Nothing Special   »   [go: up one dir, main page]

WO2012090520A1 - Laser processing device and laser processing method - Google Patents

Laser processing device and laser processing method Download PDF

Info

Publication number
WO2012090520A1
WO2012090520A1 PCT/JP2011/056718 JP2011056718W WO2012090520A1 WO 2012090520 A1 WO2012090520 A1 WO 2012090520A1 JP 2011056718 W JP2011056718 W JP 2011056718W WO 2012090520 A1 WO2012090520 A1 WO 2012090520A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
lens
laser beam
processing apparatus
imaging position
Prior art date
Application number
PCT/JP2011/056718
Other languages
French (fr)
Japanese (ja)
Inventor
之夫 久所
鈴木 良和
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2012090520A1 publication Critical patent/WO2012090520A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot

Definitions

  • the present invention relates to a laser processing apparatus and a laser processing method, and more particularly to a laser processing apparatus and a laser processing method using a plurality of types of laser light in parallel.
  • the time difference in which each laser beam is irradiated to the object to be processed is changed by changing the length of the optical fiber through which each laser beam passes and adjusting the optical path length difference of the laser beam. Adjusted.
  • each laser beam is completely independent, and each laser beam is irradiated to the object by adjusting the timing of emitting the laser beam for each optical system. Time difference is adjusted.
  • time spots can be provided at substantially the same position and irradiation can be performed while scanning each spot by two types of laser light in a predetermined direction.
  • the present invention has been made in view of such a situation, and it is possible to provide a time difference at substantially the same position and enable irradiation while scanning each spot by a plurality of laser beams in a predetermined direction. is there.
  • the laser processing apparatus is a laser processing apparatus for processing an object to be processed using at least a first laser beam and a second laser beam, through which the first laser beam passes.
  • a first lens for imaging the first laser light, and a first laser light after the first imaging position on the first optical path A second lens for collimating, a third lens for imaging the second laser beam at a second imaging position on a second optical path through which the second laser beam passes, and a second optical path
  • a fourth lens for collimating the second laser beam after the second imaging position of the second lens, and the optical path of the first laser beam and the second laser beam at a stage subsequent to the second lens and the fourth lens.
  • the fifth lens for forming the second laser beam and the second optical path are adjusted, and the optical axis of the third imaging position, which is the imaging position for the second laser beam by the fifth lens, is perpendicular
  • the first laser beam forms an image at a first imaging position on the first optical path, and is collimated to form a second laser beam.
  • the optical paths of the first laser light and the second laser light are combined, and then the first laser light and the second laser light Forms an image with the fifth lens.
  • the second light path through which the second laser light passes is adjusted, and the position of the image forming position of the second laser light by the fifth lens in the direction perpendicular to the optical axis is adjusted.
  • This coupling means is constituted by, for example, a two-wavelength mirror.
  • the adjusting means is constituted by, for example, a shift mechanism or a rotation mechanism using an actuator or the like.
  • the adjustment means can adjust the position of the third imaging position in the direction perpendicular to the optical axis by adjusting the position of the second imaging position in the direction perpendicular to the optical axis.
  • a first slit provided between a first lens and a second lens on a first light path, and a third slit and a fourth lens on a second light path
  • the second slit provided in the second slit, and adjusting the position of the opening of the second slit in the direction perpendicular to the optical axis of the second slit, The position in the vertical direction can be adjusted.
  • the edge of the spot of the laser light becomes sharp, and as a result, the processing quality is improved.
  • the second slit can be provided near the second imaging position, and the adjusting means can move the second imaging position together with the opening of the second slit.
  • the laser processing apparatus further includes changing means for changing the direction of the second optical path to the direction of the coupling means at a stage subsequent to the fourth lens, and the adjusting means includes a fifth lens for the second optical path.
  • the position of the third imaging position in the direction perpendicular to the optical axis can be adjusted by rotating it about the rotation axis that coincides with the optical axis of the third image.
  • the degree of freedom in adjusting the irradiation position of the second laser light spot can be increased.
  • the laser processing apparatus includes an optical fiber for transmitting the first laser beam and the second laser beam, and a sixth lens for collimating the first laser beam and the second laser beam emitted from the optical fiber.
  • a separation means for separating the optical paths of the first laser light and the second laser light into the first optical path and the second optical path may be further provided downstream of the sixth lens.
  • the intensity of the cross section of the laser beam can be made uniform, and as a result, the processing quality is improved.
  • This separation means is constituted by, for example, a two-wavelength mirror.
  • the shape of the output end face of the optical fiber can be made square.
  • the loss of the laser beam by the slit can be reduced.
  • the laser processing apparatus may further include scanning means for moving the third imaging position on the surface of the object to be processed.
  • This scanning means is realized, for example, by a galvano mirror which scans the imaging position on the surface of the processing object, an XY stage which moves the processing object, a gantry stage which moves the laser processing apparatus, or a combination thereof.
  • a galvano mirror which scans the imaging position on the surface of the processing object
  • an XY stage which moves the processing object
  • a gantry stage which moves the laser processing apparatus, or a combination thereof.
  • the laser processing method is a laser processing method for processing an object to be processed using at least a first laser beam and a second laser beam, wherein the first laser beam and the second laser beam are used.
  • Light is generated, and the first laser beam and the second laser beam are imaged in the same shape or different shape and adjacent to the surface of the object to be processed, and imaged in the direction in which the adjacent images are aligned
  • the position is moved or the relative position of the object to be processed is moved to continuously process the surface of the object.
  • a first laser beam and a second laser beam are generated, and the first laser beam and the second laser beam have the same shape or different shapes, respectively, and the surface of the object to be processed.
  • the imaging position is moved in the side-by-side alignment direction of the adjacent imaging, or the relative position of the object to be processed is moved to continuously process the surface of the object.
  • the first aspect of the present invention by scanning each spot of a plurality of laser beams simply in a predetermined direction, it is possible to provide a time difference at substantially the same position and perform irradiation.
  • First embodiment basic form
  • Second embodiment an example using an XY slit mechanism
  • Third embodiment an example in which only the XY slit mechanism is shifted
  • Fourth embodiment an example in which the optical path of the laser beam ⁇ b is rotated
  • FIG. 1 is a view showing a first embodiment of a laser processing apparatus to which the present invention is applied.
  • the traveling direction of the laser light is referred to as the z-axis direction
  • predetermined directions perpendicular to the z-axis direction and orthogonal to each other are referred to as the x-axis direction and the y-axis direction.
  • the laser processing apparatus 101 includes laser oscillators 111a and 111b, beam expanders 112a and 112b, total reflection mirrors 113, a beam splitter 114, a two-wavelength (Dichroic) fiber coupling lens 115, an optical fiber 116, and two-wavelength (Dichroic) coupling.
  • each of the two-wavelength imaging and processing optical system lenses 117 and 124 is illustrated as a single convex lens, it may be configured by a combination of a plurality of convex lenses and concave lenses.
  • the image forming processing optical system lenses 120a, 120b, 121a, and 121b are also illustrated as one convex lens, respectively, they may be configured by a combination of a plurality of convex lenses and concave lenses.
  • dual-wavelength imaging processing optical system lenses 117 and 124 will be simply referred to as dual-wavelength lenses 117 and 124
  • imaging processing optical system lenses 120a, 120b, 121a and 121b will be simply referred to as lenses 120a, 120b, It is called 121a and 121b.
  • the laser oscillator 111a is made of, for example, an Nd: YAG laser, and is pulsed with a predetermined wavelength ⁇ a (hereinafter referred to as “laser light ⁇ a” in synchronization with an emission signal Sa input from a control device (not shown). Oscillate) and emit.
  • the beam diameter of the laser beam ⁇ a emitted from the laser oscillator 111 a is expanded by the beam expander 112 a and enters the beam splitter 114.
  • the laser oscillator 111b is made of, for example, an Nd: YAG laser, and is pulsed with a predetermined wavelength ⁇ b (hereinafter referred to as “laser light ⁇ b” in synchronization with an emission signal Sb input from a control device (not shown). Oscillate) and emit.
  • the beam diameter of the laser beam ⁇ b emitted from the laser oscillator 111 b is expanded by the beam expander 112 b, and then reflected by the total reflection mirror 113 and enters the beam splitter 114.
  • the wavelength ⁇ a is set to 1064 nm, which is the wavelength of the fundamental wave of the Nd: YAG laser
  • the wavelength ⁇ b is set to 532 nm, which is the wavelength of the second harmonic (SHG) of the Nd: YAG laser The case will be described.
  • the beam splitter 114 has a characteristic of transmitting light of wavelength ⁇ a and reflecting light of wavelength ⁇ b. Therefore, the laser beam ⁇ a passes through the beam splitter 114, and the laser beam ⁇ b is reflected by the beam splitter 114, whereby the optical paths of the laser beam ⁇ a and the laser beam ⁇ b are coupled. Then, the laser light ⁇ a and the laser light ⁇ b are condensed by the two-wavelength fiber coupling lens 115, are incident on the optical fiber 116, and are transmitted.
  • the cross section of the emission end face 116A of the optical fiber 116 is a square, and the cross section B1 of the laser beams ⁇ a and ⁇ b emitted from the optical fiber 116 is a square with a width (length of one side) d1. Further, the intensity of the cross section B1 of the laser beams ⁇ a and ⁇ b is made substantially uniform.
  • the laser beams ⁇ a and ⁇ b emitted from the optical fiber 116 are collimated by the two-wavelength lens 117 and enter the two-wavelength mirror 118.
  • the two-wavelength mirror 118 has a characteristic of transmitting light of wavelength ⁇ a and reflecting light of wavelength ⁇ b. Accordingly, the laser beam ⁇ a is transmitted through the two-wavelength mirror 118, and the laser beam ⁇ b is reflected by the two-wavelength mirror 118, whereby the optical paths of the laser beam ⁇ a and the laser beam ⁇ b are separated.
  • the laser beam ⁇ a transmitted through the two-wavelength mirror 118 forms an image at the imaging position P1a by the lens 120a.
  • the width d2a of the image B2a of the laser beam ⁇ a (the image B2a of the emission end face 116A of the optical fiber 116 formed by the lens 120a) at the imaging position P1a is determined by the following equation (1).
  • F1 represents the focal length of the two-wavelength lens 117
  • f2a represents the focal length of the lens 120a.
  • the laser light ⁇ a is collimated by the lens 121a after the imaging position P1a and is incident on the two-wavelength mirror 123.
  • the laser beam ⁇ b reflected by the two-wavelength mirror 118 is further reflected by the total reflection mirror 119, and then forms an image at the imaging position P1b by the lens 120b.
  • the width d2b of the image B2b of the laser beam ⁇ b (the image B2b of the emission end face 116A of the optical fiber 116 formed by the lens 120b) at the imaging position P1b is determined by the following equation (2).
  • F2b represents the focal length of the lens 120b.
  • the laser beam ⁇ b is collimated by the lens 121b after the imaging position P1b, is reflected by the total reflection mirror 122, and is incident on the two-wavelength mirror 123.
  • the two-wavelength mirror 123 has a characteristic of transmitting light of wavelength ⁇ a and reflecting light of wavelength ⁇ b. Accordingly, the laser beam ⁇ a is transmitted through the two-wavelength mirror 123, and the laser beam ⁇ b is reflected by the two-wavelength mirror 123, whereby the optical paths of the laser beam ⁇ a and the laser beam ⁇ b are coupled.
  • the laser light ⁇ a and the laser light ⁇ b are imaged at the imaging position P2a and the imaging position P2b, respectively, by the two-wavelength lens 124.
  • the processing surface of the object to be processed is placed in the vicinity of the imaging positions P2a and P2b, whereby an image B3a of the laser beam ⁇ a (hereinafter referred to as a laser spot B3a) in the vicinity of the imaging position P2a
  • the processing of the object to be processed is performed by the image B3b of the laser beam ⁇ b (hereinafter referred to as a laser spot B3b) in the vicinity of P2b.
  • the width d3a of the laser spot B3a at the imaging position P2a and the width d3b of the laser spot B3b near the imaging position P2b can be obtained by the following equations (3) and (4), respectively.
  • F3a represents the focal length of the lens 121a
  • f3b represents the focal length of the lens 121b
  • f4 represents the focal length of the two-wavelength lens 124.
  • the total reflection mirror 119 and the lens 120 b are housed in one module 131.
  • the module 131 can be electrically or manually shifted in a predetermined direction perpendicular to the optical axis of the lens 120 b by, for example, a shift mechanism 132 configured by an actuator or the like.
  • the shift direction of the module 131 will be described as being coincident with the x-axis direction.
  • the total reflection mirror 119 and the lens 120 b shift in the x-axis direction.
  • the optical path of the laser beam ⁇ b and the imaging position P1b shift in the x-axis direction, and as a result, the imaging position P2b of the laser beam ⁇ b (irradiation position of the laser spot B3b) is perpendicular to the optical axis of the lens 124 Shift in the right direction.
  • the movement of the module 131 in the x-axis direction is determined by the following equation (5).
  • the imaging position P2b is shifted in the direction opposite to the moving direction of the module 131.
  • the irradiation position of the laser spot B3b can be easily adjusted independently of the laser spot B3a, and the laser spot B3a and the laser spot B3b can be irradiated to different positions.
  • the laser spots B3a and B3b are scanned in the predetermined direction and the time difference is provided at substantially the same position.
  • This point will be described with reference to FIG. 2 as an example in which the laser spots B3a and B3b are scanned in the direction of the arrow A1 and the laser spots B3b and the laser spots B3a are sequentially provided with a time difference as an example. .
  • the laser spot B3b and the laser spot B3a are irradiated at substantially the same position by providing a predetermined interval (time difference) between the emission timings of the laser beam ⁇ b and the laser beam ⁇ b, the scanning speed of the laser spot increases.
  • a predetermined interval time difference
  • the interval of the emission timing for example, about several tens to several hundreds ns. Therefore, in order to improve the accuracy of the emission timing interval, it is necessary to perform advanced and stable control, and the necessary cost increases.
  • the laser spot B3b and the laser spot B3a are adjacent to each other in the scanning direction, as shown in the upper diagram of FIG. Can be irradiated. Then, by controlling the laser beams ⁇ a and ⁇ b to be emitted at the same timing without providing a time difference, the laser spot B3a is almost exactly overlapped and irradiated at the next irradiation timing at the position irradiated with the laser spot B3b. It becomes possible.
  • the laser spots B3a and B3b are scanned at substantially the same position in the direction of the arrow A1 only by adjusting the position of the module 131 in the x-axis direction without controlling the emission timing of the laser light. Irradiation can be performed by providing a time difference in a predetermined order. As a result, the cost required for the apparatus can be reduced, and electrical control is unnecessary, and only hard adjustment is required, so that stable processing can be performed in the long run.
  • the irradiation of the spot B3b (n) can be stopped.
  • the width d3a of the laser spot B3a is proportional to the focal length f2a of the lens 120a
  • the width d3b of the laser spot B3a is proportional to the focal length f2b of the lens 120b. Therefore, in the laser processing apparatus 101, the sizes of the laser spot B3a and the laser spot B3b can be easily adjusted individually by replacing the lens 120a and the lens 120b.
  • the area of the laser spot B3b is made larger than the area of the laser spot B3a as shown in FIG.
  • the processing quality may be improved.
  • a roll-up (swell like an embankment) occurs due to the thermal effect of the processing edge when irradiating the laser spot B3b, and sputtering is performed from this roll-up portion when irradiating the next laser spot B3a. May scatter in all directions.
  • generation of spatter from this roll-up portion can be prevented by making the area of the laser spot B3b slightly larger than the area of the laser spot B3a.
  • the width W between the edge of the laser spot B3b and the edge of the laser spot B3a can be easily adjusted by changing at least one of the focal length f2a of the lens 120a and the focal length f2b of the lens 120b as described above. can do.
  • FIG. 4 is a view showing a second embodiment of a laser processing apparatus to which the present invention is applied.
  • symbol is attached
  • XY slit mechanisms 211 a and 211 b are added to the laser processing apparatus 101 of FIG. 1, a module 231 is provided instead of the module 131, and a shift mechanism 232 is provided instead of the shift mechanism 132. It is a thing.
  • the XY slit mechanism 211a is installed so that the opening Oa substantially coincides with the imaging position P1a of the laser light ⁇ a.
  • the XY slit mechanism 211a can adjust the width in the vertical and horizontal directions of the rectangular opening Oa individually, and shapes the cross section of the laser beam ⁇ a imaged by the lens 120a into the shape of the opening Oa. It is incident on 121a.
  • the XY slit mechanism 211b is installed so that the opening Ob substantially coincides with the imaging position P1b of the laser beam ⁇ b.
  • the XY slit mechanism 211b can individually adjust the width in the vertical and horizontal directions of the rectangular opening Ob, and shapes the cross section of the laser light ⁇ b formed by the lens 120b into the shape of the opening Ob. It is incident on 121 b.
  • the module 231 is configured to store the total reflection mirror 119, the lens 120b, and the XY slit mechanism 211b.
  • the shift mechanism 232 is configured by, for example, an actuator or the like, and electrically or manually shifts the module 231 in a predetermined direction perpendicular to the optical axis of the lens 120b.
  • the shift direction of the module 231 will be described as being coincident with the x-axis direction.
  • the total reflection mirror 119, the lens 120b, and the XY slit mechanism 211b shift in the x-axis direction.
  • the optical path of the laser beam ⁇ b and the opening Ob of the XY slit mechanism 211b shift in the x-axis direction
  • the position of the laser beam ⁇ b passing through the XY slit mechanism 211b shifts in the x-axis direction.
  • the image forming position Pb1 (not shown) of the laser beam ⁇ b and the opening Ob of the XY slit mechanism 211b shift in the x-axis direction while substantially matching each other.
  • the imaging position P2b of the laser beam ⁇ b (the irradiation position of the laser spot B3b) is shifted in the direction perpendicular to the optical axis of the lens 124.
  • the imaging position P2b is shifted in the direction opposite to the moving direction of the module 231 by the distance represented by the above-mentioned equation (6).
  • the irradiation position of the laser spot B3b can be easily adjusted independently of the laser spot B3a, and the laser spot B3a and the laser spot B3b can be irradiated to different positions. .
  • edges of the laser spot B3a and the laser spot B3b become sharp and the processing edge becomes sharp. As a result, processing accuracy can be improved.
  • the shape and size of the laser spot B3a can be easily adjusted without replacing the lens 120a.
  • the shape of the opening Ob of the XY slit mechanism 211b the shape and size of the laser spot B3b can be easily adjusted without replacing the lens 120b.
  • FIG. 5 is a view showing a third embodiment of the laser processing apparatus to which the present invention is applied.
  • symbol is attached
  • the laser processing apparatus 301 of FIG. 5 is different from the laser processing apparatus 201 of FIG. 4 in that a shift mechanism 311 is added, and a lens 120 b ′ is provided instead of the lens 120 b.
  • the total reflection mirror 119, the lens 120b ', and the XY slit mechanism 211b are not modularized, and the shift mechanism 232 is not provided.
  • the focal length f2b 'of the lens 120b' is set to a value larger than the focal length f2b 'of the lens 120b of FIG.
  • the XY slit mechanism 211b is disposed before the focal position of the lens 120b '.
  • the shift mechanism 311 is configured of, for example, an actuator or the like, and electrically or manually shifts the XY slit mechanism 211b in directions perpendicular to the optical axis and orthogonal to each other.
  • the shift direction of the XY slit mechanism 211b will be described as being coincident with the x-axis direction and the y-axis direction.
  • the laser light passing through the XY slit mechanism 211b shifts the opening Ob of the XY slit mechanism 211b in the x-axis direction or y-axis direction.
  • the position of ⁇ b shifts in the x-axis or y-axis direction.
  • the imaging position P2b of the laser beam ⁇ b (the irradiation position of the laser spot B3b) is shifted in the direction perpendicular to the optical axis of the lens 124.
  • the imaging position P2b is shifted in the direction opposite to the moving direction of the XY slit mechanism 211b by the distance represented by the above-mentioned equation (6).
  • the irradiation position of the laser spot B3b with respect to the laser spot B3a can be set to an arbitrary direction within a predetermined distance range.
  • edge deletion of the thin film solar cell panel 351 is performed using the laser processing apparatus 301 .
  • edge deletion is performed in the order of arrow A11, arrow A12, arrow A13, and arrow A14.
  • the edge deletion is performed by irradiating the laser spot B3a after the irradiation of the laser spot B3b.
  • the irradiation position of the laser spot B3b with respect to the laser spot B3a can be set in an arbitrary direction. For example, as shown in FIG. 7, it is possible to irradiate the laser spot B3b to any of the regions D1 to D4 adjacent to the laser spot B3a along with the laser spot B3a.
  • the position of the XY slit mechanism 211b is adjusted by the shift mechanism 311 so that the laser spot B3b is irradiated to the region D2, and edge deletion in the direction of the arrow A11 is performed.
  • the shift mechanism 311 adjusts the position of the XY slit mechanism 211b so that the laser spot B3b is irradiated to the region D3, and edge deletion in the direction of the arrow A12 is performed.
  • the position of the XY slit mechanism 211b is adjusted by the shift mechanism 311 so that the laser spot B3b is irradiated to the region D4, and edge deletion in the direction of the arrow A13 is performed.
  • the position of the XY slit mechanism 211b is adjusted by the shift mechanism 311 so that the laser spot B3b is irradiated to the region D1, and edge deletion in the direction of the arrow A14 is performed.
  • both irradiation positions can be accurately overlapped in a predetermined order, and as a result, edge deletion Improve the quality of In addition, it is sufficient to adjust the position of the XY slit mechanism 211b at each corner of the thin film solar cell panel 351, so that the control is easy and the processing time can be shortened.
  • FIG. 8 is a view showing a fourth embodiment of the laser processing apparatus to which the present invention is applied.
  • symbol is attached
  • the laser processing apparatus 401 of FIG. 8 is different from the laser processing apparatus 201 of FIG. 4 in that a shift mechanism 411 is added, a module 421 is provided instead of the module 231, and the shift mechanism 232 is eliminated.
  • the shift mechanism 411 is constituted by, for example, an actuator or the like, and electrically or manually shifts the XY slit mechanism 211b in a direction perpendicular to the optical axis of the lens 120b.
  • the shift direction of the XY slit mechanism 211b will be described as being coincident with the x-axis direction.
  • a dual wavelength mirror 118, a total reflection mirror 119, a lens 120b, an XY slit mechanism 211b, a lens 121b, a total reflection mirror 122, a dual wavelength mirror 123, and a shift mechanism 411 are stored in the module 421.
  • the module 421 can be rotated in the direction indicated by the arrow A21 about an axis of rotation that coincides with the optical axis of the lens 124.
  • the optical path of the laser beam ⁇ b from the two-wavelength mirror 118 to the two-wavelength mirror 123 rotates about a rotation axis that coincides with the optical axis of the lens 124.
  • the relative position of the laser spot B3a and the laser spot B3b can be rotated.
  • the irradiation position of the laser spot B3 b with respect to the laser spot B3 a is 90 as shown in the upper to lower views of FIG. It can be rotated by degrees.
  • the combination of the shift direction of the XY slit mechanism 211b and the rotation direction of the module 421 makes it possible, within the range of a predetermined distance, like the laser processing apparatus 301.
  • the irradiation position of the laser spot B3b with respect to the laser spot B3a can be set in any direction. If the module 421 can be rotated 90 degrees around the rotation axis, the combination of the shift direction of the XY slit mechanism 211b and the rotation direction of the module 421 makes the laser spot B3a as described above with reference to FIG. It becomes possible to irradiate the laser spot B3b to any of the regions D1 to D4 adjacent to the four sides.
  • edge deletion of the thin film solar cell panel 351 can be performed by the method described above with reference to FIG.
  • the laser light ⁇ a emitted from the laser oscillator 111a and the laser light ⁇ b emitted from the laser oscillator 111b are directly incident on the lens 120a or the lens 120b without coupling the optical path. It is also possible to do so. In this case, it is desirable that the beam diameter of the laser beam ⁇ a be expanded, the laser beam ⁇ a be collimated, and the intensity of the cross section of the laser beam ⁇ a be made uniform between the laser oscillator 111a and the lens 120a. For homogenizing the strength, for example, a homogenizer or a Callidescope can be used. The same applies to the portion between the laser oscillator 111b and the lens 120b.
  • the shift direction of the module 131 may be shifted in two or more directions (for example, the x-axis direction and the y-axis direction) perpendicular to the optical axis of the lens 120b.
  • the laser processing apparatus 301 of FIG. 5 and the laser processing apparatus 401 of FIG. 8 it becomes possible to set the irradiation position of the laser spot B3b to the laser spot B3a in an arbitrary direction.
  • the shift direction of the module 231 may be shifted in two or more directions (for example, the x-axis direction and the y-axis direction) perpendicular to the optical axis of the lens 120 b. .
  • the laser processing apparatus 301 of FIG. 5 and the laser processing apparatus 401 of FIG. 8 it becomes possible to set the irradiation position of the laser spot B3b to the laser spot B3a in an arbitrary direction.
  • the present invention can also be applied to the case of using laser light of three or more wavelengths.
  • laser light of three or more types of wavelengths for example, after the laser light is emitted from the optical fiber 116, the optical path of each laser light is branched, and for each optical path, FIG. 1, FIG. 4, FIG. The same configuration as that on the optical path of the laser beam ⁇ a or the laser beam ⁇ b described above with reference to FIG. Thereafter, after combining the optical paths of the respective laser beams, the light may be incident on the two-wavelength lens 124.
  • a multi-wavelength lens corresponding to the wavelength is used as the two-wavelength lens 124.
  • the optical paths of all the laser beams do not necessarily have to be branched individually, and the optical paths of a plurality of laser beams may be shared.
  • the laser beam ⁇ b may be branched and the optical paths of the laser beam ⁇ a and the laser beam ⁇ c may be made common.
  • FIG. 10 is a view showing an embodiment of a laser processing apparatus in the case of using laser beams having different polarization directions.
  • symbol is attached
  • the laser processing apparatus 501 of FIG. 10 includes laser oscillators 111a and 111b, a beam splitter 114, a dual wavelength fiber coupling lens 115, an optical fiber 116, dual wavelength imaging processing optics.
  • PBS Polarization beam splitter
  • PBS Polarization beam splitter
  • the total reflection mirrors 113, 119, and 122 are configured by mirrors that can reflect approximately 100% of S-wave light.
  • imaging processing optical system lenses 515 and 518 are illustrated as one convex lens, respectively, they may be configured by a combination of a plurality of convex lenses and concave lenses.
  • imaging processing optical system lenses 515 and 518 will be simply referred to as lenses 515 and 518.
  • the laser oscillator 511a is, for example, an Nd: YAG laser, and is synchronized with a pulse-shaped emission signal Sa input from a control device (not shown), and is a pulse-shaped laser beam of P wave of a predetermined wavelength (hereinafter referred to as The laser beam P is oscillated and emitted.
  • the beam diameter of the laser beam P emitted from the laser oscillator 511 a is expanded by the beam expander 112 a and enters the polarization beam splitter 512.
  • the laser oscillator 511b is made of, for example, an Nd: YAG laser, and in synchronization with an emission signal Sb input from a control device (not shown), a pulse-shaped laser beam of S wave having the same wavelength as the laser beam P (hereinafter The laser beam is oscillated and emitted.
  • the beam diameter of the laser beam S emitted from the laser oscillator 511 b is expanded by the beam expander 112 b, and then reflected by the total reflection mirror 113 and enters the polarization beam splitter 512.
  • the polarization direction of the laser light P is the vertical direction of the paper surface
  • the polarization direction of the laser light S is the vertical direction of the paper surface
  • the polarization beam splitter 512 has a characteristic of transmitting P-wave light and reflecting S-wave light. Therefore, the laser beam P passes through the polarization beam splitter 512, and the laser beam S is reflected by the polarization beam splitter 512, whereby the optical paths of the laser beam P and the laser beam S are combined. Then, the laser light P and the laser light S are condensed by the fiber coupling lens 513, enter the polarization maintaining fiber 514, and are transmitted while maintaining the polarization direction as it is.
  • the cross section of the output end face 514A of the polarization maintaining fiber 514 is a square, and the cross section B1 of the laser light P and S emitted from the polarization maintaining fiber 514 is a square having a width (length of one side) d1. Further, the intensity of the cross section B1 of the laser beams P and S is substantially uniform.
  • the laser beams P and S emitted from the polarization maintaining fiber 514 are collimated by the lens 515 and enter the polarization beam splitter 516.
  • the polarizing beam splitter 516 has characteristics of transmitting light of wavelength P and reflecting light of wavelength S. Therefore, the laser beam P is transmitted through the polarization beam splitter 516 and the laser beam S is reflected by the polarization beam splitter 516, whereby the optical paths of the laser beam P and the laser beam S are separated.
  • the laser beam P transmitted through the polarization beam splitter 516 is imaged at the imaging position P1a by the lens 120a. Further, the laser light P is collimated by the lens 121 a and enters the polarization beam splitter 517.
  • the laser beam S reflected by the polarization beam splitter 516 is further reflected by the total reflection mirror 119, and then forms an image at the imaging position P1b by the lens 120b. Further, the laser light S is collimated by the lens 121 b, reflected by the total reflection mirror 122, and enters the polarization beam splitter 517.
  • the polarization beam splitter 517 has a characteristic of transmitting light of wavelength P and reflecting light of wavelength S. Accordingly, the laser beam P is transmitted through the polarization beam splitter 517 and the laser beam S is reflected by the polarization beam splitter 517, whereby the optical paths of the laser beam P and the laser beam S are combined.
  • the laser beam P and the laser beam S are imaged by the lens 518 at the imaging position P2a and the imaging position P2b, respectively.
  • the processing surface of the object to be processed is placed in the vicinity of the imaging positions P2a and P2b, whereby the image B3a (laser spot B3a) of the laser light P near the imaging position P2a and the laser in the vicinity of the imaging position P2b
  • the processing of the object to be processed is performed by the image B3b of the light S (laser spot B3b).
  • the present invention is applicable not only to one type of element but also to parallel use of a plurality of types of laser light different in combination of a plurality of elements (for example, combination of wavelength and polarization direction). Is also possible.
  • the means for separating or combining the optical path of the laser beam or changing the direction of the optical path of the laser beam is not limited to the above-described example, and various modifications are possible.
  • a prism or a half mirror it is also possible to use a prism or a half mirror.
  • the scanning of the laser spots B3a and B3b can be performed, for example, by scanning the imaging positions P2a and P2b with a galvano mirror or the like, moving the object to be processed, moving the laser processing apparatus, or a combination thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

In order to irradiate approximately the same position, at a temporal difference, whilst simply scanning a spot by means of a plurality of laser lights: after image formation at an image formation position (P1a) by means of a lens (120a), a laser light (λa) is collimated by another lens (121a) and enters a two-wavelength mirror (123); after image formation at an image formation position (P1b) by means of a lens (120b), another laser light (λb) is collimated by another lens (121b), is reflected by a complete reflection mirror (122), and enters the two-wavelength mirror (123); then, the optical paths of the laser lights (λa, λb) are joined by the two-wavelength mirror (123), and image formation takes place at image formation positions (P2a, P2b) by means of a two-wavelength lens (124). A module (131), which houses a complete reflection mirror (119) and one of the lenses (120b), shifts in the direction perpendicular to the optical axis of the lens (120b) by means of a shift mechanism (132). The present invention can, for example, be applied to a laser processing device for processing a thin-film solar cell panel.

