WO2012050117A1 - Supporting body and wafer film formation method - Google Patents
Supporting body and wafer film formation method Download PDFInfo
- Publication number
- WO2012050117A1 WO2012050117A1 PCT/JP2011/073403 JP2011073403W WO2012050117A1 WO 2012050117 A1 WO2012050117 A1 WO 2012050117A1 JP 2011073403 W JP2011073403 W JP 2011073403W WO 2012050117 A1 WO2012050117 A1 WO 2012050117A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wafer
- recess
- plan
- view
- center
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
Definitions
- the present invention relates to a support on which a wafer is placed in a semiconductor device manufacturing process, and a wafer film forming method using the support.
- a support for mounting a wafer is used.
- the wafer may be bent due to heating of the wafer or due to its own weight.
- a support having a concave portion that is recessed in a spherical shape is known.
- the wafer is uniformly heated by being placed in a concave portion that is recessed in a spherical shape (see, for example, Patent Document 1).
- the above-described support has the following problems. That is, the support used in the wafer film-forming process is often formed of silicon carbide because heat resistance and high hardness are required. Since silicon carbide is a substance having a very high hardness, for example, in a lens processing method or a ball end mill processing method typified by an Oscar type polishing, a grindstone may be worn. For this reason, it has been difficult to accurately process the concave portion recessed in the spherical shape. Although the die-sinking electric discharge machining method can be used, the die-sinking electric discharge machining method has been difficult to apply to mass production due to the high tool cost and the long machining time.
- the present invention uses a support that can uniformly heat a wafer and that can be mass-produced at low cost, as well as a support that has a concave portion with a spherical bottom surface.
- An object of the present invention is to provide a wafer film forming method.
- the first feature of the present invention is used in a semiconductor device manufacturing process, and is a support (susceptor 1) having an upper surface (upper surface 1a) on which a recess (recess 10) on which a wafer (wafer W) is placed is formed.
- the support is made of silicon carbide, and the recesses are substantially circular in a plan view, and a plurality of concentric circles centered on the center of the recess in a plan view. And having a bottom portion (bottom portion 10B) formed by an annular step.
- the bottom of the recess is formed by a plurality of annular steps provided concentrically, compared to a case where the bottom of the recess has a spherical shape, a standard grindstone (diamond grinding stone) ). That is, since processing is easy, it is not necessary to use lens processing, ball end mill processing, and die-sinking electric discharge processing. As a result, it is possible to provide a support that can be mass-produced at low cost.
- the depth from the upper surface to the bottom may be increased from the peripheral edge of the concave portion (peripheral step 11S) toward the center of the concave portion.
- the shape of the bottom after processing is a shape in which the depth from the upper surface becomes deeper from the periphery of the recess toward the center. Therefore, when the mounted wafer is bent, the distance between the wafer and the bottom becomes uniform over the entire wafer. As a result, the wafer can be uniformly heated in the wafer film forming process.
- the bottom portion may have a spherical shape.
- Another feature of the present invention is a wafer film forming method including a wafer placing step of placing a wafer on a support and a wafer film forming step of forming the wafer, wherein the support is a wafer. And has a top surface formed with silicon carbide, and the recess is substantially circular in plan view, and is concentric with the center of the recess in plan view as the center.
- Each step in the annular step has an inner peripheral end that is an end portion close to the center of the concave portion in plan view, and in the wafer mounting step, among the steps overlapping with the wafer in plan view, Both the gist that the wafer is in contact with the inner peripheral edge of the nearest stage to the upper surface.
- the wafer may contact only the inner peripheral edge of the step closest to the upper surface among the steps overlapping the wafer in plan view.
- the wafer may contact the inner peripheral ends of a plurality of steps among the steps overlapping the wafer in plan view.
- FIG. 1 is a plan view of a support according to the present embodiment.
- FIG. 2A is a cross-sectional view taken along line A-A ′ in FIG.
- FIG. 2B is a perspective view of a recess according to this embodiment.
- FIG. 3 is a diagram schematically showing a method for processing the recess 10.
- 4A and 4B are views schematically showing the state of the wafer placed in the recess 10 in the wafer film forming process.
- FIG. 5 is a diagram illustrating the recess 20 according to the embodiment.
- FIG. 6 is a diagram illustrating the recess 30 according to the embodiment.
- FIG. 7 is a diagram schematically showing a recess according to another embodiment.
- FIG. 8 is a diagram schematically showing a recess according to another embodiment.
- Embodiments of a pneumatic tire according to the present invention will be described with reference to the drawings. Specifically, (1) the structure of the support, (2) the structure of the recess, (3) the processing method of the recess, (4) the wafer film forming method, (5) the action / effect, (6) the embodiment, (7) Other embodiments will be described.
- the vertical direction and the horizontal direction are defined, but these all indicate directions in a posture in which the wafer is placed on the support.
- FIG. 1 is a plan view of a support according to the present embodiment.
- FIG. 2A is a cross-sectional view taken along the line AA ′ in FIG.
- FIG. 2B is a perspective view of a recess according to this embodiment.
- the susceptor 1 has a substantially circular shape in plan view.
- the susceptor 1 has an upper surface 1a that is a surface on which a wafer is placed and a lower surface 1b that is a surface opposite to the upper surface 1a in the vertical and horizontal cross-sectional views (see FIG. 2 (a)).
- the upper surface 1a of the susceptor 1 is provided with four recesses 10 for placing the wafer.
- the recess 10 is substantially circular in plan view.
- the substantially circular shape means including a circular shape, an elliptical shape, or a shape in which a part is a straight line.
- the size of the recess 10 in a plan view may be set as appropriate as long as it is formed larger than the wafer placed on the recess 10.
- the susceptor 1 is made of silicon carbide.
- the concave portion 10 is formed on the upper surface 1a and has a depressed shape that is convex toward the lower surface 1b. That is, the concave portion 10 is formed by a wall portion 10W that is continuous with the upper surface 1a and extends in a direction from the upper surface 1a to the lower surface 1b, and a bottom portion 10B on which the wafer is placed.
- the wall 10W is formed at an angle of approximately 90 degrees with the upper surface 1a.
- the bottom 10B is formed by a plurality of annular steps provided concentrically. That is, the bottom portion 10B has a shape having a step.
- the step (referred to as the center step 11C in the following description) positioned at the center of the recess 10 in plan view is positioned on the lowermost surface 1b side.
- the center step 11C is located at the center of the recess 10 in plan view.
