Nothing Special   »   [go: up one dir, main page]

WO2012056881A1 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
WO2012056881A1
WO2012056881A1 PCT/JP2011/073391 JP2011073391W WO2012056881A1 WO 2012056881 A1 WO2012056881 A1 WO 2012056881A1 JP 2011073391 W JP2011073391 W JP 2011073391W WO 2012056881 A1 WO2012056881 A1 WO 2012056881A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
power
output
engine
Prior art date
Application number
PCT/JP2011/073391
Other languages
English (en)
French (fr)
Inventor
土岐 吉正
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to BR112013010301-9A priority Critical patent/BR112013010301B1/pt
Priority to EP11836020.5A priority patent/EP2634053B1/en
Priority to CN201180052511.2A priority patent/CN103189257B/zh
Priority to MX2013004809A priority patent/MX2013004809A/es
Priority to KR1020137010795A priority patent/KR101434813B1/ko
Priority to JP2012540759A priority patent/JP5360306B2/ja
Priority to US13/881,815 priority patent/US8983697B2/en
Priority to RU2013124386/11A priority patent/RU2535830C1/ru
Publication of WO2012056881A1 publication Critical patent/WO2012056881A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/029Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/038Limiting the input power, torque or speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/022Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch
    • F02N15/025Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch of the friction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/248Current for loading or unloading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/308Electric sensors
    • B60Y2400/3086Electric voltages sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0896Inverters for electric machines, e.g. starter-generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/063Battery voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/064Battery temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2250/00Problems related to engine starting or engine's starting apparatus
    • F02N2250/02Battery voltage drop at start, e.g. drops causing ECU reset
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a control device for a hybrid vehicle.
  • a hybrid vehicle engine start control device including an engine, a motor that starts the engine, an inverter that controls the motor, and a battery that supplies electric power to the motor via the inverter, a battery temperature, a remaining battery capacity, and a battery
  • the battery temperature detected by the battery temperature sensor and the remaining battery capacity detected by the battery control It is known to calculate the required battery power and set the target rotational speed of the motor so that the outputable power is greater than or equal to the required power when the engine is started (Patent Document 1).
  • the output possible power calculated in the prior art shows a power value that can be stably output for a predetermined period (generally corresponding to “several seconds value” used in power control), and is compared with the required power.
  • This power value (several seconds value) is also used. Since this power value (several seconds value) indicates a power value that can be output stably for a predetermined time as described above, it is smaller than the power value that can be output instantaneously (instantaneous value).
  • the power value (several seconds value) can be output instantaneously even though the power value (instantaneous value) that can be output instantaneously exceeds the required power.
  • the motor target rotational speed may have to be reduced more than necessary.
  • the lower the motor target speed the lower the reliability of engine start and the longer the time required to complete engine start.
  • the possibility of exceeding the predetermined period of stable output assumed by the power value increases, and as a result, the reliability of engine start is further reduced. There was a fear.
  • the problem to be solved by the present invention is to improve the starting reliability of the engine in a vehicle in which the engine is started by a motor driven by power supply from a battery.
  • the present invention controls the inverter to start the internal combustion engine while controlling the output of the battery according to the first electric power value that can be output at the present time within the range of the limit voltage of the battery by the voltage control means. Solve the above problems.
  • FIG. 1 is a block diagram showing an overall configuration of a hybrid vehicle according to an embodiment of the present invention. It is a figure which shows the power train of the hybrid vehicle which concerns on other embodiment of this invention. It is a figure which shows the power train of the hybrid vehicle which concerns on further another embodiment of this invention. It is a control block diagram which shows the detail of the integrated control unit of FIG. It is a flowchart which shows the control procedure in the integrated control unit of FIG. It is a flowchart which shows the control procedure in the integrated control unit of FIG.
  • a hybrid vehicle 1 including a control device is a parallel vehicle that uses a plurality of power sources such as an internal combustion engine and a motor generator for driving the vehicle.
  • the hybrid vehicle 1 of this example shown in FIG. are an internal combustion engine (hereinafter referred to as an engine) 10, a first clutch 15, a motor generator (hereinafter referred to as a motor generator) 20, a second clutch 25, a battery 30, an inverter 35, an automatic transmission 40, a propeller shaft 51, and a differential gear unit. 52, a drive shaft 53, and left and right drive wheels 54.
  • the engine 10 is one of driving sources that output driving energy by burning fuel such as gasoline, light oil, and the like. Based on a control signal from the engine control unit 70, the valve opening of the throttle valve and the fuel injection valve are controlled. Control the fuel injection amount.
  • the first clutch 15 is interposed between the output shaft of the engine 10 and the rotation shaft of the motor generator 20, and connects and disconnects (ON / OFF) the power transmission between the engine 10 and the motor generator 20.
  • Examples of the first clutch 15 include a wet multi-plate clutch that can continuously control the oil flow rate and hydraulic pressure with a proportional solenoid.
  • the hydraulic pressure of the hydraulic unit 16 is controlled based on a control signal from the integrated control unit 60, whereby the clutch plate of the first clutch 15 is engaged (including a slip state) or released.
  • a dry clutch may be adopted as the first clutch 15.
  • the motor generator 20 is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
  • the motor generator 20 is provided with a rotation angle sensor 21 such as a resolver for detecting the rotor rotation angle. Even if the rotational speed of the motor generator is controlled according to the driving frequency of the inverter 35, the ratio of the driving frequency of the inverter 35 becomes the rotational speed ratio (speed ratio), and the electric power supplied from the inverter 108 becomes the driving force of the motor generator 20. .
  • the motor generator 20 functions as an electric motor or a generator.
  • the motor generator 20 when the rotor is rotated by an external force, the motor generator 20 generates AC power by generating electromotive force at both ends of the stator coil (regeneration). The AC power generated by the motor generator 20 is converted into DC power by the inverter 35 and then charged to the battery 30. In addition, since negative torque is generated in the motor generator 20 during regeneration, the driving wheel also has a braking function.
  • the motor generator 20 has a starter motor function. In order to start the engine 10, electric power is supplied from the battery 30 to the motor generator 20, and the motor generator 20 is operated to crank the engine 10.
  • the battery 30 may be an assembled battery in which a plurality of lithium ion secondary batteries, nickel hydride secondary batteries, or the like are connected in series or in parallel.
  • a current / voltage sensor 31 and a temperature sensor 32 for estimating an internal resistance value are attached to the battery 30, and these detection results are output to the motor control unit 80.
  • the second clutch 25 is interposed between the motor generator 20 and the left and right drive wheels 54, and connects and disconnects (ON / OFF) the power transmission between the motor generator 20 and the left and right drive wheels 54.
  • the second clutch 25 can be exemplified by, for example, a wet multi-plate clutch, similar to the first clutch 15 described above.
  • the hydraulic pressure of the hydraulic unit 26 is controlled based on a control signal from the transmission control unit 90, whereby the clutch plate of the second clutch 25 is engaged (including a slip state) / released.
  • the automatic transmission 40 is a stepped transmission that switches the gear ratio such as forward 7 speed, reverse 1 speed, etc. in stages, and automatically switches the gear ratio according to the vehicle speed, accelerator opening, and the like.
  • the gear ratio of the automatic transmission 40 is controlled based on a control signal from the transmission control unit 90.
  • the second clutch 25 may be one in which several frictional engagement elements are used among a plurality of frictional engagement elements that are engaged at each gear stage of the automatic transmission 40.
  • the second clutch 25 may be a dedicated clutch different from the automatic transmission 40.
  • the second clutch 25 may be a dedicated clutch interposed between the output shaft of the motor generator 20 and the input shaft of the automatic transmission 40.
  • the second clutch 25 may be a dedicated clutch interposed between the output shaft of the automatic transmission 40 and the propeller shaft 51.
  • 2 and 3 are diagrams showing the configuration of a hybrid vehicle according to another embodiment. In FIGS. 2 and 3, since the configuration other than the power train is the same as that in FIG. 1, only the power train is shown. Indicates.
  • the automatic transmission 40 can use a general stepped automatic transmission, and a detailed configuration thereof is omitted. However, a plurality of frictions that are engaged at each gear stage of the automatic transmission 40 are omitted.
  • the second clutch 25 is configured by diverting some of the frictional engagement elements among the engagement elements, the frictional engagement element to be engaged at the current shift stage among the frictional engagement elements in the automatic transmission 40 is the second clutch. 25.
  • the automatic transmission 40 is not particularly limited to the above-described stepped automatic transmission with 7 forward speeds and 1 reverse speed, and may be another stepped transmission with 5 forward speeds and 1 reverse speed, for example. Good.
  • a continuously variable automatic transmission can also be used.
  • the output shaft of the automatic transmission 40 is connected to the left and right drive wheels 54 via the propeller shaft 51, the differential gear unit 52, and the left and right drive shafts 53.
  • reference numeral 55 denotes left and right steering front wheels. 1 to 3 exemplify a rear-wheel drive hybrid vehicle, it may be a front-wheel drive hybrid vehicle or a four-wheel drive hybrid vehicle.
  • the hybrid vehicle 1 sets the drive source to the engine 10 and / or the motor generator 20, in other words, according to the engaged / slip / release state of the first and second clutches 15 and 25. It is possible to switch to each travel mode described below.
  • Motor generator use travel mode (hereinafter referred to as EV travel mode) is a mode in which the first clutch 15 is disengaged and the second clutch 25 is engaged to travel using only the power of the motor generator 20 as a drive source.
  • the engine use travel mode (hereinafter referred to as HEV travel mode) is a mode in which both the first clutch 15 and the second clutch 25 are engaged and the vehicle travels while including at least the power of the engine 10 as a drive source.
  • the first clutch 15 is engaged and the second clutch 25 is in the slip state, and the engine uses slip traveling mode (hereinafter referred to as WSC) that travels while including the power of the engine 10 as a drive source.
  • WSC slip traveling mode
  • the driving mode Wet Start Clutch
  • the WSC travel mode is a mode in which creep travel can be achieved particularly when the state of charge (SOC) of the battery 30 is low or when the coolant temperature of the engine 10 is low.
  • the engine can be started by engaging the released first clutch 15 and using the torque of the motor generator 20.
  • an engine travel mode In the HEV travel mode, an engine travel mode, a motor assist travel mode, and a travel power generation mode are set.
  • the drive wheel 54 In the engine running mode, the drive wheel 54 is moved using only the engine 10 as a power source without driving the motor generator 20.
  • the motor assist travel mode both the engine 10 and the motor generator 20 are driven, and the drive wheels 54 are moved using these two as power sources.
  • the traveling power generation mode the drive wheel 54 is moved using the engine 10 as a power source, and at the same time, the motor generator 20 is caused to function as a generator to charge the battery 30.
  • the motor generator 20 is made to function as a generator by using the power of the engine 10 to charge the battery 30 or supply power to the electrical components. May be provided.
  • the control system of the hybrid vehicle 1 in this embodiment includes an integrated control unit 60, an engine control unit 70, a motor control unit 80, and a transmission control unit 90, as shown in FIG. These control units 60, 70, 80, 90 are connected to each other via, for example, CAN communication.
  • the engine control unit 70 controls the opening degree of the electronically controlled throttle so that the target engine torque calculated by the integrated control unit 60 is obtained.
  • An intake air amount corresponding to the throttle opening flows into the engine 10, and the intake air flow rate is measured by an air flow meter (not shown) provided upstream of the electronic control throttle.
  • the engine control unit 70 controls fuel injection using a fuel injector based on the intake air flow rate and the rotational speed of the engine 10 detected from a crank angle sensor (not shown), and uses an ignition plug to determine the ignition timing.
  • Information about the engine speed Ne and the engine torque Te is output to the integrated control 60 via the CAN communication line.
  • the motor control unit 80 receives information from the rotation angle sensor 21 provided in the motor generator 20 and operates the motor generator 20 so that the target rotation speed and the target torque calculated by the integrated control unit 60 can be obtained.
