dとは、互いに同一であってもよいし、異なっていてもよい。
保護層2dの厚み方向の位相差値Rth[550]は、100nm(より好適には70nm)以下であることが好ましい。100nmを超えると斜め視野角のコントラストが低下することがある。
また、保護層2dの位相差値Re[550]は、本発明の作用効果を得られる範囲であれば必ずしも0nmである必要はなく、10nm(より好適には5nm)以下であることが好ましい。10nmを超えると、偏光子1bとの軸角度の影響で正面コントラストが低下することがある。
また、保護層2a及び2cの少なくとも一方は、光学補償(視野角補償)のための位相差フィルム(光学補償層)の役割を兼ね備えていることが好ましい。これにより、黒表示時の斜め方向の光漏れを低減することができるので、本来、斜め方向に射出し、表面処理層等で散乱することによって、正面方向に出射していた光を低減することができる。したがって、本発明の効果をより効果的に奏することができる。
上記位相差フィルムの屈折率楕円体は、主屈折率nx、ny、nzが、nx≧ny>nzの関係を満たしていることが好ましい。これにより、屈折率楕円体がnz>nx=nyの関係を有する液晶セル11において、黒表示時の斜め方向の光漏れを効果的に低減することができる。したがって、液晶セル11において、本来、斜め方向に射出し、表面処理層等で散乱することによって、正面方向に出射していた光を低減することができる。その結果、液晶セル11に対して本発明の効果をより効果的に奏することができる。
nx>ny>nzの関係を満たす位相差フィルムは、より具体的には、nx>ny>nzの関係を満たす1枚の位相差フィルムを第1の保護層又は第3の保護層として配置する形態、nx=ny>nzの関係を満たす1枚の位相差フィルムを第1の保護層及び第3の保護層の一方として配置するとともに、nx>ny>nzの関係を満たす1枚の位相差フィルムを第1の保護層及び第3の保護層の他方として配置する形態、nx>ny>nzの関係を満たす1枚の位相差フィルムを第1の保護層として配置するとともに、nx>ny>nzの関係を満たす1枚の位相差フィルムを第3の保護層として配置する形態等により実現することができる。なお、位相差フィルムの組み合わせや、具体的な位相差値については、斜め方向の光漏れが低減される設計であれば特に限定されず、任意に設定することができる。
なお、表偏光板12及び裏偏光板13は、偏光機能を有する単層(偏光子)のみから形成されてもよい。また、表偏光板12及び裏偏光板13は、2層以上の偏光子を含む積層体であってもよい。
<D.粘着層>
粘着層3a~3cを形成する材料としては、適切な粘着剤が選択され、また、アンカーコート剤を含んでもよい。なお、粘着剤とは、加圧接触で感知し得る接着力を常温で示す粘弾性物質である。好ましくは、粘着層3a~3cを形成する材料は、アクリル系重合体をベースポリマーとするアクリル系粘着剤である。これは、透明性、接着性、耐候性及び耐熱性に優れるからである。粘着層3a~3cの厚みは、被着体の材質や用途に応じて、適宜、調整され得るが、通常、5~50μm(好適には、10~30μm)であり、接着層よりも厚い。
<E.偏光度を持つ光学素子>
偏光度を持つ光学素子30は、入射する光を直交する2つの偏光成分に分離し、一方の偏光成分を透過させ、他方の偏光成分を吸収、または反射させる機能を有するものであればよい。例としては、ワイヤーグリッド偏光子、ヨウ素系偏光子、染料系偏光子等が挙げられるが、液晶表示装置に白画像を表示した場合の輝度(白輝度)をより向上させる観点からは、透過させない偏光成分を反射させる機能を持っている、輝度向上フィルム又はワイヤーグリッド偏光子を用いることが好ましい。これにより、透過しない光を反射して再利用することができるので、光の有効利用の観点からも好ましい。
偏光度を持つ光学素子30は、主透過率k1が80~86%(より好適には、82~84%)であり、主透過率k2が2~8%(より好適には、2~6%)であることが好ましい。これにより、本発明の効果をより効果的に発揮することができる。
偏光度を持つ光学素子30の主透過率k2が高い場合は、偏光度を持つ光学素子30の直交透過率が高い。そのため、偏光度を持つ光学素子30を裏偏光板13と組み合わせたとき、液晶表示装置のコントラストを維持するためには、裏偏光板13としてコントラストの高い偏光板が必要となる。したがって、その分だけ透過率が低い偏光板を裏偏光板13として用いる必要が出てくるために、正面白輝度が向上しにくくなると考えられる。