Description

レーザ加工装置およびレーザ加工方法Laser processing apparatus and laser processing method
 本発明は、レーザ加工装置およびレーザ加工方法に関し、特に、複数の種類のレーザ光を並行して使用するレーザ加工装置およびレーザ加工方法に関する。 The present invention relates to a laser processing apparatus and a laser processing method, and more particularly to a laser processing apparatus and a laser processing method using a plurality of types of laser light in parallel.
 従来、波長等が異なる2種類のレーザ光を所定の時間差で加工対象物に照射し、加工精度を向上させるようにしたレーザ加工装置が提案されている(例えば、特許文献1、2参照)。 Conventionally, a laser processing apparatus has been proposed in which two types of laser beams having different wavelengths and the like are irradiated to a processing target with a predetermined time difference to improve processing accuracy (for example, see Patent Documents 1 and 2).
 例えば、特許文献1に記載の発明では、各レーザ光が通過する光ファイバの長さを変え、レーザ光の光路長差を調整することにより、各レーザ光が加工対象物に照射される時間差が調整される。 For example, in the invention described in Patent Document 1, the time difference in which each laser beam is irradiated to the object to be processed is changed by changing the length of the optical fiber through which each laser beam passes and adjusting the optical path length difference of the laser beam. Adjusted.
 また、特許文献2に記載の発明では、各レーザ光の光学系が全く独立しており、光学系毎にレーザ光を出射するタイミングを調整することにより、各レーザ光が加工対象物に照射される時間差が調整される。 Further, in the invention described in Patent Document 2, the optical system of each laser beam is completely independent, and each laser beam is irradiated to the object by adjusting the timing of emitting the laser beam for each optical system. Time difference is adjusted.
特開2006-313858号公報JP, 2006-313858, A 特開2010-142829号公報Unexamined-Japanese-Patent No. 2010-142829
 ところで、例えば薄膜太陽電池パネルの薄膜除去の工程等では、2種類のレーザ光による各スポットを所定の方向に走査しながら、ほぼ同じ位置に時間差を設けて照射できるようにすることが望まれている。 By the way, for example, in the thin film removal process of a thin film solar cell panel, it is desired that time spots can be provided at substantially the same position and irradiation can be performed while scanning each spot by two types of laser light in a predetermined direction. There is.
 しかしながら、特許文献1に記載の発明では、レーザ光の走査速度によって、レーザ光を照射する時間差を調整するために光ファイバの長さを変える必要があり、時間と手間がかかる。また、予め準備されている長さの光ファイバの範囲内でしか時間差を調整することができない。 However, in the invention described in Patent Document 1, it is necessary to change the length of the optical fiber in order to adjust the time difference of irradiating the laser light depending on the scanning speed of the laser light, which takes time and labor. Also, it is only possible to adjust the time difference within the range of pre-prepared optical fibers.
 また、特許文献2に記載の発明では、各レーザ光の光学系が全く独立しているため、2種類のレーザ光をほぼ同じ位置に照射するように調整することが難しい。 Further, in the invention described in Patent Document 2, since the optical system of each laser beam is completely independent, it is difficult to adjust so that the two types of laser beams are irradiated to substantially the same position.
 本発明は、このような状況に鑑みてなされたものであり、簡単に複数のレーザ光による各スポットを所定の方向に走査しながら、ほぼ同じ位置に時間差を設けて照射できるようにするものである。 The present invention has been made in view of such a situation, and it is possible to provide a time difference at substantially the same position and enable irradiation while scanning each spot by a plurality of laser beams in a predetermined direction. is there.
 本発明の第1の側面のレーザ加工装置は、少なくとも第1のレーザ光および第2のレーザ光を用いて加工対象物の加工を行うレーザ加工装置であって、第1のレーザ光が通過する第1の光路上の第1の結像位置において、第1のレーザ光を結像する第1のレンズと、第1の光路上の第1の結像位置より後で第1のレーザ光をコリメートする第2のレンズと、第2のレーザ光が通過する第2の光路上の第2の結像位置において、第2のレーザ光を結像する第3のレンズと、第2の光路上の第2の結像位置より後で第2のレーザ光をコリメートする第4のレンズと、第2のレンズおよび第4のレンズの後段において、第1のレーザ光と第2のレーザ光の光路を結合する結合手段と、結合手段と加工対象物の間に設けられ、第1のレーザ光および第2のレーザ光を結像する第5のレンズと、第2の光路を調整して、第5のレンズによる第2のレーザ光の結像位置である第3の結像位置の光軸と垂直な方向における位置を調整する調整手段とを備える。 The laser processing apparatus according to the first aspect of the present invention is a laser processing apparatus for processing an object to be processed using at least a first laser beam and a second laser beam, through which the first laser beam passes. In a first imaging position on a first optical path, a first lens for imaging the first laser light, and a first laser light after the first imaging position on the first optical path A second lens for collimating, a third lens for imaging the second laser beam at a second imaging position on a second optical path through which the second laser beam passes, and a second optical path And a fourth lens for collimating the second laser beam after the second imaging position of the second lens, and the optical path of the first laser beam and the second laser beam at a stage subsequent to the second lens and the fourth lens. A coupling means for coupling the first laser light and the first laser light provided between the coupling means and the object to be processed; The fifth lens for forming the second laser beam and the second optical path are adjusted, and the optical axis of the third imaging position, which is the imaging position for the second laser beam by the fifth lens, is perpendicular And adjusting means for adjusting the position in any of the directions.
 本発明の第1の側面のレーザ加工装置においては、第1のレーザ光が第1の光路上の第1の結像位置において結像した後、コリメートされ、第2のレーザ光が第2の光路上の第2の結像位置において結像した後、コリメートされ、その後、第1のレーザ光と第2のレーザ光の光路が結合された後、第1のレーザ光および第2のレーザ光が第5のレンズにより結像する。また、第2のレーザ光が通過する第2の光路が調整され、第2のレーザ光の第5のレンズによる結像位置の光軸と垂直な方向における位置が調整される。 In the laser processing apparatus according to the first aspect of the present invention, the first laser beam forms an image at a first imaging position on the first optical path, and is collimated to form a second laser beam. After forming an image at a second imaging position on the optical path, it is collimated, and then the optical paths of the first laser light and the second laser light are combined, and then the first laser light and the second laser light Forms an image with the fifth lens. Further, the second light path through which the second laser light passes is adjusted, and the position of the image forming position of the second laser light by the fifth lens in the direction perpendicular to the optical axis is adjusted.
 従って、簡単に複数のレーザ光による各スポットを所定の方向に走査することにより、ほぼ同じ位置に時間差を設けて照射することができる。 Therefore, by scanning each spot by a plurality of laser beams simply in a predetermined direction, it is possible to provide a time difference at substantially the same position for irradiation.
 この結合手段は、例えば、2波長性ミラーにより構成される。この調整手段は、例えば、アクチュエータ等を用いたシフト機構や回転機構により構成される。 This coupling means is constituted by, for example, a two-wavelength mirror. The adjusting means is constituted by, for example, a shift mechanism or a rotation mechanism using an actuator or the like.
 この調整手段には、第2の結像位置の光軸と垂直な方向の位置を調整させることにより、第3の結像位置の光軸と垂直な方向の位置を調整させることができる。 The adjustment means can adjust the position of the third imaging position in the direction perpendicular to the optical axis by adjusting the position of the second imaging position in the direction perpendicular to the optical axis.
 これにより、簡単な構成で、簡単に複数のレーザ光による各スポットを所定の方向に走査することにより、ほぼ同じ位置に時間差を設けて照射することができる。 Thus, by simply scanning the spots of the plurality of laser beams in a predetermined direction with a simple configuration, it is possible to provide a time difference at substantially the same position and perform irradiation.
 このレーザ加工装置には、第1の光路上の第1のレンズと第2のレンズの間に設けられる第1のスリットと、第2の光路上の第3のレンズと第4のレンズの間に設けられる第2のスリットとをさらに設け、この調整手段には、第2のスリットの開口部の光軸と垂直な方向における位置を調整することにより、第3の結像位置の光軸と垂直な方向の位置を調整させることができる。 In this laser processing apparatus, a first slit provided between a first lens and a second lens on a first light path, and a third slit and a fourth lens on a second light path And the second slit provided in the second slit, and adjusting the position of the opening of the second slit in the direction perpendicular to the optical axis of the second slit, The position in the vertical direction can be adjusted.
 これにより、レーザ光のスポットのエッジが鮮明になり、その結果、加工品質が向上する。 As a result, the edge of the spot of the laser light becomes sharp, and as a result, the processing quality is improved.
 この第2のスリットを、第2の結像位置付近に設け、この調整手段には、第2の結像位置を第2のスリットの開口部とともに移動させることができる。 The second slit can be provided near the second imaging position, and the adjusting means can move the second imaging position together with the opening of the second slit.
 これにより、スリットによるレーザ光の損失を軽減することができる。 Thereby, the loss of the laser beam by the slit can be reduced.
 このレーザ加工装置には、第4のレンズの後段において、第2の光路の方向を結合手段の方向に変更する変更手段をさらに設け、この調整手段には、第2の光路を第5のレンズの光軸と一致する回転軸を中心に回転させることにより、第3の結像位置の光軸と垂直な方向の位置を調整させることができる。 The laser processing apparatus further includes changing means for changing the direction of the second optical path to the direction of the coupling means at a stage subsequent to the fourth lens, and the adjusting means includes a fifth lens for the second optical path. The position of the third imaging position in the direction perpendicular to the optical axis can be adjusted by rotating it about the rotation axis that coincides with the optical axis of the third image.
 これにより、第2のレーザ光のスポットの照射位置の調整の自由度を増すことができる。 Thus, the degree of freedom in adjusting the irradiation position of the second laser light spot can be increased.
 このレーザ加工装置には、第1のレーザ光および第2のレーザ光を伝送する光ファイバと、光ファイバから出射された第1のレーザ光および第2のレーザ光をコリメートする第6のレンズと、第6のレンズの後段において、第1のレーザ光と第2のレーザ光の光路を第1の光路と第2の光路に分離する分離手段とをさらに設けることができる。 The laser processing apparatus includes an optical fiber for transmitting the first laser beam and the second laser beam, and a sixth lens for collimating the first laser beam and the second laser beam emitted from the optical fiber. A separation means for separating the optical paths of the first laser light and the second laser light into the first optical path and the second optical path may be further provided downstream of the sixth lens.
 これにより、レーザ光の断面の強度を均一化することができ、その結果、加工品質が向上する。 Thereby, the intensity of the cross section of the laser beam can be made uniform, and as a result, the processing quality is improved.
 この分離手段は、例えば、2波長性ミラーにより構成される。 This separation means is constituted by, for example, a two-wavelength mirror.
 光ファイバの出射端面の形状を角形にすることができる。 The shape of the output end face of the optical fiber can be made square.
 これにより、例えば、スリットによるレーザ光の損失を軽減することができる。 Thereby, for example, the loss of the laser beam by the slit can be reduced.
 このレーザ加工装置には、加工対象物の表面上で、第3の結像位置を移動させる走査手段をさらに備えることができる。 The laser processing apparatus may further include scanning means for moving the third imaging position on the surface of the object to be processed.
 この走査手段は、例えば、結像位置を加工対象物の表面で走査するガルバノミラーや、加工対象物を移動させるXYステージや、レーザ加工装置を移動させるガントリステージ、またはそれらの組み合わせにより実現することができる。 This scanning means is realized, for example, by a galvano mirror which scans the imaging position on the surface of the processing object, an XY stage which moves the processing object, a gantry stage which moves the laser processing apparatus, or a combination thereof. Can.
 本発明の第2の側面のレーザ加工方法は、少なくとも第1のレーザ光および第2のレーザ光を用いて加工対象物の加工を行うレーザ加工方法において、第1のレーザ光と第2のレーザ光を発生させ、第1のレーザ光と第2のレーザ光をそれぞれ同一形状または異なる形状、かつ加工対象物の表面に隣接して結像させ、隣接させた結像の並んだ方向に結像位置を移動させ、または加工対象物の相対的な位置を移動させ、連続的に対象物の表面を加工する。 The laser processing method according to the second aspect of the present invention is a laser processing method for processing an object to be processed using at least a first laser beam and a second laser beam, wherein the first laser beam and the second laser beam are used. Light is generated, and the first laser beam and the second laser beam are imaged in the same shape or different shape and adjacent to the surface of the object to be processed, and imaged in the direction in which the adjacent images are aligned The position is moved or the relative position of the object to be processed is moved to continuously process the surface of the object.
 本発明の第2の側面においては、第1のレーザ光と第2のレーザ光が発生され、第1のレーザ光と第2のレーザ光がそれぞれ同一形状または異なる形状、かつ加工対象物の表面に隣接して結像され、隣接させた結像の並んだ方向に結像位置が移動され、または加工対象物の相対的な位置が移動され、連続的に対象物の表面が加工される。 In the second aspect of the present invention, a first laser beam and a second laser beam are generated, and the first laser beam and the second laser beam have the same shape or different shapes, respectively, and the surface of the object to be processed. And the imaging position is moved in the side-by-side alignment direction of the adjacent imaging, or the relative position of the object to be processed is moved to continuously process the surface of the object.
 従って、簡単に複数のレーザ光による各スポットを走査しながら、ほぼ同じ位置に時間差を設けて照射することができる。 Therefore, while scanning each spot by a plurality of laser beams easily, it is possible to provide a time difference at substantially the same position and to irradiate.
 本発明の第1の側面によれば、簡単に複数のレーザ光による各スポットを所定の方向に走査することにより、ほぼ同じ位置に時間差を設けて照射することができる。 According to the first aspect of the present invention, by scanning each spot of a plurality of laser beams simply in a predetermined direction, it is possible to provide a time difference at substantially the same position and perform irradiation.
 また、本発明の第2の側面によれば、簡単に複数のレーザ光による各スポットを走査しながら、ほぼ同じ位置に時間差を設けて照射することができる。 Further, according to the second aspect of the present invention, while scanning each spot by a plurality of laser beams easily, it is possible to provide a time difference at substantially the same position for irradiation.