  • a command for controlling the point (motor rotation speed Nm, motor torque Tm) is output to the inverter 35, and the drive frequency of the inverter 35 is controlled.
  • the motor control unit 80 calculates and manages the SOC of the battery 30 based on the current value and the voltage value detected by the current / voltage sensor 31.
  • the battery SOC information is used as control information for the motor generator 20 and is sent to the integrated control unit 60 via CAN communication.
  • the motor control unit 80 estimates the motor generator torque Tm based on the value of the current flowing through the motor generator 20 (the power running control torque and the regenerative control torque are distinguished based on whether the current value is positive or negative). Information on the motor generator torque Tm is sent to the integrated control unit 60 via CAN communication. Further, the motor control unit 80 sends the battery temperature detected by the temperature sensor 32 to the integrated control unit 60.
  • the transmission control unit 90 inputs sensor information from an accelerator opening sensor 91, a vehicle speed sensor 92, a second clutch hydraulic pressure sensor 93, and an inhibitor switch 94 that outputs a signal corresponding to the position of the shift lever operated by the driver.
  • a command for controlling the engagement / release of the second clutch 25 is output to the hydraulic unit 26.
  • Information on the accelerator opening APO, the vehicle speed VSP, and the inhibitor switch is sent to the integrated control unit 60 via CAN communication.
  • the integrated control unit 60 manages the energy consumption of the entire hybrid vehicle 1 and controls the function of causing the hybrid vehicle 1 to travel efficiently.
  • the integrated control unit 60 includes a second clutch output rotational speed sensor 61 that detects an output rotational speed N2 out of the second clutch 25, a second clutch torque sensor 62 that detects a transmission torque capacity TCL2 of the second clutch 25, and a brake hydraulic pressure.
  • Sensor information is acquired from the sensor 63, the temperature sensor 64 that detects the temperature of the second clutch 25, and the G sensor 65 that detects the longitudinal acceleration and lateral acceleration of the vehicle.
  • the integrated control unit 60 also acquires sensor information obtained through CAN communication in addition to these pieces of information.
  • the integrated control unit 60 controls the operation of the engine 10 according to the control command to the engine control unit 70, the operation control of the motor generator 20 based on the control command to the motor control unit 80, and the transmission control unit 90.
  • Control of the automatic transmission 40 according to the control command for the first clutch 15, engagement / release control of the first clutch 15 according to the control command for the hydraulic unit 16 of the first clutch 15, and control command for the hydraulic unit 26 of the second clutch 25 Engagement / release control of the second clutch 25 is executed.
  • the general control unit 60 is transmitted with a signal indicating that the ignition key-on by the driver or the condition for releasing the idle stop is satisfied. Further, when the vehicle is stopped or operated at a low load, the engine 10 is automatically stopped on condition that a predetermined engine automatic stop condition (a vehicle speed is a predetermined vehicle speed or less, an accelerator depression amount is a predetermined amount or less, etc.) is satisfied, and fuel consumption is reduced. Further reduction in volume and exhaust emissions.
  • a predetermined engine automatic stop condition a vehicle speed is a predetermined vehicle speed or less, an accelerator depression amount is a predetermined amount or less, etc.
  • FIG. 4 is a control block diagram showing details of the integrated control unit 60.
  • the integrated control unit 60 includes a voltage control unit 601, a power control unit 602, an internal combustion engine starting unit 603, and a rotation speed setting unit 604.
  • the voltage control unit 601 controls the power output from the battery 30 according to the detected voltage of the battery 30, the battery temperature, and the deterioration state detected by the voltage sensor 31.
  • the voltage control unit 601 is set with an upper limit voltage and a lower limit voltage of the battery 30, and controls so that the voltage of the battery 30 falls within a safe voltage range indicated within a range from the lower limit voltage to the upper limit voltage.
  • the upper limit voltage or the lower limit voltage indicates a limit voltage at which the battery 30 can be used safely.
  • the motor cell control unit 80 sets the drive frequency of the inverter 35 according to the target torque request to the motor generator 20 requested from the integrated control unit 60 as described above. Then, in order to operate the inverter 35 at the drive frequency, a discharge current of the battery 30 flows from the battery 30 to the inverter 35.
  • the voltage control unit 601 supplies power from the battery 30 to the inverter 35 without limiting the power of the battery 30 within the limit voltage range.
  • the voltage control unit 601 reduces the discharge current of the battery 5 without discharging the current corresponding to the drive frequency from the battery 5.
  • the detection voltage of the battery 30 is controlled so as not to be lower than the lower limit voltage. Further, when the detection voltage of the battery 30 decreases and falls below the lower limit voltage, the voltage control unit 601 further reduces the discharge current of the battery 30.
  • the voltage control unit 301 when the detected voltage of the battery 30 is higher than the lower limit voltage, the voltage control unit 301 does not limit the power that can be output from the battery 30 and outputs the power corresponding to the drive frequency of the inverter from the battery 30. .
  • the voltage control unit 601 compares the detection voltage of the battery 30 with the lower limit voltage that is the limit voltage, and controls the output of the battery 30 according to the comparison result.
  • the voltage control unit 601 controls the input voltage to the battery 30 according to the comparison result between the detected voltage of the battery 30 and the upper limit voltage. That is, when the detected voltage of battery 30 is lower than the upper limit voltage, voltage control unit 601 supplies the battery 30 with no restriction on the power generated by regeneration of motor generator 20. When the detection voltage of the battery 30 reaches the upper limit voltage, the voltage control unit 601 limits the power generated by regeneration of the motor generator 20 by performing control to reduce the charging voltage of the battery 30, The battery 30 is charged. Thereby, the voltage control unit 601 controls the input power to the battery 30 so that the voltage of the battery 30 does not exceed the upper limit voltage.
  • the power control unit 602 calculates the output of the battery 30 from the state of the battery 30 with reference to a map stored in advance, so that the output corresponding to the drive frequency of the inverter is output from the battery 30 to the inverter 35. In addition, the output of the battery 30 is controlled.
  • the power control unit 602 uses the state of charge of the battery 30 (SOC State of Charge), the temperature of the battery 30, the degree of deterioration of the battery 30, and the like as the state of the battery 30.
  • SOC of the battery 30 is calculated from the current and voltage detected by the current sensor and voltage sensor 31, and the temperature of the battery 30 is detected by the temperature sensor 32.
  • the power control unit 602 calculates the output power of the battery 30 by referring to the map based on the calculated SOC and the detected temperature.
  • the output power calculated using the map by the power control unit 602 indicates power (for example, a value of 2 seconds) that can be output from the battery 30 for a predetermined time (for example, 2 seconds). Therefore, when power exceeding the power calculated by the power control unit 602 is requested from the battery 30, the power control unit 602 performs control so that power exceeding the calculated power is not output from the battery 30.
  • the power control unit 602 uses a map for calculating power that can be output for a predetermined time, and does not calculate power that can be output from the battery 30 for a time longer than the predetermined time. Therefore, when the calculated power is required for the battery 30 for a time longer than the predetermined time, the power control unit 602 does not output the calculated power from the battery 30 for a time longer than the predetermined time. There is.
  • the internal combustion engine starting unit 603 drives the motor 10 by driving the motor generator 20 via the motor control unit 80 based on a start signal for starting the engine 10.
  • a start signal for starting the engine 10 is transmitted from the switch and received by the motor control unit 80.
  • the internal combustion engine starting means 603 also starts the engine 10 when shifting from the EV traveling mode to the HEV traveling mode and when shifting from the EV traveling mode to the traveling mode using only the engine. Note that the switching of the running mode is managed by the integrated control unit 60 in accordance with the accelerator opening and the vehicle speed.
  • Rotation speed setting unit 604 sets the rotation speed of motor generator 20 when cranking to start engine 10. Further, when the electric power value (instantaneous value) calculated by the voltage control unit 601 is lower than the electric power necessary for starting the engine 10, the rotational speed setting unit 604 decreases the rotational speed of the motor generator 20 and Lower the power required to start 10.
  • the integrated control unit 60 receives the start signal for starting the engine 10 and controls the power of the battery 30 by the voltage control unit 601. Further, the integrated control unit 60 detects the temperature of the battery 30 by the temperature sensor 32. In the integrated control unit 60, a threshold temperature for switching the lower limit voltage is set. When the temperature of the battery 30 is higher than the lower limit temperature, the voltage control unit 601 controls the battery 30 without lowering the preset lower limit voltage, and the temperature of the battery 30 switches the lower limit voltage. When the temperature is lower than the threshold temperature, the voltage control unit 601 controls the battery 30 by lowering the preset lower limit voltage.
  • the IV characteristic current voltage characteristic
  • the discharge current of the battery 30 becomes higher than that, and the power of the battery 30 corresponding to the product of the voltage and current becomes higher than the power before the voltage is lowered.
  • the temperature of the battery 30 is higher than the threshold temperature (for example, at a normal temperature)
  • the power of the battery 30 is increased by lowering the output voltage of the battery 30, but the temperature of the battery 30 is lower than the threshold temperature. Compared to the case, the increase in power is small.
  • the voltage control unit 601 can increase the power of the battery 30 by lowering the lower limit voltage.
  • the voltage control unit 601 calculates a power value (instantaneous value) that can be instantaneously output from the battery 30 from the detection voltage of the voltage sensor 31 and the current that can be discharged from the battery 32, and is calculated by the calculation.
  • the electric power value (instantaneous value) is compared with the electric power necessary for starting the engine 10.
  • the voltage control unit 601 supplies the power of the battery 30 to the motor generator 20, and the internal combustion engine starting unit 603.
  • rotation speed setting unit 604 has a power value (instantaneous value) higher than the power required to start engine 10.
  • the internal combustion engine starting means 601 engages the clutch 15 and starts the engine 10.
  • the motor control unit 80 sets a driving frequency for starting the engine 10 and controls the inverter 35.
  • the voltage control unit 601 does not limit the power of the battery 30, so that power is output from the battery 30 according to the set drive frequency.
  • the battery 30 can be charged by regeneration of the motor generator 20 using the power of the engine 10.
  • the voltage can be kept higher than the lower limit voltage.
  • the voltage control unit 601 limits the output power from the battery 30 to limit the voltage of the battery 30. Is controlled so as not to become lower than the lower limit voltage. At this time, since the engine 10 has already been cranked, the engine 10 can be continuously cranked even with electric power lower than that required for starting the engine 10.
  • the power control unit 602 calculates power (several seconds value) that can be output from the battery 30 in a predetermined time as described above. Therefore, although the power value (instantaneous value) that can be output instantaneously exceeds the required power, the power value (several seconds) is less than the required power, so the target motor speed is reduced more than necessary. There was a risk of being forced to do so. As the motor target rotational speed decreases, the time from cranking of the engine 10 to the complete explosion becomes longer, the reliability of the engine start is lowered, and the time until the engine start is completed is also prolonged.
  • the calculated power value may not be continuously output until the complete explosion of the engine 10 in the calculation of the power control unit 602.
  • the rotational speed setting unit 604 sets the rotational speed for starting the engine 10 to a low rotational speed, the number of fuel injections until the complete explosion increases, and there is a certainty of starting the engine 10. Since it falls, it becomes difficult to grasp the time until the complete explosion itself. For this reason, the accuracy of the electric power required for starting the engine 10 may be deteriorated.
  • the CPU used for power control of the power control unit 602 such as a sensor used for vehicle control or the integrated control unit 60, cannot always accurately estimate the state of the battery 30,
  • the actual output power of the battery 30 is different, or the actual output possible period of the battery 30 is longer than the predetermined period of the calculated power value. For this reason, the accuracy of the calculated power is deteriorated with respect to the actual output power of the battery 30.
  • the engine 10 when starting the engine 10 by power control, the engine 10 is not actually started even if the motor speed is set to a lower speed than necessary or the battery 30 can be started for calculation. There was a possibility.
