Nothing Special   »   [go: up one dir, main page]

WO2012069554A1 - Process for preparing organic lithium salts - Google Patents

Process for preparing organic lithium salts Download PDF

Info

Publication number
WO2012069554A1
WO2012069554A1 PCT/EP2011/070859 EP2011070859W WO2012069554A1 WO 2012069554 A1 WO2012069554 A1 WO 2012069554A1 EP 2011070859 W EP2011070859 W EP 2011070859W WO 2012069554 A1 WO2012069554 A1 WO 2012069554A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
borate
range
carbonate
salt
Prior art date
Application number
PCT/EP2011/070859
Other languages
German (de)
French (fr)
Inventor
Miriam Kunze
Alexandra Lex-Balducci
Sascha Nowak
Stefano Passerini
Raphael Wilhelm Schmitz
Martin Winter
Original Assignee
Westfälische Wilhelms-Universität Münster
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westfälische Wilhelms-Universität Münster filed Critical Westfälische Wilhelms-Universität Münster
Publication of WO2012069554A1 publication Critical patent/WO2012069554A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65748Esters of oxyacids of phosphorus the cyclic phosphorus atom belonging to more than one ring system
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/06Boron halogen compounds
    • C01B35/063Tetrafluoboric acid; Salts thereof
    • C01B35/066Alkali metal tetrafluoborates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65742Esters of oxyacids of phosphorus non-condensed with carbocyclic rings or heterocyclic rings or ring systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a process for the preparation of lithium salts with organic borate and / or phosphate anion. Due to their high energy and power density, lithium-ion batteries are now the favorite among energy storage devices, especially for portable applications
  • Lithium-ion batteries comprise two electrodes, which are spatially separated by a separator.
  • the charge transport takes place via an electrolyte.
  • positively charged lithium ions migrate through the electrolyte from the positive to the negative electrode, while the charging current supplies the electrons via the external circuit.
  • the electrolyte is a lithium salt dissolved in a mixture of nonaqueous solvent.
  • Conducting salts are, for example, lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (L1CIO 4 ) or lithium borate salts, for example lithium tetrafluoroborate (L1BF 4 ), lithium bis (oxalato) borate (LiBOB) and, more recently, lithium difluoroxalatoborate (LiDFOB).
  • LiPF 6 lithium hexafluorophosphate
  • LiCIO 4 lithium perchlorate
  • lithium borate salts for example lithium tetrafluoroborate (L1BF 4 ), lithium bis (oxalato) borate (LiBOB) and, more recently, lithium difluoroxalatoborate (LiDFOB).
  • LiPF 6 lithium hexafluorophosphate
  • LiBOB lithium bis (oxalato) borate
  • LiDFOB lithium difluoroxalatoborate
  • the lithium difluorooxalatoborat is
  • LiDFOB lithium difluorooxalatoborate
  • a disadvantage of these synthesis methods is that handling starting materials such as trifluoroborate etherate or silicon tetrachloride is cumbersome or dangerous. Furthermore, HCl is released during the synthesis and chloride or HCl partly remain in the product. This leads to serious problems. On the one hand, the product reacts acidly and on the other hand contains chloride impurities, which are particularly troublesome for the application, since this causes corrosion problems, especially in electrochemical applications.
  • document WO 2009/004059 discloses a purification by removal of acids or water by mixing with lithium hydride.
  • the present invention was therefore based on the object to provide a method which overcomes at least one of the aforementioned disadvantages of the prior art.
  • the present invention was based on the object to provide a method that allows production without impurities.
  • This object is achieved by a process for preparing a lithium salt with organic borate and / or phosphate anion by reacting a fluorinated lithium salt with an organic lithium borate or lithium phosphate salt selected from the group comprising oxalates, malonates, glycolates, salicylates, lactates, catecholates, succinates and / or mixtures thereof in an aprotic solvent or solvent mixture.
  • Reaction aids such as S1CI4 need to be used. In an advantageous manner, this does not cause any impurities.
  • the reaction product of the process of the invention contains no chloride impurities.
  • the inventive method thus does not require separation of impurities.
  • the preparation according to the invention of a lithium salt with organic borate and / or phosphate anion is thus a process wherein no purification is necessary to remove acids or water, for example by reaction with lithium hydride.
  • the process step of drying and / or deacidifying a crude electrolyte with lithium hydride required in known processes is thus advantageously unnecessary. It provides a significant advantage that the reaction product need not be reacted with lithium hydride. As a result, advantageously no further purification or separation steps are required to remove excess lithium hydride and its reaction products.
  • the process according to the invention can therefore, in particular, provide a one-step preparation of lithium salts with organic borate and / or phosphate anion.
  • the process according to the invention can be carried out as a simple one-step synthesis.
  • the cost of the synthesis can be significantly reduced and the conditions can be significantly simplified.
  • Another great advantage is that only the reactants and reaction products are present in the reaction mixture.
  • Lithium borate or lithium phosphate salts used as starting materials are used as starting materials. Furthermore, preference is given to the use of aprotic solvents of a purity which can be used in lithium-ion batteries. As a result, time-consuming and expensive cleaning of the produced lithium salts with organic borate and / or phosphate anion can be avoided.
  • the starting materials, fluorinated lithium salts and organic lithium borate or lithium phosphate salts are used in equimolar amounts. This can do that
  • Reaction equilibrium for example, the reaction LiBF 4 + LiBOB- ⁇ LiBFOB using lithium tetrafluoroborate and lithium bis (oxalato) borate favorably influenced product.
  • a fluorinated lithium salt selected from the group comprising lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ),
  • LiSnF 6 Lithium hexafluorostannate
  • LiTaF 6 lithium hexafluorotanatalate
  • the fluorinated lithium salt is
  • Lithium tetrafluoroborate LiBF 4 .
  • an organic lithium borate or lithium phosphate salt selected from the group comprising lithium bis (oxalato) borate (LiBOB), lithium bis (malonato) borate (LiBMB), lithium malonato oxalate borate (LiMOB), lithium glycolato oxalato borate (LiGOB ), Lithium salicylatooxalatoborate (LiSOB), lithium lactatooxalatoborate (LiLOB), lithium catecholatoalatoborate (LiBZOB), lithium bis (succinato) borate (LiBSB) and / or lithium tris (oxalato) phosphate (LiTOP).
  • LiBOB lithium bis (oxalato) borate
  • LiBMB lithium bis (malonato) borate
  • LiMOB lithium malonato oxalate borate
  • LiGOB lithium glycolato oxalato borate
  • LiSOB Lith
  • Process according to the invention can be obtained or produced in a simple manner and on an industrial scale.
  • Lithiumoxalatoboratsalze by Implementation of an oxide boron compound such as boric acid, boron oxide or
  • Boric acid ester can be prepared with oxalic acid or an oxalic acid salt.
  • the organic lithium borate is lithium bis (oxalato) borate (LiBOB).
  • the yield of the process according to the invention can be favorably influenced by varying the aprotic solvent or the ratio of the solvents of a solvent mixture, the reaction temperature and / or the reaction time.
