WO2012067046A1 - Light dispersion film, polarization plate and image display device - Google Patents
Light dispersion film, polarization plate and image display device Download PDFInfo
- Publication number
- WO2012067046A1 WO2012067046A1 PCT/JP2011/076110 JP2011076110W WO2012067046A1 WO 2012067046 A1 WO2012067046 A1 WO 2012067046A1 JP 2011076110 W JP2011076110 W JP 2011076110W WO 2012067046 A1 WO2012067046 A1 WO 2012067046A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- film
- light diffusion
- layer
- overcoat layer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133502—Antiglare, refractive index matching layers
Definitions
- the present invention relates to a light diffusion film provided with a light diffusion layer on a base film.
- the present invention also relates to a polarizing plate and an image display device using the light diffusion film.
- liquid crystal display devices have been rapidly applied to mobile phones, personal computer monitors, televisions, liquid crystal projectors, and the like.
- a liquid crystal display device operates a liquid crystal in a display mode such as a TN (Twisted Nematic) mode, a VA (Vertical Alignment) mode, an IPS (In-Plane Switching) mode, and electrically transmits light passing through the liquid crystal. Control the difference between light and dark on the screen and display characters and images.
- TN Transmission Nematic
- VA Very Alignment
- IPS In-Plane Switching
- Patent Documents 1 and 2 disclose a light diffusing film (light diffusing sheet) having a high-haze light diffusing layer formed by applying a coating solution containing fine particles on a substrate.
- a light diffusing film light diffusing sheet
- the viewing angle can be reduced by reducing the contrast of the image and improving the gradation inversion phenomenon when the display screen of the liquid crystal display device is observed obliquely. It is possible to spread.
- the light diffusing film containing fine particles as described in Patent Documents 1 and 2 has a so-called whitish color in which the entire display surface becomes whitish due to irregular reflection caused by surface unevenness due to the fine particles, and the display becomes cloudy. (White turbidity) is likely to occur.
- Patent Document 3 the surface of the antiglare layer is provided with a fluidity regulator such as colloidal silica on the surface of the antiglare layer provided on the light-transmitting substrate. It is described that the surface irregularity structure is controlled by forming a surface adjustment layer having good followability of the surface, and both glossy black and antiglare properties are achieved.
- the “glossy blackness” as referred to in Patent Document 3 is related to the above-mentioned whitishness and can be reduced by improving the glossy blackness. There was room.
- An object of the present invention is a light diffusing film provided on a base film with a light diffusing layer in which translucent fine particles are dispersed, and a high front contrast is obtained, and furthermore, occurrence of whitening is effectively prevented. It is to provide a light diffusion film. Another object of the present invention is to provide a polarizing plate and an image display device to which the light diffusion film is applied.
- the present invention is a light diffusion film comprising a base film, a light diffusion layer laminated on the base film, and an overcoat layer laminated on the light diffusion layer, wherein the light diffusion layer Contains a first translucent resin and translucent fine particles dispersed in the first translucent resin, the overcoat layer contains a second translucent resin,
- the reflectance R 30 of the light diffusion film at a reflection angle of 30 ° is 2% to 5%.
- a light diffusion film having a reflectance R 40 of 0.0001% or less at a reflection angle of 40 °.
- the relative scattered light intensity T 40 when a laser beam having a wavelength of 543.5 nm is incident on the light diffusing film from the base film side in the normal direction of the light diffusing film is 0. It is preferably 0.0008% to 0.001%.
- the relative scattered light intensity T 40 is 40 ° from the normal of the light diffusion film from the overcoat layer side of the light diffusion film with respect to the intensity of the laser light having a wavelength of 543.5 nm incident on the light diffusion film. This is the ratio of the intensity of laser light emitted in the tilted direction.
- the light diffusion film of the present invention preferably has a sum of reflection sharpness measured by using optical combs having a width of 0.5 mm, 1.0 mm and 2.0 mm, respectively, of 200% or more. Further, it is preferable that the sum of the transmission sharpness measured using optical combs having a width of 0.125 mm, 0.5 mm, 1.0 mm and 2.0 mm, respectively, is 70% to 230%.
- the center line average roughness Ra of the surface of the overcoat layer is preferably 0.1 ⁇ m or less. Further, the light diffusion film of the present invention has a total haze of 40% to 70%, an internal haze of 40% to 70%, and a surface haze of less than 1% due to the surface shape of the overcoat layer. Is preferred.
- the absolute value of the difference between the refractive index of the first translucent resin constituting the light diffusion layer and the refractive index of the second translucent resin constituting the overcoat layer is preferably 0.02 or less.
- the thickness of the overcoat layer is preferably 1 ⁇ m to 10 ⁇ m.
- the present invention also provides an antireflection light diffusion film further comprising an antireflection layer laminated on the light diffusion film of the present invention and the overcoat layer of the light diffusion film.
- the present invention also comprises a polarizing film and the light diffusing film or antireflective light diffusing film of the present invention, wherein the substrate film is closer to the polarizing film than the overcoat layer.
- a polarizing plate on which a light diffusion film or the antireflection light diffusion film is disposed.
- the present invention provides an image display device comprising the polarizing plate of the present invention and an image display element.
- the polarizing plate is disposed on the image display element such that the polarizing film is closer to the image display element than the overcoat layer.
- a liquid crystal display device to which a light diffusing film or a polarizing plate having such excellent optical properties is applied exhibits high front contrast, and is effectively prevented from whitening due to surface irregular reflection.
- Is a diagram for explaining the reflectance R 30 and reflectance R 40 is a perspective view schematically illustrating a and the reflection direction incident direction of the laser beam from the overcoat layer side.
- the incident direction of the laser beam when measuring the transmitted scattered light intensity of the laser beam incident from the normal direction on the base film side and transmitted in a direction inclined by 40 ° from the normal direction on the overcoat layer side
- FIG. 1 is a schematic cross-sectional view showing a preferred example of the light diffusion film of the present invention.
- a light diffusion film 100 shown in FIG. 1 according to the present invention includes a base film 101, a light diffusion layer 102 laminated on the base film 101, and an overcoat layer 105 laminated on the light diffusion layer 102. Is provided.
- the light diffusion layer 102 is a layer having the first light-transmitting resin 103 as a base material, and the light-transmitting fine particles 104 dispersed in the first light-transmitting resin 103 and the first light-transmitting resin 103. And formed from.
- the light diffusion layer 102 is typically a layer having an uneven shape on the surface.
- the overcoat layer 105 is a layer formed of a second light-transmitting resin that is laminated on the light diffusion layer 102 so as to fill the concave portions of the surface unevenness of the light diffusion layer 102.
- the surface of the overcoat layer 105 is preferably a smooth surface (centerline average roughness Ra is 0.1 ⁇ m or less).
- the base film 101 only needs to be translucent, and for example, glass and plastic films can be used.
- the plastic film only needs to have appropriate transparency and mechanical strength. Specific examples include cellulose acetate resins such as TAC (triacetyl cellulose); polyester resins such as acrylic resins, polycarbonate resins, and polyethylene terephthalate; polyolefin resins such as polyethylene and polypropylene.
- the thickness of the base film 101 is, for example, 10 to 500 ⁇ m, preferably 20 to 300 ⁇ m.
- the light diffusion film 100 of the present invention includes a light diffusion layer 102 laminated on a base film 101.
- the light diffusion layer 102 is a layer having the first translucent resin 103 as a base material, and the first translucent resin 103 and the translucent fine particles dispersed in the first translucent resin 103. 104.
- the light diffusion film 100 may have another layer (including an adhesive layer) between the base film 101 and the light diffusion layer 102.
- the first translucent resin 103 is not particularly limited as long as it has translucency.
- the activity of an ultraviolet curable resin, an electron beam curable resin, etc. A cured product of an energy beam curable resin and a thermosetting resin, a cured product of a thermoplastic resin, a cured product of a metal alkoxide, or the like can be used.
- an active energy ray-curable resin is preferable because it has high hardness and can impart high scratch resistance as a light diffusion film provided on the surface of the image display device.
- the first light-transmitting resin 103 is formed by curing the resin by irradiation or heating with an active energy ray.
- the active energy ray-curable resin can contain a polyfunctional (meth) acrylate compound.
- the polyfunctional (meth) acrylate compound is a compound having at least two (meth) acryloyloxy groups in the molecule.
- polyfunctional (meth) acrylate compound examples include, for example, ester compounds of polyhydric alcohol and (meth) acrylic acid, urethane (meth) acrylate compounds, polyester (meth) acrylate compounds, epoxy (meth) acrylate compounds, and the like. And a polyfunctional polymerizable compound containing two or more (meth) acryloyl groups.
- polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, propanediol, butanediol, and pentanediol.
- Divalent alcohols such as hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, 2,2′-thiodiethanol, 1,4-cyclohexanedimethanol; trimethylolpropane, glycerol, pentaerythritol , Trihydric or higher alcohols such as diglycerol, dipentaerythritol and ditrimethylolpropane.
- Divalent alcohols such as hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, 2,2′-thiodiethanol, 1,4-cyclohexanedimethanol; trimethylolpropane, glycerol, pentaerythritol , Trihydric or higher alcohols such as diglycerol, dipentaerythritol and ditrimethylolpropane.
- esterified products of polyhydric alcohol and (meth) acrylic acid include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and neopentyl glycol.
- Examples of the urethane (meth) acrylate compound include urethanization reaction products of an isocyanate having a plurality of isocyanate groups in one molecule and a (meth) acrylic acid derivative having a hydroxyl group.
- Examples of organic isocyanates having a plurality of isocyanate groups in one molecule include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, and the like.
- Organic isocyanate having a group organic isocyanate having three isocyanate groups in one molecule, such as isocyanurate-modified, adduct-modified, biuret-modified, etc.
- examples of the (meth) acrylic acid derivative having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- Examples include hydroxy-3-phenoxypropyl (meth) acrylate and pentaerythritol triacrylate.
- the polyester (meth) acrylate compound is a polyester (meth) acrylate obtained by reacting a hydroxyl group-containing polyester with (meth) acrylic acid.
- the hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction between a polyhydric alcohol and a carboxylic acid or a compound having a plurality of carboxyl groups and / or an anhydride thereof.
- the polyhydric alcohol include the same compounds as those described above.
- bisphenol A etc. are mentioned as phenols other than a polyhydric alcohol.
- the carboxylic acid include formic acid, acetic acid, butyl carboxylic acid, benzoic acid and the like.
- the compounds having a plurality of carboxyl groups and / or their anhydrides include maleic acid, phthalic acid, fumaric acid, itaconic acid, adipic acid, terephthalic acid, maleic anhydride, phthalic anhydride, trimellitic acid, cyclohexanedicarboxylic anhydride Thing etc. are mentioned.
- Ester compounds such as (meth) acrylate, tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate; hexamethylene diisocyanate and 2- Adduct of hydroxyethyl (meth) acrylate; adduct of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate; tolylene diisocyanate and 2-hydroxyethyl (meth) acrylate Adducts of over preparative; adduct-modified isophorone diisocyanate with 2-adduct of hydroxyethyl (meth) acrylate; adducts of, and biuret-modified isophorone diisocyanate with 2-hydroxyethyl (meth) acrylate.
- the active energy ray-curable resin preferably contains a urethane (meth) acrylate compound because it exhibits good flexibility (a property showing flexibility) when it is thickened.
- a urethane (meth) acrylate compound because it exhibits good flexibility (a property showing flexibility) when it is thickened.
- the active energy ray-curable resin may contain a monofunctional (meth) acrylate compound in addition to the polyfunctional (meth) acrylate compound.
- monofunctional (meth) acrylate compounds include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-hydroxyethyl (meth) ) Acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine N-vinylpyrrolidone, tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethy
- the active energy ray curable resin may contain a polymerizable oligomer.
- the polymerizable oligomer is, for example, the polyfunctional (meth) acrylate compound, that is, an ester compound of a polyhydric alcohol and (meth) acrylic acid, a urethane (meth) acrylate compound, a polyester (meth) acrylate compound, or an epoxy (meth). It can be an oligomer such as a dimer, trimer or the like such as an acrylate.
- urethane (meth) acrylate obtained by reaction of polyisocyanate having at least two isocyanate groups in the molecule and polyhydric alcohol having at least one (meth) acryloyloxy group.
- polyisocyanate examples include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate polymer, and the like.
- polyhydric alcohol having at least one (meth) acryloyloxy group Hydroxyl group-containing (meth) acrylic acid ester obtained by esterification reaction of alcohol and (meth) acrylic acid, wherein polyhydric alcohol is, for example, 1,3-butanediol, 1,4-butanediol, 1,6 -Hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, trimethylolpropane, glycerin, pentaerythritol, di Include those which is pentaerythritol and the like.
- polyhydric alcohol is, for example, 1,3-butanediol, 1,4-butanediol, 1,6 -Hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, trimethylolpropane
- this polyhydric alcohol having at least one (meth) acryloyloxy group a part of the alcoholic hydroxyl group of the polyhydric alcohol is esterified with (meth) acrylic acid, and the alcoholic hydroxyl group is present in the molecule. It remains.
- a polyhydric alcohol having at least one (meth) acryloyloxy group is an organic compound having at least one (meth) acryloyloxy group.
- Acrylate oligomers examples of the compound having a plurality of carboxyl groups and / or anhydrides thereof are the same as those described as the polyester (meth) acrylate of the polyfunctional (meth) acrylate compound.
- the polyhydric alcohol having at least one (meth) acryloyloxy group include those described as the urethane (meth) acrylate oligomer.
- examples of urethane (meth) acrylate oligomers are obtained by reacting isocyanates with hydroxyl groups of a hydroxyl group-containing polyester, a hydroxyl group-containing polyether or a hydroxyl group-containing (meth) acrylic acid ester.
- the hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction between a polyhydric alcohol and a carboxylic acid or a compound having a plurality of carboxyl groups and / or an anhydride thereof.
- Examples of the polyhydric alcohol and the compound having a plurality of carboxyl groups and / or anhydrides thereof are the same as those described as the polyester (meth) acrylate compound of the polyfunctional (meth) acrylate compound.
- the hydroxyl group-containing polyether preferably used is a hydroxyl group-containing polyether obtained by adding one or more alkylene oxides and / or ⁇ -caprolactone to a polyhydric alcohol.
- the polyhydric alcohol may be the same as that which can be used for the hydroxyl group-containing polyester.
- Examples of the hydroxyl group-containing (meth) acrylic acid ester preferably used include the same as those described as the polymerizable oligomer urethane (meth) acrylate oligomer.
- isocyanates compounds having one or more isocyanate groups in the molecule are preferable, and divalent isocyanate compounds such as tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable.
- polymerizable oligomer compounds can be used alone or in combination of two or more.
- thermosetting resins examples include phenolic resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicone resins, in addition to thermosetting urethane resins prepared from acrylic polyols and isocyanate prepolymers.
- thermoplastic resins include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof, and the like.
- Acetal resins such as polyvinyl formal and polyvinyl butyral; Acrylic resins and copolymers thereof, Acrylic resins such as methacrylic resins and copolymers; Polystyrene resins; Polyamide resins; Polyester resins; Polycarbonate resins Etc.
- a silicon oxide matrix made of a silicon alkoxide material can be used. Specifically, it is tetramethoxysilane, tetraethoxysilane, or the like, and can be made into an inorganic or organic-inorganic composite matrix (first translucent resin) by hydrolysis or dehydration condensation.
- the translucent fine particles 104 are not particularly limited as long as they have translucency, and conventionally known ones can be used.
- organic fine particles made of acrylic resin, melamine resin, polyethylene, polystyrene, organic silicone resin, acrylic-styrene copolymer, calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, glass, etc.
- inorganic fine particles Organic polymer balloons and glass hollow beads can also be used. These fine particles may be used alone or in combination of two or more.
- the shape of the translucent fine particles 104 may be any of a spherical shape, a flat shape, a plate shape, a needle shape, an indefinite shape, etc., but a spherical shape or a substantially spherical shape is preferable.
- the weight average particle diameter of the translucent fine particles 104 is not particularly limited, but is preferably 0.5 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 15 ⁇ m. If the weight average particle size is less than 0.5 ⁇ m, the internal haze cannot be sufficiently exhibited, the light diffusibility becomes insufficient, and as a result, it may be difficult to obtain a wide viewing angle. On the other hand, when the weight average particle diameter exceeds 20 ⁇ m, the light diffusibility becomes excessively large, and the front contrast may be easily lowered. In addition, the weight average particle diameter of the translucent fine particles 104 is measured using a Coulter multisizer (manufactured by Beckman Coulter, Inc.) using the Coulter principle (pore electrical resistance method).
- the content of the translucent fine particles 104 in the light diffusion layer 102 is preferably 3 to 60 parts by weight with respect to 100 parts by weight of the first translucent resin 103, and 5 to 50 parts by weight. It is more preferable that When the content of the light transmissive fine particles 104 is less than 3 parts by weight with respect to 100 parts by weight of the first light transmissive resin 103, the light diffusibility of the light diffusing film 100 becomes insufficient and a wide viewing angle is obtained. It may be difficult to be confused. In addition, when the content of the translucent fine particles 104 exceeds 60 parts by weight with respect to 100 parts by weight of the first translucent resin 103, the light diffusibility becomes excessively large and the front contrast tends to be lowered. There is. Further, the transparency of the light diffusion film 100 may be easily lost.
- the absolute value of the difference between the refractive index of the translucent fine particles 104 and the refractive index of the first translucent resin 103 is preferably 0.04 to 0.15. Thereby, moderate internal haze (hence appropriate light diffusibility) can be obtained.
- the thickness of the light diffusion layer refers to the maximum thickness from the surface of the light diffusion layer 102 that contacts the base film 101 to the opposite surface. Therefore, when the light diffusion layer 102 has irregularities in the light diffusion film 100 of the present invention, the thickest portion corresponding to A shown in FIG. 1 is the thickness of the light diffusion layer 102.
- the thickness A of the light diffusion layer 102 is preferably 1 ⁇ m to 30 ⁇ m. When the thickness A of the light diffusing layer 102 is less than 1 ⁇ m, sufficient scratch resistance required for the light diffusing film 100 disposed on the viewing side surface of the liquid crystal display device may not be provided.
- the thickness of the light diffusion layer 102 is 1 ⁇ m or more. It does not have to be.
- the center line average roughness Ra according to JIS B 0601 on the surface of the light diffusion layer 102 is not particularly limited. In order to prevent the thickness from becoming excessively large, the thickness is preferably 0.5 ⁇ m or less, and more preferably 0.2 ⁇ m or less.
- the centerline average roughness Ra in accordance with JIS B 0601 is the reference curve l is extracted from the roughness curve in the direction of the average line, and the x-axis is plotted in the direction of the average line of the extracted portion.
- Centerline average roughness Ra is a program software that can calculate Ra based on the above formula (1) using a confocal interference microscope (for example, “PL ⁇ 2300” manufactured by Optical Solution Co., Ltd.) in accordance with JIS B 0601. Can be calculated.
- the light diffusing film 100 of the present invention has an overcoat layer 105 having a predetermined surface reflection characteristic to be described later, which is laminated on the light diffusing layer 102 so as to fill the concaves and convexes on the surface of the light diffusing layer 102. Lamination of the light diffusion film 100 can be effectively prevented by laminating the overcoat layer 105 that imparts predetermined surface reflection characteristics to the light diffusion film on the light diffusion layer 102.
- the overcoat layer 105 is a layer made of the second light-transmitting resin, and has substantially no internal haze in order to avoid that the light diffusion property imparted to the light diffusion layer 102 deviates from the designed range. It is preferable. That is, the light-diffusing property is imparted only to the light-diffusing layer 102 without imparting light-diffusing property to the overcoat layer 105, while only the surface reflection property is imparted to the over-coating layer 105. And surface reflection characteristics are preferably controlled independently of each other. This makes it possible to easily design and manufacture a light diffusion film that can obtain high front contrast and wide viewing angle characteristics and can effectively prevent the occurrence of whitening.
- the overcoat layer 105 preferably does not contain these internal haze expression factors.
- the second translucent resin constituting the overcoat layer 105 those described above for the first translucent resin 103 can be similarly used.
- the absolute value of the difference between the refractive index of the first translucent resin 103 and the refractive index of the second translucent resin is preferably 0.02 or less, and preferably 0.01 or less. More preferred. If the difference in refractive index is large, light diffusion at the interface between the light diffusion layer 102 and the overcoat layer 105 cannot be ignored, and it becomes difficult to control the light diffusion characteristics and the surface reflection characteristics independently. It may be difficult to obtain diffusion characteristics.
- the thickness of the overcoat layer refers to the minimum thickness from the surface of the overcoat layer 105 (the surface opposite to the light diffusion layer 102) to the surface in contact with the light diffusion layer 102. Therefore, when the light diffusion layer 102 has irregularities in the light diffusion film 100 of the present invention, the thinnest portion corresponding to B shown in FIG.
- the thickness B of the overcoat layer 105 is not particularly limited as long as the concave and convex portions on the surface of the light diffusion layer 102 can be filled, but is preferably 1 ⁇ m to 10 ⁇ m, more preferably 2 ⁇ m to 9 ⁇ m.
- the thickness B of the overcoat layer 105 is less than 1 ⁇ m, the influence of surface irregular reflection due to the surface unevenness of the light diffusion layer 102 cannot be completely eliminated, and there is a possibility that whitening is likely to occur. Moreover, when thickness B exceeds 10 micrometers, the quantity of the curl which generate
- the center line average roughness Ra according to JIS B 0601 on the surface of the overcoat layer 105 is to obtain predetermined surface reflection characteristics (reflectances R 30 and R 40 ) described later. Preferably, it is 0.1 ⁇ m or less. In addition, by adjusting the center line average roughness Ra within this range, reflection of external light can be more effectively prevented when an antireflection layer is provided on the overcoat layer 105.
- the light diffusion film 100 of the present invention has a reflection angle when laser light having a wavelength of 543.5 nm is incident on the light diffusion film at an incident angle of 30 ° from the overcoat layer 105 side.
- the reflectance R 30 of the light diffusion film at 30 ° is 2% to 5%, preferably 3% to 5%
- the reflectance R 40 of the light diffusion film at a reflection angle of 40 ° is 0.0001% or less, preferably 0.00008% or less.
- the reflectance R 30 exceeds 5%, reflection due to surface reflection cannot be sufficiently suppressed, and visibility is deteriorated. On the other hand, when the reflectance R 30 is less than 2%, the front contrast is lowered. On the other hand, if the reflectance R 40 exceeds 0.0001%, whitening occurs and visibility decreases.
- FIG. 2 is a diagram for explaining the reflectance R 30 and the reflectance R 40 , and is a perspective view schematically showing the incident direction and the reflecting direction of the laser light from the overcoat layer 105 side.
- a laser beam 205 He ⁇ from a direction inclined by 30 ° with respect to the normal line 202 of the light diffusion film 200 on the overcoat layer 105 side of the light diffusion film 200 (in the positive direction side of the Z axis in FIG. 2).
- Ne laser parallel light (wavelength: 543.5 nm) is incident and reflected in a direction inclined by ⁇ ° from the normal line 202 to the opposite side of the incident light 205 in a plane 209 including the incident light 205 and the normal line 202.
- the intensity of the reflected light 206 is measured.
- the ratio of the thickness of the light diffusion layer to the particle diameter of the light-transmitting fine particles, the thickness of the overcoat layer, and the like may be adjusted.
- the optical power meter (for example, “3292 03 Optical Power Sensor” manufactured by Yokogawa Electric Corporation and “3292 Optical Power Meter” manufactured by the same company) can be used for the reflectance measurement.
- an optically transparent adhesive is used to eliminate the possibility that reflection from the back of the light diffusing film will affect the measured value and to prevent warping of the light diffusing film.
- the reflectances R 30 and R 40 in the state where the overcoat layer 105 is not laminated on the light diffusion layer 102 are 0.05 respectively. % To 2%, preferably 0.0001% to 0.1%.
- the light diffusing film of the present invention has a relative scattered light when a laser beam having a wavelength of 543.5 nm is incident on the light diffusing film from the base film 101 side in the normal direction of the light diffusing film.
- the strength T 40 is preferably 0.00008% to 0.001%, and more preferably 0.0001% to 0.0006%.
- the relative scattered light intensity T 40 is to the intensity of the laser beam with a wavelength of 543.5nm entering the light diffusion film, the overcoat layer 105 side of the light diffusion film, the normal from 40 ° inclined direction of the light diffusing film This is the ratio of the intensity of the emitted laser light.
- FIG. 3 shows a case where laser light is incident from the base film side in the normal direction of the light diffusion film and the transmitted scattered light intensity of the laser light transmitted in the direction inclined by 40 ° from the normal line is measured on the overcoat layer side. It is a perspective view which shows typically the incident direction of a laser beam, and the direction of the transmitted scattered light which measures light intensity.
- laser light He—Ne
- FIG. 3 laser light (He—Ne) is applied to the light diffusing film 300 from the base film 101 side of the light diffusing film 300 (in the negative direction side of the Z axis in FIG. 3) to the normal 301 direction of the light diffusing film.
- the parallel light of the laser, the wavelength 543.5 nm) is incident, and the light diffusing film 300 is over in the plane 309 including the tangent 305 of the light diffusing film 300 and the normal 302 on the overcoat layer 105 side of the light diffusing film 300.
- the intensity of laser light emitted from the coat layer 105 side in a direction 303 inclined by 40 ° from the normal 302 of the light diffusion film 300, that is, the intensity of transmitted scattered light is measured.
- Value obtained by dividing the light intensity of the intensity of the transmitted scattered light source is a relative scattered light intensity T 40.
- the particle size of the translucent particles, the ratio of the particle diameter of thickness and the transparent fine particles of the light diffusing layer, the refractive index difference between the light diffusing layer and the transparent fine particles, light The difference in refractive index between the diffusion layer and the overcoat layer, the thickness of the overcoat layer, and the like may be adjusted.
- an optical power meter for example, “3292 03 Optical Power Sensor” manufactured by Yokogawa Electric Co., Ltd. and “3292 Optical Power Meter” manufactured by the same company can be used.
- the scattered light intensity T 40 is measured by using an optically transparent adhesive and bonding the light diffusing film to the glass substrate on the base film side. Is preferably used as a measurement sample, thereby improving measurement accuracy and measurement reproducibility.
- the relative scattered light intensity T 40 in the state where the overcoat layer 105 is not laminated on the light diffusion layer 102 is 0.00008% to 0.001% as in the case where the overcoat layer 105 is laminated. It is preferable that
- Reflection sharpness The light diffusion film of the present invention is obtained through optical combs having widths of 0.5 mm, 1.0 mm and 2.0 mm, respectively, that is, the sum of reflection sharpness measured using an optical comb ( Hereinafter, it is preferably simply “reflection sharpness”) of 200% or more, and preferably 300% or less. “The sum of reflection sharpness measured using optical combs of 0.5 mm, 1.0 mm and 2.0 mm” is based on JIS K 7105, and the ratio of the width between the dark part and the bright part is 1: 1. The sum of reflection sharpness (image sharpness) measured using three types of optical combs whose widths are 0.5 mm, 1.0 mm, and 2.0 mm. Therefore, the maximum value of “reflection sharpness” here is 300%.
- the reflection definition of the light diffusing film is more preferably 240% to 300%. In order to adjust the reflection definition, the ratio of the thickness of the light diffusion layer to the particle diameter of the light-transmitting fine particles, the thickness of the overcoat layer, etc. may be adjusted.