本発明を適用したレーザ加工装置の第1の実施の形態を示す図である。It is a figure which shows 1st Embodiment of the laser processing apparatus to which this invention is applied. 本発明の効果を説明するための図である。It is a figure for demonstrating the effect of this invention. レーザスポットの面積の関係の例を示す図である。It is a figure which shows the example of the relationship of the area of a laser spot. 本発明を適用したレーザ加工装置の第2の実施の形態を示す図である。It is a figure which shows 2nd Embodiment of the laser processing apparatus to which this invention is applied. 本発明を適用したレーザ加工装置の第3の実施の形態を示す図である。It is a figure which shows 3rd Embodiment of the laser processing apparatus to which this invention is applied. 薄膜太陽電池パネルのエッジデリーションについて説明するための図である。It is a figure for demonstrating the edge deletion of a thin film solar cell panel. レーザスポットの位置関係を示す図である。It is a figure which shows the positional relationship of a laser spot. 本発明を適用したレーザ加工装置の第4の実施の形態を示す図である。It is a figure which shows 4th Embodiment of the laser processing apparatus to which this invention is applied. レーザスポットの照射位置の変化を示す図である。It is a figure which shows the change of the irradiation position of a laser spot. 本発明を適用したレーザ加工装置の第5の実施の形態を示す図である。It is a figure which shows 5th Embodiment of the laser processing apparatus to which this invention is applied.
 以下、本発明を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(基本形)
2.第2の実施の形態(XYスリット機構を用いた例)
3.第3の実施の形態(XYスリット機構のみをシフトさせるようにした例)
4.第4の実施の形態(レーザ光λbの光路を回転させるようにした例)
5.変形例
Hereinafter, modes for carrying out the present invention (hereinafter, referred to as embodiments) will be described. The description will be made in the following order.
1. First embodiment (basic form)
2. Second embodiment (an example using an XY slit mechanism)
3. Third embodiment (an example in which only the XY slit mechanism is shifted)
4. Fourth embodiment (an example in which the optical path of the laser beam λb is rotated)
5. Modified example
<1.第1の実施の形態>
[レーザ加工装置の構成例]
 図1は、本発明を適用したレーザ加工装置の第1の実施の形態を示す図である。
<1. First embodiment>
[Configuration example of laser processing apparatus]
FIG. 1 is a view showing a first embodiment of a laser processing apparatus to which the present invention is applied.
 なお、以下、レーザ光の進行方向をz軸方向とし、z軸方向に垂直で、かつ互いに直交する所定の方向を、それぞれx軸方向およびy軸方向とする。 Hereinafter, the traveling direction of the laser light is referred to as the z-axis direction, and predetermined directions perpendicular to the z-axis direction and orthogonal to each other are referred to as the x-axis direction and the y-axis direction.
 レーザ加工装置101は、レーザ発振器111a,111b、ビームエキスパンダ112a,112b、全反射ミラー113、ビームスプリッタ114、2波長性(Dichroic)ファイバ結合レンズ115、光ファイバ116、2波長性(Dichroic)結像加工光学系レンズ117、2波長性(Dichroic)ミラー118、全反射ミラー119、結像加工光学系レンズ120a,120b,121a,121b、全反射ミラー122、2波長性(Dichroic)ミラー123、および、2波長性(Dichroic)結合加工光学系レンズ124を含むように構成される。 The laser processing apparatus 101 includes laser oscillators 111a and 111b, beam expanders 112a and 112b, total reflection mirrors 113, a beam splitter 114, a two-wavelength (Dichroic) fiber coupling lens 115, an optical fiber 116, and two-wavelength (Dichroic) coupling. Image processing optical system lens 117, two-wavelength (Dichroic) mirror 118, total reflection mirror 119, imaging processing optical system lens 120a, 120b, 121a, 121b, total reflection mirror 122, two-wavelength (Dichroic) mirror 123, and , And is configured to include a two-wavelength (Dichroic) combined processing optical lens 124.
 なお、2波長性結像加工光学系レンズ117,124は、それぞれ1枚の凸レンズとして図示されているが、複数の凸レンズや凹レンズの組み合わせにより構成される場合がある。同様に、結像加工光学系レンズ120a,120b,121a,121bも、それぞれ1枚の凸レンズとして図示されているが、複数の凸レンズや凹レンズの組み合わせにより構成される場合がある。 Although each of the two-wavelength imaging and processing optical system lenses 117 and 124 is illustrated as a single convex lens, it may be configured by a combination of a plurality of convex lenses and concave lenses. Similarly, although the image forming processing optical system lenses 120a, 120b, 121a, and 121b are also illustrated as one convex lens, respectively, they may be configured by a combination of a plurality of convex lenses and concave lenses.
 なお、以下、2波長性結像加工光学系レンズ117,124を、単に2波長性レンズ117,124と称し、結像加工光学系レンズ120a,120b,121a,121bを、単にレンズ120a,120b,121a,121bと称する。 Hereinafter, the dual-wavelength imaging processing optical system lenses 117 and 124 will be simply referred to as dual- wavelength lenses 117 and 124, and the imaging processing optical system lenses 120a, 120b, 121a and 121b will be simply referred to as lenses 120a, 120b, It is called 121a and 121b.
 レーザ発振器111aは、例えば、Nd:YAGレーザにより構成され、図示せぬ制御装置から入力される出射信号Saに同期して、所定の波長λaのパルス状のレーザ光(以下、レーザ光λaと称する)を発振し、出射する。レーザ発振器111aから出射されたレーザ光λaは、ビームエキスパンダ112aによりビーム径が拡大されて、ビームスプリッタ114に入射する。 The laser oscillator 111a is made of, for example, an Nd: YAG laser, and is pulsed with a predetermined wavelength λa (hereinafter referred to as “laser light λa” in synchronization with an emission signal Sa input from a control device (not shown). Oscillate) and emit. The beam diameter of the laser beam λa emitted from the laser oscillator 111 a is expanded by the beam expander 112 a and enters the beam splitter 114.
 レーザ発振器111bは、例えば、Nd:YAGレーザにより構成され、図示せぬ制御装置から入力される出射信号Sbに同期して、所定の波長λbのパルス状のレーザ光(以下、レーザ光λbと称する)を発振し、出射する。レーザ発振器111bから出射されたレーザ光λbは、ビームエキスパンダ112bによりビーム径が拡大された後、全反射ミラー113により反射され、ビームスプリッタ114に入射する。 The laser oscillator 111b is made of, for example, an Nd: YAG laser, and is pulsed with a predetermined wavelength λb (hereinafter referred to as “laser light λb” in synchronization with an emission signal Sb input from a control device (not shown). Oscillate) and emit. The beam diameter of the laser beam λb emitted from the laser oscillator 111 b is expanded by the beam expander 112 b, and then reflected by the total reflection mirror 113 and enters the beam splitter 114.
 なお、以下、波長λaが、Nd:YAGレーザの基本波の波長である1064nmに設定され、波長λbが、Nd:YAGレーザの第2高調波(SHG)の波長である532nmに設定されている場合について説明する。 Hereinafter, the wavelength λa is set to 1064 nm, which is the wavelength of the fundamental wave of the Nd: YAG laser, and the wavelength λb is set to 532 nm, which is the wavelength of the second harmonic (SHG) of the Nd: YAG laser The case will be described.
 ビームスプリッタ114は、波長λaの光を透過し、波長λbの光を反射する特性を有している。従って、レーザ光λaがビームスプリッタ114を透過し、レーザ光λbがビームスプリッタ114により反射されることにより、レーザ光λaとレーザ光λbの光路が結合する。そして、レーザ光λaおよびレーザ光λbは、2波長性ファイバ結合レンズ115により集光されて、光ファイバ116に入射し、伝送される。 The beam splitter 114 has a characteristic of transmitting light of wavelength λa and reflecting light of wavelength λb. Therefore, the laser beam λa passes through the beam splitter 114, and the laser beam λb is reflected by the beam splitter 114, whereby the optical paths of the laser beam λa and the laser beam λb are coupled. Then, the laser light λa and the laser light λb are condensed by the two-wavelength fiber coupling lens 115, are incident on the optical fiber 116, and are transmitted.
 光ファイバ116の出射端面116Aの断面は正方形になっており、光ファイバ116から出射されるレーザ光λa,λbの断面B1は、幅(一辺の長さ)d1の正方形となる。また、レーザ光λa,λbの断面B1の強度がほぼ均一化される。そして、光ファイバ116から出射されたレーザ光λa,λbは、2波長性レンズ117によりコリメートされ、2波長性ミラー118に入射する。 The cross section of the emission end face 116A of the optical fiber 116 is a square, and the cross section B1 of the laser beams λa and λb emitted from the optical fiber 116 is a square with a width (length of one side) d1. Further, the intensity of the cross section B1 of the laser beams λa and λb is made substantially uniform. The laser beams λa and λb emitted from the optical fiber 116 are collimated by the two-wavelength lens 117 and enter the two-wavelength mirror 118.
 2波長性ミラー118は、波長λaの光を透過し、波長λbの光を反射する特性を有している。従って、レーザ光λaが2波長性ミラー118を透過し、レーザ光λbが2波長性ミラー118により反射されることにより、レーザ光λaとレーザ光λbの光路が分離される。 The two-wavelength mirror 118 has a characteristic of transmitting light of wavelength λa and reflecting light of wavelength λb. Accordingly, the laser beam λa is transmitted through the two-wavelength mirror 118, and the laser beam λb is reflected by the two-wavelength mirror 118, whereby the optical paths of the laser beam λa and the laser beam λb are separated.
 2波長性ミラー118を透過したレーザ光λaは、レンズ120aにより結像位置P1aにおいて結像する。結像位置P1aにおけるレーザ光λaの像B2a(レンズ120aにより形成される光ファイバ116の出射端面116Aの像B2a)の幅d2aは、次式(1)により求められる。 The laser beam λa transmitted through the two-wavelength mirror 118 forms an image at the imaging position P1a by the lens 120a. The width d2a of the image B2a of the laser beam λa (the image B2a of the emission end face 116A of the optical fiber 116 formed by the lens 120a) at the imaging position P1a is determined by the following equation (1).
 d2a=d1×(f2a/f1) ・・・(1) D2a = d1 × (f2a / f1) (1)
 なお、f1は2波長性レンズ117の焦点距離を表し、f2aはレンズ120aの焦点距離を表している。 F1 represents the focal length of the two-wavelength lens 117, and f2a represents the focal length of the lens 120a.
 その後、レーザ光λaは、結像位置P1aより後で、レンズ121aによりコリメートされ、2波長性ミラー123に入射する。 After that, the laser light λa is collimated by the lens 121a after the imaging position P1a and is incident on the two-wavelength mirror 123.
 一方、2波長性ミラー118により反射されたレーザ光λbは、さらに全反射ミラー119により反射された後、レンズ120bにより結像位置P1bにおいて結像する。結像位置P1bにおけるレーザ光λbの像B2b(レンズ120bにより形成される光ファイバ116の出射端面116Aの像B2b)の幅d2bは、次式(2)により求められる。 On the other hand, the laser beam λb reflected by the two-wavelength mirror 118 is further reflected by the total reflection mirror 119, and then forms an image at the imaging position P1b by the lens 120b. The width d2b of the image B2b of the laser beam λb (the image B2b of the emission end face 116A of the optical fiber 116 formed by the lens 120b) at the imaging position P1b is determined by the following equation (2).
 d2b=d1×(f2b/f1) ・・・(2) D2b = d1 × (f2b / f1) (2)
 なお、f2bは、レンズ120bの焦点距離を表している。 F2b represents the focal length of the lens 120b.
 その後、レーザ光λbは、結像位置P1bより後で、レンズ121bによりコリメートされ、全反射ミラー122により反射され、2波長性ミラー123に入射する。 Thereafter, the laser beam λb is collimated by the lens 121b after the imaging position P1b, is reflected by the total reflection mirror 122, and is incident on the two-wavelength mirror 123.
 2波長性ミラー123は、波長λaの光を透過し、波長λbの光を反射する特性を有している。従って、レーザ光λaが2波長性ミラー123を透過し、レーザ光λbが2波長性ミラー123により反射されることにより、レーザ光λaとレーザ光λbの光路が結合する。 The two-wavelength mirror 123 has a characteristic of transmitting light of wavelength λa and reflecting light of wavelength λb. Accordingly, the laser beam λa is transmitted through the two-wavelength mirror 123, and the laser beam λb is reflected by the two-wavelength mirror 123, whereby the optical paths of the laser beam λa and the laser beam λb are coupled.
 その後、レーザ光λaおよびレーザ光λbは、2波長性レンズ124により、それぞれ結像位置P2aおよび結像位置P2bにおいて結像する。そして、加工対象物の加工面が結像位置P2a,P2b付近に設置されることにより、結像位置P2a付近におけるレーザ光λaの像B3a(以下、レーザスポットB3aと称する)、および、結像位置P2b付近におけるレーザ光λbの像B3b(以下、レーザスポットB3bと称する)により加工対象物の加工が行われる。 Thereafter, the laser light λa and the laser light λb are imaged at the imaging position P2a and the imaging position P2b, respectively, by the two-wavelength lens 124. Then, the processing surface of the object to be processed is placed in the vicinity of the imaging positions P2a and P2b, whereby an image B3a of the laser beam λa (hereinafter referred to as a laser spot B3a) in the vicinity of the imaging position P2a The processing of the object to be processed is performed by the image B3b of the laser beam λb (hereinafter referred to as a laser spot B3b) in the vicinity of P2b.
 なお、結像位置P2aにおけるレーザスポットB3aの幅d3a、および、結像位置P2b付近におけるレーザスポットB3bの幅d3bは、それぞれ次式(3)および(4)により求められる。 The width d3a of the laser spot B3a at the imaging position P2a and the width d3b of the laser spot B3b near the imaging position P2b can be obtained by the following equations (3) and (4), respectively.
 d3a=d2a×(f4/f3a)
    =d1×(f2a・f4/f1・f3a) ・・・(3)
 d3b=d2b×(f4/f3b)
    =d1×(f2b・f4/f1・f3b) ・・・(4)
d3a = d2a × (f4 / f3a)
= D 1 × (f 2 a · f 4 / f 1 · f 3 a) (3)
d3b = d2b × (f4 / f3b)
= D 1 × (f 2 b · f 4 / f 1 · f 3 b) (4)
 なお、f3aはレンズ121aの焦点距離を表し、f3bはレンズ121bの焦点距離を表し、f4は2波長性レンズ124の焦点距離を表している。 F3a represents the focal length of the lens 121a, f3b represents the focal length of the lens 121b, and f4 represents the focal length of the two-wavelength lens 124.
 また、全反射ミラー119とレンズ120bは1つのモジュール131内に格納されている。モジュール131は、例えば、アクチュエータ等により構成されるシフト機構132により、電動または手動で、レンズ120bの光軸と垂直な所定の方向にシフトさせることができる。なお、以下、モジュール131のシフト方向がx軸方向と一致するものとして説明する。 Also, the total reflection mirror 119 and the lens 120 b are housed in one module 131. The module 131 can be electrically or manually shifted in a predetermined direction perpendicular to the optical axis of the lens 120 b by, for example, a shift mechanism 132 configured by an actuator or the like. Hereinafter, the shift direction of the module 131 will be described as being coincident with the x-axis direction.
 そして、モジュール131がx軸方向にシフトするのに伴い、全反射ミラー119およびレンズ120bがx軸方向にシフトする。これに伴い、レーザ光λbの光路および結像位置P1bがx軸方向にシフトし、その結果、レーザ光λbの結像位置P2b(レーザスポットB3bの照射位置)が、レンズ124の光軸と垂直な方向にシフトする。 Then, as the module 131 shifts in the x-axis direction, the total reflection mirror 119 and the lens 120 b shift in the x-axis direction. Along with this, the optical path of the laser beam λb and the imaging position P1b shift in the x-axis direction, and as a result, the imaging position P2b of the laser beam λb (irradiation position of the laser spot B3b) is perpendicular to the optical axis of the lens 124 Shift in the right direction.
 例えば、光ファイバ116の出射端面116Aから結像位置P1bへの結像倍率をRM1、結像位置P1bから結像位置P2bへの結像倍率をRM2とした場合、モジュール131のx軸方向の移動距離dに対する結像位置P2bの移動距離Dは、次式(5)により求められる。 For example, assuming that the imaging magnification from the output end face 116A of the optical fiber 116 to the imaging position P1b is RM1 and the imaging magnification from the imaging position P1b to the imaging position P2b is RM2, the movement of the module 131 in the x-axis direction The moving distance D of the imaging position P2b with respect to the distance d is determined by the following equation (5).
