WO2012081197A1 - 弾性体アクチュエータ駆動機構の制御装置及び制御方法、並びに、制御プログラム - Google Patents
弾性体アクチュエータ駆動機構の制御装置及び制御方法、並びに、制御プログラム Download PDFInfo
- Publication number
- WO2012081197A1 WO2012081197A1 PCT/JP2011/006818 JP2011006818W WO2012081197A1 WO 2012081197 A1 WO2012081197 A1 WO 2012081197A1 JP 2011006818 W JP2011006818 W JP 2011006818W WO 2012081197 A1 WO2012081197 A1 WO 2012081197A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output
- target
- elastic actuator
- internal state
- operation control
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1615—Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/14—Programme-controlled manipulators characterised by positioning means for manipulator elements fluid
- B25J9/142—Programme-controlled manipulators characterised by positioning means for manipulator elements fluid comprising inflatable bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1674—Programme controls characterised by safety, monitoring, diagnostic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/16—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7051—Linear output members
- F15B2211/7052—Single-acting output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/71—Multiple output members, e.g. multiple hydraulic motors or cylinders
- F15B2211/7107—Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being mechanically linked
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39454—Rubber actuator, two muscle drive, one for extension other for traction
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39462—Pneumatic actuator, imitates human muscle
Definitions
- the present invention relates to a control device and control method for an elastic actuator drive mechanism, and a control program for controlling the operation of a drive mechanism driven by an elastic actuator driven by deformation of an elastic body such as a fluid pressure drive actuator.
- robots that collaborate with people have been actively developed due to the expansion of cell production factories. Unlike conventional robots that operate by separating human areas and robot work areas, robots that collaborate with humans need to coexist with humans. The required specifications are different.
- an electric motor or a speed reducer is used, and high hand position accuracy such as 0.1 mm repeatability is realized by high gain feedback control.
- a mechanism driven by such an electric motor has high rigidity and often lacks softness, and there are many problems in terms of safety.
- the Macchiben-type pneumatic actuator has a structure in which a restraining means made of a fiber cord is disposed on the outer surface of a tubular elastic body made of a rubber material, and both ends of the tubular elastic body are hermetically sealed with a sealing member It has become.
- a compressive fluid such as air through the fluid injecting / extracting means
- the tubular elastic body tends to expand mainly in the radial direction, but it tries to expand radially due to the action of the restraining means. Is converted into a movement in the central axis direction of the tubular elastic body, and the entire length contracts. Since this McKibben type actuator is mainly composed of an elastic body, it has the characteristics of being a flexible, safe and lightweight actuator.
- the conventional technology discloses a control device that controls a robot by reading in advance data stored by teaching instead of a sensor signal (Patent Document 1). Further, in a robot having a distance sensor and a plurality of movement mechanism position detectors, a malfunctioning movement mechanism position detector is detected from a sensor signal from the distance sensor and a movement mechanism position signal from a normal movement mechanism position detector. A movement control apparatus including an arithmetic unit that obtains the same substitute signal as the correct movement mechanism position signal to be output is disclosed (Patent Document 2).
- Patent Document 1 teaching data as a substitute for the sensor signal is required in advance. However, it is difficult to assume all operations of the robot in advance, and it is difficult to prepare teaching data. there were. Further, the technique of Patent Document 2 has a problem that a correct substitute signal cannot be calculated by a robot or the like that does not include a distance sensor.
- An object of the present invention is to solve the above-described conventional problems, without preparing teaching data in advance or providing a sensor capable of calculating a substitute signal, and without stopping the operation immediately even when the sensor is abnormal. It is an object of the present invention to provide a control device and control method for an elastic actuator drive mechanism, and a control program that can continue the operation of a drive mechanism such as a robot arm driven by.
- the present invention is configured as follows.
- a control device for an elastic actuator driving mechanism An abnormality judging means for judging whether or not the output measuring means for measuring the output of the elastic actuator is abnormal;
- a normal operation control means for performing a control operation of the elastic actuator drive mechanism using an output from the output measurement means when the abnormality determination means determines that the output measurement means is normal;
- an abnormal-time operation control means that performs a control operation of the elastic actuator driving mechanism using the internal state model;
- the abnormality determining means determines that the output measuring means is normal, the normal operation control means is operated, whereas when the abnormality determining means determines that the output measuring means is abnormal, the normal operation control is performed.
- the normal operation control means for switching from the means to the abnormal operation control means to operate the abnormal operation control means,
- the normal operation control means is: First target output means for outputting a target value of the output of the elastic actuator; Torque control means for calculating a target joint torque using the output of the target output means and the output from the output measurement means, and the normal operation control means is calculated by the torque control means.
- the abnormal operation control means includes: Second target output means for outputting a target value of the output of the elastic actuator; A target internal state information acquisition means for acquiring target internal state information of the elastic actuator using the target value of the output output by the second target output means and the internal state model; The hour operation control means performs the control operation of the elastic actuator drive mechanism based on the target internal state information acquired by the target internal state information acquisition means without using the measurement result of the output of the elastic actuator.
- a control method for an elastic actuator drive mechanism determines whether or not the output measurement means for measuring the output of the elastic actuator is abnormal, When the abnormality determination means determines that the output measurement means is normal, the control operation of the elastic actuator drive mechanism is performed by the normal operation control means using the output from the output measurement means, When the abnormality determining unit determines that the output measuring unit is abnormal, the control operation of the elastic actuator driving mechanism is performed by the abnormal operation control unit using the internal state model, and When the abnormality determining means determines that the output measuring means is normal, the normal operation control means is operated by the control means, while when the abnormality determining means determines that the output measuring means is abnormal, the normal operation control means is operated.
- the target value of the output of the elastic actuator is output by the first target output means
- the target joint torque is calculated by the torque control means using the output of the target output means and the output from the output measurement means, and the elastic actuator is driven based on the target joint torque calculated by the torque control means.
- the target value of the output of the elastic body actuator is output by the second target output means, Using the target value of the output output from the second target output means and the internal state model, the target internal state information of the elastic actuator is acquired by the target internal state information acquisition means, and the elastic actuator The elastic actuator continues to operate by performing the control operation of the elastic actuator drive mechanism based on the target internal state information acquired by the target internal state information acquisition means without using the output measurement result.
- a control method of an elastic actuator drive mechanism that performs control so as to do so.
- a control program for an elastic actuator driving mechanism A function of judging whether or not the output measuring means for measuring the output of the elastic actuator is abnormal, by the abnormality judging means; A function for performing the control operation of the elastic actuator drive mechanism by the normal operation control means using the output from the output measurement means when the abnormality determination means determines that the output measurement means is normal; A function of performing control operation of the elastic actuator drive mechanism by the operation control means at the time of abnormality using the internal state model when the abnormality determination means determines that the output measurement means is abnormal;
- the abnormality determining means determines that the output measuring means is normal
- the normal operation control means is operated by the control means, while when the abnormality determining means determines that the output measuring means is abnormal, the normal operation control means is operated.
- the target joint torque is calculated by the torque control means using the output of the target output means and the output from the output measurement means, and the elastic actuator is driven based on the target joint torque calculated by the torque control means.
- the abnormal operation control means operates, A function of outputting the target value of the output of the elastic actuator by the second target output means; Using the target value of the output output from the second target output means and the internal state model, the target internal state information of the elastic actuator is acquired by the target internal state information acquisition means, and the elastic actuator The elastic actuator continues to operate by performing the control operation of the elastic actuator drive mechanism based on the target internal state information acquired by the target internal state information acquisition means without using the output measurement result.
- a control program for an elastic actuator driving mechanism for causing a computer to realize the function of performing control.
- the control device includes the control means, the normal operation control means, and the abnormal operation control means, and whether or not the output measurement means has a failure in the normal operation control means.
- An abnormality determining means for determining the above is provided. With this configuration, when the abnormality determining unit determines that the output measuring unit is not normal, the control unit can switch the operation from the normal operation control unit to the abnormal operation control unit. As a result, the abnormal operation control means performs the control operation of the elastic actuator drive mechanism using the internal state model without using the measurement result of the output of the elastic actuator, so that the elastic actuator operates. Control can be continued. Therefore, even when the output measuring unit fails, the elastic actuator drive mechanism does not stop immediately, and the safe elastic actuator drive mechanism that can continue the operation can be controlled.
- the abnormality determination operation for determining whether or not the output measuring means is out of order is provided.
- the control unit can switch the operation from the normal operation control unit to the abnormal operation control unit.
- the abnormal operation control means performs the control operation of the elastic actuator drive mechanism using the internal state model without using the measurement result of the output of the elastic actuator, so that the elastic actuator operates. Control can be continued. Therefore, even when the output measuring unit fails, the elastic actuator drive mechanism does not stop immediately, and the safe elastic actuator drive mechanism that can continue the operation can be controlled.
- FIG. 1 is a diagram showing a structure of a drive mechanism of an elastic actuator in the first embodiment of the present invention.
- FIG. 2 is a diagram illustrating the structure and operation of an elastic expansion / contraction structure that is an example of an elastic actuator according to the first embodiment.
- FIG. 3 is a diagram showing the operation of the air pressure supply system for driving the robot arm in the first embodiment of the present invention with air that is a compressible fluid.
- FIG. 4 is a block diagram showing the overall configuration of the control device for the elastic actuator drive mechanism in the first embodiment of the present invention.
- FIG. 5 is a block diagram showing the configuration of the main control unit in the first embodiment of the present invention
- FIG. 6A is a diagram showing an example of an internal state model equation in the first embodiment of the present invention
- FIG. 6B is a diagram showing an example of an internal state model equation in the first embodiment of the present invention
- FIG. 7 is a flowchart of the operation steps of the control program of the main control unit in the first embodiment of the present invention
- FIG. 8 is a control block diagram of the normal operation controller in the first embodiment of the present invention.
- FIG. 9 is a diagram showing a part of the calculation method of the torque control means in the first embodiment of the present invention
- FIG. 10 is a diagram showing an example of the characteristics of the elastic actuator according to the first embodiment of the present invention.
- FIG. 11 is a diagram showing an internal block diagram of the abnormality determination means in the first embodiment of the present invention
- FIG. 12 is a flowchart of the operation steps of the control program of the normal operation control unit in the first embodiment of the present invention
- FIG. 13 is a control block diagram of the abnormal operation control unit in the first embodiment of the present invention
- FIG. 14 is a block diagram showing a detailed configuration of the target internal state determination means in the first embodiment of the present invention.
- FIG. 15 is a flowchart of the operation steps of the control program of the abnormal-time operation control unit in the first embodiment of the present invention
- FIG. 16 is a control block diagram of the abnormal operation control unit in the second embodiment of the present invention.