一方、偏光度を持つ光学素子30の主透過率k2が低い場合は、偏光度を持つ光学素子30の直交透過率が低い。そのため、液晶表示装置のコントラストを維持するために、裏偏光板13としてコントラストの高い偏光板を用いる必要が無くなる。したがって、その分透過率の高い偏光板を裏偏光板13として用いることができるために、正面白輝度を向上しやすくなると考えられる。
主透過率k1が80%未満であると、正面白輝度が低下するおそれがある。一方、主透過率k1が86%を超えると、主透過率k2との両立が困難となる。
主透過率k2が8%を超えると、正面コントラスト比が低下するおそれがある。一方、主透過率k2が2%未満であると、正面白輝度が低下するおそれがある。
図2に示すように、偏光度を持つ光学素子30の偏光子1a側とは反対側に、表面処理層31を設けることが好ましい。表面処理層31は、バックライト20側の表面に上述のモスアイ構造を有する。これにより、偏光度を持つ光学素子30と空気層との界面における反射を著しく減少することができるので、正面白輝度を効果的に向上することができる。
表面処理層31は、偏光度を持つ光学素子30に、直接形成されてもよいし、粘着層等を介して貼り付けられてもよい。
<E-1.輝度向上フィルム>
上記輝度向上フィルムは、液晶表示装置の白輝度を向上させるために用いられる。好ましくは、上記輝度向上フィルムは、熱可塑性樹脂層(A)と熱可塑性樹脂層(B)とを含む積層体である。代表的には、上記輝度向上フィルムは、熱可塑性樹脂層(A)と熱可塑性樹脂層(B)とを交互に並べたもの(ABABAB・・・)である。上記輝度向上フィルムを構成する層の数は、好ましくは2~20層であり、より好ましくは2~15層である。このような構造を有する輝度向上フィルムは、例えば、2種類の樹脂を共押出し、その押出フィルムを延伸して作製される。上記輝度向上フィルムの総厚みは、好ましくは20~800μmである。
好ましくは、上記熱可塑性樹脂層(A)は、光学的に異方性を示す。上記熱可塑性樹脂(A)の面内の複屈折率(ΔnA)は、好ましくは0.05以上であり、より好ましくは、0.1以上であり、更に好ましくは0.15以上である。光学的な均一性の観点から、上記ΔnAの上限値は、好ましくは0.2である。ここで、上記ΔnAは、nxA(遅相軸方向の屈折率)とnyA(進相軸方向の屈折率)との差(nxA-nyA)を表す。
上記熱可塑性樹脂層(B)は、好ましくは、実質的に光学的に等方性を示す。上記熱可塑性樹脂(B)の面内の複屈折率(ΔnB)は、好ましくは5×10-4以下であり、より好ましくは1×10-4以下であり、更に好ましくは0.5×10-4以下である。上記ΔnBの下限値は、好ましくは0.01×10-4である。ここで、上記ΔnBは、nxB(遅相軸方向の屈折率)とnyB(進相軸方向の屈折率)との差(nxB-nyB)を表す。
上記熱可塑性樹脂層(A)のnyAと上記熱可塑性樹脂層(B)のnyBとは、好ましくは、実質的に同一である。nyAとnyBとの差の絶対値は、好ましくは5×10-4以下であり、より好ましくは1×10-4以下であり、更に好ましくは0.5×10-4以下である。このような光学特性を有する輝度向上フィルムは、偏光成分を反射させる機能に優れる。
上記熱可塑性樹脂層(A)を形成する樹脂としては、任意の適切なものが選択され得る。上記熱可塑性樹脂層(A)は、好ましくは、ポリエチレンテレフタレート系樹脂、ポリトリメチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂、ポリブチレンナフタレート系樹脂、又はこれらの混合物を含む。これらの樹脂は、延伸による複屈折の発現性に優れ、延伸後の複屈折の安定性に優れる。
上記熱可塑性樹脂層(B)を形成する樹脂としては、任意の適切なものが選択され得る。上記熱可塑性樹脂層(B)は、好ましくは、ポリスチレン系樹脂、ポリメチルメタクリレート系樹脂、ポリスチレングリシジルメタクリレート系樹脂、又はこれらの混合物を含む。上記の樹脂は、屈折率を高めるために、塩素、臭素、ヨウ素等のハロゲン基が導入されていてもよい。あるいは、上記の樹脂は、屈折率を調整するために、任意の添加剤を含有し得る。
<E-2.ワイヤーグリッド偏光子>
上記ワイヤーグリッド偏光子は、液晶表示装置の白輝度を向上させるために用いられる。上記ワイヤーグリッド偏光子は、好ましくは、基板上に金属等の導電体線が特定のピッチでスリット状に配列される。そして、そのピッチが入射光(例えば、可視光の波長400~800nm)に比べてかなり小さい場合(例えば、2分の1以下)であれば、導電体線に対して平行に振動する電場ベクトル成分をほとんど反射し、垂直な電場ベクトル成分をほとんど透過させるため、単一偏光を作り出すことができる。