  • the engine 10 since the engine 10 is started by the output of the battery 30 controlled by the voltage control unit 601 as described above, the actual output power of the battery 30 is changed until the voltage of the battery 30 reaches the lower limit voltage.
  • the engine 10 can be started by supplying it to the motor generator 20.
  • the power control of the battery 30 by the power control unit 602 is prohibited, and the output of the battery is controlled by the voltage control only by the voltage control unit 601. Control and start the engine 10.
  • the rotation speed of the motor generator 20 for starting the engine 10 is set by executing the rotation speed setting by the rotation speed setting unit 604 based on the comparison between the power value (instantaneous value) and the required power by voltage control. Suppressing setting lower than necessary.
  • the rotational speed is set using the electric power value (instantaneous value) and the output is controlled within the range of the upper and lower limit voltages, so that the reliability of engine start can be remarkably improved.
  • FIGS. 5a and 5b are flowcharts showing the control procedure of the control device for the hybrid vehicle of this example.
  • step S When the system of the control device of this example is started, the ignition switch is turned on by the driver in step S1, and the integrated control unit 60 receives a start signal for starting the engine 10.
  • step S ⁇ b> 2 the integrated control unit 60 controls the output of the battery 30 by the voltage control unit 601.
  • step S3 the voltage control unit 601 uses the voltage sensor 31 to detect the open circuit voltage of the battery 30 and compares it with a predetermined threshold voltage (Vx).
  • the predetermined threshold voltage (Vx) is a voltage set in advance for protecting the battery 30.
  • the open circuit voltage of the battery 30 is higher than the threshold voltage (Vx)
  • the process proceeds to step S4.
  • step S31 the voltage control unit 601 turns on a warning lamp (not shown) without starting the engine 10, and Notify a warning.
  • step S4 the integrated control unit 60 compares the detected temperature (T) of the battery 30 detected by the temperature sensor 32 with a preset threshold temperature (T L ). When the detected temperature (T) is equal to or higher than the threshold temperature (T L ), the process proceeds to step S41 shown in FIG. On the other hand, when the detected temperature (T) is lower than the threshold temperature (T L ), the process proceeds to step S5.
  • step S5 integrated control unit 60 sets the lower limit voltage that has been set in advance (V L), to the lower limit voltage (V L) lower than the lower limit voltage (V L1).
  • the lower limit voltage (V L ) is a lower limit voltage value at which the battery 30 can be used safely in a normal temperature state where the temperature of the battery 30 is higher than the threshold temperature (T L ).
  • the lower limit voltage (V L1 ) indicates a lower limit voltage value at which the battery 30 can be used safely in a low temperature state where the temperature of the battery 30 is lower than the lower limit voltage (T L ).
  • step S6 the voltage control unit 601 supplies electric power necessary for starting the engine 10 to the battery 30, and the internal combustion engine starting unit 603 cranks the engine 10.
  • step S ⁇ b> 7 the integrated control unit 60 determines whether or not the complete explosion flag indicating complete explosion is turned on by a signal transmitted from the engine control unit 70.
  • the engine control unit 70 manages the state of the engine 10 based on the rotational speed of the engine 10. When the rotational speed of the engine 10 is higher than a predetermined threshold rotational speed at which it is determined that a complete explosion has occurred, the engine control unit 70 turns on a complete explosion flag and when it is lower than a predetermined threshold rotational speed at which it is determined that a complete explosion has occurred. The engine control unit 70 turns off the complete explosion flag.
  • step S71 the integrated control unit 60 determines whether or not a predetermined time has elapsed since the start signal was received. When the predetermined time has elapsed (timeout), the control of this example is terminated. Thereby, when the engine cannot be completely exploded due to the output of the battery 30, discharging from the battery 30 is prohibited. On the other hand, if the predetermined period has not elapsed, the process proceeds to step S72.
  • step S72 voltage control unit 601 compares the detection voltage of battery 30 with the lower limit voltage (V L1 ). When the detected voltage is equal to or higher than the lower limit voltage (V L1 ), the voltage control unit 601 continuously supplies the current output power to the motor generator 20, thereby continuously cranking the engine 10.
  • step S6 the process returns to step S6.
  • the voltage control unit 601 reduces the power of the battery 30 to reduce the battery 30 Is controlled to be higher than the lower limit voltage (V L1 ). Then, the process returns to step S7.
  • step S7 the integrated control unit 60 controls the power of the battery 30 by the power control unit 602 in step S8.
  • step S9 the integrated control unit 60 compares the detection voltage of the battery 30 with the lower limit voltage (V L ). That is, it is determined whether or not the detected voltage of the battery 30 is higher than the lower limit voltage (V L ) before being set to the lower limit voltage (V L1 ) in step S5.
  • step S91 when the detected voltage of the battery 30 is lower than the lower limit voltage (V L ), the battery 30 is charged and the process returns to step S8.
  • the power of the engine 10 is used to charge the battery 30 and increase the voltage of the battery 30.
  • the voltage of the battery 30 may be higher than the lower limit voltage (V L ) by eliminating the discharge load applied to the battery 30, and therefore the control process in step S 91 is not necessarily required. You may perform control which does not apply the load of discharge.
  • the integrated control unit 60 returns the lower limit voltage (V L1 ) to the lower limit voltage (V L ) (step S10), and ends the control of this example. To do.
  • step S41 voltage control unit 601 compares the power necessary for starting engine 10 with the output power (instantaneous value) of battery 30. If the output power (instantaneous value) of the battery 30 is greater than or equal to the required power, the process proceeds to step S43. On the other hand, when the output power (instantaneous value) of battery 30 is lower than the required power, rotation setting means 604 decreases the rotation speed of motor generator 20 for starting engine 10 in step S42. As a result, the electric power required to start the engine 10 is reduced. Note that the rotation setting unit 604 may decrease the rotation number in stages, and the rotation setting unit 604 may decrease the rotation number to a rotation number at which the necessary power becomes output power.
  • step S ⁇ b> 43 voltage control unit 601 supplies electric power necessary for starting engine 10 to battery 30, and internal combustion engine starting unit 603 cranks engine 10.
  • step S44 the integrated control unit 60 determines whether or not the complete explosion flag is on. If the complete explosion flag is off, in step S441, the integrated control unit 60 determines whether a time-out has occurred. If the timeout has occurred, the control of this example is terminated. Thereby, when the engine cannot be completely exploded due to the output of the battery 30, discharging from the battery 30 is prohibited. If not timed out, in step S442, the voltage control unit 601 compares the detection voltage of the battery 30 with the lower limit voltage (V L ).
  • the voltage control unit 601 When the detected voltage is equal to or higher than the lower limit voltage (V L ), the voltage control unit 601 continues to supply the current output power to the motor generator 20 to continuously crank the engine 10. Then, the process returns to step S44.
  • the voltage control unit 601 reduces the power of the battery 30 (step S443). ), The voltage of the battery 30 is set higher than the lower limit voltage (V L ), and the battery 30 is controlled. Then, the process returns to step S44.
  • step S45 the integrated control unit 60 controls the power of the battery 30 by the power control unit 602, and the control of this example is finished.
  • the voltage control unit 601 controls the output of the battery 30 according to the comparison result between the detection voltage of the voltage sensor 31 and the limit voltage of the battery 30, and is controlled by the voltage control unit 601.
  • the engine 10 is started by controlling the inverter 35 in accordance with the output of the battery 30.
  • the battery 30 is controlled within a safe voltage range to start the engine 10, so that power can be efficiently output up to the voltage limit value of the battery 30, and as a result, the engine 10 is started. Therefore, the range of use conditions of the battery 30 can be expanded.
  • the power control is removed and the voltage control is performed, so that it is possible to crank the engine 10 using all the energy that the battery 30 has, and the conditions for starting the engine 10 can be expanded. it can.
  • the output of the battery 30 is controlled by the voltage control unit 601, the control of the output of the battery 30 by the power control unit 602 is prohibited, and the power control by the power control unit 602 is performed. Not performed.
  • the rotational speed can be set using a power value (instantaneous value) that can be instantaneously output by the battery 30, and the certainty that the engine 10 can be completely exploded can be increased.
  • the power that the battery 30 can actually output is continuously supplied until the complete explosion. be able to.
  • the detection voltage of the battery 30 when the detection voltage of the battery 30 is lower than the lower limit voltage (V L or V L1 ), the output of the battery 30 is limited. Thereby, the detection voltage of the battery 30 can further be lowered and the battery 30 can be prevented from being overdischarged.
  • the voltage control unit 601 changes the lower limit voltage (V L ) to the lower limit voltage (V L1 ). Set. Thereby, when the battery 30 is in a low temperature state, the output of the battery 30 can be increased by lowering the lower limit voltage (V L ). As a result, the range of use conditions of the battery 30 can be expanded.
  • the battery 30 when the start signal for starting the engine 10 is received, the battery 30 is controlled by the voltage control unit 601, and when the signal indicating the complete explosion of the engine 10 is received, the battery 30 is supplied by the power control unit 602. To control.
  • the range of use conditions of the battery 30 can be expanded.
  • the voltage of the battery 30 can be raised by the power of the engine 10 after the engine 10 is completely exploded, the voltage of the battery 30 can be kept within the safe voltage range even under power control, and the battery 30 is protected. However, the life of the battery 30 can be extended. Further, the driving of the vehicle can be stabilized.
  • the battery 30 is controlled by the power control unit 602 after the engine 10 has completely exploded, but the control by the voltage control unit 601 may be used in combination.
  • the voltage control by the voltage control unit 601 when the ignition switch is turned on by the driver and a start signal for starting the engine 10 is received, the voltage control by the voltage control unit 601 is performed.
  • the voltage control unit 601 may perform voltage control when shifting to the mode, or when starting the engine 10 when shifting from the EV driving mode to the engine-only driving mode. For example, when the engine 10 is started from a state where the vehicle is stopped due to a signal or the like, the voltage control by the voltage control unit 601 may be performed. Furthermore, the voltage control by the voltage control unit 601 may be performed only when the ignition switch is turned on by the driver and a start signal for starting the engine 10 is received.
  • the power control by the power control unit 602 when the power control by the power control unit 602 is performed before receiving the start signal for starting the engine 10, the power control is performed when the start signal for starting the engine 10 is received.
  • the voltage control by the voltage control unit 601 may be switched.
  • the motor control unit 80 determines the voltage for each cell and the total battery pack including the plurality of cell batteries. Each voltage may be monitored. At this time, the limiting voltage may be set to the voltage of each cell battery and the total voltage of the battery pack. In addition, when managing the voltage of a plurality of cell batteries and the total voltage of the battery pack, the lower limit voltage of each cell may be lowered in step S4, and the lower limit voltage of the cell voltage at which the voltage is lowered is set. It may be lowered.
  • control procedure in the control device of this example is not necessarily the procedure shown in FIG. 5, and each step may be replaced, or some steps may be omitted.
  • step S71 and step S441 if the engine 10 is started many times after the time-out, the battery 30 may be overdischarged. For example, the engine is started a predetermined number of times. When the engine is not started, control that does not restart may be performed. Further, when the voltage of the battery 30 is lower than a predetermined voltage, control that does not restart may be performed. The voltage indicating that the load is applied to the battery 30 and the battery 30 is over-discharged by restarting the engine 10 may be set as the predetermined voltage.
  • the engine 10 corresponds to the internal combustion engine according to the present invention
  • the motor generator 20 corresponds to the electric motor according to the present invention
  • the first clutch CL1 corresponds to the clutch according to the present invention
  • the voltage sensor 31 corresponds to the present invention.
  • the voltage control unit 601 corresponds to the voltage detection unit according to the present invention
  • the power control unit 602 corresponds to the power control unit according to the present invention
  • the internal combustion engine starting unit 603 includes
  • the rotation speed setting unit 604 corresponds to the rotation speed setting means according to the present invention
  • the temperature sensor 32 corresponds to the temperature detection means according to the present invention
  • the lower limit voltage ( V L ) corresponds to the first lower limit voltage according to the present invention
  • the lower limit voltage (V L1 ) corresponds to the second lower limit voltage according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