- a control device for an elastic actuator drive mechanism An abnormality judging means for judging whether or not the output measuring means for measuring the output of the elastic actuator is abnormal;
- a normal operation control means for performing a control operation of the elastic actuator drive mechanism using an output from the output measurement means when the abnormality determination means determines that the output measurement means is normal;
- an abnormal-time operation control means that performs a control operation of the elastic actuator driving mechanism using the internal state model;
- the abnormality determining means determines that the output measuring means is normal, the normal operation control means is operated, whereas when the abnormality determining means determines that the output measuring means is abnormal, the normal operation control is performed.
- the normal operation control means for switching from the means to the abnormal operation control means to operate the abnormal operation control means,
- the normal operation control means is: First target output means for outputting a target value of the output of the elastic actuator; Torque control means for calculating a target joint torque using the output of the target output means and the output from the output measurement means, and the normal operation control means is calculated by the torque control means.
- the abnormal operation control means includes: Second target output means for outputting a target value of the output of the elastic actuator; A target internal state information acquisition means for acquiring target internal state information of the elastic actuator using the target value of the output output by the second target output means and the internal state model; The hour operation control means performs the control operation of the elastic actuator drive mechanism based on the target internal state information acquired by the target internal state information acquisition means without using the measurement result of the output of the elastic actuator.
- the target internal state information acquisition means of the abnormal-time operation control means utilizes the target value of the output output from the second target output means and the internal state model.
- First internal target state calculation means for calculating information on the internal target state, and the control operation of the elastic actuator drive mechanism is performed based on the information on the internal target state calculated by the internal target state calculation means.
- the target internal state information acquisition means of the abnormal operation control means comprises An output estimator for estimating the output of the elastic actuator from the internal state model and information on the internal state of the elastic actuator; Second target internal state information calculating means for calculating target internal state information from the output of the elastic actuator estimated by the output estimating unit and the target value of the output output by the second target output means.
- the elastic actuator is operated by performing the control operation of the elastic actuator drive mechanism based on the information of the target internal state calculated using the output of the elastic actuator estimated by the output estimation unit.
- the control device according to the first aspect for performing control so as to continue is provided.
- the abnormality determination unit includes information on a relationship between an output from the output measurement unit and an internal state from an internal state measurement unit that measures an internal state of the elastic body actuator, Whether the output measuring means is abnormal is compared by comparing the output of the elastic actuator of the internal state model when the output measuring means is normal and the information on the relationship between the internal state of the elastic actuator.
- a control device according to the first aspect of determining is provided.
- the second target output means in the abnormal-time operation control means and the first target output means in the normal-time operation control means are different in output from the elastic actuator.
- the abnormal action control means performs control so as to stop the operation after the elastic actuator has moved to a safe position.
- control device for an elastic actuator driving mechanism according to any one of the first to fifth aspects, wherein the elastic actuator is a fluid pressure actuator.
- a control method for an elastic actuator drive mechanism determines whether or not the output measurement means for measuring the output of the elastic actuator is abnormal, When the abnormality determination means determines that the output measurement means is normal, the control operation of the elastic actuator drive mechanism is performed by the normal operation control means using the output from the output measurement means, When the abnormality determining means determines that the output measuring means is abnormal, the control operation of the elastic actuator driving mechanism is performed by the abnormal operation control means using an internal state model, When the abnormality determining means determines that the output measuring means is normal, the normal operation control means is operated by the control means, while when the abnormality determining means determines that the output measuring means is abnormal, the normal operation control means is operated.
- the target value of the output of the elastic actuator is output by the first target output means
- the target joint torque is calculated by the torque control means using the output of the target output means and the output from the output measurement means, and the elastic actuator is driven based on the target joint torque calculated by the torque control means.
- the target value of the output of the elastic body actuator is output by the second target output means, Using the target value of the output output from the second target output means and the internal state model, the target internal state information of the elastic actuator is acquired by the target internal state information acquisition means, and the elastic actuator The elastic actuator continues to operate by performing the control operation of the elastic actuator drive mechanism based on the target internal state information acquired by the target internal state information acquisition means without using the output measurement result.
- a control method of an elastic actuator drive mechanism that performs control so as to do so.
- a control program for an elastic actuator driving mechanism A function of judging whether or not the output measuring means for measuring the output of the elastic actuator is abnormal, by the abnormality judging means; A function for performing the control operation of the elastic actuator drive mechanism by the normal operation control means using the output from the output measurement means when the abnormality determination means determines that the output measurement means is normal; A function of performing control operation of the elastic actuator drive mechanism by the abnormal-time operation control means using an internal state model when the abnormality determination means determines that the output measurement means is abnormal; When the abnormality determining means determines that the output measuring means is normal, the normal operation control means is operated by the control means, while when the abnormality determining means determines that the output measuring means is abnormal, the normal operation control means is operated.
- the target joint torque is calculated by the torque control means using the output of the target output means and the output from the output measurement means, and the elastic actuator is driven based on the target joint torque calculated by the torque control means.
- the abnormal operation control means operates, A function of outputting the target value of the output of the elastic actuator by the second target output means; Using the target value of the output output from the second target output means and the internal state model, the target internal state information of the elastic actuator is acquired by the target internal state information acquisition means, and the elastic actuator The elastic actuator continues to operate by performing the control operation of the elastic actuator drive mechanism based on the target internal state information acquired by the target internal state information acquisition means without using the output measurement result.
- a control program for an elastic actuator driving mechanism for causing a computer to realize the function of performing control.
- FIG. 1 is a diagram showing a configuration of an elastic actuator drive mechanism 10 according to the first embodiment of the present invention.
- the elastic actuator drive mechanism 10 is a robot arm with two degrees of freedom, and a first joint axis 6-1 that rotates forward and backward in an xy plane including orthogonal x and y axes, and also in the xy plane. And a second joint shaft 6-2 that rotates forward and backward.
- reference numerals 1-1a, 1-1b, 1-2a, 1-2b (these are reference numerals for individual elastic expansion / contraction structures (an example of an elastic actuator or a fluid pressure actuator), and are typically elastic.
- the reference numeral 1 indicates an elastic expansion / contraction structure.
- the first joint shaft 6-1 and the second joint shaft 6-2 are respectively the rotations of the first joint and the second joint of the elastic actuator drive mechanism (the elastic expansion / contraction structure drive mechanism in this embodiment) 10. Is the axis.
- the elastic expansion / contraction structure 1 is made of a resin or metal fiber cord which is made of a rubber material and functions as a driving portion, and is made of a resin or metal fiber cord which is difficult to extend on the outer surface of the tubular hollow elastic body 2.
- a deformation direction regulating member 3 knitted in a mesh shape is disposed. In the deformation direction regulating member 3, the deformation in the radial direction due to the expansion of the tubular elastic body 2 is converted into the contraction of the axial length perpendicular to the radial direction, while the deformation in the radial direction due to the contraction of the tubular elastic body 2 is performed. , Configured to be translated into an axial length expansion.
- a tubular fluid passage member 5 provided in the sealing member 4 at one end of the elastic expansion / contraction structure 1 has a fluid flow path through which a compressive fluid passes, and is hollow through the fluid passage member 5.
- the fluid can be injected or dispensed into the hollow interior of the elastic body 2.
- a compressive fluid such as air is supplied to the hollow tubular elastic body 2 through the fluid passage member 5.
- the fluid passage member 5 may be provided at both ends of the sealing member 4 of the elastic expansion / contraction structure 1.
- the tubular elastic body 2 When the internal pressure is applied to the internal space of the tubular elastic body 2 by the supplied compressive fluid, the tubular elastic body 2 tends to expand mainly in the radial direction. However, the deformation direction regulating member 3 is converted into a movement in the central axis direction of the tubular elastic body 2 and contracts the entire length, so that it can be used as an elastic actuator for direct drive.
- the elastic actuator drive mechanism 10 arranges a pair of elastic expansion / contraction structures 1 so that the joint shaft 6-1 or 6-2 faces the fulcrum.
- One elastic expansion / contraction structure 1 of one set of elastic expansion / contraction structures 1 contracts, and the other elastic expansion / contraction structure 1 expands.
- a force is applied via a fulcrum (joint shaft 6-1 or 6-2) to form an antagonistic drive structure in which the shaft of the joint shaft 6-1 or 6-2 rotates, so that the joint shaft 6- A forward / reverse rotational motion of 1 or 6-2 can be realized.
- first joint shaft 6-1 is driven to rotate forward and backward by antagonistic driving of the elastic expansion / contraction structure 1-1a and the elastic expansion / contraction structure 1-1b.
- the second joint shaft 6-2 is driven to rotate forward and backward by antagonistic driving of the elastic expansion / contraction structure 1-2a and the elastic expansion / contraction structure 1-2b.
- a disc-shaped support 19 that can rotate concentrically with the first joint shaft 6-1 is rotatably supported at the upper end of a rod-like support member 16 whose lower end is fixed to the fixed surface 14.
- a rod-like support 18 that extends perpendicularly to the longitudinal direction of the support member 16 is fixed to the fixing surface 14 side of the lower end portion of the support member 16.
- the ends of the elastic expansion / contraction structures 1-1a and 1-1b are rotatably connected between the support 19 and the support 18. Therefore, the support 19 rotates forward and backward in the xy plane around the support shaft 21 of the first joint shaft 6-1 by the antagonistic drive of the elastic expansion / contraction structures 1-1a and 1-1b.
- the forearm support member 17 of the elastic actuator drive mechanism 10 connected to the support body 19 illustrated as a rectangular plate member in FIG. 3) can be rotated forward and backward.
- the support member 17 of the forearm 117 is fixed to a support body 19 (shown in FIG. 3) and can be rotated integrally with the support body 19.
- the center of the rod-like support body 20 fixed so as to extend perpendicular to the longitudinal direction of the support member 17 is rotatable about the axis of the second joint shaft 6-2. It is connected.
- the respective ends of the elastic expansion / contraction structures 1-2a and 1-2b are rotatably connected. Yes. Therefore, the support 20 rotates forward and backward in the xy plane around the support shaft 22 of the second joint shaft 6-2 by the antagonistic drive of the elastic expansion / contraction structures 1-2a and 1-2b.
- the object gripping hand 12 connected to the support 20 can be rotated forward and backward relatively.
- a hand opening / closing motor 13 is attached to the hand 12, and by operating the motor 13, the hand 12 can be closed and the transported object 11 can be gripped.
- the position and posture of the hand 12 will be described below as the hand position and posture.
- the pressure sensors 9-1a and 9-1b are an example of an internal state measuring unit that measures internal states (for example, internal pressure) of the elastic expansion / contraction structures 1-1a and 1-1b.
- the pressure sensors 9-1a and 9-1b are disposed in the fluid passage members 5 (fluid injection ports) of the elastic expansion / contraction structures 1-1a and 1-1b, respectively, and the elastic expansion / contraction structures 1-1a. Measure the pressure in 1-1b.