 D=d×RM1×RM2 ・・・(5) D = d x RM1 x RM2 (5)
 RM1=f2b×f1、RM2=f4×f3bなので、式(5)は、次式(6)のように変形することができる。 Since RM1 = f2b × f1 and RM2 = f4 × f3b, the equation (5) can be transformed into the following equation (6).
 D=(d・f2b・f3b)/(f1・f4) ・・・(6) D = (d · f 2 b · f 3 b) / (f 1 · f 4) (6)
 なお、図1の例の場合、結像位置P2bは、モジュール131の移動方向とは逆方向にシフトする。 In the case of the example of FIG. 1, the imaging position P2b is shifted in the direction opposite to the moving direction of the module 131.
[本発明の効果の説明]
 従って、レーザスポットB3bの照射位置を、レーザスポットB3aとは独立して簡単に調整することができ、レーザスポットB3aとレーザスポットB3bを異なる位置に照射することができる。
[Description of the effect of the present invention]
Therefore, the irradiation position of the laser spot B3b can be easily adjusted independently of the laser spot B3a, and the laser spot B3a and the laser spot B3b can be irradiated to different positions.
 これにより、レーザスポットB3a,B3bを、所定の方向に走査しながら、ほぼ同じ位置に時間差を設けて照射することが、簡単に実現できるようになる。この点について、図2を参照しながら、レーザスポットB3a,B3bを矢印A1の方向に走査しながら、レーザスポットB3b、レーザスポットB3aの順に、時間差を設けて照射する場合を例に挙げて説明する。 As a result, it is possible to easily realize that the laser spots B3a and B3b are scanned in the predetermined direction and the time difference is provided at substantially the same position. This point will be described with reference to FIG. 2 as an example in which the laser spots B3a and B3b are scanned in the direction of the arrow A1 and the laser spots B3b and the laser spots B3a are sequentially provided with a time difference as an example. .
 例えば、レーザ光λbとレーザ光λbの出射タイミングに所定の間隔(時間差)を設けて、レーザスポットB3bとレーザスポットB3aをほぼ同じ位置に照射するようにした場合、レーザスポットの走査速度が速くなるほど、レーザスポットの照射位置のズレを小さくするために、出射タイミングの間隔を短くする必要がある(例えば、数10から数100ns程度)。そのため、出射タイミングの間隔の精度を高めるために、高度かつ安定した制御を行う必要が生じ、必要なコストが上昇する。 For example, when the laser spot B3b and the laser spot B3a are irradiated at substantially the same position by providing a predetermined interval (time difference) between the emission timings of the laser beam λb and the laser beam λb, the scanning speed of the laser spot increases. In order to reduce the deviation of the irradiation position of the laser spot, it is necessary to shorten the interval of the emission timing (for example, about several tens to several hundreds ns). Therefore, in order to improve the accuracy of the emission timing interval, it is necessary to perform advanced and stable control, and the necessary cost increases.
 一方、レーザ加工装置101では、モジュール131のx軸方向の位置を調整することにより、簡単に図2の上の図に示されるように、レーザスポットB3bとレーザスポットB3aを、走査方向に隣接するように照射することができる。そして、時間差を設けずに同じタイミングでレーザ光λa,λbを出射するように制御することにより、レーザスポットB3bを照射した位置に、次の照射タイミングでレーザスポットB3aをほぼ正確に重ねて照射することが可能になる。 On the other hand, in the laser processing apparatus 101, by adjusting the position of the module 131 in the x-axis direction, the laser spot B3b and the laser spot B3a are adjacent to each other in the scanning direction, as shown in the upper diagram of FIG. Can be irradiated. Then, by controlling the laser beams λa and λb to be emitted at the same timing without providing a time difference, the laser spot B3a is almost exactly overlapped and irradiated at the next irradiation timing at the position irradiated with the laser spot B3b. It becomes possible.
 このように、レーザ光の出射タイミングの制御を行わずに、モジュール131のx軸方向の位置を調整するだけで、レーザスポットB3a,B3bを、矢印A1の方向に走査しながら、ほぼ同じ位置に所定の順番で時間差を設けて照射することができる。その結果、装置に必要なコストを下げることができるとともに、電気的な制御が不要で、ハード的な調整のみでよいため、長期的に安定した加工が可能になる。 As described above, the laser spots B3a and B3b are scanned at substantially the same position in the direction of the arrow A1 only by adjusting the position of the module 131 in the x-axis direction without controlling the emission timing of the laser light. Irradiation can be performed by providing a time difference in a predetermined order. As a result, the cost required for the apparatus can be reduced, and electrical control is unnecessary, and only hard adjustment is required, so that stable processing can be performed in the long run.
 さらに、最初の照射タイミングでレーザ光λaのみ出射を停止し、最後の照射タイミングでレーザ光λbの出射を停止するようにすることにより、図2の右端のレーザスポットB3a(1)および左端のレーザスポットB3b(n)の照射を停止することができる。
これにより、レーザスポットB3bとレーザスポットB3aを、走査の開始位置から終了位置まで、順番にきれいに重ねて照射することが可能になる。
Furthermore, by stopping only the emission of the laser light λa at the first irradiation timing and stopping the emission of the laser light λb at the last irradiation timing, the laser spot B3a (1) at the right end and the laser at the left end in FIG. The irradiation of the spot B3b (n) can be stopped.
As a result, it becomes possible to sequentially overlap and irradiate the laser spot B3b and the laser spot B3a sequentially from the start position to the end position of the scan.
 以上のようにして、例えば、薄膜太陽電池パネルの薄膜を除去する場合に、レーザスポットB3bにより所定の層の薄膜を除去した後、レーザスポットB3aにより同じ位置の異なる層の薄膜を除去することができ、加工品質を向上させることができる。 As described above, for example, when removing the thin film of the thin film solar cell panel, after removing the thin film of the predetermined layer by the laser spot B3b, removing the thin film of the different layer at the same position by the laser spot B3a It is possible to improve the processing quality.
 また、式(3)および式(4)より、レーザスポットB3aの幅d3aは、レンズ120aの焦点距離f2aに比例し、レーザスポットB3aの幅d3bは、レンズ120bの焦点距離f2bに比例する。従って、レーザ加工装置101では、レンズ120aやレンズ120bを交換することにより、レーザスポットB3aおよびレーザスポットB3bの大きさを、それぞれ個別に簡単に調整することができる。 Further, according to equations (3) and (4), the width d3a of the laser spot B3a is proportional to the focal length f2a of the lens 120a, and the width d3b of the laser spot B3a is proportional to the focal length f2b of the lens 120b. Therefore, in the laser processing apparatus 101, the sizes of the laser spot B3a and the laser spot B3b can be easily adjusted individually by replacing the lens 120a and the lens 120b.
 例えば、図2を参照して上述したように、レーザスポットB3bに、レーザスポットB3aを重ねて照射する場合、図3に示されるように、レーザスポットB3bの面積をレーザスポットB3aの面積より大きくした方が、加工品質が向上する場合がある。 For example, as described above with reference to FIG. 2, when the laser spot B3a is overlapped and irradiated with the laser spot B3b, the area of the laser spot B3b is made larger than the area of the laser spot B3a as shown in FIG. However, the processing quality may be improved.
 例えば、両者の面積が同じ場合、レーザスポットB3bの照射時に、加工エッジの熱影響によるロールアップ(土手のような盛り上がり)が発生し、次のレーザスポットB3aの照射時に、このロールアップ部からスパッタが四方に飛散るおそれがある。一方、レーザスポットB3bの面積をレーザスポットB3aの面積より若干大きくすることにより、このロールアップ部からのスパッタの発生を防止することができる。 For example, when the areas of the two are the same, a roll-up (swell like an embankment) occurs due to the thermal effect of the processing edge when irradiating the laser spot B3b, and sputtering is performed from this roll-up portion when irradiating the next laser spot B3a. May scatter in all directions. On the other hand, generation of spatter from this roll-up portion can be prevented by making the area of the laser spot B3b slightly larger than the area of the laser spot B3a.
 なお、レーザスポットB3bのエッジとレーザスポットB3aのエッジの間の幅Wは、上述したように、レンズ120aの焦点距離f2aおよびレンズ120bの焦点距離f2bのうち少なくとも一方を変えることにより、簡単に調整することができる。 The width W between the edge of the laser spot B3b and the edge of the laser spot B3a can be easily adjusted by changing at least one of the focal length f2a of the lens 120a and the focal length f2b of the lens 120b as described above. can do.
<2.第2の実施の形態>
[レーザ加工装置の構成例]
 図4は、本発明を適用したレーザ加工装置の第2の実施の形態を示す図である。なお、図中、図1と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
<2. Second embodiment>
[Configuration example of laser processing apparatus]
FIG. 4 is a view showing a second embodiment of a laser processing apparatus to which the present invention is applied. In addition, the same code | symbol is attached | subjected to the part corresponding to FIG. 1 in the figure, The description is abbreviate | omitted suitably.
 図4のレーザ加工装置201は、図1のレーザ加工装置101に、XYスリット機構211a,211bを追加し、モジュール131の代わりにモジュール231を設け、シフト機構132の代わりにシフト機構232を設けたものである。 In the laser processing apparatus 201 of FIG. 4, XY slit mechanisms 211 a and 211 b are added to the laser processing apparatus 101 of FIG. 1, a module 231 is provided instead of the module 131, and a shift mechanism 232 is provided instead of the shift mechanism 132. It is a thing.
 XYスリット機構211aは、開口部Oaがレーザ光λaの結像位置P1aとほぼ一致するように設置される。また、XYスリット機構211aは、矩形の開口部Oaの縦横の幅を個別に調整することができ、レンズ120aにより結像されたレーザ光λaの断面を開口部Oaの形状に整形して、レンズ121aに入射させる。 The XY slit mechanism 211a is installed so that the opening Oa substantially coincides with the imaging position P1a of the laser light λa. In addition, the XY slit mechanism 211a can adjust the width in the vertical and horizontal directions of the rectangular opening Oa individually, and shapes the cross section of the laser beam λa imaged by the lens 120a into the shape of the opening Oa. It is incident on 121a.
 XYスリット機構211bは、開口部Obがレーザ光λbの結像位置P1bとほぼ一致するように設置される。また、XYスリット機構211bは、矩形の開口部Obの縦横の幅を個別に調整することができ、レンズ120bにより結像されたレーザ光λbの断面を開口部Obの形状に整形して、レンズ121bに入射させる。 The XY slit mechanism 211b is installed so that the opening Ob substantially coincides with the imaging position P1b of the laser beam λb. In addition, the XY slit mechanism 211b can individually adjust the width in the vertical and horizontal directions of the rectangular opening Ob, and shapes the cross section of the laser light λb formed by the lens 120b into the shape of the opening Ob. It is incident on 121 b.
 モジュール231は、全反射ミラー119、レンズ120b、および、XYスリット機構211bを格納するように構成される。 The module 231 is configured to store the total reflection mirror 119, the lens 120b, and the XY slit mechanism 211b.
 シフト機構232は、例えば、アクチュエータ等により構成され、電動または手動で、レンズ120bの光軸と垂直な所定の方向にモジュール231をシフトさせる。なお、以下、モジュール231のシフト方向がx軸方向と一致するものとして説明する。 The shift mechanism 232 is configured by, for example, an actuator or the like, and electrically or manually shifts the module 231 in a predetermined direction perpendicular to the optical axis of the lens 120b. Hereinafter, the shift direction of the module 231 will be described as being coincident with the x-axis direction.
 そして、モジュール231がx軸方向にシフトするのに伴い、全反射ミラー119、レンズ120b、および、XYスリット機構211bがx軸方向にシフトする。これに伴い、レーザ光λbの光路およびXYスリット機構211bの開口部Obがx軸方向にシフトし、XYスリット機構211bを通過するレーザ光λbの位置がx軸方向にシフトする。
このとき、レーザ光λbの結像位置Pb1(不図示)とXYスリット機構211bの開口部Obとは、ほぼ一致したままx軸方向にシフトする。その結果、レーザ光λbの結像位置P2b(レーザスポットB3bの照射位置)が、レンズ124の光軸と垂直な方向にシフトする。なお、この例の場合、結像位置P2bは、モジュール231の移動方向とは逆方向に、上述した式(6)に示される距離だけシフトする。
Then, as the module 231 shifts in the x-axis direction, the total reflection mirror 119, the lens 120b, and the XY slit mechanism 211b shift in the x-axis direction. Along with this, the optical path of the laser beam λb and the opening Ob of the XY slit mechanism 211b shift in the x-axis direction, and the position of the laser beam λb passing through the XY slit mechanism 211b shifts in the x-axis direction.
At this time, the image forming position Pb1 (not shown) of the laser beam λb and the opening Ob of the XY slit mechanism 211b shift in the x-axis direction while substantially matching each other. As a result, the imaging position P2b of the laser beam λb (the irradiation position of the laser spot B3b) is shifted in the direction perpendicular to the optical axis of the lens 124. In the case of this example, the imaging position P2b is shifted in the direction opposite to the moving direction of the module 231 by the distance represented by the above-mentioned equation (6).
 従って、レーザ加工装置101と同様に、レーザスポットB3bの照射位置を、レーザスポットB3aとは独立して簡単に調整することができ、レーザスポットB3aとレーザスポットB3bを異なる位置に照射することができる。 Therefore, similarly to the laser processing apparatus 101, the irradiation position of the laser spot B3b can be easily adjusted independently of the laser spot B3a, and the laser spot B3a and the laser spot B3b can be irradiated to different positions. .
 また、レーザスポットB3aおよびレーザスポットB3bのエッジが鮮明になり、加工エッジがシャープになる。その結果、加工精度を向上させることができる。 Further, the edges of the laser spot B3a and the laser spot B3b become sharp and the processing edge becomes sharp. As a result, processing accuracy can be improved.
 さらに、XYスリット機構211aの開口部Oaの形状を調整することにより、レンズ120aを交換することなく、レーザスポットB3aの形状および大きさを簡単に調整することができる。同様に、XYスリット機構211bの開口部Obの形状を調整することにより、レンズ120bを交換することなく、レーザスポットB3bの形状および大きさを簡単に調整することができる。 Furthermore, by adjusting the shape of the opening Oa of the XY slit mechanism 211a, the shape and size of the laser spot B3a can be easily adjusted without replacing the lens 120a. Similarly, by adjusting the shape of the opening Ob of the XY slit mechanism 211b, the shape and size of the laser spot B3b can be easily adjusted without replacing the lens 120b.
<3.第3の実施の形態>
[レーザ加工装置の構成例]
 図5は、本発明を適用したレーザ加工装置の第3の実施の形態を示す図である。なお、図中、図4と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
<3. Third embodiment>
[Configuration example of laser processing apparatus]
FIG. 5 is a view showing a third embodiment of the laser processing apparatus to which the present invention is applied. In addition, the same code | symbol is attached | subjected to the part corresponding to FIG. 4 in the figure, The description is abbreviate | omitted suitably.
 図5のレーザ加工装置301は、図4のレーザ加工装置201と比較して、シフト機構311が追加され、レンズ120bの代わりにレンズ120b’が設けられている。また、全反射ミラー119、レンズ120b’、および、XYスリット機構211bがモジュール化されておらず、シフト機構232が設けられていない。 The laser processing apparatus 301 of FIG. 5 is different from the laser processing apparatus 201 of FIG. 4 in that a shift mechanism 311 is added, and a lens 120 b ′ is provided instead of the lens 120 b. In addition, the total reflection mirror 119, the lens 120b ', and the XY slit mechanism 211b are not modularized, and the shift mechanism 232 is not provided.