内燃機関と、内燃機関を始動する電動機と、電動機を制御するインバータ35と、内燃機関と電動機とを間の動力伝達を断接するクラッチと、電動機に電力を供給するバッテリ30とを備えたハイブリッド車両を制御する制御装置であって、バッテリ30の電圧を検出する電圧検出手段と、バッテリ30の制限電圧の範囲内で現時点で出力可能な第1電力値に応じてバッテリ30の出力を制御する電圧制御手段と、クラッチを締結させて、電圧制御手段により制御されるバッテリ30の出力によって、インバータ35を制御して内燃機関を始動させる内燃機関始動手段と、を備える。

Description

ハイブリッド車両の制御装置
 本発明は、ハイブリッド車両の制御装置に関する。
 本出願は、2010年10月28日に出願された日本国特許出願の特願2010―241796に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
 エンジン、エンジンの始動を行うモータ、モータを制御するインバータ、および、インバータを介して前記モータに電力を供給するバッテリを少なくとも備えたハイブリッド車のエンジン始動制御装置において、バッテリ温度とバッテリ残存容量とバッテリ出力可能出力との関係を示すデータと、バッテリ温度センサによって検出されるバッテリ温度及びバッテリコントロールによって検出されるバッテリ残存容量とに基づいて、バッテリの出力可能電力を算出し、エンジンを始動するために必要なバッテリの電力を算出し、エンジンの始動時に、出力可能電力が必要電力以上となるように、モータの目標回転数を設定するものが知られている(特許文献1)。
特開2008-62745号公報
 ところが、従来技術において算出される当該出力可能電力は、所定の期間、安定して出力できる電力値(一般に電力制御で用いられる「数秒値」に相当)を示しており、必要電力との比較にもこの電力値(数秒値)を用いている。この電力値(数秒値)は上記の通り、所定時間、安定して出力可能な電力値を示しているため、瞬間的に出力可能な電力値(瞬時値)よりも小さな値になる。このような電力値(数秒値)を用いて必要電力との比較を行うと、瞬間的に出力可能な電力値(瞬時値)は必要電力を上回っているにも関わらず、電力値(数秒値)が必要電力を下回るがために、モータ目標回転数を必要以上に低下せざるを得なくなる恐れがあった。モータ目標回転数が低下すればするほど、エンジン始動の確実性は低下しエンジン始動完了までの時間も長期化する恐れがある。当然ながらエンジン始動完了までの時間が長期化すれば、電力値(数秒値)で想定していた安定出力可能な所定期間を超える可能性も高まり、結果的にエンジン始動の確実性をさらに低下させてしまう恐れがあった。
 本発明が解決しようとする課題は、バッテリからの電力供給によって駆動されるモータでエンジンを始動させる車両において、エンジンの始動の確実性を向上させることである。
 本発明は、電圧制御手段によりバッテリの制限電圧の範囲内で現時点で出力可能な第1電力値に応じて前記バッテリの出力を制御しつつ、前記インバータを制御して内燃機関を始動させることにより、上記課題を解決する。
 本発明によれば、エンジンの始動の確実性を向上させることができる。
本発明の一実施の形態に係るハイブリッド車両の全体構成を示すブロック図である。 本発明の他の実施の形態に係るハイブリッド車両のパワートレーンを示す図である。 本発明のさらに他の実施の形態に係るハイブリッド車両のパワートレーンを示す図である。 図1の統合コントロールユニットの細部を示す制御ブロック図である。 図1の統合コントロールユニットにおける制御手順を示すフローチャートである。 図1の統合コントロールユニットにおける制御手順を示すフローチャートである。
 本発明の実施形態に係る制御装置を含むハイブリッド車両1は、内燃機関と電動発電機といった複数の動力源を車両の駆動に使用するパラレル方式自動車であり、図1に示す本例のハイブリッド車両1は、内燃機関(以下、エンジン)10、第1クラッチ15、電動発電機(以下、モータジェネレータ)20、第2クラッチ25、バッテリ30、インバータ35、自動変速機40、プロペラシャフト51、ディファレンシャルギアユニット52、ドライブシャフト53、および左右の駆動輪54を備える。
 エンジン10は、ガソリン、軽油その他の燃料を燃焼させて駆動エネルギを出力する駆動源の一つであり、エンジンコントロールユニット70からの制御信号に基づいて、スロットルバルブのバルブ開度や燃料噴射バルブの燃料噴射量等を制御する。
 第1クラッチ15は、エンジン10の出力軸とモータジェネレータ20の回転軸との間に介装され、エンジン10とモータジェネレータ20との間の動力伝達を断接(ON/OFF)する。第1クラッチ15としては、比例ソレノイドで油流量および油圧を連続的に制御できる湿式多板クラッチなどを例示することができる。第1クラッチ15において、統合コントロールユニット60からの制御信号に基づいて油圧ユニット16の油圧が制御され、これにより第1クラッチ15のクラッチ板が締結(スリップ状態も含む。)又は解放する。なお、第1クラッチ15に乾式クラッチを採用してもよい。
 モータジェネレータ20は、ロータに永久磁石を埋設し、ステータにステータコイルが巻きつけられた同期型モータジェネレータである。このモータジェネレータ20には、ロータ回転角を検出するレゾルバなどの回転角センサ21が設けられている。モータジェネレータの回転速度はインバータ35の駆動周波数に応じて制御さえ、インバータ35の駆動周波数の比が回転速度比(変速比)となり、インバータ108から供給される電力がモータジェネレータ20の駆動力となる。モータジェネレータ20は、電動機としても機能するし発電機としても機能する。
 一方、外力によってロータが回転している場合には、モータジェネレータ20は、ステータコイルの両端に起電力を生じさせることで交流電力を生成する(回生)。モータジェネレータ20によって発電された交流電力は、インバータ35によって直流電力に変換された後に、バッテリ30に充電される。また、回生中においてモータジェネレータ20には負のトルクが発生するので、駆動輪に対して制動機能をも奏する。
 またモータジェネレータ20は、スタータモータの機能を備えている。エンジン10を始動させるために、バッテリ30からモータジェネレータ20に電力を供給し、モータジェネレータ20を動作させてエンジン10のクランキングを行う。
 バッテリ30は、複数のリチウムイオン二次電池やニッケル水素二次電池などを直列又は並列に接続した組電池を例示することができる。バッテリ30には電流・電圧センサ31と内部抵抗値を推定するための温度センサ32が取り付けられ、これらの検出結果をモータコントロールユニット80に出力する。
 第2クラッチ25は、モータジェネレータ20と左右の駆動輪54との間に介装され、モータジェネレータ20と左右の駆動輪54との間の動力伝達を断接(ON/OFF)する。第2クラッチ25は、上述の第1クラッチ15と同様に、たとえば湿式多板クラッチなどを例示することができる。第2クラッチ25において、トランスミッションコントロールユニット90からの制御信号に基づいて油圧ユニット26の油圧が制御され、これにより第2クラッチ25のクラッチ板が締結(スリップ状態も含む。)/解放する。
 自動変速機40は、前進7速、後退1速などといった変速比を段階的に切り換える有段式変速機であり、車速やアクセル開度等に応じて変速比を自動的に切り換える。自動変速機40の変速比は、トランスミッションコントロールユニット90からの制御信号に基づいて制御される。
 第2クラッチ25は、図1に示すように、自動変速機40の各変速段にて締結される複数の摩擦締結要素のうち、いくつかの摩擦締結要素を流用したものとすることができる。またこれに代えて第2クラッチ25を自動変速機40とは別の専用のクラッチとしてもよい。たとえば図2に示すように、第2クラッチ25を、モータジェネレータ20の出力軸と自動変速機40の入力軸との間に介装した専用のクラッチとしてもよい。あるいは、図3に示すように、第2クラッチ25を、自動変速機40の出力軸とプロペラシャフト51との間に介装した専用のクラッチとしてもよい。なお、図2及び図3は、他の実施形態に係るハイブリッド車両の構成を示す図であり、図2及び図3においては、パワートレーン以外の構成は図1と同様であるため、パワートレーンのみを示す。
 なお、本例の自動変速機40は一般的な有段式自動変速機を用いることができるのでその詳細な構成は省略するが、自動変速機40の各変速段にて締結される複数の摩擦締結要素のうち、いくつかの摩擦締結要素を流用して第2クラッチ25を構成する場合は、自動変速機40内の摩擦締結要素のうち現変速段で締結させるべき摩擦締結要素を第2クラッチ25として構成する。
 また、自動変速機40として、上述した前進7速、後退1速の有段式自動変速機に特に限定されず、その他のたとえば前進5速、後退1速の有段階の変速機であってもよい。第2クラッチ25を自動変速機40の摩擦締結要素を流用しないで構成する場合は、無段式自動変速機を用いることもできる。
 図1に戻り、自動変速機40の出力軸は、プロペラシャフト51、ディファレンシャルギアユニット52、および左右のドライブシャフト53を介して、左右の駆動輪54に連結されている。なお、図1において55は左右の操舵前輪である。また、図1~図3においては、後輪駆動のハイブリッド車両を例示したが、前輪駆動のハイブリッド車両や四輪駆動のハイブリッド車両とすることも可能である。
 本実施形態におけるハイブリッド車両1は、駆動源をエンジン10及び/又はモータジェネレータ20に設定することにより、換言すれば第1および第2のクラッチ15,25の締結/スリップ/解放状態に応じて、以下に説明する各走行モードに切り換えることができる。
 モータジェネレータ使用走行モード(以下、EV走行モード)は、第1クラッチ15を解放させると共に第2クラッチ25を締結させて、モータジェネレータ20の動力のみを駆動源として走行するモードである。
 エンジン使用走行モード(以下、HEV走行モード)は、第1クラッチ15および第2クラッチ25をいずれも締結させて、少なくともエンジン10の動力を駆動源に含みながら走行するモードである。
 上記EV走行モード及びHEV走行モード以外に、第1クラッチ15を締結させると共に第2クラッチ25をスリップ状態にして、エンジン10の動力を駆動源に含みながら走行するエンジン使用スリップ走行モード(以下、WSC走行モード,Wet Start Clutch)を設定してもよい。WSC走行モードは、特にバッテリ30の充電状態SOC(State of Charge)が低下している場合や、エンジン10の冷却水の温度が低い場合にクリープ走行を達成することができるモードである。
 なお、EV走行モードからHEV走行モードに移行する際には、解放していた第1クラッチ15を締結し、モータジェネレータ20のトルクを利用することで、エンジン始動を行なうことができる。
 また、HEV走行モードには、エンジン走行モード、モータアシスト走行モード、および走行発電モードが設定されている。エンジン走行モードでは、モータジェネレータ20を駆動させずに、エンジン10のみを動力源として駆動輪54を動かす。モータアシスト走行モードでは、エンジン10とモータジェネレータ20との両方を駆動させて、これら2つを動力源として駆動輪54を動かす。走行発電モードでは、エンジン10を動力源として駆動輪54を動かすと同時に、モータジェネレータ20を発電機として機能させ、バッテリ30を充電する。
 なお、以上に説明したモードの他に、停車時において、エンジン10の動力を利用してモータジェネレータ20を発電機として機能させ、バッテリ30を充電したり電装品へ電力を供給したりする発電モードを備えてもよい。
 本実施形態におけるハイブリッド車両1の制御系は、図1に示すように、統合コントロールユニット60、エンジンコントロールユニット70、モータコントロールユニット80、およびトランスミッションコントロールユニット90を備える。これらの各コントロールユニット60、70、80、90は、たとえばCAN通信を介して相互に接続されている。
 エンジンコントロールユニット70は、統合コントロールユニット60により演算される目標エンジントルクが得られるように、電子制御スロットルの開度を制御する。スロットル開度に応じた吸入空気量がエンジン10に流れ込み、吸入空気流量は電子制御スロットルの上流に設けたエアフローメータ(図示しない)により計測される。エンジンコントロールユニット70は、吸入空気流量とクランク角センサ(図示しない)から検出されるエンジン10の回転速度とに基づいて燃料インジェクタを用いて燃料の噴射を制御し、点火プラグを用いて点火の時期を制御する。なお、エンジン回転数Ne、エンジントルクTeの情報は、CAN通信線を介して統合コントロール60へ出力される。
 モータコントロールユニット80は、モータジェネレータ20に設けられた回転角センサ21からの情報を入力し、統合コントロールユニット60により演算される目標回転速度と目標トルクとが得られるように、モータジェネレータ20の動作点(モータ回転数Nm、モータトルクTm)を制御する指令をインバータ35に出力し、インバータ35の駆動周波数を制御する。また、モータコントロールユニット80は、電流・電圧センサ31により検出された電流値および電圧値に基づいてバッテリ30のSOCを演算および管理する。このバッテリSOC情報は、モータジェネレータ20の制御情報に用いられると共に、CAN通信を介して統合コントロールユニット60に送出される。さらに、モータコントロールユニット80は、モータジェネレータ20に流れる電流値(電流値の正負によって力行制御トルクと回生制御トルクを区別している)に基づいて、モータジェネレータトルクTmを推定する。このモータジェネレータトルクTmの情報は、CAN通信を介して統合コントロールユニット60に送出される。さらにモータコントロールユニット80は、温度センサ32により検出されたバッテリ温度を統合コントロールユニット60に送出する。
 トランスミッションコントロールユニット90は、アクセル開度センサ91、車速センサ92、第2クラッチ油圧センサ93、およびドライバの操作するシフトレバーの位置に応じた信号を出力するインヒビタスイッチ94からのセンサ情報を入力し、統合コントロールユニット60からの第2クラッチ制御指令に応じ、第2クラッチ25の締結・解放を制御する指令を、油圧ユニット26に出力する。なお、アクセル開度APO、車速VSP、およびインヒビタスイッチの情報は、CAN通信を介して統合コントロールユニット60に送出される。