- the step located on the outermost side in plan view (referred to as the peripheral step 11S in the following description) is located on the uppermost surface 1a side. That is, the bottom 10B is formed in an upward staircase shape from the center step 11C toward the peripheral step 11S. Note that the centers of the plurality of annular steps in plan view coincide with the centers of the recesses 10 in plan view.
- the centers of the plurality of annular steps in plan view coincide with the centers of the recesses 10 in plan view means that the centers of the plurality of annular steps in plan view are the centers of the recesses 10. Including substantially matching. Specifically, as long as the wafer can be heated uniformly, the center of the plurality of annular steps and the center of the recess 10 do not coincide with each other.
- the thickness hs of the susceptor 1 is larger than the depth hc from the upper surface 1a to the center step 11C. That is, the recess 10 does not penetrate the susceptor 1.
- the bottom 10B is formed in 10 steps when the central step 11C is counted as one step. Further, the step hd in the vertical direction of each step is formed to be 0.01 mm (10 ⁇ m) or less.
- FIG. 3 is a diagram schematically showing a method for processing the recess 10.
- the concave portion 10 is formed by the wall portion 10W formed at an angle of approximately 90 degrees with the upper surface 1a of the susceptor 1 and the bottom portion 10B formed in a step shape in the vertical and horizontal sectional views. Is formed. Therefore, as shown in FIG. 3, the recess 10 can be processed by the standard polishing jig D.
- the polishing jig D is composed of a rotating body D1 and a disk-shaped and flat diamond powder aggregate D2 attached to the polishing surface of the rotating body D1.
- the diamond powder aggregate D2 can be processed by pressing it perpendicularly to the upper surface 1a while rotating the rotating body D1.
- the wafer film forming process for forming a wafer is not described because a known technique such as a thermal oxidation method, a CVD method, or a sputtering method can be appropriately employed.
- a known technique such as a thermal oxidation method, a CVD method, or a sputtering method
- the wafer W placed on the recess 10 in the wafer placement process of placing the wafer W on the recess 10 will be described.
- 4A and 4B are diagrams schematically showing the state of the wafer W placed in the recess 10 in the wafer placing process. In the present embodiment, all steps constituting the recess 10 overlap the wafer W in plan view.
- the wafer W is supported by the peripheral step 11S among the plurality of steps constituting the recess 10.
- the peripheral step 11S is supported by an inner peripheral end 11Se that is an end portion close to the center of the concave portion 10 in plan view. That is, in the wafer mounting process shown in FIG. 4A, the wafer W does not come into contact with the other bottom 10B except for the inner peripheral end 11Se of the peripheral step 11S.
- the distance between the wafer W and the bottom portion 10B is substantially uniform over the entire wafer at portions other than the inner peripheral end 11Se. Accordingly, the wafer W can be uniformly heated, and as a result, temperature unevenness of the wafer W can be suppressed.
- the wafer W is in contact with all the stages except the central stage 11C. Specifically, the wafer W is supported by the inner peripheral edge in each stage forming the bottom 10B.
- the contact area between the wafer W and the bottom portion 10B can be reduced by bringing the wafer W into contact with only the inner peripheral edge of each stage.
- the inner peripheral edge of each step is formed in a circular shape in plan view, no deviation or variation occurs in the portion where the wafer W and the inner peripheral edge are in contact with each other. As a result, it becomes possible to uniformly heat the entire wafer W, and as a result, temperature unevenness of the wafer W can be suppressed.
- the susceptor 1 is formed of silicon carbide, and the recess 10 is substantially circular in a plan view, and is provided concentrically around the center of the recess 10 in a plan view. It has a bottom portion 10B formed by a plurality of annular steps, and is formed so that the depth from the top surface 1a to the bottom portion 10B becomes deeper from the peripheral step 11S of the recess 10B toward the center step 11C of the recess 10B. Yes.
- the bottom portion 10B of the concave portion 10 is formed in a stepped shape, it is processed by a processing method using a standard grinding jig D as compared with the case where the bottom portion of the concave portion 10 is formed into a spherical shape. be able to. That is, since processing is easy, it is not necessary to use lens processing, ball end mill processing, and die-sinking electric discharge processing. As a result, it is possible to provide a susceptor 1 that can be mass-produced at low cost.
- the shape of the bottom portion 10B is such that the depth from the top surface 1a to the bottom portion 10B increases toward the center step 11C from the peripheral step 11S of the recess 10 and the bottom portion
- the step in the vertical direction of each step forming 10B is formed to be 0.01 mm or less. That is, by making the vertical step of each step 0.01 mm or less, the curve 10 can be linearly interpolated to form the bottom portion 10B having a spherical shape. As a result, the wafer W can be uniformly heated in the wafer film forming process.
- FIG. 5 is a diagram illustrating the recess 20 according to the embodiment.
- FIG. 6 is a diagram illustrating the recess 30 according to the embodiment. Note that the unit of numerical values shown in FIGS. 5 and 6 is millimeters.
- the susceptor 2 shown in FIG. 5 has a vertical thickness of 4 mm. Further, the recess 20 provided in the susceptor 2 has a diameter of 152 mm, and the vertical depth from the upper surface 2a of the susceptor 2 to the peripheral step 21S is 0.8 mm.
- the bottom 20B of the recess 20 shown in FIG. 5 is formed in 10 steps. The step in the vertical direction of each step forming the bottom portion 20B is 0.003 mm.
- the length L in the left-right direction of each step forming the bottom portion 20B (in FIG. 5, the second step is taken as an example) is changed from the center step 21C to the peripheral step 21S. It is formed to become shorter as it goes.
- the length 21CL of the center step 21C (corresponding to the radius of the center step 21C in plan view). ) Is the longest at 15 mm, and the length 21SL of the peripheral step 21S is the shortest.
- the susceptor 3 shown in FIG. 6 has a vertical thickness of 2 mm. Further, the recess 30 provided in the susceptor 3 has a diameter of 102 mm, and a vertical depth from the upper surface 3a of the susceptor 30 to the peripheral step 31S is 0.7 mm.
- the bottom 30B of the recess 30 shown in FIG. 6 is formed in seven steps. The step in the vertical direction of each step forming the bottom portion 30B is 0.006 mm.
- the length L in the horizontal direction of each step forming the bottom 30B (in FIG. 6, the second step is taken as an example) is changed from the center step 31C to the peripheral step 31S. It is formed to become shorter as it goes.
- the length 31CL of the center step 31C (corresponding to the radius of the center step 31C in plan view). ) Is the longest at 10 mm, and the length 31SL of the peripheral step 31S is the shortest.