 レンズ120b’の焦点距離f2b’は、図4のレンズ120bの焦点距離f2b’より大きい値に設定される。また、XYスリット機構211bは、レンズ120b’の焦点位置より前に配置される。 The focal length f2b 'of the lens 120b' is set to a value larger than the focal length f2b 'of the lens 120b of FIG. In addition, the XY slit mechanism 211b is disposed before the focal position of the lens 120b '.
 シフト機構311は、例えば、アクチュエータ等により構成され、電動または手動で、XYスリット機構211bを、光軸に垂直で、かつ、互いに直交する方向にシフトさせる。なお、以下、XYスリット機構211bのシフト方向が、x軸方向およびy軸方向と一致するものとして説明する。 The shift mechanism 311 is configured of, for example, an actuator or the like, and electrically or manually shifts the XY slit mechanism 211b in directions perpendicular to the optical axis and orthogonal to each other. Hereinafter, the shift direction of the XY slit mechanism 211b will be described as being coincident with the x-axis direction and the y-axis direction.
 そして、XYスリット機構211bがx軸方向またはy軸方向にシフトするのに伴い、XYスリット機構211bの開口部Obがx軸方向またはy軸方向にシフトし、XYスリット機構211bを通過するレーザ光λbの位置がx軸方向またはy軸方向にシフトする。その結果、レーザ光λbの結像位置P2b(レーザスポットB3bの照射位置)が、レンズ124の光軸と垂直な方向にシフトする。なお、この例の場合、結像位置P2bは、XYスリット機構211bの移動方向とは逆方向に、上述した式(6)に示される距離だけシフトする。 Then, as the XY slit mechanism 211b shifts in the x-axis direction or y-axis direction, the laser light passing through the XY slit mechanism 211b shifts the opening Ob of the XY slit mechanism 211b in the x-axis direction or y-axis direction. The position of λb shifts in the x-axis or y-axis direction. As a result, the imaging position P2b of the laser beam λb (the irradiation position of the laser spot B3b) is shifted in the direction perpendicular to the optical axis of the lens 124. In the case of this example, the imaging position P2b is shifted in the direction opposite to the moving direction of the XY slit mechanism 211b by the distance represented by the above-mentioned equation (6).
 従って、XYスリット機構211bのシフト量およびシフト方向を調整することにより、所定の距離の範囲内で、レーザスポットB3aに対するレーザスポットB3bの照射位置を任意の方向に設定することができる。 Therefore, by adjusting the shift amount and the shift direction of the XY slit mechanism 211b, the irradiation position of the laser spot B3b with respect to the laser spot B3a can be set to an arbitrary direction within a predetermined distance range.
[加工処理の具体例]
 ここで、図6および図7を参照して、レーザ加工装置301を用いて、薄膜太陽電池パネル351のエッジデリーションを行う場合について説明する。なお、エッジデリーションは、矢印A11、矢印A12、矢印A13、矢印A14の方向の順番に行われるものとする。また、図2の例と同様に、レーザスポットB3bが照射された後に、レーザスポットB3aを照射することにより、エッジデリーションが行われるものとする。
[Specific example of processing]
Here, with reference to FIG. 6 and FIG. 7, the case where edge deletion of the thin film solar cell panel 351 is performed using the laser processing apparatus 301 will be described. Note that edge deletion is performed in the order of arrow A11, arrow A12, arrow A13, and arrow A14. Further, as in the example of FIG. 2, it is assumed that the edge deletion is performed by irradiating the laser spot B3a after the irradiation of the laser spot B3b.
 上述したように、レーザスポットB3aに対するレーザスポットB3bの照射位置を任意の方向に設定することができる。例えば、図7に示されるように、レーザスポットB3aとともに、レーザスポットB3aの四方に隣接する領域D1乃至D4のいずれかにレーザスポットB3bを照射することが可能である。 As described above, the irradiation position of the laser spot B3b with respect to the laser spot B3a can be set in an arbitrary direction. For example, as shown in FIG. 7, it is possible to irradiate the laser spot B3b to any of the regions D1 to D4 adjacent to the laser spot B3a along with the laser spot B3a.
 従って、まず、領域D2にレーザスポットB3bを照射するように、シフト機構311によりXYスリット機構211bの位置を調整し、矢印A11の方向のエッジデリーションを行う。次に、領域D3にレーザスポットB3bが照射されるように、シフト機構311によりXYスリット機構211bの位置を調整し、矢印A12の方向のエッジデリーションを行う。次に、領域D4にレーザスポットB3bが照射されるように、シフト機構311によりXYスリット機構211bの位置を調整し、矢印A13の方向のエッジデリーションを行う。最後に、領域D1にレーザスポットB3bが照射されるように、シフト機構311によりXYスリット機構211bの位置を調整し、矢印A14の方向のエッジデリーションを行う。 Therefore, first, the position of the XY slit mechanism 211b is adjusted by the shift mechanism 311 so that the laser spot B3b is irradiated to the region D2, and edge deletion in the direction of the arrow A11 is performed. Next, the shift mechanism 311 adjusts the position of the XY slit mechanism 211b so that the laser spot B3b is irradiated to the region D3, and edge deletion in the direction of the arrow A12 is performed. Next, the position of the XY slit mechanism 211b is adjusted by the shift mechanism 311 so that the laser spot B3b is irradiated to the region D4, and edge deletion in the direction of the arrow A13 is performed. Finally, the position of the XY slit mechanism 211b is adjusted by the shift mechanism 311 so that the laser spot B3b is irradiated to the region D1, and edge deletion in the direction of the arrow A14 is performed.
 これにより、レーザ加工装置301では、レーザスポットB3aとレーザスポットB3bを同時に薄膜太陽電池パネル351に照射しながら、両者の照射位置を所定の順番で正確に重ねることができ、その結果、エッジデリーションの品質が向上する。また、薄膜太陽電池パネル351の各コーナーにおいて、XYスリット機構211bの位置を調整するだけでよく、制御が簡単であり、かつ、加工時間を短くすることができる。 Thereby, in the laser processing apparatus 301, while irradiating the thin film solar cell panel 351 with the laser spot B3a and the laser spot B3b simultaneously, both irradiation positions can be accurately overlapped in a predetermined order, and as a result, edge deletion Improve the quality of In addition, it is sufficient to adjust the position of the XY slit mechanism 211b at each corner of the thin film solar cell panel 351, so that the control is easy and the processing time can be shortened.
<4.第4の実施の形態>
[レーザ加工装置の構成例]
 図8は、本発明を適用したレーザ加工装置の第4の実施の形態を示す図である。なお、図中、図4と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
<4. Fourth embodiment>
[Configuration example of laser processing apparatus]
FIG. 8 is a view showing a fourth embodiment of the laser processing apparatus to which the present invention is applied. In addition, the same code | symbol is attached | subjected to the part corresponding to FIG. 4 in the figure, The description is abbreviate | omitted suitably.
 図8のレーザ加工装置401は、図4のレーザ加工装置201と比較して、シフト機構411が追加され、モジュール231の代わりにモジュール421が設けられ、シフト機構232が削除されている。 The laser processing apparatus 401 of FIG. 8 is different from the laser processing apparatus 201 of FIG. 4 in that a shift mechanism 411 is added, a module 421 is provided instead of the module 231, and the shift mechanism 232 is eliminated.
 シフト機構411は、例えば、アクチュエータ等により構成され、電動または手動で、レンズ120bの光軸に垂直な方向に、XYスリット機構211bをシフトさせる。なお、以下、XYスリット機構211bのシフト方向が、x軸方向と一致するものとして説明する。 The shift mechanism 411 is constituted by, for example, an actuator or the like, and electrically or manually shifts the XY slit mechanism 211b in a direction perpendicular to the optical axis of the lens 120b. Hereinafter, the shift direction of the XY slit mechanism 211b will be described as being coincident with the x-axis direction.
 また、2波長性ミラー118、全反射ミラー119、レンズ120b、XYスリット機構211b、レンズ121b、全反射ミラー122、2波長性ミラー123、および、シフト機構411がモジュール421内に格納されている。モジュール421は、レンズ124の光軸と一致する回転軸を中心に、矢印A21に示される方向に回転させることができる。これにより、2波長性ミラー118から2波長性ミラー123までのレーザ光λbの光路が、レンズ124の光軸と一致する回転軸を中心に回転する。その結果、レーザスポットB3aとレーザスポットB3bの相対位置を回転させることができる。 Further, a dual wavelength mirror 118, a total reflection mirror 119, a lens 120b, an XY slit mechanism 211b, a lens 121b, a total reflection mirror 122, a dual wavelength mirror 123, and a shift mechanism 411 are stored in the module 421. The module 421 can be rotated in the direction indicated by the arrow A21 about an axis of rotation that coincides with the optical axis of the lens 124. As a result, the optical path of the laser beam λb from the two-wavelength mirror 118 to the two-wavelength mirror 123 rotates about a rotation axis that coincides with the optical axis of the lens 124. As a result, the relative position of the laser spot B3a and the laser spot B3b can be rotated.
 例えば、モジュール421を回転軸回りに図8の上方向に90度回転させることにより、図9の上の図から下の図に示されるように、レーザスポットB3aに対するレーザスポットB3bの照射位置を90度回転させることができる。 For example, by rotating the module 421 by 90 degrees in the upward direction of FIG. 8 around the rotation axis, the irradiation position of the laser spot B3 b with respect to the laser spot B3 a is 90 as shown in the upper to lower views of FIG. It can be rotated by degrees.
 従って、モジュール421を回転軸回りに180度回転できるようにすれば、XYスリット機構211bのシフト方向とモジュール421の回転方向の組み合わせにより、レーザ加工装置301と同様に、所定の距離の範囲内で、レーザスポットB3aに対するレーザスポットB3bの照射位置を任意の方向に設定することができる。また、モジュール421を回転軸回りに90度回転できるようにすれば、XYスリット機構211bのシフト方向とモジュール421の回転方向の組み合わせにより、図7を参照して上述したように、レーザスポットB3aの四方に隣接する領域D1乃至D4のいずれかにレーザスポットB3bを照射することが可能になる。 Therefore, if the module 421 can be rotated 180 degrees around the rotation axis, the combination of the shift direction of the XY slit mechanism 211b and the rotation direction of the module 421 makes it possible, within the range of a predetermined distance, like the laser processing apparatus 301. The irradiation position of the laser spot B3b with respect to the laser spot B3a can be set in any direction. If the module 421 can be rotated 90 degrees around the rotation axis, the combination of the shift direction of the XY slit mechanism 211b and the rotation direction of the module 421 makes the laser spot B3a as described above with reference to FIG. It becomes possible to irradiate the laser spot B3b to any of the regions D1 to D4 adjacent to the four sides.
 これにより、例えば、レーザ加工装置301と同様に、図6を参照して上述した方法により薄膜太陽電池パネル351のエッジデリーションを実行することが可能になる。 Thereby, for example, similarly to the laser processing apparatus 301, edge deletion of the thin film solar cell panel 351 can be performed by the method described above with reference to FIG.
<5.変形例>
 以下、本発明の実施の形態の変形例について説明する。
<5. Modified example>
Hereinafter, modifications of the embodiment of the present invention will be described.
[変形例1]
 本発明の実施の形態では、例えば、レーザ発振器111aから出射されたレーザ光λaおよびレーザ発振器111bから出射されたレーザ光λbを、光路を結合せずに、それぞれ直接レンズ120aまたはレンズ120bに入射するようにすることも可能である。この場合、レーザ発振器111aとレンズ120aの間において、レーザ光λaのビーム径を拡大したり、レーザ光λaをコリメートしたり、レーザ光λaの断面の強度を均一化するようにすることが望ましい。強度の均一化には、例えば、ホモジナイザ、カライドスコープを用いることができる。レーザ発振器111bとレンズ120bの間についても同様である。
[Modification 1]
In the embodiment of the present invention, for example, the laser light λa emitted from the laser oscillator 111a and the laser light λb emitted from the laser oscillator 111b are directly incident on the lens 120a or the lens 120b without coupling the optical path. It is also possible to do so. In this case, it is desirable that the beam diameter of the laser beam λa be expanded, the laser beam λa be collimated, and the intensity of the cross section of the laser beam λa be made uniform between the laser oscillator 111a and the lens 120a. For homogenizing the strength, for example, a homogenizer or a Callidescope can be used. The same applies to the portion between the laser oscillator 111b and the lens 120b.
[変形例2]
 また、図1のレーザ加工装置101において、モジュール131のシフト方向をレンズ120bの光軸と垂直な2つ以上の方向(例えば、x軸方向とy軸方向)にシフトできるようにしてもよい。これにより、図5のレーザ加工装置301や図8のレーザ加工装置401と同様に、レーザスポットB3aに対するレーザスポットB3bの照射位置を任意の方向に設定することが可能になる。
[Modification 2]
Further, in the laser processing apparatus 101 of FIG. 1, the shift direction of the module 131 may be shifted in two or more directions (for example, the x-axis direction and the y-axis direction) perpendicular to the optical axis of the lens 120b. Thereby, as in the laser processing apparatus 301 of FIG. 5 and the laser processing apparatus 401 of FIG. 8, it becomes possible to set the irradiation position of the laser spot B3b to the laser spot B3a in an arbitrary direction.
[変形例3]
 同様に、図4のレーザ加工装置201において、モジュール231のシフト方向をレンズ120bの光軸と垂直な2つ以上の方向(例えば、x軸方向とy軸方向)にシフトできるようにしてもよい。これにより、図5のレーザ加工装置301や図8のレーザ加工装置401と同様に、レーザスポットB3aに対するレーザスポットB3bの照射位置を任意の方向に設定することが可能になる。
[Modification 3]
Similarly, in the laser processing apparatus 201 of FIG. 4, the shift direction of the module 231 may be shifted in two or more directions (for example, the x-axis direction and the y-axis direction) perpendicular to the optical axis of the lens 120 b. . Thereby, as in the laser processing apparatus 301 of FIG. 5 and the laser processing apparatus 401 of FIG. 8, it becomes possible to set the irradiation position of the laser spot B3b to the laser spot B3a in an arbitrary direction.
[変形例4]
 また、本発明は、3種類以上の波長のレーザ光を用いる場合にも適用することが可能である。3種類以上の波長のレーザ光を用いる場合、例えば、光ファイバ116からレーザ光が出射された後、各レーザ光の光路を分岐し、光路毎に、図1、図4、図5または図8を参照して上述したレーザ光λaまたはレーザ光λbの光路上の構成と同様の構成を設けるようにすればよい。その後、各レーザ光の光路を合成した後、2波長性レンズ124に入射するようにすればよい。なお、3波長以上の波長を用いる場合、2波長レンズ124には、その波長に対応した多波長レンズが用いられる。
[Modification 4]
The present invention can also be applied to the case of using laser light of three or more wavelengths. When laser light of three or more types of wavelengths is used, for example, after the laser light is emitted from the optical fiber 116, the optical path of each laser light is branched, and for each optical path, FIG. 1, FIG. 4, FIG. The same configuration as that on the optical path of the laser beam λa or the laser beam λb described above with reference to FIG. Thereafter, after combining the optical paths of the respective laser beams, the light may be incident on the two-wavelength lens 124. When three or more wavelengths are used, a multi-wavelength lens corresponding to the wavelength is used as the two-wavelength lens 124.