- pressure sensors 9-2a and 9-2b which are examples of internal state measuring means, are also provided in the elastic expansion / contraction structures 1-2a and 1-2b.
- three-port flow proportional solenoid valves 27 are connected to the elastic expansion / contraction structures 1-1a and 1-1b and the elastic expansion / contraction structures 1-2a and 1-2b, respectively.
- All the flow proportional solenoid valves 27 are connected to a control computer 28 constituted by a general personal computer and an input / output IF 29.
- the control computer 28 performs the contraction and extension operations of the elastic expansion / contraction structures 1-1a and 1-1b and the elastic expansion / contraction structures 1-2a and 1-2b via the flow rate proportional solenoid valve 27, respectively. Control independently.
- Each joint shaft 6-1 and 6-2 is provided with a displacement measuring means (an encoder 8 as an example in the first embodiment) as an example of an output measuring means.
- the joint angles of the axes 6-1 and 6-2 can be measured.
- Each elastic expansion / contraction structure 1 has a pressure measurement means (an example of the internal state measurement means is a pressure sensor 9 (9-1a, 9-1b, 9-2a, 9-2b) in the first embodiment).
- the pressure sensor 9 can measure the internal pressure of each elastic expansion / contraction structure 1.
- FIG. 3 is a diagram showing a configuration of an air pressure supply system for driving the elastic actuator driving mechanism 10 according to the first embodiment of the present invention.
- FIG. 3 only the part for driving the second joint shaft 6-2 of the elastic actuator driving mechanism 10 to rotate forward and reverse is shown, and the other parts are omitted.
- the portion of the elastic actuator drive mechanism 10 that drives the first joint shaft 6-1 to rotate forward and backward is also similar in structure and operates in the same manner.
- reference numeral 25 denotes an air pressure source such as a compressor
- 26 denotes an air pressure adjusting unit that adjusts and outputs the air pressure of the air pressure source 25.
- Four three-port flow control solenoid valves 27 as an example of a flow proportional solenoid valve control the flow rate by driving a spool valve or the like with the force of an electromagnet.
- the control computer 28 is equipped with an input / output IF 29 such as a D / A board and outputs voltage command values to the four three-port flow control solenoid valves 27, thereby allowing each air flowing through each fluid passage member 5 to flow.
- the flow rate can be controlled independently.
- the high-pressure air generated by the air pressure source 25 is depressurized by the air pressure adjusting unit 26, adjusted to a constant pressure of, for example, 600 [kPa], and supplied to the 3-port flow rate control electromagnetic valve 27.
- the opening degree of the three-port flow control electromagnetic valve 27 is controlled in proportion to the voltage command value output from the control computer 28 via the input / output IF 29.
- the flow path to the 2a side is opened, and air having a flow rate proportional to the absolute value of the voltage command value is supplied to the elastic expansion / contraction structure 1-2a side.
- the elastic expansion / contraction structure 1-2b side will flow to the atmospheric pressure side.
- the path is opened, and an air flow having a flow rate proportional to the absolute value of the voltage command value is exhausted from the elastic expansion / contraction structure 1-2b side to the atmosphere.
- the overall length of the elastic expansion / contraction structure 1-2a (corresponding to the lower elastic expansion / contraction structure in FIG. 2) is reduced, and the elastic expansion / contraction structure 1-2b (in FIG. 2) (Corresponding to the upper elastic expansion / contraction structure)), the second joint shaft 6-2 rotates clockwise at a speed proportional to the absolute value of the voltage command value.
- a negative voltage command value is input from the control computer 28 to the 3-port flow control solenoid valve 27A connected to the elastic expansion / contraction structure 1-2a, and the 3-port connected to the elastic expansion / contraction structure 1-2b.
- the air flow supplied from the three-port flow control electromagnetic valve 27 to the elastic expansion / contraction structure 1 side passes through the sealing member 4 by the fluid passage member 5 and reaches the inside of the tubular elastic body 2, and the tubular elasticity
- the internal pressure of the body 2 is generated.
- the tubular elastic body 2 expands due to the generated internal pressure, but the deformation in the radial direction due to the expansion is restricted by the restraining action (regulation action) of the fiber cords assembled in a mesh shape of the deformation direction restricting member 3, so that the axial direction
- the total length of the elastic expansion / contraction structure 1 is shortened.
- the elastic expansion / contraction structure 1 in the first embodiment can function as a linear displacement actuator by supplying and controlling air pressure. Since the amount of expansion and contraction is approximately proportional to the internal pressure of the elastic expansion / contraction structure 1, if the control computer 28 controls the three-port flow control electromagnetic valve 27 to control the flow rate of air supplied to the elastic expansion / contraction structure 1. The overall length of the elastic expansion / contraction structure 1 can be controlled.
- the antagonistic drive by the elastic expansion / contraction structures 1-1a and 1-1b and the antagonistic drive by the elastic expansion / contraction structures 1-2a and 1-2b are performed. Therefore, a three-port flow rate control electromagnetic valve 27 is arranged for each of the pair of elastic expansion / contraction structures 1 that antagonize, and an air pressure supply system similar to FIG. 3 is configured. Then, all joint shafts 6-1 and 6-2 of the elastic actuator drive mechanism 10 are simultaneously transmitted by the voltage command values output from the control computer 28 to the respective three-port flow control solenoid valves 27 via the input / output IF 29. It can be driven forward and reverse independently.
- FIG. 4 is a diagram showing an overall configuration of the control device 30 of the elastic actuator drive mechanism 10 according to the first embodiment of the present invention.
- the control device 30 is provided in the control computer 28, for example. .
- the control device 30 includes a main control unit (an example of a control unit or a control unit) 31, a normal operation control unit (normal operation control unit) 32, an abnormal operation control unit (abnormal operation control unit) 33, It is configured with.
- the normal operation control unit 32 and the abnormal operation control unit 33 operate in response to a control unit operation command signal from the main control unit 31 and operate exclusively (that is, one operation control unit is operating). When the other operation control unit does not work).
- the main control unit 31 receives an abnormality detection signal and gripped object information from the normal operation control unit 32. Grasping object information is input to the main control unit 31 from the abnormal operation control unit 33.
- the main control unit 31 outputs the internal state model and the control unit operation command signal to the normal operation control unit 32 and the abnormal operation control unit 33, respectively.
- FIG. 5 is a diagram showing a specific configuration of the main control unit 31.
- the main control unit 31 includes an internal state model database 34, a database selection output unit 35, a control unit switching command output unit 36, and an operating time information recording unit 37.
- the internal state model database 34 stores data (internal state model) on the relationship between ⁇ P, which is the pressure difference between the pair of elastic expansion / contraction structures 1 that antagonize, and the corresponding joint angle q.
- the internal state model is ⁇ P, which is the pressure difference of the elastic actuator 1 for each point at each time when the elastic actuator drive mechanism 10 operates based on the operation program when the encoder 8 is normal. This is reference information that is information on the relationship of the joint angle q.
- FIGS. 6A and 6B are diagrams showing examples of equations that are stored in the internal state model database 34 and that can obtain data on the relationship between the pressure difference ⁇ P and the corresponding joint angle q.
- the quadratic equation shown by the graph is stored in the internal state model database 34. Since the relationship between the pressure difference ⁇ P of the elastic expansion / contraction structure 1 and the corresponding joint angle q changes depending on the weight or secular change of the gripped object, a plurality of equations are stored in the internal state model database 34. is doing.
- data is created based on the type and age of the gripping object.
- FIG. 6A is an example of an equation when an object is not gripped by the elastic actuator drive mechanism 10, and is an example of the relationship between the 100-hour operation before and after the 100-hour operation of the elastic actuator drive mechanism 10.
- FIG. 6B is an example of an equation in the case where an object is held by the elastic actuator drive mechanism 10, and is an example of a relationship between the 100-hour operation before and after the 100-hour operation of the elastic actuator drive mechanism 10. Further, such an equation is stored in the internal state model database 34 for each joint.
- the operating time information recording unit 37 records the operating time up to the present time of the elastic actuator driving mechanism 10, and outputs the result to the database selection output unit 35.
- the “operating time up to the present” here means a time obtained by accumulating the operating time since the elastic actuator driving mechanism 10 is driven for the first time.
- the database selection output unit 35 receives gripping object information described later, that is, information indicating whether or not the object is gripped, and an operation time that is an output of the operation time information recording unit 37, and is based on information necessary for selection. Appropriate data in the state model database 34 is selected, and the selected result is output as an internal state model to either the normal operation controller 32 or the abnormal operation controller 33 that is operating.
- the control unit switching command output unit 36 receives the abnormality detection signal from the normal operation control unit 32, and switches the target to output the control unit operation command from the normal operation control unit 32 to the abnormal operation control unit 33.
- the abnormality detection signal is output from the normal operation control unit 32 to the main control unit 31 when the normal operation control unit 32 described later detects an abnormality in the output detection unit.
- the actual operation steps of the control unit switching command output unit 36 will be described based on the flowchart of FIG.
- step S21 the control unit switching command output unit 36 outputs a control unit operation command to the normal operation control unit 32. That is, after starting the elastic actuator drive mechanism 10, the normal operation controller 32 initially performs a control operation as the control device 30 (in other words, the control computer 28).
- step S22 the main control unit 31 checks whether an abnormality detection signal is output from the normal operation control unit 32 to the main control unit 31.
- step S22 returns from step S22 to step S21, and a control unit operation command is output from the main control unit 31 to the normal operation control unit 32.
- control unit switching command output unit 36 sends the control unit operation to the normal operation control unit 32.
- the command is continuously output, and the normal operation control unit 32 continues to operate.
- step S ⁇ b> 23 a control unit operation command is output from the main control unit 31 to the abnormal operation control unit 33.
- step S23 is repeated until the operation of the elastic actuator driving mechanism 10 is completed.
- the control unit switching command output unit 36 outputs the abnormal operation control unit 33.
- the control unit operation command is continuously output, and the abnormal-time operation control unit 33 continues to operate.
- FIG. 8 is a diagram showing a specific configuration of the normal operation control unit 32 according to the first embodiment of the present invention.
- the normal operation control unit 32 includes a target trajectory generation unit (an example of a first target output unit) 40, an output error calculation unit 41, an angle error compensation unit 42, a target angular acceleration calculation unit 43, and a corrected target angular acceleration.
- the calculation unit 44, a normal torque control unit 45A, a pressure error calculation unit 46, a pressure error compensation unit 47, an object grip signal output unit 48, and an abnormality determination unit 49 are provided.
- the drive device 50 is the flow proportional solenoid valve 27 (27A, 27B) and the input / output IF 29 in FIG.
- q 1 and q 2 are joint angles of the first joint axis 6-1 and the second joint axis 6-2, respectively, measured by the encoder 8.