  • Preferred aprotic solvents are selected from the group comprising cyclic carbonates, preferably ethylene carbonate (EC) and / or propylene carbonate (PC), linear carbonates, preferably diethyl carbonate (DEC), dimethyl carbonate (DMC) and / or ethyl methyl carbonate (EMC), nitriles, preferably acetonitrile (AN) , Dinitriles preferably glutaronitrile (GLN), adiponitrile (ADN) and / or pimelonitrile (PIN), and / or lactones preferably gamma-butyrolactone (GBL) and / or gamma-valerolactone (GVL).
  • cyclic carbonates preferably ethylene carbonate (EC) and / or propylene
  • ethylene carbonate (EC) is preferably usable as the sole solvent or as a constituent of a solvent mixture.
  • the aprotic solvent mixture used is a mixture of ethylene carbonate (EC) with at least one further aprotic solvent selected from the group comprising cyclic carbonates, preferably propylene carbonate (PC), linear carbonates, preferably diethyl carbonate (DEC), dimethyl carbonate (DMC) and / or ethyl methyl carbonate (EMC), nitriles preferably acetonitrile (AN), dinitriles preferably glutaronitrile (GLN), adiponitrile (ADN) and / or pimelonitrile (PIN), and / or lactones preferably gamma-butyrolactone (GBL) and / or gamma-valerolactone (GVL) ,
  • the reaction is carried out in an aprotic solvent mixture of ethylene carbonate (EC) with another aprotic solvent selected from the group comprising cyclic carbonates, preferably propylene carbonate (PC), linear carbonates, preferably diethyl carbonate
  • Solvent selected from the group comprising cyclic carbonates, preferably propylene carbonate (PC), linear carbonates, preferably diethyl carbonate (DEC),
  • PC propylene carbonate
  • DEC diethyl carbonate
  • DMC Dimethyl carbonate
  • EMC ethyl methyl carbonate
  • nitriles preferably acetonitrile (AN), dinitriles preferably glutaronitrile (GLN), adiponitrile (ADN) and / or pimelonitrile (PIN)
  • / or lactones preferably gamma-butyrolactone (GBL) and or gamma-valerolactone (GVL) having a molar ratio of ethylene carbonate to the at least one further aprotic solvent in the range of> 1: 9 to ⁇ 9: 1, preferably in the range of> 3: 7 to ⁇ 7: 3, preferably Range from> 3: 7 to ⁇ 1: 1, by.
  • a molar ratio of ethylene carbonate to the at least one further aprotic solvent in the range of> 1: 9 to ⁇ 9: 1 is preferably suitable.
  • a molar ratio of ethylene carbonate to the at least one further aprotic solvent in the range of> 1: 9 to ⁇ 9: 1 is preferably suitable.
  • At least one further aprotic solvent in the range of> 3: 7 to ⁇ 7: 3, preferably in the range of> 3: 7 to ⁇ 1: 1, the reaction to a good yield
  • Good yields result in an advantageous manner in a range of> 45 ° C to ⁇ 120 ° C.
  • Particularly good yields result in a range of> 60 ° C to ⁇ 100 ° C, especially at temperatures in the range of> 65 ° C to ⁇ 95 ° C.
  • the reaction is carried out in a period in the range of> 48 h to ⁇ 180 h, preferably in the range of> 65 h to ⁇ 170 h, preferably in the range of> 110 h to ⁇ 165 h, by.
  • particularly good yields were obtained over a period in the range from> 65 h to ⁇ 170 h, preferably in the range from> 110 h to ⁇ 165 h.
  • the lithium salt with organic borate and / or phosphate anion is preferably selected from the group consisting of lithium difluorooxalatoborate (LiDFOB), lithium difluoromalonato borate, lithium difluoroglycolate borate, lithium difluorosalicylatoborate, lithium difluorolactatoborate, lithium difluoro-catechinatoborate and / or lithium tetrafluoro (oxalato) phosphate (LTFOP).
  • LiDFOB lithium difluorooxalatoborate
  • LiDFOB lithium difluoromalonato borate
  • lithium difluoroglycolate borate lithium difluorosalicylatoborate
  • lithium difluorolactatoborate lithium difluoro-catechinatoborate
  • LTFOP lithium tetrafluoro (oxalato) phosphate
  • lithium difluorooxalatoborate (LiDFOB) is useful in lithium-ion batteries.
  • the process of the invention comprises reacting a fluorinated lithium salt with an organic lithium borate or lithium phosphate salt.
  • the fluorinated lithium salt for example, lithium tetrafluoroborate, may be the organic lithium borate or
  • Fluoride lithium phosphate salt is therefore in particular a process for the preparation of a lithium salt with fluorinated organic borate and / or phosphate anion.
  • Phosphate anion selected from the group comprising lithium difluorooxalatoborat, lithium difluoromalonatoborat, lithium difluoroglycolatoborat, lithium difluorosalicylatoborat, lithium difluorolactatoborat, lithium difluoro-catecholate and / or lithium tetrafluoro (oxalato) phosphate is lithium difluorooxalatoborat particularly preferred.
  • the process for the preparation of lithium difluorooxalatoborat by reacting lithium tetrafluoroborate (L1BF 4 ) with lithium bis (oxalato) borate (LiBOB).
  • the reaction mixture can be separated by chromatography or by fractional crystallization.
  • the organic lithium fluoro salt is purified
  • Another object of the invention relates to lithium salts with organic borate and / or phosphate anion produced by the novel process.
  • the invention relates to lithium salts with fluorinated organic borate and / or phosphate anion prepared by the process according to the invention.
  • Another object of the invention relates to the use of a lithium salt with organic borate and / or phosphate anion produced by the novel process as a lithium-ion electrolyte in primary and secondary electrochemical energy storage, in particular in lithium-ion batteries.
  • a lithium salt with organic borate and / or phosphate anion produced by the novel process as a lithium-ion electrolyte in primary and secondary electrochemical energy storage, in particular in lithium-ion batteries.
  • the invention relates to the use of a lithium salts with fluorinated organic borate and / or phosphate anion produced by the novel process in primary and secondary electrochemical energy storage, in particular in lithium-ion batteries. Examples which serve to illustrate the present invention are given below.
  • LiBOB Lithium bisoxalatoborate
  • reaction solution was kept for 162 h in an oven (ED 53, BINDER GmbH) at a temperature of 95 ° C.
  • the NMR tube was cooled and the reaction yield determined by U B NMR (Bruker Avance 3, 400 MHz, liquid broadband probe, at 22 ° C-23 ° C). In the U B spectrum only LiDFOB (8.6%), LiBOB (40.7%) and LiBF 4 (50.7%) were found.
  • reaction solution was kept for 162 h in an oven (ED 53, BINDER GmbH) at a temperature of 95 ° C.
  • the NMR tube was cooled and the reaction yield determined by U B NMR (Bruker Avance 3, 400 MHz, liquid broadband probe, at 22 ° C-23 ° C). In the U B spectrum only LiDFOB (7.5%), LiBOB (40.6%) and LiBF 4 (51.9%) were found.
  • LiBOB Lithium bisoxalatoborate
  • LiBF LiBF
  • LiBOB LiBOB
  • EC ethylene carbonate
  • DEC Diethyl carbonate
  • Lithium bisoxalatoborate With 0.94 g (0.01 mol) LiBF 4 (Sigma Aldrich) and 1.93 g (0.01 mol) LiBOB (Chemetal), 10 mL of a 1 M standard solution with an ethylene carbonate (EC, Ferro, 50 wt. %) / Adiponitrile (ADN, Sigma Aldrich, 50% by weight) mixture. 200 ⁇ L of the 1 M LiBF 4 solution and the 1 M LiBOB solution were added to an NMR tube in a glove box (MBraun) with a water and oxygen content of ⁇ lppm. The NMR tube was then evacuated, cooled with liquid nitrogen and sealed with a propane gas burner.
  • EC ethylene carbonate
  • ADN Adiponitrile
  • reaction solution was kept for 162 h in an oven (ED 53, BINDER GmbH) at a temperature of 95 ° C.
  • the NMR tube was cooled and the reaction yield determined by U B NMR (Bruker Avance 3, 400 MHz, liquid broadband probe, at 22 ° C-23 ° C). In the U B spectrum only LiDFOB (2.8%), LiBOB (44.9%) and LiBF (52.3%) were found.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to a process for preparing a lithium salt with an organic borate and/or phosphate anion by reacting a fluorinated lithium salt with an organic lithium borate or lithium phosphate salt selected from the group comprising oxalates, malonates, glycolates, salicylates, lactates, catecholates, succinates and/or mixtures thereof in an aprotic solvent or solvent mixture.