- the bottom may be spherical at the center of the recess 10.
- the central step 11C may have a spherical shape that protrudes toward the lower surface. Since the central step 11C has a spherical shape that protrudes in the direction toward the lower surface 11b, the distance between the wafer W and the susceptor 10 can be made more uniform over the entire wafer W when the wafer W is bent.
- the diameter of the center step 11C is smaller than the diameter of the recess 10, so that the spherical center step is processed only by replacing the diamond grindstone used at the time of processing with a spherical one. be able to.
- the bottom 10B may be formed so that the depth from the top surface 1a to the bottom 10B becomes shallower from the peripheral step 11S toward the center step 11C. That is, in the vertical direction, the peripheral step 11S may be positioned closest to the lower surface 1b and may be convex from the peripheral step 11S toward the upper surface 1a. Also in the recess 10 formed in this way, the bottom 10B is formed in a step shape, and therefore can be easily processed by a processing method using a standard grinding jig. As a result, it is possible to provide a susceptor that can be mass-produced at low cost. Furthermore, in the wafer film forming process, even when the wafer center portion in plan view is bent upward in the vertical direction, the wafer can be heated uniformly.
- the present invention is not limited to this, and a single-wafer type susceptor provided with one recess may be used.
- the number of recesses provided in the susceptor 1 can be set as appropriate.
- the number of steps of the bottom portion 10B is not limited to the seven or ten steps described in the embodiment, and can be set as appropriate depending on the size and characteristics of the wafer to be placed.
- the vertical steps in the plurality of steps forming the bottom portion 10B are unified, but the present invention is not limited to this. That is, the step in the vertical direction can be increased as the depth from the top surface to the bottom 10B increases. Conversely, the step in the vertical direction can be reduced as the depth from the top surface to the bottom 10B increases.
- step difference it can set suitably according to the magnitude
- the length of each step in the left-right direction can be set as appropriate.
- the support similarly to a support having a concave portion with a spherical bottom surface, the support that can uniformly heat the wafer and can be mass-produced at low cost, and the support are used.
- the present wafer deposition method can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Disclosed is a supporting body which is used in a semiconductor device manufacturing process and has an upper surface that is provided with a recessed portion in which a wafer is disposed. The supporting body is formed of silicon carbide, and the recessed portion has a generally circular shape when viewed in plan and has a bottom portion that is composed of a plurality of annular steps that are concentrically arranged around the center of the recessed portion when viewed in plan.
Description
本発明は、半導体デバイス製造工程においてウエハを載置する支持体、及びこの支持体を用いたウエハ成膜処理方法に関する。
The present invention relates to a support on which a wafer is placed in a semiconductor device manufacturing process, and a wafer film forming method using the support.
一般に、半導体デバイス製造工程のひとつであるウエハ成膜工程において、ウエハを載置するための支持体が用いられている。この時、ウエハに対する加熱やウエハの自重を原因として、ウエハはたわむことがある。ウエハがたわんだ場合においても、ウエハに対する加熱を均一にするために、球面形状に窪む凹部が設けられている支持体が知られている。ウエハは、球面形状に窪む凹部に載置されることにより、均一に加熱される(例えば、特許文献1参照)。
Generally, in a wafer film forming process which is one of semiconductor device manufacturing processes, a support for mounting a wafer is used. At this time, the wafer may be bent due to heating of the wafer or due to its own weight. In order to make the heating of the wafer uniform even when the wafer is bent, a support having a concave portion that is recessed in a spherical shape is known. The wafer is uniformly heated by being placed in a concave portion that is recessed in a spherical shape (see, for example, Patent Document 1).
ところで、上述した支持体には次のような問題があった。すなわち、ウエハ成膜工程に用いられる支持体は、耐熱性、高硬度性が求められるために炭化ケイ素によって形成されることが多い。炭化ケイ素は非常に硬度が高い物質であるため、例えば、オスカー式研磨に代表されるレンズ加工法やボールエンドミル加工法などでは、砥石が摩耗してしまうことがある。そのため、球面形状に窪む凹部を精度良く加工することは難しかった。また、型彫放電加工法を用いることも可能であるが、型彫放電加工法は、工具コストの高さと加工時間の長さとが原因で大量生産への適用が難しかった。
Incidentally, the above-described support has the following problems. That is, the support used in the wafer film-forming process is often formed of silicon carbide because heat resistance and high hardness are required. Since silicon carbide is a substance having a very high hardness, for example, in a lens processing method or a ball end mill processing method typified by an Oscar type polishing, a grindstone may be worn. For this reason, it has been difficult to accurately process the concave portion recessed in the spherical shape. Although the die-sinking electric discharge machining method can be used, the die-sinking electric discharge machining method has been difficult to apply to mass production due to the high tool cost and the long machining time.
そこで、本発明は、底面が球面形状である凹部を有する支持体と同様に、ウエハを均一に加熱することができるとともに、低コストで大量生産が可能となる支持体、及びこの支持体を用いたウエハ成膜処理方法を提供することを目的とする。
Therefore, the present invention uses a support that can uniformly heat a wafer and that can be mass-produced at low cost, as well as a support that has a concave portion with a spherical bottom surface. An object of the present invention is to provide a wafer film forming method.
まず、本発明の第1の特徴は、半導体デバイス製造工程において用いられ、ウエハ(ウエハW)を載置する凹部(凹部10)が形成されている上面(上面1a)を有する支持体(サセプタ1)であって、前記支持体は、炭化ケイ素によって形成されており、前記凹部は、平面視において略円形状であるとともに、平面視における前記凹部の中心を中心とした同心円状に設けられた複数の円環状の段によって形成されている底部(底部10B)を有することを要旨とする。
First, the first feature of the present invention is used in a semiconductor device manufacturing process, and is a support (susceptor 1) having an upper surface (upper surface 1a) on which a recess (recess 10) on which a wafer (wafer W) is placed is formed. The support is made of silicon carbide, and the recesses are substantially circular in a plan view, and a plurality of concentric circles centered on the center of the recess in a plan view. And having a bottom portion (bottom portion 10B) formed by an annular step.
これによれば、凹部の底部は、同心円状に設けられた複数の円環状の段によって形成されているため、凹部の底部を球面形状とする場合と比べて、標準的な砥石(ダイヤモンド研削石)を用いた加工法によって加工することができる。すなわち、加工が容易であるため、レンズ加工やボールエンドミル加工及び型彫り放電加工を用いる必要がない。その結果、低コストで大量生産が可能な支持体を提供することが可能となる。
According to this, since the bottom of the recess is formed by a plurality of annular steps provided concentrically, compared to a case where the bottom of the recess has a spherical shape, a standard grindstone (diamond grinding stone) ). That is, since processing is easy, it is not necessary to use lens processing, ball end mill processing, and die-sinking electric discharge processing. As a result, it is possible to provide a support that can be mass-produced at low cost.
前記凹部の周縁部(周縁段11S)から前記凹部の中心に向かうにつれて前記上面から前記底部までの深さが深くなってもよい。
The depth from the upper surface to the bottom may be increased from the peripheral edge of the concave portion (peripheral step 11S) toward the center of the concave portion.
これによれば、加工後の底部の形状は、凹部の周縁から中心へ向かうに従って上面からの深さが深くなる形状である。従って、載置されたウエハがたわんだ状態において、ウエハと底部との間隔がウエハ全体に渡って均一となる。その結果、ウエハ成膜工程においてウエハを均一に加熱することが可能となる。
According to this, the shape of the bottom after processing is a shape in which the depth from the upper surface becomes deeper from the periphery of the recess toward the center. Therefore, when the mounted wafer is bent, the distance between the wafer and the bottom becomes uniform over the entire wafer. As a result, the wafer can be uniformly heated in the wafer film forming process.
前記凹部の中央では、前記底部が球面形状であってもよい。
In the center of the concave portion, the bottom portion may have a spherical shape.
本発明の他の特徴は、ウエハを支持体に載置するウエハ載置工程と、前記ウエハを成膜するウエハ成膜工程とを有するウエハ成膜処理方法であって、前記支持体は、ウエハを載置する凹部が形成されている上面を有するとともに、炭化ケイ素によって形成されており、前記凹部は、平面視において略円形状であるとともに、平面視における前記凹部の中心を中心とした同心円状に設けられた複数の円環状の段によって形成されている底部を有し、前記凹部の周縁部から前記凹部の中心に向かうにつれて前記上面から前記底部までの深さが深くなり、前記複数の円環状の段におけるそれぞれの段は、平面視における前記凹部の中心に近い端部である内周端を有し、前記ウエハ載置工程において、平面視におけるウエハと重なる段のうち、少なくとも前記上面に最も近い段の内周端にウエハが接触することを要旨とする。
Another feature of the present invention is a wafer film forming method including a wafer placing step of placing a wafer on a support and a wafer film forming step of forming the wafer, wherein the support is a wafer. And has a top surface formed with silicon carbide, and the recess is substantially circular in plan view, and is concentric with the center of the recess in plan view as the center. A plurality of circular steps provided at the bottom, the depth from the upper surface to the bottom increases from the peripheral edge of the recess toward the center of the recess, and the plurality of circles Each step in the annular step has an inner peripheral end that is an end portion close to the center of the concave portion in plan view, and in the wafer mounting step, among the steps overlapping with the wafer in plan view, Both the gist that the wafer is in contact with the inner peripheral edge of the nearest stage to the upper surface.
前記ウエハ載置工程において、平面視におけるウエハと重なる段のうち、前記上面に最も近い段の内周端にのみウエハが接触してもよい。
In the wafer placing step, the wafer may contact only the inner peripheral edge of the step closest to the upper surface among the steps overlapping the wafer in plan view.
前記ウエハ載置工程において、平面視におけるウエハと重なる段のうち、複数の段の内周端にウエハが接触してもよい。
In the wafer placing step, the wafer may contact the inner peripheral ends of a plurality of steps among the steps overlapping the wafer in plan view.
本発明に係る空気入りタイヤの実施形態について、図面を参照しながら説明する。具体的には、(1)支持体の構成、(2)凹部の構成、(3)凹部の加工方法、(4)ウエハ成膜処理方法、(5)作用・効果、(6)実施例、(7)その他の実施形態について説明する。
Embodiments of a pneumatic tire according to the present invention will be described with reference to the drawings. Specifically, (1) the structure of the support, (2) the structure of the recess, (3) the processing method of the recess, (4) the wafer film forming method, (5) the action / effect, (6) the embodiment, (7) Other embodiments will be described.
なお、以下の図面の記載において、同一または類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なのものであり、各寸法の比率などは現実のものとは異なることを留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれる。
In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and ratios of dimensions are different from actual ones. Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, the part from which the relationship and ratio of a mutual dimension differ also in between drawings is contained.
また、以後の説明及び図面において、上下方向、左右方向と規定しているが、これらはすべてウエハが支持体に載置された姿勢における方向を示している。
In the following description and drawings, the vertical direction and the horizontal direction are defined, but these all indicate directions in a posture in which the wafer is placed on the support.
(1)支持体の構成
まず、本実施形態に係る支持体(サセプタ1)の構成について、図1乃至図2を参照して説明する。図1は、本実施形態に係る支持体の平面図である。図2(a)は、図1におけるA-A’断面図である。図2(b)は、本実施形態に係る凹部の斜視図である。 (1) Structure of Support First, the structure of the support (susceptor 1) according to the present embodiment will be described with reference to FIGS. FIG. 1 is a plan view of a support according to the present embodiment. FIG. 2A is a cross-sectional view taken along the line AA ′ in FIG. FIG. 2B is a perspective view of a recess according to this embodiment.
まず、本実施形態に係る支持体(サセプタ1)の構成について、図1乃至図2を参照して説明する。図1は、本実施形態に係る支持体の平面図である。図2(a)は、図1におけるA-A’断面図である。図2(b)は、本実施形態に係る凹部の斜視図である。 (1) Structure of Support First, the structure of the support (susceptor 1) according to the present embodiment will be described with reference to FIGS. FIG. 1 is a plan view of a support according to the present embodiment. FIG. 2A is a cross-sectional view taken along the line AA ′ in FIG. FIG. 2B is a perspective view of a recess according to this embodiment.
図1に示すように、サセプタ1は、平面視において略円形状である。また、サセプタ1は、上下方向及び左右方向の断面視において、ウエハが載置される側の面である上面1aと、上面1aと反対側の面である下面1bとを有している(図2(a)参照)。
As shown in FIG. 1, the susceptor 1 has a substantially circular shape in plan view. In addition, the susceptor 1 has an upper surface 1a that is a surface on which a wafer is placed and a lower surface 1b that is a surface opposite to the upper surface 1a in the vertical and horizontal cross-sectional views (see FIG. 2 (a)).
サセプタ1の上面1aにはウエハを載置する4つの凹部10が設けられている。凹部10は、平面視において略円形状である。ここで、略円形状とは、円形状、楕円形状、一部が直線となる形状を含むことを意味している。
The upper surface 1a of the susceptor 1 is provided with four recesses 10 for placing the wafer. The recess 10 is substantially circular in plan view. Here, the substantially circular shape means including a circular shape, an elliptical shape, or a shape in which a part is a straight line.
また、平面視における凹部10の大きさは、凹部10に載置されるウエハよりも大きく形成されればよく、適宜設定することができる。なお、本実施形態において、サセプタ1は、炭化ケイ素によって形成されている。
Further, the size of the recess 10 in a plan view may be set as appropriate as long as it is formed larger than the wafer placed on the recess 10. In the present embodiment, the susceptor 1 is made of silicon carbide.
(2)凹部の構成
図2(a)及び(b)に示すように、凹部10は、上面1aに形成され、下面1bに向かって凸となる窪んだ形状を有している。すなわち、凹部10は、上面1aと連なり上面1aから下面1bへ向かう方向に延びる壁部10Wと、ウエハが載置される底部10Bとによって形成されている。壁部10Wは、上面1aと略90度の角度となるよう形成されている。底部10Bは、同心円状に設けられた複数の円環状の段によって形成されている。すなわち、底部10Bは、段差を有する形状である。具体的には、底部10Bを形成する複数の段のうち、平面視における凹部10の中心に位置する段(以後の説明において、中心段11Cとする)が最も下面1b側に位置する。平面視において中心段11Cは、凹部10の中央に位置する。また、底部10Bを形成する複数の段のうち、平面視において最も外側に位置する段(以後の説明において周縁段11Sとする)が最も上面1a側に位置している。すなわち、底部10Bは、中心段11Cから周縁段11Sに向かって上り階段状に形成されている。なお、平面視における複数の円環状の段の中心は、平面視における凹部10の中心と一致している。ここで、「平面視における複数の円環状の段の中心は、平面視における凹部10の中心と一致している」とは、平面視における複数の円環状の段の中心は、凹部10の中心と実質的に一致していることを含む。具体的には、ウエハを均一に加熱できる範囲であれば、複数の円環状の段の中心と凹部10の中心とは、一致していない場合も含む。 (2) Configuration of Concave portion As shown in FIGS. 2A and 2B, theconcave portion 10 is formed on the upper surface 1a and has a depressed shape that is convex toward the lower surface 1b. That is, the concave portion 10 is formed by a wall portion 10W that is continuous with the upper surface 1a and extends in a direction from the upper surface 1a to the lower surface 1b, and a bottom portion 10B on which the wafer is placed. The wall 10W is formed at an angle of approximately 90 degrees with the upper surface 1a. The bottom 10B is formed by a plurality of annular steps provided concentrically. That is, the bottom portion 10B has a shape having a step. Specifically, among the plurality of steps forming the bottom portion 10B, the step (referred to as the center step 11C in the following description) positioned at the center of the recess 10 in plan view is positioned on the lowermost surface 1b side. The center step 11C is located at the center of the recess 10 in plan view. Of the plurality of steps forming the bottom portion 10B, the step located on the outermost side in plan view (referred to as the peripheral step 11S in the following description) is located on the uppermost surface 1a side. That is, the bottom 10B is formed in an upward staircase shape from the center step 11C toward the peripheral step 11S. Note that the centers of the plurality of annular steps in plan view coincide with the centers of the recesses 10 in plan view. Here, “the centers of the plurality of annular steps in plan view coincide with the centers of the recesses 10 in plan view” means that the centers of the plurality of annular steps in plan view are the centers of the recesses 10. Including substantially matching. Specifically, as long as the wafer can be heated uniformly, the center of the plurality of annular steps and the center of the recess 10 do not coincide with each other.
図2(a)及び(b)に示すように、凹部10は、上面1aに形成され、下面1bに向かって凸となる窪んだ形状を有している。すなわち、凹部10は、上面1aと連なり上面1aから下面1bへ向かう方向に延びる壁部10Wと、ウエハが載置される底部10Bとによって形成されている。壁部10Wは、上面1aと略90度の角度となるよう形成されている。底部10Bは、同心円状に設けられた複数の円環状の段によって形成されている。すなわち、底部10Bは、段差を有する形状である。具体的には、底部10Bを形成する複数の段のうち、平面視における凹部10の中心に位置する段(以後の説明において、中心段11Cとする)が最も下面1b側に位置する。平面視において中心段11Cは、凹部10の中央に位置する。また、底部10Bを形成する複数の段のうち、平面視において最も外側に位置する段(以後の説明において周縁段11Sとする)が最も上面1a側に位置している。すなわち、底部10Bは、中心段11Cから周縁段11Sに向かって上り階段状に形成されている。なお、平面視における複数の円環状の段の中心は、平面視における凹部10の中心と一致している。ここで、「平面視における複数の円環状の段の中心は、平面視における凹部10の中心と一致している」とは、平面視における複数の円環状の段の中心は、凹部10の中心と実質的に一致していることを含む。具体的には、ウエハを均一に加熱できる範囲であれば、複数の円環状の段の中心と凹部10の中心とは、一致していない場合も含む。 (2) Configuration of Concave portion As shown in FIGS. 2A and 2B, the
また、図2(a)に示すように、サセプタ1の厚さhsは、上面1aから中心段11Cまでの深さhcよりも大きい。すなわち、凹部10は、サセプタ1を貫通することはない。本実施形態においては、底部10Bは、中心段11Cを一段と数えた場合、10段に形成されている。また、各段の上下方向の段差hdは、0.01mm(10μm)以下となるように形成されている。
Further, as shown in FIG. 2A, the thickness hs of the susceptor 1 is larger than the depth hc from the upper surface 1a to the center step 11C. That is, the recess 10 does not penetrate the susceptor 1. In the present embodiment, the bottom 10B is formed in 10 steps when the central step 11C is counted as one step. Further, the step hd in the vertical direction of each step is formed to be 0.01 mm (10 μm) or less.
(3)凹部の加工方法
次に、図3を参照して、凹部10の加工方法について説明する。図3は、凹部10の加工方法を模式的に示す図である。 (3) Processing method of recessed part Next, the processing method of the recessedpart 10 is demonstrated with reference to FIG. FIG. 3 is a diagram schematically showing a method for processing the recess 10.
次に、図3を参照して、凹部10の加工方法について説明する。図3は、凹部10の加工方法を模式的に示す図である。 (3) Processing method of recessed part Next, the processing method of the recessed
上述したように、凹部10は、上下方向及び左右方向の断面視において、サセプタ1の上面1aと略90度の角度で形成されている壁部10Wと、階段状に形成された底部10Bとによって形成されている。従って、図3に示すように、標準的な研磨治具Dによって凹部10を加工することができる。研磨治具Dは、回転体D1と、回転体D1の研磨面に取付けた円盤状かつ平坦のダイヤモンド粉集合体D2とにより構成されている。サセプタ1の凹部10を加工する場合、回転体D1を回転させながらダイヤモンド粉集合体D2を、上面1aに対して垂直に押し当てることによって加工することができる。
As described above, the concave portion 10 is formed by the wall portion 10W formed at an angle of approximately 90 degrees with the upper surface 1a of the susceptor 1 and the bottom portion 10B formed in a step shape in the vertical and horizontal sectional views. Is formed. Therefore, as shown in FIG. 3, the recess 10 can be processed by the standard polishing jig D. The polishing jig D is composed of a rotating body D1 and a disk-shaped and flat diamond powder aggregate D2 attached to the polishing surface of the rotating body D1. When processing the concave portion 10 of the susceptor 1, the diamond powder aggregate D2 can be processed by pressing it perpendicularly to the upper surface 1a while rotating the rotating body D1.
(4)ウエハ成膜処理方法
次に、図面を参照して、ウエハ成膜処理方法について説明する。 (4) Wafer Film Formation Processing Method Next, the wafer film formation processing method will be described with reference to the drawings.
次に、図面を参照して、ウエハ成膜処理方法について説明する。 (4) Wafer Film Formation Processing Method Next, the wafer film formation processing method will be described with reference to the drawings.
ウエハ成膜処理方法のうち、ウエハを成膜するウエハ成膜工程については、熱酸化法、CVD法、スパッタリング法などの周知の技術を適宜採用することができるため説明を省略する。ここでは、ウエハWを凹部10に載置するウエハ載置工程において、凹部10に載置されるウエハWについて説明をする。図4(a)及び(b)は、ウエハ載置工程において、凹部10に載置されたウエハWの状態を模式的に示す図である。なお、本実施形態において、凹部10を構成する全ての段は、平面視においてウエハWと重なっている。
Among the wafer film forming methods, the wafer film forming process for forming a wafer is not described because a known technique such as a thermal oxidation method, a CVD method, or a sputtering method can be appropriately employed. Here, the wafer W placed on the recess 10 in the wafer placement process of placing the wafer W on the recess 10 will be described. 4A and 4B are diagrams schematically showing the state of the wafer W placed in the recess 10 in the wafer placing process. In the present embodiment, all steps constituting the recess 10 overlap the wafer W in plan view.
図4(a)に示すウエハ載置工程においては、凹部10を構成する複数の段のうち、周縁段11SにウエハWが支持されている。具体的には、周縁段11Sにおいて、平面視における凹部10の中心に近い端部である内周端11Seによって支持されている。すなわち、図4(a)に示すウエハ載置工程においては、ウエハWは、周縁段11Sの内周端11Seを除く他の底部10Bとは接触しない。
In the wafer mounting process shown in FIG. 4A, the wafer W is supported by the peripheral step 11S among the plurality of steps constituting the recess 10. Specifically, the peripheral step 11S is supported by an inner peripheral end 11Se that is an end portion close to the center of the concave portion 10 in plan view. That is, in the wafer mounting process shown in FIG. 4A, the wafer W does not come into contact with the other bottom 10B except for the inner peripheral end 11Se of the peripheral step 11S.
この場合、ウエハWと底部10Bとの間隔は、内周端11Se以外の部分においてウエハ全体に渡って略均一となる。従って、ウエハWを均一に加熱することが可能となり、その結果、ウエハWの温度ムラを抑制することができる。
In this case, the distance between the wafer W and the bottom portion 10B is substantially uniform over the entire wafer at portions other than the inner peripheral end 11Se. Accordingly, the wafer W can be uniformly heated, and as a result, temperature unevenness of the wafer W can be suppressed.
また、ウエハ載置工程において、図4(b)のようにウエハWを載置することも可能である。図4(b)は、中心段11Cを除く全ての段にウエハWが接触している。具体的には、ウエハWは、底部10Bを形成するそれぞれの段における内周端によって支持されている。
Also, in the wafer placing process, it is possible to place the wafer W as shown in FIG. In FIG. 4B, the wafer W is in contact with all the stages except the central stage 11C. Specifically, the wafer W is supported by the inner peripheral edge in each stage forming the bottom 10B.
このように、ウエハWをそれぞれの段の内周端にのみ接触させることによって、ウエハWと底部10Bとの接触面積を少なくすることが可能となる。また、それぞれの段の内周端は、平面視において円形状に形成されているため、ウエハWと内周端とが接触している部分に偏りやばらつきが起こらない。その結果、ウエハW全体に渡って均一に加熱することが可能となり、その結果、ウエハWの温度ムラを抑制することができる。
As described above, the contact area between the wafer W and the bottom portion 10B can be reduced by bringing the wafer W into contact with only the inner peripheral edge of each stage. In addition, since the inner peripheral edge of each step is formed in a circular shape in plan view, no deviation or variation occurs in the portion where the wafer W and the inner peripheral edge are in contact with each other. As a result, it becomes possible to uniformly heat the entire wafer W, and as a result, temperature unevenness of the wafer W can be suppressed.
(5)作用・効果
次に、本実施形態に係るサセプタ1の作用、及び効果について説明する。 (5) Action / Effect Next, the action and effect of thesusceptor 1 according to the present embodiment will be described.
次に、本実施形態に係るサセプタ1の作用、及び効果について説明する。 (5) Action / Effect Next, the action and effect of the
本実施形態によれば、サセプタ1は、炭化ケイ素によって形成されており、凹部10は、平面視において略円形状であるとともに、平面視における凹部10の中心を中心とした同心円状に設けられた複数の円環状の段によって形成されている底部10Bを有し、凹部10Bの周縁段11Sから凹部10Bの中心段11Cに向かうにつれて上面1aから底部10Bまでの深さが深くなるように形成されている。
According to the present embodiment, the susceptor 1 is formed of silicon carbide, and the recess 10 is substantially circular in a plan view, and is provided concentrically around the center of the recess 10 in a plan view. It has a bottom portion 10B formed by a plurality of annular steps, and is formed so that the depth from the top surface 1a to the bottom portion 10B becomes deeper from the peripheral step 11S of the recess 10B toward the center step 11C of the recess 10B. Yes.
これによれば、凹部10の底部10Bは、階段状に形成されているため、凹部10の底部を球面形状とする場合と比べて、標準的な研削治具Dを用いた加工法によって加工することができる。すなわち、加工が容易であるため、レンズ加工やボールエンドミル加工及び型彫り放電加工を用いる必要がない。その結果、低コストで大量生産が可能なサセプタ1を提供することが可能となる。
According to this, since the bottom portion 10B of the concave portion 10 is formed in a stepped shape, it is processed by a processing method using a standard grinding jig D as compared with the case where the bottom portion of the concave portion 10 is formed into a spherical shape. be able to. That is, since processing is easy, it is not necessary to use lens processing, ball end mill processing, and die-sinking electric discharge processing. As a result, it is possible to provide a susceptor 1 that can be mass-produced at low cost.
また、本実施形態のサセプタ1によれば、底部10Bの形状が、凹部10の周縁段11Sから中心段11Cへ向かうにつれて上面1aから底部10Bまでの深さが深くなる形状であり、且つ、底部10Bを形成する各段の上下方向の段差は0.01mm以下となるように形成されている。すなわち、各段の上下方向の段差を0.01mm以下とすることにより、曲線を直線補間し、球面形状のような底部10Bを形成することができる。その結果、ウエハ成膜工程において、ウエハWを均一に加熱することが可能となる。
Further, according to the susceptor 1 of the present embodiment, the shape of the bottom portion 10B is such that the depth from the top surface 1a to the bottom portion 10B increases toward the center step 11C from the peripheral step 11S of the recess 10 and the bottom portion The step in the vertical direction of each step forming 10B is formed to be 0.01 mm or less. That is, by making the vertical step of each step 0.01 mm or less, the curve 10 can be linearly interpolated to form the bottom portion 10B having a spherical shape. As a result, the wafer W can be uniformly heated in the wafer film forming process.
(6)実施例
次に、図面を参照して実施例を具体的に説明する。図5は、実施例に係る凹部20を示す図である。図6は、実施例に係る凹部30を示す図である。なお、図5及び6において示されている数値の単位はミリメートルである。 (6) Example Next, an Example is described concretely with reference to drawings. FIG. 5 is a diagram illustrating therecess 20 according to the embodiment. FIG. 6 is a diagram illustrating the recess 30 according to the embodiment. Note that the unit of numerical values shown in FIGS. 5 and 6 is millimeters.
次に、図面を参照して実施例を具体的に説明する。図5は、実施例に係る凹部20を示す図である。図6は、実施例に係る凹部30を示す図である。なお、図5及び6において示されている数値の単位はミリメートルである。 (6) Example Next, an Example is described concretely with reference to drawings. FIG. 5 is a diagram illustrating the
図5に示すサセプタ2は、上下方向の厚さが4mmである。また、サセプタ2に設けられている凹部20は、直径が152mm、サセプタ2の上面2aから周縁段21Sまでの上下方向の深さが0.8mmである。図5に示す凹部20の底部20Bは、10段に形成されている。底部20Bを形成する各段の上下方向の段差は0.003mmである。
The susceptor 2 shown in FIG. 5 has a vertical thickness of 4 mm. Further, the recess 20 provided in the susceptor 2 has a diameter of 152 mm, and the vertical depth from the upper surface 2a of the susceptor 2 to the peripheral step 21S is 0.8 mm. The bottom 20B of the recess 20 shown in FIG. 5 is formed in 10 steps. The step in the vertical direction of each step forming the bottom portion 20B is 0.003 mm.
また、上下方向及び左右方向の断面視において、底部20Bを形成する各段の左右方向の長さL(図5においては、2段目を一例としている)は、中心段21Cから周縁段21Sに向かうにつれて短くなるように形成されている。具体的には、図5に示すように、底部20Bを形成する各段の左右方向の長さLを比較した場合、中心段21Cの長さ21CL(平面視における中心段21Cの半径に相当する)は15mmで最も長く、周縁段21Sの長さ21SLが最も短く形成されている。
Further, in the vertical and horizontal cross-sectional views, the length L in the left-right direction of each step forming the bottom portion 20B (in FIG. 5, the second step is taken as an example) is changed from the center step 21C to the peripheral step 21S. It is formed to become shorter as it goes. Specifically, as shown in FIG. 5, when comparing the length L in the left-right direction of each step forming the bottom portion 20B, the length 21CL of the center step 21C (corresponding to the radius of the center step 21C in plan view). ) Is the longest at 15 mm, and the length 21SL of the peripheral step 21S is the shortest.
図6に示すサセプタ3は、上下方向の厚さが2mmである。また、サセプタ3に設けられている凹部30は、直径が102mm、サセプタ30の上面3aから周縁段31Sまでの上下方向の深さが0.7mmである。図6に示す凹部30の底部30Bは、7段に形成されている。底部30Bを形成する各段の上下方向の段差は0.006mmである。
The susceptor 3 shown in FIG. 6 has a vertical thickness of 2 mm. Further, the recess 30 provided in the susceptor 3 has a diameter of 102 mm, and a vertical depth from the upper surface 3a of the susceptor 30 to the peripheral step 31S is 0.7 mm. The bottom 30B of the recess 30 shown in FIG. 6 is formed in seven steps. The step in the vertical direction of each step forming the bottom portion 30B is 0.006 mm.
また、上下方向及び左右方向の断面視において、底部30Bを形成する各段の左右方向の長さL(図6においては、2段目を一例としている)は、中心段31Cから周縁段31Sに向かうにつれて短くなるように形成されている。具体的には、図6に示すように、底部30Bを形成する各段の左右方向の長さLを比較した場合、中心段31Cの長さ31CL(平面視における中心段31Cの半径に相当する)は10mmで最も長く、周縁段31Sの長さ31SLが最も短く形成されている。
Further, in the vertical and horizontal cross-sectional views, the length L in the horizontal direction of each step forming the bottom 30B (in FIG. 6, the second step is taken as an example) is changed from the center step 31C to the peripheral step 31S. It is formed to become shorter as it goes. Specifically, as shown in FIG. 6, when comparing the length L in the left-right direction of each step forming the bottom 30B, the length 31CL of the center step 31C (corresponding to the radius of the center step 31C in plan view). ) Is the longest at 10 mm, and the length 31SL of the peripheral step 31S is the shortest.