- P 1a , P 1b , P 2a , P 2b are elastic expansion / contraction structures 1-1a, 1a , 1b measured by the pressure sensor 9 (9-1a, 9-1b, 9-2a, 9-2b), respectively. -1b, 1-2a, and 1-2b.
- the hand motor 13 is a motor that opens and closes the hand 12, and receives an object grip signal input (ON of the output of the object grip signal) and closes the hand 12 to grip an object. Is not output (the output of the object grip signal is OFF), the hand 12 is opened to release the object.
- the target trajectory generating means 40 generates a target joint angle vector (an example of an output target value) q d for realizing the target operation of the elastic actuator driving mechanism 10, an output error calculating section 41, and a target angular velocity calculating means. 43 and the object grip signal output means 48.
- an operation program for the elastic actuator driving mechanism 10 is stored in advance.
- the angle error vector q e is output.
- the angle error compensator 42 receives the angle error vector q e output from the output error calculator 41 and outputs an angle error correction command value ⁇ P qe to the corrected target angular acceleration calculator 44 as an example of a control command value. .
- Target angular acceleration calculating means 43 the target joint angle vector q d to the target trajectory generation section 40 has output is input, the target angular acceleration
- the corrected target angular acceleration calculation unit 44 is the output of the target angular acceleration calculation means 43.
- the normal torque control means 45A is a corrected target angular acceleration output from the corrected target angular acceleration calculation unit 44.
- the target joint torque ⁇ d is calculated, and further, the target joint torque ⁇ d and the input output q of the encoder 8 are used to calculate the target pressure of the elastic expansion / contraction structure 1 of the relevant joint (attention).
- a value (an example of target internal state information) Pd is calculated.
- each link (support members 16 and 17) of the elastic actuator driving mechanism 10 or the mass of the transport object 11, the position of the center of gravity, or the inertia matrix is indicated.
- the normal torque control unit 45A outputs the calculated target pressure value Pd to the pressure error calculation unit 46.
- An example of a method of calculating target joint torque tau d using the equation of motion of the elastic actuator drive mechanism 10, calculates the target joint torque tau d by the following equation.
- I a coefficient matrix composed of dynamic parameters of the transport object 11 and the elastic actuator drive mechanism 10;
- FIG. 9 is a diagram showing the lengths of the elastic expansion / contraction structures 1-a and 1-b with respect to a certain joint angle.
- FIG. 10 is a diagram showing the relationship between the tensile force F, the strain amount ⁇ , and the pressure P, which are the characteristics of the elastic expansion / contraction structures 1-a and 1-b used in FIG.
- the geometric parameters of the joints of the elastic expansion / contraction structures 1-a and 1-b shown in FIG. 9 and the characteristics of the elastic expansion / contraction structures 1-a and 1-b shown in FIG. Stored in advance in means 45A.
- each of the pair of elastic expansion / contraction structures 1-2a and 1-2b that antagonize the relevant (focused) joint (in this example, the second joint).
- the length is calculated by the normal torque control means 45A.
- the distance between the two elastic expansion / contraction structures 1-2a, 1-2b is 2n and the joint angle is q (the axes of the elastic expansion / contraction structures 1-2a, 1-2b).
- the difference in length between the elastic expansion / contraction structures 1-2a and 1-2b is as follows.
- the above conditions that is, the difference F e between the strain amount ⁇ and the tensile force F of each elastic expansion / contraction structure 1-2a, 1-2b, and one predetermined condition (for example, antagonize)
- the average pressure of the two elastic expansion / contraction structures 1-2a and 1-2b is set to 300 kPa
- the pressure difference between the elastic expansion / contraction structures 1-2a and 1-2b is set to 200 kPa
- the like. can be determined by the elastic expansion contraction structures 1-2a, normal target pressure value P d of 1-2b torque control means 45A.
- ⁇ a 5 [%]
- ⁇ b 0 [%]
- F e 2000 [N]
- a predetermined condition is an average pressure 250 [kPa].
- each elastic expansion contraction structure 1-2a is vertically on the line indicated by the arrow a and arrow b in FIG. 10, respectively, there is determined.
- the pressure of the contraction structure 1-2a is 400 [kPa]
- the pressure of the elastic expansion / contraction structure 1-2b is 100 [kPa], which can be obtained by the normal torque control means 45A.
- These sought pressure is the target pressure value P d.
- the dynamics parameter corresponding to the transport object 11 is stored in advance in the normal torque control means 45A.
- the normal time torque control means 45 ⁇ / b> A uses the dynamic parameters at the time of gripping the object, while the hand 12 is open and the object 11 is When not gripping, the normal torque control means 45A uses the dynamics parameter when no object is gripped.
- Pressure error calculating unit 46 the normal-time torque control section 45A is output from the elastic expansion contraction structures 1-2a, the target pressure value P d of 1-2b, by subtracting the pressure P output from the pressure sensor 9 calculates a pressure error P e, and outputs the calculated pressure error P e to the pressure error compensation means 47.
- Pressure error compensation unit 47 is supplied with the pressure error P e from the pressure error calculation unit 46 calculates the pressure difference error correction output Vderutapi e, driving the calculated pressure difference error correction output Vderutapi e of the elastic actuator drive mechanism 10 Output to the device 50.
- Pressure difference error correction output Vderutapi e is given as a voltage command value to the three-port flow control solenoid valve 27 of the pneumatic supply system via the input and output IF29 such D / A board of the drive unit 50 (27A, 27B), each The joint shafts 6-1 and 6-2 are independently driven to rotate forward and reverse, and the elastic actuator driving mechanism 10 operates.
- the object grip signal output means 48 outputs an object grip signal to the hand motor 13 and the main control unit 31 at a predetermined target position.
- the task of the elastic actuator drive mechanism 10 as an example of a robot is determined in advance. Then, assume an example in which the transport object 11 is gripped by the hand 12 at a certain position, the transport object 11 is moved, and the transport object 11 is placed at another certain position (the transport object 11 is released from the grip of the hand 12). ing. For this reason, ON / OFF of the output of the object grip signal is determined according to the target position.
- the present invention is not limited to this, and the operator presses the hand opening / closing button to close the hand 12 and grip the transported object 11, Alternatively, the person may press the hand opening / closing button again to open the hand 12 to grip and release the conveyed object 11.
- the abnormality determination unit 49 receives the output q of the encoder 8, the output P of the pressure sensor 9, and the internal state model of the main control unit 31, and functions as an abnormality determination unit of the encoder 8 which is an example of the output measurement unit.
- FIG. 11 is a detailed diagram of the abnormality determination means 49, and the abnormality determination means 49 includes a pressure difference calculation means 51, an internal state model comparison means 52, and an abnormality determination means 53.
- the pressure difference calculation means 51 receives the pressure P of each elastic expansion / contraction structure 1, calculates the pressure difference ⁇ P between the pair of elastic expansion / contraction structures 1 antagonized, and outputs the pressure difference ⁇ P to the internal state model comparison means 52. .
- the internal state model comparison unit 52 includes the pressure difference ⁇ P output from the pressure difference calculation unit 51, the joint angle q output from the encoder 8, and the internal state model output from the internal state model database in the main control unit 31. Is input, and an equation showing the relationship between ⁇ P and the joint angle q, which is the pressure difference of the internal state model, and the relationship between ⁇ P and the current joint angle q, which is the current pressure difference (when performing the comparison operation), Comparison is made to determine how much the output q of the encoder 8 deviates from the joint angle q of the internal state model, and the result is output to the abnormality determination means 53.
- the abnormality determination unit 53 determines whether the output q of the encoder 8 is abnormal from the output of the internal state model comparison unit 52 indicating how much the output q of the encoder 8 is deviated. A detection signal is output to the main control unit 31. For example, when the output q of the encoder 8 deviates from the joint angle q of the internal state model by 50% or more, the abnormality determining unit 53 determines that the abnormality is instantaneously determined by the abnormality determining unit 53. When the output q is shifted from the joint angle q of the internal state model by 20% or more and less than 50% for 10 seconds or more, the determination is made based on a predetermined condition such as determining that the output is abnormal. It can be measured with the built-in timer that it lasts more than 10 seconds.
- step S 1 the measured value (joint angle q) of the output of the elastic actuator driving mechanism 10 measured by the encoder 8 is taken into the abnormality determination means 49 of the normal operation control unit 32 of the control device 30.
- step S ⁇ b> 2 the measured value (pressure P) of the internal state of the elastic actuator drive mechanism 10 measured by the pressure sensor 9 is taken into the abnormality determination means 49 of the normal operation control unit 32 of the control device 30.
- step S3 the abnormality determination means 49 determines whether the encoder 8 is abnormal based on the output q of the encoder 8, the output P of the pressure sensor 9, and the internal state model of the main control unit 31.
- step S3 a case where the abnormality determination unit 49 determines that the encoder 8 is not abnormal (normal) in step S3 will be described. In this case, the process proceeds from step S3 to step S4.
- step S4 based on the operation program of the elastic actuator driving mechanism 10 stored in advance in the target trajectory generating means 40, the target trajectory generating means 40 outputs a target value (target joint angle) of the output of the elastic actuator driving mechanism 10. Calculate the vector q d ).
- step S5 the angle error vector q e is obtained by the output error calculation unit 41 based on the output from the target trajectory generating means 40 and the output q of the encoder 8. Then, based on the angle error vector q e of the output error calculator 41, the angle error compensation means 42 calculates the angle error correction command value ⁇ P qe .
- step S6 the target joint angle vector q target d based on angular acceleration calculating means 43 is the target angular acceleration of the target trajectory generation section 40
- step S7 the target angular acceleration calculation means 43 uses the target angular acceleration.
- the corrected target angular acceleration calculating unit 44 corrects the corrected target angular acceleration.
- step S8 the pressure error P e in the pressure error calculation unit 46 based on the target pressure value P d of the normal time torque control means 45A is calculated. Then carried out in a pressure error compensation means 47, from the pressure error P e of the pressure error calculation unit 46, the calculation of the pressure difference error correction output Vderutapi e namely voltage command value.
- step S ⁇ b > 9 the voltage command value (pressure difference error correction output V ⁇ p e ) calculated in the pressure error compensation unit 47 is output to the drive device 50, and the elastic actuator drive mechanism 10 is driven by the drive device 50.
- step S3 the case where it is determined in step S3 that the encoder 8 is abnormal (not normal) will be described below. In this case, the process proceeds from step S3 to step S10. In step S 10, the abnormality determination means 49 outputs an abnormality detection signal to the main control unit 31.
- FIG. 13 is a diagram showing a specific configuration of the abnormal operation control unit 33 according to the first embodiment of the present invention.
- the abnormal-time operation control unit 33 includes a target trajectory generation unit (an example of a second target output unit) 40, a target internal state determination unit (first target internal state calculation unit) 60, a pressure error calculation unit 46, and a pressure error. Compensation means 47 and object grip signal output means 48 are provided.