上記ワイヤーグリッド偏光子は、例えば、特開2005-70456号公報に記載の方法で任意に作製することができる。ワイヤーグリッド偏光子の性能(透過率やコントラスト)については、導電体線(金属ワイヤー)の幅、周期(ピッチ)及び高さ(厚み)を調整することによって変更することができる。より具体的には、本実施形態においては、導電体線の幅W及び周期(ピッチ)Pの割合W/Pは25~50%であることが好ましく、更に好ましくは30~42%である。また、上記導電体線の周期(ピッチ)は、500nm以下であることが好ましく、更に好ましくは200nm以下である。また、上記導電体線の厚みは、10~300nmであることが好ましく、更に好ましくは80~150nmである。
導電体線の材料としては、金、銀、銅、アルミニウム、鉄、ニッケル、チタン、タングステン等、もしくはこれらの合金を用いることができるが、なかでも、高い反射率であり、可視光に対する波長依存性がフラットで、経時変化(曇り)に対して高い反射率を維持しやすいという観点からは、アルミニウムを用いることが最も好ましい。
<F.光学シート>
光学シート24は、枚数、種類に特に制限がなく、任意に選定される。このように、図1に例示した光学部材は、本発明の効果が奏する限りにおいて、液晶表示装置の照明方式や液晶セルの駆動モード等、用途に応じてその一部が省略され得るか、又は、他の光学部材に代替され得る。光学シート24の例としては、プリズムシート(例えば、住友スリーエム社製の商品名「BEF」)、拡散シート(例えば、恵和社製の商品名「オパルス」)等が挙げられる。なお、プリズムシートは、光出射角度を規則的に変えて、液晶パネルの法線方向の白輝度を向上するものである。拡散シートは、光出射角度を不規則に変えて、液晶パネルの法線方向の白輝度を向上するとともに、冷陰極管21の輝度ムラをより目立たなくするためのものである。
<G.拡散板>
拡散板23は、冷陰極管21から発光された光を拡散させることによって、面発光させる。拡散板23は、冷陰極管21の出射する光を面方向に拡散させることによって、冷陰極管21の輝度ムラを目立たなくする。拡散板23は、例えば、ポリカーボネート系樹脂、アクリル系樹脂等から構成される。拡散板23を構成する材料、厚さ、ヘイズ値等は、特に限定されるものではない。
本実施形態の液晶表示装置は、任意の適切な用途に使用される。その用途は、例えば、パソコンモニター、ノートパソコン、コピー機等のOA機器、携帯電話、時計、デジタルカメラ、携帯情報端末(PDA)、携帯ゲーム機等の携帯機器、ビデオカメラ、テレビ、電子レンジ等の家庭用電気機器、バックモニター、カーナビゲーションシステム用モニター、カーオーディオ等の車載用機器、商業店舗用インフォメーション用モニター等の展示機器、監視用モニター等の警備機器、介護用モニター、医療用モニター等の介護・医療機器等である。
好ましくは、本実施形態の液晶表示装置の用途は、テレビである。上記テレビの画面サイズは、好ましくはワイド17型(373mm×224mm)以上であり、より好ましくはワイド23型(499mm×300mm)以上であり、更に好ましくはワイド32型(687mm×412mm)以上である。
(実施形態2)
実施形態2の液晶表示装置は、図3に示すように、保護層2dを設けず、接着層204を介して、偏光度を持つ光学素子30を偏光子1bに直接貼り付けたこと以外は、実施形態1の液晶表示装置と同じである。
なお、接着層204は、実施形態1で説明した、保護層2d及び偏光子1aの間の接着層と同様にして形成することができる。すなわち、接着層204としては、上述した接着層に記載した材料、特性、条件等から任意の適切なものが採用され得る。
本実施形態の液晶表示装置によっても、液晶表示装置の正面コントラスト比(正面方向のコントラスト比)を維持しつつ正面白輝度を向上することができる。
また、本実施形態の液晶表示装置は、保護層2dを備えていないので、実施形態1の液晶表示装置よりも薄くすることができる。
(実施形態3)
実施形態3の液晶表示装置は、図4に示すように、液晶セル11、第1の保護層2a、第3の保護層2cの代わりに、液晶セル311、第1の保護層302a、第3の保護層302cを配置したこと以外は、実施形態1の液晶表示装置と同じである。液晶セル311は、以下の点で液晶セル11と異なるが、それ以外は液晶セル11と同じである。保護層302a、302cはそれぞれ、以下の点で保護層2a、2cと異なるが、それ以外は保護層2a、2cと同じである。