- the measurement of reflection definition can be performed on a measurement sample in which a light diffusion film is bonded to a black plate on the base film 101 side using an optically transparent adhesive.
- a measuring device a image clarity measuring device (for example, “ICM-1DP” manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K 7105 can be used.
- the reflection sharpness in the state where the overcoat layer 105 is not laminated on the light diffusion layer 102 is preferably 10% to 150%.
- the light diffusion film of the present invention is obtained through optical combs having a width of 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm, respectively, that is, transmission sharpness measured using an optical comb.
- the sum of degrees (hereinafter simply referred to as “transmission definition”) is preferably 70% to 230%.
- “Sum of transmitted sharpness measured using optical combs of 0.125 mm, 0.5 mm, 1.0 mm and 2.0 mm” is based on JIS K 7105, and the ratio of the width of the dark part to the bright part Is the sum of transmitted sharpness (image sharpness) measured using four types of optical combs having a width of 1: 1 and a width of 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm. Therefore, the maximum value of “transmission definition” here is 400%.
- the transmission definition of the light diffusion film is less than 70%, light scattering is too strong. Therefore, when this light diffusion film is applied to a liquid crystal display device, for example, in white display, light in the front direction of the liquid crystal display device is light. The front contrast tends to decrease due to causes such as excessive scattering by the diffusion layer, and the display quality tends to deteriorate. Also, when the transmitted sharpness exceeds 230%, transmitted light moiré occurs due to interference between the uneven surface structure of the prism film on the backlight side of the liquid crystal display device and the regular matrix structure of the color filter of the liquid crystal cell. Tend to.
- the transmission definition of the light diffusion film is more preferably 70% to 200%, and still more preferably 90% to 200%.
- the particle diameter of the light-transmitting fine particles To adjust the transmission clarity, the particle diameter of the light-transmitting fine particles, the ratio of the thickness of the light diffusion layer to the particle diameter of the light-transmitting fine particles, the difference in refractive index between the light diffusion layer and the light-transmitting fine particles, What is necessary is just to adjust thickness etc.
- FIG. 1 To adjust the transmission clarity, the particle diameter of the light-transmitting fine particles, the ratio of the thickness of the light diffusion layer to the particle diameter of the light-transmitting fine particles, the difference in refractive index between the light diffusion layer and the light-transmitting fine particles, What is necessary is just to adjust thickness etc.
- the measurement of the transmission clarity is performed on a measurement sample in which a light diffusion film is bonded to a glass substrate on the base film 101 side using an optically transparent adhesive. It is preferable. Thereby, the curvature of the film at the time of a measurement can be prevented, and measurement reproducibility can be improved.
- a image clarity measuring device for example, “ICM-1DP” manufactured by Suga Test Instruments Co., Ltd.
- JIS K 7105 JIS K 7105
- the transmission sharpness in the state where the overcoat layer 105 is not laminated on the light diffusion layer 102 is preferably 50% to 200%.
- the light diffusion film of the present invention preferably has a total haze of 40% to 70% and an internal haze of 40% to 70%. Moreover, it is preferable that the surface haze resulting from the shape of the surface of the overcoat layer 105 (surface opposite to the light diffusion layer 102) is less than 1%.
- total haze refers to the total light transmittance (Tt) representing the total amount of light transmitted through irradiation of the light diffusing film and the diffused light transmittance (Td) diffused and transmitted by the light diffusing film.
- Total haze (%) (Td / Tt) ⁇ 100 (2) Is required.
- the total light transmittance (Tt) is the sum of the parallel light transmittance (Tp) and the diffuse light transmittance (Td) that are transmitted coaxially with the incident light.
- the total light transmittance (Tt) and the diffused light transmittance (Td) are values measured in accordance with JIS K 7361.
- the “internal haze” of the light diffusing film is a haze other than the haze (surface haze) caused by the surface shape of the overcoat layer 105 among all the hazes.
- the total haze and / or internal haze are each preferably 45% to 65%.
- the particle diameter of the light transmissive fine particles, the ratio of the thickness of the light diffusing layer to the particle diameter of the light transmissive fine particles, the refractive index difference between the light diffusing layer and the light transmissive fine particles, the light diffusion may be adjusted.
- the surface haze due to the surface shape of the overcoat layer 105 exceeds 1%, there is a tendency for whitening to occur due to surface irregular reflection.
- the surface haze is preferably 0.9% or less.
- the ratio of the thickness of the light diffusion layer and the particle diameter of the light-transmitting fine particles, the thickness of the overcoat layer, etc. may be adjusted.
- the total haze, internal haze, and surface haze of the light diffusion film are specifically measured as follows. That is, first, in order to prevent warping of the film, the light diffusion film is bonded to the glass substrate with the optically transparent adhesive so that the overcoat layer 105 becomes the surface. A measurement sample is prepared, and the total haze value of the measurement sample is measured. For the total haze value, the total light transmittance (Tt) and diffuse light transmittance are measured using a haze transmittance meter (for example, a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with JIS K 7136. The rate (Td) is measured and calculated by the above equation (2).
- a haze transmittance meter for example, a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.
- a triacetyl cellulose film having a haze of approximately 0% is bonded to the surface of the overcoat layer 105 using glycerin, and the haze is measured in the same manner as the measurement of the total haze described above.
- the total haze and the internal haze when the overcoat layer 105 is not laminated on the light diffusion layer 102 are both 40% to 70%, as in the case where the overcoat layer 105 is laminated. preferable.
- the light-diffusion film of this invention can be suitably manufactured by the method containing the following process (A) and (B). As will be described later, the steps (A) and (B) can be performed simultaneously.
- a step of forming the light diffusion layer 102 on the base film 101 (B) A step of forming an overcoat layer 105 on the light diffusion layer 102.
- the translucent fine particles 104, the first translucent resin 103 or a resin forming the same for example, active energy ray curable resin, thermosetting resin, thermoplastic resin or metal alkoxide
- a resin liquid containing other components such as a solvent such as an organic solvent, a leveling agent, a dispersant, an antistatic agent, and an antifouling agent is prepared as necessary.
- the resin liquid further contains a photopolymerization initiator (radical polymerization initiator).
- photopolymerization initiator examples include acetophenone photopolymerization initiator, benzoin photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone photopolymerization initiator, triazine photopolymerization initiator, and oxadiazole photopolymerization initiator. An initiator or the like is used.
- photopolymerization initiator examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2 '-Biimidazole, 10-butyl-2-chloroacridone, 2-ethylanthraquinone, benzyl, 9,10-phenanthrenequinone, camphorquinone, methyl phenylglyoxylate, titanocene compounds and the like can also be used.
- the amount of the photopolymerization initiator used is usually 0.5 to 20 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the resin contained in the resin liquid.
- organic solvents examples include aliphatic hydrocarbons such as hexane, cyclohexane, and octane; aromatic hydrocarbons such as toluene and xylene; alcohols such as ethanol, 1-propanol, isopropanol, 1-butanol, and cyclohexanol; methyl ethyl ketone, methyl isobutyl Ketones such as ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate and isobutyl acetate; glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether Ethers; ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, etc.
- aliphatic hydrocarbons such
- These solvents may be used alone or as a mixture of several kinds as required. After coating, it is necessary to evaporate the organic solvent. Therefore, the boiling point of the organic solvent is desirably in the range of 60 ° C to 160 ° C.
- the saturated vapor pressure of the organic solvent at 20 ° C. is preferably in the range of 0.1 kPa to 20 kPa.
- the dispersion of the translucent fine particles 104 in the resin liquid is preferably isotropic dispersion.
- Application of the resin liquid onto the base film 101 can be performed by, for example, a gravure coating method, a micro gravure coating method, a rod coating method, a knife coating method, an air knife coating method, a kiss coating method, a die coating method, or the like. .
- Various surface treatments may be applied to the surface of the base film 101 (surface on the light diffusion layer 102 side) for the purpose of improving the coating property of the resin liquid or improving the adhesion to the light diffusion layer 102.
- the surface treatment include corona discharge treatment, glow discharge treatment, acid surface treatment, alkali surface treatment, and ultraviolet irradiation treatment.
- another layer such as a primer layer may be formed on the base film 101, and the resin liquid may be applied on the other layer.
- the surface it is also preferable to hydrophilize the surface on the side opposite to the diffusion layer 102 by various surface treatments.
- the light diffusion layer 102 is formed by fixing the coating layer on the base film 101. Specifically, when an active energy ray curable resin, a thermosetting resin, or a metal alkoxide is used as the resin that forms the first translucent resin 103, drying (removal of the solvent) was performed as necessary. Thereafter, the coating layer is cured by irradiating the coating layer with active energy rays (when using an active energy ray-curable resin) or heating (when using a thermosetting resin or metal alkoxide). .
- the active energy ray can be appropriately selected from ultraviolet rays, electron beams, near ultraviolet rays, visible rays, near infrared rays, infrared rays, X-rays, etc., depending on the type of resin contained in the resin liquid.
- An electron beam is preferable, and ultraviolet rays are particularly preferable because of easy handling and high energy.
- a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon arc lamp, or the like can be used.
- An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used.
- an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon arc lamp, and a metal halide lamp are preferably used.
- the electron beam 50 to 1000 keV emitted from various electron beam accelerators such as Cockloft Walton type, Bande graph type, resonance transformation type, insulation core transformation type, linear type, dynamitron type, and high frequency type, preferably 100 Mention may be made of electron beams having an energy of ⁇ 300 keV.
- various electron beam accelerators such as Cockloft Walton type, Bande graph type, resonance transformation type, insulation core transformation type, linear type, dynamitron type, and high frequency type, preferably 100 Mention may be made of electron beams having an energy of ⁇ 300 keV.
- the coating layer is softened after drying (removing the solvent) as necessary or drying as necessary.
- the light diffusion layer 102 can be formed by melting and then cooling the coating layer.
- an ultraviolet curable resin for example, a step of continuously feeding a base film 101 wound in a roll shape, a resin liquid containing translucent fine particles 104 and an ultraviolet curable resin as a base film Coating on 101, drying as necessary, curing the coating layer to form the light diffusion layer 102, and winding the substrate film 101 on which the light diffusion layer 102 is formed
- the light diffusing layer 102 can be continuously formed by the method including this. Note that when the overcoat layer 105 is performed subsequent to or simultaneously with the formation of the light diffusion layer 102, a winding step is not necessary.
- the base film 101 is continuously unwound by the unwinding device.
- a resin liquid containing the translucent fine particles 104 and the ultraviolet curable resin is applied onto the unwound base film 101 using a coating apparatus and a backup roll facing the coating apparatus.
- the resin liquid contains a solvent, it is dried by passing it through a dryer.
- the coating layer is cured by irradiating the substrate film 101 provided with the coating layer with ultraviolet rays from an ultraviolet irradiation device in a state where the substrate film 101 side is in contact with the backup roll.
- the backup roll preferably includes a cooling device for adjusting the surface temperature of the backup roll to about room temperature to 80 ° C. Further, one or a plurality of ultraviolet irradiation devices can be used.
- the base film 101 on which the light diffusion layer 102 obtained as described above is formed is wound up by a winding device. At this time, for the purpose of protecting the light diffusing layer 102, it may be wound up with a protective film made of polyethylene terephthalate, polyethylene, or the like attached to the surface of the light diffusing layer 102 through a pressure-sensitive adhesive layer having removability. Good.
- the step (B) will be described.
- a second light-transmitting resin or a resin forming the same for example, active energy ray curing
- a resin liquid containing a mold resin, a thermosetting resin, a thermoplastic resin, or a metal alkoxide) is applied onto the light diffusion layer 102 and dried as necessary, and then the application layer is fixed onto the light diffusion layer 102.
- the resin liquid is a solvent such as an organic solvent, a leveling agent, a dispersant, an antistatic agent, an antifouling agent, a photopolymerization initiator (radical polymerization initiator), etc. Of other ingredients.
- the coating method of the resin liquid, the fixing method of the coating layer to the light diffusion layer 102 (for example, the curing method in the case of using an ultraviolet curable resin), and the like are the same as in the case of forming the light diffusion layer 102 described above. It's okay. Further, in order to obtain an overcoat layer 105 having higher surface smoothness, the coating layer may be fixed to the light diffusion layer 102 in a state where the mirror surface of the mold is pressed against the surface of the coating layer.
- the light diffusion layer 102 and the overcoat layer 105 can be simultaneously laminated on the base film 101.
- a method for laminating at the same time a method using a coating device having two coaters in one pass line, or a coater capable of two-layer simultaneous coating with two slits in one coater. Mention may be made of the methods used. Examples of such a coater include a multilayer slot die coater, a multilayer slide coater, and a multilayer curtain coater.
- the light diffusing film 100 is dried in the same manner as described above, and then the two layers are fixed (cured, etc.). Can be obtained.
- an antireflection light diffusion film By further laminating an antireflection layer on the overcoat layer 105 (surface opposite to the light diffusion layer 102) of the light diffusion film of the present invention, an antireflection light diffusion film can be obtained.
- the antireflection light diffusing film includes the light diffusing film of the present invention and an antireflection layer laminated on the overcoat layer of the light diffusing film.
- the antireflection layer may be formed directly on the overcoat layer 105, or an antireflection film in which an antireflection layer is formed on a transparent film is separately prepared, and this is applied to the overcoat layer 105 using an adhesive or an adhesive. May be laminated.
- the antireflection layer is provided to reduce the reflectance as much as possible, and reflection on the display screen can be more effectively prevented by forming the antireflection layer.
- As the antireflection layer a low refractive index layer composed of a material lower than the refractive index of the overcoat layer 105; a high refractive index layer and a low refractive index composed of a material lower than the refractive index of the high refractive index layer And a laminated structure with a layer.
- a commercially available antireflection film can be used.
- reflectance R 30 of the anti-reflection light-diffusing film having an antireflection layer i.e., the reflectance R 30 of the surface of the antireflection layer is preferably 2% or less.
- the polarizing plate 400 of the present invention includes the polarizing film 41 and the light diffusion film 100 described above, and the light diffusion film 100 has the base film 101 side facing the polarizing film 41, that is, the overcoat layer 105.
- the base film 101 is laminated on the polarizing film 41 so that the base film 101 is closer to the polarizing film 41.
- the polarizing film 41 has a function of extracting linearly polarized light from incident light, and the type thereof is not particularly limited.
- a suitable polarizing film there can be mentioned a polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol resin.
- the polyvinyl alcohol-based resin include polyvinyl alcohol, which is a saponified product of vinyl acetate, partially formalized polyvinyl alcohol, and a saponified product of an ethylene / vinyl acetate copolymer.
- the dichroic dye iodine or a dichroic organic dye is used.
- a polyene-oriented film of a polyvinyl alcohol dehydrated product or a polyvinyl chloride dehydrochlorinated product can be the polarizing film 41.
- the thickness of the polarizing film 41 is usually about 5 to 80 ⁇ m.
- the polarizing plate of the present invention may be obtained by laminating the light diffusion film 100 of the present invention on one side or both sides (usually one side) of the polarizing film 41. As shown in FIG.
- the transparent protective layer 42 may be laminated on one surface of 41, and the light diffusion film 100 of the present invention may be laminated on the other surface. At this time, the light diffusion film 100 also has a function as a transparent protective layer of the polarizing film 41.
- the light diffusion layer 102 also has a function as an antiglare layer.
- the transparent protective layer 42 can be formed on the polarizing film 41 by a method of pasting a transparent resin film using an adhesive or the like, a method of applying a transparent resin-containing coating liquid, or the like.
- the light diffusion film 100 of the present invention can be bonded to the polarizing film 41 using an adhesive or the like.
- the transparent resin film used as the transparent protective layer 42 is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, and the like.
- a transparent resin film include triacetyl cellulose, diacetyl cellulose, cellulose acetate Cellulose resins such as cellulose acetate such as pionate; polycarbonate resins; (meth) acrylic resins such as polyacrylate and polymethyl methacrylate; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; chains such as polyethylene and polypropylene Examples thereof include a film formed from a glassy polyolefin resin; a cyclic polyolefin resin; a styrene resin; a polysulfone; a polyether sulfone; a polyvinyl chloride resin.
- These transparent resin films may be optically isotropic, or have optical anisotropy for the purpose of compensating the viewing angle when incorporated in an image display device. Also good.
- the image display device of the present invention is a combination of the polarizing plate 400 of the present invention and an image display element that displays various information on a screen.
- FIG. 5 is a schematic diagram showing an example of the image display device 500 according to the present invention.
- the image display device 500 of FIG. 5 includes a backlight device 52, an image display element 51, and the polarizing plate 400 of the present invention in this order.
- the kind of the image display device 500 of the present invention using the image display element is not particularly limited, and in addition to a liquid crystal display (LCD) using a liquid crystal panel, a cathode ray tube display or plasma display panel using a cathode ray tube (CRT).
- LCD liquid crystal display
- CRT cathode ray tube
- the screen including the polarizing plate 400 of the present invention and the projector television including the image display element may be combined to form the image display apparatus of the present invention.
- the polarizing plate 400 has the overcoat layer 105 on the outside, that is, the polarizing film 41 than the overcoat layer 105. It is arranged on the liquid crystal cell so that is closer to the liquid crystal cell.
- the polarizing plate 400 may be disposed on the viewing side of the image display element 51, may be disposed on the backlight device 52 side, or may be disposed on both.
- the polarizing plate 400 When the polarizing plate 400 is arranged on the viewing side, that is, when the light diffusing film 100 is arranged on the viewing side, the light diffusing film effectively prevents glare, reflection of external light, and whitish, and has a light diffusing function. Thus, the viewing angle and the like are improved while maintaining a sufficient front contrast.
- the polarizing plate 400 when the polarizing plate 400 is disposed on the backlight device side, that is, when the light diffusing film 100 is disposed on the backlight device 52 side, the light diffusing film 100 diffuses the light incident on the liquid crystal cell, and moire or the like. Functions as a diffusion plate (or diffusion sheet) to prevent.
- (A) Light Diffusion Layer and Overcoat Layer Thickness The thickness of the laminate formed from the base film on which the overcoat layer is not laminated and the light diffusion layer is measured by a contact-type film thickness meter [DIGIMICRO MH-15 manufactured by NIKON Corporation ( Main body) and ZC-101 (counter)], and the thickness of the light diffusion layer was measured by subtracting 80 ⁇ m of the thickness of the base film from this value. Moreover, the thickness of the light-diffusion film was measured using the same apparatus, and the thickness of the overcoat layer was measured by subtracting the thickness of the laminate formed from the base film and the light-diffusion layer from this value.
- DIGIMICRO MH-15 manufactured by NIKON Corporation ( Main body) and ZC-101 (counter)
- (C) Overcoat layer surface reflectivity R 30 and R 40 Using an optically transparent adhesive, measurement was performed using a measurement sample in which the light diffusion film was bonded to a black plate on the base film side. Parallel light of He—Ne laser (wavelength 543.5 nm) is incident from a direction inclined by 30 ° with respect to the normal line of the light diffusion film on the overcoat layer side of the measurement sample, and includes incident light and normal line. In the plane, the intensity of the reflected light reflected in the directions inclined by 30 ° and 40 ° on the opposite side to the incident light from the normal line is measured, and the reflectance is obtained by dividing each reflected light intensity by the light intensity of the light source. It was calculated R 30 and R 40. For measurement, a “3292 03 optical power sensor” manufactured by Yokogawa Electric Corporation and a “3292 optical power meter” manufactured by the same company were used.
- the light source for irradiating the He—Ne laser was disposed at a position of 430 mm from the black plate.
- a power meter which is a light receiver, was placed at a position 280 mm from the emission point of the laser beam on the overcoat layer, and the power meter was moved to the predetermined angle to measure the intensity of the reflected laser beam.
- (D) Relative scattered light intensity T 40 Using an optically transparent adhesive, measurement was performed using a measurement sample in which the light diffusion film was bonded to the glass substrate on the base film side. From the glass substrate surface side of the measurement sample, parallel light (wavelength 543.5 nm) of a He—Ne laser is incident in the normal direction of the light diffusion film, and the tangent line of the light diffusion film and the overcoat layer side of the light diffusion film are incident. Measure the intensity of transmitted and scattered light transmitted through the light diffusing film in a direction inclined by 40 ° from the normal in a plane including the normal, and calculate the relative scattering as the value obtained by dividing the intensity of the transmitted and scattered light by the light intensity of the light source. and it calculates the light intensity T 40. For measurement, a “3292 03 optical power sensor” manufactured by Yokogawa Electric Corporation and a “3292 optical power meter” manufactured by the same company were used.
- a light source for irradiating a He—Ne laser was disposed at a position of 430 mm from the glass substrate.
- a power meter which is a light receiver, was placed at a position 280 mm from the emission point of the laser light on the overcoat layer, and the power meter was moved to the predetermined angle to measure the intensity of transmitted scattered light.
- Example 1 Formation of light diffusion layer The following components were mixed to prepare an ultraviolet curable resin liquid for forming a light diffusion layer.
- [I] A mixture of 60 parts by weight of pentaerythritol triacrylate and 40 parts by weight of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate), totaling 100 parts by weight, [Ii] 40 parts by weight of polystyrene-based particles (weight average particle diameter: 6.9 ⁇ m, standard deviation: 1.3 ⁇ m), [Iii] 5 parts by weight of a photopolymerization initiator “Lucirin TPO” (manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide) [Iv] 80 parts by weight of diluting solvent (propylene glycol monomethyl ether).
- polyfunctional urethanized acrylate reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate
- the light diffusion layer forming resin solution is applied on a triacetyl cellulose (TAC) film (base film) having a thickness of 80 ⁇ m with a die coater so that the thickness after curing is about 10 ⁇ m. It formed and obtained the laminated body of a base film and a coating layer. After the obtained laminate is dried in a drying furnace, the base film and the light diffusion layer are obtained by irradiating ultraviolet rays so that the light integrated light amount in UVA is 400 mJ / cm 2 and curing the coating layer. A laminate was obtained. The thickness of the light diffusion layer was 10 ⁇ m.
- [I] A mixture of 60 parts by weight of pentaerythritol triacrylate and 40 parts by weight of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate), totaling 100 parts by weight, [Ii] 5 parts by weight of a photopolymerization initiator “Lucirin TPO” (manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide), [Iii] 100 parts by weight of diluting solvent (ethyl acetate).
- the overcoat layer forming resin solution is applied to the surface of the light diffusion layer of the laminate of the base film and the light diffusion layer by a die coater so that the thickness after curing is about 3 to 4 ⁇ m.
- a construction layer was formed. After the obtained laminate is dried in a drying furnace, the base film and the light diffusion layer are obtained by irradiating ultraviolet rays so that the light integrated light amount in UVA is 400 mJ / cm 2 and curing the coating layer. A light diffusion film which was a laminate with the overcoat layer was obtained. The thickness of the overcoat layer was 4.6 ⁇ m.
- Example 2 A light diffusing film was produced in the same manner as in Example 1 except that the overcoat layer-forming resin solution was applied so that the thickness after curing was about 7 to 8 ⁇ m. The thickness of the overcoat layer was 7.8 ⁇ m.
- Example 3 A light diffusion film was produced in the same manner as in Example 1 except that the blending amount of the polystyrene-based particles in the light diffusion layer forming resin liquid was changed to 20 parts by weight. The thickness of the overcoat layer was 2.5 ⁇ m.
- Example 4 A light diffusion film was produced in the same manner as in Example 2 except that the blending amount of the polystyrene-based particles in the light diffusion layer forming resin liquid was changed to 20 parts by weight. The thickness of the overcoat layer was 8.6 ⁇ m.
- the light diffusing film was bonded to a black plate on the base film side, visually observed in a bright room with a fluorescent lamp, and the degree of whitening was evaluated.
- the evaluation criteria are as follows. ⁇ : The light diffusion film does not look whitish and no whitening is observed. X: The light diffusion film looks whitish and whiteness is recognized.
- one prism film (the prism film closer to the backlight device) is arranged so that the direction of the ridgeline of the linear prism is substantially parallel to the transmission axis of the backlight-side polarizing plate, and the other prism
- the film (the prism film closer to the backlight side polarizing plate) was arranged so that the direction of the ridgeline of the linear prism was substantially parallel to the transmission axis of the viewing side polarizing plate described later.
- the viewing side polarizing plate is peeled off, and an iodine type polarizing plate (“TRW842AP7” manufactured by Sumitomo Chemical Co., Ltd.) is bonded to the liquid crystal cell so as to be crossed Nicol with respect to the backlight side polarizing plate.
- the light diffusing films prepared in Examples 1 to 4 or Comparative Examples 1 to 2 were bonded via an adhesive layer to form a viewing-side polarizing plate to obtain a liquid crystal display device.
- the obtained liquid crystal display device was activated in a dark room, and using a luminance meter BM5A type (manufactured by Topcon Co., Ltd.), the front luminance in the black display state and the white display state was measured, and the front contrast was calculated.
- the front contrast is a ratio of the front luminance in the white display state to the front luminance in the black display state.
- Plane including incident light (laser light) and normal of light diffusion film 301: base film side normal of light diffusion film, 302: overcoat layer side normal of light diffusion film, 303: light diffusion film A direction inclined by 40 ° from the normal line on the overcoat layer side, 305 ... a tangent line of the light diffusion film, 309 ... a plane including the tangent line of the light diffusion film and the normal line on the overcoat layer side, 400 ... a polarizing plate, 1 ... polarizing film, 42 ... transparent protective layer, 51 ... image display device, 52 ... backlight device.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
- Laminated Bodies (AREA)
Abstract
A light dispersion film (100), as well as a polarization plate in which the same is applied and an image display device, wherein the light dispersion film (100) comprises a substrate film (101), a light dispersion layer (102) layered on the substrate film (101), and an overcoat layer (105) layered on the light dispersion layer (102), the light dispersion layer (102) containing a first translucent resin (103) and translucent microparticles (104) dispersed in the first translucent resin (103), the overcoat layer (105) containing a second translucent resin, and, when a laser beam with a wavelength of 543.5nm is incident on the light dispersion film (100) from the overcoat layer (105) side at an angle of incidence of 30°, the reflectance (R30) of the light dispersion film (100) in an angle of reflection of 30° being 2%~5%, and the reflectance (R40) of the light dispersion film (100) in an angle of reflection of 40° being no more than 0.0001%.
Description
本発明は、基材フィルム上に光拡散層を備える光拡散フィルムに関する。また本発明は、当該光拡散フィルムを用いた偏光板および画像表示装置に関する。
The present invention relates to a light diffusion film provided with a light diffusion layer on a base film. The present invention also relates to a polarizing plate and an image display device using the light diffusion film.
近年、液晶表示装置は、携帯電話、パソコン用モニター、テレビ、液晶プロジェクタなどへの適用が急速に進んでいる。一般に、液晶表示装置は、TN(Twisted Nematic)モード、VA(Vertical Alignment)モード、IPS(In-Plane Switching)モードなどの表示モードで液晶を動作させて、該液晶を通過する光を電気的に制御して明暗の違いを画面上に表し、文字及び画像を表示する。
In recent years, liquid crystal display devices have been rapidly applied to mobile phones, personal computer monitors, televisions, liquid crystal projectors, and the like. Generally, a liquid crystal display device operates a liquid crystal in a display mode such as a TN (Twisted Nematic) mode, a VA (Vertical Alignment) mode, an IPS (In-Plane Switching) mode, and electrically transmits light passing through the liquid crystal. Control the difference between light and dark on the screen and display characters and images.