 なお、必ずしも全てのレーザ光の光路を個々に分岐する必要はなく、複数のレーザ光の光路を共通にするようにしてもよい。例えば、レーザ光λa,λb,λcの3種類のレーザ光を使用する場合、レーザ光λbだけ分岐し、レーザ光λaとレーザ光λcの光路を共通にするようにしてもよい。 The optical paths of all the laser beams do not necessarily have to be branched individually, and the optical paths of a plurality of laser beams may be shared. For example, when three types of laser beams λa, λb, and λc are used, the laser beam λb may be branched and the optical paths of the laser beam λa and the laser beam λc may be made common.
[変形例5]
 また、以上の説明では、それぞれ異なるレーザ発振器から異なる波長のレーザ光を出射する例を示したが、1台のレーザ発振器から異なる波長のレーザ光を出射するようにしてもよい。この場合、例えば、1台のレーザ発振器から、異なる波長のパルス状のレーザ光が、所定の時間間隔で所定の順番で出射される。
[Modification 5]
In the above description, an example is shown in which laser beams of different wavelengths are emitted from different laser oscillators, but laser beams of different wavelengths may be emitted from one laser oscillator. In this case, for example, pulsed laser beams of different wavelengths are emitted from a single laser oscillator at a predetermined time interval in a predetermined order.
[変形例6]
 さらに、以上の説明では、波長が異なる複数の種類のレーザ光を並行して使用する例を示したが、本発明は、波長以外の他の要素(例えば、偏光方向、エネルギー等)がそれぞれ異なる複数の種類のレーザ光を並行して使用する場合にも適用することができる。
[Modification 6]
Furthermore, in the above description, an example is shown in which a plurality of types of laser beams having different wavelengths are used in parallel, but in the present invention, other elements (for example, polarization direction, energy, etc.) other than the wavelength The present invention can also be applied to the case of using a plurality of types of laser beams in parallel.
 図10は、偏光方向が異なるレーザ光を用いた場合のレーザ加工装置の実施の形態を示す図である。なお、図中、図1と対応する部分には同一の符号を付してあり、その説明は適宜省略する。 FIG. 10 is a view showing an embodiment of a laser processing apparatus in the case of using laser beams having different polarization directions. In addition, the same code | symbol is attached | subjected to the part corresponding to FIG. 1 in the figure, The description is abbreviate | omitted suitably.
 図10のレーザ加工装置501は、図1のレーザ加工装置101と比較して、レーザ発振器111a,111b、ビームスプリッタ114、2波長性ファイバ結合レンズ115、光ファイバ116、2波長性結像加工光学系レンズ117、2波長性ミラー118,123、および、2波長性結合加工光学系レンズ124の代わりに、レーザ発振器511a,511b、偏光ビームスプリッタ(PBS)512、ファイバ結合レンズ513、偏波面保存ファイバ(PANDA(Polarization-maintaining AND Absorption-reducing)ファイバ)514、結像加工光学系レンズ515、偏光ビームスプリッタ(PBS)516,517、および、結合加工光学系レンズ518を含むように構成される。 Compared with the laser processing apparatus 101 of FIG. 1, the laser processing apparatus 501 of FIG. 10 includes laser oscillators 111a and 111b, a beam splitter 114, a dual wavelength fiber coupling lens 115, an optical fiber 116, dual wavelength imaging processing optics. Laser oscillators 511a and 511b, polarization beam splitter (PBS) 512, fiber coupling lens 513, polarization maintaining fiber, instead of the system lens 117, the two wavelength mirrors 118 and 123, and the two wavelength coupling processing optical system lens 124 (Polarization-maintaining AND Absorption-reducing (PANDA) fiber) 514, an imaging processing optical system lens 515, polarization beam splitters (PBS) 516 and 517, and a combined processing optical system lens 518.
 また、全反射ミラー113、119、122は、S波の光をほぼ100%反射可能なミラーにより構成される。 In addition, the total reflection mirrors 113, 119, and 122 are configured by mirrors that can reflect approximately 100% of S-wave light.
 なお、結像加工光学系レンズ515,518は、それぞれ1枚の凸レンズとして図示されているが、複数の凸レンズや凹レンズの組み合わせにより構成される場合がある。 Although the imaging processing optical system lenses 515 and 518 are illustrated as one convex lens, respectively, they may be configured by a combination of a plurality of convex lenses and concave lenses.
 また、以下、結像加工光学系レンズ515,518を、単にレンズ515,518と称する。 In addition, hereinafter, the imaging processing optical system lenses 515 and 518 will be simply referred to as lenses 515 and 518.
 レーザ発振器511aは、例えば、Nd:YAGレーザにより構成され、図示せぬ制御装置から入力されるパルス状の出射信号Saに同期して、所定の波長のP波のパルス状のレーザ光(以下、レーザ光Pと称する)を発振し、出射する。レーザ発振器511aから出射されたレーザ光Pは、ビームエキスパンダ112aによりビーム径が拡大されて、偏光ビームスプリッタ512に入射する。 The laser oscillator 511a is, for example, an Nd: YAG laser, and is synchronized with a pulse-shaped emission signal Sa input from a control device (not shown), and is a pulse-shaped laser beam of P wave of a predetermined wavelength (hereinafter referred to as The laser beam P is oscillated and emitted. The beam diameter of the laser beam P emitted from the laser oscillator 511 a is expanded by the beam expander 112 a and enters the polarization beam splitter 512.
 レーザ発振器511bは、例えば、Nd:YAGレーザにより構成され、図示せぬ制御装置から入力される出射信号Sbに同期して、レーザ光Pと同じ波長のS波のパルス状のレーザ光(以下、レーザ光Sと称する)を発振し、出射する。レーザ発振器511bから出射されたレーザ光Sは、ビームエキスパンダ112bによりビーム径が拡大された後、全反射ミラー113により反射され、偏光ビームスプリッタ512に入射する。 The laser oscillator 511b is made of, for example, an Nd: YAG laser, and in synchronization with an emission signal Sb input from a control device (not shown), a pulse-shaped laser beam of S wave having the same wavelength as the laser beam P (hereinafter The laser beam is oscillated and emitted. The beam diameter of the laser beam S emitted from the laser oscillator 511 b is expanded by the beam expander 112 b, and then reflected by the total reflection mirror 113 and enters the polarization beam splitter 512.
 なお、以下、図内に示されるように、レーザ光Pの偏光方向を紙面の上下方向とし、レーザ光Sの偏光方向を紙面に垂直な方向とする。 Hereinafter, as shown in the figure, the polarization direction of the laser light P is the vertical direction of the paper surface, and the polarization direction of the laser light S is the vertical direction of the paper surface.
 偏光ビームスプリッタ512は、P波の光を透過し、S波の光を反射する特性を有している。従って、レーザ光Pが偏光ビームスプリッタ512を透過し、レーザ光Sが偏光ビームスプリッタ512により反射されることにより、レーザ光Pとレーザ光Sの光路が結合する。そして、レーザ光Pおよびレーザ光Sは、ファイバ結合レンズ513により集光されて、偏波面保存ファイバ514に入射し、偏光方向がそのまま維持されたまま伝送される。 The polarization beam splitter 512 has a characteristic of transmitting P-wave light and reflecting S-wave light. Therefore, the laser beam P passes through the polarization beam splitter 512, and the laser beam S is reflected by the polarization beam splitter 512, whereby the optical paths of the laser beam P and the laser beam S are combined. Then, the laser light P and the laser light S are condensed by the fiber coupling lens 513, enter the polarization maintaining fiber 514, and are transmitted while maintaining the polarization direction as it is.
 偏波面保存ファイバ514の出射端面514Aの断面は正方形になっており、偏波面保存ファイバ514から出射されるレーザ光P,Sの断面B1は、幅(一辺の長さ)d1の正方形となる。また、レーザ光P,Sの断面B1の強度がほぼ均一化される。そして、偏波面保存ファイバ514から出射されたレーザ光P,Sは、レンズ515によりコリメートされ、偏光ビームスプリッタ516に入射する。 The cross section of the output end face 514A of the polarization maintaining fiber 514 is a square, and the cross section B1 of the laser light P and S emitted from the polarization maintaining fiber 514 is a square having a width (length of one side) d1. Further, the intensity of the cross section B1 of the laser beams P and S is substantially uniform. The laser beams P and S emitted from the polarization maintaining fiber 514 are collimated by the lens 515 and enter the polarization beam splitter 516.
 偏光ビームスプリッタ516は、波長Pの光を透過し、波長Sの光を反射する特性を有している。従って、レーザ光Pが偏光ビームスプリッタ516を透過し、レーザ光Sが偏光ビームスプリッタ516により反射されることにより、レーザ光Pとレーザ光Sの光路が分離される。 The polarizing beam splitter 516 has characteristics of transmitting light of wavelength P and reflecting light of wavelength S. Therefore, the laser beam P is transmitted through the polarization beam splitter 516 and the laser beam S is reflected by the polarization beam splitter 516, whereby the optical paths of the laser beam P and the laser beam S are separated.
 偏光ビームスプリッタ516を透過したレーザ光Pは、レンズ120aにより結像位置P1aにおいて結像する。さらに、レーザ光Pは、レンズ121aによりコリメートされ、偏光ビームスプリッタ517に入射する。 The laser beam P transmitted through the polarization beam splitter 516 is imaged at the imaging position P1a by the lens 120a. Further, the laser light P is collimated by the lens 121 a and enters the polarization beam splitter 517.
 一方、偏光ビームスプリッタ516により反射されたレーザ光Sは、さらに全反射ミラー119により反射された後、レンズ120bにより結像位置P1bにおいて結像する。
さらに、レーザ光Sは、レンズ121bによりコリメートされ、全反射ミラー122により反射され、偏光ビームスプリッタ517に入射する。
On the other hand, the laser beam S reflected by the polarization beam splitter 516 is further reflected by the total reflection mirror 119, and then forms an image at the imaging position P1b by the lens 120b.
Further, the laser light S is collimated by the lens 121 b, reflected by the total reflection mirror 122, and enters the polarization beam splitter 517.
 偏光ビームスプリッタ517は、波長Pの光を透過し、波長Sの光を反射する特性を有している。従って、レーザ光Pが偏光ビームスプリッタ517を透過し、レーザ光Sが偏光ビームスプリッタ517により反射されることにより、レーザ光Pとレーザ光Sの光路が結合する。 The polarization beam splitter 517 has a characteristic of transmitting light of wavelength P and reflecting light of wavelength S. Accordingly, the laser beam P is transmitted through the polarization beam splitter 517 and the laser beam S is reflected by the polarization beam splitter 517, whereby the optical paths of the laser beam P and the laser beam S are combined.
 その後、レーザ光Pおよびレーザ光Sは、レンズ518により、それぞれ結像位置P2aおよび結像位置P2bにおいて結像する。そして、加工対象物の加工面が結像位置P2a,P2b付近に設置されることにより、結像位置P2a付近におけるレーザ光Pの像B3a(レーザスポットB3a)、および、結像位置P2b付近におけるレーザ光Sの像B3b(レーザスポットB3b)により加工対象物の加工が行われる。 Thereafter, the laser beam P and the laser beam S are imaged by the lens 518 at the imaging position P2a and the imaging position P2b, respectively. Then, the processing surface of the object to be processed is placed in the vicinity of the imaging positions P2a and P2b, whereby the image B3a (laser spot B3a) of the laser light P near the imaging position P2a and the laser in the vicinity of the imaging position P2b The processing of the object to be processed is performed by the image B3b of the light S (laser spot B3b).
 これにより、上述した実施の形態と同様に、波長が同じで偏光方向が異なるレーザスポットB3a,B3bを、所定の方向に走査しながら、ほぼ同じ位置に時間差を設けて照射することを、簡単に実現することができる。そのため、例えば、1種類の波長で効率の良い加工ができるような素材に対して、2倍の速度で加工することが可能になる。 Thus, as in the above-described embodiment, it is easy to irradiate the laser spots B3a and B3b having the same wavelength but different polarization directions while providing a time difference while scanning in the predetermined direction. It can be realized. Therefore, for example, it is possible to process at twice the speed with respect to a material capable of efficient processing with one type of wavelength.
 なお、本発明は、1種類の要素だけでなく、複数の要素の組み合わせ(例えば、波長と偏光方向の組み合わせ等)が異なる複数の種類のレーザ光を並行して使用する場合にも適用することも可能である。 The present invention is applicable not only to one type of element but also to parallel use of a plurality of types of laser light different in combination of a plurality of elements (for example, combination of wavelength and polarization direction). Is also possible.
[変形例7]
 また、レーザ光の光路を分離または結合したり、レーザ光の光路の方向を変更したりする手段は、上述した例に限定されるものではなく、種々の変更が可能である。例えば、上述した例以外に、プリズムやハーフミラー等を用いることも可能である。
[Modification 7]
Further, the means for separating or combining the optical path of the laser beam or changing the direction of the optical path of the laser beam is not limited to the above-described example, and various modifications are possible. For example, in addition to the above-described example, it is also possible to use a prism or a half mirror.
[変形例8]
 さらに、以上の説明では、XYスリット機構の開口部の形状を矩形とする例を示したが、矩形以外の形状、例えば、円形や楕円形等にすることも可能である。また、以上の説明では、光ファイバ161および偏波面保存ファイバ514の出射端面の形状を正方形とする例を示したが、矩形等の他の形状にすることも可能である。
[Modification 8]
Furthermore, although the example which makes the shape of the opening part of XY slit mechanism into a rectangle was shown in the above description, it is also possible to make shapes other than a rectangle, for example, circular, an ellipse, etc. Also, in the above description, the output end face of the optical fiber 161 and the polarization maintaining fiber 514 is square, but it may be rectangular.
[変形例9]
 また、レーザスポットB3a,B3bの走査は、例えば、ガルバノミラー等による結像位置P2a,P2bの走査、加工対象物の移動、レーザ加工装置の移動、またはそれらの組み合わせにより実施することができる。
[Modification 9]
The scanning of the laser spots B3a and B3b can be performed, for example, by scanning the imaging positions P2a and P2b with a galvano mirror or the like, moving the object to be processed, moving the laser processing apparatus, or a combination thereof.
 なお、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 The embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
 101 レーザ加工装置
 111a,111b レーザ発振器
 112a,112b ビームエキスパンダ
 113 全反射ミラー
 114 ビームスプリッタ
 115 2波長性ファイバ結合レンズ
 116 光ファイバ
 117 2波長性結像加工光学系レンズ
 118 2波長性ミラー
 119 全反射ミラー
 120a乃至121b,120b’ 結像加工光学系レンズ
 122 全反射ミラー
 123 2波長性ミラー
 124 2波長性結合加工光学系レンズ
 131 モジュール
 132 シフト機構
 201 レーザ加工装置
 211a,211b XYスリット機構
 231 モジュール
 232 シフト機構
 301 レーザ加工装置
 311 シフト機構
 401 レーザ加工装置
 411 シフト機構
 421 モジュール
 501 レーザ加工装置
 511a,511b レーザ発振器
 512 偏光ビームスプリッタ
 513 ファイバ結合レンズ
 514 偏波面保存ファイバ
 515 結像加工光学系レンズ
 516,517 偏光ビームスプリッタ
 518 結合加工光学系レンズ
DESCRIPTION OF SYMBOLS 101 Laser processing apparatus 111a, 111b Laser oscillator 112a, 112b Beam expander 113 Total reflection mirror 114 Beam splitter 115 Two-wavelength fiber coupling lens 116 Optical fiber 117 Two-wavelength imaging processing optical system lens 118 Two-wavelength mirror 119 Total reflection Mirrors 120a to 121b, 120b 'Imaging processing optical system lens 122 total reflection mirror 123 two wavelength property mirror 124 two wavelength property coupling processing optical system lens 131 module 132 shift mechanism 201 laser processing apparatus 211a, 211b XY slit mechanism 231 module 232 shift Mechanism 301 Laser processing apparatus 311 Shift mechanism 401 Laser processing apparatus 411 Shift mechanism 421 Module 501 Laser processing apparatus 511a, 511b Laser oscillator 512 Polarizing beam splitter 513 Fiber coupling lens 514 Polarization maintaining fiber 515 Imaging processing lens 516, 517 Polarizing beam splitter 518 Coupling processing lens