Description

Verfahren zur Herstellung organischer Lithiumsalze  Process for the preparation of organic lithium salts
Die Erfindung betrifft ein Verfahren zur Herstellung von Lithiumsalzen mit organischem Borat- und/oder Phosphatanion. Lithium-Ionen-Batterien sind aufgrund ihrer hohen Energie- und Leistungsdichte inzwischen der Favorit bei den Energiespeichern, vor allem für Anwendungen in der portablen The invention relates to a process for the preparation of lithium salts with organic borate and / or phosphate anion. Due to their high energy and power density, lithium-ion batteries are now the favorite among energy storage devices, especially for portable applications
Elektronik. Lithium-Ionen Batterien umfassen zwei Elektroden, welche durch einen Separator räumlich voneinander getrennt sind. Der Ladungstransport erfolgt über einen Elektrolyten. Beim Ladevorgang wandern positiv geladene Lithium-Ionen durch den Elektrolyten von der positiven zur negativen Elektrode, während der Ladestrom die Elektronen über den äußeren Stromkreis liefert. Beim Entladen läuft der umgekehrte Prozess ab. Der Elektrolyt ist ein Lithiumsalz, welches in einer Mischung aus nicht-wässrigem Lösemittel gelöst ist. Leitsalze sind beispielsweise Lithiumhexafluorophosphat (LiPF6), Lithiumperchlorat (L1CIO4) oder Lithiumboratsalze, beispielsweise Lithiumtetrafluoroborat (L1BF4), Lithiumbis(oxalato)borat (LiBOB) und seit Kurzem auch Lithium-difluoroxalatoborat (LiDFOB). Insbesondere das Lithium-difluoroxalatoborat zeichnet sich durch sehr gute Temperaturbeständigkeit und gute SEI (Solid Electrolyte Interphase)-Bildungseigenschaften aus. Electronics. Lithium-ion batteries comprise two electrodes, which are spatially separated by a separator. The charge transport takes place via an electrolyte. During the charging process, positively charged lithium ions migrate through the electrolyte from the positive to the negative electrode, while the charging current supplies the electrons via the external circuit. When unloading, the reverse process takes place. The electrolyte is a lithium salt dissolved in a mixture of nonaqueous solvent. Conducting salts are, for example, lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (L1CIO 4 ) or lithium borate salts, for example lithium tetrafluoroborate (L1BF 4 ), lithium bis (oxalato) borate (LiBOB) and, more recently, lithium difluoroxalatoborate (LiDFOB). In particular, the lithium difluorooxalatoborat is characterized by very good temperature resistance and good SEI (Solid Electrolyte Interphase) -bildungseigenschaften.
Im Stand der Technik sind verschiedene Verfahren zur Herstellung von Lithium- difluoroxalatoborat (LiDFOB) bekannt. Beispielsweise ist die Synthese von LiDFOB durch Reaktion von BF3 · Et20, eines Komplexes von Bortrifluorid mit Diethylether als Solvat, und L12C2O4 bekannt. Bei bekannten Syntheseverfahren wird beispielsweise S1CI4 als Reaktionshilfsmittel verwendet. Various processes for the preparation of lithium difluorooxalatoborate (LiDFOB) are known in the prior art. For example, the synthesis of LiDFOB by reaction of BF 3 · Et 2 O, a complex of boron trifluoride with diethyl ether as solvate, and L12C2O4 known. In known synthesis methods, for example, S1CI4 is used as a reaction auxiliary.
Nachteilig bei diesen Syntheseverfahren ist, dass eine Handhabung von Edukten wie Trifluorborat-Etherat oder Siliziumtetrachlorid umständlich oder gefährlich ist. Weiterhin wird HCl während der Synthese frei und Chlorid bzw. HCl verbleiben teilweise im Produkt. Dies führt zu gravierenden Problemen. So reagiert das Produkt zum einen sauer und enthält andererseits Chloridverunreinigungen, die besonders störend für die Anwendung sind, da hierdurch insbesondere bei elektrochemischer Anwendungen Korrosionsprobleme entstehen. Zur Herstellung säurearmer Lithiumboratsalze offenbart die Schrift WO 2009/004059 eine Reinigung durch Entfernen von Säuren oder Wasser durch Mischen mit Lithiumhydrid. A disadvantage of these synthesis methods is that handling starting materials such as trifluoroborate etherate or silicon tetrachloride is cumbersome or dangerous. Furthermore, HCl is released during the synthesis and chloride or HCl partly remain in the product. This leads to serious problems. On the one hand, the product reacts acidly and on the other hand contains chloride impurities, which are particularly troublesome for the application, since this causes corrosion problems, especially in electrochemical applications. For the production of acid-poor lithium borate salts, document WO 2009/004059 discloses a purification by removal of acids or water by mixing with lithium hydride.
Daher besteht ein Bedarf an alternativen Synthesemethoden für Lithiumsalze mit organischem Borat- und/oder Phosphatanion. Therefore, there is a need for alternative synthetic methods for lithium salts with organic borate and / or phosphate anion.
Der vorliegenden Erfindung lag daher die Aufgabe zu Grunde, ein Verfahren zur Verfügung zu stellen, das mindestens einen der vorgenannten Nachteile des Standes der Technik überwindet. Insbesondere lag der vorliegenden Erfindung die Aufgabe zu Grunde ein Verfahren bereit zu stellen, das eine Herstellung ohne Verunreinigungen erlaubt. The present invention was therefore based on the object to provide a method which overcomes at least one of the aforementioned disadvantages of the prior art. In particular, the present invention was based on the object to provide a method that allows production without impurities.
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines Lithiumsalzes mit organischem Borat- und/oder Phosphatanion durch Umsetzen eines fluorierten Lithiumsalzes mit einem organischen Lithiumborat- oder Lithiumphosphatsalz ausgewählt aus der Gruppe umfassend Oxalate, Malonate, Glykolate, Salicylate, Lactate, Brenzcatechinate, Succinate und/oder deren Gemische in einem aprotischen Lösungsmittel oder Lösungsmittelgemisch. This object is achieved by a process for preparing a lithium salt with organic borate and / or phosphate anion by reacting a fluorinated lithium salt with an organic lithium borate or lithium phosphate salt selected from the group comprising oxalates, malonates, glycolates, salicylates, lactates, catecholates, succinates and / or mixtures thereof in an aprotic solvent or solvent mixture.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen. Überraschend wurde gefunden, dass das erfindungsgemäße Verfahren die Herstellung von Lithiumsalzen mit organischem Borat- und/oder Phosphatanion erlaubt, ohne dass Further advantageous embodiments of the invention will become apparent from the dependent claims. Surprisingly, it has been found that the process according to the invention allows the preparation of lithium salts with organic borate and / or phosphate anion without
Reaktionshilfsmittel wie S1CI4 verwendet werden brauchen. In vorteilhafter Weise fallen hierdurch keine Verunreinigungen an. Reaction aids such as S1CI4 need to be used. In an advantageous manner, this does not cause any impurities.
Insbesondere enthält das Reaktionsprodukt des erfindungsgemäßen Verfahrens keine Chloridverunreinigungen. Das erfindungsgemäße Verfahren benötigt somit keine Abtrennung von Verunreinigungen. Die erfindungsgemäße Herstellung eines Lithiumsalzes mit organischem Borat- und/oder Phosphatanion, ist somit ein Verfahren, wobei keine Reinigung zur Entfernen von Säuren oder Wasser, beispielsweise durch Umsetzen mit Lithiumhydrid, notwendig ist. Der bei bekannten Verfahren benötigte Verfahrensschritt des Trocknens und/oder Entsäuerns eines Rohelektrolyten mit Lithiumhydrid ist in vorteilhafter Weise somit unnötig. Es stellt einen bedeutsamen Vorteil zur Verfügung, dass das Reaktionsprodukt nicht mit Lithiumhydrid umgesetzt werden muss. Dadurch sind in vorteilhafter Weise auch keine weiteren Reinigungs- oder Trennungsschritte zur Entfernung überschüssigen Lithiumhydrids und dessen Reaktionsprodukten notwendig. Das erfindungsgemäße Verfahren kann daher insbesondere eine einschrittige Herstellung von Lithiumsalzen mit organischem Borat- und/oder Phosphatanion zur Verfügung stellen. In particular, the reaction product of the process of the invention contains no chloride impurities. The inventive method thus does not require separation of impurities. The preparation according to the invention of a lithium salt with organic borate and / or phosphate anion is thus a process wherein no purification is necessary to remove acids or water, for example by reaction with lithium hydride. The process step of drying and / or deacidifying a crude electrolyte with lithium hydride required in known processes is thus advantageously unnecessary. It provides a significant advantage that the reaction product need not be reacted with lithium hydride. As a result, advantageously no further purification or separation steps are required to remove excess lithium hydride and its reaction products. The process according to the invention can therefore, in particular, provide a one-step preparation of lithium salts with organic borate and / or phosphate anion.