- a target internal state determination unit (first target internal state calculation unit) 60 described below functions as an example of the target internal state information acquisition unit 160.
- FIG. 14 is a detailed diagram of the target internal state determination means 60, which includes an internal state model storage unit 61 and a target pressure calculation means 62.
- the internal state model storage unit 61 is output from the main control unit 31 to the abnormal operation control unit 33 as described above. Using this internal state model internal state model stored in the storage unit 61, from the input target joint angle vector q d, calculates the target pressure difference [Delta] P d of the elastic actuator 1 of the joints, the target pressure calculated Output to means 62.
- the target pressure calculation means 62 calculates the target pressure value P d of each elastic actuator 1 from the target pressure difference ⁇ P d from the internal state model storage unit 61, and the object gripping signal output means 48 and the target internal state determination means 60. And output.
- the target pressure calculation means 62 has a predetermined condition (for example, two elastic actuators to be antagonized). 1 is set to 300 kPa, the pressure difference of the elastic actuator 1 is set to 200 kPa, etc.), and the target pressure value P d is calculated from the condition and the input target pressure difference ⁇ P d .
- the target pressures P 1ad and P 1bd of the respective elastic body actuators 1 are as follows: It is necessary to satisfy the formula.
- the internal state error calculation unit 46 subtracts the pressure P output from the pressure sensor 9 from the target pressure value P d of the elastic actuator 1 output from the target internal state determination means 60.
- the pressure error ⁇ P e is calculated, and the calculated pressure error ⁇ P e is output to the pressure error compensation means 47.
- step S11 based on the operation program of the elastic actuator driving mechanism 10 stored in advance in the target trajectory generating means 40, the target trajectory generating means 40 outputs a target value (target angle q for the output of the elastic actuator driving mechanism 10). d ) is calculated.
- step S ⁇ b> 12 the measured value (pressure P) of the internal state of the elastic actuator drive mechanism 10 measured by the pressure sensor 9 is taken into the pressure error calculation unit 46 of the abnormal operation control unit 33 of the control device 30. .
- step S13 determines a target pressure value P d by the target internal state determining means 60 based on the target joint angle vector q d of the target trajectory generation section 40 is output to the internal state error calculation unit 46.
- step S ⁇ b > 14 the difference between the pressure target value P d of the target internal state determination means 60 and the current pressure P of the pressure sensor 9, that is, the pressure error ⁇ P e is calculated by the internal state error calculation unit 46. Then, the pressure error compensation unit 47, from the pressure error [Delta] P e of the internal state error calculation unit 46, the calculation of the pressure difference error correction output Vderutapi e namely voltage command value.
- step S15 the voltage command value (pressure difference error correction output V ⁇ p e ) calculated in the pressure error compensation means 47 is output to the drive device 50, and the elastic actuator drive mechanism is driven by the drive device 50.
- the control device 30 includes the main control unit 31, the normal operation control unit 32, and the abnormal operation control unit 33, and further determines the abnormality in the normal operation control unit 31.
- Means 49 are provided. With such a configuration, whether or not the encoder 8 is normal is determined by the abnormality determination unit 49, and when the abnormality determination unit 49 determines that the encoder 8 is not normal, the main control unit 31 is abnormal from the normal operation control unit 31. By switching the operation to the hourly operation control unit 32, even when the encoder 8 breaks down, it is possible to control the safe elastic actuator drive mechanism 10 that can continue the operation without stopping the operation immediately. .
- the target joint angle vector q dt stored in the target trajectory generating means 40 in the normal operation control unit 32 is used as the target angle vector q dt stored in the target trajectory generating means 40 in the abnormal operation control unit 33.
- FIG. 16 is a diagram showing a specific configuration of the abnormal operation control unit 33 according to the second embodiment of the present invention.
- the abnormal operation control unit 33 includes a target trajectory generation unit 40, an abnormal torque control unit (second target internal state information calculation unit) 45B, a target angular acceleration calculation unit 43, a pressure error calculation unit 46, and a pressure error. Compensation means 47, angle estimation means (an example of output estimation means (output estimation unit)) 65, and object grip signal output means 48 are provided.
- the angle estimation means (output estimation unit) 65 and the abnormal torque control means (second target internal state information calculation means) 45B described below function as another example of the target internal state information acquisition means 160.
- the angle estimation means 65 obtains an estimated joint angle q est that is an estimated value of the joint angle from the internal state model output from the main control unit 31 and the pressure P of the elastic actuator 1 output from the pressure sensor 9, and abnormal It outputs to the hour torque control means 45B.
- the estimation method obtains the joint pressure difference ⁇ P from the pressure P by the angle estimation means 65, and uses the equations of FIGS. 6A and 6B in the angle estimation means 65 to estimate the joint angle by the angle estimation means 65.
- the angle estimation means 65 includes a joint angle indicated by a graph represented by a point “ ⁇ ” (black diamond) in FIG. 6A.
- An equation indicating the relationship between q and the pressure difference ⁇ P is input as an internal state model.
- the respective pressures P 1a and P 1b of the pair of elastic actuators 1-1a and 1-1b antagonizing the input joint shaft 6-1 are 500 kPa and 300 kPa
- the angle estimation means 65 estimates that the joint angle q is 20 deg.
- the abnormal torque control means 45B is a target angular acceleration output from the target angular acceleration calculation means 43.
- the dynamics parameter, the target joint torque ⁇ d is calculated, and the target joint torque ⁇ d and the output of the angle estimation means 65 that is input are used to calculate the target pressure value of the elastic actuator 1 of the relevant joint (attention).
- P d is calculated.
- the calculation method of the target joint torque ⁇ d and the target pressure value P d is the same as the calculation method in the above-described normal torque control means 45A, with the corrected target angular acceleration as the target angular acceleration and the joint angle q as the estimated joint angle q est . The same calculation is performed by replacing.
- the abnormal torque control means 45B uses the target angular acceleration, which is the output of the target angular acceleration calculation means 43, as an input.