従来、液晶表示装置においては、表示画面を斜め方向から見た場合に、高いコントラストが得られない、さらには画像の明暗が逆転する階調反転現象等により良好な表示特性が得られないなどといった問題、すなわち、視野角が狭いという問題が指摘されてきた。
Conventionally, in a liquid crystal display device, when the display screen is viewed from an oblique direction, high contrast cannot be obtained, and further, good display characteristics cannot be obtained due to a gradation reversal phenomenon in which the contrast of the image is reversed. The problem, that is, the problem that the viewing angle is narrow has been pointed out.
上記問題点を解決するための方法として、液晶表示装置の視認側表面に光拡散フィルムを設ける技術が従来知られている。たとえば、特許文献1および2には、微粒子を含有する塗布液を基材上に塗布することにより形成される高ヘイズの光拡散層を有する光拡散フィルム(光拡散シート)が開示されている。このような光拡散フィルムを液晶表示装置の視認側表面に配置することにより、液晶表示装置の表示画面を斜めから観察した場合における、画像のコントラスト低下及び階調反転現象の改善により、視野角を広げることが可能である。しかしながら、特許文献1および2に記載されるような微粒子を含有する光拡散フィルムは、微粒子による表面凹凸に起因する乱反射により表示面全体が白っぽくなり、表示が濁った色になる、いわゆる白ちゃけ(White turbidity)が発生しやすいという問題があった。
As a method for solving the above problems, a technique of providing a light diffusion film on the viewing side surface of a liquid crystal display device is conventionally known. For example, Patent Documents 1 and 2 disclose a light diffusing film (light diffusing sheet) having a high-haze light diffusing layer formed by applying a coating solution containing fine particles on a substrate. By disposing such a light diffusing film on the viewing side surface of the liquid crystal display device, the viewing angle can be reduced by reducing the contrast of the image and improving the gradation inversion phenomenon when the display screen of the liquid crystal display device is observed obliquely. It is possible to spread. However, the light diffusing film containing fine particles as described in Patent Documents 1 and 2 has a so-called whitish color in which the entire display surface becomes whitish due to irregular reflection caused by surface unevenness due to the fine particles, and the display becomes cloudy. (White turbidity) is likely to occur.
一方、特許文献3には、光透過性基材上に設けられた表面に凹凸を有する防眩層上に、コロイダルシリカなどの流動性調整剤を含有させた、防眩層表面の凹凸形状への追随性が良好な表面調整層を形成することにより、表面凹凸構造を制御し、艶黒感(glossy black)と防眩性とを両立させることが記載されている。特許文献3でいうところの「艶黒感」は、上述の白ちゃけと関連しており、艶黒感の向上により白ちゃけの低減を図り得るが、白ちゃけの低減に関しては改善の余地があった。
On the other hand, in Patent Document 3, the surface of the antiglare layer is provided with a fluidity regulator such as colloidal silica on the surface of the antiglare layer provided on the light-transmitting substrate. It is described that the surface irregularity structure is controlled by forming a surface adjustment layer having good followability of the surface, and both glossy black and antiglare properties are achieved. The “glossy blackness” as referred to in Patent Document 3 is related to the above-mentioned whitishness and can be reduced by improving the glossy blackness. There was room.
本発明の目的は、透光性微粒子が分散された光拡散層を基材フィルム上に備える光拡散フィルムであって、高い正面コントラストが得られるとともに、さらに白ちゃけの発生が有効に防止された光拡散フィルムを提供することにある。また、本発明の他の目的は、当該光拡散フィルムを適用した偏光板および画像表示装置を提供することにある。
An object of the present invention is a light diffusing film provided on a base film with a light diffusing layer in which translucent fine particles are dispersed, and a high front contrast is obtained, and furthermore, occurrence of whitening is effectively prevented. It is to provide a light diffusion film. Another object of the present invention is to provide a polarizing plate and an image display device to which the light diffusion film is applied.
本発明は、基材フィルムと、前記基材フィルム上に積層される光拡散層と、前記光拡散層上に積層されるオーバーコート層と、を備える光拡散フィルムであって、前記光拡散層は、第1の透光性樹脂と、前記第1の透光性樹脂中に分散された透光性微粒子とを含有し、前記オーバーコート層は、第2の透光性樹脂を含有し、前記オーバーコート層側から、入射角30°で波長543.5nmのレーザー光が光拡散フィルムに入射したときの、反射角30°における光拡散フィルムの反射率R30が2%~5%であり、反射角40°における光拡散フィルムの反射率R40が0.0001%以下である、光拡散フィルムを提供する。
The present invention is a light diffusion film comprising a base film, a light diffusion layer laminated on the base film, and an overcoat layer laminated on the light diffusion layer, wherein the light diffusion layer Contains a first translucent resin and translucent fine particles dispersed in the first translucent resin, the overcoat layer contains a second translucent resin, When a laser beam with a wavelength of 543.5 nm is incident on the light diffusion film from the overcoat layer side at an incident angle of 30 °, the reflectance R 30 of the light diffusion film at a reflection angle of 30 ° is 2% to 5%. Provided is a light diffusion film having a reflectance R 40 of 0.0001% or less at a reflection angle of 40 °.
本発明の光拡散フィルムは、前記光拡散フィルムに、前記基材フィルム側から前記光拡散フィルムの法線方向に、波長543.5nmのレーザー光が入射したときの相対散乱光強度T40が0.00008%~0.001%であることが好ましい。前記相対散乱光強度T40は、前記光拡散フィルムに入射する波長543.5nmの前記レーザー光の強度に対する、前記光拡散フィルムの前記オーバーコート層側から、前記光拡散フィルムの法線から40°傾いた方向に出射するレーザー光の強度の比である。
In the light diffusing film of the present invention, the relative scattered light intensity T 40 when a laser beam having a wavelength of 543.5 nm is incident on the light diffusing film from the base film side in the normal direction of the light diffusing film is 0. It is preferably 0.0008% to 0.001%. The relative scattered light intensity T 40 is 40 ° from the normal of the light diffusion film from the overcoat layer side of the light diffusion film with respect to the intensity of the laser light having a wavelength of 543.5 nm incident on the light diffusion film. This is the ratio of the intensity of laser light emitted in the tilted direction.
本発明の光拡散フィルムは、それぞれ幅0.5mm、1.0mmおよび2.0mmの光学くしを用いて測定される反射鮮明度の和が200%以上であることが好ましい。また、それぞれ幅0.125mm、0.5mm、1.0mmおよび2.0mmの光学くしを用いて測定される透過鮮明度の和が70%~230%であることが好ましい。
The light diffusion film of the present invention preferably has a sum of reflection sharpness measured by using optical combs having a width of 0.5 mm, 1.0 mm and 2.0 mm, respectively, of 200% or more. Further, it is preferable that the sum of the transmission sharpness measured using optical combs having a width of 0.125 mm, 0.5 mm, 1.0 mm and 2.0 mm, respectively, is 70% to 230%.
本発明の光拡散フィルムにおいて、そのオーバーコート層の表面の中心線平均粗さRaは0.1μm以下であることが好ましい。また、本発明の光拡散フィルムは、40%~70%の全ヘイズ、40%~70%の内部ヘイズ、及び、前記オーバーコート層の表面形状に起因する、1%未満の表面ヘイズを有することが好ましい。
In the light diffusion film of the present invention, the center line average roughness Ra of the surface of the overcoat layer is preferably 0.1 μm or less. Further, the light diffusion film of the present invention has a total haze of 40% to 70%, an internal haze of 40% to 70%, and a surface haze of less than 1% due to the surface shape of the overcoat layer. Is preferred.
光拡散層を構成する第1の透光性樹脂の屈折率とオーバーコート層を構成する第2の透光性樹脂の屈折率との差の絶対値は、好ましくは0.02以下である。また、オーバーコート層の厚みは、好ましくは1μm~10μmである。また、本発明は、上記本発明の光拡散フィルム及び光拡散フィルムのオーバーコート層上に積層された反射防止層をさらに備える反射防止性光拡散フィルムを提供する。
The absolute value of the difference between the refractive index of the first translucent resin constituting the light diffusion layer and the refractive index of the second translucent resin constituting the overcoat layer is preferably 0.02 or less. The thickness of the overcoat layer is preferably 1 μm to 10 μm. The present invention also provides an antireflection light diffusion film further comprising an antireflection layer laminated on the light diffusion film of the present invention and the overcoat layer of the light diffusion film.
また本発明は、偏光フィルムと、上記本発明の光拡散フィルムまたは反射防止性光拡散フィルムとを備え、前記オーバーコート層よりも前記基材フィルムの方が前記偏光フィルムに近くなるように、前記光拡散フィルム又は前記反射防止性光拡散フィルムが配置される、偏光板を提供する。
The present invention also comprises a polarizing film and the light diffusing film or antireflective light diffusing film of the present invention, wherein the substrate film is closer to the polarizing film than the overcoat layer. Provided is a polarizing plate on which a light diffusion film or the antireflection light diffusion film is disposed.
さらに本発明は、上記本発明の偏光板と画像表示素子とを備える画像表示装置を提供する。当該画像表示装置において、偏光板は、前記オーバーコート層よりも前記偏光フィルムの方が前記画像表示素子に近くなるように、画像表示素子上に配置される。
Furthermore, the present invention provides an image display device comprising the polarizing plate of the present invention and an image display element. In the image display device, the polarizing plate is disposed on the image display element such that the polarizing film is closer to the image display element than the overcoat layer.
本発明によれば、高い正面コントラストが得られるとともに、白ちゃけの発生が有効に防止された光拡散フィルムおよび光拡散性の偏光板を提供することができる。このような優れた光学特性を備える光拡散フィルムまたは偏光板を適用した液晶表示装置は、高い正面コントラストを示すとともに、表面乱反射による白ちゃけが有効に防止されており、視認性に優れる。
According to the present invention, it is possible to provide a light diffusing film and a light diffusing polarizing plate in which high front contrast is obtained and whitish generation is effectively prevented. A liquid crystal display device to which a light diffusing film or a polarizing plate having such excellent optical properties is applied exhibits high front contrast, and is effectively prevented from whitening due to surface irregular reflection.
<光拡散フィルム>
図1は、本発明の光拡散フィルムの好ましい例を示す概略断面図である。本発明に係る図1に示される光拡散フィルム100は、基材フィルム101と、基材フィルム101上に積層された光拡散層102と、光拡散層102上に積層されたオーバーコート層105とを備える。光拡散層102は、第1の透光性樹脂103を基材とする層であって、第1の透光性樹脂103と第1の透光性樹脂103中に分散した透光性微粒子104とから形成される。光拡散層102は、典型的には、表面に凹凸形状を有する層である。オーバーコート層105は、光拡散層102の表面凹凸の凹部を埋めるように光拡散層102上に積層される、第2の透光性樹脂から形成される層である。オーバーコート層105の表面は、好ましくは平滑面(中心線平均粗さRaが0.1μm以下)である。以下、本発明の光拡散フィルム100について、さらに詳細に説明する。 <Light diffusion film>
FIG. 1 is a schematic cross-sectional view showing a preferred example of the light diffusion film of the present invention. Alight diffusion film 100 shown in FIG. 1 according to the present invention includes a base film 101, a light diffusion layer 102 laminated on the base film 101, and an overcoat layer 105 laminated on the light diffusion layer 102. Is provided. The light diffusion layer 102 is a layer having the first light-transmitting resin 103 as a base material, and the light-transmitting fine particles 104 dispersed in the first light-transmitting resin 103 and the first light-transmitting resin 103. And formed from. The light diffusion layer 102 is typically a layer having an uneven shape on the surface. The overcoat layer 105 is a layer formed of a second light-transmitting resin that is laminated on the light diffusion layer 102 so as to fill the concave portions of the surface unevenness of the light diffusion layer 102. The surface of the overcoat layer 105 is preferably a smooth surface (centerline average roughness Ra is 0.1 μm or less). Hereinafter, the light diffusion film 100 of the present invention will be described in more detail.
図1は、本発明の光拡散フィルムの好ましい例を示す概略断面図である。本発明に係る図1に示される光拡散フィルム100は、基材フィルム101と、基材フィルム101上に積層された光拡散層102と、光拡散層102上に積層されたオーバーコート層105とを備える。光拡散層102は、第1の透光性樹脂103を基材とする層であって、第1の透光性樹脂103と第1の透光性樹脂103中に分散した透光性微粒子104とから形成される。光拡散層102は、典型的には、表面に凹凸形状を有する層である。オーバーコート層105は、光拡散層102の表面凹凸の凹部を埋めるように光拡散層102上に積層される、第2の透光性樹脂から形成される層である。オーバーコート層105の表面は、好ましくは平滑面(中心線平均粗さRaが0.1μm以下)である。以下、本発明の光拡散フィルム100について、さらに詳細に説明する。 <Light diffusion film>
FIG. 1 is a schematic cross-sectional view showing a preferred example of the light diffusion film of the present invention. A
〔基材フィルム〕
基材フィルム101は透光性のものであればよく、たとえばガラス及びプラスチックフィルムなどを用いることができる。プラスチックフィルムとしては適度の透明性、機械強度を有していればよい。具体的には、たとえば、TAC(トリアセチルセルロース)等のセルロースアセテート系樹脂;アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;などが挙げられる。基材フィルム101の厚みは、たとえば10~500μmであり、好ましくは20~300μmである。 [Base film]
Thebase film 101 only needs to be translucent, and for example, glass and plastic films can be used. The plastic film only needs to have appropriate transparency and mechanical strength. Specific examples include cellulose acetate resins such as TAC (triacetyl cellulose); polyester resins such as acrylic resins, polycarbonate resins, and polyethylene terephthalate; polyolefin resins such as polyethylene and polypropylene. The thickness of the base film 101 is, for example, 10 to 500 μm, preferably 20 to 300 μm.
基材フィルム101は透光性のものであればよく、たとえばガラス及びプラスチックフィルムなどを用いることができる。プラスチックフィルムとしては適度の透明性、機械強度を有していればよい。具体的には、たとえば、TAC(トリアセチルセルロース)等のセルロースアセテート系樹脂;アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;などが挙げられる。基材フィルム101の厚みは、たとえば10~500μmであり、好ましくは20~300μmである。 [Base film]
The
〔光拡散層〕
本発明の光拡散フィルム100は、基材フィルム101上に積層される光拡散層102を備える。光拡散層102は、第1の透光性樹脂103を基材とする層であって、第1の透光性樹脂103と第1の透光性樹脂103中に分散された透光性微粒子104とから形成される。なお、光拡散フィルム100は、基材フィルム101と光拡散層102との間に他の層(接着剤層を含む)を有していてもよい。 (Light diffusion layer)
Thelight diffusion film 100 of the present invention includes a light diffusion layer 102 laminated on a base film 101. The light diffusion layer 102 is a layer having the first translucent resin 103 as a base material, and the first translucent resin 103 and the translucent fine particles dispersed in the first translucent resin 103. 104. The light diffusion film 100 may have another layer (including an adhesive layer) between the base film 101 and the light diffusion layer 102.
本発明の光拡散フィルム100は、基材フィルム101上に積層される光拡散層102を備える。光拡散層102は、第1の透光性樹脂103を基材とする層であって、第1の透光性樹脂103と第1の透光性樹脂103中に分散された透光性微粒子104とから形成される。なお、光拡散フィルム100は、基材フィルム101と光拡散層102との間に他の層(接着剤層を含む)を有していてもよい。 (Light diffusion layer)
The
(1)第1の透光性樹脂
第1の透光性樹脂103としては、透光性を有するものであれば特に限定はなく、たとえば、紫外線硬化型樹脂、電子線硬化型樹脂などの活性エネルギー線硬化型樹脂及び熱硬化型樹脂の硬化物、熱可塑性樹脂の硬化物、金属アルコキシドの硬化物などを用いることができる。この中でも、高い硬度を有し、画像表示装置表面に設ける光拡散フィルムとして高い耐擦傷性を付与できることから、活性エネルギー線硬化型樹脂が好適である。活性エネルギー線硬化型樹脂、熱硬化型樹脂または金属アルコキシドを用いる場合は、活性エネルギー線の照射または加熱により当該樹脂を硬化させることにより第1の透光性樹脂103が形成される。 (1) First Translucent Resin The firsttranslucent resin 103 is not particularly limited as long as it has translucency. For example, the activity of an ultraviolet curable resin, an electron beam curable resin, etc. A cured product of an energy beam curable resin and a thermosetting resin, a cured product of a thermoplastic resin, a cured product of a metal alkoxide, or the like can be used. Among these, an active energy ray-curable resin is preferable because it has high hardness and can impart high scratch resistance as a light diffusion film provided on the surface of the image display device. When an active energy ray curable resin, a thermosetting resin, or a metal alkoxide is used, the first light-transmitting resin 103 is formed by curing the resin by irradiation or heating with an active energy ray.
第1の透光性樹脂103としては、透光性を有するものであれば特に限定はなく、たとえば、紫外線硬化型樹脂、電子線硬化型樹脂などの活性エネルギー線硬化型樹脂及び熱硬化型樹脂の硬化物、熱可塑性樹脂の硬化物、金属アルコキシドの硬化物などを用いることができる。この中でも、高い硬度を有し、画像表示装置表面に設ける光拡散フィルムとして高い耐擦傷性を付与できることから、活性エネルギー線硬化型樹脂が好適である。活性エネルギー線硬化型樹脂、熱硬化型樹脂または金属アルコキシドを用いる場合は、活性エネルギー線の照射または加熱により当該樹脂を硬化させることにより第1の透光性樹脂103が形成される。 (1) First Translucent Resin The first
活性エネルギー線硬化型樹脂としては、多官能(メタ)アクリレート化合物を含有するものであることができる。多官能(メタ)アクリレート化合物とは、分子中に少なくとも2個の(メタ)アクリロイルオキシ基を有する化合物である。
The active energy ray-curable resin can contain a polyfunctional (meth) acrylate compound. The polyfunctional (meth) acrylate compound is a compound having at least two (meth) acryloyloxy groups in the molecule.
多官能(メタ)アクリレート化合物の具体例としては、たとえば、多価アルコールと(メタ)アクリル酸とのエステル化合物、ウレタン(メタ)アクリレート化合物、ポリエステル(メタ)アクリレート化合物、エポキシ(メタ)アクリレート化合物等の(メタ)アクリロイル基を2個以上含む多官能重合性化合物等が挙げられる。
Specific examples of the polyfunctional (meth) acrylate compound include, for example, ester compounds of polyhydric alcohol and (meth) acrylic acid, urethane (meth) acrylate compounds, polyester (meth) acrylate compounds, epoxy (meth) acrylate compounds, and the like. And a polyfunctional polymerizable compound containing two or more (meth) acryloyl groups.
多価アルコールとしては、たとえば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、2-エチル-1,3-ヘキサンジオール、2,2’-チオジエタノール、1,4-シクロヘキサンジメタノールのような2価のアルコール;トリメチロールプロパン、グリセロール、ペンタエリスリトール、ジグリセロール、ジペンタエリスリトール、ジトリメチロールプロパンのような3価以上のアルコールが挙げられる。
Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, propanediol, butanediol, and pentanediol. , Divalent alcohols such as hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, 2,2′-thiodiethanol, 1,4-cyclohexanedimethanol; trimethylolpropane, glycerol, pentaerythritol , Trihydric or higher alcohols such as diglycerol, dipentaerythritol and ditrimethylolpropane.
多価アルコールと(メタ)アクリル酸とのエステル化物として、具体的には、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタグリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートが挙げられる。
Specific examples of esterified products of polyhydric alcohol and (meth) acrylic acid include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and neopentyl glycol. Di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, tetramethylol methane tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tetramethylol methane tetra ( (Meth) acrylate, pentaglycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, glycerin tri (meth) acrylate, Pentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate.
ウレタン(メタ)アクリレート化合物としては、1分子中に複数個のイソシアネート基を有するイソシアネートと、水酸基を有する(メタ)アクリル酸誘導体のウレタン化反応物を挙げることができる。1分子中に複数個のイソシアネート基を有する有機イソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等の1分子中に2個のイソシアネート基を有する有機イソシアネート;それら有機イソシアネートをイソシアヌレート変性、アダクト変性、ビウレット変性した、1分子中に3個のイソシアネート基を有する有機イソシアネート等が挙げられる。水酸基を有する(メタ)アクリル酸誘導体としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ペンタエリスリトールトリアクリレートが挙げられる。
Examples of the urethane (meth) acrylate compound include urethanization reaction products of an isocyanate having a plurality of isocyanate groups in one molecule and a (meth) acrylic acid derivative having a hydroxyl group. Examples of organic isocyanates having a plurality of isocyanate groups in one molecule include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, and the like. Organic isocyanate having a group; organic isocyanate having three isocyanate groups in one molecule, such as isocyanurate-modified, adduct-modified, biuret-modified, etc. Examples of the (meth) acrylic acid derivative having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- Examples include hydroxy-3-phenoxypropyl (meth) acrylate and pentaerythritol triacrylate.
ポリエステル(メタ)アクリレート化合物として好ましいものは、水酸基含有ポリエステルと(メタ)アクリル酸とを反応させて得られるポリエステル(メタ)アクリレートである。好ましく用いられる水酸基含有ポリエステルは、多価アルコールと、カルボン酸あるいは複数のカルボキシル基を有する化合物および/またはその無水物とのエステル化反応によって得られる水酸基含有ポリエステルである。多価アルコールとしては前述した化合物と同様のものが例示できる。また、多価アルコール以外にも、フェノール類としてビスフェノールA等が挙げられる。カルボン酸としては、ギ酸、酢酸、ブチルカルボン酸、安息香酸等が挙げられる。複数のカルボキシル基を有する化合物および/またはその無水物としては、マレイン酸、フタル酸、フマル酸、イタコン酸、アジピン酸、テレフタル酸、無水マレイン酸、無水フタル酸、トリメリット酸、シクロヘキサンジカルボン酸無水物等が挙げられる。
Preferred as the polyester (meth) acrylate compound is a polyester (meth) acrylate obtained by reacting a hydroxyl group-containing polyester with (meth) acrylic acid. The hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction between a polyhydric alcohol and a carboxylic acid or a compound having a plurality of carboxyl groups and / or an anhydride thereof. Examples of the polyhydric alcohol include the same compounds as those described above. Moreover, bisphenol A etc. are mentioned as phenols other than a polyhydric alcohol. Examples of the carboxylic acid include formic acid, acetic acid, butyl carboxylic acid, benzoic acid and the like. The compounds having a plurality of carboxyl groups and / or their anhydrides include maleic acid, phthalic acid, fumaric acid, itaconic acid, adipic acid, terephthalic acid, maleic anhydride, phthalic anhydride, trimellitic acid, cyclohexanedicarboxylic anhydride Thing etc. are mentioned.
以上のような多官能(メタ)アクリレート化合物の中でも、硬化物(被膜)の強度向上及び入手の容易性の点から、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のエステル化合物;ヘキサメチレンジイソシアネートと2-ヒドロキシエチル(メタ)アクリレートの付加体;イソホロンジイソシアネートと2-ヒドロキシエチル(メタ)アクリレートの付加体;トリレンジイソシアネートと2-ヒドロキシエチル(メタ)アクリレートの付加体;アダクト変性イソホロンジイソシアネートと2-ヒドロキシエチル(メタ)アクリレートの付加体;およびビウレット変性イソホロンジイソシアネートと2-ヒドロキシエチル(メタ)アクリレートとの付加体が好ましい。さらに、活性エネルギー線硬化型樹脂は、厚膜化したときに良好な可撓性(柔軟性を示す性質)を示すことから、ウレタン(メタ)アクリレート化合物を含むことが好ましい。これらの多官能(メタ)アクリレート化合物は、それぞれ単独でまたは2種以上を併用して用いることができる。
Among the polyfunctional (meth) acrylate compounds as described above, hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and diethylene glycol diene from the viewpoint of improving the strength of the cured product (coating film) and availability. Ester compounds such as (meth) acrylate, tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate; hexamethylene diisocyanate and 2- Adduct of hydroxyethyl (meth) acrylate; adduct of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate; tolylene diisocyanate and 2-hydroxyethyl (meth) acrylate Adducts of over preparative; adduct-modified isophorone diisocyanate with 2-adduct of hydroxyethyl (meth) acrylate; adducts of, and biuret-modified isophorone diisocyanate with 2-hydroxyethyl (meth) acrylate. Further, the active energy ray-curable resin preferably contains a urethane (meth) acrylate compound because it exhibits good flexibility (a property showing flexibility) when it is thickened. These polyfunctional (meth) acrylate compounds can be used alone or in combination of two or more.
活性エネルギー線硬化型樹脂は、上記の多官能(メタ)アクリレート化合物のほかに、単官能(メタ)アクリレート化合物を含有していてもよい。単官能(メタ)アクリレート化合物としては、たとえば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、アクリロイルモルフォリン、N-ビニルピロリドン、テトラヒドロフルフリール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アセチル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、ジメチルアミノエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート等の(メタ)アクリレート類を挙げることができる。これらの化合物はそれぞれ単独でまたは2種類以上を併用して用いることができる。
The active energy ray-curable resin may contain a monofunctional (meth) acrylate compound in addition to the polyfunctional (meth) acrylate compound. Examples of monofunctional (meth) acrylate compounds include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-hydroxyethyl (meth) ) Acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine N-vinylpyrrolidone, tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, aceto (Meth) acrylate, benzyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxy (meth) acrylate, ethylene oxide modified phenoxy (meta ) Acrylate, propylene oxide (meth) acrylate, nonylphenol (meth) acrylate, ethylene oxide modified (meth) acrylate, propylene oxide modified nonylphenol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, 2- (meth) acryloyloxyethyl-2 -Hydroxypropyl phthalate, dimethylaminoethyl (meth) acrylate, methoxytriethylene glycol (meth) acrylate, etc. Meth) acrylate can be given. These compounds can be used alone or in combination of two or more.
活性エネルギー線硬化型樹脂は重合性オリゴマーを含有していてもよい。重合性オリゴマーを含有させることにより、光拡散層102の硬度を調整することができる。重合性オリゴマーは、たとえば、前記多官能(メタ)アクリレート化合物、すなわち、多価アルコールと(メタ)アクリル酸とのエステル化合物、ウレタン(メタ)アクリレート化合物、ポリエステル(メタ)アクリレート化合物またはエポキシ(メタ)アクリレート等の2量体、3量体などのようなオリゴマーであることができる。
The active energy ray curable resin may contain a polymerizable oligomer. By including the polymerizable oligomer, the hardness of the light diffusion layer 102 can be adjusted. The polymerizable oligomer is, for example, the polyfunctional (meth) acrylate compound, that is, an ester compound of a polyhydric alcohol and (meth) acrylic acid, a urethane (meth) acrylate compound, a polyester (meth) acrylate compound, or an epoxy (meth). It can be an oligomer such as a dimer, trimer or the like such as an acrylate.