Von besonderem Vorteil ist, dass das erfindungsgemäße Verfahren als einfache einschrittige Synthese durchgeführt werden kann. Hierdurch kann der Aufwand der Synthese deutlich reduziert und die Bedingungen deutlich vereinfacht werden. Von großem Vorteil ist weiterhin, dass lediglich die Edukte und Reaktionsprodukte im Reaktionsgemisch vorliegen.  It is of particular advantage that the process according to the invention can be carried out as a simple one-step synthesis. As a result, the cost of the synthesis can be significantly reduced and the conditions can be significantly simplified. Another great advantage is that only the reactants and reaction products are present in the reaction mixture.
Vorzugsweise werden reine oder sehr reine fluorierte Lithiumsalze und organische Preferably, pure or very pure fluorinated lithium salts and organic
Lithiumborat- oder Lithiumphosphatsalze als Edukte verwendet. Weiterhin werden vorzugsweise aprotische Lösungsmittel eines Reinheitsgrades verwendet, der in Lithium- Ionen-Batterien verwendbar ist. Hierdurch können zeitaufwändige und teure Reinigungen der hergestellten Lithiumsalze mit organischem Borat- und/oder Phosphatanion vermieden werden. Lithium borate or lithium phosphate salts used as starting materials. Furthermore, preference is given to the use of aprotic solvents of a purity which can be used in lithium-ion batteries. As a result, time-consuming and expensive cleaning of the produced lithium salts with organic borate and / or phosphate anion can be avoided.
Vorzugsweise werden die Edukte, fluorierte Lithiumsalze und organische Lithiumborat- oder Lithiumphosphatsalze, in äquimolaren Mengen verwendet. Hierdurch kann das Preferably, the starting materials, fluorinated lithium salts and organic lithium borate or lithium phosphate salts are used in equimolar amounts. This can do that
Reaktionsgleichgewicht, beispielsweise der Reaktion LiBF4 + LiBOB—► LiBFOB unter Verwendung von Lithiumtetrafluorborat und Lithium-bis(oxalato)borat günstig Richtung Produkt beeinflusst werden. Reaction equilibrium, for example, the reaction LiBF 4 + LiBOB-► LiBFOB using lithium tetrafluoroborate and lithium bis (oxalato) borate favorably influenced product.
In bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens verwendet man ein fluoriertes Lithiumsalz ausgewählt aus der Gruppe umfassend Lithiumhexafluorophosphat (LiPF6), Lithiumtetrafluorborat (LiBF4), Lithiumhexafluoroarsenat (LiAsF6), In preferred embodiments of the process according to the invention, use is made of a fluorinated lithium salt selected from the group comprising lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ),
Lithiumhexafluorostannat (LiSnF6) und/oder Lithiumhexafluorotanatalat (LiTaF6). Lithium hexafluorostannate (LiSnF 6 ) and / or lithium hexafluorotanatalate (LiTaF 6 ).
Diese weisen den Vorteil auf, dass sie gute Fluorierungsmittel für die Reaktion darstellen. In besonders bevorzugten Ausführungsformen ist das fluorierte Lithiumsalz These have the advantage of being good fluorinating agents for the reaction. In particularly preferred embodiments, the fluorinated lithium salt is
Lithiumtetrafluorborat (LiBF4). Lithium tetrafluoroborate (LiBF 4 ).
In bevorzugten Ausführungsformen verwendet man ein organisches Lithiumborat- oder Lithiumphosphatsalz ausgewählt aus der Gruppe umfassend Lithium-bis(oxalato)borat (LiBOB), Lithium-bis(malonato)borat (LiBMB), Lithium-malonatooxalatoborat (LiMOB), Lithium-glykolatooxalatoborat (LiGOB), Lithium- salicylatooxalatoborat (LiSOB), Lithium- lactatooxalatoborat (LiLOB), Lithium-brenzcatechinatooxalatoborat (LiBZOB), Lithium- bis(succinato)borat (LiBSB) und/oder Lithium-tris(oxalato)phosphat (LiTOP). In preferred embodiments, use is made of an organic lithium borate or lithium phosphate salt selected from the group comprising lithium bis (oxalato) borate (LiBOB), lithium bis (malonato) borate (LiBMB), lithium malonato oxalate borate (LiMOB), lithium glycolato oxalato borate (LiGOB ), Lithium salicylatooxalatoborate (LiSOB), lithium lactatooxalatoborate (LiLOB), lithium catecholatoalatoborate (LiBZOB), lithium bis (succinato) borate (LiBSB) and / or lithium tris (oxalato) phosphate (LiTOP).
Organische Lithiumborat- und Lithiumphosphatsalze als Ausgangsstoffe des Organic lithium borate and lithium phosphate salts as starting materials of
erfindungsgemäßen Verfahrens sind auf einfache Weise und im technischen Maßstab zugänglich oder herstellbar. Beispielsweise können Lithiumoxalatoboratsalze durch Umsetzung einer oxidischen Borverbindung beispielsweise Borsäure, Boroxid oder Process according to the invention can be obtained or produced in a simple manner and on an industrial scale. For example, Lithiumoxalatoboratsalze by Implementation of an oxide boron compound such as boric acid, boron oxide or
Borsäureester mit Oxalsäure oder einem Oxalsäuresalz hergestellt werden. In besonders bevorzugten Ausführungsformen ist das organische Lithiumborat Lithium-bis(oxalato)borat (LiBOB). Boric acid ester can be prepared with oxalic acid or an oxalic acid salt. In particularly preferred embodiments, the organic lithium borate is lithium bis (oxalato) borate (LiBOB).
Die Ausbeute des erfindungsgemäßen Verfahrens kann durch Variieren des aprotischen Lösungsmittels oder des Verhältnisses der Lösungsmittel eines Lösungsmittelgemisches, der Reaktionstemperatur und/oder der Reaktionszeit günstig beeinflusst werden. Bevorzugte aprotische Lösungsmittel sind ausgewählt aus der Gruppe umfassend cyclische Carbonate vorzugsweise Ethylencarbonat (EC) und/oder Propylencarbonat (PC), lineare Carbonate vorzugsweise Diethylcarbonat (DEC), Dimethylcarbonat (DMC) und/oder Ethylmethylcarbonat (EMC), Nitrile vorzugsweise Acetonitril (AN), Dinitrile vorzugsweise Glutaronitril (GLN), Adiponitril (ADN) und/oder Pimelonitril (PIN), und/oder Lactone vorzugsweise gamma-Butyrolacton (GBL) und/oder gamma- Valerolacton (GVL). The yield of the process according to the invention can be favorably influenced by varying the aprotic solvent or the ratio of the solvents of a solvent mixture, the reaction temperature and / or the reaction time. Preferred aprotic solvents are selected from the group comprising cyclic carbonates, preferably ethylene carbonate (EC) and / or propylene carbonate (PC), linear carbonates, preferably diethyl carbonate (DEC), dimethyl carbonate (DMC) and / or ethyl methyl carbonate (EMC), nitriles, preferably acetonitrile (AN) , Dinitriles preferably glutaronitrile (GLN), adiponitrile (ADN) and / or pimelonitrile (PIN), and / or lactones preferably gamma-butyrolactone (GBL) and / or gamma-valerolactone (GVL).
Durch die Verwendung aprotischer Lösungsmittel kann vermieden werden, dass sich die Lithiumsalze wie bei Anwesenheit protischer Lösungsmittel zersetzen. Vorzugsweise ist insbesondere Ethylencarbonat (EC) als alleiniges Lösungsmittel oder als Bestandteil eines Lösungsmittelgemisches verwendbar. By using aprotic solvents, it is possible to prevent the lithium salts from decomposing as in the presence of protic solvents. In particular, ethylene carbonate (EC) is preferably usable as the sole solvent or as a constituent of a solvent mixture.
In bevorzugten Ausführungsformen verwendet man als aprotisches Lösungsmittelgemisch ein Gemisch aus Ethylencarbonat (EC) mit wenigstens einem weiteren aprotischen Lösungsmittel ausgewählt aus der Gruppe umfassend cyclische Carbonate vorzugsweise Propylencarbonat (PC), lineare Carbonate vorzugsweise Diethylcarbonat (DEC), Dimethylcarbonat (DMC) und/oder Ethylmethylcarbonat (EMC), Nitrile vorzugsweise Acetonitril (AN), Dinitrile vorzugsweise Glutaronitril (GLN), Adiponitril (ADN) und/oder Pimelonitril (PIN), und/oder Lactone vorzugsweise gamma-Butyrolacton (GBL) und/oder gamma- Valerolacton (GVL). In bevorzugten Ausführungsformen führt man das Umsetzen in einem aprotischen Lösungsmittelgemisch aus Ethylencarbonat (EC) mit einem weiteren aprotischen In preferred embodiments, the aprotic solvent mixture used is a mixture of ethylene carbonate (EC) with at least one further aprotic solvent selected from the group comprising cyclic carbonates, preferably propylene carbonate (PC), linear carbonates, preferably diethyl carbonate (DEC), dimethyl carbonate (DMC) and / or ethyl methyl carbonate (EMC), nitriles preferably acetonitrile (AN), dinitriles preferably glutaronitrile (GLN), adiponitrile (ADN) and / or pimelonitrile (PIN), and / or lactones preferably gamma-butyrolactone (GBL) and / or gamma-valerolactone (GVL) , In preferred embodiments, the reaction is carried out in an aprotic solvent mixture of ethylene carbonate (EC) with another aprotic
Lösungsmittel ausgewählt aus der Gruppe umfassend cyclische Carbonate vorzugsweise Propylencarbonat (PC), lineare Carbonate vorzugsweise Diethylcarbonat (DEC), Solvent selected from the group comprising cyclic carbonates, preferably propylene carbonate (PC), linear carbonates, preferably diethyl carbonate (DEC),