- the target angular acceleration is calculated by the target trajectory generation means 40 (first step) in the target angular acceleration calculation means 43. It is calculated from the output target value which is the output of the example of the two target output means.
- the angle estimating means 65 estimates the angle using the internal state model output from the main control unit 31. Accordingly, the target internal state information acquisition unit 160 is configured by the angle estimation unit (output estimation unit) 65 and the abnormal torque control unit 45B.
- the joint angle is input and the pressure difference is output.
- the internal state model is used as the angle estimation means 65 by using the pressure difference as an input and the joint angle as an output.
- the control device 30 includes a main control unit 31, a normal operation control unit 32, and an abnormal operation control unit 33, and further includes an abnormality determination unit 49 in the normal operation control unit 32. .
- the abnormality determination unit 49 determines whether or not the encoder 8 is normal, and when the abnormality determination unit 49 determines that the encoder 8 is not normal, the main control unit 31 detects an abnormality from the normal operation control unit 32. The operation is switched to the hour operation control unit 33. Furthermore, the abnormal-time operation control unit 33 includes the angle estimation means 65, so that even if the encoder 8 fails, the operation of the elastic actuator drive mechanism 10 can be safely controlled without stopping the operation immediately. Is possible.
- a control device and control method for an elastic actuator driving mechanism and a control program according to the present invention include a control device and a control method for performing position control such as trajectory control of a hand position of a robot arm operated by an elastic actuator, and control Useful as a program. Also, not only the robot arm, but also a control device and control method for a rotation mechanism using an elastic actuator in a production facility, etc. The present invention can also be applied as a control method and a control program.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
Abstract
Description
弾性体アクチュエータの出力を計測する出力計測手段が異常であるか否かを判断する異常判断手段と、
上記出力計測手段が正常であると上記異常判断手段により判断したときに、上記出力計測手段からの出力を利用して上記弾性体アクチュエータ駆動機構の制御動作を行う正常時動作制御手段と、
上記出力計測手段が異常であると上記異常判断手段により判断したときに、上記内部状態モデルを利用して上記弾性体アクチュエータ駆動機構の制御動作を行う異常時動作制御手段と、
上記異常判断手段が上記出力計測手段は正常であると判断したときには上記正常時動作制御手段を動作させる一方、上記異常判断手段が上記出力計測手段は異常であると判断したときには上記正常時動作制御手段から上記異常時動作制御手段へ切り替えて上記異常時動作制御手段を動作させる制御手段とを備え、
上記正常時動作制御手段は、
上記弾性体アクチュエータの出力の目標値を出力する第1目標出力手段と、
上記目標出力手段の出力と上記出力計測手段からの出力とを利用して目標関節トルクを算出するトルク制御手段と、を備えて、上記正常時動作制御手段は、上記トルク制御手段で算出された上記目標関節トルクに基づいて上記弾性体アクチュエータ駆動機構の制御動作を行い、
さらに、上記異常時動作制御手段は、
上記弾性体アクチュエータの出力の目標値を出力する第2目標出力手段と、
上記第2目標出力手段で出力された上記出力の目標値と上記内部状態モデルとを利用して上記弾性体アクチュエータの目標内部状態情報を取得する目標内部状態情報取得手段とを備えて、上記異常時動作制御手段は、上記弾性体アクチュエータの出力の計測結果を用いずに、上記目標内部状態情報取得手段で取得された上記目標内部状態情報に基づいて上記弾性体アクチュエータ駆動機構の制御動作を行うことにより、上記弾性体アクチュエータが動作を継続するよう制御を行う、弾性体アクチュエータ駆動機構の制御装置を提供する。
弾性体アクチュエータの出力を計測する出力計測手段が異常であるか否かを異常判断手段で判断し、
上記出力計測手段が正常であると上記異常判断手段により判断したときに、上記出力計測手段からの出力を利用して上記弾性体アクチュエータ駆動機構の制御動作を正常時動作制御手段で行う一方、
上記出力計測手段が異常であると上記異常判断手段により判断したときに、上記内部状態モデルを利用して上記弾性体アクチュエータ駆動機構の制御動作を異常時動作制御手段で行うとともに、
上記異常判断手段が上記出力計測手段は正常であると判断したときには上記正常時動作制御手段を制御手段で動作させる一方、上記異常判断手段が上記出力計測手段は異常であると判断したときには上記正常時動作制御手段から上記異常時動作制御手段へ切り替えて上記異常時動作制御手段を上記制御手段で動作させ、
上記正常時動作制御手段が動作するとき、
上記弾性体アクチュエータの出力の目標値を第1目標出力手段で出力し、
上記目標出力手段の出力と上記出力計測手段からの出力とを利用して目標関節トルクをトルク制御手段で算出し、上記トルク制御手段で算出された上記目標関節トルクに基づいて上記弾性体アクチュエータ駆動機構の制御動作を行う一方、
さらに、上記異常時動作制御手段が動作するとき、
上記弾性体アクチュエータの出力の目標値を第2目標出力手段で出力し、
上記第2目標出力手段で出力された上記出力の目標値と上記内部状態モデルとを利用して上記弾性体アクチュエータの目標内部状態情報を目標内部状態情報取得手段で取得し、上記弾性体アクチュエータの出力の計測結果を用いずに、上記目標内部状態情報取得手段で取得された上記目標内部状態情報に基づいて上記弾性体アクチュエータ駆動機構の制御動作を行うことにより、上記弾性体アクチュエータが動作を継続するよう制御を行う、弾性体アクチュエータ駆動機構の制御方法を提供する。
弾性体アクチュエータの出力を計測する出力計測手段が異常であるか否かを異常判断手段で判断する機能と、
上記出力計測手段が正常であると上記異常判断手段により判断したときに、上記出力計測手段からの出力を利用して上記弾性体アクチュエータ駆動機構の制御動作を正常時動作制御手段で行う機能と、
上記出力計測手段が異常であると上記異常判断手段により判断したときに、上記内部状態モデルを利用して上記弾性体アクチュエータ駆動機構の制御動作を異常時動作制御手段で行う機能と、
上記異常判断手段が上記出力計測手段は正常であると判断したときには上記正常時動作制御手段を制御手段で動作させる一方、上記異常判断手段が上記出力計測手段は異常であると判断したときには上記正常時動作制御手段から上記異常時動作制御手段へ切り替えて上記異常時動作制御手段を上記制御手段で動作させる機能とを備え、
上記正常時動作制御手段が動作するとき、
上記弾性体アクチュエータの出力の目標値を第1目標出力手段で出力する機能と、
上記目標出力手段の出力と上記出力計測手段からの出力とを利用して目標関節トルクをトルク制御手段で算出し、上記トルク制御手段で算出された上記目標関節トルクに基づいて上記弾性体アクチュエータ駆動機構の制御動作を行う機能とを備える一方、
さらに、上記異常時動作制御手段が動作するとき、
上記弾性体アクチュエータの出力の目標値を第2目標出力手段で出力する機能と、
上記第2目標出力手段で出力された上記出力の目標値と上記内部状態モデルとを利用して上記弾性体アクチュエータの目標内部状態情報を目標内部状態情報取得手段で取得し、上記弾性体アクチュエータの出力の計測結果を用いずに、上記目標内部状態情報取得手段で取得された上記目標内部状態情報に基づいて上記弾性体アクチュエータ駆動機構の制御動作を行うことにより、上記弾性体アクチュエータが動作を継続するよう制御を行う機能と
をコンピュータに実現させるための、弾性体アクチュエータ駆動機構の制御プログラムを提供する。
弾性体アクチュエータの出力を計測する出力計測手段が異常であるか否かを判断する異常判断手段と、
上記出力計測手段が正常であると上記異常判断手段により判断したときに、上記出力計測手段からの出力を利用して上記弾性体アクチュエータ駆動機構の制御動作を行う正常時動作制御手段と、
上記出力計測手段が異常であると上記異常判断手段により判断したときに、上記内部状態モデルを利用して上記弾性体アクチュエータ駆動機構の制御動作を行う異常時動作制御手段と、
上記異常判断手段が上記出力計測手段は正常であると判断したときには上記正常時動作制御手段を動作させる一方、上記異常判断手段が上記出力計測手段は異常であると判断したときには上記正常時動作制御手段から上記異常時動作制御手段へ切り替えて上記異常時動作制御手段を動作させる制御手段とを備え、
上記正常時動作制御手段は、
上記弾性体アクチュエータの出力の目標値を出力する第1目標出力手段と、
上記目標出力手段の出力と上記出力計測手段からの出力とを利用して目標関節トルクを算出するトルク制御手段と、を備えて、上記正常時動作制御手段は、上記トルク制御手段で算出された上記目標関節トルクに基づいて上記弾性体アクチュエータ駆動機構の制御動作を行い、
さらに、上記異常時動作制御手段は、
上記弾性体アクチュエータの出力の目標値を出力する第2目標出力手段と、
上記第2目標出力手段で出力された上記出力の目標値と上記内部状態モデルとを利用して上記弾性体アクチュエータの目標内部状態情報を取得する目標内部状態情報取得手段とを備えて、上記異常時動作制御手段は、上記弾性体アクチュエータの出力の計測結果を用いずに、上記目標内部状態情報取得手段で取得された上記目標内部状態情報に基づいて上記弾性体アクチュエータ駆動機構の制御動作を行うことにより、上記弾性体アクチュエータが動作を継続するよう制御を行う、弾性体アクチュエータ駆動機構の制御装置を提供する。
上記内部状態モデルと上記弾性体アクチュエータの内部状態の情報とから上記弾性体アクチュエータの出力を推定する出力推定部と、
上記出力推定部で推定された上記弾性体アクチュエータの出力と上記第2目標出力手段で出力された上記出力の目標値とから目標内部状態情報を算出する第2目標内部状態情報算出手段とを備えており、
上記出力推定部で推定された上記弾性体アクチュエータの出力を利用して算出された上記目標内部状態の情報に基づいて上記弾性体アクチュエータ駆動機構の制御動作を行うことにより、上記弾性体アクチュエータが動作を継続するよう制御を行う第1の態様に記載の制御装置を提供する。
弾性体アクチュエータの出力を計測する出力計測手段が異常であるか否かを異常判断手段で判断し、
上記出力計測手段が正常であると上記異常判断手段により判断したときに、上記出力計測手段からの出力を利用して上記弾性体アクチュエータ駆動機構の制御動作を正常時動作制御手段で行う一方、
上記出力計測手段が異常であると上記異常判断手段により判断したときに、内部状態モデルを利用して上記弾性体アクチュエータ駆動機構の制御動作を異常時動作制御手段で行うとともに、
上記異常判断手段が上記出力計測手段は正常であると判断したときには上記正常時動作制御手段を制御手段で動作させる一方、上記異常判断手段が上記出力計測手段は異常であると判断したときには上記正常時動作制御手段から上記異常時動作制御手段へ切り替えて上記異常時動作制御手段を上記制御手段で動作させ、
上記正常時動作制御手段が動作するとき、
上記弾性体アクチュエータの出力の目標値を第1目標出力手段で出力し、
上記目標出力手段の出力と上記出力計測手段からの出力とを利用して目標関節トルクをトルク制御手段で算出し、上記トルク制御手段で算出された上記目標関節トルクに基づいて上記弾性体アクチュエータ駆動機構の制御動作を行う一方、
さらに、上記異常時動作制御手段が動作するとき、
上記弾性体アクチュエータの出力の目標値を第2目標出力手段で出力し、
上記第2目標出力手段で出力された上記出力の目標値と上記内部状態モデルとを利用して上記弾性体アクチュエータの目標内部状態情報を目標内部状態情報取得手段で取得し、上記弾性体アクチュエータの出力の計測結果を用いずに、上記目標内部状態情報取得手段で取得された上記目標内部状態情報に基づいて上記弾性体アクチュエータ駆動機構の制御動作を行うことにより、上記弾性体アクチュエータが動作を継続するよう制御を行う、弾性体アクチュエータ駆動機構の制御方法を提供する。
弾性体アクチュエータの出力を計測する出力計測手段が異常であるか否かを異常判断手段で判断する機能と、
上記出力計測手段が正常であると上記異常判断手段により判断したときに、上記出力計測手段からの出力を利用して上記弾性体アクチュエータ駆動機構の制御動作を正常時動作制御手段で行う機能と、
上記出力計測手段が異常であると上記異常判断手段により判断したときに、内部状態モデルを利用して上記弾性体アクチュエータ駆動機構の制御動作を異常時動作制御手段で行う機能と、
上記異常判断手段が上記出力計測手段は正常であると判断したときには上記正常時動作制御手段を制御手段で動作させる一方、上記異常判断手段が上記出力計測手段は異常であると判断したときには上記正常時動作制御手段から上記異常時動作制御手段へ切り替えて上記異常時動作制御手段を上記制御手段で動作させる機能とを備え、
上記正常時動作制御手段が動作するとき、
上記弾性体アクチュエータの出力の目標値を第1目標出力手段で出力する機能と、
上記目標出力手段の出力と上記出力計測手段からの出力とを利用して目標関節トルクをトルク制御手段で算出し、上記トルク制御手段で算出された上記目標関節トルクに基づいて上記弾性体アクチュエータ駆動機構の制御動作を行う機能とを備える一方、
さらに、上記異常時動作制御手段が動作するとき、
上記弾性体アクチュエータの出力の目標値を第2目標出力手段で出力する機能と、