液晶セル311は、電界が存在しない状態で、ホモジニアス配列に配向させた液晶分子を含む液晶層(水平配向液晶層)を備える。ここで、「ホモジニアス配列」とは、配向処理された基板と液晶分子の相互作用の結果として、液晶分子の配向ベクトルが、基板平面に対し、平行かつ一様に配向した状態のものをいう。なお、本明細書において、上記ホモジニアス配列は、液晶分子が基板平面に対し、わずかに傾いている場合、すなわち、液晶分子がプレチルト角を持つ場合も包含する。
液晶セル311の屈折率楕円体は、nx>ny=nzの関係を有する。ここで、ny=nzは、nyとnzとが完全に同一である場合だけでなく、nyとnzが実質的に同一である場合も包含する。液晶セル311の代表例としては、駆動モードによる分類によれば、インプレーンスイッチング(IPS)モード、フリンジフィールドスイッチング(FFS)モード、強誘電性液晶(FLC)モード等が挙げられる。IPSモード及びFFSモードの液晶セルはそれぞれ、V字型電極、ジグザグ電極等の電極を有してもよい。
液晶セル311が、いわゆるOモードであってもよいし、いわゆるEモードであってもよいが、好ましくは、Eモードである。Eモードにすることによって、より正面コントラスト比を向上することができる。液晶セル311がOモードである場合、裏偏光板13の吸収軸方向と、液晶セル311の初期配向方向(電界が存在しない状態で、液晶セル311の面内の屈折率が最大となる方向)とは、実質的に平行である。液晶セル311がEモードである場合、裏偏光板13の吸収軸方向と、液晶セル311の初期配向方向とは、実質的に直交する。
〔第1の保護層〕
第1の保護層302aは、好ましくは、実質的に光学的に等方性を示す。ここで、「実質的に光学的に等方性を示す」とは、Re[550]が10nm未満であり、かつ、厚み方向の位相差値の絶対値(|Rth[550]|)が10nm未満であるものを包含する。
保護層302aのRe[550]は、好ましくは10nm未満であり、より好ましくは8nm以下であり、更に好ましくは5nm以下である。Re[550]を上記の範囲とすることによって、斜め方向でカラーシフトが発生するのを抑制することができる。
保護層302aの|Rth[550]|(Rth[550]の絶対値)は、好ましくは10nm未満であり、より好ましくは8nm以下であり、更に好ましくは5nm以下である。|Rth[550]|を上記の範囲とすることによって、斜め方向でカラーシフトが発生するのを抑制することができる。
保護層302aを形成する材料としては、任意の適切なものが採用され得る。好ましくは、保護層302aは、セルロース系樹脂を含有する高分子フィルムである。セルロース系樹脂は、偏光子との接着性に優れるため、高温、多湿の環境下でも、偏光子と保護層との間に浮きや剥がれが発生するのを抑制することができる。
保護層302aは、市販のフィルムをそのまま用いることができる。あるいは、光学補償のための位相差フィルムの機能を持たせるために、市販のフィルムに延伸処理及び/又は収縮処理等の2次的加工を施したものを用いることができる。市販のセルロース系樹脂からなる高分子フィルムとしては、例えば、富士写真フイルム社製の商品名「フジタック」、コニカミノルタオプト社製の商品名「KC8UX2M」等が挙げられる。
〔第3の保護層〕
第3の保護層302cとしては、上述した保護層302aに記載した材料、特性、条件等から任意の適切なものが採用され得る。保護層302aと保護層302cとは、互いに同一であってもよいし、異なっていてもよい。好ましくは、保護層302cは、実質的に光学的に等方性を示す。
(実施形態4)
実施形態4の液晶表示装置は、図5に示すように、保護層2dを設けず、実施形態2で説明した接着層204を介して、偏光度を持つ光学素子30を偏光子1bに直接貼り付けたこと以外は、実施形態3の液晶表示装置と同じである。
本実施形態の液晶表示装置によっても、液晶表示装置の正面コントラスト比(正面方向のコントラスト比)を維持しつつ正面白輝度を向上することができる。
また、本実施形態の液晶表示装置は、保護層2dを備えていないので、実施形態3の液晶表示装置よりも薄くすることができる。
上述した実施形態は、本発明の要旨を逸脱しない範囲において、適宜組み合わされてもよい。
(実施例1)
以下、実施例1の液晶表示装置の製造方法について説明する。
まず、VAモードの液晶セルの観察面側の主面に、表偏光板をアクリル系粘着剤(厚み20μm)を介して貼り付けた。液晶セルのRth[550]は、315nmであった。表偏光板は、ヨウ素を含有するPVAフィルムである偏光子Aと、偏光子Aの両主面にロールトゥロールで貼り付けられた2枚のTACフィルムとを備えていた。TACフィルムはそれぞれ、厚みが80μmであり、Re[550]が2nmであり、Rth[550]が60nmであった。