Dimethylcarbonat (DMC) und/oder Ethylmethylcarbonat (EMC), Nitrile vorzugsweise Acetonitril (AN), Dinitrile vorzugsweise Glutaronitril (GLN), Adiponitril (ADN) und/oder Pimelonitril (PIN), und/oder Lactone vorzugsweise gamma-Butyrolacton (GBL) und/oder gamma- Valerolacton (GVL) mit einem molaren Verhältnis an Ethylencarbonat zu dem wenigstens einen weiteren aprotischen Lösungsmittel im Bereich von > 1 :9 bis < 9: 1, bevorzugt im Bereich von > 3 :7 bis <7:3, vorzugsweise im Bereich von > 3 :7 bis < 1 : 1, durch.  Dimethyl carbonate (DMC) and / or ethyl methyl carbonate (EMC), nitriles preferably acetonitrile (AN), dinitriles preferably glutaronitrile (GLN), adiponitrile (ADN) and / or pimelonitrile (PIN), and / or lactones preferably gamma-butyrolactone (GBL) and or gamma-valerolactone (GVL) having a molar ratio of ethylene carbonate to the at least one further aprotic solvent in the range of> 1: 9 to <9: 1, preferably in the range of> 3: 7 to <7: 3, preferably Range from> 3: 7 to <1: 1, by.
Geeignet ist vorzugsweise ein molares Verhältnis an Ethylencarbonat zu dem wenigstens einen weiteren aprotischen Lösungsmittel im Bereich von > 1 :9 bis < 9: 1. In vorteilhafter Weise kann insbesondere bei einem molaren Verhältnis an Ethylencarbonat zu dem A molar ratio of ethylene carbonate to the at least one further aprotic solvent in the range of> 1: 9 to <9: 1 is preferably suitable. In an advantageous manner, in particular with a molar ratio of ethylene carbonate to the
wenigstens einen weiteren aprotischen Lösungsmittel im Bereich von > 3 :7 bis <7:3, vorzugsweise im Bereich von > 3 :7 bis < 1 : 1 die Reaktion zu einer guten Ausbeute an at least one further aprotic solvent in the range of> 3: 7 to <7: 3, preferably in the range of> 3: 7 to <1: 1, the reaction to a good yield
Produkt beeinflusst werden. In bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens führt man dasProduct be influenced. In preferred embodiments of the method according to the invention leads to the
Umsetzen bei Temperaturen im Bereich von > 45°C bis < 120°C, bevorzugt im Bereich von > 60°C bis < 100°C, vorzugsweise bei Temperaturen im Bereich von > 65°C bis < 95°C, durch. Reaction at temperatures in the range of> 45 ° C to <120 ° C, preferably in the range of> 60 ° C to <100 ° C, preferably at temperatures in the range of> 65 ° C to <95 ° C, by.
Gute Ausbeuten ergeben sich in vorteilhafter Weise in einem Bereich von > 45°C bis < 120°C. Besonders gute Ausbeuten ergeben sich in einem Bereich von > 60°C bis < 100°C, insbesondere bei Temperaturen im Bereich von > 65°C bis < 95°C. Vorzugsweise führt man das Umsetzen in einem Zeitraum im Bereich von > 48 h bis < 180 h, bevorzugt im Bereich von > 65 h bis < 170 h, vorzugsweise im Bereich von > 110 h bis < 165 h, durch. In vorteilhafter Weise ergaben sich besonders gute Ausbeuten in einem Zeitraum im Bereich von > 65 h bis < 170 h, vorzugsweise im Bereich von > 110 h bis < 165 h. Good yields result in an advantageous manner in a range of> 45 ° C to <120 ° C. Particularly good yields result in a range of> 60 ° C to <100 ° C, especially at temperatures in the range of> 65 ° C to <95 ° C. Preferably, the reaction is carried out in a period in the range of> 48 h to <180 h, preferably in the range of> 65 h to <170 h, preferably in the range of> 110 h to <165 h, by. In an advantageous manner, particularly good yields were obtained over a period in the range from> 65 h to <170 h, preferably in the range from> 110 h to <165 h.
Vorzugsweise ist das Lithiumsalz mit organischem Borat- und/oder Phosphatanion ausgewählt aus der Gruppe umfassend Lithium-difluorooxalatoborat (LiDFOB), Lithium- difluoromalonatoborat, Lithium-difluoroglykolatoborat, Lithium-difluorosalicylatoborat, Lithium-difluorolactatoborat, Lithium-difluoro-brenzcatechinatoborat und/oder Lithium- tetrafluoro(oxalato)phosphat (LTFOP). The lithium salt with organic borate and / or phosphate anion is preferably selected from the group consisting of lithium difluorooxalatoborate (LiDFOB), lithium difluoromalonato borate, lithium difluoroglycolate borate, lithium difluorosalicylatoborate, lithium difluorolactatoborate, lithium difluoro-catechinatoborate and / or lithium tetrafluoro (oxalato) phosphate (LTFOP).
Insbesondere Lithium-difluorooxalatoborat (LiDFOB) ist in Lithium-Ionen-Batterien verwendbar. Das erfindungsgemäße Verfahren umfasst das Umsetzen eines fluorierten Lithiumsalzes mit einem organischen Lithiumborat- oder Lithiumphosphatsalz. Das fluorierte Lithiumsalz, beispielsweise Lithiumtetrafluorborat, kann das organische Lithiumborat- oder In particular, lithium difluorooxalatoborate (LiDFOB) is useful in lithium-ion batteries. The process of the invention comprises reacting a fluorinated lithium salt with an organic lithium borate or lithium phosphate salt. The fluorinated lithium salt, for example, lithium tetrafluoroborate, may be the organic lithium borate or
Lithiumphosphatsalz fluorieren. Das erfindungsgemäße Verfahren ist daher insbesondere ein Verfahren zur Herstellung eines Lithiumsalzes mit fluoriertem organischem Borat- und/oder Phosphatanion. Von den Lithiumsalzen mit fluoriertem organischem Borat- und/oderFluoride lithium phosphate salt. The process according to the invention is therefore in particular a process for the preparation of a lithium salt with fluorinated organic borate and / or phosphate anion. Of the lithium salts with fluorinated organic borate and / or
Phosphatanion ausgewählt aus der Gruppe umfassend Lithium-difluorooxalatoborat, Lithium- difluoromalonatoborat, Lithium-difluoroglykolatoborat, Lithium-difluorosalicylatoborat, Lithium-difluorolactatoborat, Lithium-difluoro-brenzcatechinatoborat und/oder Lithium- tetrafluoro(oxalato)phosphat ist Lithium-difluorooxalatoborat besonders bevorzugt. Phosphate anion selected from the group comprising lithium difluorooxalatoborat, lithium difluoromalonatoborat, lithium difluoroglycolatoborat, lithium difluorosalicylatoborat, lithium difluorolactatoborat, lithium difluoro-catecholate and / or lithium tetrafluoro (oxalato) phosphate is lithium difluorooxalatoborat particularly preferred.
In besonders bevorzugten Ausführungsformen dient das Verfahren zur Herstellung von Lithium-difluorooxalatoborat (LiDFOB) durch Umsetzen von Lithiumtetrafluorborat (L1BF4) mit Lithium-bis(oxalato)borat (LiBOB). Das Reaktionsgemisch kann chromatographisch oder durch fraktionelle Kristallisation getrennt werden. Vorzugsweise reinigt man das organische Lithiumfluorosalz In particularly preferred embodiments, the process for the preparation of lithium difluorooxalatoborat (LiDFOB) by reacting lithium tetrafluoroborate (L1BF 4 ) with lithium bis (oxalato) borate (LiBOB). The reaction mixture can be separated by chromatography or by fractional crystallization. Preferably, the organic lithium fluoro salt is purified
chromatographisch aus dem Reaktionsgemisch auf. Insbesondere ist von Vorteil, dass nicht abreagierte aufgereinigte Edukte einer neuen Reaktion wieder zugeführt werden können. chromatographically from the reaction mixture. In particular, it is advantageous that unreacted purified starting materials can be recycled to a new reaction.
Ein weiterer Gegenstand der Erfindung betrifft Lithiumsalze mit organischem Borat- und/oder Phosphatanion hergestellt nach dem erfindungsgemäßen Verfahren. Insbesondere betrifft die Erfindung Lithiumsalze mit fluoriertem organischem Borat- und/oder Phosphatanion hergestellt nach dem erfindungsgemäßen Verfahren. Another object of the invention relates to lithium salts with organic borate and / or phosphate anion produced by the novel process. In particular, the invention relates to lithium salts with fluorinated organic borate and / or phosphate anion prepared by the process according to the invention.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung eines Lithiumsalzes mit organischem Borat- und/oder Phosphatanion hergestellt nach dem erfindungsgemäßen Verfahren als Lithium-Ionen-Elektrolyt in primären und sekundären elektrochemischen Energiespeichern, insbesondere in Lithium-Ionen-Batterien. Insbesondere betrifft die Another object of the invention relates to the use of a lithium salt with organic borate and / or phosphate anion produced by the novel process as a lithium-ion electrolyte in primary and secondary electrochemical energy storage, in particular in lithium-ion batteries. In particular, the
Erfindung die Verwendung eines Lithiumsalze mit fluoriertem organischem Borat- und/oder Phosphatanion hergestellt nach dem erfindungsgemäßen Verfahren in primären und sekundären elektrochemischen Energiespeichern, insbesondere in Lithium-Ionen-Batterien. Beispiele, die der Veranschaulichung der vorliegenden Erfindung dienen, sind nachstehend angegeben.  The invention relates to the use of a lithium salts with fluorinated organic borate and / or phosphate anion produced by the novel process in primary and secondary electrochemical energy storage, in particular in lithium-ion batteries. Examples which serve to illustrate the present invention are given below.
Beispiel 1 example 1
Synthese von Lithiumdifluorooxalatoborat durch Reaktion von LiBF4 mit Synthesis of lithium difluorooxalatoborate by reaction of LiBF 4 with
Lithiumbisoxalatoborat (LiBOB) Lithium bisoxalatoborate (LiBOB)