Claims (9)

  1.  少なくとも第1のレーザ光および第2のレーザ光を用いて加工対象物の加工を行うレーザ加工装置において、
     前記第1のレーザ光が通過する第1の光路上の第1の結像位置において、前記第1のレーザ光を結像する第1のレンズと、
     前記第1の光路上の前記第1の結像位置より後で前記第1のレーザ光をコリメートする第2のレンズと、
     前記第2のレーザ光が通過する第2の光路上の第2の結像位置において、前記第2のレーザ光を結像する第3のレンズと、
     前記第2の光路上の前記第2の結像位置より後で前記第2のレーザ光をコリメートする第4のレンズと、
     前記第2のレンズおよび前記第4のレンズの後段において、前記第1のレーザ光と前記第2のレーザ光の光路を結合する結合手段と、
     前記結合手段と前記加工対象物の間に設けられ、前記第1のレーザ光および前記第2のレーザ光を結像する第5のレンズと、
     前記第2の光路を調整して、前記第5のレンズによる前記第2のレーザ光の結像位置である第3の結像位置の光軸と垂直な方向における位置を調整する調整手段と
     を備えることを特徴とするレーザ加工装置。
    In a laser processing apparatus for processing an object using at least a first laser beam and a second laser beam,
    A first lens for imaging the first laser beam at a first imaging position on a first optical path through which the first laser beam passes;
    A second lens that collimates the first laser beam after the first imaging position on the first optical path;
    A third lens for imaging the second laser beam at a second imaging position on a second optical path through which the second laser beam passes;
    A fourth lens that collimates the second laser beam after the second imaging position on the second optical path;
    Coupling means for coupling optical paths of the first laser beam and the second laser beam at a stage subsequent to the second lens and the fourth lens;
    A fifth lens provided between the coupling means and the object to be imaged and for imaging the first laser beam and the second laser beam;
    An adjusting unit that adjusts the second optical path to adjust the position of the third imaging position, which is an imaging position of the second laser beam by the fifth lens, in a direction perpendicular to the optical axis of the third imaging position; Laser processing apparatus characterized by having.
  2.  前記調整手段は、前記第2の結像位置の光軸と垂直な方向の位置を調整することにより、前記第3の結像位置の光軸と垂直な方向の位置を調整する
     ことを特徴とする請求項1に記載のレーザ加工装置。
    The adjustment means adjusts the position of the third imaging position in the direction perpendicular to the optical axis by adjusting the position of the second imaging position in the direction perpendicular to the optical axis. The laser processing apparatus according to claim 1.
  3.  前記第1の光路上の前記第1のレンズと前記第2のレンズの間に設けられる第1のスリットと、
     前記第2の光路上の前記第3のレンズと前記第4のレンズの間に設けられる第2のスリットと
     をさらに備え、
     前記調整手段は、前記第2のスリットの開口部の光軸と垂直な方向における位置を調整することにより、前記第3の結像位置の光軸と垂直な方向の位置を調整する
     ことを特徴とする請求項1に記載のレーザ加工装置。
    A first slit provided between the first lens and the second lens on the first light path;
    And a second slit provided between the third lens and the fourth lens on the second light path,
    The adjustment means adjusts the position of the third imaging position in the direction perpendicular to the optical axis by adjusting the position of the opening of the second slit in the direction perpendicular to the optical axis. The laser processing apparatus according to claim 1.
  4.  前記第2のスリットは、前記第2の結像位置付近に設けられ、
     前記調整手段は、前記第2の結像位置を前記第2のスリットの開口部とともに移動させる
     ことを特徴とする請求項3に記載のレーザ加工装置。
    The second slit is provided near the second imaging position,
    The laser processing apparatus according to claim 3, wherein the adjustment unit moves the second imaging position together with the opening of the second slit.
  5.  前記第4のレンズの後段において、前記第2の光路の方向を前記結合手段の方向に変更する変更手段を
     さらに備え、
     前記調整手段は、前記第2の光路を前記第5のレンズの光軸と一致する回転軸を中心に回転させることにより、前記第3の結像位置の光軸と垂直な方向の位置を調整する
     ことを特徴とする請求項3に記載のレーザ加工装置。
    The rear end of the fourth lens further includes changing means for changing the direction of the second light path to the direction of the coupling means.
    The adjusting means adjusts the position of the third imaging position in the direction perpendicular to the optical axis by rotating the second optical path about a rotation axis that coincides with the optical axis of the fifth lens. The laser processing apparatus according to claim 3, characterized in that:
  6.  前記第1のレーザ光および前記第2のレーザ光を伝送する光ファイバと、
     前記光ファイバから出射された前記第1のレーザ光および前記第2のレーザ光をコリメートする第6のレンズと、
     前記第6のレンズの後段において、前記第1のレーザ光と前記第2のレーザ光の光路を前記第1の光路と前記第2の光路に分離する分離手段と
     をさらに備えることを特徴とする請求項1に記載のレーザ加工装置。
    An optical fiber for transmitting the first laser beam and the second laser beam;
    A sixth lens for collimating the first laser beam and the second laser beam emitted from the optical fiber;
    The light source device further comprises separation means for separating the optical paths of the first laser light and the second laser light into the first optical path and the second optical path at a stage subsequent to the sixth lens. The laser processing apparatus according to claim 1.
  7.  前記光ファイバの出射端面の形状が角形である
     ことを特徴とする請求項6に記載のレーザ加工装置。
    The laser processing apparatus according to claim 6, wherein a shape of an emission end face of the optical fiber is a square.
  8.  前記加工対象物の表面上で、前記第3の結像位置を移動させる走査手段を
     さらに備えることを特徴とする請求項1に記載のレーザ加工装置。
    The laser processing apparatus according to claim 1, further comprising a scanning unit that moves the third imaging position on the surface of the processing target.
  9.  少なくとも第1のレーザ光および第2のレーザ光を用いて加工対象物の加工を行うレーザ加工方法において、
     前記第1のレーザ光と前記第2のレーザ光を発生させ、
     前記第1のレーザ光と前記第2のレーザ光をそれぞれ同一形状または異なる形状、かつ加工対象物の表面に隣接して結像させ、
     隣接させた前記結像の並んだ方向に結像位置を移動させ、または加工対象物の相対的な位置を移動させ、
     連続的に対象物の表面を加工することを特徴とするレーザ加工方法。
    In a laser processing method for processing a workpiece using at least a first laser beam and a second laser beam,
    Generating the first laser beam and the second laser beam;
    Imaging the first laser beam and the second laser beam in the same shape or different shapes and adjacent to the surface of the object to be processed;
    Moving the imaging position in the direction in which the adjacent imagings are aligned, or moving the relative position of the object to be processed;
    The laser processing method characterized by processing the surface of a target object continuously.
PCT/JP2011/056718 2010-12-27 2011-03-22 Laser processing device and laser processing method WO2012090520A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010291337A JP2012135808A (en) 2010-12-27 2010-12-27 Laser beam machining apparatus and laser beam machining method
JP2010-291337 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090520A1 true WO2012090520A1 (en) 2012-07-05