次に、液晶セルのバックライト側の主面に、裏偏光板をアクリル系粘着剤(厚み20μm)を介して貼り付けた。裏偏光板は、ヨウ素を含有するPVAフィルムである偏光子Bと、偏光子Bの一方の主面にロールトゥロールで貼り付けられた位相差フィルムと、偏光子Bの他方の主面にロールトゥロールで貼り付けられたTACフィルムとを備えていた。位相差フィルムは、厚みが60μmであり、nx>ny>nzの関係を満たし、Re[550]が54.8nmであり、Rth[550]が124.5nmであった。位相差フィルムは、その面内の遅相軸が裏偏光板の吸収軸と平行となるように配置した。TACフィルムは、厚みが80μmであり、Re[550]が2nmであり、Rth[550]が49nmであった。位相差フィルムを液晶セル側に、TACフィルムをバックライト側に配置した。
表偏光板及び裏偏光板は、互いの吸収軸方向が直交するように、クロスニコルに配置した。表偏光板及び裏偏光板の吸収軸はそれぞれ、液晶セルを平面視したときに、電圧印加によって液晶分子が傾斜する方向に対して略45°のなす方向に配置した。
次に、裏偏光板のバックライト側の主面に、輝度向上フィルム(住友スリーエム社製の商品名「DBEF」)をアクリル系粘着剤(厚み20μm)を介して貼り付けることによって、液晶パネルを作製した。裏偏光板及び輝度向上フィルムは、互いの吸収軸方向が平行になるように、平行ニコルに配置した。
最後に、輝度向上フィルムの液晶セルとは反対側に、バックライトを配置し、実施例1の液晶表示装置を作製した。
(実施例2)
偏光子Bの代わりに偏光子Cを用いたこと以外は実施例1と同様にして、実施例2の液晶表示装置を作製した。偏光子Cは、ヨウ素を含有するPVAフィルムである。
(実施例3)
偏光子Bの代わりに偏光子Dを用いたこと以外は実施例1と同様にして、実施例3の液晶表示装置を作製した。偏光子D、ヨウ素を含有するPVAフィルムである。
(実施例4)
偏光子Aの代わりに偏光子Bを、偏光子Bの代わりに偏光子Cを用いたこと以外は実施例1と同様にして、実施例4の液晶表示装置を作製した。
(実施例5)
偏光子Cの代わりに偏光子Dを用いたこと以外は実施例4と同様にして、実施例5の液晶表示装置を作製した。
(実施例6)
偏光子Aの代わりに偏光子Cを、偏光子Bの代わりに偏光子Dを用いたこと以外は実施例1と同様にして、実施例6の液晶表示装置を作製した。
(比較例1)
偏光子Bの代わりに偏光子Aを用い、輝度向上フィルムを裏偏光板に貼り付けなかったこと以外は実施例1と同様にして、比較例1の液晶表示装置を作製した。本比較例では、液晶パネルを輝度向上フィルム上に直接置いただけである。
(比較例2)
偏光子Bの代わりに偏光子Aを用いたこと以外は実施例1と同様にして、比較例2の液晶表示装置を作製した。
(比較例3)
偏光子Cの代わりに偏光子Aを用いたこと以外は実施例4と同様にして、比較例3の液晶表示装置を作製した。
(比較例4)
偏光子Cの代わりに偏光子Bを用いたこと以外は実施例4と同様にして、比較例4の液晶表示装置を作製した。
(比較例5)
偏光子Dの代わりに偏光子Aを用いたこと以外は実施例6と同様にして、比較例5の液晶表示装置を作製した。
(比較例6)
偏光子Dの代わりに偏光子Bを用いたこと以外は実施例6と同様にして、比較例6の液晶表示装置を作製した。
(比較例7)
偏光子Dの代わりに偏光子Cを用いたこと以外は実施例6と同様にして、比較例7の液晶表示装置を作製した。
各偏光板の特性を下記表1に示す。表偏光板及び裏偏光板が同じ偏光子を含む場合、表偏光板及び裏偏光板の特性は、原理的に互いに同じになる。したがって、表1では、表偏光板及び裏偏光板の区別を付けずに記載している。
Figure JPOXMLDOC01-appb-T000001
また、各実施例及び比較例について、正面白輝度、正面黒輝度及びパネルコントラストを測定した結果を下記表2に示す。なお、表2の簡略化の観点から、表2において、正面白輝度は白輝度と、正面黒輝度は黒輝度と記載している。また、白輝度アップ率とは、比較例1の白輝度に対する各実施例又は比較例の白輝度の比を示す。また、パネルコントラストは、液晶パネル、すなわち、表偏光板から輝度向上フィルム(偏光度を持つ光学素子)までの部材の正面コントラスト比である。正面白輝度、正面黒輝度、及び、パネルコントラストの測定の方法及び条件は、以下の通りである。まず、暗室環境下で、分光放射輝度計(TOPCON社製 商品名「SR-UL1」)を用いて、液晶パネルから40cm離れた場所から、1度視野で、正面白輝度及び正面黒輝度を測定した。そして、パネルコントラスト=正面白輝度/正面黒輝度の計算式からパネルコントラストを算出した。