Mit 0,94 g (0,01 mol) LiBF4 (Sigma Aldrich) und 1,93 g (0,01 mol) LiBOB (Chemetal) wurden 10 mL einer 1 M Maßlösung mit einer Ethylencarbonat (EC, Ferro, 30 gew. %)/ Diethylcarbonat (DEC, Ferro, 70 gew. %) Mischung erstellt. Je 200 μL· der 1 M LiBF4- Lösung und der 1 M LiBOB-Lösung wurden in einem Handschuhkasten (MBraun) mit einem Wasser- und Sauerstoffgehalt von < Ippm in ein NMR-Rohr gegeben. Das NMR-Rohr wurde anschließend evakuiert, mit Flüssigstickstoff gekühlt und mit einem Propangas-Brenner zugeschmolzen. Anschließend wurde die Reaktionslösung für 162 h in einem Ofen (ED 53, BINDER GmbH) bei einer Temperatur von 95°C gehalten. Das NMR-Rohr wurde abgekühlt und die Reaktionsausbeute mittels UB-NMR (Bruker Avance 3, 400 MHz, Flüssig-Breitband- Probenkopf, bei 22°C-23°C) bestimmt. Im UB-Spektrum wurden nur LiDFOB (8,6%), LiBOB (40,7 %) und LiBF4 (50,7 %) gefunden. With 0.94 g (0.01 mol) LiBF 4 (Sigma Aldrich) and 1.93 g (0.01 mol) LiBOB (Chemetal), 10 mL of a 1 M standard solution with an ethylene carbonate (EC, Ferro, 30 wt. %) / Diethyl carbonate (DEC, Ferro, 70 wt.%) Mixture created. 200 μL of the 1 M LiBF 4 solution and the 1 M LiBOB solution were added to a NMR tube in a glove box (MBraun) with a water and oxygen content of <Ippm. The NMR tube was then evacuated, cooled with liquid nitrogen and sealed with a propane gas burner. Subsequently, the reaction solution was kept for 162 h in an oven (ED 53, BINDER GmbH) at a temperature of 95 ° C. The NMR tube was cooled and the reaction yield determined by U B NMR (Bruker Avance 3, 400 MHz, liquid broadband probe, at 22 ° C-23 ° C). In the U B spectrum only LiDFOB (8.6%), LiBOB (40.7%) and LiBF 4 (50.7%) were found.
Beispiel 2 Example 2
Mit 0,94 g (0,01 mol) LiBF (Sigma Aldrich) und 1,93 g (0,01 mol) LiBOB (Chemetal) wurden 10 mL einer 1 M Maßlösung mit einer Ethylencarbonat (EC, Ferro, 30 gew. %)/ Diethylcarbonat (DEC, Ferro, 70 gew. %) Mischung erstellt. Je 200 μL· der 1 M LiBF - Lösung und der 1 M LiBOB-Lösung wurden in einem Handschuhkasten (MBraun) mit einem Wasser- und Sauer stoffgehalt von < Ippm in ein NMR-Rohr gegeben. Das NMR-Rohr wurde anschließend evakuiert, mit Flüssigstickstoff gekühlt und mit einem Propangas-Brenner zugeschmolzen. Anschließend wurde die Reaktionslösung für 113 h in einem Ofen (ED 53, BINDER GmbH) bei einer Temperatur von 95°C gehalten. Das NMR-Rohr wurde abgekühlt und die Reaktionsausbeute mittels UB-NMR (Bruker Avance 3, 400 MHz, Flüssig-Breitband- Probenkopf, bei 22°C-23°C) bestimmt. Im UB-Spektrum wurden nur LiDFOB (7, 1 %), LiBOB (41,2 %) und LiBF (52,7 %) gefunden. With 0.94 g (0.01 mol) LiBF (Sigma Aldrich) and 1.93 g (0.01 mol) LiBOB (Chemetal), 10 mL of a 1 M standard solution with an ethylene carbonate (EC, Ferro, 30% by weight). ) / Diethyl carbonate (DEC, Ferro, 70% by weight) mixture. 200 μL of the 1 M LiBF solution and the 1 M LiBOB solution were placed in a glove box (MBraun) with a water and oxygen content of <Ippm in an NMR tube. The NMR tube was then evacuated, cooled with liquid nitrogen and sealed with a propane gas burner. Subsequently, the reaction solution was kept at a temperature of 95 ° C. for 113 h in an oven (ED 53, BINDER GmbH). The NMR tube was cooled and the reaction yield determined by U B NMR (Bruker Avance 3, 400 MHz, liquid broadband probe, at 22 ° C-23 ° C). In the U B spectrum only LiDFOB (7, 1%), LiBOB (41.2%) and LiBF (52.7%) were found.
Beispiel 3 Example 3
Mit 0,94 g (0,01 mol) LiBF (Sigma Aldrich) und 1,93 g (0,01 mol) LiBOB (Chemetal) wurden 10 mL einer 1 M Maßlösung mit einer Ethylencarbonat (EC, Ferro, 50 gew. %)/ Diethylcarbonat (DEC, Ferro, 50 gew. %) Mischung erstellt. Je 200 μL· der 1 M LiBF - Lösung und der 1 M LiBOB-Lösung wurden in einem Handschuhkasten (MBraun) mit einem Wasser- und Sauer stoffgehalt von < Ippm in ein NMR-Rohr gegeben. Das NMR-Rohr wurde anschließend evakuiert, mit Flüssigstickstoff gekühlt und mit einem Propangas-Brenner zugeschmolzen. Anschließend wurde die Reaktionslösung für 162 h in einem Ofen (ED 53, BINDER GmbH) bei einer Temperatur von 95°C gehalten. Das NMR-Rohr wurde abgekühlt und die Reaktionsausbeute mittels UB-NMR (Bruker Avance 3, 400 MHz, Flüssig-Breitband- Probenkopf, bei 22°C-23°C) bestimmt. Im UB-Spektrum wurden nur LiDFOB (7,5 %), LiBOB (40,6 %) und LiBF4 (51,9 %) gefunden. With 0.94 g (0.01 mol) LiBF (Sigma Aldrich) and 1.93 g (0.01 mol) LiBOB (Chemetal), 10 mL of a 1 M standard solution with an ethylene carbonate (EC, Ferro, 50% by weight). ) / Diethyl carbonate (DEC, Ferro, 50% by weight) mixture. 200 μL of the 1 M LiBF solution and the 1 M LiBOB solution were mixed in a glove box (MBraun) with a Water and oxygen content of <Ippm in an NMR tube. The NMR tube was then evacuated, cooled with liquid nitrogen and sealed with a propane gas burner. Subsequently, the reaction solution was kept for 162 h in an oven (ED 53, BINDER GmbH) at a temperature of 95 ° C. The NMR tube was cooled and the reaction yield determined by U B NMR (Bruker Avance 3, 400 MHz, liquid broadband probe, at 22 ° C-23 ° C). In the U B spectrum only LiDFOB (7.5%), LiBOB (40.6%) and LiBF 4 (51.9%) were found.
Beispiel 4 Example 4
Synthese von Lithium difluorooxalatoborat durch Reaktion von LiBF4 mit Synthesis of lithium difluorooxalatoborat by reaction of LiBF 4 with
Lithiumbisoxalatoborat (LiBOB) Lithium bisoxalatoborate (LiBOB)
Mit 0,94 g (0,01 mol) LiBF (Sigma Aldrich) und 1,93 g (0,01 mol) LiBOB (Chemetal) wurden 10 mL einer 1 M Maßlösung mit einer Ethylencarbonat (EC, Ferro, 50 gew. %)/ Diethylcarbonat (DEC, Ferro, 50 gew. %) Mischung erstellt. Je 200 μL· der 1 M LiBF -With 0.94 g (0.01 mol) LiBF (Sigma Aldrich) and 1.93 g (0.01 mol) LiBOB (Chemetal), 10 mL of a 1 M standard solution with an ethylene carbonate (EC, Ferro, 50% by weight). ) / Diethyl carbonate (DEC, Ferro, 50% by weight) mixture. 200 μL each · 1 M LiBF -
Lösung und der 1 M LiBOB-Lösung wurden in einem Handschuhkasten (MBraun) mit einem Wasser- und Sauerstoffgehalt von < Ippm in ein NMR-Rohr gegeben. Das NMR-Rohr wurde anschließend evakuiert, mit Flüssigstickstoff gekühlt und mit einem Propangas-Brenner zugeschmolzen. Anschließend wurde die Reaktionslösung für 113 h in einem Ofen (ED 53, BINDER GmbH) bei einer Temperatur von 95°C gehalten. Das NMR-Rohr wurde abgekühlt und die Reaktionsausbeute mittels UB-NMR (Bruker Avance 3, 400 MHz, Flüssig-Breitband- Probenkopf, bei 22°C-23°C) bestimmt. Im UB-Spektrum wurden nur LiDFOB (5,8 %), LiBOB (41,4 %) und LiBF (52,8%) gefunden. Beispiel 5 Solution and the 1 M LiBOB solution were placed in a glove box (MBraun) with a water and oxygen content of <Ippm in an NMR tube. The NMR tube was then evacuated, cooled with liquid nitrogen and sealed with a propane gas burner. Subsequently, the reaction solution was kept at a temperature of 95 ° C. for 113 h in an oven (ED 53, BINDER GmbH). The NMR tube was cooled and the reaction yield determined by U B NMR (Bruker Avance 3, 400 MHz, liquid broadband probe, at 22 ° C-23 ° C). In the U B spectrum only LiDFOB (5.8%), LiBOB (41.4%) and LiBF (52.8%) were found. Example 5
Synthese von Lithiumdifluorooxalatoborat durch Reaktion von LiBF mit  Synthesis of lithium difluorooxalatoborate by reaction of LiBF with
Lithiumbisoxalatoborat (LiBOB) Mit 0,94 g (0,01 mol) LiBF4 (Sigma Aldrich) und 1,93 g (0,01 mol) LiBOB (Chemetal) wurden 10 mL einer 1 M Maßlösung mit einer Ethylencarbonat (EC, Ferro, 50 gew. %)/ Adiponitril (ADN, Sigma Aldrich, 50 gew. %) Mischung erstellt. Je 200 μL· der 1 M LiBF4- Lösung und der 1 M LiBOB-Lösung wurden in einem Handschuhkasten (MBraun) mit einem Wasser- und Sauerstoffgehalt von < lppm in ein NMR-Rohr gegeben. Das NMR-Rohr wurde anschließend evakuiert, mit Flüssigstickstoff gekühlt und mit einem Propangas-Brenner zugeschmolzen. Anschließend wurde die Reaktionslösung für 162 h in einem Ofen (ED 53, BINDER GmbH) bei einer Temperatur von 95°C gehalten. Das NMR-Rohr wurde abgekühlt und die Reaktionsausbeute mittels UB-NMR (Bruker Avance 3, 400 MHz, Flüssig-Breitband- Probenkopf, bei 22°C-23°C) bestimmt. Im UB-Spektrum wurden nur LiDFOB (2,8 %), LiBOB (44,9 %) und LiBF (52,3 %) gefunden. Lithium bisoxalatoborate (LiBOB) With 0.94 g (0.01 mol) LiBF 4 (Sigma Aldrich) and 1.93 g (0.01 mol) LiBOB (Chemetal), 10 mL of a 1 M standard solution with an ethylene carbonate (EC, Ferro, 50 wt. %) / Adiponitrile (ADN, Sigma Aldrich, 50% by weight) mixture. 200 μL of the 1 M LiBF 4 solution and the 1 M LiBOB solution were added to an NMR tube in a glove box (MBraun) with a water and oxygen content of <lppm. The NMR tube was then evacuated, cooled with liquid nitrogen and sealed with a propane gas burner. Subsequently, the reaction solution was kept for 162 h in an oven (ED 53, BINDER GmbH) at a temperature of 95 ° C. The NMR tube was cooled and the reaction yield determined by U B NMR (Bruker Avance 3, 400 MHz, liquid broadband probe, at 22 ° C-23 ° C). In the U B spectrum only LiDFOB (2.8%), LiBOB (44.9%) and LiBF (52.3%) were found.
Weitere Reaktionen von LiBF mit Lithiumbisoxalatoborat (LiBOB) sind in der folgenden Tabelle 1 zusammengefasst: Further reactions of LiBF with lithium bisoxalatoborate (LiBOB) are summarized in the following Table 1:
Tabelle 1 Table 1
Beispiel Lösungsmittel, Temperatur Zeit LiDFOB  Example solvent, temperature time LiDFOB
Verhältnis [°C] [h] [% Ausbeute]  Ratio [° C] [h] [% yield]
6 EC/DEC 3/7 95 65 4,5  6 EC / DEC 3/7 95 65 4.5
7 EC/DEC 1/1 95 65 3,0  7 EC / DEC 1/1 95 65 3.0
8 EC/ADN 1/1 95 113 1,7  8 EC / ADN 1/1 95 113 1.7
9 EC/DEC 3/7 60 162 1,0  9 EC / DEC 3/7 60 162 1.0