また、その他の重合性オリゴマーとして、分子中に少なくとも2個のイソシアネート基を有するポリイソシアネートと、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとの反応により得られるウレタン(メタ)アクリレートオリゴマーを挙げることができる。ポリイソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネートの重合物等が挙げられ、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとしては、多価アルコールと(メタ)アクリル酸のエステル化反応によって得られる水酸基含有(メタ)アクリル酸エステルであって、多価アルコールが、たとえば、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、ポリエチレングリコール、ポリプロピレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトール等であるものが挙げられる。この少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールは、多価アルコールのアルコール性水酸基の一部が(メタ)アクリル酸とエステル化反応しているとともに、アルコール性水酸基が分子中に残存するものである。
In addition, as other polymerizable oligomer, urethane (meth) acrylate obtained by reaction of polyisocyanate having at least two isocyanate groups in the molecule and polyhydric alcohol having at least one (meth) acryloyloxy group. There may be mentioned oligomers. Examples of the polyisocyanate include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate polymer, and the like. As the polyhydric alcohol having at least one (meth) acryloyloxy group, Hydroxyl group-containing (meth) acrylic acid ester obtained by esterification reaction of alcohol and (meth) acrylic acid, wherein polyhydric alcohol is, for example, 1,3-butanediol, 1,4-butanediol, 1,6 -Hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, trimethylolpropane, glycerin, pentaerythritol, di Include those which is pentaerythritol and the like. In this polyhydric alcohol having at least one (meth) acryloyloxy group, a part of the alcoholic hydroxyl group of the polyhydric alcohol is esterified with (meth) acrylic acid, and the alcoholic hydroxyl group is present in the molecule. It remains.
さらに、その他の重合性オリゴマーの例として、複数のカルボキシル基を有する化合物および/またはその無水物と、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとの反応により得られるポリエステル(メタ)アクリレートオリゴマーを挙げることができる。複数のカルボキシル基を有する化合物および/またはその無水物としては、前記多官能(メタ)アクリレート化合物のポリエステル(メタ)アクリレートとして記載したものと同様のものが例示できる。また、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとしては、上記ウレタン(メタ)アクリレートオリゴマーとして記載したものと同様のものが例示できる。
Furthermore, as another example of the polymerizable oligomer, a polyester (meta) obtained by reacting a compound having a plurality of carboxyl groups and / or an anhydride thereof with a polyhydric alcohol having at least one (meth) acryloyloxy group. ) Acrylate oligomers. Examples of the compound having a plurality of carboxyl groups and / or anhydrides thereof are the same as those described as the polyester (meth) acrylate of the polyfunctional (meth) acrylate compound. Examples of the polyhydric alcohol having at least one (meth) acryloyloxy group include those described as the urethane (meth) acrylate oligomer.
以上のような重合性オリゴマーに加えて、さらにウレタン(メタ)アクリレートオリゴマーの例として、水酸基含有ポリエステル、水酸基含有ポリエーテルまたは水酸基含有(メタ)アクリル酸エステルの水酸基にイソシアネート類を反応させて得られる化合物が挙げられる。好ましく用いられる水酸基含有ポリエステルは、多価アルコールと、カルボン酸あるいは複数のカルボキシル基を有する化合物および/またはその無水物とのエステル化反応によって得られる水酸基含有ポリエステルである。多価アルコールならびに、複数のカルボキシル基を有する化合物および/またはその無水物としては、それぞれ、多官能(メタ)アクリレート化合物のポリエステル(メタ)アクリレート化合物として記載したものと同様のものが例示できる。好ましく用いられる水酸基含有ポリエーテルは、多価アルコールに1種または2種以上のアルキレンオキサイドおよび/またはε-カプロラクトンを付加することによって得られる水酸基含有ポリエーテルである。多価アルコールは、前記水酸基含有ポリエステルに使用できるものと同じものであってよい。好ましく用いられる水酸基含有(メタ)アクリル酸エステルとしては、重合性オリゴマーのウレタン(メタ)アクリレートオリゴマーとして記載したものと同様のものが例示できる。イソシアネート類としては、分子中に1個以上のイソシアネート基を持つ化合物が好ましく、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなどの2価のイソシアネート化合物が特に好ましい。
In addition to the polymerizable oligomers as described above, examples of urethane (meth) acrylate oligomers are obtained by reacting isocyanates with hydroxyl groups of a hydroxyl group-containing polyester, a hydroxyl group-containing polyether or a hydroxyl group-containing (meth) acrylic acid ester. Compounds. The hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction between a polyhydric alcohol and a carboxylic acid or a compound having a plurality of carboxyl groups and / or an anhydride thereof. Examples of the polyhydric alcohol and the compound having a plurality of carboxyl groups and / or anhydrides thereof are the same as those described as the polyester (meth) acrylate compound of the polyfunctional (meth) acrylate compound. The hydroxyl group-containing polyether preferably used is a hydroxyl group-containing polyether obtained by adding one or more alkylene oxides and / or ε-caprolactone to a polyhydric alcohol. The polyhydric alcohol may be the same as that which can be used for the hydroxyl group-containing polyester. Examples of the hydroxyl group-containing (meth) acrylic acid ester preferably used include the same as those described as the polymerizable oligomer urethane (meth) acrylate oligomer. As the isocyanates, compounds having one or more isocyanate groups in the molecule are preferable, and divalent isocyanate compounds such as tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable.
これらの重合性オリゴマー化合物はそれぞれ単独でまたは2種以上を併用して用いることができる。
These polymerizable oligomer compounds can be used alone or in combination of two or more.
熱硬化型樹脂としては、アクリルポリオールとイソシアネートプレポリマーとから調製される熱硬化型ウレタン樹脂のほか、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂が挙げられる。
Examples of thermosetting resins include phenolic resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicone resins, in addition to thermosetting urethane resins prepared from acrylic polyols and isocyanate prepolymers.
熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体;酢酸ビニルおよびその共重合体、塩化ビニルおよびその共重合体、塩化ビニリデンおよびその共重合体等のビニル系樹脂;ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂;アクリル樹脂およびその共重合体、メタクリル樹脂およびその共重合体等のアクリル系樹脂;ポリスチレン系樹脂;ポリアミド系樹脂;ポリエステル系樹脂;ポリカーボネート系樹脂等が挙げられる。
Examples of thermoplastic resins include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof, and the like. Acetal resins such as polyvinyl formal and polyvinyl butyral; Acrylic resins and copolymers thereof, Acrylic resins such as methacrylic resins and copolymers; Polystyrene resins; Polyamide resins; Polyester resins; Polycarbonate resins Etc.
金属アルコキシドとしては、珪素アルコキシド系の材料を原料とする酸化珪素系マトリックス等を使用することができる。具体的には、テトラメトキシシラン、テトラエトキシシラン等であり、加水分解や脱水縮合により無機系または有機無機複合系マトリックス(第1の透光性樹脂)とすることができる。
As the metal alkoxide, a silicon oxide matrix made of a silicon alkoxide material can be used. Specifically, it is tetramethoxysilane, tetraethoxysilane, or the like, and can be made into an inorganic or organic-inorganic composite matrix (first translucent resin) by hydrolysis or dehydration condensation.
(2)透光性微粒子
透光性微粒子104としては、透光性を有する限り特に限定されるものではなく従来公知のものが使用できる。たとえば、アクリル系樹脂、メラミン樹脂、ポリエチレン、ポリスチレン、有機シリコーン樹脂、アクリル-スチレン共重合体等からなる有機微粒子や、炭酸カルシウム、シリカ、酸化アルミニウム、炭酸バリウム、硫酸バリウム、酸化チタン、ガラス等からなる無機微粒子などを挙げることができる。また、有機重合体のバルーンやガラス中空ビーズを使用することもできる。これらの微粒子は、1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。透光性微粒子104の形状は、球状、扁平状、板状、針状、不定形状等のいずれであってもよいが、球状または略球状が好ましい。 (2) Translucent fine particles The translucentfine particles 104 are not particularly limited as long as they have translucency, and conventionally known ones can be used. For example, organic fine particles made of acrylic resin, melamine resin, polyethylene, polystyrene, organic silicone resin, acrylic-styrene copolymer, calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, glass, etc. And inorganic fine particles. Organic polymer balloons and glass hollow beads can also be used. These fine particles may be used alone or in combination of two or more. The shape of the translucent fine particles 104 may be any of a spherical shape, a flat shape, a plate shape, a needle shape, an indefinite shape, etc., but a spherical shape or a substantially spherical shape is preferable.
透光性微粒子104としては、透光性を有する限り特に限定されるものではなく従来公知のものが使用できる。たとえば、アクリル系樹脂、メラミン樹脂、ポリエチレン、ポリスチレン、有機シリコーン樹脂、アクリル-スチレン共重合体等からなる有機微粒子や、炭酸カルシウム、シリカ、酸化アルミニウム、炭酸バリウム、硫酸バリウム、酸化チタン、ガラス等からなる無機微粒子などを挙げることができる。また、有機重合体のバルーンやガラス中空ビーズを使用することもできる。これらの微粒子は、1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。透光性微粒子104の形状は、球状、扁平状、板状、針状、不定形状等のいずれであってもよいが、球状または略球状が好ましい。 (2) Translucent fine particles The translucent
透光性微粒子104の重量平均粒径は特に制限されないが、好ましくは0.5μm~20μmであり、より好ましくは1μm~15μmである。重量平均粒径が0.5μm未満であると、十分に内部ヘイズを発現させることができず、光拡散性が不十分となり、その結果、広視野角が得られにくくなる場合がある。一方、重量平均粒径が20μmを超えると、光拡散性が過度に大きくなり、正面コントラストが低下しやすくなる場合がある。なお、透光性微粒子104の重量平均粒径は、コールター原理(細孔電気抵抗法)を用いたコールターマルチサイザー(ベックマンコールター社製)を用いて測定される。
The weight average particle diameter of the translucent fine particles 104 is not particularly limited, but is preferably 0.5 μm to 20 μm, more preferably 1 μm to 15 μm. If the weight average particle size is less than 0.5 μm, the internal haze cannot be sufficiently exhibited, the light diffusibility becomes insufficient, and as a result, it may be difficult to obtain a wide viewing angle. On the other hand, when the weight average particle diameter exceeds 20 μm, the light diffusibility becomes excessively large, and the front contrast may be easily lowered. In addition, the weight average particle diameter of the translucent fine particles 104 is measured using a Coulter multisizer (manufactured by Beckman Coulter, Inc.) using the Coulter principle (pore electrical resistance method).
光拡散層102における透光性微粒子104の含有量は、第1の透光性樹脂103の100重量部に対して3重量部~60重量部であることが好ましく、5重量部~50重量部であることがより好ましい。透光性微粒子104の含有量が第1の透光性樹脂103の100重量部に対して3重量部未満であると、光拡散フィルム100の光拡散性が不十分となり、広視野角が得られにくくなる場合がある。また、透光性微粒子104の含有量が第1の透光性樹脂103の100重量部に対して60重量部を超えると、光拡散性が過度に大きくなり、正面コントラストが低下しやすくなる場合がある。また、光拡散フィルム100の透明性が損なわれやすくなる場合がある。
The content of the translucent fine particles 104 in the light diffusion layer 102 is preferably 3 to 60 parts by weight with respect to 100 parts by weight of the first translucent resin 103, and 5 to 50 parts by weight. It is more preferable that When the content of the light transmissive fine particles 104 is less than 3 parts by weight with respect to 100 parts by weight of the first light transmissive resin 103, the light diffusibility of the light diffusing film 100 becomes insufficient and a wide viewing angle is obtained. It may be difficult to be confused. In addition, when the content of the translucent fine particles 104 exceeds 60 parts by weight with respect to 100 parts by weight of the first translucent resin 103, the light diffusibility becomes excessively large and the front contrast tends to be lowered. There is. Further, the transparency of the light diffusion film 100 may be easily lost.
透光性微粒子104の屈折率と第1の透光性樹脂103の屈折率との差の絶対値は、0.04~0.15であることが好ましい。これにより、適度な内部ヘイズ(したがって、適度な光拡散性)を得ることができる。
The absolute value of the difference between the refractive index of the translucent fine particles 104 and the refractive index of the first translucent resin 103 is preferably 0.04 to 0.15. Thereby, moderate internal haze (hence appropriate light diffusibility) can be obtained.
本明細書において、「光拡散層の厚み」とは、光拡散層102の基材フィルム101に接する面から反対側の面までの最大厚みのことを指す。したがって、本発明の光拡散フィルム100において光拡散層102が凹凸を有する場合、図1に示すAに相当する最も厚い部分が光拡散層102の厚みとなる。光拡散層102の厚みAは、好ましくは1μm~30μmである。光拡散層102の厚みAが1μm未満の場合、液晶表示装置の視認側表面に配置される光拡散フィルム100に要求される十分な耐擦傷性が付与されない場合がある。また、厚みAが30μmを超える場合、作製した光拡散フィルム100に発生するカールの量が大きくなり、他のフィルムや基板への貼合等における取り扱い性が悪くなる傾向にある。光拡散層102の基材フィルム101に接する面から反対側の面までの厚みが最大でない部分(例えば、凹凸を有する光拡散層102の凹部分)においては、光拡散層102の厚みは1μm以上でなくてもよい。
In this specification, “the thickness of the light diffusion layer” refers to the maximum thickness from the surface of the light diffusion layer 102 that contacts the base film 101 to the opposite surface. Therefore, when the light diffusion layer 102 has irregularities in the light diffusion film 100 of the present invention, the thickest portion corresponding to A shown in FIG. 1 is the thickness of the light diffusion layer 102. The thickness A of the light diffusion layer 102 is preferably 1 μm to 30 μm. When the thickness A of the light diffusing layer 102 is less than 1 μm, sufficient scratch resistance required for the light diffusing film 100 disposed on the viewing side surface of the liquid crystal display device may not be provided. Moreover, when thickness A exceeds 30 micrometers, the quantity of the curl which generate | occur | produces in the produced light-diffusion film 100 becomes large, and it exists in the tendency for the handleability in the bonding to another film, a board | substrate, etc. to worsen. In a portion where the thickness from the surface in contact with the base film 101 to the opposite surface of the light diffusion layer 102 is not the maximum (for example, the concave portion of the light diffusion layer 102 having unevenness), the thickness of the light diffusion layer 102 is 1 μm or more. It does not have to be.
光拡散層102表面(基材フィルム101とは反対側(図1中、Z軸の正方向側)の表面)のJIS B 0601に従う中心線平均粗さRaは特に制限されないが、オーバーコート層の厚みが過度に大きくならないようにするため、好ましくは0.5μm以下であり、より好ましくは0.2μm以下である。JIS B 0601に従う中心線平均粗さRaとは、粗さ曲線からその平均線の方向に基準長さl(エル)だけを抜き取り、この抜き取り部分の平均線の方向にx軸を、縦倍率の方向にy軸をとり、粗さ曲線をy=f(x)で表したときに、下記式(1):
The center line average roughness Ra according to JIS B 0601 on the surface of the light diffusion layer 102 (the surface on the side opposite to the base film 101 (in the positive direction side of the Z axis in FIG. 1)) is not particularly limited. In order to prevent the thickness from becoming excessively large, the thickness is preferably 0.5 μm or less, and more preferably 0.2 μm or less. The centerline average roughness Ra in accordance with JIS B 0601 is the reference curve l is extracted from the roughness curve in the direction of the average line, and the x-axis is plotted in the direction of the average line of the extracted portion. When the y-axis is taken in the direction and the roughness curve is expressed by y = f (x), the following formula (1):
によって求められる値をマイクロメートル(μm)単位で表したものをいう。中心線平均粗さRaは、JIS B 0601に準拠した共焦点干渉顕微鏡(たとえば、株式会社オプティカルソリューション社製の「PLμ2300」)を用いて上記計算式(1)に基づいてRaを計算できるプログラムソフトにより算出することができる。
Is a value expressed in units of micrometers (μm). Centerline average roughness Ra is a program software that can calculate Ra based on the above formula (1) using a confocal interference microscope (for example, “PLμ2300” manufactured by Optical Solution Co., Ltd.) in accordance with JIS B 0601. Can be calculated.
〔オーバーコート層〕
本発明の光拡散フィルム100は、光拡散層102の表面凹凸の凹部を埋めるように光拡散層102上に積層される、後述する所定の表面反射特性を備えたオーバーコート層105を有する。光拡散フィルムに所定の表面反射特性を付与するオーバーコート層105を光拡散層102上に積層することにより、光拡散フィルム100の白ちゃけを効果的に防止することができる。 [Overcoat layer]
Thelight diffusing film 100 of the present invention has an overcoat layer 105 having a predetermined surface reflection characteristic to be described later, which is laminated on the light diffusing layer 102 so as to fill the concaves and convexes on the surface of the light diffusing layer 102. Lamination of the light diffusion film 100 can be effectively prevented by laminating the overcoat layer 105 that imparts predetermined surface reflection characteristics to the light diffusion film on the light diffusion layer 102.
本発明の光拡散フィルム100は、光拡散層102の表面凹凸の凹部を埋めるように光拡散層102上に積層される、後述する所定の表面反射特性を備えたオーバーコート層105を有する。光拡散フィルムに所定の表面反射特性を付与するオーバーコート層105を光拡散層102上に積層することにより、光拡散フィルム100の白ちゃけを効果的に防止することができる。 [Overcoat layer]
The
オーバーコート層105は第2の透光性樹脂からなる層であり、光拡散層102に付与した光拡散特性が設計した範囲から逸脱することを回避するために、内部ヘイズを実質的に有しないことが好ましい。すなわち、オーバーコート層105には光拡散性を付与することなく、光拡散層102にのみ光拡散性を付与し、一方、オーバーコート層105には表面反射特性のみを付与して、光拡散特性と表面反射特性とをそれぞれ独立に制御することが好ましい。これにより、高い正面コントラストと広視野角特性とが得られるとともに、白ちゃけの発生を有効に防止できる光拡散フィルムを容易に設計、製造することが可能になる。
The overcoat layer 105 is a layer made of the second light-transmitting resin, and has substantially no internal haze in order to avoid that the light diffusion property imparted to the light diffusion layer 102 deviates from the designed range. It is preferable. That is, the light-diffusing property is imparted only to the light-diffusing layer 102 without imparting light-diffusing property to the overcoat layer 105, while only the surface reflection property is imparted to the over-coating layer 105. And surface reflection characteristics are preferably controlled independently of each other. This makes it possible to easily design and manufacture a light diffusion film that can obtain high front contrast and wide viewing angle characteristics and can effectively prevent the occurrence of whitening.
樹脂層が内部ヘイズを発現する態様としては、たとえば光拡散剤(微粒子)を含有する場合及び、樹脂層に相分離が生じている場合(たとえば、結晶性領域と非結晶性領域とが混在する場合)などがあるが、オーバーコート層105は、これらの内部ヘイズ発現要因を含まないことが好ましい。
For example, when the resin layer contains a light diffusing agent (fine particles) and when phase separation occurs in the resin layer (for example, a crystalline region and an amorphous region are mixed) The overcoat layer 105 preferably does not contain these internal haze expression factors.
オーバーコート層105を構成する第2の透光性樹脂としては、第1の透光性樹脂103について上述したものを同様に用いることができる。ただし、第1の透光性樹脂103の屈折率と第2の透光性樹脂の屈折率との差の絶対値は、0.02以下であることが好ましく、0.01以下であることがより好ましい。当該屈折率差が大きいと、光拡散層102とオーバーコート層105との界面における光拡散が無視できなくなり、光拡散特性と表面反射特性とを独立に制御することが困難になり、所望の光拡散特性が得られにくくなる場合がある。
As the second translucent resin constituting the overcoat layer 105, those described above for the first translucent resin 103 can be similarly used. However, the absolute value of the difference between the refractive index of the first translucent resin 103 and the refractive index of the second translucent resin is preferably 0.02 or less, and preferably 0.01 or less. More preferred. If the difference in refractive index is large, light diffusion at the interface between the light diffusion layer 102 and the overcoat layer 105 cannot be ignored, and it becomes difficult to control the light diffusion characteristics and the surface reflection characteristics independently. It may be difficult to obtain diffusion characteristics.
本明細書において、「オーバーコート層の厚み」とは、オーバーコート層105の表面(光拡散層102とは反対側の表面)から光拡散層102に接する面までの最小厚みのことを指す。したがって、本発明の光拡散フィルム100において光拡散層102が凹凸を有する場合、図1に示すBに相当する最も薄い部分がオーバーコート層105の厚みとなる。オーバーコート層105の厚みBは光拡散層102の表面凹凸の凹部を埋めることができる限り特に制限されないが、好ましくは1μm~10μmであり、より好ましくは2μm~9μmである。オーバーコート層105の厚みBが1μm未満であると、光拡散層102の表面凹凸による表面乱反射の影響が完全には排除できず、白ちゃけが発生しやすくなる可能性がある。また、厚みBが10μmを超える場合、作製した光拡散フィルムに発生するカールの量が大きくなり、また、製造コストも高くなる。オーバーコート層105の表面(光拡散層102とは反対側の表面)から光拡散層102に接する面までの厚みが最小でない部分(例えば、光拡散層102の凹部分に接する部分)においては、オーバーコート層105の厚みは10μm以下でなくてもよい。
In this specification, “the thickness of the overcoat layer” refers to the minimum thickness from the surface of the overcoat layer 105 (the surface opposite to the light diffusion layer 102) to the surface in contact with the light diffusion layer 102. Therefore, when the light diffusion layer 102 has irregularities in the light diffusion film 100 of the present invention, the thinnest portion corresponding to B shown in FIG. The thickness B of the overcoat layer 105 is not particularly limited as long as the concave and convex portions on the surface of the light diffusion layer 102 can be filled, but is preferably 1 μm to 10 μm, more preferably 2 μm to 9 μm. If the thickness B of the overcoat layer 105 is less than 1 μm, the influence of surface irregular reflection due to the surface unevenness of the light diffusion layer 102 cannot be completely eliminated, and there is a possibility that whitening is likely to occur. Moreover, when thickness B exceeds 10 micrometers, the quantity of the curl which generate | occur | produces in the produced light-diffusion film becomes large, and manufacturing cost also becomes high. In the portion where the thickness from the surface of the overcoat layer 105 (the surface opposite to the light diffusion layer 102) to the surface in contact with the light diffusion layer 102 is not minimum (for example, the portion in contact with the concave portion of the light diffusion layer 102) The thickness of the overcoat layer 105 may not be 10 μm or less.
オーバーコート層105表面(光拡散層102とは反対側の表面)のJIS B 0601に従う中心線平均粗さRaは、後述する所定の表面反射特性(反射率R30およびR40)を得るために、好ましくは0.1μm以下である。また、中心線平均粗さRaをこの範囲に調整することにより、オーバーコート層105上に反射防止層を設ける場合において、より効果的に外光の反射を防止することができる。
The center line average roughness Ra according to JIS B 0601 on the surface of the overcoat layer 105 (surface opposite to the light diffusion layer 102) is to obtain predetermined surface reflection characteristics (reflectances R 30 and R 40 ) described later. Preferably, it is 0.1 μm or less. In addition, by adjusting the center line average roughness Ra within this range, reflection of external light can be more effectively prevented when an antireflection layer is provided on the overcoat layer 105.
〔光拡散フィルムの光学特性〕
(1)オーバーコート層表面の反射率
本発明の光拡散フィルム100は、オーバーコート層105側から、入射角30°で波長543.5nmのレーザー光が光拡散フィルムに入射したときの、反射角30°における光拡散フィルムの反射率R30が2%~5%、好ましくは3%~5%であり、反射角40°における光拡散フィルムの反射率R40が0.0001%以下、好ましくは0.00008%以下である。反射率R30および反射率R40を上記範囲内とすることにより、表面反射による映り込みなどを十分に抑制しつつ、白ちゃけを効果的に防止することができる。反射率R30が5%を超えると、表面反射による映り込みを十分に抑制することができず、視認性が低下する。一方、反射率R30が2%未満では、正面コントラストが低下する。また、反射率R40が0.0001%を超えると、白ちゃけが発生し、視認性が低下する。 [Optical characteristics of light diffusion film]
(1) Reflectivity of the surface of the overcoat layer Thelight diffusion film 100 of the present invention has a reflection angle when laser light having a wavelength of 543.5 nm is incident on the light diffusion film at an incident angle of 30 ° from the overcoat layer 105 side. The reflectance R 30 of the light diffusion film at 30 ° is 2% to 5%, preferably 3% to 5%, and the reflectance R 40 of the light diffusion film at a reflection angle of 40 ° is 0.0001% or less, preferably 0.00008% or less. By setting the reflectance R 30 and the reflectance R 40 within the above ranges, it is possible to effectively prevent whitish while sufficiently suppressing reflection due to surface reflection. When the reflectance R 30 exceeds 5%, reflection due to surface reflection cannot be sufficiently suppressed, and visibility is deteriorated. On the other hand, when the reflectance R 30 is less than 2%, the front contrast is lowered. On the other hand, if the reflectance R 40 exceeds 0.0001%, whitening occurs and visibility decreases.
(1)オーバーコート層表面の反射率
本発明の光拡散フィルム100は、オーバーコート層105側から、入射角30°で波長543.5nmのレーザー光が光拡散フィルムに入射したときの、反射角30°における光拡散フィルムの反射率R30が2%~5%、好ましくは3%~5%であり、反射角40°における光拡散フィルムの反射率R40が0.0001%以下、好ましくは0.00008%以下である。反射率R30および反射率R40を上記範囲内とすることにより、表面反射による映り込みなどを十分に抑制しつつ、白ちゃけを効果的に防止することができる。反射率R30が5%を超えると、表面反射による映り込みを十分に抑制することができず、視認性が低下する。一方、反射率R30が2%未満では、正面コントラストが低下する。また、反射率R40が0.0001%を超えると、白ちゃけが発生し、視認性が低下する。 [Optical characteristics of light diffusion film]
(1) Reflectivity of the surface of the overcoat layer The
オーバーコート層105側から入射角30°でレーザー光が光拡散フィルムに入射したときの反射率について説明する。図2は、反射率R30および反射率R40を説明するための図であり、オーバーコート層105側からのレーザー光の入射方向と反射方向とを模式的に示した斜視図である。図2において、光拡散フィルム200のオーバーコート層105側(図2中、Z軸の正方向側)における光拡散フィルム200の法線202に対して30°傾いた方向からレーザー光205(He-Neレーザーの平行光、波長543.5nm)を入射させ、入射光205と法線202とを含む平面209内で、法線202から入射光205とは逆側にφ°傾いた方向に反射する反射光206の強度を測定する。φ=30°の反射光(正反射方向への反射光)の強度を光源の光強度で除した値が反射率R30であり、φ=40°の反射光の強度を光源の光強度で除した値が反射率R40である。反射率R30とR40を調整するには、光拡散層の厚みと透光性微粒子の粒子径の比やオーバーコート層の厚み等を調整すればよい。
The reflectance when laser light enters the light diffusion film at an incident angle of 30 ° from the overcoat layer 105 side will be described. FIG. 2 is a diagram for explaining the reflectance R 30 and the reflectance R 40 , and is a perspective view schematically showing the incident direction and the reflecting direction of the laser light from the overcoat layer 105 side. In FIG. 2, a laser beam 205 (He−) from a direction inclined by 30 ° with respect to the normal line 202 of the light diffusion film 200 on the overcoat layer 105 side of the light diffusion film 200 (in the positive direction side of the Z axis in FIG. 2). Ne laser parallel light (wavelength: 543.5 nm) is incident and reflected in a direction inclined by φ ° from the normal line 202 to the opposite side of the incident light 205 in a plane 209 including the incident light 205 and the normal line 202. The intensity of the reflected light 206 is measured. The value obtained by dividing the intensity of the reflected light at φ = 30 ° (reflected light in the regular reflection direction) by the light intensity of the light source is the reflectance R 30 , and the intensity of the reflected light at φ = 40 ° is the light intensity of the light source. divided by the value the reflectance R 40. In order to adjust the reflectances R 30 and R 40 , the ratio of the thickness of the light diffusion layer to the particle diameter of the light-transmitting fine particles, the thickness of the overcoat layer, and the like may be adjusted.