Figure JPOXMLDOC01-appb-T000002
この結果、輝度向上フィルムを裏偏光板に貼り付け、両者の間に空気が入らないようにすることによって、正面白輝度を向上できることがわかった。また、表偏光板が同じ偏光子を有する実施例及び比較例について比較すると、表偏光板のCRよりも裏偏光板のCRを低くすることによって、パネルコントラストをできる限り維持しつつ、正面白輝度を向上できることがわかった。
本願は、2010年7月5日に出願された日本国特許出願2010-153183号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
1a、1b:偏光子
2a、2b、2c、2d、302a、302c:保護層
3a、3b、3c:粘着層
10:液晶パネル
11、311:液晶セル
12:表偏光板
13:裏偏光板
20:バックライト
21:冷陰極管
22:筐体
23:拡散板
24:光学シート
30:偏光度を持つ光学素子
31:表面処理層
204:接着層
 
 

Claims (18)

  1. 表偏光板と、液晶セルと、裏偏光板と、偏光度を持つ光学素子とをこの順に有する液晶表示装置であって、
    前記裏偏光板のコントラストは、前記表偏光板のコントラストよりも小さく、
    前記裏偏光板と、前記偏光度を持つ光学素子との間に空気層が実質的に存在しないことを特徴とする液晶表示装置。
  2. 前記裏偏光板は、前記偏光度を持つ光学素子側に保護層を備え、
    前記偏光度を持つ光学素子は、前記保護層に貼り付けられることを特徴とする請求項1に記載の液晶表示装置。
  3. 前記偏光度を持つ光学素子は、粘着層を介して前記保護層に貼り付けられることを特徴とする請求項2記載の液晶表示装置。
  4. 前記偏光度を持つ光学素子は、前記裏偏光板の偏光子に貼り付けられることを特徴とする請求項1に記載の液晶表示装置。
  5. 前記偏光度を持つ光学素子は、接着層を介して前記偏光子に貼り付けられることを特徴とする請求項4記載の液晶表示装置。
  6. 前記裏偏光板のコントラストは、300以上であり、
    前記表偏光板のコントラストと前記裏偏光板のコントラストとの差は、3500以上であることを特徴とする請求項1~5のいずれかに記載の液晶表示装置。
  7. 前記裏偏光板のコントラストは、パネルコントラストよりも小さいことを特徴とする請求項1~6のいずれかに記載の液晶表示装置。
  8. 前記偏光度を持つ光学素子は、前記液晶セルとは反対側にモスアイ構造を有することを特徴とする請求項1~7のいずれかに記載の液晶表示装置。
  9. 前記裏偏光板の透過率は、前記表偏光板の透過率よりも大きいことを特徴とする請求項1~8のいずれかに記載の液晶表示装置。
  10. 前記表偏光板及び前記裏偏光板の少なくとも一方は、前記液晶セル側に位相差層を備えることを特徴とする請求項1~9のいずれかに記載の液晶表示装置。
  11. 前記液晶セルは、電界が存在しない状態で、ホメオトロピック配列に配向させた液晶分子を含む液晶層を備えることを特徴とする請求項1~10のいずれかに記載の液晶表示装置。
  12. 前記位相差層は、屈折率楕円体がnx≧ny>nzの条件を満たす位相差フィルムであることを特徴とする請求項10又は11記載の液晶表示装置。
  13. 前記裏偏光板は、前記液晶セル側に位相差層を備え、
    前記液晶セルは、電界が存在しない状態で、ホメオトロピック配列に配向させた液晶分子を含む液晶層を備えることを特徴とする請求項1~12のいずれかに記載の液晶表示装置。
  14. 前記表偏光板の透過率は、40~45%であることを特徴とする請求項1~13のいずれかに記載の液晶表示装置。
  15. 前記表偏光板の透過率は、42~44%であることを特徴とする請求項14記載の液晶表示装置。
  16. 前記裏偏光板の透過率は、42~48%であることを特徴とする請求項1~15のいずれかに記載の液晶表示装置。
  17. 前記裏偏光板の透過率は、43~46%であることを特徴とする請求項16記載の液晶表示装置。
  18. 前記偏光度を持つ光学素子は、輝度向上フィルム又はワイヤーグリッド偏光子であることを特徴とする請求項1~17のいずれかに記載の液晶表示装置。
     
     
PCT/JP2011/060736 2010-07-05 2011-05-10 液晶表示装置 WO2012005050A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/808,330 US8913217B2 (en) 2010-07-05 2011-05-10 Liquid crystal display device