Claims

PATENT ANSPRÜCHE PATENT CLAIMS
1. Verfahren zur Herstellung eines Lithiumsalzes mit organischem Borat- und/oder Phosphatanion durch Umsetzen eines fluorierten Lithiumsalzes mit einem organischen Lithiumborat- oder Lithiumphosphatsalz ausgewählt aus der Gruppe umfassend Oxalate, Malonate, Glykolate, Salicylate, Lactate, Brenzcatechinate, Succinate und/oder deren Gemische in einem aprotischen Lösungsmittel oder Lösungsmittelgemisch. 1. A process for the preparation of a lithium salt with organic borate and / or phosphate anion by reacting a fluorinated lithium salt with an organic lithium borate or lithium phosphate salt selected from the group comprising oxalates, malonates, glycolates, salicylates, lactates, catecholates, succinates and / or mixtures thereof in an aprotic solvent or solvent mixture.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das fluorierte Lithiumsalz ausgewählt ist aus der Gruppe umfassend Lithiumhexafluorphosphat, Lithiumtetrafluorborat,2. The method according to claim 1, characterized in that the fluorinated lithium salt is selected from the group comprising lithium hexafluorophosphate, lithium tetrafluoroborate,
Lithiumhexafluorarsenat, Lithiumhexafluorstannat und/oder Lithiumhexafluortanatalat. Lithium hexafluoroarsenate, lithium hexafluorostannate and / or lithium hexafluorotanatalate.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das organische Lithiumborat- oder Lithiumphosphatsalz ausgewählt ist aus der Gruppe umfassend Lithium- bis(oxalato)borat, Lithium-bis(malonato)borat, Lithium-malonatooxalatoborat, Lithium- glykolatooxalatoborat, Lithium- salicylatooxalatoborat, Lithium-lactatooxalatoborat, Lithium- brenzcatechinatooxalatoborat, Lithium-bis(succinato)borat und/oder Lithium- tris(oxalato)phosphat. 3. The method according to claim 1 or 2, characterized in that the organic lithium borate or lithium phosphate salt is selected from the group comprising lithium bis (oxalato) borate, lithium bis (malonato) borate, lithium malonato oxalatoborat, lithium glykolatooxalatoborat, lithium salicylatooxalatoborate, lithium lactatooxalatoborate, lithium catecholato oxatoborate, lithium bis (succinato) borate and / or lithium tris (oxalato) phosphate.
4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das aprotische Lösungsmittel ausgewählt ist aus der Gruppe umfassend cyclische Carbonate vorzugsweise Ethylencarbonat und/oder Propylencarbonat, lineare Carbonate vorzugsweise Diethylcarbonat, Dimethylcarbonat und/oder Ethylmethylcarbonat, Nitrile vorzugsweise Acetonitril, Dinitrile vorzugsweise Glutaronitril, Adiponitril und/oder Pimelonitril, und/oder Lactone vorzugsweise gamma-Butyrolacton und/oder gamma-Valerolacton. 4. The method according to any one of the preceding claims, characterized in that the aprotic solvent is selected from the group comprising cyclic carbonates, preferably ethylene carbonate and / or propylene carbonate, linear carbonates, preferably diethyl carbonate, dimethyl carbonate and / or ethylmethylcarbonate, nitriles, preferably acetonitrile, dinitriles, preferably glutaronitrile, Adiponitrile and / or pimelonitrile, and / or lactones, preferably gamma-butyrolactone and / or gamma-valerolactone.
5. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das aprotische Lösungsmittelgemisch ein Gemisch aus Ethylencarbonat mit wenigstens einem weiteren aprotischen Lösungsmittel ausgewählt aus der Gruppe umfassend cyclische 5. The method according to any one of the preceding claims, characterized in that the aprotic solvent mixture is a mixture of ethylene carbonate with at least one further aprotic solvent selected from the group comprising cyclic
Carbonate vorzugsweise Propylencarbonat, lineare Carbonate vorzugsweise Diethylcarbonat, Dimethylcarbonat und/oder Ethylmethylcarbonat, Nitrile vorzugsweise Acetonitril, Dinitrile vorzugsweise Glutaronitril, Adiponitril und/oder Pimelonitril, und/oder Lactone vorzugsweise gamma-Butyrolacton und/oder gamma- Valerolacton ist. Carbonates are preferably propylene carbonate, linear carbonates preferably diethyl carbonate, dimethyl carbonate and / or ethylmethyl carbonate, nitriles preferably acetonitrile, dinitriles preferably glutaronitrile, adiponitrile and / or pimelonitrile, and / or lactones preferably gamma-butyrolactone and / or gamma- valerolactone.
6. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass man das Umsetzen in einem aprotischen Lösungsmittelgemisch aus Ethylencarbonat mit einem weiteren aprotischen Lösungsmittel ausgewählt aus der Gruppe umfassend cyclische 6. The method according to any one of the preceding claims, characterized in that reacting in an aprotic solvent mixture of ethylene carbonate with a further aprotic solvent selected from the group comprising cyclic
Carbonate vorzugsweise Propylencarbonat, lineare Carbonate vorzugsweise Diethylcarbonat, Dimethylcarbonat und/oder Ethylmethylcarbonat, Nitrile vorzugsweise Acetonitril, Dinitrile vorzugsweise Glutaronitril, Adiponitril und/oder Pimelonitril, und/oder Lactone vorzugsweise gamma-Butyrolacton und/oder gamma- Valerolacton mit einem molaren Verhältnis an Ethylencarbonat zu dem wenigstens einen weiteren aprotischen Lösungsmittel im Bereich von > 1 :9 bis < 9: 1, bevorzugt im Bereich von > 3 :7 bis <7:3, vorzugsweise im Bereich von > 3 :7 bis < 1 : 1, durchführt. Carbonates preferably propylene carbonate, linear carbonates preferably diethyl carbonate, dimethyl carbonate and / or ethylmethylcarbonate, nitriles preferably acetonitrile, dinitriles preferably glutaronitrile, adiponitrile and / or pimelonitrile, and / or lactones preferably gamma-butyrolactone and / or gamma- valerolactone with a molar ratio of ethylene carbonate to the at least one further aprotic solvent in the range of> 1: 9 to <9: 1, preferably in the range of> 3: 7 to <7: 3, preferably in the range of> 3: 7 to <1: 1, performed.
7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass man das Umsetzen bei Temperaturen im Bereich von > 45°C bis < 120°C, bevorzugt im Bereich von > 60°C bis < 100°C, vorzugsweise bei Temperaturen im Bereich von > 65°C bis < 95°C, durchführt. 7. The method according to any one of the preceding claims, characterized in that reacting at temperatures in the range of> 45 ° C to <120 ° C, preferably in the range of> 60 ° C to <100 ° C, preferably at temperatures in the range from> 65 ° C to <95 ° C.
8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass man das Umsetzen in einem Zeitraum im Bereich von > 48 h bis < 180 h, bevorzugt im Bereich von > 65 h bis < 170 h, vorzugsweise im Bereich von > 110 h bis < 165 h, durchführt. 8. The method according to any one of the preceding claims, characterized in that the reaction in a period in the range of> 48 h to <180 h, preferably in the range of> 65 h to <170 h, preferably in the range of> 110 h to <165 h, performs.
9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Lithiumsalz mit organischem Borat- und/oder Phosphatanion ausgewählt ist aus der Gruppe umfassend Lithium-difluorooxalatoborat, Lithiumdifluoromalonatoborat, Lithium- difluoroglykolatoborat, Lithium-difluorosalicylatoborat, Lithium-difluorolactatoborat, Lithium-difluoro-brenzcatechinatoborat und/oder Lithium-tetrafluoro(oxalato)phosphat. 9. The method according to any one of the preceding claims, characterized in that the lithium salt with organic borate and / or phosphate anion is selected from the group comprising lithium difluorooxalatoborat, Lithiumdifluoromalonatoborat, lithium difluoroglycolatoborate, lithium difluorosalicylatoborat, lithium difluorolactatoborat, lithium difluoro-catecholate and / or lithium tetrafluoro (oxalato) phosphate.
10. Lithiumsalz mit organischem Borat- und/oder Phosphatanion hergestellt nach einem Verfahren gemäß einem der vorherigen Ansprüche. 10. Lithium salt with organic borate and / or phosphate anion prepared by a process according to one of the preceding claims.
11. Verwendung eines Lithiumsalzes mit organischem Borat- und/oder Phosphatanion hergestellt nach einem Verfahren gemäß einem der vorherigen Ansprüche als Lithium-Ionen- Elektrolyt in primären und sekundären elektrochemischen Energiespeichern. 11. Use of a lithium salt with organic borate and / or phosphate anion prepared by a process according to one of the preceding claims as a lithium-ion electrolyte in primary and secondary electrochemical energy storage.
PCT/EP2011/070859 2010-11-24 2011-11-23 Process for preparing organic lithium salts WO2012069554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010060770A DE102010060770A1 (en) 2010-11-24 2010-11-24 Process for the preparation of organic lithium salts
DE102010060770.3 2010-11-24