反射率の測定には、オプティカルパワーメーター(たとえば、横河電機株式会社製の「3292 03 オプティカルパワーセンサー」および同社製の「3292 オプティカルパワーメーター」)を用いることができる。また、反射率の測定には、光拡散フィルム裏面からの反射が測定値に影響を及ぼす可能性を排除し、また光拡散フィルムの反りを防止するために、光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側で黒色板に貼合したものを測定用サンプルとして用いることが好ましい。これにより、測定精度および測定再現性を高めることができる。
The optical power meter (for example, “3292 03 Optical Power Sensor” manufactured by Yokogawa Electric Corporation and “3292 Optical Power Meter” manufactured by the same company) can be used for the reflectance measurement. In addition, in measuring the reflectance, an optically transparent adhesive is used to eliminate the possibility that reflection from the back of the light diffusing film will affect the measured value and to prevent warping of the light diffusing film. And it is preferable to use as a measurement sample what stuck the light-diffusion film to the black board by the base film side. Thereby, measurement accuracy and measurement reproducibility can be improved.
なお、光拡散層102上にオーバーコート層105が積層されていない状態での反射率R30およびR40(すなわち、光拡散層102表面の反射率R30およびR40)は、それぞれ0.05%~2%、0.0001%~0.1%であることが好ましい。
The reflectances R 30 and R 40 in the state where the overcoat layer 105 is not laminated on the light diffusion layer 102 (that is, the reflectances R 30 and R 40 on the surface of the light diffusion layer 102) are 0.05 respectively. % To 2%, preferably 0.0001% to 0.1%.
(2)相対散乱光強度
本発明の光拡散フィルムは、光拡散フィルムに、基材フィルム101側から光拡散フィルムの法線方向に、波長543.5nmのレーザー光が入射したときの相対散乱光強度T40が0.00008%~0.001%であることが好ましく、0.0001%~0.0006%であることがより好ましい。相対散乱光強度T40は、光拡散フィルムに入射する波長543.5nmの上記レーザー光の強度に対する、光拡散フィルムのオーバーコート層105側から、光拡散フィルムの法線から40°傾いた方向に出射するレーザー光の強度の比である。相対散乱光強度T40が0.00008%未満の場合、光散乱性が不十分であり、視野角が狭くなる傾向にある。また、0.001%を超える場合は、光散乱が強すぎるため、正面コントラストが低下する傾向にある。 (2) Relative scattered light intensity The light diffusing film of the present invention has a relative scattered light when a laser beam having a wavelength of 543.5 nm is incident on the light diffusing film from thebase film 101 side in the normal direction of the light diffusing film. The strength T 40 is preferably 0.00008% to 0.001%, and more preferably 0.0001% to 0.0006%. The relative scattered light intensity T 40 is to the intensity of the laser beam with a wavelength of 543.5nm entering the light diffusion film, the overcoat layer 105 side of the light diffusion film, the normal from 40 ° inclined direction of the light diffusing film This is the ratio of the intensity of the emitted laser light. When the relative scattered light intensity T 40 is less than 0.00008%, light scattering is insufficient, there is a tendency that the viewing angle is narrowed. On the other hand, if it exceeds 0.001%, light scattering is too strong and the front contrast tends to decrease.
本発明の光拡散フィルムは、光拡散フィルムに、基材フィルム101側から光拡散フィルムの法線方向に、波長543.5nmのレーザー光が入射したときの相対散乱光強度T40が0.00008%~0.001%であることが好ましく、0.0001%~0.0006%であることがより好ましい。相対散乱光強度T40は、光拡散フィルムに入射する波長543.5nmの上記レーザー光の強度に対する、光拡散フィルムのオーバーコート層105側から、光拡散フィルムの法線から40°傾いた方向に出射するレーザー光の強度の比である。相対散乱光強度T40が0.00008%未満の場合、光散乱性が不十分であり、視野角が狭くなる傾向にある。また、0.001%を超える場合は、光散乱が強すぎるため、正面コントラストが低下する傾向にある。 (2) Relative scattered light intensity The light diffusing film of the present invention has a relative scattered light when a laser beam having a wavelength of 543.5 nm is incident on the light diffusing film from the
図3を参照して、相対散乱光強度を説明する。図3は、基材フィルム側から光拡散フィルムの法線方向にレーザー光を入射させ、オーバーコート層側で法線から40°傾いた方向に透過するレーザー光の透過散乱光強度を測定するときの、レーザー光の入射方向と光強度を測定する透過散乱光の方向とを模式的に示す斜視図である。図3において、光拡散フィルム300に、光拡散フィルム300の基材フィルム101側(図3中、Z軸の負方向側)から、光拡散フィルムの法線301方向に、レーザー光(He-Neレーザーの平行光、波長543.5nm)を入射させ、光拡散フィルム300の接線305と光拡散フィルム300のオーバーコート層105側の法線302とを含む平面309内で、光拡散フィルム300のオーバーコート層105側から、光拡散フィルム300の法線302から40°傾いた方向303に出射するレーザー光、すなわち透過散乱光の強度を測定する。透過散乱光の強度を光源の光強度で除した値が相対散乱光強度T40である。相対散乱光強度T40を調整するには、透光性微粒子の粒子径、光拡散層の厚みと透光性微粒子の粒子径の比、光拡散層と透光性微粒子の屈折率差、光拡散層とオーバーコート層の屈折率差、オーバーコート層の厚み等を調整すればよい。
The relative scattered light intensity will be described with reference to FIG. FIG. 3 shows a case where laser light is incident from the base film side in the normal direction of the light diffusion film and the transmitted scattered light intensity of the laser light transmitted in the direction inclined by 40 ° from the normal line is measured on the overcoat layer side. It is a perspective view which shows typically the incident direction of a laser beam, and the direction of the transmitted scattered light which measures light intensity. In FIG. 3, laser light (He—Ne) is applied to the light diffusing film 300 from the base film 101 side of the light diffusing film 300 (in the negative direction side of the Z axis in FIG. 3) to the normal 301 direction of the light diffusing film. The parallel light of the laser, the wavelength 543.5 nm) is incident, and the light diffusing film 300 is over in the plane 309 including the tangent 305 of the light diffusing film 300 and the normal 302 on the overcoat layer 105 side of the light diffusing film 300. The intensity of laser light emitted from the coat layer 105 side in a direction 303 inclined by 40 ° from the normal 302 of the light diffusion film 300, that is, the intensity of transmitted scattered light is measured. Value obtained by dividing the light intensity of the intensity of the transmitted scattered light source is a relative scattered light intensity T 40. To adjust the relative scattered light intensity T 40, the particle size of the translucent particles, the ratio of the particle diameter of thickness and the transparent fine particles of the light diffusing layer, the refractive index difference between the light diffusing layer and the transparent fine particles, light The difference in refractive index between the diffusion layer and the overcoat layer, the thickness of the overcoat layer, and the like may be adjusted.
相対散乱光強度T40の測定には、オプティカルパワーメーター(たとえば、横河電機株式会社製の「3292 03 オプティカルパワーセンサー」および同社製の「3292 オプティカルパワーメーター」を用いることができる。また、相対散乱光強度T40の測定には、光拡散フィルムの反りを防止するために、光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側でガラス基板に貼合したものを測定用サンプルとして用いることが好ましい。これにより、測定精度および測定再現性を高めることができる。
For the measurement of the relative scattered light intensity T 40 , an optical power meter (for example, “3292 03 Optical Power Sensor” manufactured by Yokogawa Electric Co., Ltd. and “3292 Optical Power Meter” manufactured by the same company can be used. In order to prevent the light diffusing film from warping, the scattered light intensity T 40 is measured by using an optically transparent adhesive and bonding the light diffusing film to the glass substrate on the base film side. Is preferably used as a measurement sample, thereby improving measurement accuracy and measurement reproducibility.
なお、光拡散層102上にオーバーコート層105が積層されていない状態での相対散乱光強度T40は、オーバーコート層105が積層されている場合と同じく、0.00008%~0.001%であることが好ましい。
The relative scattered light intensity T 40 in the state where the overcoat layer 105 is not laminated on the light diffusion layer 102 is 0.00008% to 0.001% as in the case where the overcoat layer 105 is laminated. It is preferable that
(3)反射鮮明度
本発明の光拡散フィルムは、それぞれ幅0.5mm、1.0mmおよび2.0mmの光学くしを通して得られる、すなわち、光学くしを用いて測定される反射鮮明度の和(以下、単に「反射鮮明度」という)が200%以上であることが好ましく、また300%以下であることが好ましい。「0.5mm、1.0mmおよび2.0mmの光学くしを用いて測定される反射鮮明度の和」とは、JIS K 7105に準拠し、暗部と明部との幅の比が1:1で、その幅が0.5mm、1.0mmおよび2.0mmである3種類の光学くしを用いて測定される反射鮮明度(像鮮明度)の和である。したがって、ここでいう「反射鮮明度」の最大値は300%となる。 (3) Reflection sharpness The light diffusion film of the present invention is obtained through optical combs having widths of 0.5 mm, 1.0 mm and 2.0 mm, respectively, that is, the sum of reflection sharpness measured using an optical comb ( Hereinafter, it is preferably simply “reflection sharpness”) of 200% or more, and preferably 300% or less. “The sum of reflection sharpness measured using optical combs of 0.5 mm, 1.0 mm and 2.0 mm” is based on JIS K 7105, and the ratio of the width between the dark part and the bright part is 1: 1. The sum of reflection sharpness (image sharpness) measured using three types of optical combs whose widths are 0.5 mm, 1.0 mm, and 2.0 mm. Therefore, the maximum value of “reflection sharpness” here is 300%.
本発明の光拡散フィルムは、それぞれ幅0.5mm、1.0mmおよび2.0mmの光学くしを通して得られる、すなわち、光学くしを用いて測定される反射鮮明度の和(以下、単に「反射鮮明度」という)が200%以上であることが好ましく、また300%以下であることが好ましい。「0.5mm、1.0mmおよび2.0mmの光学くしを用いて測定される反射鮮明度の和」とは、JIS K 7105に準拠し、暗部と明部との幅の比が1:1で、その幅が0.5mm、1.0mmおよび2.0mmである3種類の光学くしを用いて測定される反射鮮明度(像鮮明度)の和である。したがって、ここでいう「反射鮮明度」の最大値は300%となる。 (3) Reflection sharpness The light diffusion film of the present invention is obtained through optical combs having widths of 0.5 mm, 1.0 mm and 2.0 mm, respectively, that is, the sum of reflection sharpness measured using an optical comb ( Hereinafter, it is preferably simply “reflection sharpness”) of 200% or more, and preferably 300% or less. “The sum of reflection sharpness measured using optical combs of 0.5 mm, 1.0 mm and 2.0 mm” is based on JIS K 7105, and the ratio of the width between the dark part and the bright part is 1: 1. The sum of reflection sharpness (image sharpness) measured using three types of optical combs whose widths are 0.5 mm, 1.0 mm, and 2.0 mm. Therefore, the maximum value of “reflection sharpness” here is 300%.
光拡散フィルムの反射鮮明度が200%未満の場合、オーバーコート層105表面への入射光の散乱が強すぎるため、この光拡散フィルムを液晶表示装置に適用したときに、たとえば黒表示において、白ちゃけが発生する傾向にある。光拡散フィルムの反射鮮明度は、より好ましくは240%~300%である。反射鮮明度を調整するには、光拡散層の厚みと透光性微粒子の粒子径の比やオーバーコート層の厚み等を調整すればよい。
When the reflection definition of the light diffusing film is less than 200%, the scattering of incident light onto the surface of the overcoat layer 105 is too strong. Therefore, when this light diffusing film is applied to a liquid crystal display device, There is a tendency to mess up. The reflection definition of the light diffusion film is more preferably 240% to 300%. In order to adjust the reflection definition, the ratio of the thickness of the light diffusion layer to the particle diameter of the light-transmitting fine particles, the thickness of the overcoat layer, etc. may be adjusted.
反射鮮明度の測定は、反射率の測定と同様、光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム101側で黒色板に貼合した測定用サンプルについて行なうことが好ましい。これにより、測定精度および測定再現性を高めることができる。測定装置としては、JIS K 7105に準拠した写像性測定器(たとえば、スガ試験機株式会社製の「ICM-1DP」)を用いることができる。
Similar to the measurement of reflectance, the measurement of reflection definition can be performed on a measurement sample in which a light diffusion film is bonded to a black plate on the base film 101 side using an optically transparent adhesive. preferable. Thereby, measurement accuracy and measurement reproducibility can be improved. As the measuring device, a image clarity measuring device (for example, “ICM-1DP” manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K 7105 can be used.
なお、光拡散層102上にオーバーコート層105が積層されていない状態での反射鮮明度は、10%~150%であることが好ましい。
It should be noted that the reflection sharpness in the state where the overcoat layer 105 is not laminated on the light diffusion layer 102 is preferably 10% to 150%.
(4)透過鮮明度
本発明の光拡散フィルムは、それぞれ幅0.125mm、0.5mm、1.0mmおよび2.0mmの光学くしを通して得られる、すなわち、光学くしを用いて測定される透過鮮明度の和(以下、単に「透過鮮明度」という)が70%~230%であることが好ましい。「0.125mm、0.5mm、1.0mmおよび2.0mmの光学くしを用いて測定される透過鮮明度の和」とは、JIS K 7105に準拠し、暗部と明部との幅の比が1:1で、その幅が0.125mm、0.5mm、1.0mmおよび2.0mmである4種類の光学くしを用いて測定される透過鮮明度(像鮮明度)の和である。したがって、ここでいう「透過鮮明度」の最大値は400%となる。 (4) Transmission sharpness The light diffusion film of the present invention is obtained through optical combs having a width of 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm, respectively, that is, transmission sharpness measured using an optical comb. The sum of degrees (hereinafter simply referred to as “transmission definition”) is preferably 70% to 230%. “Sum of transmitted sharpness measured using optical combs of 0.125 mm, 0.5 mm, 1.0 mm and 2.0 mm” is based on JIS K 7105, and the ratio of the width of the dark part to the bright part Is the sum of transmitted sharpness (image sharpness) measured using four types of optical combs having a width of 1: 1 and a width of 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm. Therefore, the maximum value of “transmission definition” here is 400%.
本発明の光拡散フィルムは、それぞれ幅0.125mm、0.5mm、1.0mmおよび2.0mmの光学くしを通して得られる、すなわち、光学くしを用いて測定される透過鮮明度の和(以下、単に「透過鮮明度」という)が70%~230%であることが好ましい。「0.125mm、0.5mm、1.0mmおよび2.0mmの光学くしを用いて測定される透過鮮明度の和」とは、JIS K 7105に準拠し、暗部と明部との幅の比が1:1で、その幅が0.125mm、0.5mm、1.0mmおよび2.0mmである4種類の光学くしを用いて測定される透過鮮明度(像鮮明度)の和である。したがって、ここでいう「透過鮮明度」の最大値は400%となる。 (4) Transmission sharpness The light diffusion film of the present invention is obtained through optical combs having a width of 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm, respectively, that is, transmission sharpness measured using an optical comb. The sum of degrees (hereinafter simply referred to as “transmission definition”) is preferably 70% to 230%. “Sum of transmitted sharpness measured using optical combs of 0.125 mm, 0.5 mm, 1.0 mm and 2.0 mm” is based on JIS K 7105, and the ratio of the width of the dark part to the bright part Is the sum of transmitted sharpness (image sharpness) measured using four types of optical combs having a width of 1: 1 and a width of 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm. Therefore, the maximum value of “transmission definition” here is 400%.
光拡散フィルムの透過鮮明度が70%未満の場合、光散乱が強すぎるため、この光拡散フィルムを液晶表示装置に適用したときに、たとえば白表示において、液晶表示装置の正面方向の光が光拡散層により散乱され過ぎてしまう等の原因により正面コントラストが低下し、表示品位が悪くなる傾向にある。また、透過鮮明度が230%を超える場合は、液晶表示装置のバックライト側のプリズムフィルムの表面凹凸構造と液晶セルのカラーフィルターが有する規則的なマトリックス構造との干渉による透過光のモアレが発生する傾向にある。光拡散フィルムの透過鮮明度は、より好ましくは70%~200%であり、さらに好ましくは90%~200%である。透過鮮明度を調整するには、透光性微粒子の粒子径、光拡散層の厚みと透光性微粒子の粒子径の比、光拡散層と透光性微粒子の屈折率差、オーバーコート層の厚み等を調整すればよい。
When the transmission definition of the light diffusion film is less than 70%, light scattering is too strong. Therefore, when this light diffusion film is applied to a liquid crystal display device, for example, in white display, light in the front direction of the liquid crystal display device is light. The front contrast tends to decrease due to causes such as excessive scattering by the diffusion layer, and the display quality tends to deteriorate. Also, when the transmitted sharpness exceeds 230%, transmitted light moiré occurs due to interference between the uneven surface structure of the prism film on the backlight side of the liquid crystal display device and the regular matrix structure of the color filter of the liquid crystal cell. Tend to. The transmission definition of the light diffusion film is more preferably 70% to 200%, and still more preferably 90% to 200%. To adjust the transmission clarity, the particle diameter of the light-transmitting fine particles, the ratio of the thickness of the light diffusion layer to the particle diameter of the light-transmitting fine particles, the difference in refractive index between the light diffusion layer and the light-transmitting fine particles, What is necessary is just to adjust thickness etc. FIG.
透過鮮明度の測定は、相対散乱光強度の測定と同様、光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム101側でガラス基板に貼合した測定用サンプルについて行なうことが好ましい。これにより、測定時におけるフィルムの反りを防止し、測定再現性を高めることができる。測定装置としては、JIS K 7105に準拠した写像性測定器(たとえば、スガ試験機株式会社製の「ICM-1DP」)を用いることができる。
Similar to the measurement of relative scattered light intensity, the measurement of the transmission clarity is performed on a measurement sample in which a light diffusion film is bonded to a glass substrate on the base film 101 side using an optically transparent adhesive. It is preferable. Thereby, the curvature of the film at the time of a measurement can be prevented, and measurement reproducibility can be improved. As the measuring device, a image clarity measuring device (for example, “ICM-1DP” manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K 7105 can be used.
なお、光拡散層102上にオーバーコート層105が積層されていない状態での透過鮮明度は、50%~200%であることが好ましい。
It should be noted that the transmission sharpness in the state where the overcoat layer 105 is not laminated on the light diffusion layer 102 is preferably 50% to 200%.
(5)ヘイズ
本発明の光拡散フィルムは、全ヘイズが40%~70%であり、かつ内部ヘイズが40%~70%であることが好ましい。また、オーバーコート層105の表面(光拡散層102と反対側の表面)の形状に起因する表面ヘイズは1%未満であることが好ましい。ここで、「全ヘイズ」とは、光拡散フィルムに光を照射して透過した光線の全量を表す全光線透過率(Tt)と、光拡散フィルムにより拡散されて透過した拡散光線透過率(Td)との比から下記式(2):
全ヘイズ(%)=(Td/Tt)×100 (2)
により求められる。 (5) Haze The light diffusion film of the present invention preferably has a total haze of 40% to 70% and an internal haze of 40% to 70%. Moreover, it is preferable that the surface haze resulting from the shape of the surface of the overcoat layer 105 (surface opposite to the light diffusion layer 102) is less than 1%. Here, “total haze” refers to the total light transmittance (Tt) representing the total amount of light transmitted through irradiation of the light diffusing film and the diffused light transmittance (Td) diffused and transmitted by the light diffusing film. ) And the following formula (2):
Total haze (%) = (Td / Tt) × 100 (2)
Is required.
本発明の光拡散フィルムは、全ヘイズが40%~70%であり、かつ内部ヘイズが40%~70%であることが好ましい。また、オーバーコート層105の表面(光拡散層102と反対側の表面)の形状に起因する表面ヘイズは1%未満であることが好ましい。ここで、「全ヘイズ」とは、光拡散フィルムに光を照射して透過した光線の全量を表す全光線透過率(Tt)と、光拡散フィルムにより拡散されて透過した拡散光線透過率(Td)との比から下記式(2):
全ヘイズ(%)=(Td/Tt)×100 (2)
により求められる。 (5) Haze The light diffusion film of the present invention preferably has a total haze of 40% to 70% and an internal haze of 40% to 70%. Moreover, it is preferable that the surface haze resulting from the shape of the surface of the overcoat layer 105 (surface opposite to the light diffusion layer 102) is less than 1%. Here, “total haze” refers to the total light transmittance (Tt) representing the total amount of light transmitted through irradiation of the light diffusing film and the diffused light transmittance (Td) diffused and transmitted by the light diffusing film. ) And the following formula (2):
Total haze (%) = (Td / Tt) × 100 (2)
Is required.
全光線透過率(Tt)は、入射光と同軸のまま透過した平行光線透過率(Tp)と拡散光線透過率(Td)の和である。全光線透過率(Tt)および拡散光線透過率(Td)は、JIS K 7361に準拠して測定される値である。
The total light transmittance (Tt) is the sum of the parallel light transmittance (Tp) and the diffuse light transmittance (Td) that are transmitted coaxially with the incident light. The total light transmittance (Tt) and the diffused light transmittance (Td) are values measured in accordance with JIS K 7361.
また、光拡散フィルムの「内部ヘイズ」とは、全ヘイズのうち、オーバーコート層105の表面形状に起因するヘイズ(表面ヘイズ)以外のヘイズである。
The “internal haze” of the light diffusing film is a haze other than the haze (surface haze) caused by the surface shape of the overcoat layer 105 among all the hazes.
全ヘイズおよび/または内部ヘイズが40%未満の場合、光拡散性が不十分であり、視野角が狭くなる傾向にある。また、全ヘイズおよび/または内部ヘイズが70%を超える場合は、光拡散が強すぎるため、正面コントラストが低下する傾向にある。また、全ヘイズおよび/または内部ヘイズが70%を超える場合は、光拡散フィルムの透明性が損なわれる傾向にある。全ヘイズおよび内部ヘイズはそれぞれ、45%~65%であることが好ましい。全ヘイズおよび内部ヘイズを調整するには、透光性微粒子の粒子径、光拡散層の厚みと透光性微粒子の粒子径の比、光拡散層と透光性微粒子の屈折率差、光拡散層とオーバーコート層の屈折率差、オーバーコート層の厚み等を調整すればよい。
When the total haze and / or internal haze is less than 40%, the light diffusibility is insufficient and the viewing angle tends to be narrow. When the total haze and / or internal haze exceeds 70%, the light diffusion is too strong and the front contrast tends to decrease. Moreover, when the total haze and / or internal haze exceeds 70%, the transparency of the light diffusion film tends to be impaired. The total haze and internal haze are each preferably 45% to 65%. To adjust the total haze and internal haze, the particle diameter of the light transmissive fine particles, the ratio of the thickness of the light diffusing layer to the particle diameter of the light transmissive fine particles, the refractive index difference between the light diffusing layer and the light transmissive fine particles, the light diffusion The refractive index difference between the layer and the overcoat layer, the thickness of the overcoat layer, and the like may be adjusted.
また、オーバーコート層105の表面形状に起因する表面ヘイズが1%を超える場合、表面乱反射により白ちゃけが発生する傾向にある。白ちゃけをより効果的に防止するためには、表面ヘイズは、0.9%以下であることが好ましい。表面ヘイズを調整するには、光拡散層の厚みと透光性微粒子の粒子径の比、オーバーコート層の厚み等を調整すればよい。
In addition, when the surface haze due to the surface shape of the overcoat layer 105 exceeds 1%, there is a tendency for whitening to occur due to surface irregular reflection. In order to prevent whitening more effectively, the surface haze is preferably 0.9% or less. In order to adjust the surface haze, the ratio of the thickness of the light diffusion layer and the particle diameter of the light-transmitting fine particles, the thickness of the overcoat layer, etc. may be adjusted.
光拡散フィルムの全ヘイズ、内部ヘイズおよび表面ヘイズは、具体的には次のようにして測定される。すなわち、まず、フィルムの反りを防止するため、光学的に透明な粘着剤を用いて光拡散フィルムを、オーバーコート層105が表面となるように、基材フィルム101側をガラス基板に貼合して測定用サンプルを作製し、当該測定用サンプルについて全ヘイズ値を測定する。全ヘイズ値は、JIS K 7136に準拠したヘイズ透過率計(たとえば、株式会社村上色彩技術研究所製のヘイズメーター「HM-150」)を用いて、全光線透過率(Tt)および拡散光線透過率(Td)を測定し、上記式(2)によって算出される。
The total haze, internal haze, and surface haze of the light diffusion film are specifically measured as follows. That is, first, in order to prevent warping of the film, the light diffusion film is bonded to the glass substrate with the optically transparent adhesive so that the overcoat layer 105 becomes the surface. A measurement sample is prepared, and the total haze value of the measurement sample is measured. For the total haze value, the total light transmittance (Tt) and diffuse light transmittance are measured using a haze transmittance meter (for example, a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with JIS K 7136. The rate (Td) is measured and calculated by the above equation (2).
ついで、オーバーコート層105の表面に、ヘイズがほぼ0%であるトリアセチルセルロースフィルムを、グリセリンを用いて貼合し、上述の全ヘイズの測定と同様にしてヘイズを測定する。当該ヘイズは、オーバーコート層105の表面形状に起因する表面ヘイズが、貼合されたトリアセチルセルロースフィルムによってほぼ打ち消されていることから、光拡散フィルムの「内部ヘイズ」とみなすことができる。したがって、光拡散フィルムの「表面ヘイズ」は、下記式(3):
表面ヘイズ(%)=全ヘイズ(%)-内部ヘイズ(%) (3)
より求められる。 Next, a triacetyl cellulose film having a haze of approximately 0% is bonded to the surface of theovercoat layer 105 using glycerin, and the haze is measured in the same manner as the measurement of the total haze described above. The haze can be regarded as “internal haze” of the light diffusion film because the surface haze due to the surface shape of the overcoat layer 105 is almost canceled by the bonded triacetyl cellulose film. Therefore, the “surface haze” of the light diffusion film is expressed by the following formula (3):
Surface haze (%) = Total haze (%)-Internal haze (%) (3)
More demanded.
表面ヘイズ(%)=全ヘイズ(%)-内部ヘイズ(%) (3)
より求められる。 Next, a triacetyl cellulose film having a haze of approximately 0% is bonded to the surface of the
Surface haze (%) = Total haze (%)-Internal haze (%) (3)
More demanded.
なお、光拡散層102上にオーバーコート層105が積層されていない状態での全ヘイズおよび内部ヘイズはともに、オーバーコート層105が積層されている場合と同じく、40%~70%であることが好ましい。
The total haze and the internal haze when the overcoat layer 105 is not laminated on the light diffusion layer 102 are both 40% to 70%, as in the case where the overcoat layer 105 is laminated. preferable.
〔光拡散フィルムの製造方法〕
次に、本発明の光拡散フィルムを製造する方法について説明する。本発明の光拡散フィルムは、次の工程(A)および(B)を含む方法によって好適に製造することができる。
後述するように工程(A)および(B)は同時に行なうこともできる。
(A)基材フィルム101上に光拡散層102を形成する工程、
(B)光拡散層102上にオーバーコート層105を形成する工程。 [Production method of light diffusion film]
Next, a method for producing the light diffusion film of the present invention will be described. The light-diffusion film of this invention can be suitably manufactured by the method containing the following process (A) and (B).
As will be described later, the steps (A) and (B) can be performed simultaneously.
(A) A step of forming thelight diffusion layer 102 on the base film 101,
(B) A step of forming anovercoat layer 105 on the light diffusion layer 102.
次に、本発明の光拡散フィルムを製造する方法について説明する。本発明の光拡散フィルムは、次の工程(A)および(B)を含む方法によって好適に製造することができる。
後述するように工程(A)および(B)は同時に行なうこともできる。
(A)基材フィルム101上に光拡散層102を形成する工程、
(B)光拡散層102上にオーバーコート層105を形成する工程。 [Production method of light diffusion film]
Next, a method for producing the light diffusion film of the present invention will be described. The light-diffusion film of this invention can be suitably manufactured by the method containing the following process (A) and (B).
As will be described later, the steps (A) and (B) can be performed simultaneously.
(A) A step of forming the
(B) A step of forming an
上記工程(A)では、まず、透光性微粒子104、第1の透光性樹脂103またはこれを形成する樹脂(たとえば、活性エネルギー線硬化型樹脂、熱硬化型樹脂、熱可塑性樹脂または金属アルコキシド)を含み、さらに必要に応じて有機溶剤等の溶剤、レベリング剤、分散剤、帯電防止剤、防汚剤等のその他の成分を含む樹脂液を用意し、これを基材フィルム101上に塗工する。第1の透光性樹脂103を形成する樹脂として紫外線硬化型樹脂を用いる場合、上記樹脂液は、さらに光重合開始剤(ラジカル重合開始剤)を含む。
In the step (A), first, the translucent fine particles 104, the first translucent resin 103 or a resin forming the same (for example, active energy ray curable resin, thermosetting resin, thermoplastic resin or metal alkoxide) In addition, a resin liquid containing other components such as a solvent such as an organic solvent, a leveling agent, a dispersant, an antistatic agent, and an antifouling agent is prepared as necessary. Work. When an ultraviolet curable resin is used as the resin that forms the first light-transmitting resin 103, the resin liquid further contains a photopolymerization initiator (radical polymerization initiator).
光重合開始剤としては、たとえば、アセトフェノン系光重合開始剤、ベンゾイン系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、トリアジン系光重合開始剤、オキサジアゾール系光重合開始剤などが用いられる。また、光重合開始剤として、たとえば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、10-ブチル-2-クロロアクリドン、2-エチルアントラキノン、ベンジル、9,10-フェナンスレンキノン、カンファーキノン、フェニルグリオキシル酸メチル、チタノセン化合物等も用いることができる。光重合開始剤の使用量は、通常、樹脂液に含有される樹脂100重量部に対して0.5~20重量部であり、好ましくは、1~5重量部である。
Examples of the photopolymerization initiator include acetophenone photopolymerization initiator, benzoin photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone photopolymerization initiator, triazine photopolymerization initiator, and oxadiazole photopolymerization initiator. An initiator or the like is used. Examples of the photopolymerization initiator include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2 '-Biimidazole, 10-butyl-2-chloroacridone, 2-ethylanthraquinone, benzyl, 9,10-phenanthrenequinone, camphorquinone, methyl phenylglyoxylate, titanocene compounds and the like can also be used. The amount of the photopolymerization initiator used is usually 0.5 to 20 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the resin contained in the resin liquid.
有機溶剤としては、ヘキサン、シクロヘキサン、オクタンなどの脂肪族炭化水素;トルエン、キシレンなどの芳香族炭化水素;エタノール、1-プロパノール、イソプロパノール、1-ブタノール、シクロヘキサノールなどのアルコール類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテル類;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル化グリコールエーテル類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール等のセルソルブ類;2-(2-メトキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、2-(2-ブトキシエトキシ)エタノール等のカルビトール類;などから、粘度等を考慮して選択して用いることができる。これらの溶剤は、単独で用いてもよいし、必要に応じて数種類を混合して用いてもよい。塗工後は、上記有機溶剤を蒸発させる必要がある。そのため、有機溶剤の沸点は60℃~160℃の範囲であることが望ましい。また、有機溶剤の20℃における飽和蒸気圧は0.1kPa~20kPaの範囲であることが好ましい。
Examples of organic solvents include aliphatic hydrocarbons such as hexane, cyclohexane, and octane; aromatic hydrocarbons such as toluene and xylene; alcohols such as ethanol, 1-propanol, isopropanol, 1-butanol, and cyclohexanol; methyl ethyl ketone, methyl isobutyl Ketones such as ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate and isobutyl acetate; glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether Ethers; ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, etc. Esterified glycol ethers; Cellsolves such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol; 2- (2-methoxyethoxy) ethanol, 2- (2-ethoxyethoxy) ethanol, 2- (2- It can be selected from carbitols such as butoxyethoxy) ethanol, etc. in consideration of viscosity and the like. These solvents may be used alone or as a mixture of several kinds as required. After coating, it is necessary to evaporate the organic solvent. Therefore, the boiling point of the organic solvent is desirably in the range of 60 ° C to 160 ° C. The saturated vapor pressure of the organic solvent at 20 ° C. is preferably in the range of 0.1 kPa to 20 kPa.
なお、光拡散フィルム100の光学特性および表面形状を均質なものとするために、樹脂液中の透光性微粒子104の分散は等方分散であることが好ましい。
In addition, in order to make the optical characteristics and surface shape of the light diffusion film 100 uniform, the dispersion of the translucent fine particles 104 in the resin liquid is preferably isotropic dispersion.
上記樹脂液の基材フィルム101上への塗工は、たとえば、グラビアコート法、マイクログラビアコート法、ロッドコート法、ナイフコート法、エアーナイフコート法、キスコート法、ダイコート法などによって行なうことができる。
Application of the resin liquid onto the base film 101 can be performed by, for example, a gravure coating method, a micro gravure coating method, a rod coating method, a knife coating method, an air knife coating method, a kiss coating method, a die coating method, or the like. .
樹脂液の塗工性の改良または光拡散層102との接着性の改良を目的として、基材フィルム101の表面(光拡散層102側表面)には、各種表面処理を施してもよい。表面処理としては、コロナ放電処理、グロー放電処理、酸表面処理、アルカリ表面処理、紫外線照射処理などが挙げられる。また、基材フィルム101上に、たとえばプライマー層等の他の層を形成し、この他の層の上に、樹脂液を塗工するようにしてもよい。
Various surface treatments may be applied to the surface of the base film 101 (surface on the light diffusion layer 102 side) for the purpose of improving the coating property of the resin liquid or improving the adhesion to the light diffusion layer 102. Examples of the surface treatment include corona discharge treatment, glow discharge treatment, acid surface treatment, alkali surface treatment, and ultraviolet irradiation treatment. Further, another layer such as a primer layer may be formed on the base film 101, and the resin liquid may be applied on the other layer.
また、本発明の光拡散フィルム100を、後述する偏光フィルムの保護フィルムとして使用する場合には、基材フィルム101と偏光フィルムとの接着性を向上させるために、基材フィルム101の表面(光拡散層102とは反対側の表面)を各種表面処理によって親水化しておくことも好ましい。
Moreover, when using the light-diffusion film 100 of this invention as a protective film of the polarizing film mentioned later, in order to improve the adhesiveness of the base film 101 and a polarizing film, the surface (light It is also preferable to hydrophilize the surface on the side opposite to the diffusion layer 102 by various surface treatments.
ついで、塗工層を基材フィルム101上に固着させて光拡散層102を形成する。具体的には、第1の透光性樹脂103を形成する樹脂として活性エネルギー線硬化型樹脂、熱硬化型樹脂または金属アルコキシドを用いる場合は、必要に応じて乾燥(溶媒の除去)を行なった後、塗工層に対し活性エネルギー線の照射を行なうか(活性エネルギー線硬化型樹脂を用いる場合)または加熱する(熱硬化型樹脂または金属アルコキシドを用いる場合)ことにより、塗工層を硬化させる。活性エネルギー線としては、樹脂液に含まれる樹脂の種類に応じて紫外線、電子線、近紫外線、可視光線、近赤外線、赤外線、X線などから適宜選択することができるが、これらの中で紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが得られることから紫外線が好ましい。
Next, the light diffusion layer 102 is formed by fixing the coating layer on the base film 101. Specifically, when an active energy ray curable resin, a thermosetting resin, or a metal alkoxide is used as the resin that forms the first translucent resin 103, drying (removal of the solvent) was performed as necessary. Thereafter, the coating layer is cured by irradiating the coating layer with active energy rays (when using an active energy ray-curable resin) or heating (when using a thermosetting resin or metal alkoxide). . The active energy ray can be appropriately selected from ultraviolet rays, electron beams, near ultraviolet rays, visible rays, near infrared rays, infrared rays, X-rays, etc., depending on the type of resin contained in the resin liquid. An electron beam is preferable, and ultraviolet rays are particularly preferable because of easy handling and high energy.
紫外線の光源としては、たとえば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアークランプ、メタルハライドランプ、キセノンアークランプ等を用いることができる。また、ArFエキシマレーザー、KrFエキシマレーザー、エキシマランプまたはシンクロトロン放射光等も用いることができる。これらの中でも、超高圧水銀灯、高圧水銀灯、低圧水銀灯、キセノンアークランプ、メタルハライドランプが好ましく用いられる。
As the ultraviolet light source, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon arc lamp, or the like can be used. An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used. Among these, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon arc lamp, and a metal halide lamp are preferably used.
また、電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50~1000keV、好ましくは100~300keVのエネルギーを有する電子線を挙げることができる。
As the electron beam, 50 to 1000 keV emitted from various electron beam accelerators such as Cockloft Walton type, Bande graph type, resonance transformation type, insulation core transformation type, linear type, dynamitron type, and high frequency type, preferably 100 Mention may be made of electron beams having an energy of ˜300 keV.
一方、第1の透光性樹脂103として熱可塑性樹脂を用いる場合には、必要に応じて乾燥(溶媒の除去)を行なうか、または必要に応じて乾燥を行なった後、塗工層を軟化または溶融させ、その後塗工層を冷却することにより、光拡散層102を形成することができる。
On the other hand, when a thermoplastic resin is used as the first translucent resin 103, the coating layer is softened after drying (removing the solvent) as necessary or drying as necessary. Alternatively, the light diffusion layer 102 can be formed by melting and then cooling the coating layer.
たとえば紫外線硬化型樹脂を用いる場合を例に挙げれば、ロール状に巻かれた基材フィルム101を連続的に送り出す工程、透光性微粒子104および紫外線硬化型樹脂を含有する樹脂液を基材フィルム101上に塗工し、必要に応じて乾燥させる工程、塗工層を硬化させて光拡散層102を形成する工程、および、光拡散層102が形成された基材フィルム101を巻き取る工程を含む方法により、光拡散層102の形成を連続的行なうことができる。なお、オーバーコート層105を光拡散層102の形成に続けて、または同時に行なう場合には、巻き取る工程は不要である。
For example, in the case of using an ultraviolet curable resin, for example, a step of continuously feeding a base film 101 wound in a roll shape, a resin liquid containing translucent fine particles 104 and an ultraviolet curable resin as a base film Coating on 101, drying as necessary, curing the coating layer to form the light diffusion layer 102, and winding the substrate film 101 on which the light diffusion layer 102 is formed The light diffusing layer 102 can be continuously formed by the method including this. Note that when the overcoat layer 105 is performed subsequent to or simultaneously with the formation of the light diffusion layer 102, a winding step is not necessary.
具体的な実施形態を示せば次のとおりである。まず、巻き出し装置により基材フィルム101が連続的に巻き出される。ついで、巻き出された基材フィルム101上に、塗工装置およびこれに対向するバックアップロールを使用して、透光性微粒子104および紫外線硬化型樹脂を含有する樹脂液が塗工される。次に、樹脂液に溶媒が含まれる場合には、乾燥機を通過させることにより乾燥される。次に、塗工層が設けられた基材フィルム101に、基材フィルム101側をバックアップロールに接触させた状態で、紫外線照射装置から紫外線を照射することにより塗工層を硬化させる。紫外線照射により照射面が高温になることから、バックアップロールは、その表面温度を室温~80℃程度に調整するための冷却装置をその内部に備えることが好ましい。また、紫外線照射装置は、1機もしくは複数機を使用することができる。以上のようにして得られた光拡散層102が形成された基材フィルム101は、巻き取り装置へ巻き取られる。この際、光拡散層102を保護する目的で、再剥離性を有した粘着剤層を介して、光拡散層102表面にポリエチレンテレフタレートやポリエチレン等からなる保護フィルムを貼着しながら巻き取ってもよい。
Specific embodiments are as follows. First, the base film 101 is continuously unwound by the unwinding device. Next, a resin liquid containing the translucent fine particles 104 and the ultraviolet curable resin is applied onto the unwound base film 101 using a coating apparatus and a backup roll facing the coating apparatus. Next, when the resin liquid contains a solvent, it is dried by passing it through a dryer. Next, the coating layer is cured by irradiating the substrate film 101 provided with the coating layer with ultraviolet rays from an ultraviolet irradiation device in a state where the substrate film 101 side is in contact with the backup roll. Since the irradiated surface becomes hot due to ultraviolet irradiation, the backup roll preferably includes a cooling device for adjusting the surface temperature of the backup roll to about room temperature to 80 ° C. Further, one or a plurality of ultraviolet irradiation devices can be used. The base film 101 on which the light diffusion layer 102 obtained as described above is formed is wound up by a winding device. At this time, for the purpose of protecting the light diffusing layer 102, it may be wound up with a protective film made of polyethylene terephthalate, polyethylene, or the like attached to the surface of the light diffusing layer 102 through a pressure-sensitive adhesive layer having removability. Good.
次に、工程(B)について説明すると、光拡散層102上にオーバーコート層105を形成する方法としては、たとえば、第2の透光性樹脂またはこれを形成する樹脂(たとえば、活性エネルギー線硬化型樹脂、熱硬化型樹脂、熱可塑性樹脂または金属アルコキシド)を含む樹脂液を光拡散層102上に塗工し、必要に応じて乾燥した後、塗工層を光拡散層102上に固着させる方法が挙げられる。当該樹脂液は、光拡散層形成用樹脂液と同様、必要に応じて有機溶剤等の溶剤、レベリング剤、分散剤、帯電防止剤、防汚剤、光重合開始剤(ラジカル重合開始剤)等のその他の成分を含むことができる。
Next, the step (B) will be described. As a method for forming the overcoat layer 105 on the light diffusion layer 102, for example, a second light-transmitting resin or a resin forming the same (for example, active energy ray curing) A resin liquid containing a mold resin, a thermosetting resin, a thermoplastic resin, or a metal alkoxide) is applied onto the light diffusion layer 102 and dried as necessary, and then the application layer is fixed onto the light diffusion layer 102. A method is mentioned. The resin liquid is a solvent such as an organic solvent, a leveling agent, a dispersant, an antistatic agent, an antifouling agent, a photopolymerization initiator (radical polymerization initiator), etc. Of other ingredients.
樹脂液の塗工方法、塗工層の光拡散層102への固着方法(たとえば、紫外線硬化型樹脂を用いる場合における硬化方法)などは、上述した光拡散層102を形成する場合と同様であってよい。また、より表面平滑性の高いオーバーコート層105を得るために、塗工層表面に金型の鏡面を押し付けた状態で塗工層を光拡散層102に固着させてもよい。
The coating method of the resin liquid, the fixing method of the coating layer to the light diffusion layer 102 (for example, the curing method in the case of using an ultraviolet curable resin), and the like are the same as in the case of forming the light diffusion layer 102 described above. It's okay. Further, in order to obtain an overcoat layer 105 having higher surface smoothness, the coating layer may be fixed to the light diffusion layer 102 in a state where the mirror surface of the mold is pressed against the surface of the coating layer.
また、基材フィルム101上に、光拡散層102とオーバーコート層105とを同時に積層することもできる。同時に積層するための方法としては、1つのパスラインに2つのコーターを備えた塗工装置を使用する方法や、1つのコーターに2つのスリットを設けた、2層同時塗工が可能なコーターを使用する方法を挙げることができる。このようなコーターの例としては、多層スロットダイコーター、多層スライドコーター、多層カーテンコーター等が挙げられる。上記のような装置を用いて2層塗工を行なった後、上記と同様にして、必要に応じて乾燥を行ない、ついで2つの層の固着(硬化など)を行なうことにより、光拡散フィルム100を得ることができる。
Also, the light diffusion layer 102 and the overcoat layer 105 can be simultaneously laminated on the base film 101. As a method for laminating at the same time, a method using a coating device having two coaters in one pass line, or a coater capable of two-layer simultaneous coating with two slits in one coater. Mention may be made of the methods used. Examples of such a coater include a multilayer slot die coater, a multilayer slide coater, and a multilayer curtain coater. After performing the two-layer coating using the apparatus as described above, the light diffusing film 100 is dried in the same manner as described above, and then the two layers are fixed (cured, etc.). Can be obtained.
<反射防止性光拡散フィルム>
本発明の光拡散フィルムの、オーバーコート層105上(光拡散層102とは反対側の面)に反射防止層をさらに積層することにより、反射防止性光拡散フィルムとすることができる。反射防止性光拡散フィルムは、本発明の光拡散フィルム及び光拡散フィルムのオーバーコート層上に積層された反射防止層を備える。反射防止層はオーバーコート層105上に直接形成してもよく、透明フィルム上に反射防止層を形成した反射防止フィルムを別途用意し、これを粘着剤または接着剤を用いてオーバーコート層105上に積層してもよい。反射防止層は、反射率を限りなく低くするために設けられるものであり、反射防止層の形成により、表示画面への映り込みをより効果的に防止することができる。反射防止層としては、オーバーコート層105の屈折率よりも低い材料から構成された低屈折率層;高屈折率層と、この高屈折率層の屈折率より低い材料から構成された低屈折率層との積層構造;などを挙げることができる。反射防止フィルムを粘着剤または接着剤を用いてオーバーコート層105に積層する場合、市販の反射防止フィルムを使用できる。 <Antireflection light diffusion film>
By further laminating an antireflection layer on the overcoat layer 105 (surface opposite to the light diffusion layer 102) of the light diffusion film of the present invention, an antireflection light diffusion film can be obtained. The antireflection light diffusing film includes the light diffusing film of the present invention and an antireflection layer laminated on the overcoat layer of the light diffusing film. The antireflection layer may be formed directly on theovercoat layer 105, or an antireflection film in which an antireflection layer is formed on a transparent film is separately prepared, and this is applied to the overcoat layer 105 using an adhesive or an adhesive. May be laminated. The antireflection layer is provided to reduce the reflectance as much as possible, and reflection on the display screen can be more effectively prevented by forming the antireflection layer. As the antireflection layer, a low refractive index layer composed of a material lower than the refractive index of the overcoat layer 105; a high refractive index layer and a low refractive index composed of a material lower than the refractive index of the high refractive index layer And a laminated structure with a layer. When the antireflection film is laminated on the overcoat layer 105 using an adhesive or an adhesive, a commercially available antireflection film can be used.
本発明の光拡散フィルムの、オーバーコート層105上(光拡散層102とは反対側の面)に反射防止層をさらに積層することにより、反射防止性光拡散フィルムとすることができる。反射防止性光拡散フィルムは、本発明の光拡散フィルム及び光拡散フィルムのオーバーコート層上に積層された反射防止層を備える。反射防止層はオーバーコート層105上に直接形成してもよく、透明フィルム上に反射防止層を形成した反射防止フィルムを別途用意し、これを粘着剤または接着剤を用いてオーバーコート層105上に積層してもよい。反射防止層は、反射率を限りなく低くするために設けられるものであり、反射防止層の形成により、表示画面への映り込みをより効果的に防止することができる。反射防止層としては、オーバーコート層105の屈折率よりも低い材料から構成された低屈折率層;高屈折率層と、この高屈折率層の屈折率より低い材料から構成された低屈折率層との積層構造;などを挙げることができる。反射防止フィルムを粘着剤または接着剤を用いてオーバーコート層105に積層する場合、市販の反射防止フィルムを使用できる。 <Antireflection light diffusion film>
By further laminating an antireflection layer on the overcoat layer 105 (surface opposite to the light diffusion layer 102) of the light diffusion film of the present invention, an antireflection light diffusion film can be obtained. The antireflection light diffusing film includes the light diffusing film of the present invention and an antireflection layer laminated on the overcoat layer of the light diffusing film. The antireflection layer may be formed directly on the
反射防止層を設ける場合、反射防止層を有する反射防止性光拡散フィルムの反射率R30、すなわち、反射防止層表面の反射率R30は、2%以下であることが好ましい。
When providing the anti-reflection layer, reflectance R 30 of the anti-reflection light-diffusing film having an antireflection layer, i.e., the reflectance R 30 of the surface of the antireflection layer is preferably 2% or less.
<偏光板>
続いて、図4を参照して、本発明の偏光板400を説明する。本発明の偏光板400は、偏光フィルム41と、前述の光拡散フィルム100とを備え、光拡散フィルム100は、基材フィルム101側が該偏光フィルム41に対向するように、すなわち、オーバーコート層105よりも基材フィルム101の方が偏光フィルム41に近くなるように、該偏光フィルム41上に積層されるものである。偏光フィルム41は、入射光から直線偏光を取り出す機能を有するものであって、その種類は特に限定されない。好適な偏光フィルムの例として、ポリビニルアルコール系樹脂に二色性色素が吸着配向している偏光フィルムを挙げることができる。ポリビニルアルコール系樹脂としては、酢酸ビニルのケン化物であるポリビニルアルコールのほか、部分ホルマール化ポリビニルアルコール、エチレン/酢酸ビニル共重合体のケン化物などが挙げられる。二色性色素としては、ヨウ素または二色性の有機染料が用いられる。また、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物のポリエン配向フィルムも、偏光フィルム41となり得る。偏光フィルム41の厚さは、通常5~80μm程度である。 <Polarizing plate>
Then, with reference to FIG. 4, thepolarizing plate 400 of this invention is demonstrated. The polarizing plate 400 of the present invention includes the polarizing film 41 and the light diffusion film 100 described above, and the light diffusion film 100 has the base film 101 side facing the polarizing film 41, that is, the overcoat layer 105. The base film 101 is laminated on the polarizing film 41 so that the base film 101 is closer to the polarizing film 41. The polarizing film 41 has a function of extracting linearly polarized light from incident light, and the type thereof is not particularly limited. As an example of a suitable polarizing film, there can be mentioned a polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol resin. Examples of the polyvinyl alcohol-based resin include polyvinyl alcohol, which is a saponified product of vinyl acetate, partially formalized polyvinyl alcohol, and a saponified product of an ethylene / vinyl acetate copolymer. As the dichroic dye, iodine or a dichroic organic dye is used. Further, a polyene-oriented film of a polyvinyl alcohol dehydrated product or a polyvinyl chloride dehydrochlorinated product can be the polarizing film 41. The thickness of the polarizing film 41 is usually about 5 to 80 μm.
続いて、図4を参照して、本発明の偏光板400を説明する。本発明の偏光板400は、偏光フィルム41と、前述の光拡散フィルム100とを備え、光拡散フィルム100は、基材フィルム101側が該偏光フィルム41に対向するように、すなわち、オーバーコート層105よりも基材フィルム101の方が偏光フィルム41に近くなるように、該偏光フィルム41上に積層されるものである。偏光フィルム41は、入射光から直線偏光を取り出す機能を有するものであって、その種類は特に限定されない。好適な偏光フィルムの例として、ポリビニルアルコール系樹脂に二色性色素が吸着配向している偏光フィルムを挙げることができる。ポリビニルアルコール系樹脂としては、酢酸ビニルのケン化物であるポリビニルアルコールのほか、部分ホルマール化ポリビニルアルコール、エチレン/酢酸ビニル共重合体のケン化物などが挙げられる。二色性色素としては、ヨウ素または二色性の有機染料が用いられる。また、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物のポリエン配向フィルムも、偏光フィルム41となり得る。偏光フィルム41の厚さは、通常5~80μm程度である。 <Polarizing plate>
Then, with reference to FIG. 4, the
本発明の偏光板は、上記偏光フィルム41の片面または両面(通常は片面である)に本発明の光拡散フィルム100を積層したものであってもよく、図4に示すように、上記偏光フィルム41の一方の面に透明保護層42を積層し、他方の面に本発明の光拡散フィルム100を積層したものであってもよい。この際、光拡散フィルム100は、偏光フィルム41の透明保護層としての機能も有する。光拡散フィルム100の光拡散層102に表面凹凸形状が付与されている場合、この光拡散層102は防眩層としての機能も有する。透明保護層42は、透明樹脂フィルムを、接着剤等を用いて貼合する方法や透明樹脂含有塗工液を塗布する方法などによって偏光フィルム41上に形成することができる。同様に、本発明の光拡散フィルム100は、接着剤等を用いて偏光フィルム41に貼合することができる。
The polarizing plate of the present invention may be obtained by laminating the light diffusion film 100 of the present invention on one side or both sides (usually one side) of the polarizing film 41. As shown in FIG. The transparent protective layer 42 may be laminated on one surface of 41, and the light diffusion film 100 of the present invention may be laminated on the other surface. At this time, the light diffusion film 100 also has a function as a transparent protective layer of the polarizing film 41. When the surface unevenness shape is given to the light diffusion layer 102 of the light diffusion film 100, the light diffusion layer 102 also has a function as an antiglare layer. The transparent protective layer 42 can be formed on the polarizing film 41 by a method of pasting a transparent resin film using an adhesive or the like, a method of applying a transparent resin-containing coating liquid, or the like. Similarly, the light diffusion film 100 of the present invention can be bonded to the polarizing film 41 using an adhesive or the like.
透明保護層42となる透明樹脂フィルムは、透明性や機械強度、熱安定性、水分遮蔽性などに優れることが好ましく、このようなものとしては、たとえば、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート等のセルロースアセテートなどのセルロース系樹脂;ポリカーボネート系樹脂;ポリアクリレート、ポリメチルメタクリレートなどの(メタ)アクリル系樹脂;ポリエチレンテレフタラート、ポリエチレンナフタレートなどのポリエステル系樹脂;ポリエチレン、ポリプロピレンなどの鎖状ポリオレフィン系樹脂;環状ポリオレフィン系樹脂;スチレン系樹脂;ポリサルフォン;ポリエーテルサルフォン;ポリ塩化ビニル系樹脂などから形成されるフィルムが例示される。これらの透明樹脂フィルムは、光学的に等方性のものであってもよいし、画像表示装置に組み込んだ際の視野角の補償を目的として、光学的に異方性を有するものであってもよい。
The transparent resin film used as the transparent protective layer 42 is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, and the like. Examples of such a transparent resin film include triacetyl cellulose, diacetyl cellulose, cellulose acetate Cellulose resins such as cellulose acetate such as pionate; polycarbonate resins; (meth) acrylic resins such as polyacrylate and polymethyl methacrylate; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; chains such as polyethylene and polypropylene Examples thereof include a film formed from a glassy polyolefin resin; a cyclic polyolefin resin; a styrene resin; a polysulfone; a polyether sulfone; a polyvinyl chloride resin. These transparent resin films may be optically isotropic, or have optical anisotropy for the purpose of compensating the viewing angle when incorporated in an image display device. Also good.
<画像表示装置>
本発明の画像表示装置は、上記本発明の偏光板400と、種々の情報を画面に映し出す画像表示素子とを組み合わせたものである。図5に、本発明に係る画像表示装置500の一例を示す概説図を示す。図5の画像表示装置500はバックライト装置52と、画像表示素子51と、本発明の偏光板400とをこの順で備える。画像表示素子を使用した本発明の画像表示装置500の種類は特に限定されず、液晶パネルを使用した液晶ディスプレイ(LCD)のほか、ブラウン管(陰極線管:CRT)を使用したブラウン管ディスプレイ、プラズマディスプレイパネル(PDP)を使用したプラズマディスプレイ、電界放出素子を使用した電界放出ディスプレイ(FED)、表面伝導型電子放出素子を使用した表面伝導型電子放出素子ディスプレイ(SED)、有機EL素子を使用した有機ELディスプレイ、レーザー素子を使用したレーザーディスプレイ等が挙げられる。また、本発明の偏光板400を備えるスクリーンと、画像表示素子を備えるプロジェクタテレビとを組み合わせて本発明の画像表示装置としてもよい。 <Image display device>
The image display device of the present invention is a combination of thepolarizing plate 400 of the present invention and an image display element that displays various information on a screen. FIG. 5 is a schematic diagram showing an example of the image display device 500 according to the present invention. The image display device 500 of FIG. 5 includes a backlight device 52, an image display element 51, and the polarizing plate 400 of the present invention in this order. The kind of the image display device 500 of the present invention using the image display element is not particularly limited, and in addition to a liquid crystal display (LCD) using a liquid crystal panel, a cathode ray tube display or plasma display panel using a cathode ray tube (CRT). Plasma display using (PDP), field emission display (FED) using field emission device, surface conduction electron emission device display (SED) using surface conduction electron emission device, organic EL using organic EL device Examples thereof include a display and a laser display using a laser element. The screen including the polarizing plate 400 of the present invention and the projector television including the image display element may be combined to form the image display apparatus of the present invention.
本発明の画像表示装置は、上記本発明の偏光板400と、種々の情報を画面に映し出す画像表示素子とを組み合わせたものである。図5に、本発明に係る画像表示装置500の一例を示す概説図を示す。図5の画像表示装置500はバックライト装置52と、画像表示素子51と、本発明の偏光板400とをこの順で備える。画像表示素子を使用した本発明の画像表示装置500の種類は特に限定されず、液晶パネルを使用した液晶ディスプレイ(LCD)のほか、ブラウン管(陰極線管:CRT)を使用したブラウン管ディスプレイ、プラズマディスプレイパネル(PDP)を使用したプラズマディスプレイ、電界放出素子を使用した電界放出ディスプレイ(FED)、表面伝導型電子放出素子を使用した表面伝導型電子放出素子ディスプレイ(SED)、有機EL素子を使用した有機ELディスプレイ、レーザー素子を使用したレーザーディスプレイ等が挙げられる。また、本発明の偏光板400を備えるスクリーンと、画像表示素子を備えるプロジェクタテレビとを組み合わせて本発明の画像表示装置としてもよい。 <Image display device>
The image display device of the present invention is a combination of the
たとえば、本発明の偏光板400を液晶セル上に配置して液晶パネルディスプレイを製造する場合、偏光板400は、そのオーバーコート層105を外側にして、すなわち、オーバーコート層105よりも偏光フィルム41の方が液晶セルに近くなるように、液晶セル上に配置される。他の画像表示装置についても同様である。偏光板400は、画像表示素子51の視認側に配してもよいし、バックライト装置52側に配してもよいし、あるいはその両方に配してもよい。偏光板400を視認側に配した場合、すなわち光拡散フィルム100を視認側に配した場合、光拡散フィルムは、ギラツキや外光の映り込み、白ちゃけを有効に防止するとともに、光拡散機能により、十分な正面コントラストを維持しつつ視野角等を改善する。一方、偏光板400をバックライト装置側に配した場合、すなわち光拡散フィルム100をバックライト装置52側に配した場合、光拡散フィルム100は、液晶セルに入射する光を拡散させ、モアレ等を防止する拡散板(または拡散シート)として機能する。なお、偏光板400とは別に、光拡散フィルム100を単独で視認側又はバックライト装置側に設けてもよい。
For example, in the case of manufacturing a liquid crystal panel display by arranging the polarizing plate 400 of the present invention on a liquid crystal cell, the polarizing plate 400 has the overcoat layer 105 on the outside, that is, the polarizing film 41 than the overcoat layer 105. It is arranged on the liquid crystal cell so that is closer to the liquid crystal cell. The same applies to other image display apparatuses. The polarizing plate 400 may be disposed on the viewing side of the image display element 51, may be disposed on the backlight device 52 side, or may be disposed on both. When the polarizing plate 400 is arranged on the viewing side, that is, when the light diffusing film 100 is arranged on the viewing side, the light diffusing film effectively prevents glare, reflection of external light, and whitish, and has a light diffusing function. Thus, the viewing angle and the like are improved while maintaining a sufficient front contrast. On the other hand, when the polarizing plate 400 is disposed on the backlight device side, that is, when the light diffusing film 100 is disposed on the backlight device 52 side, the light diffusing film 100 diffuses the light incident on the liquid crystal cell, and moire or the like. Functions as a diffusion plate (or diffusion sheet) to prevent. In addition, you may provide the light-diffusion film 100 independently in the visual recognition side or the backlight apparatus side separately from the polarizing plate 400. FIG.
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。各種物性の測定方法は次のとおりである。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The measuring method of various physical properties is as follows.
(a)光拡散層およびオーバーコート層の厚み
オーバーコート層が積層されていない基材フィルムと光拡散層から形成される積層体の厚みを接触式膜厚計〔NIKON社製 DIGIMICRO MH-15(本体)およびZC-101(カウンター)〕を用いて測定し、この値から、基材フィルムの厚み80μmを差し引くことにより光拡散層の厚みを測定した。また、光拡散フィルムの厚みを同装置を用いて測定し、この値から、上記の基材フィルムと光拡散層から形成される積層体の厚みを差し引くことによりオーバーコート層の厚みを測定した。 (A) Light Diffusion Layer and Overcoat Layer Thickness The thickness of the laminate formed from the base film on which the overcoat layer is not laminated and the light diffusion layer is measured by a contact-type film thickness meter [DIGIMICRO MH-15 manufactured by NIKON Corporation ( Main body) and ZC-101 (counter)], and the thickness of the light diffusion layer was measured by subtracting 80 μm of the thickness of the base film from this value. Moreover, the thickness of the light-diffusion film was measured using the same apparatus, and the thickness of the overcoat layer was measured by subtracting the thickness of the laminate formed from the base film and the light-diffusion layer from this value.
オーバーコート層が積層されていない基材フィルムと光拡散層から形成される積層体の厚みを接触式膜厚計〔NIKON社製 DIGIMICRO MH-15(本体)およびZC-101(カウンター)〕を用いて測定し、この値から、基材フィルムの厚み80μmを差し引くことにより光拡散層の厚みを測定した。また、光拡散フィルムの厚みを同装置を用いて測定し、この値から、上記の基材フィルムと光拡散層から形成される積層体の厚みを差し引くことによりオーバーコート層の厚みを測定した。 (A) Light Diffusion Layer and Overcoat Layer Thickness The thickness of the laminate formed from the base film on which the overcoat layer is not laminated and the light diffusion layer is measured by a contact-type film thickness meter [DIGIMICRO MH-15 manufactured by NIKON Corporation ( Main body) and ZC-101 (counter)], and the thickness of the light diffusion layer was measured by subtracting 80 μm of the thickness of the base film from this value. Moreover, the thickness of the light-diffusion film was measured using the same apparatus, and the thickness of the overcoat layer was measured by subtracting the thickness of the laminate formed from the base film and the light-diffusion layer from this value.
(b)透光性微粒子の重量平均粒径および標準偏差
コールター原理(細孔電気抵抗法)に基づくコールターマルチサイザー(ベックマンコールター社製)を用いて測定した。 (B) Weight average particle diameter and standard deviation of translucent fine particles Measured using a Coulter Multisizer (manufactured by Beckman Coulter, Inc.) based on the Coulter principle (pore electrical resistance method).
コールター原理(細孔電気抵抗法)に基づくコールターマルチサイザー(ベックマンコールター社製)を用いて測定した。 (B) Weight average particle diameter and standard deviation of translucent fine particles Measured using a Coulter Multisizer (manufactured by Beckman Coulter, Inc.) based on the Coulter principle (pore electrical resistance method).
(c)オーバーコート層表面の反射率R30およびR40
光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側で黒色板に貼合した測定用サンプルを用いて測定を行なった。測定用サンプルのオーバーコート層側における光拡散フィルムの法線に対して30°傾いた方向から、He-Neレーザーの平行光(波長543.5nm)を入射させ、入射光と法線とを含む平面内で、法線から入射光とは逆側に30°および40°傾いた方向に反射する反射光の強度を測定し、それぞれの反射光強度を光源の光強度で除した値として反射率R30およびR40を算出した。測定には、横河電機株式会社製の「3292 03 オプティカルパワーセンサー」および同社製の「3292 オプティカルパワーメーター」を用いた。 (C) Overcoat layer surface reflectivity R 30 and R 40
Using an optically transparent adhesive, measurement was performed using a measurement sample in which the light diffusion film was bonded to a black plate on the base film side. Parallel light of He—Ne laser (wavelength 543.5 nm) is incident from a direction inclined by 30 ° with respect to the normal line of the light diffusion film on the overcoat layer side of the measurement sample, and includes incident light and normal line. In the plane, the intensity of the reflected light reflected in the directions inclined by 30 ° and 40 ° on the opposite side to the incident light from the normal line is measured, and the reflectance is obtained by dividing each reflected light intensity by the light intensity of the light source. It was calculated R 30 and R 40. For measurement, a “3292 03 optical power sensor” manufactured by Yokogawa Electric Corporation and a “3292 optical power meter” manufactured by the same company were used.
光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側で黒色板に貼合した測定用サンプルを用いて測定を行なった。測定用サンプルのオーバーコート層側における光拡散フィルムの法線に対して30°傾いた方向から、He-Neレーザーの平行光(波長543.5nm)を入射させ、入射光と法線とを含む平面内で、法線から入射光とは逆側に30°および40°傾いた方向に反射する反射光の強度を測定し、それぞれの反射光強度を光源の光強度で除した値として反射率R30およびR40を算出した。測定には、横河電機株式会社製の「3292 03 オプティカルパワーセンサー」および同社製の「3292 オプティカルパワーメーター」を用いた。 (C) Overcoat layer surface reflectivity R 30 and R 40
Using an optically transparent adhesive, measurement was performed using a measurement sample in which the light diffusion film was bonded to a black plate on the base film side. Parallel light of He—Ne laser (wavelength 543.5 nm) is incident from a direction inclined by 30 ° with respect to the normal line of the light diffusion film on the overcoat layer side of the measurement sample, and includes incident light and normal line. In the plane, the intensity of the reflected light reflected in the directions inclined by 30 ° and 40 ° on the opposite side to the incident light from the normal line is measured, and the reflectance is obtained by dividing each reflected light intensity by the light intensity of the light source. It was calculated R 30 and R 40. For measurement, a “3292 03 optical power sensor” manufactured by Yokogawa Electric Corporation and a “3292 optical power meter” manufactured by the same company were used.
この測定を行なうに当たり、He-Neレーザーを照射する光源は、上記黒色板から430mmの位置に配置した。受光器であるパワーメーターは、オーバーコート層上のレーザー光の出射点から280mmの位置に配置し、このパワーメーターを上記所定角度になるように動かして、反射レーザー光の強度を測定した。また、光拡散フィルムに照射されたレーザー光の強度、すなわち、光源から照射されたレーザー光の強度は、測定用サンプルを設置せずに、光源から直接パワーメーターに入射した光の強度を測定することで求めた。なお、当該強度の測定は、光源から710mm(=430mm+280mm)の位置にパワーメーターを配置して行なった。
In performing this measurement, the light source for irradiating the He—Ne laser was disposed at a position of 430 mm from the black plate. A power meter, which is a light receiver, was placed at a position 280 mm from the emission point of the laser beam on the overcoat layer, and the power meter was moved to the predetermined angle to measure the intensity of the reflected laser beam. In addition, the intensity of the laser light irradiated to the light diffusion film, that is, the intensity of the laser light irradiated from the light source is measured by directly measuring the intensity of the light incident on the power meter from the light source without installing a measurement sample. I asked for it. The intensity was measured by placing a power meter at a position of 710 mm (= 430 mm + 280 mm) from the light source.
(d)相対散乱光強度T40
光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側でガラス基板に貼合した測定用サンプルを用いて測定を行なった。測定用サンプルのガラス基板面側から、光拡散フィルムの法線方向にHe-Neレーザーの平行光(波長543.5nm)を入射させ、光拡散フィルムの接線と光拡散フィルムのオーバーコート層側の法線とを含む平面内で、法線から40°傾いた方向に光拡散フィルムを透過する透過散乱光の強度を測定し、透過散乱光の強度を光源の光強度で除した値として相対散乱光強度T40を算出した。測定には、横河電機株式会社製の「3292 03 オプティカルパワーセンサー」および同社製の「3292 オプティカルパワーメーター」を用いた。 (D) Relative scattered light intensity T 40
Using an optically transparent adhesive, measurement was performed using a measurement sample in which the light diffusion film was bonded to the glass substrate on the base film side. From the glass substrate surface side of the measurement sample, parallel light (wavelength 543.5 nm) of a He—Ne laser is incident in the normal direction of the light diffusion film, and the tangent line of the light diffusion film and the overcoat layer side of the light diffusion film are incident. Measure the intensity of transmitted and scattered light transmitted through the light diffusing film in a direction inclined by 40 ° from the normal in a plane including the normal, and calculate the relative scattering as the value obtained by dividing the intensity of the transmitted and scattered light by the light intensity of the light source. and it calculates the light intensity T 40. For measurement, a “3292 03 optical power sensor” manufactured by Yokogawa Electric Corporation and a “3292 optical power meter” manufactured by the same company were used.
光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側でガラス基板に貼合した測定用サンプルを用いて測定を行なった。測定用サンプルのガラス基板面側から、光拡散フィルムの法線方向にHe-Neレーザーの平行光(波長543.5nm)を入射させ、光拡散フィルムの接線と光拡散フィルムのオーバーコート層側の法線とを含む平面内で、法線から40°傾いた方向に光拡散フィルムを透過する透過散乱光の強度を測定し、透過散乱光の強度を光源の光強度で除した値として相対散乱光強度T40を算出した。測定には、横河電機株式会社製の「3292 03 オプティカルパワーセンサー」および同社製の「3292 オプティカルパワーメーター」を用いた。 (D) Relative scattered light intensity T 40
Using an optically transparent adhesive, measurement was performed using a measurement sample in which the light diffusion film was bonded to the glass substrate on the base film side. From the glass substrate surface side of the measurement sample, parallel light (wavelength 543.5 nm) of a He—Ne laser is incident in the normal direction of the light diffusion film, and the tangent line of the light diffusion film and the overcoat layer side of the light diffusion film are incident. Measure the intensity of transmitted and scattered light transmitted through the light diffusing film in a direction inclined by 40 ° from the normal in a plane including the normal, and calculate the relative scattering as the value obtained by dividing the intensity of the transmitted and scattered light by the light intensity of the light source. and it calculates the light intensity T 40. For measurement, a “3292 03 optical power sensor” manufactured by Yokogawa Electric Corporation and a “3292 optical power meter” manufactured by the same company were used.
この測定を行なうに当たり、He-Neレーザーを照射する光源は、上記ガラス基板から430mmの位置に配置した。受光器であるパワーメーターは、オーバーコート層上のレーザー光の出射点から280mmの位置に配置し、このパワーメーターを上記所定角度になるように動かして、透過散乱光の強度を測定した。また、光拡散フィルムに照射されたレーザー光の強度、すなわち、光源から照射されたレーザー光の強度は、測定用サンプルを設置せずに、光源から直接パワーメーターに入射した光の強度を測定することで求めた。なお、当該強度の測定は、光源から710mm(=430mm+280mm)の位置にパワーメーターを配置して行なった。
In performing this measurement, a light source for irradiating a He—Ne laser was disposed at a position of 430 mm from the glass substrate. A power meter, which is a light receiver, was placed at a position 280 mm from the emission point of the laser light on the overcoat layer, and the power meter was moved to the predetermined angle to measure the intensity of transmitted scattered light. In addition, the intensity of the laser light irradiated to the light diffusion film, that is, the intensity of the laser light irradiated from the light source is measured by directly measuring the intensity of the light incident on the power meter from the light source without installing a measurement sample. I asked for it. The intensity was measured by placing a power meter at a position of 710 mm (= 430 mm + 280 mm) from the light source.
(e)反射鮮明度
JIS K 7105に準拠した写像性測定器(スガ試験機株式会社製)「ICM-1DP」を用いて、JIS K 7105に準拠し、暗部と明部との幅の比が1:1で、その幅が0.5mm、1.0mmおよび2.0mmの光学くしを用いて測定される反射鮮明度の和を算出した。測定は、光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側で黒色板に貼合した測定用サンプルを用いて行なった。 (E) Reflection sharpness Using an image clarity measuring instrument (made by Suga Test Instruments Co., Ltd.) “ICM-1DP” compliant with JIS K 7105, the width ratio between the dark part and the bright part is compliant with JIS K 7105. The sum of reflection sharpness measured at 1: 1 with optical combs having widths of 0.5 mm, 1.0 mm and 2.0 mm was calculated. The measurement was performed using a sample for measurement in which a light diffusion film was bonded to a black plate on the base film side using an optically transparent adhesive.
JIS K 7105に準拠した写像性測定器(スガ試験機株式会社製)「ICM-1DP」を用いて、JIS K 7105に準拠し、暗部と明部との幅の比が1:1で、その幅が0.5mm、1.0mmおよび2.0mmの光学くしを用いて測定される反射鮮明度の和を算出した。測定は、光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側で黒色板に貼合した測定用サンプルを用いて行なった。 (E) Reflection sharpness Using an image clarity measuring instrument (made by Suga Test Instruments Co., Ltd.) “ICM-1DP” compliant with JIS K 7105, the width ratio between the dark part and the bright part is compliant with JIS K 7105. The sum of reflection sharpness measured at 1: 1 with optical combs having widths of 0.5 mm, 1.0 mm and 2.0 mm was calculated. The measurement was performed using a sample for measurement in which a light diffusion film was bonded to a black plate on the base film side using an optically transparent adhesive.
(f)透過鮮明度
JIS K 7105に準拠した写像性測定器(スガ試験機株式会社製)「ICM-1DP」を用いて、JIS K 7105に準拠し、暗部と明部との幅の比が1:1で、その幅が0.125mm、0.5mm、1.0mmおよび2.0mmの光学くしを用いて測定される透過鮮明度の和を算出した。測定は、光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側でガラス基板に貼合した測定用サンプルを用いて行なった。 (F) Transmission sharpness Using an image clarity measuring device (made by Suga Test Instruments Co., Ltd.) “ICM-1DP” compliant with JIS K 7105, the width ratio between the dark part and the bright part is compliant with JIS K 7105. The sum of transmitted sharpness measured with an optical comb with a width of 0.125 mm, 0.5 mm, 1.0 mm and 2.0 mm at 1: 1 was calculated. The measurement was performed using a measurement sample in which a light diffusion film was bonded to a glass substrate on the base film side using an optically transparent adhesive.
JIS K 7105に準拠した写像性測定器(スガ試験機株式会社製)「ICM-1DP」を用いて、JIS K 7105に準拠し、暗部と明部との幅の比が1:1で、その幅が0.125mm、0.5mm、1.0mmおよび2.0mmの光学くしを用いて測定される透過鮮明度の和を算出した。測定は、光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側でガラス基板に貼合した測定用サンプルを用いて行なった。 (F) Transmission sharpness Using an image clarity measuring device (made by Suga Test Instruments Co., Ltd.) “ICM-1DP” compliant with JIS K 7105, the width ratio between the dark part and the bright part is compliant with JIS K 7105. The sum of transmitted sharpness measured with an optical comb with a width of 0.125 mm, 0.5 mm, 1.0 mm and 2.0 mm at 1: 1 was calculated. The measurement was performed using a measurement sample in which a light diffusion film was bonded to a glass substrate on the base film side using an optically transparent adhesive.
(g)ヘイズ
光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側でガラス基板に貼合した測定用サンプルを用いて測定を行なった。全ヘイズ値および内部ヘイズの測定には、JIS K 7136に準拠したヘイズ透過率計(株式会社村上色彩技術研究所製のヘイズメーター「HM-150」)を用いた。その結果に基づき、上記式(3)より表面ヘイズを算出した。 (G) Haze Using an optically transparent adhesive, measurement was performed using a measurement sample in which a light diffusion film was bonded to a glass substrate on the base film side. For the measurement of the total haze value and internal haze, a haze transmittance meter (haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.) according to JIS K 7136 was used. Based on the result, the surface haze was calculated from the above formula (3).
光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側でガラス基板に貼合した測定用サンプルを用いて測定を行なった。全ヘイズ値および内部ヘイズの測定には、JIS K 7136に準拠したヘイズ透過率計(株式会社村上色彩技術研究所製のヘイズメーター「HM-150」)を用いた。その結果に基づき、上記式(3)より表面ヘイズを算出した。 (G) Haze Using an optically transparent adhesive, measurement was performed using a measurement sample in which a light diffusion film was bonded to a glass substrate on the base film side. For the measurement of the total haze value and internal haze, a haze transmittance meter (haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.) according to JIS K 7136 was used. Based on the result, the surface haze was calculated from the above formula (3).
(h)中心線平均粗さRa
JIS B 0601に準拠した共焦点干渉顕微鏡(株式会社オプティカルソリューション社製の「PLμ2300」)を用いて測定した。 (H) Centerline average roughness Ra
It measured using the confocal interference microscope ("PL (micro | micron | mu) 2300" by an optical solution company) based on JISB0601.
JIS B 0601に準拠した共焦点干渉顕微鏡(株式会社オプティカルソリューション社製の「PLμ2300」)を用いて測定した。 (H) Centerline average roughness Ra
It measured using the confocal interference microscope ("PL (micro | micron | mu) 2300" by an optical solution company) based on JISB0601.
〔光拡散フィルムの作製〕
<実施例1>
(1)光拡散層の形成
下記成分を混合して、紫外線硬化性の光拡散層形成用樹脂液を調製した。 [Production of light diffusion film]
<Example 1>
(1) Formation of light diffusion layer The following components were mixed to prepare an ultraviolet curable resin liquid for forming a light diffusion layer.
<実施例1>
(1)光拡散層の形成
下記成分を混合して、紫外線硬化性の光拡散層形成用樹脂液を調製した。 [Production of light diffusion film]
<Example 1>
(1) Formation of light diffusion layer The following components were mixed to prepare an ultraviolet curable resin liquid for forming a light diffusion layer.
〔i〕ペンタエリスリトールトリアクリレート60重量部と、多官能ウレタン化アクリレート(ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物)40重量部との混合物 合計100重量部、
〔ii〕ポリスチレン系粒子(重量平均粒径:6.9μm、標準偏差:1.3μm)40重量部、
〔iii〕光重合開始剤「ルシリン TPO」(BASF社製、化学名:2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)5重量部、
〔iv〕希釈溶剤(プロピレングリコールモノメチルエーテル)80重量部。 [I] A mixture of 60 parts by weight of pentaerythritol triacrylate and 40 parts by weight of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate), totaling 100 parts by weight,
[Ii] 40 parts by weight of polystyrene-based particles (weight average particle diameter: 6.9 μm, standard deviation: 1.3 μm),
[Iii] 5 parts by weight of a photopolymerization initiator “Lucirin TPO” (manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide)
[Iv] 80 parts by weight of diluting solvent (propylene glycol monomethyl ether).
〔ii〕ポリスチレン系粒子(重量平均粒径:6.9μm、標準偏差:1.3μm)40重量部、
〔iii〕光重合開始剤「ルシリン TPO」(BASF社製、化学名:2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)5重量部、
〔iv〕希釈溶剤(プロピレングリコールモノメチルエーテル)80重量部。 [I] A mixture of 60 parts by weight of pentaerythritol triacrylate and 40 parts by weight of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate), totaling 100 parts by weight,
[Ii] 40 parts by weight of polystyrene-based particles (weight average particle diameter: 6.9 μm, standard deviation: 1.3 μm),
[Iii] 5 parts by weight of a photopolymerization initiator “Lucirin TPO” (manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide)
[Iv] 80 parts by weight of diluting solvent (propylene glycol monomethyl ether).
上記光拡散層形成用樹脂液を、厚み80μmのトリアセチルセルロース(TAC)フィルム(基材フィルム)上に、硬化後の厚みが10μm程度となるようにダイコーターで塗工して塗工層を形成し、基材フィルムと塗工層との積層体を得た。得られた積層体を乾燥炉で乾燥させた後、UVAにおける光積算光量が400mJ/cm2となるように紫外線を照射し、塗工層を硬化させることにより、基材フィルムと光拡散層との積層体を得た。光拡散層の厚みは10μmであった。
The light diffusion layer forming resin solution is applied on a triacetyl cellulose (TAC) film (base film) having a thickness of 80 μm with a die coater so that the thickness after curing is about 10 μm. It formed and obtained the laminated body of a base film and a coating layer. After the obtained laminate is dried in a drying furnace, the base film and the light diffusion layer are obtained by irradiating ultraviolet rays so that the light integrated light amount in UVA is 400 mJ / cm 2 and curing the coating layer. A laminate was obtained. The thickness of the light diffusion layer was 10 μm.
(2)オーバーコート層の形成
下記成分を混合して、紫外線硬化性のオーバーコート層形成用樹脂液を調製した。 (2) Formation of Overcoat Layer The following components were mixed to prepare an ultraviolet curable resin solution for forming an overcoat layer.
下記成分を混合して、紫外線硬化性のオーバーコート層形成用樹脂液を調製した。 (2) Formation of Overcoat Layer The following components were mixed to prepare an ultraviolet curable resin solution for forming an overcoat layer.
〔i〕ペンタエリスリトールトリアクリレート60重量部と、多官能ウレタン化アクリレート(ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物)40重量部との混合物 合計100重量部、
〔ii〕光重合開始剤「ルシリン TPO」(BASF社製、化学名:2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)5重量部、
〔iii〕希釈溶剤(酢酸エチル)100重量部。 [I] A mixture of 60 parts by weight of pentaerythritol triacrylate and 40 parts by weight of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate), totaling 100 parts by weight,
[Ii] 5 parts by weight of a photopolymerization initiator “Lucirin TPO” (manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide),
[Iii] 100 parts by weight of diluting solvent (ethyl acetate).
〔ii〕光重合開始剤「ルシリン TPO」(BASF社製、化学名:2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)5重量部、
〔iii〕希釈溶剤(酢酸エチル)100重量部。 [I] A mixture of 60 parts by weight of pentaerythritol triacrylate and 40 parts by weight of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate), totaling 100 parts by weight,
[Ii] 5 parts by weight of a photopolymerization initiator “Lucirin TPO” (manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide),
[Iii] 100 parts by weight of diluting solvent (ethyl acetate).
上記オーバーコート層形成用樹脂液を、上記基材フィルムと光拡散層との積層体の光拡散層表面に、硬化後の厚みが約3~4μmとなるようにダイコーターで塗工して塗工層を形成した。得られた積層体を乾燥炉で乾燥させた後、UVAにおける光積算光量が400mJ/cm2となるように紫外線を照射し、塗工層を硬化させることにより、基材フィルムと光拡散層とオーバーコート層との積層体である光拡散フィルムを得た。オーバーコート層の厚みは4.6μmであった。
The overcoat layer forming resin solution is applied to the surface of the light diffusion layer of the laminate of the base film and the light diffusion layer by a die coater so that the thickness after curing is about 3 to 4 μm. A construction layer was formed. After the obtained laminate is dried in a drying furnace, the base film and the light diffusion layer are obtained by irradiating ultraviolet rays so that the light integrated light amount in UVA is 400 mJ / cm 2 and curing the coating layer. A light diffusion film which was a laminate with the overcoat layer was obtained. The thickness of the overcoat layer was 4.6 μm.