上記第2目標出力手段で出力された上記出力の目標値と上記内部状態モデルとを利用して上記弾性体アクチュエータの目標内部状態情報を目標内部状態情報取得手段で取得し、上記弾性体アクチュエータの出力の計測結果を用いずに、上記目標内部状態情報取得手段で取得された上記目標内部状態情報に基づいて上記弾性体アクチュエータ駆動機構の制御動作を行うことにより、上記弾性体アクチュエータが動作を継続するよう制御を行う機能と
をコンピュータに実現させるための、弾性体アクチュエータ駆動機構の制御プログラムを提供する。
第1実施形態の弾性体アクチュエータ駆動機構10の制御装置30の具体的な構成の一例について説明を行う。
本発明の第2実施形態の弾性体アクチュエータ駆動機構10の制御装置30の具体的な構成の一例について説明を行う。
Claims (8)
- 弾性体アクチュエータ駆動機構の制御装置であって、
弾性体アクチュエータの出力を計測する出力計測手段が異常であるか否かを判断する異常判断手段と、
上記出力計測手段が正常であると上記異常判断手段により判断したときに、上記出力計測手段からの出力を利用して上記弾性体アクチュエータ駆動機構の制御動作を行う正常時動作制御手段と、
上記出力計測手段が異常であると上記異常判断手段により判断したときに、内部状態モデルを利用して上記弾性体アクチュエータ駆動機構の制御動作を行う異常時動作制御手段と、
上記異常判断手段が上記出力計測手段は正常であると判断したときには上記正常時動作制御手段を動作させる一方、上記異常判断手段が上記出力計測手段は異常であると判断したときには上記正常時動作制御手段から上記異常時動作制御手段へ切り替えて上記異常時動作制御手段を動作させる制御部とを備え、
上記正常時動作制御手段は、
上記弾性体アクチュエータの出力の目標値を出力する第1目標出力手段と、
上記目標出力手段の出力と上記出力計測手段からの出力とを利用して目標関節トルクを算出するトルク制御手段と、を備えて、上記正常時動作制御手段は、上記トルク制御手段で算出された上記目標関節トルクに基づいて上記弾性体アクチュエータ駆動機構の制御動作を行い、
さらに、上記異常時動作制御手段は、
上記弾性体アクチュエータの出力の目標値を出力する第2目標出力手段と、
上記第2目標出力手段で出力された上記出力の目標値と上記内部状態モデルとを利用して上記弾性体アクチュエータの目標内部状態情報を取得する目標内部状態情報取得手段とを備えて、上記異常時動作制御手段は、上記弾性体アクチュエータの出力の計測結果を用いずに、上記目標内部状態情報取得手段で取得された上記目標内部状態情報に基づいて上記弾性体アクチュエータ駆動機構の制御動作を行うことにより、上記弾性体アクチュエータが動作を継続するよう制御を行う、弾性体アクチュエータ駆動機構の制御装置。 - 上記異常時動作制御手段の上記目標内部状態情報取得手段は、上記第2目標出力手段で出力された上記出力の目標値と上記内部状態モデルとを利用して目標内部状態の情報を算出する第1目標内部状態算出手段を備えており、上記目標内部状態算出手段で算出された上記目標内部状態の情報に基づいて上記弾性体アクチュエータ駆動機構の制御動作を行うことにより、上記弾性体アクチュエータが動作を継続するよう制御を行う請求項1に記載の制御装置。
- 上記異常時動作制御手段の上記目標内部状態情報取得手段は、
上記内部状態モデルと上記弾性体アクチュエータの内部状態の情報とから上記弾性体アクチュエータの出力を推定する出力推定部と、
上記出力推定部で推定された上記弾性体アクチュエータの出力と上記第2目標出力手段で出力された上記出力の目標値とから目標内部状態情報を算出する第2目標内部状態情報算出手段とを備えており、
上記出力推定部で推定された上記弾性体アクチュエータの出力を利用して算出された上記目標内部状態の情報に基づいて上記弾性体アクチュエータ駆動機構の制御動作を行うことにより、上記弾性体アクチュエータが動作を継続するよう制御を行う請求項1に記載の制御装置。 - 前記異常判断手段は、前記出力計測手段からの出力と上記弾性体アクチュエータの内部状態を計測する内部状態計測手段からの内部状態との関係の情報と、上記出力計測手段が正常であるときの内部状態モデルの上記弾性体アクチュエータの出力と上記弾性体アクチュエータの内部状態との関係の情報とを比較して、上記出力計測手段が異常であるか否かを判断する請求項1に記載の制御装置。
- さらに、上記異常時動作制御手段内の上記第2目標出力手段と上記正常時動作制御手段内の上記第1目標出力手段は、上記弾性体アクチュエータの異なる出力の目標値を出力し、上記異常時動作制御手段が動作するときは、上記弾性体アクチュエータが安全な位置まで動作した後、動作停止するように上記異常時動作制御手段により制御を行う、請求項1~4のいずれか1つに記載の弾性体アクチュエータ駆動機構の制御装置。
- 上記弾性体アクチュエータは流体圧アクチュエータである請求項1~4のいずれか1つに記載の弾性体アクチュエータ駆動機構の制御装置。
- 弾性体アクチュエータ駆動機構の制御方法であって、
弾性体アクチュエータの出力を計測する出力計測手段が異常であるか否かを異常判断手段で判断し、
上記出力計測手段が正常であると上記異常判断手段により判断したときに、上記出力計測手段からの出力を利用して上記弾性体アクチュエータ駆動機構の制御動作を正常時動作制御手段で行う一方、
上記出力計測手段が異常であると上記異常判断手段により判断したときに、内部状態モデルを利用して上記弾性体アクチュエータ駆動機構の制御動作を異常時動作制御手段で行うとともに、
上記異常判断手段が上記出力計測手段は正常であると判断したときには上記正常時動作制御手段を制御部で動作させる一方、上記異常判断手段が上記出力計測手段は異常であると判断したときには上記正常時動作制御手段から上記異常時動作制御手段へ切り替えて上記異常時動作制御手段を上記制御部で動作させ、
上記正常時動作制御手段が動作するとき、
上記弾性体アクチュエータの出力の目標値を第1目標出力手段で出力し、
上記目標出力手段の出力と上記出力計測手段からの出力とを利用して目標関節トルクをトルク制御手段で算出し、上記トルク制御手段で算出された上記目標関節トルクに基づいて上記弾性体アクチュエータ駆動機構の制御動作を行う一方、
さらに、上記異常時動作制御手段が動作するとき、
上記弾性体アクチュエータの出力の目標値を第2目標出力手段で出力し、
上記第2目標出力手段で出力された上記出力の目標値と上記内部状態モデルとを利用して上記弾性体アクチュエータの目標内部状態情報を目標内部状態情報取得手段で取得し、上記弾性体アクチュエータの出力の計測結果を用いずに、上記目標内部状態情報取得手段で取得された上記目標内部状態情報に基づいて上記弾性体アクチュエータ駆動機構の制御動作を行うことにより、上記弾性体アクチュエータが動作を継続するよう制御を行う、弾性体アクチュエータ駆動機構の制御方法。 - 弾性体アクチュエータ駆動機構の制御プログラムであって、
弾性体アクチュエータの出力を計測する出力計測手段が異常であるか否かを異常判断手段で判断する機能と、
上記出力計測手段が正常であると上記異常判断手段により判断したときに、上記出力計測手段からの出力を利用して上記弾性体アクチュエータ駆動機構の制御動作を正常時動作制御手段で行う機能と、
上記出力計測手段が異常であると上記異常判断手段により判断したときに、内部状態モデルを利用して上記弾性体アクチュエータ駆動機構の制御動作を異常時動作制御手段で行う機能と、
上記異常判断手段が上記出力計測手段は正常であると判断したときには上記正常時動作制御手段を制御部で動作させる一方、上記異常判断手段が上記出力計測手段は異常であると判断したときには上記正常時動作制御手段から上記異常時動作制御手段へ切り替えて上記異常時動作制御手段を上記制御部で動作させる機能とを備え、
上記正常時動作制御手段が動作するとき、
上記弾性体アクチュエータの出力の目標値を第1目標出力手段で出力する機能と、
上記目標出力手段の出力と上記出力計測手段からの出力とを利用して目標関節トルクをトルク制御手段で算出し、上記トルク制御手段で算出された上記目標関節トルクに基づいて上記弾性体アクチュエータ駆動機構の制御動作を行う機能とを備える一方、
さらに、上記異常時動作制御手段が動作するとき、
上記弾性体アクチュエータの出力の目標値を第2目標出力手段で出力する機能と、
上記第2目標出力手段で出力された上記出力の目標値と上記内部状態モデルとを利用して上記弾性体アクチュエータの目標内部状態情報を目標内部状態情報取得手段で取得し、上記弾性体アクチュエータの出力の計測結果を用いずに、上記目標内部状態情報取得手段で取得された上記目標内部状態情報に基づいて上記弾性体アクチュエータ駆動機構の制御動作を行うことにより、上記弾性体アクチュエータが動作を継続するよう制御を行う機能と
をコンピュータに実現させるための、弾性体アクチュエータ駆動機構の制御プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180036581.9A CN103038030B (zh) | 2010-12-17 | 2011-12-06 | 弹性体致动器驱动机构的控制装置及控制方法 |
JP2012524993A JP5074640B2 (ja) | 2010-12-17 | 2011-12-06 | 弾性体アクチュエータ駆動機構の制御装置及び制御方法、並びに、制御プログラム |
US13/613,221 US8650868B2 (en) | 2010-12-17 | 2012-09-13 | Control apparatus, control method, and control program for elastic actuator drive mechanism |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010281167 | 2010-12-17 | ||
JP2010-281167 | 2010-12-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/613,221 Continuation US8650868B2 (en) | 2010-12-17 | 2012-09-13 | Control apparatus, control method, and control program for elastic actuator drive mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012081197A1 true WO2012081197A1 (ja) | 2012-06-21 |
Family
ID=46244317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/006818 WO2012081197A1 (ja) | 2010-12-17 | 2011-12-06 | 弾性体アクチュエータ駆動機構の制御装置及び制御方法、並びに、制御プログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US8650868B2 (ja) |
JP (1) | JP5074640B2 (ja) |
CN (1) | CN103038030B (ja) |
WO (1) | WO2012081197A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019000918A (ja) * | 2017-06-12 | 2019-01-10 | 日立Geニュークリア・エナジー株式会社 | 作業用ロボットのアーム姿勢制御システムおよび方法 |
US11241792B2 (en) | 2016-10-24 | 2022-02-08 | Panasonic Intellectual Property Management Co., Ltd. | Method and device for detecting abnormality of encoder, and robot control system |
JPWO2022054947A1 (ja) * | 2020-09-14 | 2022-03-17 | ||
WO2024134865A1 (ja) * | 2022-12-23 | 2024-06-27 | 憲太 北村 | ソフトロボット |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9566710B2 (en) | 2011-06-02 | 2017-02-14 | Brain Corporation | Apparatus and methods for operating robotic devices using selective state space training |
JP5907678B2 (ja) * | 2011-07-20 | 2016-04-26 | オリンパス株式会社 | 医療用動作機構およびマニピュレータ |
WO2013069291A1 (ja) * | 2011-11-10 | 2013-05-16 | パナソニック株式会社 | ロボット、ロボットの制御装置、制御方法、及び制御プログラム |
US9764468B2 (en) | 2013-03-15 | 2017-09-19 | Brain Corporation | Adaptive predictor apparatus and methods |
JP6112947B2 (ja) * | 2013-04-08 | 2017-04-12 | キヤノン株式会社 | ロボット装置、ロボット制御方法、プログラム及び記録媒体 |
US9242372B2 (en) | 2013-05-31 | 2016-01-26 | Brain Corporation | Adaptive robotic interface apparatus and methods |
US9792546B2 (en) | 2013-06-14 | 2017-10-17 | Brain Corporation | Hierarchical robotic controller apparatus and methods |
US9384443B2 (en) | 2013-06-14 | 2016-07-05 | Brain Corporation | Robotic training apparatus and methods |
US9314924B1 (en) | 2013-06-14 | 2016-04-19 | Brain Corporation | Predictive robotic controller apparatus and methods |
US9579789B2 (en) | 2013-09-27 | 2017-02-28 | Brain Corporation | Apparatus and methods for training of robotic control arbitration |
CN104959982A (zh) * | 2013-10-10 | 2015-10-07 | 精工爱普生株式会社 | 机器人控制系统、机器人、程序以及机器人控制方法 |
US9597797B2 (en) | 2013-11-01 | 2017-03-21 | Brain Corporation | Apparatus and methods for haptic training of robots |
US9463571B2 (en) | 2013-11-01 | 2016-10-11 | Brian Corporation | Apparatus and methods for online training of robots |
US9358685B2 (en) * | 2014-02-03 | 2016-06-07 | Brain Corporation | Apparatus and methods for control of robot actions based on corrective user inputs |
US9682473B2 (en) * | 2014-08-29 | 2017-06-20 | Abb Schweiz Ag | Electric fluidic rotary joint actuator with pump |
US9630318B2 (en) | 2014-10-02 | 2017-04-25 | Brain Corporation | Feature detection apparatus and methods for training of robotic navigation |
US9717387B1 (en) | 2015-02-26 | 2017-08-01 | Brain Corporation | Apparatus and methods for programming and training of robotic household appliances |