CN201180033409.8A CN102971664B (zh) 2010-07-05 2011-05-10 液晶显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-153183 2010-07-05
JP2010153183 2010-07-05

Publications (1)

Publication Number Publication Date
WO2012005050A1 true WO2012005050A1 (ja) 2012-01-12

Family

ID=45441036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060736 WO2012005050A1 (ja) 2010-07-05 2011-05-10 液晶表示装置

Country Status (3)

Country Link
US (1) US8913217B2 (ja)
CN (1) CN102971664B (ja)
WO (1) WO2012005050A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5162695B2 (ja) * 2010-09-09 2013-03-13 日東電工株式会社 薄型偏光膜の製造方法
DE102012210773B4 (de) * 2012-06-25 2022-10-06 Osram Gmbh Vorrichtung zum Erzeugen von polarisierter elektromagnetischer Strahlung und Projektor
JP2015038598A (ja) * 2013-07-18 2015-02-26 富士フイルム株式会社 位相差フィルム、偏光板および液晶表示装置
KR102128395B1 (ko) * 2014-02-06 2020-07-01 삼성디스플레이 주식회사 라이트 유닛 및 이를 포함하는 표시 장치
KR20150102132A (ko) * 2014-02-27 2015-09-07 삼성디스플레이 주식회사 표시장치용 복합 기판, 이를 갖는 표시장치 및 그 제조방법
WO2016025830A1 (en) * 2014-08-14 2016-02-18 Applied Materials, Inc Systems, apparatus, and methods for an electromagnetic interference shielding optical polarizer
CN109791328B (zh) * 2016-09-29 2021-11-23 夏普株式会社 液晶显示装置及液晶显示装置的制造方法
JP7214412B2 (ja) * 2018-09-07 2023-01-30 日本化薬株式会社 偏光層を用いた表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298958A (ja) * 2006-04-05 2007-11-15 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2008102227A (ja) * 2006-10-18 2008-05-01 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2010033033A (ja) * 2008-06-24 2010-02-12 Nitto Denko Corp 液晶パネルおよび液晶表示装置
WO2010095308A1 (ja) * 2009-02-17 2010-08-26 シャープ株式会社 液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427837B2 (ja) 1999-09-03 2010-03-10 住友化学株式会社 ワイヤーグリッド型偏光光学素子
US8031296B2 (en) * 2006-04-05 2011-10-04 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus
KR101335056B1 (ko) 2006-05-29 2013-12-03 닛토덴코 가부시키가이샤 액정 패널 및 액정 표시 장치
JP4450011B2 (ja) 2006-05-29 2010-04-14 日東電工株式会社 液晶パネル及び液晶表示装置