Publications (1)

Publication Number Publication Date
WO2012069554A1 true WO2012069554A1 (en) 2012-05-31

Family

ID=45218680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/070859 WO2012069554A1 (en) 2010-11-24 2011-11-23 Process for preparing organic lithium salts

Country Status (2)

Country Link
DE (1) DE102010060770A1 (en)
WO (1) WO2012069554A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557995A (en) * 2013-10-12 2015-04-29 陈琛 Preparation method of lithium oxalyldifluoroborate
CN107226821A (en) * 2017-06-12 2017-10-03 上海如鲲新材料有限公司 A kind of synthesis technique that difluorine oxalic acid boracic acid lithium is prepared with di-oxalate lithium borate
CN109678694A (en) * 2018-12-21 2019-04-26 东莞东阳光科研发有限公司 A kind of preparation method of tetrafluoro oxalic acid lithium phosphate
CN110003277A (en) * 2019-05-05 2019-07-12 上海如鲲新材料有限公司 A kind of tetrafluoro oxalic acid lithium phosphate and preparation method thereof
CN114349775A (en) * 2022-01-12 2022-04-15 王怀英 Method for joint production of lithium bis (oxalato) borate and lithium difluoro (oxalato) borate
KR20230127777A (en) 2022-02-25 2023-09-01 명지대학교 산학협력단 Preparing method of lithium difluoro(oxalato)borate, lithium difluoro(oxalato)borate prepared therefrom, electrolyte for lithium ion battery and lithium ion battery comprising the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840209A (en) * 2012-11-26 2014-06-04 华为技术有限公司 Nonaqueous organic electrolyte additive, preparation method of nonaqueous organic electrolyte additive, nonaqueous organic electrolyte and lithium ion secondary battery
DE102018201548A1 (en) * 2018-02-01 2019-08-01 Robert Bosch Gmbh Electrolytic composition for electrochemical cell for high temperature applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004059A1 (en) 2007-07-04 2009-01-08 Chemetall Gmbh Method for producing low-acid lithium borate salts and mixtures of low-acid lithium borate salts and lithium hydride

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10111410C1 (en) * 2001-03-08 2002-07-25 Chemetall Gmbh Lithium bis(oxalato)borate electrolyte, used in electrochemical storage system or electrochromic formulation, e.g. window, contains ternary solvent system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004059A1 (en) 2007-07-04 2009-01-08 Chemetall Gmbh Method for producing low-acid lithium borate salts and mixtures of low-acid lithium borate salts and lithium hydride

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHRISTIAN SCHREINER ET AL: "Chloride-Free Method to Synthesise New Ionic Liquids with Mixed Borate Anions", CHEMISTRY - A EUROPEAN JOURNAL, vol. 15, no. 10, 23 February 2009 (2009-02-23), pages 2270 - 2272, XP055017100, ISSN: 0947-6539, DOI: 10.1002/chem.200802243 *
LEX-BALDUCCI, A. ET AL.: "Lithium borates for lithium-ion battery electrolytes", ECS TRANSACTIONS, vol. 25, no. 36, 9 October 2009 (2009-10-09), XP009155699 *
ZUGMANN S ET AL: "Electrochemical characterization of electrolytes for lithium-ion batteries based on lithium difluoromono(oxalato)borate", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 196, no. 3, 17 August 2010 (2010-08-17), pages 1417 - 1424, XP027450469, ISSN: 0378-7753, [retrieved on 20100817], DOI: 10.1016/J.JPOWSOUR.2010.08.023 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557995A (en) * 2013-10-12 2015-04-29 陈琛 Preparation method of lithium oxalyldifluoroborate
CN104557995B (en) * 2013-10-12 2017-02-15 陈琛 Preparation method of lithium oxalyldifluoroborate
CN107226821A (en) * 2017-06-12 2017-10-03 上海如鲲新材料有限公司 A kind of synthesis technique that difluorine oxalic acid boracic acid lithium is prepared with di-oxalate lithium borate
CN109678694A (en) * 2018-12-21 2019-04-26 东莞东阳光科研发有限公司 A kind of preparation method of tetrafluoro oxalic acid lithium phosphate
CN110003277A (en) * 2019-05-05 2019-07-12 上海如鲲新材料有限公司 A kind of tetrafluoro oxalic acid lithium phosphate and preparation method thereof
CN114349775A (en) * 2022-01-12 2022-04-15 王怀英 Method for joint production of lithium bis (oxalato) borate and lithium difluoro (oxalato) borate
KR20230127777A (en) 2022-02-25 2023-09-01 명지대학교 산학협력단 Preparing method of lithium difluoro(oxalato)borate, lithium difluoro(oxalato)borate prepared therefrom, electrolyte for lithium ion battery and lithium ion battery comprising the same

Also Published As

Publication number Publication date
DE102010060770A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
DE19829030C1 (en) Lithium bisoxalatoborate used as conducting salt in lithium ion batteries
WO2012069554A1 (en) Process for preparing organic lithium salts
JP5974181B2 (en) Method for producing lithium bis (fluorosulfonyl) imide
EP2780346B1 (en) Process for preparing metal difluorochelatoborates and use as battery electrolytes or additives in electrochemical cells
EP0922049B1 (en) Process for preparing lithium-borate complexes
EP0698301B1 (en) Electrolyte for use in a galvanic cell
EP1205480B1 (en) Tetrakis fluoroalkylborate salts and their use as electrolyte salts
EP2737568A1 (en) Lithium-2-methoxy-1,1,2,2-tetrafluoro-ethanesulfonate and use thereof as conductive salt in lithium-based energy accumulators
WO2002068432A1 (en) Boron chelate complexes
DE10228201A1 (en) Process for the preparation of lithium iodide solutions
EP1027744B1 (en) ESTER AS A SOLVENT IN ELECTROLYTE SYSTEMS FOR Li ION ACCUMULATORS
DE10119278C1 (en) Preparation of (per)fluoroalkylperfluorophosphates, used as conductive salt in battery, capacitor, supercapacitor or galvanic cell, involves reacting fluoroalkylphosphorane with metal or nonmetal fluoride without solvent
WO2010094467A1 (en) Galvanic cell having a lithium metal or an alloy comprising a lithium metal as anode material and an electrolyte having lithium bis(oxalato)borate and at least one other lithium complex salt
EP1726061B1 (en) Conducting salts for galvanic cells, the production thereof and their use
EP2834250B1 (en) Lithiumsilicate
EP1048648A1 (en) Method for the purification of methanide electrolytes
JP5029353B2 (en) Method for producing boron tetrafluoride salt, boron tetrafluoride salt obtained by the method, electrolytic solution for electric double layer capacitor using the same, and method for producing the same
WO2002011229A1 (en) Novel use of difluoromalonic acid esters
EP1173416A1 (en) Method for purifying methanide electrolytes (ii)
WO2014079887A1 (en) Electrolyte solution with low acid content
WO2001039313A1 (en) Novel use of methylene-bridged diesters
WO2001038319A1 (en) Dioxolone and its use as electrolytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11793709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11793709

Country of ref document: EP

Kind code of ref document: A1