 統合コントロールユニット60は、ハイブリッド車両1全体の消費エネルギを管理することで、ハイブリッド車両1を効率的に走行させるための機能を司る。統合コントロールユニット60は、第2クラッチ25の出力回転数N2outを検出する第2クラッチ出力回転数センサ61、第2クラッチ25の伝達トルク容量TCL2を検出する第2クラッチトルクセンサ62、ブレーキ油圧センサ63、第2クラッチ25の温度を検知する温度センサ64、および車両の前後加速度および横加速度を検出するGセンサ65からのセンサ情報を取得する。また、統合コントロールユニット60は、これらの情報に加えて、CAN通信を介して得られたセンサ情報の取得も行なう。
 そして、統合コントロールユニット60は、これらの情報に基づいて、エンジンコントロールユニット70への制御指令によるエンジン10の動作制御、モータコントロールユニット80への制御指令によるモータジェネレータ20の動作制御、トランスミッションコントロールユニット90への制御指令による自動変速機40の動作制御、第1クラッチ15の油圧ユニット16への制御指令による第1クラッチ15の締結・解放制御、および第2クラッチ25の油圧ユニット26への制御指令による第2クラッチ25の締結・解放制御を実行する。
 また、総合コントロールニット60には、運転者によるイグニッションキーオン、または、アイドルストップ解除条件が成立したことによる信号が伝達される。さらに、停車時や低負荷運転時には、所定のエンジン自動停止条件(車速が所定車速以下、アクセル踏み込み量が所定量以下等)が成立したことを条件としてエンジン10を自動的に停止させ、燃料消費量及び排気エミッションの更なる低減を図る。
 次いで、統合コントロールユニット60により実行される制御について説明する。図4は、統合コントロールユニット60の細部を示す制御ブロック図である。図4に示すように、統合コントロールユニット60は、電圧制御部601、電力制御部602、内燃機関始動部603及び回転数設定部604を備える。
 電圧制御部601は、電圧センサ31により検出されるバッテリ30の検出電圧、バッテリ温度及び劣化状態に応じて、バッテリ30から出力される電力を制御する。電圧制御部601には、バッテリ30の上限電圧と下限電圧とが設定されており、バッテリ30の電圧が下限電圧から上限電圧までの範囲内で示される安全な電圧範囲に収まるように制御する。上限電圧又は下限電圧は、バッテリ30を安全に使用可能な制限電圧を示す。
 モータセルコントロールユニット80は、上記のとおり、統合コントロールユニット60から要求されるモータジェネレータ20への目標トルク要求に応じてインバータ35の駆動周波数を設定する。そして、当該駆動周波数でインバータ35を動作させるために、バッテリ30からインバータ35に対して、バッテリ30の放電電流が流れる。
 バッテリ30の検出電圧が下限電圧より高い場合には、設定された駆動周波数に応じた電流がバッテリ30から放電される。すなわち、電圧制御部601は、制限電圧の範囲内でバッテリ30の電力に制限をかけることなく、バッテリ30からインバータ35に電力を供給させる。一方、バッテリ30の検出電圧が下降し下限電圧に達した場合には、電圧制御部601は、駆動周波数に応じた電流を、バッテリ5から放電させずに、バッテリ5の放電電流を絞ることで、バッテリ30の検出電圧が下限電圧より低くならないように制御する。そして、さらに、バッテリ30の検出電圧が下降し下限電圧を下回る場合には、電圧制御部601はバッテリ30の放電電流をさらに絞る。すなわち、電圧制御部301は、バッテリ30の検出電圧が下限電圧より高い場合には、バッテリ30の出力可能な電力に制限を加えず、インバータの駆動周波数に対応した電力を、バッテリ30から出力させる。一方、バッテリ30の検出電圧が下限電圧以下である場合には、バッテリ30の電力に制限をかけて、バッテリ30の出力可能な電力より低い電力を、バッテリ30から出力させる。これにより、電圧制御部601は、バッテリ30の検出電圧と、制限電圧である下限電圧とを比較し、比較結果に応じて、バッテリ30の出力を制御する。
 モータジェネレータ20の回生によりバッテリ30を充電する際には、電圧制御部601は、バッテリ30の検出電圧と上限電圧との比較結果に応じて、バッテリ30への入力電圧を制御する。すなわち、バッテリ30の検出電圧が上限電圧より低い場合には、電圧制御部601は、モータジェネレータ20の回生による電力に対して制限をかけずに、バッテリ30に供給する。そして、バッテリ30の検出電圧が上限電圧に達した場合には、電圧制御部601は、バッテリ30の充電電圧を下げる制御を行うことで、モータジェネレータ20の回生による電力に対して制限をかけ、バッテリ30を充電する。これにより、電圧制御部601は、バッテリ30の電圧が上限電圧を超えないように、バッテリ30への入力電力を制御する。
 電力制御部602は、バッテリ30の状態から、予め格納されているマップを参照して、バッテリ30の出力を演算し、インバータの駆動周波数に応じた出力がバッテリ30からインバータ35に出力されるように、バッテリ30の出力を制御する。電力制御部602は、バッテリ30の状態として、バッテリ30の充電状態(SOC State of Charge)及びバッテリ30の温度、バッテリ30の劣化度等を用いる。バッテリ30のSOCは、電流センサ及び電圧センサ31により検出される電流及び電圧から算出され、バッテリ30の温度は温度センサ32により検出される。電力制御部602に格納されるマップには、バッテリ30のSOC及び温度と、劣化と、バッテリ30の出力電力とが対応付けられている。そして、電力制御部602は、演算したSOCと検出温度とに基づいて、当該マップを参照することで、バッテリ30の出力電力を演算する。
 ここで、電力制御部602によりマップを用いて演算された出力電力は、所定時間(例えば2秒)の間、バッテリ30から出力可能な電力(例えば2秒値)を示している。そのため、電力制御部602により演算された電力を越える電力がバッテリ30に要求された場合に、電力制御手段602は、演算された電力を越える電力をバッテリ30から出力しないように制御する。また電力制御部602は、所定時間、出力可能な電力を演算するためのマップを用いており、所定時間より長い時間、バッテリ30より出力可能な電力を演算していない。そのため、演算された電力が、所定時間より長い時間、バッテリ30に対して要求される場合には、電力制御部602は、当該所定時間より長い時間、演算された電力をバッテリ30から出力しない場合がある。
 内燃機関始動部603は、エンジン10を始動させる始動信号に基づき、モータコントロールユニット80を介して、モータジェネレータ20を駆動させて、エンジン10を駆動させる。イグニションスイッチ(図示しない)がオンになると、エンジン10を始動させる始動信号が当該スイッチより送信され、モータコントロールユニット80により受信される。また内燃機関開始手段603は、EV走行モードからHEV走行モードに移行する際、及び、EV走行モードからエンジンのみでの走行モードに移行する際にも、エンジン10を始動させる。なお、走行モードの切り換えは、アクセル開度及び車速に応じて、統合コントロールユニット60により管理されている。
 回転数設定部604は、エンジン10を始動させるためにクランキングする際のモータジェネレータ20の回転数を設定する。また、回転数設定部604は、電圧制御部601により演算された電力値(瞬時値)がエンジン10を始動させるために必要な電力より低い場合には、モータジェネレータ20の回転数を下げ、エンジン10を始動させるために必要な電力を下げる。
 次に、エンジン10を始動させる際の制御について、図1及び図4を用いて、説明する。まず、統合コントロールユニット60は、バッテリ30のSOCが低く、車両が停止している状態から、エンジン10を始動させる始動信号を受信すると、電圧制御部601によりバッテリ30の電力を制御する。また統合コントロールユニット60は、温度センサ32により、バッテリ30の温度を検出する。統合コントロールユニット60には、下限電圧を切り替えるための閾値温度が設定されている。そして、バッテリ30の温度が当該下限温度より高い場合には、電圧制御部601は、予め設定されている下限電圧を下げずにバッテリ30を制御し、バッテリ30の温度が当該下限電圧を切り替えるための閾値温度より低い場合には、電圧制御部601は、予め設定されている下限電圧を下げてバッテリ30を制御する。
 ここで、バッテリ30の特性として、バッテリ30の温度が下限電圧を切り替えるための閾値温度より低い場合には、IV特性(電流電圧特性)が下に凸となる特性を示すため、バッテリ30の出力電圧を下げると、それ以上にバッテリ30の放電電流が高くなり、電圧と電流の積に相当する、バッテリ30の電力は、電圧を下げる前の電力より高くなる。一方、バッテリ30の温度が閾値温度よりも高い場合(例えば常温の状態)には、バッテリ30の出力電圧を下げることで、バッテリ30の電力が高くなるが、バッテリ30の温度が閾値温度より低い場合と比べて、電力の増加量は少ない。また、バッテリ30の安全を確保できる電圧範囲であっても、バッテリ30の電圧が低い状態で、バッテリ30が放電されると、電池の劣化が加速する。そのため、閾値温度には、バッテリ30の特性に応じて、電圧を低下させることにより電力の増加が見込める温度が予め設定される。これにより、バッテリ30の温度が閾値温度より高い場合には、電圧制御部601は下限電圧を下げないため、バッテリ30の寿命の短縮化を防ぎつつ、バッテリ30の温度が閾値温度より低い場合には、電圧制御部601が下限電圧を下げることにより、バッテリ30の電力を高めることができる。
 また電圧制御部601は、電圧センサ31の検出電圧と、バッテリ32から放電可能な電流とから、バッテリ30から瞬間的に出力可能な電力値(瞬時値)を演算し、当該演算により算出される電力値(瞬時値)とエンジン10を始動させるために必要な電力とを比較する。そして、演算された電力値(瞬時値)がエンジン10を始動させるために必要な電力より高い場合には、電圧制御部601はバッテリ30の電力をモータジェネレータ20に供給し、内燃機関始動部603は、クラッチ15を締結させて、エンジン10を始動させる。一方、演算された電力がエンジン10を始動させるために必要な電力より低い場合には、回転数設定部604が、電力値(瞬時値)がエンジン10を始動させるために必要な電力より高くなるようモータの回転数を下げた後に、内燃機関始動手段601は、クラッチ15を締結させて、エンジン10を始動させる。
 モータコントロールユニット80は、エンジン10を始動させる駆動周波数を設定して、インバータ35を制御する。そして、バッテリ30の検出電圧が下限電圧より高い場合には、電圧制御部601はバッテリ30の電力に制限をかけないため、設定された駆動周波数に応じて電力がバッテリ30から出力される。
 バッテリ30の電圧が下限電圧に達する前に、エンジン10が完爆された場合には、エンジン10の動力を利用したモータジェネレータ20の回生により、バッテリ30を充電することができるため、バッテリ30の電圧を下限電圧より高い状態を維持することができる。一方、エンジン10をクランキングしている時に、バッテリ30の電圧が下降し下限電圧に達した場合には、電圧制御部601は、バッテリ30からの出力電力に制限をかけて、バッテリ30の電圧が下限電圧より低くならないように制御する。この時、エンジン10は既にクランキングしているため、エンジン10を始動させために必要な電力より低い電力でも、エンジン10を引き続きクランキングさせることができる。
 ところで、マップを利用した電力制御によりエンジン10を始動させる場合について、上記の通り電力制御部602は、所定時間において、バッテリ30から出力可能な電力(数秒値)を演算している。そのため、瞬間的に出力可能な電力値(瞬時値)は必要電力を上回っているにも関わらず、電力値(数秒値)が必要電力を下回るがために、モータ目標回転数を必要以上に低下せざるを得なくなる恐れがあった。モータ目標回転数が低下すればするほど、エンジン10のクランキングから完爆するまでの時間が長くなりエンジン始動の確実性は低下しエンジン始動完了までの時間も長期化する。当然ながらエンジン始動完了までの時間が長期化すれば、電力制御部602の演算上、演算された電力値(数秒値)がエンジン10の完爆まで継続して出力されない場合がある。また、回転数設定部604によりエンジン10を始動させるための回転数が低い回転数に設定されている場合には、完爆までの燃料噴射の回数が多くなり、エンジン10を始動させる確実性が下がるため、完爆するまでの時間を把握すること自体が困難になる。そのため、エンジン10を始動させるために必要な電力の精度が悪くなる場合がある。
 また、電力制御部602の電力制御に使用される車両制御に使用されるセンサや統合コントロールユニット60等のCPUでは、必ずしもバッテリ30の状態を正確に推定することができないため、演算された電力と、バッテリ30の実際の出力可能な電力とが相違したり、バッテリ30の実際の出力可能期間が、演算された電力値の所定期間より長くなったりする可能性がある。そのため、バッテリ30の実際の出力電力に対して、演算された電力の精度が悪くなる。
 すなわち、電力制御によりエンジン10を始動させる場合には、必要以上にモータの回転数を低い回転数に設定したり、演算上はバッテリ30を始動できる場合でも実際にはエンジン10が始動していなかったりする可能性があった。
 本例は、上記の通り、電圧制御部601により制御されるバッテリ30の出力によって、エンジン10を始動させるため、バッテリ30の電圧が下限電圧に達するまで、バッテリ30の実際の出力可能な電力をモータジェネレータ20に供給し、エンジン10を始動させることができる。本例は、例えば運転手によるイグニッションスイッチのオンに基づきエンジン10を始動させる際に、電力制御部602によるバッテリ30の電力制御を禁止し、電圧制御部601のみによる電圧制御によって、バッテリの出力を制御し、エンジン10を始動させる。
 また、電圧制御によって、電力値(瞬時値)と必要電力との比較に基づき、回転数設定部604による回転数設定を実行させることにより、エンジン10の始動のためのモータジェネレータ20の回転数が必要以上に低く設定されることを抑制する。このように、電力値(瞬時値)を用いて回転数設定を行うと共に、上下限電圧の範囲内で出力を制御することによりエンジン始動の確実性を格段に向上させることが可能になる。
 次に、図5a及び図5bを用いて、本例のハイブリッド車両の制御装置の制御手順を説明する。図5a及び図5bは、本例のハイブリッド車両の制御装置の制御手順を示すフローチャートである。
 本例の制御装置のシステムが開始されると、ステップS1にて、運転者によりイグニションスイッチがオンにされ、統合コントロールユニット60は、エンジン10を始動させる始動信号を受信する。ステップS2にて、統合コントロールユニット60は、電圧制御部601により、バッテリ30の出力を制御する。ステップS3にて、電圧制御部601は、電圧センサ31を用いて、バッテリ30の開放電圧を検出し、所定の閾値電圧(Vx)と比較する。当該所定の閾値電圧(Vx)は、バッテリ30の保護のために予め設定される電圧である。バッテリ30の開放電圧が閾値電圧(Vx)より高い場合には、ステップS4に遷る。一方、バッテリ10の開放電圧が閾値電圧(Vx)より低い場合には、ステップS31にて、電圧制御部601は、エンジン10を始動させずに、図示しない警告灯を点灯し、乗員に対して警告を通知する。
 ステップS4にて、統合コントロールユニット60は、温度センサ32により検出されるバッテリ30の検出温度(T)と、予め設定されている閾値温度(T)とを比較する。検出温度(T)が閾値温度(T)以上である場合には、図5bに示す、ステップS41に遷る。一方、検出温度(T)が閾値温度(T)より低い場合には、ステップS5に遷る。
 まず、ステップS5以降の制御手順を説明する。ステップS5にて、統合コントロールユニット60は、予め設定されている下限電圧(V)を、当該下限電圧(V)より低い下限電圧(VL1)に設定する。なお、下限電圧(V)は、バッテリ30の温度が閾値温度(T)より高い、通常の温度状態において、バッテリ30を安全に使用できる下限の電圧値を示している。また下限電圧(VL1)は、バッテリ30の温度が下限電圧(T)より低い、低温状態において、バッテリ30を安全に使用できる下限の電圧値を示している。
 ステップS6にて、電圧制御部601は、エンジン10を始動させるために必要な電力をバッテリ30に供給し、内燃機関始動部603はエンジン10をクランキングする。ステップS7にて、統合コントロールユニット60は、エンジンコントロールユニット70から送信させる信号により、完爆を示す完爆フラグがオンになっているか否かを判定する。エンジンコントロールユニット70は、エンジン10の回転数から、エンジン10の状態を管理している。エンジン10の回転数が、完爆したと判定する所定の閾値回転数より高い場合には、エンジンコントロールユニット70は完爆フラグをオンにし、完爆したと判定する所定の閾値回転数より低い場合には、エンジンコントロールユニット70は完爆フラグをオフにする。
 完爆フラグがオフ状態である場合には、ステップS71にて、統合コントロールユニット60は、始動信号を受信してからの経過時間が所定時間を経過したか否かを判定する。所定時間を経過した(タイムアウト)場合には、本例の制御を終了する。これにより、バッテリ30の出力によりエンジンを完爆できない場合には、バッテリ30からの放電が禁止される。一方、所定期間を経過していない場合には、ステップS72に遷る。ステップS72にて、電圧制御部601は、バッテリ30の検出電圧と下限電圧(VL1)とを比較する。検出電圧が下限電圧(VL1)以上である場合には、電圧制御部601は現在の出力電力を継続してモータジェネレータ20に供給することで、引き続き、エンジン10をクランキングさせる。そしてステップS6に戻る。一方、検出電圧が下限電圧(VL1)より低い、又は、検出電圧が下降し下限電圧(VL1)に達した場合には、電圧制御部601は、バッテリ30の電力を下げて、バッテリ30の電圧を下限電圧(VL1)より高くになるように、バッテリ30を制御する。そしてステップS7に戻る。
 ステップS7にて完爆フラグがオンになると、ステップS8にて、統合コントロールユニット60は、電力制御部602により、バッテリ30の電力を制御する。これにより、車両走行中は、電力制御部602により制御されるため、車両挙動を安定させることができる。ステップS9にて、統合コントロールユニット60は、バッテリ30の検出電圧と、下限電圧(V)とを比較する。すなわち、バッテリ30の検出電圧が、ステップS5により下限電圧(VL1)に設定される前の下限電圧(V)より高くなるか否かを判定する。ステップS91にて、バッテリ30の検出電圧が下限電圧(V)より低い場合には、バッテリ30を充電し、ステップS8に戻る。バッテリ30の電圧が低い状態で、バッテリ30が長時間継続して使用されると、劣化が加速する。そのため、エンジン10が完爆した後は、エンジン10の動力を利用して、バッテリ30を充電し、バッテリ30の電圧を上昇させる。なお、バッテリ30の電圧は、バッテリ30にかかっている放電の負荷をなくすことで、下限電圧(V)より高くなる場合があるため、ステップS91の制御処理は必ずしも必要ではなく、バッテリ30に放電の負荷をかけないような制御を行ってもよい。バッテリ30の検出電圧が下限電圧(V)より高い場合には、統合コントロールユニット60は、下限電圧(VL1)を下限電圧(V)に戻し(ステップS10)、本例の制御を終了する。
 次に、ステップS4にて、検出温度(T)が閾値温度(T)以上である場合において、ステップS41以降の制御手順を、図5bを用いて、説明する。ステップS41にて、電圧制御部601は、エンジン10を始動させるために必要な電力と、バッテリ30の出力電力(瞬時値)とを比較する。バッテリ30の出力電力(瞬時値)が、当該必要な電力以上である場合には、ステップS43に遷る。一方、バッテリ30の出力電力(瞬時値)が当該必要な電力より低い場合には、ステップS42にて回転設定手段604は、エンジン10を始動させるためのモータジェネレータ20の回転数を低くする。これにより、エンジン10を始動させるために必要な電力が下がる。なお、回転設定手段604は、当該回転数を段階的に下げてもよく、回転設定手段604は当該必要な電力が出力電力になる回転数に下げてもよい。
 ステップS43にて、電圧制御部601は、エンジン10を始動させるために必要な電力をバッテリ30に供給し、内燃機関始動部603はエンジン10をクランキングする。ステップS44にて、統合コントロールユニット60は、完爆フラグがオンになっているか否かを判定する。完爆フラグがオフ状態である場合には、ステップS441にて、統合コントロールユニット60は、タイムアウトになったか否かを判定する。タイムアウトになった場合には、本例の制御を終了する。これにより、バッテリ30の出力によりエンジンを完爆できない場合には、バッテリ30からの放電が禁止される。タイムアウトになっていない場合には、ステップS442にて、電圧制御部601は、バッテリ30の検出電圧と下限電圧(V)とを比較する。検出電圧が下限電圧(V)以上である場合には、電圧制御部601は現在の出力電力を継続してモータジェネレータ20に供給することで、引き続き、エンジン10をクランキングさせる。そしてステップS44に戻る。一方、検出電圧が下限電圧(V)より低い、又は、検出電圧が下降し下限電圧(V)に達した場合には、電圧制御部601は、バッテリ30の電力を下げて(ステップS443)、バッテリ30の電圧を下限電圧(V)より高くになるようにし、バッテリ30を制御する。そしてステップS44に戻る。
 ステップS44にて完爆フラグがオンになると、ステップS45にて、統合コントロールユニット60は、電力制御部602により、バッテリ30の電力を制御し、本例の制御を終了する。
 上記のように、本例は、電圧制御部601により、電圧センサ31の検出電圧とバッテリ30の制限電圧との比較結果に応じて、バッテリ30の出力を制御し、電圧制御部601により制御されるバッテリ30の出力に応じて、インバータ35を制御しエンジン10を始動させる。これにより、安全な電圧範囲内でバッテリ30を制御して、エンジン10を始動させるので、バッテリ30の電圧の制限値まで電力を効率的に出力させることができ、その結果、エンジン10を始動するための、バッテリ30の使用条件の範囲を広げることができる。また、本例は、電力制御を外して、電圧制御とすることで、バッテリ30の有する全エネルギを用いて、エンジン10のクランキングすることが可能となりエンジン10の始動可能な条件を広げることができる。
 また本例は、エンジン10を始動させる時に、電圧制御部601によりバッテリ30の出力を制御し、電力制御部602によるバッテリ30の出力の制御することを禁止し、電力制御部602による電力制御を行わない。これにより、エンジン10を始動させる際に、バッテリ30が瞬間的に出力可能な電力値(瞬時値)を用いて回転数設定が可能となり、エンジン10を完爆させる確実性を高めることができる。また、エンジン10をクランキングさせてから完爆するまでの時間が長い場合にも、上下限の範囲内であればバッテリ30が実際に出力可能な電力を、完爆まで継続的に、供給することができる。
 また本例は、バッテリ30の検出電圧が下限電圧(V又はVL1)より低い場合には、バッテリ30の出力に制限をかける。これにより、バッテリ30の検出電圧が、さらに下降し、バッテリ30が過放電になることを防ぐことができる。
 また本例は、バッテリ30から出力される電力がエンジン10を始動させるために必要な電力より低い場合に、エンジン10を始動させるためのモータジェネレータ20の回転数を下げる。これにより、エンジン10を始動させるために必要な電力を下げることができ、エンジン10をクランキングさせることができる。
 また本例は、温度センサ32により検出されるバッテリ30の検出温度が閾値温度(T)より低い場合には、電圧制御部601により、下限電圧(V)を下限電圧(VL1)に設定する。これにより、バッテリ30が低温状態である場合には、下限電圧(V)を下げることで、バッテリ30の出力を高めることができる。その結果として、バッテリ30の使用条件の範囲を広げることができる。
 また本例は、下限電圧を下限電圧(VL1)に下げた後に、バッテリ30の電圧が下限電圧(V)より高い場合には、下限電圧(VL1)を下限電圧(V)に戻す。これにより、低電圧の領域で、バッテリ30が長時間使用されることを防ぐことができ、バッテリ30の保護を図ることができる。
 また本例は、エンジン10を始動させる始動信号を受信した場合に、電圧制御部601によりバッテリ30を制御し、エンジン10の完爆を示す信号を受信した場合に、電力制御部602によりバッテリ30を制御する。これにより、エンジン10を始動させる際に、バッテリ30の下限電圧まで電力を引き出すことができるため、バッテリ30の使用条件の範囲を広げることができる。また、エンジン10の完爆後には、エンジン10の動力によりバッテリ30の電圧を上げることができるため、電力制御の下でも、バッテリ30の電圧を安全電圧範囲に収めることができ、バッテリ30を保護しつつ、バッテリ30の寿命の延命を図ることができる。また車両の駆動を安定化させることができる。
 また本例はバッテリ30の出力によりエンジンを完爆できない場合には、バッテリ30からの放電が禁止される。これにより、バッテリ30の過放電を防ぐことができる。
 なお、本例において、エンジン10が完爆した後には、電力制御部602によりバッテリ30を制御するが、電圧制御部601による制御を併用させてもよい。また、本例は、運転手によりイグニッションスイッチがオンになり、エンジン10を始動させる始動信号を受信した場合に、電圧制御部601による電圧制御を行うが、車両走行中、EV走行モードからHEV走行モードに移行する際、又は、EV走行モードからエンジンのみの走行モードに移行する際のエンジン10を始動させる場合に、電圧制御部601による電圧制御を行ってもよい。また、例えば信号待ち等で車両が停車している状態から、エンジン10を始動させる場合に、電圧制御部601による電圧制御を行ってもよい。さらに、運転手によりイグニッションスイッチがオンになり、エンジン10を始動させる始動信号を受信した場合のみ、電圧制御部601による電圧制御を行ってもよい。
 また、本例において、エンジン10を始動させる始動信号を受信する前に、電力制御部602による電力制御を行っていた場合には、エンジン10を始動させる始動信号を受信した時に、当該電力制御から、電圧制御部601による電圧制御に切り換えればよい。
 また、電圧センサ32による電圧の検出について、バッテリ30に複数のセル電池が搭載されている場合には、モータコントロールユニット80は、セル毎の電圧と、当該複数のセル電池を含む電池パックトータルの電圧とをそれぞれ監視すればよい。この際、制限電圧は、各セル電池の電圧及び電池パックトータルの電圧、それぞれに設定すればよい。また、複数のセル電池の電圧及び電池パックトータルの電圧を管理する場合には、ステップS4にて、それぞれの下限電圧を下げてもよく、また、電圧が低くなっているセル電圧の下限電圧を下げてもよい。
 また本例の制御装置における制御手順について、必ずしも図5に示す手順にする必要はなく、各ステップを入れ替えてもよく、また一部のステップを省略してもよい。
 なお、ステップS71及びステップS441において、タイムアウトで終了した後に、何回もエンジン10の始動を行うと、バッテリ30が過放電になる可能性があるため、例えば、所定の回数、エンジン始動を試みてエンジンを始動しない場合
には、再始動を行わない制御を行ってもよい。また、バッテリ30の電圧が所定の電圧より低い場合には、再始動を行わない制御を行ってもよい。当該所定の電圧には、エンジン10を再始動させることで、バッテリ30に負荷がかかり、バッテリ30が過放電になることを示す電圧が設定されればよい。
 上記エンジン10が本発明に係る内燃機関に相当し、上記モータジェネレータ20が本発明に係る電動機に相当し、上記第1クラッチCL1が本発明に係るクラッチに相当し、上記電圧センサ31が本発明に係る電圧検出手段に相当し、上記電圧制御部601が本発明に係る電圧検出手段に相当し、上記電力制御部602が本発明に係る電力制御手段に相当し、上記内燃機関始動部603が本発明に係る内燃機関始動手段に相当し、上記回転数設定部604が本発明に係る回転数設定手段に相当し、上記温度センサ32が本発明に係る温度検出手段に相当し、下限電圧(V)が本発明に係る第1の下限電圧に相当し、下限電圧(VL1)が本発明に係る第2の下限電圧に相当する。
1…ハイブリッド車両
 10…エンジン
 15…第1クラッチ
 20…モータジェネレータ
 25…第2クラッチ
 30…バッテリ
 35…インバータ
 40…自動変速機
 60…統合コントロールユニット
  601…電圧制御部
  602…電力制御部
  603…内燃機関始動部
  604…回転数設定部
 70…エンジンコントロールユニット
 80…モータコントロールユニット
 90…トランスミッションコントロールユニット

Claims (8)

  1.  内燃機関と、前記内燃機関を始動する電動機と、前記電動機を制御するインバータと、前記内燃機関と前記電動機とを間の動力伝達を断接するクラッチと、前記電動機に電力を供給するバッテリとを備えたハイブリッド車両を制御する制御装置であって、
     前記バッテリの電圧を検出する電圧検出手段と、
     前記バッテリの制限電圧の範囲内で現時点で出力可能な第1電力値に応じて前記バッテリの出力を制御する電圧制御手段と、
     前記クラッチを締結させて、前記電圧制御手段により制御される前記バッテリの出力によって、前記インバータを制御して前記内燃機関を始動させる内燃機関始動手段と、
    を備えることを特徴とするハイブリッド車両の制御装置。
  2. 請求項1に記載のハイブリッド車両の制御装置において、
     前記バッテリの状態から現時点から所定時間安定して出力可能な前記バッテリの第2電力値を演算し、その演算結果に応じて、前記バッテリの出力を制御する電力制御手段をさらに備え、
    前記電圧制御手段は、
     前記内燃機関を始動させる時に、前記第1電力値に応じて、前記バッテリの出力を制御し、
    前記電力制御手段は、
     前記内燃機関を始動させる時に、前記第2電力値に応じて前記バッテリの出力の制御をすることを、禁止する
    ことを特徴とする請求項1記載のハイブリッド車両の制御装置。
  3. 請求項1又は2に記載のハイブリッド車両の制御装置において、
    前記内燃機関を始動させる前記電動機の回転数を設定する回転数設定手段をさらに備え、
    前記回転数設定手段は、前記第1電力値が前記内燃機関を始動させるために必要な必要電力値より低い場合に、前記回転数を下げる
    ことを特徴とするハイブリッド車両の制御装置。
  4. 請求項1~3のいずれか一項に記載のハイブリッド車両の制御装置において、
    前記電圧制御手段は、
     前記電圧検出手段の検出電圧が前記制限電圧である下限電圧より低い場合には、前記バッテリの出力に制限をかける
    ことを特徴とするハイブリッド車両の制御装置。
  5. 請求項1、3及び4のいずれか一項に記載のハイブリッド車両の制御装置において、
     前記バッテリの状態から前記バッテリの出力を演算し、その演算結果に応じて、前記バッテリの出力を制御する電力制御手段をさらに備え、
    前記電圧制御手段は、前記内燃機関を始動させる始動信号を受信した場合に、前記バッテリを制御し、
    前記電力制御手段は、前記内燃機関の完爆を示す信号を受信した場合に、前記バッテリを制御する
    ことを特徴とするハイブリッド車両の制御装置。
  6. 請求項1~5のいずれか一項に記載のハイブリッド車両の制御装置において、
    前記バッテリの温度を検出する温度検出手段をさらに備え、
    前記電圧制御手段は、
     前記温度検出手段により検出される前記バッテリの温度が所定の温度より低い場合には、前記制限電圧である第1の下限電圧から、前記第1の下限電圧より低い第2の下限電圧に設定する
    ことを特徴とするハイブリッド車両の制御装置。
  7. 請求項6に記載のハイブリッド車両の制御装置において、
    前記電圧制御手段は、前記第2の下限電圧に設定した後に、前記電圧検出手段の検出電圧が前記第1の下限電圧より高くなる場合には、前記第2の下限電圧から前記第1の下限電圧に設定する
    ことを特徴とするハイブリッド車両の制御装置。
  8. 請求項1~7のいずれか一項に記載のハイブリッド車両の制御装置において、
    前記電圧制御手段は、
     前記バッテリの出力により前記内燃機関を完爆できない場合には、前記バッテリからの放電を禁止する
    ことを特徴とするハイブリッド車両の制御装置。
PCT/JP2011/073391 2010-10-28 2011-10-12 ハイブリッド車両の制御装置 WO2012056881A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112013010301-9A BR112013010301B1 (pt) 2010-10-28 2011-10-12 sistema de controle de um veículo híbrido
EP11836020.5A EP2634053B1 (en) 2010-10-28 2011-10-12 Hybrid vehicle control device
CN201180052511.2A CN103189257B (zh) 2010-10-28 2011-10-12 混合动力车辆的控制装置
MX2013004809A MX2013004809A (es) 2010-10-28 2011-10-12 Dispositivo de control para un vehiculo hibrido.
KR1020137010795A KR101434813B1 (ko) 2010-10-28 2011-10-12 하이브리드 차량의 제어 장치
JP2012540759A JP5360306B2 (ja) 2010-10-28 2011-10-12 ハイブリッド車両の制御装置
US13/881,815 US8983697B2 (en) 2010-10-28 2011-10-12 Hybrid vehicle control device
RU2013124386/11A RU2535830C1 (ru) 2010-10-28 2011-10-12 Устройство управления для гибридного транспортного средства

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010241796 2010-10-28
JP2010-241796 2010-10-28

Publications (1)

Publication Number Publication Date
WO2012056881A1 true WO2012056881A1 (ja) 2012-05-03

Family

ID=45993606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073391 WO2012056881A1 (ja) 2010-10-28 2011-10-12 ハイブリッド車両の制御装置

Country Status (10)

Country Link
US (1) US8983697B2 (ja)
EP (1) EP2634053B1 (ja)
JP (1) JP5360306B2 (ja)
KR (1) KR101434813B1 (ja)
CN (1) CN103189257B (ja)
BR (1) BR112013010301B1 (ja)
MX (1) MX2013004809A (ja)
MY (1) MY173691A (ja)
RU (1) RU2535830C1 (ja)
WO (1) WO2012056881A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104097516A (zh) * 2013-04-11 2014-10-15 通用汽车环球科技运作有限责任公司 用于车辆电压稳定化的设备和方法
CN104228587A (zh) * 2013-06-21 2014-12-24 通用汽车环球科技运作有限责任公司 智能电力分配单元
RU2563442C1 (ru) * 2012-04-27 2015-09-20 Ниссан Мотор Ко., Лтд. Устройство управления транспортного средства
JP2017521311A (ja) * 2014-07-09 2017-08-03 ルノー エス.ア.エス. 機関自動始動中のステアリングコラムジャークを軽減するためのシステム
KR20190017326A (ko) * 2017-08-11 2019-02-20 현대자동차주식회사 배터리 관리 장치, 그를 가지는 차량 및 그 제어 방법
CN110446639A (zh) * 2017-09-29 2019-11-12 日立建机株式会社 作业车辆的电力再生系统
WO2022004680A1 (ja) * 2020-07-02 2022-01-06 三菱自動車工業株式会社 エンジン制御装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5360306B2 (ja) 2010-10-28 2013-12-04 日産自動車株式会社 ハイブリッド車両の制御装置
EP2645467A1 (en) * 2012-03-26 2013-10-02 Samsung SDI Co., Ltd. Battery pack charging system and method of controlling the same
US9260002B2 (en) * 2012-09-25 2016-02-16 Cummins Inc. Engine start systems and technique for hybrid electric vehicles
US9586576B2 (en) * 2013-01-22 2017-03-07 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle control device
JP6106265B2 (ja) * 2013-03-21 2017-03-29 ジヤトコ株式会社 車両制御装置および車両の制御方法
JP6308346B2 (ja) * 2013-05-31 2018-04-11 三菱自動車工業株式会社 車両の制御装置
GB2515083B (en) * 2013-06-13 2017-02-22 Dyson Technology Ltd Reducing the power consumption of a brushless motor
US9260105B2 (en) * 2013-08-05 2016-02-16 GM Global Technology Operations LLC System and method of power management for a hybrid vehicle
US9631595B2 (en) * 2013-09-26 2017-04-25 Ford Global Technologies, Llc Methods and systems for selective engine starting
US9296391B2 (en) * 2014-03-25 2016-03-29 Ford Global Technologies, Llc E-drive torque sensing vehicle state estimation methods for vehicle control
US9493090B2 (en) * 2014-08-14 2016-11-15 Fca Us Llc Dynamic battery system voltage control through mixed dynamic series and parallel cell connections
US9732719B2 (en) * 2014-10-31 2017-08-15 Ford Global Technologies, Llc Cold temperature engine start strategies
JP6281531B2 (ja) * 2015-07-10 2018-02-21 トヨタ自動車株式会社 動力伝達装置の制御装置
US9604527B2 (en) * 2015-07-14 2017-03-28 Saudi Arabian Oil Company Series-parallel electric hybrid powertrain with multi fuel capabilities
JP2017030509A (ja) * 2015-07-31 2017-02-09 トヨタ自動車株式会社 電源制御装置
CN105244975A (zh) * 2015-11-13 2016-01-13 环旭电子股份有限公司 车载启动电路的前端控制器及其工作方法
KR102472906B1 (ko) * 2015-11-25 2022-12-01 삼성에스디아이 주식회사 배터리 팩 및 이를 포함하는 전기 구동 차량
IT201600068348A1 (it) * 2016-07-01 2018-01-01 Octo Telematics Spa Procedimento per la determinazione dello stato di un veicolo mediante il rilevamento della tensione di batteria del veicolo.
JP2018086933A (ja) * 2016-11-29 2018-06-07 トヨタ自動車株式会社 ハイブリッド自動車
CN108466614B (zh) * 2017-02-23 2020-10-20 郑州宇通客车股份有限公司 一种混合动力客车发动机起动方法
CN109291913B (zh) * 2017-07-25 2022-06-07 宇通客车股份有限公司 一种混合动力汽车超速状态下的电压保护方法
JP6972923B2 (ja) * 2017-10-27 2021-11-24 いすゞ自動車株式会社 制御装置
WO2021011264A1 (en) * 2019-07-18 2021-01-21 Perumala Corporation Multimodal renewable energy
KR102411583B1 (ko) * 2021-03-29 2022-06-22 주식회사 현대케피코 마일드 하이브리드 시스템의 캠 센서 에러 시 시동방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062745A (ja) * 2006-09-06 2008-03-21 Nissan Motor Co Ltd ハイブリッド車のエンジン始動制御装置およびハイブリッド車のエンジン始動制御方法
JP2008273518A (ja) * 2004-09-09 2008-11-13 Toyota Motor Corp ハイブリッド自動車用電池制御装置,ハイブリッド自動車用電池制御方法及びハイブリッド自動車
JP2010183785A (ja) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd バッテリ充電制御装置及びバッテリ充電制御方法
JP2010218976A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp 駆動装置およびその異常判定方法並びに車両

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4308408B2 (ja) * 2000-04-28 2009-08-05 パナソニック株式会社 二次電池の入出力制御装置
JP4341611B2 (ja) * 2005-11-09 2009-10-07 日産自動車株式会社 ハイブリッド車両のエンジン再始動制御装置
JP4341610B2 (ja) * 2005-11-09 2009-10-07 日産自動車株式会社 ハイブリッド車両のエンジン再始動制御装置
JP4063310B1 (ja) * 2006-12-12 2008-03-19 トヨタ自動車株式会社 動力出力装置、それを備えたハイブリッド自動車、および動力出力装置の制御方法
JP5360306B2 (ja) 2010-10-28 2013-12-04 日産自動車株式会社 ハイブリッド車両の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273518A (ja) * 2004-09-09 2008-11-13 Toyota Motor Corp ハイブリッド自動車用電池制御装置,ハイブリッド自動車用電池制御方法及びハイブリッド自動車
JP2008062745A (ja) * 2006-09-06 2008-03-21 Nissan Motor Co Ltd ハイブリッド車のエンジン始動制御装置およびハイブリッド車のエンジン始動制御方法
JP2010183785A (ja) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd バッテリ充電制御装置及びバッテリ充電制御方法
JP2010218976A (ja) * 2009-03-18 2010-09-30 Toyota Motor Corp 駆動装置およびその異常判定方法並びに車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2634053A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2563442C1 (ru) * 2012-04-27 2015-09-20 Ниссан Мотор Ко., Лтд. Устройство управления транспортного средства
CN104097516A (zh) * 2013-04-11 2014-10-15 通用汽车环球科技运作有限责任公司 用于车辆电压稳定化的设备和方法
CN104097516B (zh) * 2013-04-11 2016-08-17 通用汽车环球科技运作有限责任公司 用于车辆电压稳定化的设备和方法
CN104228587A (zh) * 2013-06-21 2014-12-24 通用汽车环球科技运作有限责任公司 智能电力分配单元
JP2017521311A (ja) * 2014-07-09 2017-08-03 ルノー エス.ア.エス. 機関自動始動中のステアリングコラムジャークを軽減するためのシステム
KR20190017326A (ko) * 2017-08-11 2019-02-20 현대자동차주식회사 배터리 관리 장치, 그를 가지는 차량 및 그 제어 방법
KR102370145B1 (ko) 2017-08-11 2022-03-04 현대자동차주식회사 배터리 관리 장치, 그를 가지는 차량 및 그 제어 방법
CN110446639A (zh) * 2017-09-29 2019-11-12 日立建机株式会社 作业车辆的电力再生系统
WO2022004680A1 (ja) * 2020-07-02 2022-01-06 三菱自動車工業株式会社 エンジン制御装置

Also Published As

Publication number Publication date
RU2535830C1 (ru) 2014-12-20
CN103189257B (zh) 2016-04-13
RU2013124386A (ru) 2014-12-20
JP5360306B2 (ja) 2013-12-04
MX2013004809A (es) 2013-06-28
BR112013010301B1 (pt) 2020-10-13
MY173691A (en) 2020-02-17
EP2634053A1 (en) 2013-09-04
JPWO2012056881A1 (ja) 2014-03-20
EP2634053B1 (en) 2020-04-08
KR101434813B1 (ko) 2014-08-27
BR112013010301A2 (ja) 2018-07-24
US20130261865A1 (en) 2013-10-03
KR20130056911A (ko) 2013-05-30
US8983697B2 (en) 2015-03-17
CN103189257A (zh) 2013-07-03
EP2634053A4 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
JP5360306B2 (ja) ハイブリッド車両の制御装置
US8903585B2 (en) Control device and control method for hybrid vehicle
US8831830B2 (en) Vehicle controlling system
KR101836527B1 (ko) 하이브리드 차량의 전달토크 학습시스템 및 학습방법
US8538618B2 (en) Clutch control device of hybrid vehicle
WO2013051104A1 (ja) 充電制御装置および充電制御方法
JP2013252845A (ja) 親環境自動車のエンジンクラッチ伝達トルク学習装置および方法
JP2014034388A (ja) ハイブリッド電気自動車の出発制御装置及び方法
JP2011031659A (ja) ハイブリッド車両
WO2013094557A1 (ja) ハイブリッド車
US20130297132A1 (en) Vehicle and control method for vehicle
JP2024091888A (ja) アシスト制御装置
JP6492908B2 (ja) ハイブリッド車両の制御装置
KR101724465B1 (ko) 하이브리드 차량의 엔진 기동 제어 방법 및 장치
JP6582928B2 (ja) ハイブリッド車両の変速制御装置
JP2012091770A (ja) ハイブリッド車両のバッテリー保護方法およびその装置
JP7606290B2 (ja) 車両用制御装置
JP6354416B2 (ja) ハイブリッド車両の制御装置
JP5724484B2 (ja) 電気自動車
JP2017100473A (ja) ハイブリッド車両のモータアシスト制御装置
JP5699533B2 (ja) ハイブリッド車両の制御装置
JP6333533B2 (ja) ハイブリッド車両
JP7417208B1 (ja) トランスアクスル油温センサの故障判定装置
JP2020019457A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836020

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012540759

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137010795

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011836020

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/004809

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013124386

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13881815

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013010301

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013010301

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013010301

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130426