<実施例2>
オーバーコート層形成用樹脂液を、硬化後の厚みが約7~8μmとなるように塗工したこと以外は実施例1と同様にして光拡散フィルムを作製した。オーバーコート層の厚みは7.8μmであった。 <Example 2>
A light diffusing film was produced in the same manner as in Example 1 except that the overcoat layer-forming resin solution was applied so that the thickness after curing was about 7 to 8 μm. The thickness of the overcoat layer was 7.8 μm.
オーバーコート層形成用樹脂液を、硬化後の厚みが約7~8μmとなるように塗工したこと以外は実施例1と同様にして光拡散フィルムを作製した。オーバーコート層の厚みは7.8μmであった。 <Example 2>
A light diffusing film was produced in the same manner as in Example 1 except that the overcoat layer-forming resin solution was applied so that the thickness after curing was about 7 to 8 μm. The thickness of the overcoat layer was 7.8 μm.
<実施例3>
光拡散層形成用樹脂液におけるポリスチレン系粒子の配合量を20重量部に変更したこと以外は実施例1と同様にして光拡散フィルムを作製した。オーバーコート層の厚みは2.5μmであった。 <Example 3>
A light diffusion film was produced in the same manner as in Example 1 except that the blending amount of the polystyrene-based particles in the light diffusion layer forming resin liquid was changed to 20 parts by weight. The thickness of the overcoat layer was 2.5 μm.
光拡散層形成用樹脂液におけるポリスチレン系粒子の配合量を20重量部に変更したこと以外は実施例1と同様にして光拡散フィルムを作製した。オーバーコート層の厚みは2.5μmであった。 <Example 3>
A light diffusion film was produced in the same manner as in Example 1 except that the blending amount of the polystyrene-based particles in the light diffusion layer forming resin liquid was changed to 20 parts by weight. The thickness of the overcoat layer was 2.5 μm.
<実施例4>
光拡散層形成用樹脂液におけるポリスチレン系粒子の配合量を20重量部に変更したこと以外は実施例2と同様にして光拡散フィルムを作製した。オーバーコート層の厚みは8.6μmであった。 <Example 4>
A light diffusion film was produced in the same manner as in Example 2 except that the blending amount of the polystyrene-based particles in the light diffusion layer forming resin liquid was changed to 20 parts by weight. The thickness of the overcoat layer was 8.6 μm.
光拡散層形成用樹脂液におけるポリスチレン系粒子の配合量を20重量部に変更したこと以外は実施例2と同様にして光拡散フィルムを作製した。オーバーコート層の厚みは8.6μmであった。 <Example 4>
A light diffusion film was produced in the same manner as in Example 2 except that the blending amount of the polystyrene-based particles in the light diffusion layer forming resin liquid was changed to 20 parts by weight. The thickness of the overcoat layer was 8.6 μm.
<比較例1>
オーバーコート層を設けなかったこと以外は実施例1と同様にして光拡散フィルムを作製した。 <Comparative Example 1>
A light diffusion film was produced in the same manner as in Example 1 except that no overcoat layer was provided.
オーバーコート層を設けなかったこと以外は実施例1と同様にして光拡散フィルムを作製した。 <Comparative Example 1>
A light diffusion film was produced in the same manner as in Example 1 except that no overcoat layer was provided.
<比較例2>
オーバーコート層を設けなかったこと以外は実施例2と同様にして光拡散フィルムを作製した。 <Comparative Example 2>
A light diffusion film was produced in the same manner as in Example 2 except that the overcoat layer was not provided.
オーバーコート層を設けなかったこと以外は実施例2と同様にして光拡散フィルムを作製した。 <Comparative Example 2>
A light diffusion film was produced in the same manner as in Example 2 except that the overcoat layer was not provided.
〔光拡散フィルムの評価〕
得られた光拡散フィルムについて、反射率R30、R40、相対散乱光強度T40、反射鮮明度、透過鮮明度、ヘイズ、中心線平均粗さRaを測定した。結果を表1に示す。また、下記の方法に従って、白ちゃけの程度および液晶表示装置に適用した際の正面コントラストを評価した。結果を表1に示す。 [Evaluation of light diffusion film]
The obtained light diffusion film, the reflectance R 30, R 40, relative scattered light intensity T 40, reflection sharpness, clarity of vision through was measured haze, the center line average roughness Ra. The results are shown in Table 1. Further, according to the following method, the degree of whitening and the front contrast when applied to a liquid crystal display device were evaluated. The results are shown in Table 1.
得られた光拡散フィルムについて、反射率R30、R40、相対散乱光強度T40、反射鮮明度、透過鮮明度、ヘイズ、中心線平均粗さRaを測定した。結果を表1に示す。また、下記の方法に従って、白ちゃけの程度および液晶表示装置に適用した際の正面コントラストを評価した。結果を表1に示す。 [Evaluation of light diffusion film]
The obtained light diffusion film, the reflectance R 30, R 40, relative scattered light intensity T 40, reflection sharpness, clarity of vision through was measured haze, the center line average roughness Ra. The results are shown in Table 1. Further, according to the following method, the degree of whitening and the front contrast when applied to a liquid crystal display device were evaluated. The results are shown in Table 1.
(1)白ちゃけ(White turbidity)
光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側で黒色板に貼合し、蛍光灯のついた明るい室内で目視観察し、白ちゃけの程度を評価した。評価基準は次のとおりである。
○:光拡散フィルムが白っぽくみえず、白ちゃけが認められない。
×:光拡散フィルムが白っぽくみえ、白ちゃけが認められる。 (1) White turbidity
Using an optically transparent adhesive, the light diffusing film was bonded to a black plate on the base film side, visually observed in a bright room with a fluorescent lamp, and the degree of whitening was evaluated. The evaluation criteria are as follows.
○: The light diffusion film does not look whitish and no whitening is observed.
X: The light diffusion film looks whitish and whiteness is recognized.
光学的に透明な粘着剤を用いて、光拡散フィルムを、その基材フィルム側で黒色板に貼合し、蛍光灯のついた明るい室内で目視観察し、白ちゃけの程度を評価した。評価基準は次のとおりである。
○:光拡散フィルムが白っぽくみえず、白ちゃけが認められない。
×:光拡散フィルムが白っぽくみえ、白ちゃけが認められる。 (1) White turbidity
Using an optically transparent adhesive, the light diffusing film was bonded to a black plate on the base film side, visually observed in a bright room with a fluorescent lamp, and the degree of whitening was evaluated. The evaluation criteria are as follows.
○: The light diffusion film does not look whitish and no whitening is observed.
X: The light diffusion film looks whitish and whiteness is recognized.
(2)正面コントラスト
液晶表示装置を次の手順で作製した。まず、VAモードのSUMSUNG製32型液晶テレビ「UN32C6500」のバックライト装置上に、頂角が95°である複数の線状プリズムが平行に配列されたプリズムフィルムを2枚使用し、これらをバックライト装置の導光板とバックライト側偏光板との間に配置した。この際、一方のプリズムフィルム(バックライト装置に近い方のプリズムフィルム)は、その線状プリズムの稜線の方向がバックライト側偏光板の透過軸に略平行となるように配置し、他方のプリズムフィルム(バックライト側偏光板に近い方のプリズムフィルム)は、その線状プリズムの稜線の方向が後述する視認側偏光板の透過軸に略平行となるように配置した。また、視認側偏光板を剥がして、ヨウ素系偏光板(住友化学社製の「TRW842AP7」)を、バックライト側偏光板に対してクロスニコルとなるように液晶セルに貼合し、その上に、実施例1~4または比較例1~2で作製した光拡散フィルムを、粘着剤層を介して貼合して視認側偏光板とし、液晶表示装置を得た。 (2) Front contrast A liquid crystal display device was produced by the following procedure. First, two prism films in which a plurality of linear prisms with apex angles of 95 ° are arranged in parallel are used on the backlight device of a VA mode SUMSUNG 32-inch liquid crystal television “UN32C6500”. It arrange | positioned between the light-guide plate of a light apparatus, and the backlight side polarizing plate. At this time, one prism film (the prism film closer to the backlight device) is arranged so that the direction of the ridgeline of the linear prism is substantially parallel to the transmission axis of the backlight-side polarizing plate, and the other prism The film (the prism film closer to the backlight side polarizing plate) was arranged so that the direction of the ridgeline of the linear prism was substantially parallel to the transmission axis of the viewing side polarizing plate described later. Also, the viewing side polarizing plate is peeled off, and an iodine type polarizing plate (“TRW842AP7” manufactured by Sumitomo Chemical Co., Ltd.) is bonded to the liquid crystal cell so as to be crossed Nicol with respect to the backlight side polarizing plate. The light diffusing films prepared in Examples 1 to 4 or Comparative Examples 1 to 2 were bonded via an adhesive layer to form a viewing-side polarizing plate to obtain a liquid crystal display device.
液晶表示装置を次の手順で作製した。まず、VAモードのSUMSUNG製32型液晶テレビ「UN32C6500」のバックライト装置上に、頂角が95°である複数の線状プリズムが平行に配列されたプリズムフィルムを2枚使用し、これらをバックライト装置の導光板とバックライト側偏光板との間に配置した。この際、一方のプリズムフィルム(バックライト装置に近い方のプリズムフィルム)は、その線状プリズムの稜線の方向がバックライト側偏光板の透過軸に略平行となるように配置し、他方のプリズムフィルム(バックライト側偏光板に近い方のプリズムフィルム)は、その線状プリズムの稜線の方向が後述する視認側偏光板の透過軸に略平行となるように配置した。また、視認側偏光板を剥がして、ヨウ素系偏光板(住友化学社製の「TRW842AP7」)を、バックライト側偏光板に対してクロスニコルとなるように液晶セルに貼合し、その上に、実施例1~4または比較例1~2で作製した光拡散フィルムを、粘着剤層を介して貼合して視認側偏光板とし、液晶表示装置を得た。 (2) Front contrast A liquid crystal display device was produced by the following procedure. First, two prism films in which a plurality of linear prisms with apex angles of 95 ° are arranged in parallel are used on the backlight device of a VA mode SUMSUNG 32-inch liquid crystal television “UN32C6500”. It arrange | positioned between the light-guide plate of a light apparatus, and the backlight side polarizing plate. At this time, one prism film (the prism film closer to the backlight device) is arranged so that the direction of the ridgeline of the linear prism is substantially parallel to the transmission axis of the backlight-side polarizing plate, and the other prism The film (the prism film closer to the backlight side polarizing plate) was arranged so that the direction of the ridgeline of the linear prism was substantially parallel to the transmission axis of the viewing side polarizing plate described later. Also, the viewing side polarizing plate is peeled off, and an iodine type polarizing plate (“TRW842AP7” manufactured by Sumitomo Chemical Co., Ltd.) is bonded to the liquid crystal cell so as to be crossed Nicol with respect to the backlight side polarizing plate. The light diffusing films prepared in Examples 1 to 4 or Comparative Examples 1 to 2 were bonded via an adhesive layer to form a viewing-side polarizing plate to obtain a liquid crystal display device.
得られた液晶表示装置を暗室内で起動し、輝度計BM5A型((株)トプコン製)を用いて、黒表示状態および白表示状態における正面輝度を測定し、正面コントラストを算出した。正面コントラストは、黒表示状態における正面輝度に対する白表示状態における正面輝度の比である。
The obtained liquid crystal display device was activated in a dark room, and using a luminance meter BM5A type (manufactured by Topcon Co., Ltd.), the front luminance in the black display state and the white display state was measured, and the front contrast was calculated. The front contrast is a ratio of the front luminance in the white display state to the front luminance in the black display state.
表1に示されるとおり、本発明に係る光拡散フィルム(実施例1~4)によれば、高い正面コントラストが得られるとともに、白ちゃけを有効に防止できることがわかる。一方、オーバーコート層を有しないことにより所定の表面反射特性を有しない比較例1および2の光拡散フィルムでは、白ちゃけを防止することができず、また、比較例1の光拡散フィルムでは正面コントラストが低下した。
As shown in Table 1, according to the light diffusion films (Examples 1 to 4) according to the present invention, it can be seen that high front contrast can be obtained and whitish can be effectively prevented. On the other hand, in the light diffusion films of Comparative Examples 1 and 2 that do not have a predetermined surface reflection characteristic by not having an overcoat layer, it is not possible to prevent whitening, and in the light diffusion film of Comparative Example 1, Front contrast decreased.
100,200,300…光拡散フィルム、101…基材フィルム、102…光拡散層、103…第1の透光性樹脂、104…透光性微粒子、105…オーバーコート層、202…光拡散フィルムの法線、205…光拡散フィルムの法線に対して30°傾いた方向から入射したレーザー光、206…光拡散フィルムの法線に対してφ°傾いた方向に反射する反射光、209…入射光(レーザー光)と光拡散フィルムの法線とを含む平面、301…光拡散フィルムの基材フィルム側法線、302…光拡散フィルムのオーバーコート層側法線、303…光拡散フィルムのオーバーコート層側法線から40°傾いた方向、305…光拡散フィルムの接線、309…光拡散フィルムの接線とオーバーコート層側の法線とを含む平面、400…偏光板、41…偏光フィルム、42…透明保護層、51…画像表示素子、52…バックライト装置。
DESCRIPTION OF SYMBOLS 100,200,300 ... Light diffusing film, 101 ... Base film, 102 ... Light diffusing layer, 103 ... 1st translucent resin, 104 ... Translucent fine particle, 105 ... Overcoat layer, 202 ... Light diffusing film 205: laser light incident from a direction inclined by 30 ° with respect to the normal of the light diffusion film, 206: reflected light reflected in a direction inclined by φ ° with respect to the normal of the light diffusion film, 209 ... Plane including incident light (laser light) and normal of light diffusion film, 301: base film side normal of light diffusion film, 302: overcoat layer side normal of light diffusion film, 303: light diffusion film A direction inclined by 40 ° from the normal line on the overcoat layer side, 305 ... a tangent line of the light diffusion film, 309 ... a plane including the tangent line of the light diffusion film and the normal line on the overcoat layer side, 400 ... a polarizing plate, 1 ... polarizing film, 42 ... transparent protective layer, 51 ... image display device, 52 ... backlight device.
Claims (11)
- 基材フィルムと、
前記基材フィルム上に積層される光拡散層と、
前記光拡散層上に積層されるオーバーコート層と、
を備える光拡散フィルムであって、
前記光拡散層は、第1の透光性樹脂と、前記第1の透光性樹脂中に分散された透光性微粒子とを含有し、
前記オーバーコート層は、第2の透光性樹脂を含有し、
前記オーバーコート層側から、入射角30°で波長543.5nmのレーザー光が光拡散フィルムに入射したときの、反射角30°における光拡散フィルムの反射率R30が2%~5%であり、反射角40°における光拡散フィルムの反射率R40が0.0001%以下である、光拡散フィルム。 A base film;
A light diffusion layer laminated on the base film;
An overcoat layer laminated on the light diffusion layer;
A light diffusing film comprising:
The light diffusion layer contains a first translucent resin and translucent fine particles dispersed in the first translucent resin,
The overcoat layer contains a second translucent resin,
When a laser beam with a wavelength of 543.5 nm is incident on the light diffusion film from the overcoat layer side at an incident angle of 30 °, the reflectance R 30 of the light diffusion film at a reflection angle of 30 ° is 2% to 5%. A light diffusion film having a reflectance R 40 of 0.0001% or less at a reflection angle of 40 °. - 前記光拡散フィルムに、前記基材フィルム側から前記光拡散フィルムの法線方向に、波長543.5nmのレーザー光が入射したときの、相対散乱光強度T40が0.00008%~0.001%であり、
前記相対散乱光強度T40は、前記光拡散フィルムに入射する波長543.5nmの前記レーザー光の強度に対する、前記光拡散フィルムの前記オーバーコート層側から、前記光拡散フィルムの法線から40°傾いた方向に出射するレーザー光の強度の比である、請求項1に記載の光拡散フィルム。 When the laser light having a wavelength of 543.5 nm is incident on the light diffusing film from the base film side in the normal direction of the light diffusing film, the relative scattered light intensity T 40 is 0.00008% to 0.001. %
The relative scattered light intensity T 40 is 40 ° from the normal of the light diffusion film from the overcoat layer side of the light diffusion film with respect to the intensity of the laser light having a wavelength of 543.5 nm incident on the light diffusion film. The light diffusion film according to claim 1, wherein the light diffusion film has a ratio of the intensity of laser light emitted in an inclined direction. - それぞれ幅0.5mm、1.0mmおよび2.0mmの光学くしを用いて測定される反射鮮明度の和が200%以上である請求項1または2に記載の光拡散フィルム。 The light diffusion film according to claim 1 or 2, wherein the sum of reflection sharpness measured using optical combs each having a width of 0.5 mm, 1.0 mm, and 2.0 mm is 200% or more.
- それぞれ幅0.125mm、0.5mm、1.0mmおよび2.0mmの光学くしを用いて測定される透過鮮明度の和が70%~230%である請求項1~3のいずれか一項に記載の光拡散フィルム。 The sum of transmitted sharpness values measured using optical combs having a width of 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm, respectively, is 70% to 230%. The light diffusion film as described.
- 前記オーバーコート層の表面の中心線平均粗さRaが0.1μm以下である請求項1~4のいずれか一項に記載の光拡散フィルム。 The light diffusing film according to any one of claims 1 to 4, wherein a center line average roughness Ra of the surface of the overcoat layer is 0.1 µm or less.
- 40%~70%の全ヘイズ、40%~70%の内部ヘイズ、及び、前記オーバーコート層の表面形状に起因する、1%未満の表面ヘイズを有する請求項1~5のいずれか一項に記載の光拡散フィルム。 A surface haze of less than 1% due to a total haze of 40% to 70%, an internal haze of 40% to 70%, and a surface shape of the overcoat layer, according to any one of claims 1 to 5. The light diffusion film as described.
- 前記第1の透光性樹脂の屈折率と前記第2の透光性樹脂の屈折率との差の絶対値が0.02以下である、請求項1~6のいずれか一項に記載の光拡散フィルム。 The absolute value of the difference between the refractive index of the first translucent resin and the refractive index of the second translucent resin is 0.02 or less. Light diffusion film.
- 前記オーバーコート層の厚みが1μm~10μmである請求項1~7のいずれか一項に記載の光拡散フィルム。 The light diffusion film according to any one of claims 1 to 7, wherein the overcoat layer has a thickness of 1 to 10 µm.
- 請求項1~8のいずれか一項に記載の光拡散フィルム及び前記光拡散フィルムのオーバーコート層上に積層された反射防止層を備える反射防止性光拡散フィルム。 An antireflection light diffusing film comprising the light diffusing film according to any one of claims 1 to 8 and an antireflection layer laminated on an overcoat layer of the light diffusing film.
- 偏光フィルムと、
請求項1~8のいずれか一項に記載の光拡散フィルムまたは請求項9に記載の反射防止性光拡散フィルムと、を備え、
前記オーバーコート層よりも前記基材フィルムの方が前記偏光フィルムに近くなるように、前記光拡散フィルム又は前記反射防止性光拡散フィルムが配置される、偏光板。 A polarizing film;
A light diffusing film according to any one of claims 1 to 8 or an antireflective light diffusing film according to claim 9,
The polarizing plate in which the light diffusion film or the antireflection light diffusion film is disposed so that the base film is closer to the polarizing film than the overcoat layer. - 請求項10に記載の偏光板と、画像表示素子とを備え、
前記オーバーコート層よりも前記偏光フィルムの方が前記画像表示素子に近くなるように、前記偏光板が前記画像表示素子上に配置される、画像表示装置。 A polarizing plate according to claim 10 and an image display element,
The image display device, wherein the polarizing plate is disposed on the image display element such that the polarizing film is closer to the image display element than the overcoat layer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-255923 | 2010-11-16 | ||
JP2010255923 | 2010-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012067046A1 true WO2012067046A1 (en) | 2012-05-24 |
Family
ID=46083976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/076110 WO2012067046A1 (en) | 2010-11-16 | 2011-11-11 | Light dispersion film, polarization plate and image display device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2012123384A (en) |
TW (1) | TW201234057A (en) |
WO (1) | WO2012067046A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6420426B1 (en) * | 2017-07-27 | 2018-11-07 | リンテック株式会社 | Laminate and method for producing laminate |
JP6420425B1 (en) * | 2017-07-27 | 2018-11-07 | リンテック株式会社 | Laminate and method for producing laminate |
CN110161610A (en) * | 2018-02-16 | 2019-08-23 | 株式会社三立 | Polarizer and liquid crystal display device |
WO2020179643A1 (en) * | 2019-03-01 | 2020-09-10 | 大日本印刷株式会社 | Resin layer, optical film, and image display device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102243272B1 (en) | 2014-08-08 | 2021-04-23 | 삼성디스플레이 주식회사 | Optical film and display device comprising the same |
KR102346679B1 (en) | 2014-09-16 | 2022-01-05 | 삼성디스플레이 주식회사 | Display apparatus |
JP7201965B2 (en) * | 2017-12-05 | 2023-01-11 | 大日本印刷株式会社 | Optical laminate and image display device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009156938A (en) * | 2007-12-25 | 2009-07-16 | Sumitomo Chemical Co Ltd | Antiglare film, antiglare polarizing plate and image display device |
JP2009204837A (en) * | 2008-02-27 | 2009-09-10 | Sumitomo Chemical Co Ltd | Anti-glare film, anti-glare polarizing sheet, and image display device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005301246A (en) * | 2004-03-15 | 2005-10-27 | Fuji Photo Film Co Ltd | Antireflection film, polarizing plate, and liquid crystal display |
JP4641846B2 (en) * | 2004-03-29 | 2011-03-02 | 大日本印刷株式会社 | Antiglare laminate |
JP2007102208A (en) * | 2005-09-09 | 2007-04-19 | Fujifilm Corp | Optical film, anti-reflection film, and polarizing plate and image display device using the optical film and the anti-reflection film |
JP2007293303A (en) * | 2006-03-28 | 2007-11-08 | Fujifilm Corp | Light-scattering film, polarizing plate and image display |
JP5081479B2 (en) * | 2006-03-29 | 2012-11-28 | 富士フイルム株式会社 | Antireflection laminate, polarizing plate, and image display device |
JP2008026883A (en) * | 2006-06-19 | 2008-02-07 | Fujifilm Corp | Optical film |
JP2010078886A (en) * | 2008-09-25 | 2010-04-08 | Fujifilm Corp | Anti-glare film, anti-reflection film, polarizing plate, and image display device |
-
2011
- 2011-11-11 WO PCT/JP2011/076110 patent/WO2012067046A1/en active Application Filing
- 2011-11-15 JP JP2011249686A patent/JP2012123384A/en active Pending
- 2011-11-15 TW TW100141568A patent/TW201234057A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009156938A (en) * | 2007-12-25 | 2009-07-16 | Sumitomo Chemical Co Ltd | Antiglare film, antiglare polarizing plate and image display device |
JP2009204837A (en) * | 2008-02-27 | 2009-09-10 | Sumitomo Chemical Co Ltd | Anti-glare film, anti-glare polarizing sheet, and image display device |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019028153A (en) * | 2017-07-27 | 2019-02-21 | リンテック株式会社 | Laminate and method for manufacturing laminate |
JP6420426B1 (en) * | 2017-07-27 | 2018-11-07 | リンテック株式会社 | Laminate and method for producing laminate |
CN109307895A (en) * | 2017-07-27 | 2019-02-05 | 琳得科株式会社 | The manufacturing method of laminated body and laminated body |
CN109307896A (en) * | 2017-07-27 | 2019-02-05 | 琳得科株式会社 | The manufacturing method of laminated body and laminated body |
KR20190013436A (en) * | 2017-07-27 | 2019-02-11 | 린텍 가부시키가이샤 | Laminate and method for producing laminate |
JP2019028154A (en) * | 2017-07-27 | 2019-02-21 | リンテック株式会社 | Laminate and method for manufacturing laminate |
JP6420425B1 (en) * | 2017-07-27 | 2018-11-07 | リンテック株式会社 | Laminate and method for producing laminate |
KR102473933B1 (en) | 2017-07-27 | 2022-12-06 | 린텍 가부시키가이샤 | Laminate and method for producing laminate |
CN109307895B (en) * | 2017-07-27 | 2022-03-25 | 琳得科株式会社 | Laminate and method for producing laminate |
CN109307896B (en) * | 2017-07-27 | 2022-03-25 | 琳得科株式会社 | Laminate and method for producing laminate |
CN110161610A (en) * | 2018-02-16 | 2019-08-23 | 株式会社三立 | Polarizer and liquid crystal display device |
CN110161610B (en) * | 2018-02-16 | 2022-12-20 | 住友化学株式会社 | Polarizing plate and liquid crystal display device |
WO2020179643A1 (en) * | 2019-03-01 | 2020-09-10 | 大日本印刷株式会社 | Resin layer, optical film, and image display device |
JP7484882B2 (en) | 2019-03-01 | 2024-05-16 | 大日本印刷株式会社 | Resin layer, optical film and image display device |
Also Published As
Publication number | Publication date |
---|---|
TW201234057A (en) | 2012-08-16 |
JP2012123384A (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5887080B2 (en) | Light diffusing film and manufacturing method thereof, light diffusing polarizing plate, and liquid crystal display device | |
WO2011027905A1 (en) | Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device | |
WO2011027903A1 (en) | Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device | |
US8081385B2 (en) | Antiglare film, method for manufacturing antiglare film, polarizer, and display device | |
US8672492B2 (en) | Optical film and method for manufacturing the same, antiglare film, polarizer with optical layer, and display apparatus | |
WO2012046790A1 (en) | Light diffusion film and process for production thereof, light-diffusing polarizing plate, and liquid crystal display device | |
WO2012067046A1 (en) | Light dispersion film, polarization plate and image display device | |
JP5008734B2 (en) | Antiglare film, method for producing antiglare film, polarizing plate and image display device | |
KR20100103390A (en) | Optical film | |
WO2009151067A1 (en) | Optical film and manufacturing method therefor, anti-glare film, polarizing element with optical layer, and display device | |
JP2009037046A (en) | Antiglare film for liquid crystal display and liquid crystal display including the same | |
WO2012060457A1 (en) | Light diffusion film, method for manufacturing the light diffusion film, light-diffusing polarization plate, and liquid crystal display device | |
WO2011162133A1 (en) | Light-diffusing polarization plate and liquid-crystal display device | |
JP2010054861A (en) | Optical film, method for manufacturing the same, polarizing plate, and image display device | |
WO2012043410A1 (en) | Light-diffusing polarizing plate and liquid crystal display device | |
KR20170018327A (en) | Light diffusing sheet, and backlight device comprising said sheet | |
JP2012224735A (en) | Resin composition, optical film, and liquid crystal display device | |
JP4698723B2 (en) | Anti-glare film, polarizing plate and transmissive display device | |
JP2012212122A (en) | Polarizer protective film | |
JP2012212120A (en) | Polarizer protective film | |
JP2012212119A (en) | Polarizer protective film | |
WO2012074123A1 (en) | Optical film and liquid crystal display device | |
JP5827811B2 (en) | Liquid crystal display | |
JP2012212121A (en) | Polarizer protective film | |
JP2002221610A (en) | Glare-proof film, polarizing plate and transmission display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11842093 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11842093 Country of ref document: EP Kind code of ref document: A1 |