JP5048279B2 (ja) 2006-06-09 2012-10-17 日東電工株式会社 液晶パネル及び液晶表示装置
JP4135965B2 (ja) 2006-07-07 2008-08-20 日東電工株式会社 液晶パネル、液晶パネルの製造方法および液晶表示装置
JP4050778B2 (ja) 2006-07-07 2008-02-20 日東電工株式会社 液晶パネルおよび液晶表示装置
JP5530580B2 (ja) 2006-07-07 2014-06-25 日東電工株式会社 液晶パネル及び液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298958A (ja) * 2006-04-05 2007-11-15 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2008102227A (ja) * 2006-10-18 2008-05-01 Nitto Denko Corp 液晶パネル及び液晶表示装置
JP2010033033A (ja) * 2008-06-24 2010-02-12 Nitto Denko Corp 液晶パネルおよび液晶表示装置
WO2010095308A1 (ja) * 2009-02-17 2010-08-26 シャープ株式会社 液晶表示装置

Also Published As

Publication number Publication date
CN102971664B (zh) 2016-03-09
CN102971664A (zh) 2013-03-13
US8913217B2 (en) 2014-12-16
US20130114027A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
US11982896B2 (en) Liquid crystal display device and polarizing plate
US10001669B2 (en) Optical member, polarizing plate set and liquid crystal display apparatus
KR100795743B1 (ko) 액정 패널 및 액정 표시 장치
JP4726148B2 (ja) 液晶パネル、及び液晶表示装置
JP5073427B2 (ja) 液晶パネル、及び液晶表示装置
KR102000145B1 (ko) 광시야각 액정표시장치
US20150226999A1 (en) Optical member, polarizing plate set, and liquid crystal display device
WO2014034481A1 (ja) 液晶表示装置
JP4807774B2 (ja) 液晶パネルおよび液晶表示装置
WO2012005050A1 (ja) 液晶表示装置
JP2008134587A (ja) マルチギャップ構造を有する液晶セルを備える液晶パネル、及び液晶表示装置
JP4691615B2 (ja) 液晶表示装置
JP4827255B2 (ja) 液晶パネル及び液晶表示装置
JP4153945B2 (ja) 液晶パネルおよび液晶表示装置
WO2010001920A1 (ja) 液晶表示装置
JP2012145732A (ja) 液晶パネルおよび液晶表示装置
JP2012252085A (ja) 液晶パネルおよび液晶表示装置
KR101407304B1 (ko) Ips 액정 표시장치와 그 제조방법
JP2012145731A (ja) 液晶パネルおよび液晶表示装置
KR20100071458A (ko) 하판 편광판 및 이를 포함하는 면상 스위칭 모드 액정표시장치
JP2008256951A (ja) 組み合わせ型偏光板
JP2012145735A (ja) 液晶パネルおよび液晶表示装置
KR20120029558A (ko) 포지티브 a의 굴절률 이방성을 나타내는 층이 형성된 네거티브 a 플레이트를 포함하는 수평배향 모드 액정표시장치
JP2007333825A (ja) 液晶パネル及び液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033409.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13808330

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP