WO2012056073A1 - Device and method for generating autothermal hydrothermal flames - Google Patents
Device and method for generating autothermal hydrothermal flames Download PDFInfo
- Publication number
- WO2012056073A1 WO2012056073A1 PCT/ES2011/070727 ES2011070727W WO2012056073A1 WO 2012056073 A1 WO2012056073 A1 WO 2012056073A1 ES 2011070727 W ES2011070727 W ES 2011070727W WO 2012056073 A1 WO2012056073 A1 WO 2012056073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction chamber
- injector
- hydrothermal
- flames
- generating
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 95
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 54
- 150000003839 salts Chemical class 0.000 claims abstract description 27
- 239000012530 fluid Substances 0.000 claims abstract description 25
- 239000012809 cooling fluid Substances 0.000 claims abstract description 12
- 239000012267 brine Substances 0.000 claims abstract description 9
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims abstract description 9
- 239000007789 gas Substances 0.000 claims description 42
- 239000003153 chemical reaction reagent Substances 0.000 claims description 38
- 239000007800 oxidant agent Substances 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 19
- 238000002309 gasification Methods 0.000 claims description 9
- 239000003507 refrigerant Substances 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 8
- 239000002699 waste material Substances 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 4
- 239000005416 organic matter Substances 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 230000006378 damage Effects 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 22
- 239000000446 fuel Substances 0.000 abstract description 5
- 230000003647 oxidation Effects 0.000 description 21
- 230000001590 oxidative effect Effects 0.000 description 15
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000004088 simulation Methods 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000013019 agitation Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010815 organic waste Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- QLRRUWXMMVXORS-UHFFFAOYSA-N Augustine Natural products C12=CC=3OCOC=3C=C2CN2C3CC(OC)C4OC4C31CC2 QLRRUWXMMVXORS-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000012223 aqueous fraction Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002676 xenobiotic agent Substances 0.000 description 1
- 230000002034 xenobiotic effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/008—Processes carried out under supercritical conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/26—Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/06—Treatment of sludge; Devices therefor by oxidation
- C02F11/08—Wet air oxidation
- C02F11/086—Wet air oxidation in the supercritical state
Definitions
- the present invention relates to an apparatus and a method for the generation of autothermal hydrothermal flames.
- This device makes use of a process of oxidation of fuels and / or wastes, essentially organic, in water, above the critical point. Under these conditions, water has physical properties that confer characteristics of organic solvent.
- the apparatus may be used for the destruction of waste by oxidation in supercritical water, for the production of energy or for any other hydrothermal process that uses the hydrothermal flame as an energy source such as gasification produced in supercritical water or precipitation of materials on the hydrothermal flame.
- hydrothermal flames When oxidation of reagents occurs in supercritical water at temperatures above the reagent autoignition temperature, this oxidation occurs in the form of flames, known as hydrothermal flames. These flames were first described by Schilling and Franck in 1988. The high pressures allow the self-ignition temperatures of the compounds to be significantly reduced, in some cases up to 400 ° C, so this process takes place at temperatures lower than the Conventional combustion avoiding the formation of by-products such as NO x or dioxins. When oxidation in supercritical water occurs in a hydrothermal flame regime, contaminants can be completely eliminated in times of milliseconds [Augustine and Tester, 2009].
- Oxidation in supercritical water was patented by Modell in 1981, US 4,113,446, US 4,338,199 and US 4,543,190. These patents describe a complex system of oxidation of sludge and organic waste that operates at temperatures of 600 ° C in an oxidation chamber followed by a combustion ash separator and gas recirculation to the oxidation chamber.
- US Patent 4,338,199 of the year 1982 of MODAR already proposes the separation of inorganic solids in a cyclone that receives the effluent from the reactor.
- US 4,822,497 consisting of a large pressure vessel that provides a relatively stationary environment in which solid particles fall to the bottom of the vessel through which cold water is injected so that it remains below the supercritical temperature such that a small part of the water condenses and an accumulation of concentrated brine will be formed by dissolving the sedimented salts.
- the hot brine solution and Pressurized is removed through a valve at the bottom of the reactor vessel.
- a modification to this patent is the W09221621 of 1992, in which the cold water stream is introduced by sliding down the reactor wall and thus avoiding the deposition of the salts in the wall.
- Spanish patent ES2108627 de Cocero describes a reactor system consisting of a refrigerated housing containing a reaction chamber, which provides lower cost reactors because it is not necessary for its pressurized housing to support the oxidation environment and for being This housing at a lower temperature than the oxidation process. For this, said housing is cooled internally, thus requiring less thickness, by the system itself or by a fluid outside the process.
- agitation another way to perform oxidation in supercritical water is using agitation.
- oxidation reactor is the breathable wall developed by McGuinness, US 5,384,051, in 1996.
- the reactor consists of a permeable sheath that surrounds the reaction chamber and is located within the pressurized chamber.
- the cover insulates the pressure chamber from the high temperatures and oxidizing conditions in the reaction zone, reducing the cost of the pressure vessel.
- the organic residue is introduced through the central part of the reaction chamber and the mixture of oxidant and hot and pressurized water is introduced into the reaction zone through the permeable sheath.
- McGuiness proposes this same system to homogeneously distribute the oxidant in an oxidation with hydrothermal flame.
- the present invention consists of an apparatus capable of supporting stationary hydrothermal flames, comprising a tubular injector, a reaction chamber of a material capable of withstanding temperatures greater than 400 ° C opened by its lower part and contained in a pressure housing capable of withstanding high pressures, cooled by a flow of cold water or brine that is introduced through the upper part of the housing and enters the bottom of the reaction chamber.
- the invention also comprises the method that makes use of this apparatus for the generation of stationary hydrothermal flames.
- the apparatus for generating hydrothermal flames is characterized in that it comprises,
- An injector which will be introduced inside the device and through which the reagents and the oxidizer that will generate the hydrothermal flame will be injected. At the outlet of the injector there is a stationary hydrothermal flame that serves to preheat the cold reagents to the autoignition temperature.
- a reaction chamber open at the bottom for the entry of a cooling fluid. It will be constructed of a material resistant to reaction temperatures above 374 ° C and at pressures above 22.1 MPa. These are the temperature and pressure conditions at which the critical water point is reached.
- a pressure housing comprising at least one hole located at the bottom thereof, this bottom of the housing being preferably flat, for the effluent outlet generated inside the apparatus.
- the reaction chamber will be located inside the pressure housing with a space between them for the circulation of the cooling fluid.
- This housing will be constructed of a material resistant to pressures above 22.1 MPa.
- a refrigeration system comprising a refrigerant fluid that circulates through the space between the pressure housing and the reaction chamber and enters in the reaction chamber by the bottom opening of said reaction chamber.
- the cooling fluid which will have been heated to a temperature close to the critical temperature, will redissolve the salts generated inside the reaction chamber and that will have precipitated to the bottom of the pressure chamber and will drag them through the holes in the outlet located in said bottom of the pressure chamber outside the apparatus. This will prevent clogging of the outlets or the pipe that conducts this effluent and once it is out of the device.
- the cooling system fluid will be selected from cold water and brine.
- the injector can be inserted either from the top of the device or from the bottom.
- the invention provides that the effluent gases generated inside the reaction chamber leave the apparatus either from the top or bottom of said apparatus.
- the injector is introduced through the lower part of the apparatus and the effluent gases exit through the upper part of the apparatus, there are at least two holes in the bottom of the pressure housing one through which said injector is introduced and at least one other where the cooling fluid with the dissolved salts and / or a part of the effluent flows out, and also a hole in the upper part of the reaction chamber and the pressure housing for the effluent gas outlet that They are generated inside the device.
- the apparatus comprises at least one hole and a conduit located in the upper part of the apparatus, as described above, independent of the one used for the introduction of the injector for the effluent gas outlet.
- the apparatus when the gases leave the reaction chamber at the top, the apparatus comprises a filter, resistant to temperatures above 374 ° C, between the injector outlet and the effluent gas outlet. It is also provided that the apparatus has the bottom of the conical pressure housing to facilitate the deposition of the salts that are generated inside the reaction chamber.
- the injector may comprise fins or have a helical shape to increase the heat exchange surface between the reaction chamber and the injector.
- the injector may be tubular.
- the apparatus may have elements that modify the dynamics of the flow, such as, for example, baffle plates that are located inside the reaction chamber transversely thereto.
- phase ii) Dissolve in the refrigerant fluid the salts that precipitate at the bottom of the reaction chamber and release this fluid to the outside with the dissolved salts through the holes in the bottom of the pressure housing.
- a fluid for gasification of said fluid is injected together with the reagents and oxidizer under conditions in which the oxidant is in a lower proportion than the stoichiometric one.
- the procedure that makes use of the apparatus for processes of gasification of substances in supercritical water on the hydrothermal flame consists in introducing, together with the reagents and the oxidant, the material to be gasified, which could be the same reagents or other organic material. Preferably, it will be a material or fluid comprising organic substances.
- the reagents, oxidant and material to be gasified are injected onto the flame, these are suddenly heated so that the reagents oxidize and generate heat but the material to be gasified is transformed into mostly hydrogen and carbon dioxide gases, and to a lesser extent other gases like methane, carbon monoxide or others.
- this process of gasification on the hydrothermal flame it is important to work in an oxidant defect, so that part of the material and / or reagents is oxidized to generate the flame and the other part is gasified to provide combustible gases.
- the reaction chamber is intended to work at temperatures up to 800 ° C inside the reaction chamber.
- the apparatus is intended to work at temperatures above 374 ° C and at pressures above 22.1 MPa. It can also work at temperatures above 374 ° C and at pressures below 22.1 MPa.
- the pressure housing is expected to support pressures that will preferably be up to 30 MPa.
- the device is intended for the housing to withstand the pressure conditions that are generated due to the extreme conditions of the reactions that occur inside the reaction chamber.
- the reagents with the oxidizer that are injected in phase ii) may be at temperatures between 20 and 500 ° C and preferably at pressures greater than 22.1 MPa. They can also be injected at pressures below 22.1 MPa.
- the reagents and the oxidizer used in phase ii) are made of a combustible material as a reagent and hydrogen peroxide or oxygen as a oxidizer, the oxygen being able to be mixed with nitrogen in any proportion.
- the refrigerant fluid used in phase iii) is selected from cold water and brine.
- the main advantage of this design is that the same cooling fluid, water or brine, once the reaction chamber has cooled and at an elevated temperature close to the critical water enters through the bottom of the reaction chamber forming a liquid water reservoir in which the salts precipitated in the flame are redissolved and can leave the reaction chamber without causing plugging problems.
- the design of the device minimizes the cost of construction materials using the concept of a reaction chamber with a refrigerated wall pressure housing. This design will allow operating at high temperature in the reaction chamber, and using a refrigerated pressure housing to withstand the operating pressure, being able to build lower cost equipment.
- reagents with the oxidizer can be injected at temperatures between 20 ° C and 500 ° C and preferably at pressures greater than 22.1 MPa. Optionally they can also be injected at pressures below 22.1 MPa.
- the device can work with maximum temperatures of up to 800 ° C inside the reaction chamber.
- this apparatus will allow the realization of processes that have as a source of energy a hydrothermal flame, such as oxidation in supercritical water of sewage and sludge, processes of gasification in supercritical water, precipitation of particles by sudden heating of an aqueous stream in the hydrothermal flame, as well as any other process to generate high pressure steam or any other hydrothermal process that uses the flame as an energy source.
- a hydrothermal flame such as oxidation in supercritical water of sewage and sludge, processes of gasification in supercritical water, precipitation of particles by sudden heating of an aqueous stream in the hydrothermal flame, as well as any other process to generate high pressure steam or any other hydrothermal process that uses the flame as an energy source.
- Figure 1 Shows an embodiment of the configuration of the apparatus with the injector inserted through the lower part of the apparatus and the effluent gas outlet through the upper part thereof.
- Figure 2. Shows an embodiment of the configuration of the apparatus with the injector inserted through the lower part of the apparatus and the effluent gas outlet through the lower part thereof.
- Figure 3. It shows an embodiment of the configuration of the apparatus with the injector inserted through the upper part of the apparatus and the effluent gas outlet through the upper part thereof.
- Figure 4. It shows an embodiment of the configuration of the apparatus with the injector inserted through the upper part of the apparatus and the effluent gas outlet through the lower part thereof.
- Figure 5. Shows the scheme of the installation in which the tests of the device are carried out.
- Figure 6. Shows the experimental data obtained in an experience in which the injection temperature was reduced to 30 ° C.
- Figure 7.- It shows the experimental data obtained in an experience in which the cooling flow was modified to observe the temperature variation in the bottom of the housing.
- Figure 8.- Shows the temperature contour diagram in Kelvin degrees resulting from the simulation of the operation of the device with the configuration corresponding to the scheme in Figure 1.
- Figure 9. Shows the representation of the flow lines resulting from the operation simulation of the apparatus with the configuration corresponding to the scheme of Figure 1.
- Figure 10. Shows the diagram of contours of mass water fraction resulting from the simulation of operation of the apparatus with the configuration corresponding to the scheme of Figure 1, with different flow distributions between the outputs (7 and 11 in Figure 1) .
- the apparatus comprises a reaction chamber (1) limited by a wall or inner housing (2) of a material resistant to high temperatures and corrosion which in turn is contained in a pressure housing (3). Between the walls (4) of the pressure housing (3) and the reaction chamber (1) a flow of a pressurized refrigerant fluid (5) such as cold water or brine will circulate, which will keep the pressure housing (3) refrigerated. This fluid (5) enters the lower part of the reaction chamber (6), redisolving the salts that may have precipitated in the hydrothermal flame, and thus leaving the reaction chamber (1) without causing blockages.
- a pressurized refrigerant fluid (5) such as cold water or brine
- Figure 1 shows a first preferred embodiment of the invention.
- the injection of the reagents and oxidizer (8) will be produced by a tubular injector (9) inserted through a hole (13) made at the bottom (12) of the pressure housing (3), which conducts the reagents, through the opening (15) of the lower part of the reaction chamber (1), to the upper or middle part of the reaction chamber (1) of the apparatus.
- the salts dissolved in the reagents and the oxidizer that generate the hydrothermal flame when entering the reaction chamber (1) precipitate due to the supercritical conditions of the water and are collected by the water that cools the outer wall (5) and that it accumulates at the bottom (12) of the pressure housing (3) leaving the holes (7) at the bottom (12), thus preventing the formation of plugs in the outlet pipe of the apparatus.
- the effluent gases generated will leave the device through the hole in its upper part (11) of the chamber (1), which communicates with a conduit (14) of the housing (3), without mixing with the cooling water (5 ).
- This allows the gases to leave the appliance at a higher temperature (600-700 ° C) and free of salts, which could be expanded in a turbine for the generation of electricity or used to produce steam.
- the apparatus can be used to generate energy and for waste disposal in addition to other associated hydrothermal processes such as gasification or partial oxidation.
- Figure 2 shows another preferred embodiment of the invention identical to that of Figure 1 with the exception that the reaction chamber (1) is not open at its top, so there is no hole (11) for the exit of the effluent gases. Similarly there is no conduit (14) in the pressure housing (3) that communicates with the hole in the chamber (1) through which the gases exit. Due to this, the effluent gases will flow through the holes (7) in the bottom (12) of the housing pressure (3) mixing with the cooling fluid (5) in the lower area of the apparatus (6).
- Figure 3 shows another preferred embodiment.
- the injection of the reagents and the oxidizer (8) is carried out by means of an injector (9) inserted from the top through a hole
- the effluent gases will exit through the hole (11) of the chamber (1), which communicates with the conduit (14) of the housing, located at the top of the apparatus, since the diameter of the orifice (11 ) and the duct (14) is provided to be larger than the diameter of the injector (9) and said injector (9) is located concentrically with respect to the hole (11) and the duct (14).
- the effluent gases will not be mixed with the cooling water (5), but nevertheless the salts as in the first example would dissolve in the water accumulated at the bottom (12) of the pressure housing (3 ) so the gases would be free of salts.
- Figure 4 shows another preferred embodiment of the invention identical to that of Figure 3 with the exception that the injection of the reagents and the oxidizer (8) is carried out by means of an injector (9) inserted from the top through a hole (11), which communicates with a conduit (14) of the housing (3), located in the upper part of the apparatus made for this purpose, in this case leading the reagents to the lower and middle part of the reaction chamber .
- an injector 9
- a conduit (14) of the housing (3) located in the upper part of the apparatus made for this purpose, in this case leading the reagents to the lower and middle part of the reaction chamber .
- the effluent gases will flow out of the holes (7) at the bottom (12) of the pressure housing (3) mixing with the cooling water (5) in the lower area of the device (6).
- the installation of a filter of a high temperature resistant material is provided for the configuration of Figure 1 between the outlet of the injector (9) and the outlet orifice of the effluent gases (11) .
- the modification of the bottom of the pressure housing (3) is provided so that it is conical, thus facilitating the deposition of salts.
- variations in the design of the injector are provided such as: fins or a helical shape of the injector to increase the heat exchange surface between the reaction chamber (1) and the injector (9).
- Tests have been carried out with a prototype of the apparatus in a pilot plant with a design equivalent to that of Figure 5 for the oxidation of organic matter under supercritical conditions, at an operating pressure of up to 300 bars and with operating flows of up to 25 kg / h.
- the apparatus has operated satisfactorily, and by way of example the results corresponding to an experiment are presented in Table 1 and Figure 6.
- the effluent gas outlet must be mixed with the water (5) that cools the wall keeping it at a constant flow.
- the water (5) that enters pressurized to cool the appliance is supplied by a pump (14).
- the power supply (17) is supplied by a pump (20) that passes said power supply (17) through a heat exchanger (19) before introducing it into the apparatus.
- the oxidizer (18) note that the terms oxidant and oxidizer are equivalent, is supplied by a compressor (21) that passes it through a heat exchanger (19) as a prior step to introducing it into the apparatus. Since at the outlet (7) there is an effluent comprising gases, liquids and solid residues, a separator is used
- Table 1 shows the values corresponding to the operation variables and the most relevant results of the test performed.
- Figure 6 shows the temporal evolution of temperatures, pressure and elimination of organic carbon Total, TOC Elimination, obtained in an oxidation process where Tin is the feed temperature
- TI and T2 are the reaction temperatures of the reagents (17) with the oxidant (18) inside the reaction chamber (1), where TI is temperature measured at the injector outlet (9) and T2 taken in the reaction zone (10).
- P effluent is the pressure to which the effluent is subjected.
- FIG. 7 shows the temporal evolution of the main operating variables in another experiment in which the cooling flow (F REF) is modified so that the bottom temperature is reduced
- Table 2 shows the most relevant results of the experience reflected in Figure 7.
- Figure 8 shows the temperature contours inside the reaction chamber (1) under these conditions.
- the simulation indicates a temperature increase in the flow of the injector (9) due to heat transfer from the reaction chamber (1) and due to the heat itself released in the oxidation.
- a part of the effluent left by the injector (9) is cooled as it travels through the reaction chamber (1), while the cooling water (5) is heated, and finally mixed in the lower zone of the reaction chamber (6) leaving the reaction chamber (1) at a subcritical temperature (360 ° C, in this example) through the holes (7) located at the bottom (12) of the pressure housing ( 3) .
- Another part of the effluent, specifically the gases exits at 500 ° C through the hole in the upper part (11) of the device, allowing its energy use.
- Figure 10 shows the concentration contours (mass fraction) of cooling fluid, specifically water for this case, for different flow distributions between the upper and lower outlets (7 and 11) of the apparatus.
- the dark areas correspond to low concentrations of water, while the light areas indicate pure water.
- the level of liquid water accumulated in the lower part (6) of the reaction chamber (1) can be observed depending on the relationship between the gas flow in the upper outlet (11) and the lower outlet (7) .
- Figure 10a corresponds to a configuration in which the effluent gases leave the lower part of the apparatus, maintaining a low level of water in the lower area of the apparatus (6) for dissolving salts.
- Figures 10b, 10c and 10 correspond, respectively, to conditions in which a fraction of 50, 65 and 90% of the gas flow leaves the apparatus at the top (11). It is observed that the level of liquid water at the bottom of the reaction chamber increases to as the effluent flow leaving the chamber (1) through the upper outlet (11) increases. This increase in water level improves the dissolution of precipitated salts, however it reduces the temperature in the reaction chamber (1), being a parameter to be taken into account when deciding the outflow of gaseous effluents.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Device and method for generating autothermal hydrothermal flames. This device uses an oxidization process of essentially organic fuels and/or residues in water above the critical point. The device includes a reaction chamber (1), a pressure casing (3), between which a pressurized cooling fluid (5) such as cold water or brine flows, and an injector (9). This fluid (5) enters through the lower part of the reaction chamber (6), re-dissolving the salts that have precipitated on the base (12) of the casing (3). Since the chamber (1) has an opening (15) in its base, they leave the reaction chamber (1) without causing any blockages.
Description
APARATO Y PROCEDIMIENTO PARA LA GENERACIÓN DE LLAMAS HIDROTERMALES AUTOTÉRMICAS OBJETO DE LA INVENCIÓN APPARATUS AND PROCEDURE FOR THE GENERATION OF AUTOTHERMAL HYDROTERMAL FLAMES OBJECT OF THE INVENTION
La presente invención se refiere a un aparato y un procedimiento para la generación de llamas hidrotermales autotérmicas . Este aparato hace uso de un procedimiento de oxidación de combustibles y/o residuos, fundamentalmente orgánicos, en agua, por encima del punto critico. En estas condiciones, el agua presenta propiedades físicas que le confieren características de disolvente orgánico. The present invention relates to an apparatus and a method for the generation of autothermal hydrothermal flames. This device makes use of a process of oxidation of fuels and / or wastes, essentially organic, in water, above the critical point. Under these conditions, water has physical properties that confer characteristics of organic solvent.
El aparato podrá usarse para la destrucción de residuos por oxidación en agua supercrítica, para la producción de energía o para cualquier otro proceso hidrotermal que use la llama hidrotermal como fuente de energía como por ejemplo, la gasificación producida en agua supercrítica o la precipitación de materiales sobre la llama hidrotermal. The apparatus may be used for the destruction of waste by oxidation in supercritical water, for the production of energy or for any other hydrothermal process that uses the hydrothermal flame as an energy source such as gasification produced in supercritical water or precipitation of materials on the hydrothermal flame.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Cuando se produce la oxidación de unos reactivos en agua supercrítica a temperaturas por encima de la temperatura de autoignición de los reactivos esta oxidación se produce en forma de llamas, conocidas como llamas hidrotermales. Estas llamas fueron descritas por primera vez por Schilling y Franck en 1988. Las altas presiones permiten disminuir de forma significativa las temperaturas de autoignición de los compuestos, en algunos casos hasta 400°C, por lo que este proceso tiene lugar a temperaturas menores que la combustión convencional evitando la formación de subproductos como NOx o dioxinas. Cuando la oxidación en agua supercrítica se da en régimen de llama hidrotermal los contaminantes pueden ser totalmente eliminados en tiempos de milisegundos [Augustine y Tester, 2009] .
La principal aplicación de la oxidación en agua supercritica tanto en régimen de llama como sin llama es la destrucción de residuos, especialmente aquellos no biodegradables , recalcitrantes o xenobióticos . Las llamas hidrotermales además se han aplicado a la perforación de pozos profundos, según se describe en las patentes US 5.771.984 y WO 2010072407. When oxidation of reagents occurs in supercritical water at temperatures above the reagent autoignition temperature, this oxidation occurs in the form of flames, known as hydrothermal flames. These flames were first described by Schilling and Franck in 1988. The high pressures allow the self-ignition temperatures of the compounds to be significantly reduced, in some cases up to 400 ° C, so this process takes place at temperatures lower than the Conventional combustion avoiding the formation of by-products such as NO x or dioxins. When oxidation in supercritical water occurs in a hydrothermal flame regime, contaminants can be completely eliminated in times of milliseconds [Augustine and Tester, 2009]. The main application of oxidation in supercritical water both in flame and flameless regime is the destruction of waste, especially those that are not biodegradable, recalcitrant or xenobiotic. Hydrothermal flames have also been applied to the drilling of deep wells, as described in US Patents 5,771,984 and WO 2010072407.
La oxidación en agua supercritica fue patentada por Modell en 1981, US 4.113.446, US 4.338.199 y US 4.543.190. En estas patentes se describe un complejo sistema de oxidación de lodos y residuos orgánicos que opera a temperaturas de 600°C en una cámara de oxidación seguida de un separador de cenizas de la combustión y recirculación de gases a la cámara de oxidación. Oxidation in supercritical water was patented by Modell in 1981, US 4,113,446, US 4,338,199 and US 4,543,190. These patents describe a complex system of oxidation of sludge and organic waste that operates at temperatures of 600 ° C in an oxidation chamber followed by a combustion ash separator and gas recirculation to the oxidation chamber.
Pronto se pusieron de manifiesto los problemas de esta tecnología asociados a las duras condiciones de operación: corrosión, debido a la atmósfera oxidante y deposición de sales inorgánicas debido a la baja solubilidad que presentan en agua supercritica. La mayor parte de las patentes que siguieron a continuación fueron encaminadas a solucionar estos problemas. The problems of this technology associated with the harsh operating conditions were soon revealed: corrosion, due to the oxidizing atmosphere and deposition of inorganic salts due to the low solubility they present in supercritical water. Most of the patents that followed were aimed at solving these problems.
Respecto al problema de la separación de sales inorgánicas precipitadas en el efluente, la patente US 4.338.199 del año 1982 de MODAR ya propone la separación de los sólidos inorgánicos en un ciclón que recibe el efluente del reactor. En 1989 patentaron un reactor, US 4.822.497, consistente en un gran recipiente a presión que proporciona un ambiente relativamente estacionario en el cual las partículas sólidas caen al fondo del recipiente por el que se inyecta agua fría por lo que se mantiene por debajo de la temperatura supercritica de tal manera que una pequeña parte del agua condensa y se formará una acumulación de salmuera concentrada por disolución de las sales sedimentadas. La solución de salmuera caliente y
presurizada se retira a través de una válvula por el fondo del recipiente reactor. Una modificación a esta patente es la W09221621 de 1992, en la que la corriente de agua fria se introduce resbalando por la pared del reactor y de esta manera evitando la deposición de las sales en la pared. Regarding the problem of separating inorganic salts precipitated in the effluent, US Patent 4,338,199 of the year 1982 of MODAR already proposes the separation of inorganic solids in a cyclone that receives the effluent from the reactor. In 1989 they patented a reactor, US 4,822,497, consisting of a large pressure vessel that provides a relatively stationary environment in which solid particles fall to the bottom of the vessel through which cold water is injected so that it remains below the supercritical temperature such that a small part of the water condenses and an accumulation of concentrated brine will be formed by dissolving the sedimented salts. The hot brine solution and Pressurized is removed through a valve at the bottom of the reactor vessel. A modification to this patent is the W09221621 of 1992, in which the cold water stream is introduced by sliding down the reactor wall and thus avoiding the deposition of the salts in the wall.
En el año 1997, la patente española ES2108627 de Cocero describe un sistema de reactor consistente en una carcasa refrigerada conteniendo una cámara de reacción, que proporciona unos reactores de menor coste por no ser necesario que su carcasa presurizada soporte el ambiente de oxidación y por encontrarse esta carcasa a menor temperatura que la del proceso de oxidación. Para ello, dicha carcasa está refrigerada interiormente, requiriendo asi menor espesor, mediante la propia alimentación del sistema o mediante un fluido ajeno al proceso. Continuando con la idea de la pared refrigerada otra forma de realizar la oxidación en agua supercritica es utilizando agitación. In 1997, Spanish patent ES2108627 de Cocero describes a reactor system consisting of a refrigerated housing containing a reaction chamber, which provides lower cost reactors because it is not necessary for its pressurized housing to support the oxidation environment and for being This housing at a lower temperature than the oxidation process. For this, said housing is cooled internally, thus requiring less thickness, by the system itself or by a fluid outside the process. Continuing with the idea of the refrigerated wall another way to perform oxidation in supercritical water is using agitation.
En la patente ES 2219567 del 2004 publicada por la Comisaria de la Energía Atómica (Francia) , se describe como la mezcla del fluido agua/oxidante bajo presión y caliente, y el material a tratar en el tubo interno, puede realizarse mediante agitación mecánica. El flujo tendería a un régimen equivalente al de un reactor perfectamente agitado o se podría confinar la agitación a volúmenes sucesivos con el fin de mantener en el tubo interno un régimen de evacuación esencialmente cuasi-pistón de la mezcla fluida caliente de agua/oxidante a presión y del material tratado. El enfriamiento de la mezcla fluido/material oxidado en el tubo interno, se realiza con preferencia bajo agitación fuerte. In the patent ES 2219567 of 2004 published by the Commissioner of Atomic Energy (France), it is described as the mixture of the water / oxidant fluid under pressure and hot, and the material to be treated in the inner tube, can be carried out by mechanical agitation. The flow would tend to be at a rate equivalent to that of a perfectly agitated reactor or the agitation could be confined to successive volumes in order to maintain an essentially quasi-piston evacuation regime of the hot fluid mixture of water / pressure oxidizer in the inner tube and of the treated material. The cooling of the fluid mixture / oxidized material in the inner tube is preferably carried out under strong stirring.
Otro tipo de reactor de oxidación es el de pared transpirable desarrollado por McGuinness, US 5.384.051, en el año 1996. El reactor consta de una funda permeable que rodea a la cámara de reacción y que se encuentra dentro de
la cámara presurizada. La funda aisla la cámara a presión de las elevadas temperaturas y condiciones oxidantes que hay en la zona de reacción, disminuyendo el coste del recipiente a presión. El residuo orgánico se introduce por la parte central de la cámara de reacción y la mezcla de oxidante y agua caliente y presurizada se introduce en la zona de reacción a través de la funda permeable. En la patente US 5.558.783 de 1996, McGuiness propone este mismo sistema para distribuir de forma homogénea el oxidante en una oxidación con llama hidrotermal. Another type of oxidation reactor is the breathable wall developed by McGuinness, US 5,384,051, in 1996. The reactor consists of a permeable sheath that surrounds the reaction chamber and is located within the pressurized chamber. The cover insulates the pressure chamber from the high temperatures and oxidizing conditions in the reaction zone, reducing the cost of the pressure vessel. The organic residue is introduced through the central part of the reaction chamber and the mixture of oxidant and hot and pressurized water is introduced into the reaction zone through the permeable sheath. In US Patent 5,558,783 of 1996, McGuiness proposes this same system to homogeneously distribute the oxidant in an oxidation with hydrothermal flame.
Otra patente en la que se usa un elemento transpirable es la de Aerojet, US 5.387.398, del año 1995. Los residuos orgánicos se oxidan en agua supercritica en la zona de reacción en un tubo de reactor formado por "platelet", esto es una serie de placas microperforadas que forman conductos en la pared y crean caminos preferenciales haciendo la pared transpirable. El agua supercritica se inyecta dentro de la sección anular, tanto por el exterior de la sección anular como por la cámara central, a través de los conductos de la pared, formándose una película protectora de agua supercritica en la superficie que define la zona anular de reacción que mitiga los problemas de corrosión y deposición de sales. El agua a su vez también calienta la mezcla de residuo y oxidante hasta la temperatura de reacción. Another patent in which a breathable element is used is that of Aerojet, US 5,387,398, from 1995. Organic waste is oxidized in supercritical water in the reaction zone in a reactor tube formed by "platelet", that is a series of microperforated plates that form ducts in the wall and create preferential paths making the wall breathable. Supercritical water is injected into the annular section, both outside the annular section and through the central chamber, through the ducts of the wall, forming a protective film of supercritical water on the surface that defines the annular area of reaction that mitigates corrosion and salt deposition problems. The water in turn also heats the mixture of residue and oxidant to the reaction temperature.
Otra patente que busca proteger las paredes de la cámara hidrotermal del calor generado en la llama hidrotermal es la publicada como EP0612697, y US 5.437.798 de Sulzer en la que se describe un inyector refrigerado en su parte externa para evitar el contacto de la llama con las paredes de la cámara de reacción en 1994. Las patente US 5.804.066, EP0820423 (Al) y WO9729050 (Al) de Mueggenburg et al. publicadas en 1997 y 1998 describen un inyector para llamas hidrotermales en las que el
combustible, el agua, el residuo y el oxidante se inyectan de forma separada para evitar la oxidación a temperaturas demasiado altas. Another patent that seeks to protect the walls of the hydrothermal chamber from the heat generated in the hydrothermal flame is that published as EP0612697, and US 5,437,798 to Sulzer in which a cooled injector is described in its external part to avoid flame contact with the walls of the reaction chamber in 1994. US Patents 5,804,066, EP0820423 (Al) and WO9729050 (Al) of Mueggenburg et al. published in 1997 and 1998 describe an injector for hydrothermal flames in which the Fuel, water, waste and oxidant are injected separately to prevent oxidation at too high temperatures.
Para evitar el precalentamiento, en 1997 McBrayer patentó un reactor de recirculación donde los reactivos frios se mezclaban con los productos calientes por el efecto de la convección natural (W09746494, US 6001243 y US 6017460) . Continuando con la misma idea, en el mismo año las patentes US9705069 y WO 5.674.405 de MODAR muestra un reactor en que el residuo acuoso orgánico y el oxidante son introducidos en una pequeña cámara de reacción y permite mezclar la alimentación con los productos formados, permitiendo un reciclaje interno del calor. Esta retro- mezcla permite iniciar la reacción de la alimentación que está entrando a la vez disminuye la cantidad de sólidos formados en el reactor. To prevent preheating, in 1997 McBrayer patented a recirculation reactor where cold reagents were mixed with hot products by the effect of natural convection (W09746494, US 6001243 and US 6017460). Continuing with the same idea, in the same year patents US9705069 and WO 5,674,405 of MODAR show a reactor in which the organic aqueous residue and the oxidant are introduced in a small reaction chamber and allows mixing the feed with the products formed, allowing internal heat recycling. This back mixing allows to start the reaction of the feed that is entering while decreasing the amount of solids formed in the reactor.
Referencias : References :
- C. Augustine, J. W. Tester, Hydrothermal flames: From phenomenological experimental demonstrations to quantitative understanding, J. Supercrit. Fluids 47 (2009) 415-430 - C. Augustine, J. W. Tester, Hydrothermal flames: From phenomenological experimental demonstrations to quantitative understanding, J. Supercrit. Fluids 47 (2009) 415-430
- W. Schilling, E. U. Franck, Combustión and Diffusion Flames at High Pressures to 2000 bar, Ber. Bunsenges . Phys . Chem. 92 (1988) 631-636 - W. Schilling, E. U. Franck, Combustion and Diffusion Flames at High Pressures to 2000 bar, Ber. Bunsenges Phys. Chem. 92 (1988) 631-636
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Para lograr los objetivos y evitar los inconvenientes indicados anteriormente, la presente invención consiste en un aparato capaz de sustentar llamas hidrotermales estacionarias, que comprende un inyector tubular, una cámara de reacción de un material capaz de soportar temperaturas mayores de 400°C abierta por su parte inferior y contenida en una carcasa de presión capaz de soportar altas presiones, refrigerada por un flujo de agua fria o salmuera que se introduce por la parte superior de la
carcasa y entra por la parte inferior de la cámara de reacción. La invención también comprende el procedimiento que hace uso de este aparato para la generación de las llamas hidrotermales estacionarias. To achieve the objectives and avoid the drawbacks indicated above, the present invention consists of an apparatus capable of supporting stationary hydrothermal flames, comprising a tubular injector, a reaction chamber of a material capable of withstanding temperatures greater than 400 ° C opened by its lower part and contained in a pressure housing capable of withstanding high pressures, cooled by a flow of cold water or brine that is introduced through the upper part of the housing and enters the bottom of the reaction chamber. The invention also comprises the method that makes use of this apparatus for the generation of stationary hydrothermal flames.
Asi, el aparato para la generación de llamas hidrotermales, se caracteriza porque comprende, Thus, the apparatus for generating hydrothermal flames is characterized in that it comprises,
• Un inyector, que se introducirá en el interior del aparato y a través del cual se inyectarán los reactivos y el comburente que generarán la llama hidrotermal. A la salida del inyector se produce una llama hidrotermal estacionaria que sirve para precalentar los reactivos frios hasta la temperatura de autoignición . • An injector, which will be introduced inside the device and through which the reagents and the oxidizer that will generate the hydrothermal flame will be injected. At the outlet of the injector there is a stationary hydrothermal flame that serves to preheat the cold reagents to the autoignition temperature.
• Una cámara de reacción abierta en el fondo para la entrada de un fluido refrigerante. Estará construida en un material resistente a temperaturas de reacción por encima de 374°C y a presiones por encima de 22.1 MPa. Estas son las condiciones de temperatura y presión a las que se alcanza el punto critico del agua . • A reaction chamber open at the bottom for the entry of a cooling fluid. It will be constructed of a material resistant to reaction temperatures above 374 ° C and at pressures above 22.1 MPa. These are the temperature and pressure conditions at which the critical water point is reached.
• Una carcasa de presión que comprende al menos un orificio situado en el fondo de la misma, siendo este fondo de la carcasa preferentemente plano, para la salida del efluente que se genera en el interior del aparato. La cámara de reacción estará situada en el interior de la carcasa de presión habiendo un espacio entre ambas para la circulación del fluido refrigerante. Esta carcasa estará construida en un material resistente a presiones por encima de 22.1 MPa. • A pressure housing comprising at least one hole located at the bottom thereof, this bottom of the housing being preferably flat, for the effluent outlet generated inside the apparatus. The reaction chamber will be located inside the pressure housing with a space between them for the circulation of the cooling fluid. This housing will be constructed of a material resistant to pressures above 22.1 MPa.
• Un sistema de refrigeración que comprende un fluido refrigerante que circula por el espacio entre la carcasa de presión y la cámara de reacción y que entra
en la cámara de reacción por la abertura del fondo de dicha cámara de reacción. De este modo el fluido refrigerante, que se habrá calentado a una temperatura cercana a la critica, redisolverá las sales generadas en el interior de la cámara de reacción y que se habrán precipitado al fondo de la cámara de presión y las arrastrará por los orificios de salida situados en el citado fondo de la cámara de presión al exterior del aparato. Asi se evitará que se obstruyan las salidas o la tubería que conduzca este efluente ya una vez que esté fuera del aparato. El fluido del sistema de refrigeración estará seleccionado entre agua fría y salmuera . • A refrigeration system comprising a refrigerant fluid that circulates through the space between the pressure housing and the reaction chamber and enters in the reaction chamber by the bottom opening of said reaction chamber. In this way, the cooling fluid, which will have been heated to a temperature close to the critical temperature, will redissolve the salts generated inside the reaction chamber and that will have precipitated to the bottom of the pressure chamber and will drag them through the holes in the outlet located in said bottom of the pressure chamber outside the apparatus. This will prevent clogging of the outlets or the pipe that conducts this effluent and once it is out of the device. The cooling system fluid will be selected from cold water and brine.
El inyector se puede introducir o bien por la parte superior del aparato o bien por la parte inferior. Además, la invención prevé que los gases del efluente generados en el interior de la cámara de reacción salgan del aparato o bien por la parte superior o por la inferior del citado aparato . The injector can be inserted either from the top of the device or from the bottom. In addition, the invention provides that the effluent gases generated inside the reaction chamber leave the apparatus either from the top or bottom of said apparatus.
Para el caso en que el inyector se introduce por la parte inferior del aparato y los gases del efluente salen por la parte superior del mismo, se tienen al menos dos orificios en el fondo de la carcasa de presión uno por donde es introducido el citado inyector y al menos otro por donde sale el fluido refrigerante con las sales disueltas y/o una parte del efluente y, además un orificio en la parte superior de la cámara de reacción y de la carcasa de presión para la salida de los gases del efluente que se generan en el interior del aparato. In the case where the injector is introduced through the lower part of the apparatus and the effluent gases exit through the upper part of the apparatus, there are at least two holes in the bottom of the pressure housing one through which said injector is introduced and at least one other where the cooling fluid with the dissolved salts and / or a part of the effluent flows out, and also a hole in the upper part of the reaction chamber and the pressure housing for the effluent gas outlet that They are generated inside the device.
Para el caso en que el inyector se introduce por la parte inferior del aparato y los gases del efluente salen por la parte inferior del mismo, se tiene un orificio en el fondo de la carcasa de presión por donde es introducido el citado inyector hacia la cámara de reacción a través de la
abertura de la parte inferior de la cámara. Para la salida de los gases del efluente que se generan en el interior está previsto que se mezclen con el fluido de refrigeración y salgan por los orificios del fondo de la carcasa para la salida del fluido. In the case where the injector is introduced through the lower part of the device and the effluent gases leave through the lower part of the device, there is a hole at the bottom of the pressure housing where the said injector is inserted into the chamber of reaction through the opening of the bottom of the chamber. For the exit of the effluent gases that are generated inside it is provided that they mix with the cooling fluid and exit through the holes in the bottom of the housing for the exit of the fluid.
Para el caso en que el inyector se introduce por la parte superior del aparato y los gases del efluente salen por la parte superior del mismo, se tiene un orificio en la parte superior la cámara de reacción y un conducto en la carcasa de presión que conecta la cámara con el exterior y teniéndose que el diámetro del orificio por donde se introduce el inyector es mayor que el diámetro del inyector permitiendo la salida por el hueco que queda entre ambos, de los gases del efluente que se generan en el interior de la cámara de reacción. Opcionalmente el aparato comprende al menos un orificio y un conducto situados en la parte superior del aparato, como los descritos anteriormente, independientes del empleado para la introducción del inyector para la salida de los gases del efluente. In the case where the injector is introduced through the upper part of the apparatus and the effluent gases leave through the upper part of the apparatus, there is a hole in the upper part of the reaction chamber and a conduit in the pressure housing that connects the chamber with the outside and having the diameter of the hole through which the injector is introduced is greater than the diameter of the injector allowing the exit of the effluent gases generated inside the chamber through the gap between them of reaction. Optionally the apparatus comprises at least one hole and a conduit located in the upper part of the apparatus, as described above, independent of the one used for the introduction of the injector for the effluent gas outlet.
Para el caso en que el inyector se introduzca por la parte superior del aparato y los gases del efluente salgan por la parte inferior del mismo, se tiene un orificio en la parte superior de la carcasa de presión por donde es introducido el citado inyector. Para la salida de los gases del efluente que se generan en el interior del aparato está previsto que se mezclen con el fluido de refrigeración y salgan por los orificios del fondo de la carcasa para la salida del fluido. In the case where the injector is introduced through the upper part of the apparatus and the effluent gases leave through the lower part of the apparatus, there is a hole in the upper part of the pressure housing through which said injector is introduced. For the discharge of the effluent gases that are generated inside the apparatus it is provided that they are mixed with the cooling fluid and out through the holes in the bottom of the housing for the exit of the fluid.
Opcionalmente, cuando los gases abandonan la cámara de reacción por la parte superior, el aparato comprende un filtro, resistente a temperaturas superiores a 374°C, entre la salida del inyector y la salida de los gases del efluente .
También se prevé que el aparato tenga el fondo de la carcasa de presión de forma cónica para facilitar la deposición de las sales que se generan en el interior de la cámara de reacción. Optionally, when the gases leave the reaction chamber at the top, the apparatus comprises a filter, resistant to temperatures above 374 ° C, between the injector outlet and the effluent gas outlet. It is also provided that the apparatus has the bottom of the conical pressure housing to facilitate the deposition of the salts that are generated inside the reaction chamber.
Opcionalmente el inyector puede comprender aletas o tener una forma helicoidal para aumentar la superficie de intercambio de calor entre la cámara de reacción y los el inyector. El inyector puede ser de tipo tubular. Optionally the injector may comprise fins or have a helical shape to increase the heat exchange surface between the reaction chamber and the injector. The injector may be tubular.
Además el aparato puede tener elementos que modifiquen la dinámica del flujo, como por ejemplo, placas deflectoras que se sitúan en el interior de la cámara de reacción de forma transversal a la misma. In addition, the apparatus may have elements that modify the dynamics of the flow, such as, for example, baffle plates that are located inside the reaction chamber transversely thereto.
Por otro lado el procedimiento de generación de llamas hidrotermales que hace uso del aparato anteriormente descrito, comprende las siguientes fases: On the other hand, the process of generating hydrothermal flames that uses the apparatus described above, comprises the following phases:
i) Generar las condiciones de temperatura y presión a las que se alcanza la ignición de la materia orgánica, como combustibles y/o residuos en agua supercrítica, en el interior de la cámara de reacción. i) Generate the temperature and pressure conditions at which the ignition of organic matter, such as fuels and / or waste in supercritical water, is achieved inside the reaction chamber.
ii) Introducir a través del inyector unos reactivos y un comburente a temperatura por encima de la de autoignición de los reactivos, para la generación de la llama hidrotermal a la salida del inyector. iii) Introducir el fluido refrigerante presurizado por el hueco existente entre la carcasa de presión y la cámara de reacción para la refrigeración de la carcasa de presión. ii) Introduce reagents and a temperature oxidizer through the injector above the reagent self-ignition to generate the hydrothermal flame at the outlet of the injector. iii) Insert the pressurized refrigerant fluid through the gap between the pressure housing and the reaction chamber for cooling the pressure housing.
iv) Disolver en el fluido refrigerante las sales que se precipiten al fondo de la cámara de reacción y hacer salir al exterior este fluido con las sales disueltas a través de los orificios del fondo de la carcasa de presión.
Opcionalmente en la fase ii) se inyecta junto con los reactivos y comburente un fluido para la gasificación de dicho fluido en condiciones en las que el oxidante está en una proporción inferior a la estequiométrica . iv) Dissolve in the refrigerant fluid the salts that precipitate at the bottom of the reaction chamber and release this fluid to the outside with the dissolved salts through the holes in the bottom of the pressure housing. Optionally in phase ii) a fluid for gasification of said fluid is injected together with the reagents and oxidizer under conditions in which the oxidant is in a lower proportion than the stoichiometric one.
El procedimiento que hace uso del aparato para procesos de gasificación de sustancias en agua supercritica sobre la llama hidrotermal consiste en introducir junto a los reactivos y al oxidante el material a gasificar, que podrían ser los mismos reactivos u otro material orgánico. Preferentemente, será un material o fluido que comprenda sustancias orgánicas. Al inyectarse sobre la llama los reactivos, oxidante y material a gasificar, éstos se calientan súbitamente de manera que los reactivos se oxidan y general calor pero el material a gasificar se transforma en gases mayoritariamente hidrógeno y dióxido de carbono, y en menor proporción otros gases como metano, monóxido de carbono u otros. En este proceso de gasificación sobre la llama hidrotermal es importante trabajar en defecto de oxidante, para que así parte del material y/o reactivos se oxide para general la llama y la otra parte se gasifique para proporcionar gases combustibles. The procedure that makes use of the apparatus for processes of gasification of substances in supercritical water on the hydrothermal flame consists in introducing, together with the reagents and the oxidant, the material to be gasified, which could be the same reagents or other organic material. Preferably, it will be a material or fluid comprising organic substances. When the reagents, oxidant and material to be gasified are injected onto the flame, these are suddenly heated so that the reagents oxidize and generate heat but the material to be gasified is transformed into mostly hydrogen and carbon dioxide gases, and to a lesser extent other gases like methane, carbon monoxide or others. In this process of gasification on the hydrothermal flame it is important to work in an oxidant defect, so that part of the material and / or reagents is oxidized to generate the flame and the other part is gasified to provide combustible gases.
La cámara de reacción está prevista para trabajar a temperaturas de hasta 800°C en el interior de la cámara de reacción. Preferentemente, el aparato esta previsto para trabajar a temperaturas por encima de 374°C y a presiones por encima de 22.1 MPa. También puede trabajar a temperaturas por encima de 374°C y a presiones por debajo de 22.1 MPa. Además está previsto que la carcasa de presión soporte presiones que preferentemente serán de hasta 30 MPa. El aparato está previsto para que la carcasa soporte las condiciones de presión que se generen debido a las condiciones extremas de las reacciones que se den en el interior de la cámara de reacción.
Los reactivos con el comburente que se inyectan en la fase ii) , pueden estar a temperaturas de entre 20 y 500°C y preferentemente a presiones mayores de 22.1 MPa. También se pueden inyectar a presiones por debajo de 22.1 MPa. Opcionalmente los reactivos y el comburente empleados en la fase ii) son de un material combustible como reactivo y peróxido de hidrógeno u oxigeno como comburente, pudiendo estar mezclado el oxigeno con nitrógeno en cualquier proporción . The reaction chamber is intended to work at temperatures up to 800 ° C inside the reaction chamber. Preferably, the apparatus is intended to work at temperatures above 374 ° C and at pressures above 22.1 MPa. It can also work at temperatures above 374 ° C and at pressures below 22.1 MPa. In addition, the pressure housing is expected to support pressures that will preferably be up to 30 MPa. The device is intended for the housing to withstand the pressure conditions that are generated due to the extreme conditions of the reactions that occur inside the reaction chamber. The reagents with the oxidizer that are injected in phase ii) may be at temperatures between 20 and 500 ° C and preferably at pressures greater than 22.1 MPa. They can also be injected at pressures below 22.1 MPa. Optionally, the reagents and the oxidizer used in phase ii) are made of a combustible material as a reagent and hydrogen peroxide or oxygen as a oxidizer, the oxygen being able to be mixed with nitrogen in any proportion.
El fluido refrigerante empleado en la fase iii) está seleccionado entre agua fria y salmuera. The refrigerant fluid used in phase iii) is selected from cold water and brine.
Destacan las siguientes características de funcionamiento : The following operating characteristics stand out:
• Presenta la posibilidad de inyectar reactivos a temperatura ambiente sobre la llama, evitando el precalentamiento, siendo posible además la inyección de alimentaciones con alto contenido en sales minerales, sin que se produzca el taponamiento del equipo y sin que estas sales se acumulen en el interior del aparato. • It presents the possibility of injecting reagents at room temperature over the flame, avoiding preheating, and it is also possible to inject feeds with a high content of mineral salts, without clogging the equipment and without these salts accumulating inside of the device
• Produce un efluente a alta temperatura, de manera que se tiene un sistema de generación de energía eficaz y limpia a partir de combustibles o de residuos acuosos de alto poder calorífico basado en la formación de llamas hidrotermales. • Produces an effluent at high temperature, so that there is an efficient and clean energy generation system from fuels or high-calorie aqueous waste based on the formation of hydrothermal flames.
La principal ventaja de este diseño es que el mismo fluido refrigerante, agua o salmuera, una vez refrigerada la cámara de reacción y a una temperatura elevada cercana a la crítica del agua entra por la parte inferior de la cámara de reacción formando un depósito de agua líquida en el que las sales precipitadas en la llama se redisuelvan y puedan dejar la cámara de reacción sin originar problemas de taponamiento.
El diseño del aparato permite minimizar el coste de los materiales de construcción utilizando el concepto de cámara de reacción con carcasa de presión de pared refrigerada. Este diseño permitirá operar a elevada temperatura en la cámara de reacción, y utilizar una carcasa de presión refrigerada para soportar la presión de operación, pudiendo construir equipos de menor coste. The main advantage of this design is that the same cooling fluid, water or brine, once the reaction chamber has cooled and at an elevated temperature close to the critical water enters through the bottom of the reaction chamber forming a liquid water reservoir in which the salts precipitated in the flame are redissolved and can leave the reaction chamber without causing plugging problems. The design of the device minimizes the cost of construction materials using the concept of a reaction chamber with a refrigerated wall pressure housing. This design will allow operating at high temperature in the reaction chamber, and using a refrigerated pressure housing to withstand the operating pressure, being able to build lower cost equipment.
Respecto a las condiciones de operación, los reactivos con el comburente se pueden inyectar a temperaturas comprendidas entre 20 °C y 500°C y preferentemente a presiones mayores de 22.1 MPa. Opcionalmente también se pueden inyectar a presiones por debajo de 22.1 MPa. El aparato puede trabajar con temperaturas máximas de hasta 800°C en el interior de la cámara de reacción. Regarding the operating conditions, reagents with the oxidizer can be injected at temperatures between 20 ° C and 500 ° C and preferably at pressures greater than 22.1 MPa. Optionally they can also be injected at pressures below 22.1 MPa. The device can work with maximum temperatures of up to 800 ° C inside the reaction chamber.
Respecto a la aplicabilidad del aparato, este aparato permitirá la realización de procesos que tengan como fuente de energía una llama hidrotermal, como la oxidación en agua supercrítica de aguas residuales y fangos, procesos de gasificación en agua supercrítica, la precipitación de partículas por calentamiento súbito de una corriente acuosa en la llama hidrotermal, así como cualquier otro proceso para generar vapor a elevada presión o cualquier otro proceso hidrotermal que use la llama como fuente de energía . Regarding the applicability of the apparatus, this apparatus will allow the realization of processes that have as a source of energy a hydrothermal flame, such as oxidation in supercritical water of sewage and sludge, processes of gasification in supercritical water, precipitation of particles by sudden heating of an aqueous stream in the hydrothermal flame, as well as any other process to generate high pressure steam or any other hydrothermal process that uses the flame as an energy source.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1.- Muestra una realización de la configuración del aparato con el inyector introducido por la parte inferior del aparato y la salida de los gases del efluente por la parte superior del mismo. Figure 1.- Shows an embodiment of the configuration of the apparatus with the injector inserted through the lower part of the apparatus and the effluent gas outlet through the upper part thereof.
Figura 2.- Muestra una realización de la configuración del aparato con el inyector introducido por la parte inferior del aparato y la salida de los gases del efluente por la parte inferior del mismo.
Figura 3.- Muestra una realización de la configuración del aparato con el inyector introducido por la parte superior del aparato y la salida de los gases del efluente por la parte superior del mismo. Figure 2.- Shows an embodiment of the configuration of the apparatus with the injector inserted through the lower part of the apparatus and the effluent gas outlet through the lower part thereof. Figure 3.- It shows an embodiment of the configuration of the apparatus with the injector inserted through the upper part of the apparatus and the effluent gas outlet through the upper part thereof.
Figura 4.- Muestra una realización de la configuración del aparato con el inyector introducido por la parte superior del aparato y la salida de los gases del efluente por la parte inferior del mismo. Figure 4.- It shows an embodiment of the configuration of the apparatus with the injector inserted through the upper part of the apparatus and the effluent gas outlet through the lower part thereof.
Figura 5.- Muestra el esquema de la instalación en la que se realizan las pruebas del aparato. Figure 5.- Shows the scheme of the installation in which the tests of the device are carried out.
Figura 6.- Muestra los datos experimentales obtenidos en una experiencia en la que se redujo la temperatura de inyección hasta 30 °C. Figure 6.- Shows the experimental data obtained in an experience in which the injection temperature was reduced to 30 ° C.
Figura 7.- Muestra los datos experimentales obtenidos en una experiencia en la que el flujo de refrigeración fue modificado para observar la variación de temperatura en el fondo de la carcasa. Figure 7.- It shows the experimental data obtained in an experience in which the cooling flow was modified to observe the temperature variation in the bottom of the housing.
Figura 8.- Muestra el diagrama de contornos de temperatura en grados Kelvin resultante de la simulación de operación del aparato con la configuración correspondiente al esquema de la figura 1. Figure 8.- Shows the temperature contour diagram in Kelvin degrees resulting from the simulation of the operation of the device with the configuration corresponding to the scheme in Figure 1.
Figura 9.- Muestra la representación de las lineas de flujo resultantes de la simulación de operación del aparato con la configuración correspondiente al esquema de la figura 1. Figure 9.- Shows the representation of the flow lines resulting from the operation simulation of the apparatus with the configuration corresponding to the scheme of Figure 1.
Figura 10.- Muestra el diagrama de contornos de fracción másica de agua resultantes de la simulación de operación del aparato con la configuración correspondiente al esquema de la figura 1, con distintas distribuciones de flujo entre las salidas (7 y 11 en la figura 1) . Figure 10.- Shows the diagram of contours of mass water fraction resulting from the simulation of operation of the apparatus with the configuration corresponding to the scheme of Figure 1, with different flow distributions between the outputs (7 and 11 in Figure 1) .
DESCRIPCIÓN DE VARIOS EJEMPLOS DE REALIZACIÓN DE LA DESCRIPTION OF VARIOUS EXAMPLES OF REALIZATION OF THE
INVENCIÓN INVENTION
Seguidamente se realizan, con carácter ilustrativo y no limitativo, una descripción de varios ejemplos de
realización de la invención, haciendo referencia a la numeración adoptada en las figuras. Then, a description of several examples of embodiment of the invention, referring to the numbering adopted in the figures.
A continuación se mencionan los elementos que son comunes a todos los ejemplos de realización de la presente invención. El aparato comprende una cámara de reacción (1) limitada por una pared o carcasa interior (2) de un material resistente a las altas temperaturas y a la corrosión que a su vez está contenida en una carcasa de presión (3) . Entre las paredes (4) de la carcasa de presión (3) y la cámara de reacción (1) circulará un flujo de un fluido refrigerante presurizado (5) como agua fria o salmuera, que mantendrá refrigerada la carcasa de presión (3) . Este fluido (5) entra por la parte inferior de la cámara de reacción (6), redisolviendo las sales que hayan podido precipitar en la llama hidrotermal, y abandonando asi la cámara de reacción (1) sin producir taponamientos. Estas sales precipitan directamente en el interior de la cámara de reacción (1) y caen al fondo (12) de la carcasa (3), ya que la cámara (1) presenta una abertura (15) en su fondo, comunicando dicha cámara (1) con dicha carcasa (3) . Para inyectar la alimentación (17), es decir los reactivos y el comburente, en el interior de la cámara de reacción (1) se emplea un inyector (9) . The elements that are common to all embodiments of the present invention are mentioned below. The apparatus comprises a reaction chamber (1) limited by a wall or inner housing (2) of a material resistant to high temperatures and corrosion which in turn is contained in a pressure housing (3). Between the walls (4) of the pressure housing (3) and the reaction chamber (1) a flow of a pressurized refrigerant fluid (5) such as cold water or brine will circulate, which will keep the pressure housing (3) refrigerated. This fluid (5) enters the lower part of the reaction chamber (6), redisolving the salts that may have precipitated in the hydrothermal flame, and thus leaving the reaction chamber (1) without causing blockages. These salts precipitate directly inside the reaction chamber (1) and fall to the bottom (12) of the housing (3), since the chamber (1) has an opening (15) at its bottom, communicating said chamber ( 1) with said housing (3). To inject the feed (17), that is to say the reagents and the oxidizer, an injector (9) is used inside the reaction chamber (1).
Con el aparato de la presente invención, cuyas partes principales se describen en el párrafo anterior y son comunes para todas las diferentes disposiciones de la misma, si se varia la disposición de las entradas y salidas se pueden obtener distintas realizaciones del aparato. Los ejemplos de realización se describen a continuación. With the apparatus of the present invention, whose main parts are described in the previous paragraph and are common for all the different dispositions thereof, if the arrangement of the inputs and outputs is varied, different embodiments of the apparatus can be obtained. The embodiments are described below.
Ejemplo 1 Example 1
La figura 1 muestra una primera realización preferente de la invención. En esta configuración la inyección de los reactivos y comburente (8) se producirá mediante un inyector tubular (9) insertado por un orificio (13)
realizado en el fondo (12) de la carcasa de presión (3), que conduce los reactivos, a través de la abertura (15) de la parte inferior de la cámara de reacción (1), a la parte superior o media de la cámara de reacción (1) del aparato. Figure 1 shows a first preferred embodiment of the invention. In this configuration the injection of the reagents and oxidizer (8) will be produced by a tubular injector (9) inserted through a hole (13) made at the bottom (12) of the pressure housing (3), which conducts the reagents, through the opening (15) of the lower part of the reaction chamber (1), to the upper or middle part of the reaction chamber (1) of the apparatus.
Las sales disueltas en los reactivos y el comburente que generan la llama hidrotermal al entrar en la cámara de reacción (1), precipitan debido a las condiciones supercriticas del agua y son recogidas por el agua que refrigera la pared externa (5) y que se acumula en el fondo (12) de la carcasa de presión (3) saliendo por los orificios (7) del fondo (12) evitando de esta manera la formación de tapones en la tubería de salida del aparato. The salts dissolved in the reagents and the oxidizer that generate the hydrothermal flame when entering the reaction chamber (1), precipitate due to the supercritical conditions of the water and are collected by the water that cools the outer wall (5) and that it accumulates at the bottom (12) of the pressure housing (3) leaving the holes (7) at the bottom (12), thus preventing the formation of plugs in the outlet pipe of the apparatus.
Los gases del efluente generados saldrán del aparato por el orificio situado en su parte superior (11) de la cámara (1), que comunica con un conducto (14) de la carcasa (3) , sin mezclarse con el agua de refrigeración (5) . Esto permite que los gases abandonen el aparato a mayor temperatura (600-700° C) y libres de sales con lo que podrían expandirse en una turbina para la generación de electricidad o emplearse para producir vapor. The effluent gases generated will leave the device through the hole in its upper part (11) of the chamber (1), which communicates with a conduit (14) of the housing (3), without mixing with the cooling water (5 ). This allows the gases to leave the appliance at a higher temperature (600-700 ° C) and free of salts, which could be expanded in a turbine for the generation of electricity or used to produce steam.
El aparato puede utilizarse para generar energía y para la eliminación de residuos además de para otros procesos hidrotermales asociados como la gasificación o la oxidación parcial. The apparatus can be used to generate energy and for waste disposal in addition to other associated hydrothermal processes such as gasification or partial oxidation.
Ejemplo 2 Example 2
La figura 2 muestra otra realización preferente de la invención idéntica a la de la figura 1 con la excepción de que la cámara de reacción (1) no está abierta por su parte superior por lo que no existe un orificio (11) para la salida de los gases del efluente. De igual modo no existe un conducto (14) en la carcasa de presión (3) que comunique con el orificio de la cámara (1) a través del que salgan los gases. Debido a esto, los gases del efluente saldrán por los orificios (7) del fondo (12) de la carcasa de
presión (3) mezclándose con el fluido de refrigeración (5) en la zona inferior del aparato (6) . Figure 2 shows another preferred embodiment of the invention identical to that of Figure 1 with the exception that the reaction chamber (1) is not open at its top, so there is no hole (11) for the exit of the effluent gases. Similarly there is no conduit (14) in the pressure housing (3) that communicates with the hole in the chamber (1) through which the gases exit. Due to this, the effluent gases will flow through the holes (7) in the bottom (12) of the housing pressure (3) mixing with the cooling fluid (5) in the lower area of the apparatus (6).
Ejemplo 3 Example 3
La figura 3 muestra otra realización preferente. En esta realización la inyección de los reactivos y el comburente (8) se realiza mediante un inyector (9) insertado por la parte superior a través de un orificio Figure 3 shows another preferred embodiment. In this embodiment the injection of the reagents and the oxidizer (8) is carried out by means of an injector (9) inserted from the top through a hole
(11) situado en la parte superior del aparato realizado para tal efecto, conduciendo en este caso a los reactivos hacia la parte inferior y media de la cámara de reacción(11) located in the upper part of the apparatus made for this purpose, in this case leading the reagents to the lower and middle part of the reaction chamber
(1) . En esta realización, los gases del efluente saldrán por el orificio (11) de la cámara (1), que comunica con el conducto (14) de la carcasa, situado en la parte superior del aparato, ya que el diámetro del orificio (11) y el conducto (14) está previsto que sea mayor que el diámetro del inyector (9) y dicho inyector (9) está situado de forma concéntrica respecto al orificio (11) y al conducto (14) . De esta forma los gases del efluente no se mezclarán con el agua de refrigeración (5) , pero sin embargo las sales al igual que en el primer ejemplo se disolverían en el agua acumulada en el fondo (12) de la carcasa de presión (3) por lo que los gases saldrían libres de sales. (one) . In this embodiment, the effluent gases will exit through the hole (11) of the chamber (1), which communicates with the conduit (14) of the housing, located at the top of the apparatus, since the diameter of the orifice (11 ) and the duct (14) is provided to be larger than the diameter of the injector (9) and said injector (9) is located concentrically with respect to the hole (11) and the duct (14). In this way the effluent gases will not be mixed with the cooling water (5), but nevertheless the salts as in the first example would dissolve in the water accumulated at the bottom (12) of the pressure housing (3 ) so the gases would be free of salts.
Ejemplo 4 Example 4
La figura 4 muestra otra realización preferente de la invención idéntica a la de la figura 3 con la excepción de que la inyección de los reactivos y el comburente (8) se realiza mediante un inyector (9) insertado por la parte superior a través de un orificio (11), que comunica con un conducto (14) de la carcasa (3), situado en la parte superior del aparato realizado para tal efecto, conduciendo en este caso a los reactivos hacia la parte inferior y media de la cámara de reacción. Tras producirse la reacción, los gases del efluente saldrán por los orificios (7) del fondo (12) de la carcasa de presión (3) mezclándose
con el agua de refrigeración (5) en la zona inferior del aparato ( 6) . Figure 4 shows another preferred embodiment of the invention identical to that of Figure 3 with the exception that the injection of the reagents and the oxidizer (8) is carried out by means of an injector (9) inserted from the top through a hole (11), which communicates with a conduit (14) of the housing (3), located in the upper part of the apparatus made for this purpose, in this case leading the reagents to the lower and middle part of the reaction chamber . After the reaction occurs, the effluent gases will flow out of the holes (7) at the bottom (12) of the pressure housing (3) mixing with the cooling water (5) in the lower area of the device (6).
Ejemplo 5 Example 5
En otra realización preferente de la invención está prevista la instalación de un filtro de un material resistente a las altas temperaturas para la configuración de la figura 1 entre la salida del inyector (9) y el orificio de salida de los gases del efluente (11) . In another preferred embodiment of the invention, the installation of a filter of a high temperature resistant material is provided for the configuration of Figure 1 between the outlet of the injector (9) and the outlet orifice of the effluent gases (11) .
Ejemplo 6 Example 6
En otra realización preferente de la invención está prevista la modificación del fondo de la carcasa de presión (3) de manera que sea cónico, facilitando asi la deposición de sales. In another preferred embodiment of the invention, the modification of the bottom of the pressure housing (3) is provided so that it is conical, thus facilitating the deposition of salts.
Ejemplo 7 Example 7
En otras realizaciones están previstas variaciones en el diseño del inyector tales como: aletas o una forma helicoidal del inyector para aumentar la superficie de intercambio de calor entre la cámara de reacción (1) y el inyector ( 9) . In other embodiments, variations in the design of the injector are provided such as: fins or a helical shape of the injector to increase the heat exchange surface between the reaction chamber (1) and the injector (9).
Ejemplo 8 Example 8
Se han realizado pruebas con un prototipo del aparato en una planta piloto con un diseño equivalente al de la figura 5 para la oxidación de materia orgánica en condiciones supercríticas , a una presión de operación de hasta 300 bares y con flujos de operación de hasta 25 kg/h. El aparato ha operado satisfactoriamente, y a modo de ejemplo se presentan en la tabla 1 y figura 6 los resultados correspondientes a un experimento. Tests have been carried out with a prototype of the apparatus in a pilot plant with a design equivalent to that of Figure 5 for the oxidation of organic matter under supercritical conditions, at an operating pressure of up to 300 bars and with operating flows of up to 25 kg / h. The apparatus has operated satisfactorily, and by way of example the results corresponding to an experiment are presented in Table 1 and Figure 6.
Para todos los experimentos realizados, y que se exponen a continuación, se ha empleado agua mezclada con isopropanol como alimentación (17) y aire como comburente (18) . Para los casos concretos de las figuras 6 y 7 se ha empleado el aparato dispuesto con la configuración descrita en la figura 2.
Nótese que la alimentación comprende además de los reactivos, agua. En la presente memoria se ha empleado la misma referencia (17) para los reactivos que para la alimentación aunque siempre que se hable de alimentación se entenderá que se refiere a la mezcla de los citados reactivos con el agua. For all the experiments carried out, and which are set out below, water mixed with isopropanol has been used as feed (17) and air as oxidizer (18). For the specific cases of figures 6 and 7, the apparatus arranged with the configuration described in figure 2 has been used. Note that the feed also includes the reagents, water. The same reference (17) has been used herein for the reagents as for the feed although whenever it is spoken of feed it will be understood that it refers to the mixture of said reactants with the water.
Para el caso concreto del experimento cuyos resultados se muestran en la figura 6 y la tabla 1 se tiene que la salida de los gases del efluente se mezcla con el agua (5) que refrigera la pared manteniendo ésta a un flujo constante. El agua (5) que entra presurizada para refrigerar el aparato es suministrada por una bomba (14) . La alimentación (17) es suministrada por una bomba (20) que hace pasar dicha alimentación (17) por un intercambiador de calor (19) antes de introducirla en el aparato. El comburente (18), nótese que los términos oxidante y comburente son equivalentes, es suministrado por un compresor (21) que lo hace pasar por un intercambiador de calor (19) como paso previo a introducirlo en el aparato. Como a la salida (7) se tiene un efluente que comprende gases, líquidos y restos sólidos, se emplea un separador For the specific case of the experiment whose results are shown in Figure 6 and Table 1, the effluent gas outlet must be mixed with the water (5) that cools the wall keeping it at a constant flow. The water (5) that enters pressurized to cool the appliance is supplied by a pump (14). The power supply (17) is supplied by a pump (20) that passes said power supply (17) through a heat exchanger (19) before introducing it into the apparatus. The oxidizer (18), note that the terms oxidant and oxidizer are equivalent, is supplied by a compressor (21) that passes it through a heat exchanger (19) as a prior step to introducing it into the apparatus. Since at the outlet (7) there is an effluent comprising gases, liquids and solid residues, a separator is used
(22) para obtener por un lado los gases del efluente y por otro los líquidos y sólidos. Como paso previo al separador(22) to obtain effluent gases on the one hand and liquids and solids on the other. As a previous step to the separator
(22), el efluente pasa a través de un intercambiador de calor (19). (22), the effluent passes through a heat exchanger (19).
En la tabla 1 se encuentran los valores correspondientes a las variables de operación y los resultados más relevantes de la prueba realizada. Table 1 shows the values corresponding to the operation variables and the most relevant results of the test performed.
Tabla 1 Table 1
Flujo Flujo Flow Flow
Presión T inyección T injection pressure
Muestra entrada aire Sample air inlet
(Bar) (°C) (Bar) (° C)
(kg/h) (kg/h) (kg / h) (kg / h)
Muestra 1 13,29 213, 67 14, 93 29, 25
Muestra 2 13,29 213, 15 15, 00 28,84 Sample 1 13.29 213, 67 14, 93 29, 25 Sample 2 13.29 213, 15 15, 00 28.84
Muestra 3 13, 13 215, 08 14, 63 29,09 Sample 3 13, 13 215, 08 14, 63 29.09
Muestra 4 13, 13 210,44 15, 13 29, 10 Sample 4 13, 13 210.44 15, 13 29, 10
Muestra 5 13, 13 213, 19 15,31 29, 61 Sample 5 13, 13 213, 19 15.31 29, 61
Muestra 6 13, 13 212, 59 15, 37 29,71 Sample 6 13, 13 212, 59 15, 37 29.71
Nótese que la tabla se ha divido en dos partes por el tamaño de la misma por lo que los datos representados se corresponden a las mismas 6 muestras. Note that the table has been divided into two parts by its size, so the data represented corresponds to the same 6 samples.
Se observa que es posible mantener el aparato funcionando con temperaturas de inyección de hasta 30 °C logrando una total eliminación de la materia orgánica presente en la alimentación (17) . It is observed that it is possible to keep the apparatus running with injection temperatures of up to 30 ° C, achieving a total elimination of the organic matter present in the feed (17).
En la figura 6 se muestra la evolución temporal de las temperaturas, presión y eliminación de carbono orgánico
total, Eliminación TOC, obtenidas en un proceso de oxidación donde Tin es la temperatura de la alimentaciónFigure 6 shows the temporal evolution of temperatures, pressure and elimination of organic carbon Total, TOC Elimination, obtained in an oxidation process where Tin is the feed temperature
(17) a la entrada del aparato (8) y TI y T2 son las temperatura de la reacción de los reactivos (17) con el oxidante (18) en el interior de la cámara de reacción (1), siendo TI temperatura medida a la salida del inyector (9) y T2 tomada en la zona de reacción (10) . P efluente es la presión a la que se somete el efluente. (17) at the inlet of the apparatus (8) and TI and T2 are the reaction temperatures of the reagents (17) with the oxidant (18) inside the reaction chamber (1), where TI is temperature measured at the injector outlet (9) and T2 taken in the reaction zone (10). P effluent is the pressure to which the effluent is subjected.
En la figura 7 se muestra la evolución temporal de las principales variables de operación en otro experimento en el que se va modificando el flujo de refrigeración (F REF) de manera que se logra disminuir la temperatura del fondo Figure 7 shows the temporal evolution of the main operating variables in another experiment in which the cooling flow (F REF) is modified so that the bottom temperature is reduced
(T FONDO) del aparato pero manteniendo la llama hidrotermal en la zona de reacción (10), temperaturas de 600-700°C en el interior del aparato, demostrando que es posible disponer dentro del aparato una cierta altura de liquido a una temperatura por debajo de la temperatura critica del agua de manera que las sales se disuelvan en ella a la vez que se genera la llama hidrotermal en la parte superior de la cámara de reacción (1) . (T BACKGROUND) of the apparatus but maintaining the hydrothermal flame in the reaction zone (10), temperatures of 600-700 ° C inside the apparatus, demonstrating that it is possible to dispose within the apparatus a certain height of liquid at a temperature by below the critical temperature of the water so that the salts dissolve in it while the hydrothermal flame is generated in the upper part of the reaction chamber (1).
En la tabla 2 se recogen los resultados más relevantes de la experiencia reflejada en la figura 7. Table 2 shows the most relevant results of the experience reflected in Figure 7.
Tabla 2 Table 2
T T
Flujo Flujo de Flow Flow of
Flujo T fondo alimentarefrigeraPresión Flow T bottom feed cooler Pressure
aire Inyección del ción ción (Bar) air Injection of the tion (Bar)
(kg/h) (°C) aparato (kg/h) (kg/h) (kg / h) (° C) device (kg / h) (kg / h)
(°C) (° C)
23,7 3, 8 219, 6 23, 8 214, 8 458,5 23.7 3, 8 219, 6 23, 8 214, 8 458.5
23, 6 3, 8 219, 5 23, 8 215,4 457, 1 23, 6 3, 8 219, 5 23, 8 215.4 457, 1
23, 6 7,5 226, 3 23, 8 213,4 419, 7 23, 6 7.5 226, 3 23, 8 213.4 419, 7
23, 6 7,5 225,7 23, 8 213,3 419, 0
3, 6 12, 0 226, 0 23, 9 209, 6 392, 0 3, 6 12, 0 226, 5 23, 9 209, 4 391, 0 3, 6 16, 5 229, 7 23, 9 207,0 373, 7 3, 6 16, 5 230, 6 24,0 207,2 373, 4 3, 6 21,0 228,4 23, 8 206, 7 361, 9 3, 6 21,0 228,4 23,7 207, 1 361, 4 3, 6 25,3 233, 7 206, 2 348, 5 23, 6 7.5 225.7 23, 8 213.3 419, 0 3, 6 12, 0 226, 0 23, 9 209, 6 392, 0 3, 6 12, 0 226, 5 23, 9 209, 4 391, 0 3, 6 16, 5 229, 7 23, 9 207, 0 373, 7 3, 6 16, 5 230, 6 24.0 207.2 373, 4 3, 6 21.0 228.4 23, 8 206, 7 361, 9 3, 6 21.0 228.4 23 , 7 207, 1 361, 4 3, 6 25.3 233, 7 206, 2 348, 5
23, 6 23, 6
3, 6 25,3 234, 5 23, 8 206, 0 349, 2 3, 6 29, 9 222,5 24,4 205, 0 338, 3 3, 6 29, 9 222,4 24,5 204, 9 338, 6 3, 1 34, 4 236, 6 24, 1 202, 1 321, 7 3, 1 34, 4 236, 4 24,3 203,4 319, 9 3, 6 25.3 234, 5 23, 8 206, 0 349, 2 3, 6 29, 9 222.5 24.4 205, 0 338, 3 3, 6 29, 9 222.4 24.5 204, 9 338, 6 3, 1 34, 4 236, 6 24, 1 202, 1 321, 7 3, 1 34, 4 236, 4 24.3 203.4 319, 9
Flujo TOC AlimenTOC Conversión tiempo de alimentación tación Salida TOC residencia (kg/h) (ppm) (ppm) (%) (s) TOC flow AlimenTOC Conversion feed time tación Output TOC residence (kg / h) (ppm) (ppm) (%) (s)
23,7 54000 4,2 99, 99 16, 7 23.7 54000 4.2 99, 99 16, 7
23, 6 54000 3,2 99, 99 16, 723, 6 54000 3.2 99, 99 16, 7
23, 6 54000 4,4 99, 99 16, 823, 6 54000 4.4 99, 99 16, 8
23, 6 54000 4,2 99, 99 16, 923, 6 54000 4.2 99, 99 16, 9
23, 6 54000 5,2 99, 99 16, 923, 6 54000 5.2 99, 99 16, 9
23, 6 54000 5,2 99, 99 16, 923, 6 54000 5.2 99, 99 16, 9
23, 6 54000 6, 8 99, 98 17,023, 6 54000 6, 8 99, 98 17.0
23, 6 54000 7,4 99, 98 17,023, 6 54000 7.4 99, 98 17.0
23, 6 54000 9, 0 99, 98 17,223, 6 54000 9, 0 99, 98 17.2
23, 6 54000 8,7 99, 98 17,2
23, 6 54000 11,3 99, 98 23, 6 54000 8.7 99, 98 17.2 23, 6 54000 11.3 99, 98
17,3 17.3
23, 6 54000 11,4 99, 98 17,3 23, 6 54000 11.4 99, 98 17.3
23, 6 54000 26, 1 99, 96 17,5 23, 6 54000 26, 1 99, 96 17.5
23, 6 54000 29, 0 99, 95 17,4 23, 6 54000 29, 0 99, 95 17.4
23, 1 54000 26, 3 99, 95 17, 9 23, 1 54000 26, 3 99, 95 17, 9
23, 1 54000 27,3 99, 95 17, 9 23, 1 54000 27.3 99, 95 17, 9
Nótese que la tabla se ha divido en dos partes por el tamaño de la misma, por lo que los datos representados se corresponden a los mismos flujos de refrigeración. Note that the table has been divided into two parts by its size, so the data represented correspond to the same cooling flows.
En otro ejemplo de realización, para la configuración correspondiente a la figura 1, se han llevado a cabo simulaciones numéricas para estudiar el posible comportamiento del aparato ante diferentes condiciones de operación. Los resultados de estas simulaciones se muestran en las figuras 8 a 10. La alimentación (15), que comprende la mezcla del comburente (18) con los reactivos (17), considerada en la simulación es una corriente de 22 kg/h de isopropanol en agua, a una concentración del 8% en peso, que entra a la cámara de reacción (1) a una temperatura de 360°C y presión de 23 MPa. El oxidante (16) es aire estequiométrico y el flujo de agua de refrigeración (5) es también de 22 kg/h. In another embodiment, for the configuration corresponding to Figure 1, numerical simulations have been carried out to study the possible behavior of the apparatus under different operating conditions. The results of these simulations are shown in Figures 8 to 10. The feed (15), which comprises the mixture of the oxidizer (18) with the reagents (17), considered in the simulation is a current of 22 kg / h of isopropanol in water, at a concentration of 8% by weight, which enters the reaction chamber (1) at a temperature of 360 ° C and a pressure of 23 MPa. The oxidant (16) is stoichiometric air and the cooling water flow (5) is also 22 kg / h.
En la figura 8 se muestran los contornos de temperatura en el interior de la cámara de reacción (1) en estas condiciones. La simulación indica un aumento de temperatura en el flujo del inyector (9) debido a la transferencia de calor desde la cámara de reacción (1) y debido al propio calor liberado en la oxidación. Una parte del efluente que deja el inyector (9) se enfria al recorrer la cámara de reacción (1), mientras el agua de refrigeración (5) se calienta, y al final se mezclan en la
zona inferior de la cámara de reacción (6) abandonando la cámara de reacción (1) a una temperatura subcritica (360°C, en este ejemplo) por los orificios (7) situados en el fondo (12) de la carcasa de presión (3) . Otra parte del efluente, concretamente los gases, sale a 500°C por el orificio de la parte superior (11) del aparato, permitiendo su aprovechamiento energético. Figure 8 shows the temperature contours inside the reaction chamber (1) under these conditions. The simulation indicates a temperature increase in the flow of the injector (9) due to heat transfer from the reaction chamber (1) and due to the heat itself released in the oxidation. A part of the effluent left by the injector (9) is cooled as it travels through the reaction chamber (1), while the cooling water (5) is heated, and finally mixed in the lower zone of the reaction chamber (6) leaving the reaction chamber (1) at a subcritical temperature (360 ° C, in this example) through the holes (7) located at the bottom (12) of the pressure housing ( 3) . Another part of the effluent, specifically the gases, exits at 500 ° C through the hole in the upper part (11) of the device, allowing its energy use.
En la figura 9 se muestran las lineas de flujo dentro de la cámara de reacción (1) . Estas lineas apuntan a zonas de turbulencia, especialmente en la zona de salida de los reactivos por el inyector (9), que son beneficiosas porque contribuyen en el precalentamiento "in situ" de los reactivos cuando su inyección se hace a temperaturas subcriticas, estabilizando la región de la llama hidrotermal (10) . The flow lines within the reaction chamber (1) are shown in Figure 9. These lines point to areas of turbulence, especially in the reagent exit zone by the injector (9), which are beneficial because they contribute to the "in situ" preheating of the reagents when their injection is made at subcritical temperatures, stabilizing the Hydrothermal flame region (10).
En la figura 10 se muestran los contornos de concentración (fracción másica) de fluido refrigerante, concretamente agua para este caso, para diferentes distribuciones de flujo entre las salidas superior e inferior (7 y 11) del aparato. En los diagramas, las zonas oscuras corresponden a bajas concentraciones de agua, mientras las zonas claras indican agua pura. Se puede observar el nivel de agua liquida acumulada en la parte inferior (6) de la cámara de reacción (1) en función de la relación entre el flujo de gases en la salida superior, (11) y en la salida inferior (7) . La figura 10a corresponde a una configuración en la que los gases del efluente salen por la parte inferior del aparato, manteniendo un bajo nivel de agua en la zona inferior del aparato (6) para disolución de sales. Las figuras 10b, 10c y lOd corresponden, respectivamente, a condiciones en que una fracción de 50, 65 y 90% del flujo de gases deja el aparato por la parte superior (11) . Se observa que el nivel de agua liquida en el fondo de la cámara de reacción aumenta a
medida que aumenta el flujo de efluente que abandona la cámara (1) por la salida superior (11) . Éste aumento de nivel de agua mejora la disolución de sales precipitadas, sin embargo reduce la temperatura en la cámara de reacción (1), siendo un parámetro a tener en cuenta al decidir el flujo de salida de efluentes gaseosos.
Figure 10 shows the concentration contours (mass fraction) of cooling fluid, specifically water for this case, for different flow distributions between the upper and lower outlets (7 and 11) of the apparatus. In the diagrams, the dark areas correspond to low concentrations of water, while the light areas indicate pure water. The level of liquid water accumulated in the lower part (6) of the reaction chamber (1) can be observed depending on the relationship between the gas flow in the upper outlet (11) and the lower outlet (7) . Figure 10a corresponds to a configuration in which the effluent gases leave the lower part of the apparatus, maintaining a low level of water in the lower area of the apparatus (6) for dissolving salts. Figures 10b, 10c and 10 correspond, respectively, to conditions in which a fraction of 50, 65 and 90% of the gas flow leaves the apparatus at the top (11). It is observed that the level of liquid water at the bottom of the reaction chamber increases to as the effluent flow leaving the chamber (1) through the upper outlet (11) increases. This increase in water level improves the dissolution of precipitated salts, however it reduces the temperature in the reaction chamber (1), being a parameter to be taken into account when deciding the outflow of gaseous effluents.
Claims
REIVINDICACIONES
1- Aparato para la generación de llamas hidrotermales, que se caracteriza porque comprende, 1- Apparatus for generating hydrothermal flames, characterized in that it comprises,
• un inyector (9); • an injector (9);
• una cámara de reacción (1) que comprende una abertura • a reaction chamber (1) comprising an opening
(15) en el fondo de la misma para la entrada de un fluido refrigerante (5) , comunicando dicha abertura (15) la cámara (1) con una carcasa de presión (3) que la rodea; (15) at the bottom thereof for the entry of a cooling fluid (5), said opening (15) communicating the chamber (1) with a pressure housing (3) surrounding it;
• una carcasa de presión (3) que comprende, al menos un orificio situado en el fondo de la carcasa para la salida de un efluente (7), estando situada la cámara de reacción (1) en el interior de la carcasa de presión (3) y habiendo un espacio (4) entre ambas para la circulación de un fluido refrigerante (5) ; y, • a pressure housing (3) comprising at least one hole located at the bottom of the housing for the discharge of an effluent (7), the reaction chamber (1) being located inside the pressure housing ( 3) and having a space (4) between them for the circulation of a refrigerant fluid (5); Y,
• un sistema de refrigeración que comprende un fluido refrigerante (5) que circula por el espacio (4) entre la carcasa de presión (3) y la cámara de reacción (1) y que entra en la cámara de reacción (1) por la abertura (15) que comunica con en el fondo (12) de la cámara de reacción (1) . • a cooling system comprising a refrigerant fluid (5) that circulates through the space (4) between the pressure housing (3) and the reaction chamber (1) and that enters the reaction chamber (1) through the opening (15) communicating with the bottom (12) of the reaction chamber (1).
2. - Aparato para la generación de llamas hidrotermales, según la reivindicación 1, caracterizado porque comprende un orificio (13) en el fondo de la cámara de reacción (1) y de la carcasa de presión (3) para la introducción del inyector (9) . 2. - Apparatus for generating hydrothermal flames, according to claim 1, characterized in that it comprises a hole (13) at the bottom of the reaction chamber (1) and the pressure housing (3) for the introduction of the injector ( 9).
3. - Aparato para la generación de llamas hidrotermales, según la reivindicación 2, caracterizado porque la cámara de reacción (1) y la carcasa de reacción (3) presentan un orificio (11) en la parte superior para la salida de unos gases del efluente que se generan en el interior . 3. - Apparatus for generating hydrothermal flames, according to claim 2, characterized in that the reaction chamber (1) and the reaction housing (3) have a hole (11) at the top for the exit of gases from the effluent that are generated inside.
4. - Aparato para la generación de llamas hidrotermales, según la reivindicación 1, caracterizado porque comprende un orificio (13) en la parte superior la cámara de reacción (1) y un conducto en la carcasa de presión (3) que comunica con dicho orificio (13) por donde se introduce el inyector (9) . 4. - Apparatus for generating hydrothermal flames, according to claim 1, characterized in that it comprises a hole (13) in the upper part of the reaction chamber (1) and a conduit in the pressure housing (3) that communicates with said hole (13) where the injector (9) is inserted.
5. - Aparato para la generación de llamas hidrotermales, según la reivindicación 4, caracterizado porque el diámetro del orificio (13) por donde se introduce el inyector es mayor que el diámetro del inyector (9) permitiendo la salida por el hueco que queda entre ambos, de unos gases del efluente que se generan en el interior de la cámara de reacción (1) . 5. - Apparatus for generating hydrothermal flames, according to claim 4, characterized in that the diameter of the hole (13) through which the injector is inserted is greater than the diameter of the injector (9) allowing the exit through the gap between both, of effluent gases that are generated inside the reaction chamber (1).
6. - Aparato para la generación de llamas hidrotermales, según la reivindicación 4, caracterizado porque comprende al menos un orificio en la cámara de reacción (1) y un conducto en la carcasa (3) independientes del orificio (13) y el conducto del inyector para la salida de los gases del efluente. 6. - Apparatus for generating hydrothermal flames, according to claim 4, characterized in that it comprises at least one hole in the reaction chamber (1) and a conduit in the housing (3) independent of the orifice (13) and the conduit of the injector for effluent gas outlet.
7.- Aparato para la generación de llamas hidrotermales, según una cualquiera de las reivindicaciones 4, 5 y 6, caracterizado porque comprende un filtro, resistente a temperaturas superiores a 374°C, entre la salida del inyector (10) y la salida de los gases del efluente (11) . 7. Apparatus for generating hydrothermal flames, according to any one of claims 4, 5 and 6, characterized in that it comprises a filter, resistant to temperatures above 374 ° C, between the injector outlet (10) and the outlet of the effluent gases (11).
8. - Aparato para la generación de llamas hidrotermales, según la reivindicación 1, caracterizado porque el fondo de la carcasa de presión (12) es cónico para facilitar la deposición de unas sales que se generan en el interior de la cámara de reacción (1) . 8. - Apparatus for generating hydrothermal flames, according to claim 1, characterized in that the bottom of the pressure housing (12) is conical to facilitate the deposition of salts that are generated inside the reaction chamber (1 ).
9. - Aparato para la generación de llamas hidrotermales, según la reivindicación 1, caracterizado porque el inyector (9) comprende aletas. 9. - Apparatus for generating hydrothermal flames, according to claim 1, characterized in that the injector (9) comprises fins.
10. - Aparato para la generación de llamas hidrotermales, según la reivindicación 1, caracterizado porque el inyector (9) tiene una forma helicoidal para aumentar la superficie de intercambio de calor entre la cámara de reacción (1) y el inyector (9) . 10. - Apparatus for generating hydrothermal flames, according to claim 1, characterized in that the injector (9) has a helical shape to increase the heat exchange surface between the reaction chamber (1) and the injector (9).
11. - Aparato para la generación de llamas hidrotermales, según la reivindicación 1, caracterizado porque comprende elementos que modifican la dinámica del fluj o . 11. - Apparatus for generating hydrothermal flames, according to claim 1, characterized in that it comprises elements that modify the flow dynamics.
12.- Aparato para la generación de llamas hidrotermales, según la reivindicación 11, caracterizado porque son placas deflectoras situadas transversalmente a la cámara de reacción (1) para modificar la dinámica del fluj o . 12. Apparatus for generating hydrothermal flames, according to claim 11, characterized in that they are deflector plates located transversely to the reaction chamber (1) to modify the flow dynamics.
13.- Aparato para la generación de llamas hidrotermales, según la reivindicación 1, caracterizado porque el inyector (9) es de tipo tubular. 13. Apparatus for generating hydrothermal flames, according to claim 1, characterized in that the injector (9) is of the tubular type.
14.- Procedimiento de generación de llamas hidrotermales, mediante el aparato definido en una cualquiera de las reivindicaciones 1 a 13, caracterizado porque comprende las siguientes fases: 14. Method of generating hydrothermal flames, by means of the apparatus defined in any one of claims 1 to 13, characterized in that it comprises the following phases:
i) generar las condiciones de temperatura y presión a las que se alcanza la ignicióm de la materia orgánica en el interior de la cámara de reacción ( 1 ) ; i) generate the temperature and pressure conditions at which the ignition of the organic matter is reached inside the reaction chamber (1);
ii) introducir a través del inyector (9) unos reactivos (17) y un comburente (18) a temperatura por encima de la de autoignición de los reactivos (17), para la generación de la llama hidrotermal a la salida del inyector (10); ii) introduce reagents (17) and a oxidizer (18) through the injector (9) at a temperature above the reagent self-ignition (17), for the generation of the hydrothermal flame at the outlet of the injector (10) );
iii) introducir el fluido refrigerante presurizado (5) por el hueco (4) existente entre la carcasa de presión (3) y la cámara de reacción (1) para la refrigeración de la carcasa de presión (3) ; y, iv) disolver en el fluido refrigerante (5) las sales que se precipiten al fondo (12) de la cámara de reacción (3) y hacer salir al exterior dicho fluido (5) con las sales disueltas a través de los orificios (7) del fondo (12) de la carcasa de presión (3) . iii) insert the pressurized refrigerant fluid (5) through the gap (4) between the pressure housing (3) and the reaction chamber (1) for cooling the pressure housing (3); Y, iv) dissolve in the refrigerant fluid (5) the salts that precipitate to the bottom (12) of the reaction chamber (3) and send said fluid (5) to the outside with the dissolved salts through the holes (7) from the bottom (12) of the pressure housing (3).
15.- Procedimiento de generación de llamas hidrotermales, según la reivindicación 13, caracterizado porque el aparato trabaja a temperaturas de hasta 800°C en el interior de la cámara de reacción (1) . 15. Method for generating hydrothermal flames, according to claim 13, characterized in that the apparatus works at temperatures up to 800 ° C inside the reaction chamber (1).
16- Procedimiento de generación de llamas hidrotermales, según la reivindicación 14, caracterizado porque la cámara de reacción (1) trabaja a temperaturas por encima de 374°C y a presiones por encima de 22.1 MPa. 16. Method for generating hydrothermal flames, according to claim 14, characterized in that the reaction chamber (1) works at temperatures above 374 ° C and at pressures above 22.1 MPa.
17- Procedimiento de generación de llamas hidrotermales, según la reivindicación 14, caracterizado porque la cámara de reacción (1) trabaja a temperaturas por encima de 374°C y a presiones por debajo de 22.1 MPa. 17. Method for generating hydrothermal flames, according to claim 14, characterized in that the reaction chamber (1) works at temperatures above 374 ° C and at pressures below 22.1 MPa.
18. - Procedimiento de generación de llamas hidrotermales, según la reivindicación 14, caracterizado porque los reactivos (17) y el comburente (18) que se inyectan en la fase ii) están a temperaturas de entre 20 y 500°C y a presiones mayores de 22.1 MPa. 18. - Hydrothermal flame generation method, according to claim 14, characterized in that the reagents (17) and the oxidizer (18) injected in phase ii) are at temperatures between 20 and 500 ° C and at pressures greater than 22.1 MPa.
19. - Procedimiento de generación de llamas hidrotermales, según la reivindicación 13, caracterizado porque el fluido refrigerante (5) empleado en la fase i) está seleccionado entre agua fria y salmuera. 19. - Method of generating hydrothermal flames, according to claim 13, characterized in that the cooling fluid (5) used in phase i) is selected from cold water and brine.
20. - Procedimiento de generación de llamas hidrotermales, según la reivindicación 14, caracterizado porque los reactivos y el comburente empleados en la fase ii) son un material combustible como reactivo (17) y como comburente (18) un fluido seleccionado entre peróxido de hidrógeno y oxigeno mezclado en cualquier proporción con nitrógeno . 20. - Hydrothermal flame generation process, according to claim 14, characterized in that the reagents and the oxidizer used in phase ii) are a combustible material as a reagent (17) and as a oxidizer (18) a fluid selected from hydrogen peroxide and oxygen mixed in any proportion with nitrogen.
21. - Procedimiento de generación de llamas hidrotermales, según la reivindicación 14, caracterizado porque la carcasa de presión (3) soporta presiones de hasta 30 MPa. 21. - Hydrothermal flame generation method according to claim 14, characterized in that the pressure housing (3) withstands pressures of up to 30 MPa.
22. - Procedimiento de generación de llamas hidrotermales, según la reivindicación 14, caracterizado porque en la fase ii) se inyecta junto con los reactivos (17) y comburente (18) un material para la gasificación de dicho material sobre la llama hidrotermal en condiciones en las que el comburente (18) está en una proporción inferior a la estequiométrica . 22. - Method of generating hydrothermal flames, according to claim 14, characterized in that in phase ii) a material for gasification of said material onto the hydrothermal flame under conditions is injected together with reagents (17) and oxidizer (18) in which the oxidizer (18) is in a lower proportion than the stoichiometric one.
23. - Procedimiento de generación de llamas hidrotermales, según la reivindicación 22, caracterizado porque el material para la gasificación comprende sustancias orgánicas. 23. - Method of generating hydrothermal flames, according to claim 22, characterized in that the material for gasification comprises organic substances.
24. - Uso del aparato, definido en una cualquiera de las reivindicaciones 1 a 13, para la destrucción de residuos en agua supercritica . 24. - Use of the apparatus, defined in any one of claims 1 to 13, for the destruction of waste in supercritical water.
25. - Uso de los gases producidos en agua supercritica en el interior del aparato, definido en una cualquiera de las reivindicaciones 1 a 13, para la producción de energía. 25. - Use of the gases produced in supercritical water inside the apparatus, defined in any one of claims 1 to 13, for the production of energy.
26. - Uso del aparato, definido en una cualquiera de las reivindicaciones 1 a 13, para la precipitación de partículas por calentamiento súbito de una corriente acuosa en la llama hidrotermal. 26. - Use of the apparatus, defined in any one of claims 1 to 13, for the precipitation of particles by sudden heating of an aqueous stream in the hydrothermal flame.
27. - Uso del aparato, definido en una cualquiera de las reivindicaciones 1 a 13, para la gasificación de sustancias sobre la llama hidrotermal. 27. - Use of the apparatus, defined in any one of claims 1 to 13, for the gasification of substances on the hydrothermal flame.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP201031599 | 2010-10-29 | ||
ES201031599A ES2381345B1 (en) | 2010-10-29 | 2010-10-29 | APPARATUS AND PROCEDURE FOR THE GENERATION OF AUTOTHERMAL HYDROTERMAL FLAMES |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012056073A1 true WO2012056073A1 (en) | 2012-05-03 |
Family
ID=45993208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2011/070727 WO2012056073A1 (en) | 2010-10-29 | 2011-10-20 | Device and method for generating autothermal hydrothermal flames |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2381345B1 (en) |
WO (1) | WO2012056073A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993002969A1 (en) * | 1991-08-09 | 1993-02-18 | Board Of Regents, The University Of Texas System | High temperature wet oxidation using sintered separators |
ES2108627A1 (en) * | 1995-02-28 | 1997-12-16 | Univ Valladolid | Supercritical oxidation system using a cooled-wall shell |
WO2002040412A1 (en) * | 2000-11-14 | 2002-05-23 | Hydroprocessing, L.L.C. | Apparatus and method for applying an oxidant in a hydrothermal oxidation process |
ES2219567T3 (en) * | 2000-10-10 | 2004-12-01 | Commissariat A L'energie Atomique | PROCEDURE AND DEVICE FOR OXIDATION OF MATERIALS IN SUPERCRITICAL WATER. |
-
2010
- 2010-10-29 ES ES201031599A patent/ES2381345B1/en active Active
-
2011
- 2011-10-20 WO PCT/ES2011/070727 patent/WO2012056073A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993002969A1 (en) * | 1991-08-09 | 1993-02-18 | Board Of Regents, The University Of Texas System | High temperature wet oxidation using sintered separators |
ES2108627A1 (en) * | 1995-02-28 | 1997-12-16 | Univ Valladolid | Supercritical oxidation system using a cooled-wall shell |
ES2219567T3 (en) * | 2000-10-10 | 2004-12-01 | Commissariat A L'energie Atomique | PROCEDURE AND DEVICE FOR OXIDATION OF MATERIALS IN SUPERCRITICAL WATER. |
WO2002040412A1 (en) * | 2000-11-14 | 2002-05-23 | Hydroprocessing, L.L.C. | Apparatus and method for applying an oxidant in a hydrothermal oxidation process |
Non-Patent Citations (1)
Title |
---|
AUGUSTINE, C. ET AL.: "Hydrothermal flames: From phenomenological experimental demonstrationsto quantitative understanding", JOURNAL OF SUPERCRITICALFLUIDS., vol. 47, no. 3, 2009, pages 415 - 430 * |
Also Published As
Publication number | Publication date |
---|---|
ES2381345A1 (en) | 2012-05-25 |
ES2381345B1 (en) | 2013-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2343167T3 (en) | GASIFICATOR OF MULTIPLE FACETS AND RELATED PROCEDURES. | |
US5558783A (en) | Supercritical oxidation reactor | |
TW321713B (en) | ||
CA2690884C (en) | Process for the conversion of organic material to methane rich fuel gas | |
ES2374827T3 (en) | SYSTEM AND PROCEDURE FOR HYDROTHERMAL OXIDATION OF WATER INSOLUBLE ORGANIC WASTE. | |
Chen et al. | An inclined plug-flow reactor design for supercritical water oxidation | |
NO820016L (en) | PROCEDURE FOR THE OXIDATION OF ORGANIC SUBSTANCES IN OVERCritical Water. | |
CN101267880B (en) | Reactor and method for anoxia treatment of a substance in a fluid reaction medium | |
ES2979191T3 (en) | Device for the gasification of an aqueous effluent in a supercritical environment | |
TWI321205B (en) | Rotary burn type incinerator | |
TWI284186B (en) | Method and apparatus for treating liquid waste | |
WO2012056073A1 (en) | Device and method for generating autothermal hydrothermal flames | |
WO2015018962A2 (en) | Burner integrated into a hydrocarbon- and alcohol-reforming system, and hydrocarbon- and alcohol-reforming system comprising said burner and associated method | |
JPWO2004109193A1 (en) | Hydrogen combustion type hot air heater, hydrogen combustion type hot air generation method and burner used in the method | |
EP2653526B1 (en) | Process for removing tar and gasifying the carbon residual coming from pyrolysis of organic substances | |
ES2660713B2 (en) | Apparatus for integrated oxidation and gasification treatment in supercritical water of organic aqueous waste | |
ES2969999A1 (en) | PROCEDURE FOR THE DECONTAMINATION OF EFFLUENTS WITH ORGANIC LOAD THROUGH A SUBCRITICAL WET OXIDATION PROCESS THAT OCCURS IN A TUBULAR REACTOR WHOSE TEMPERATURE IS REGULATED BY A FLUID IN PHASE EQUILIBRIUM THAT CIRCULATES THROUGH A SHELL THAT CONTAINS IT (Machine-translation by Google Translate, not legally binding) | |
ES2433121B1 (en) | BURNER INTEGRATED IN A HYDROCARBON REFORMING SYSTEM AND ALCOHOLS | |
ES2612580B1 (en) | WASTE TREATMENT EQUIPMENT | |
EP4354021A1 (en) | System and method for treating hazardous waste | |
ES2325105B1 (en) | BIOMASS MODULAR GASIFICATOR. | |
ES2741585T3 (en) | Energy recovery device suitable for heat treatment of fluids or solids | |
KR101668290B1 (en) | Apparatus and method for generating heat wind energy using effluent of food waste | |
ES2535687B2 (en) | Gasification system and method of a liquid substrate | |
Cabeza Pérez et al. | Supercritical water oxidation for energy production by hydrothermal flame as internal heat source. Experimental results and energetic study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11835671 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11835671 Country of ref document: EP Kind code of ref document: A1 |