Family

ID=46382646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056718 WO2012090520A1 (en) 2010-12-27 2011-03-22 Laser processing device and laser processing method

Country Status (3)

Country Link
JP (1) JP2012135808A (en)
TW (1) TW201236791A (en)
WO (1) WO2012090520A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020092889A1 (en) * 2018-11-01 2020-05-07 Medical Instrument Development Laboratories, Inc. Led illumination system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI629132B (en) * 2013-02-13 2018-07-11 日商住友化學股份有限公司 Manufacturing apparatus of optical member affixed body
JP2015062943A (en) * 2013-09-26 2015-04-09 株式会社ディスコ Laser processing device and laser processing method
US10170892B2 (en) 2015-06-19 2019-01-01 Amada Miyachi Co., Ltd. Laser unit and laser device
WO2021107043A1 (en) * 2019-11-27 2021-06-03 パナソニックIpマネジメント株式会社 Laser processing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284786A (en) * 1989-04-27 1990-11-22 Toshiba Corp Laser making method and device therefor
JP2002176006A (en) * 2000-12-08 2002-06-21 Sumitomo Heavy Ind Ltd Apparatus and method for laser processing
JP2003080388A (en) * 2001-09-07 2003-03-18 Komatsu Ltd Laser beam machining device
JP2003344802A (en) * 2002-05-23 2003-12-03 Toshiba Corp Laser light irradiating device
JP2008203434A (en) * 2007-02-19 2008-09-04 Fujitsu Ltd Scanning mechanism, method of machining material to be machined and machining apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195886A (en) * 1987-10-08 1989-04-13 Hitachi Ltd Method for supplying laser beam stable output
JPH02119128A (en) * 1988-10-28 1990-05-07 Nec Corp Laser annealing system
JPH04100685A (en) * 1990-08-20 1992-04-02 Toshiba Corp Pattern removing method for thin-film body
JPH0569169A (en) * 1991-09-13 1993-03-23 Toshiba Corp Laser beam machine
JPH0780673A (en) * 1993-09-08 1995-03-28 Nippon Avionics Co Ltd Laser beam machine
JPH1178032A (en) * 1997-09-04 1999-03-23 Canon Inc Liquid jet recording head and manufacture thereof
JP2001166090A (en) * 1999-12-10 2001-06-22 Toshiba Corp Method for decommissioning nuclear reactor and laser cutting device
JP2003112279A (en) * 2001-10-04 2003-04-15 Hitachi Ltd Laser beam irradiating device
JP2004230447A (en) * 2003-01-31 2004-08-19 Matsushita Electric Ind Co Ltd Semi-conductor laser device
JP2009072789A (en) * 2007-09-18 2009-04-09 Hamamatsu Photonics Kk Laser machining apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284786A (en) * 1989-04-27 1990-11-22 Toshiba Corp Laser making method and device therefor
JP2002176006A (en) * 2000-12-08 2002-06-21 Sumitomo Heavy Ind Ltd Apparatus and method for laser processing
JP2003080388A (en) * 2001-09-07 2003-03-18 Komatsu Ltd Laser beam machining device
JP2003344802A (en) * 2002-05-23 2003-12-03 Toshiba Corp Laser light irradiating device
JP2008203434A (en) * 2007-02-19 2008-09-04 Fujitsu Ltd Scanning mechanism, method of machining material to be machined and machining apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020092889A1 (en) * 2018-11-01 2020-05-07 Medical Instrument Development Laboratories, Inc. Led illumination system
US11256106B2 (en) 2018-11-01 2022-02-22 Medical Instrument Development Laboratories, Inc. LED illumination system

Also Published As

Publication number Publication date
JP2012135808A (en) 2012-07-19
TW201236791A (en) 2012-09-16

Similar Documents

Publication Publication Date Title
US7413311B2 (en) Speckle reduction in laser illuminated projection displays having a one-dimensional spatial light modulator
CN101140358B (en) One-dimensional illumination apparatus and image generating apparatus
US10073260B2 (en) Method for reducing speckle
US8659824B2 (en) Laser microscope
JP2009269089A (en) Laser operating method and device therefor
JP6038301B2 (en) EUV excitation light source comprising a laser beam light source and a beam guiding device for operating the laser beam
KR101425492B1 (en) Laser machining apparatus and method thereof
WO2012090520A1 (en) Laser processing device and laser processing method
JP6383166B2 (en) Light irradiation apparatus and drawing apparatus
JP2008272830A (en) Laser beam machining apparatus
KR20190071730A (en) Laser light irradiation device
JP6587115B1 (en) Laser processing apparatus and laser processing method
KR20110132249A (en) Adjusting device of polarization azimuthal angle and laser processing device
WO2012090519A1 (en) Laser processing device and laser processing method
JP3955587B2 (en) Laser irradiation device
KR100787236B1 (en) Processing apparatus and mehtod of using ultrashort pulse laser
JP2003290941A (en) Laser marker
JP6520590B2 (en) Pattern drawing apparatus and pattern drawing method
JP6345963B2 (en) Light irradiation apparatus and drawing apparatus
JPH1062710A (en) Illumination optical system
JP4841624B2 (en) Lighting device
JP6710891B2 (en) Light modulation device and light modulation method
KR102397685B1 (en) Laser processing apparatus
JP2008098405A (en) Laser irradiation apparatus
JP2020126244A (en) Optical modulator and optical modulation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853798

Country of ref document: EP

Kind code of ref document: A1