US10471594B2 (en) * | 2015-12-01 | 2019-11-12 | Kindred Systems Inc. | Systems, devices, and methods for the distribution and collection of multimodal data associated with robots |
JP6739935B2 (ja) * | 2015-12-25 | 2020-08-12 | 株式会社東芝 | 駆動装置 |
DE102017000063B4 (de) * | 2016-01-14 | 2019-10-31 | Fanuc Corporation | Robotereinrichtung mit Lernfunktion |
US10241514B2 (en) | 2016-05-11 | 2019-03-26 | Brain Corporation | Systems and methods for initializing a robot to autonomously travel a trained route |
US9987752B2 (en) | 2016-06-10 | 2018-06-05 | Brain Corporation | Systems and methods for automatic detection of spills |
US10282849B2 (en) | 2016-06-17 | 2019-05-07 | Brain Corporation | Systems and methods for predictive/reconstructive visual object tracker |
US10016896B2 (en) | 2016-06-30 | 2018-07-10 | Brain Corporation | Systems and methods for robotic behavior around moving bodies |
US10274325B2 (en) | 2016-11-01 | 2019-04-30 | Brain Corporation | Systems and methods for robotic mapping |
US10001780B2 (en) | 2016-11-02 | 2018-06-19 | Brain Corporation | Systems and methods for dynamic route planning in autonomous navigation |
US10723018B2 (en) | 2016-11-28 | 2020-07-28 | Brain Corporation | Systems and methods for remote operating and/or monitoring of a robot |
US10377040B2 (en) | 2017-02-02 | 2019-08-13 | Brain Corporation | Systems and methods for assisting a robotic apparatus |
US10852730B2 (en) | 2017-02-08 | 2020-12-01 | Brain Corporation | Systems and methods for robotic mobile platforms |
US10293485B2 (en) | 2017-03-30 | 2019-05-21 | Brain Corporation | Systems and methods for robotic path planning |
CN111093909A (zh) * | 2017-09-18 | 2020-05-01 | 普利茅斯大学 | 机械臂 |
CN108481318B (zh) * | 2018-03-07 | 2021-07-06 | 河南工业大学 | 基于散粒体阻塞理论的变刚度驱动杆及其工作系统 |
CN110385706B (zh) * | 2019-06-21 | 2021-10-19 | 清华大学 | 仿生力驱动装置及其控制方法 |
US11813033B2 (en) * | 2020-06-22 | 2023-11-14 | Michael Campagna | Medical imaging compatible radiolucent actuation of translation rotation articulation circumduction joint |
KR102369005B1 (ko) * | 2020-09-25 | 2022-02-28 | 한국로봇융합연구원 | 로봇의 외력 정보를 이용 가능한 교시장치 및 제어방법 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61107405A (ja) * | 1984-10-31 | 1986-05-26 | Hitachi Ltd | 駆動装置 |
JPS62212710A (ja) * | 1986-03-14 | 1987-09-18 | Agency Of Ind Science & Technol | 移動型ロボツトの移動制御装置 |
JPH02204805A (ja) * | 1989-02-02 | 1990-08-14 | Toshiba Corp | 追従制御装置 |
JPH0336782U (ja) * | 1989-08-23 | 1991-04-10 | ||
JPH11247807A (ja) * | 1998-02-27 | 1999-09-14 | Shin Caterpillar Mitsubishi Ltd | サーボ弁 |
JP2008121783A (ja) * | 2006-11-13 | 2008-05-29 | Japan Science & Technology Agency | 関節システム |
JP4563512B2 (ja) * | 2009-01-13 | 2010-10-13 | パナソニック株式会社 | 弾性体アクチュエータの制御装置及び制御方法、並びに、制御プログラム |
WO2011086638A1 (ja) * | 2010-01-15 | 2011-07-21 | パナソニック株式会社 | 弾性体アクチュエータ駆動機構の制御装置及び制御方法、並びに、制御プログラム |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0336782A (ja) | 1989-07-04 | 1991-02-18 | Fujitsu Ltd | 集積回路装置 |
JPH0555279A (ja) | 1991-08-29 | 1993-03-05 | Mitsumi Electric Co Ltd | 半導体の製造方法 |
JP3394599B2 (ja) | 1994-06-27 | 2003-04-07 | 株式会社ブリヂストン | 空気入りラジアルタイヤの製造方法 |
WO2005028166A1 (ja) * | 2003-09-22 | 2005-03-31 | Matsushita Electric Industrial Co., Ltd. | 弾性体アクチュエータの制御装置及び制御方法 |
JP4799133B2 (ja) * | 2005-11-08 | 2011-10-26 | オムロンオートモーティブエレクトロニクス株式会社 | モータ制御装置 |
WO2009098855A1 (ja) * | 2008-02-06 | 2009-08-13 | Panasonic Corporation | ロボット、ロボットの制御装置及び制御方法、並びに、ロボットの制御装置の制御プログラム |
KR101479234B1 (ko) | 2008-09-04 | 2015-01-06 | 삼성전자 주식회사 | 로봇 및 그 제어 방법 |
US8359849B2 (en) * | 2009-04-07 | 2013-01-29 | Eaton Corporation | Control of a fluid circuit using an estimated sensor value |
-
2011
- 2011-12-06 CN CN201180036581.9A patent/CN103038030B/zh not_active Expired - Fee Related
- 2011-12-06 WO PCT/JP2011/006818 patent/WO2012081197A1/ja active Application Filing
- 2011-12-06 JP JP2012524993A patent/JP5074640B2/ja active Active
-
2012
- 2012-09-13 US US13/613,221 patent/US8650868B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61107405A (ja) * | 1984-10-31 | 1986-05-26 | Hitachi Ltd | 駆動装置 |
JPS62212710A (ja) * | 1986-03-14 | 1987-09-18 | Agency Of Ind Science & Technol | 移動型ロボツトの移動制御装置 |
JPH02204805A (ja) * | 1989-02-02 | 1990-08-14 | Toshiba Corp | 追従制御装置 |
JPH0336782U (ja) * | 1989-08-23 | 1991-04-10 | ||
JPH11247807A (ja) * | 1998-02-27 | 1999-09-14 | Shin Caterpillar Mitsubishi Ltd | サーボ弁 |
JP2008121783A (ja) * | 2006-11-13 | 2008-05-29 | Japan Science & Technology Agency | 関節システム |
JP4563512B2 (ja) * | 2009-01-13 | 2010-10-13 | パナソニック株式会社 | 弾性体アクチュエータの制御装置及び制御方法、並びに、制御プログラム |
WO2011086638A1 (ja) * | 2010-01-15 | 2011-07-21 | パナソニック株式会社 | 弾性体アクチュエータ駆動機構の制御装置及び制御方法、並びに、制御プログラム |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11241792B2 (en) | 2016-10-24 | 2022-02-08 | Panasonic Intellectual Property Management Co., Ltd. | Method and device for detecting abnormality of encoder, and robot control system |
JP2019000918A (ja) * | 2017-06-12 | 2019-01-10 | 日立Geニュークリア・エナジー株式会社 | 作業用ロボットのアーム姿勢制御システムおよび方法 |
JPWO2022054947A1 (ja) * | 2020-09-14 | 2022-03-17 | ||
WO2022054947A1 (ja) * | 2020-09-14 | 2022-03-17 | 株式会社アイシン | ロボット装置およびその制御方法 |
WO2024134865A1 (ja) * | 2022-12-23 | 2024-06-27 | 憲太 北村 | ソフトロボット |
Also Published As
Publication number | Publication date |
---|---|
CN103038030A (zh) | 2013-04-10 |
US8650868B2 (en) | 2014-02-18 |
CN103038030B (zh) | 2015-06-03 |
US20130000480A1 (en) | 2013-01-03 |
JP5074640B2 (ja) | 2012-11-14 |
JPWO2012081197A1 (ja) | 2014-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5074640B2 (ja) | 弾性体アクチュエータ駆動機構の制御装置及び制御方法、並びに、制御プログラム | |
JP5043239B2 (ja) | 弾性体アクチュエータ駆動機構の制御装置及び制御方法、並びに、制御プログラム | |
JP4563512B2 (ja) | 弾性体アクチュエータの制御装置及び制御方法、並びに、制御プログラム | |
US7184858B2 (en) | Apparatus and method for controlling elastic actuator | |
Aschemann et al. | Sliding-mode control of a high-speed linear axis driven by pneumatic muscle actuators | |
Best et al. | A new soft robot control method: Using model predictive control for a pneumatically actuated humanoid | |
JP4634541B2 (ja) | ロボット、ロボットの制御装置、制御方法、及び制御プログラム | |
WO2012077335A1 (ja) | ロボットの制御装置及び制御方法、ロボット、並びに、制御プログラム | |
JP4536349B2 (ja) | 弾性体アクチュエータを用いた多自由度のロボットアームの制御装置及び制御方法 | |
US20130320908A1 (en) | Servo controller having function for correcting amount of expansion/contraction of ball screw | |
Kim et al. | Investigations of a robotic test bed with viscoelastic liquid cooled actuators | |
Nakamura et al. | Joint stiffness and position control of an artificial muscle manipulator for instantaneous loads using a mechanical equilibrium model | |
JP7450744B2 (ja) | ロボットデバイスを制御する方法、コントローラ、機械読取可能な命令のセット、機械読取可能な媒体及びロボットデバイス | |
JP5492168B2 (ja) | 把持機構 | |
Romeo et al. | Closed-loop force control of a pneumatic gripper actuated by two pressure regulators | |
JP4505299B2 (ja) | 弾性体アクチュエータ駆動型可動機構の制御装置及び制御方法 | |
Qiao | Dynamic Modeling, Robust Control and Contact Estimation of Soft Robotics | |
JP2013119133A (ja) | ロボット及びロボット制御方法 | |
Clapa et al. | Programmable Compliance and Equilibrium Point Control of a 2-DOF Manipulator Performing Free-Space, Contact and Transition Tasks | |
Kiriazov | Optimal Robust Control of Robotic Systems | |
JP2020196054A (ja) | ロボット装置、ロボット装置の制御方法、ロボット装置およびロボット装置の制御方法を用いた物品の製造方法、駆動装置、駆動装置の制御方法、制御プログラムおよび記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180036581.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012524993 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11849667 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11849667 Country of ref document: EP Kind code of ref document: A1 |