(7)その他の実施形態
上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例が明らかとなる。例えば、本発明の実施形態は、次のように変更することができる。 (7) Other Embodiments As described above, the contents of the present invention have been disclosed through the embodiments of the present invention. However, it is understood that the description and drawings constituting a part of this disclosure limit the present invention. Should not. From this disclosure, various alternative embodiments and examples will be apparent to those skilled in the art. For example, the embodiment of the present invention can be modified as follows.
上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例が明らかとなる。例えば、本発明の実施形態は、次のように変更することができる。 (7) Other Embodiments As described above, the contents of the present invention have been disclosed through the embodiments of the present invention. However, it is understood that the description and drawings constituting a part of this disclosure limit the present invention. Should not. From this disclosure, various alternative embodiments and examples will be apparent to those skilled in the art. For example, the embodiment of the present invention can be modified as follows.
図7に示すように、凹部の10の中央では、底部が球面形状であってもよい。具体的には、中心段11Cのみ、下面へ向かって凸となる球面形状であってもよい。中心段11Cが下面11bに向かう方向に凸となる球面形状であるため、ウエハWがたわんだ場合において、ウエハWとサセプタ10との間隔をウエハW全体に渡ってより均一にすることができる。また、中心段11Cの加工においては、中心段11Cの直径は凹部10の直径と比べて小さいため、加工時に用いられるダイヤモンド砥石を球形状のものに取り替えるだけで、球面形状の中心段を加工することができる。
As shown in FIG. 7, the bottom may be spherical at the center of the recess 10. Specifically, only the central step 11C may have a spherical shape that protrudes toward the lower surface. Since the central step 11C has a spherical shape that protrudes in the direction toward the lower surface 11b, the distance between the wafer W and the susceptor 10 can be made more uniform over the entire wafer W when the wafer W is bent. In the processing of the center step 11C, the diameter of the center step 11C is smaller than the diameter of the recess 10, so that the spherical center step is processed only by replacing the diamond grindstone used at the time of processing with a spherical one. be able to.
図8に示すように、底部10Bは、周縁段11Sから中心段11Cに向かうにつれて上面1aから底部10Bまでの深さが浅くなるように形成されていてもよい。すなわち、上下方向において、周縁段11Sが最も下面1b側に位置し、周縁段11Sから上面1aに向かって凸となる形状であってもよい。このように形成された凹部10においても、底部10Bが階段状に形成されているため、標準的な研削治具を用いた加工法によって容易に加工することができる。その結果、低コストで大量生産が可能なサセプタを提供することが可能となる。さらには、ウエハ成膜工程において、平面視におけるウエハ中心部が上下方向上側にたわむ場合においても、ウエハを均一に加熱することが可能となる。
As shown in FIG. 8, the bottom 10B may be formed so that the depth from the top surface 1a to the bottom 10B becomes shallower from the peripheral step 11S toward the center step 11C. That is, in the vertical direction, the peripheral step 11S may be positioned closest to the lower surface 1b and may be convex from the peripheral step 11S toward the upper surface 1a. Also in the recess 10 formed in this way, the bottom 10B is formed in a step shape, and therefore can be easily processed by a processing method using a standard grinding jig. As a result, it is possible to provide a susceptor that can be mass-produced at low cost. Furthermore, in the wafer film forming process, even when the wafer center portion in plan view is bent upward in the vertical direction, the wafer can be heated uniformly.
また、実施形態において、サセプタ1に設けられている凹部は4つであると説明したが、これに限られず1つの凹部が設けられた枚葉式サセプタであってもよい。サセプタ1に設けられる凹部の数は適宜設定することができる。
Further, in the embodiment, it has been described that there are four recesses provided in the susceptor 1, but the present invention is not limited to this, and a single-wafer type susceptor provided with one recess may be used. The number of recesses provided in the susceptor 1 can be set as appropriate.
また、底部10Bの段数は、実施例において説明した7段や10段に限られず、載置するウエハの大きさや特徴によって適宜設定することができる。
Further, the number of steps of the bottom portion 10B is not limited to the seven or ten steps described in the embodiment, and can be set as appropriate depending on the size and characteristics of the wafer to be placed.
また、実施例において、底部10Bを形成する複数の段における上下方向の段差は、統一されていたがこれに限られない。すなわち、上面から底部10Bまでの深さが深くなるにつれて上下方向の段差を大きくすることも可能である。反対に、上面から底部10Bまでの深さが深くなるにつれて上下方向の段差を小さくすることも可能である。段差の構成については、載置されるウエハの大きさや特徴によって適宜設定することができる。同様に、各段の左右方向の長さについても適宜設定することができる。
In the embodiment, the vertical steps in the plurality of steps forming the bottom portion 10B are unified, but the present invention is not limited to this. That is, the step in the vertical direction can be increased as the depth from the top surface to the bottom 10B increases. Conversely, the step in the vertical direction can be reduced as the depth from the top surface to the bottom 10B increases. About the structure of a level | step difference, it can set suitably according to the magnitude | size and characteristic of the wafer mounted. Similarly, the length of each step in the left-right direction can be set as appropriate.
このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。
Thus, it goes without saying that the present invention includes various embodiments that are not described herein. Therefore, the technical scope of the present invention is determined only by the invention specifying matters according to the scope of claims reasonable from the above description.
なお、日本国特許出願第2010-229449号(2010年10月12日出願)の全内容が、参照により、本願明細書に組み込まれている。
Note that the entire contents of Japanese Patent Application No. 2010-229449 (filed on Oct. 12, 2010) are incorporated herein by reference.
本発明によれば、底面が球面形状である凹部を有する支持体と同様に、ウエハを均一に加熱することができるとともに、低コストで大量生産が可能となる支持体、及びこの支持体を用いたウエハ成膜処理方法を提供することができる。
According to the present invention, similarly to a support having a concave portion with a spherical bottom surface, the support that can uniformly heat the wafer and can be mass-produced at low cost, and the support are used. The present wafer deposition method can be provided.
Claims (6)
- 半導体デバイス製造工程において用いられ、ウエハを載置する凹部が形成されている上面を有する支持体であって、
前記支持体は、炭化ケイ素によって形成されており、
前記凹部は、平面視において略円形状であるとともに、平面視における前記凹部の中心を中心とした同心円状に設けられた複数の円環状の段によって形成されている底部を有することを特徴とする支持体。 A support used in a semiconductor device manufacturing process and having a top surface on which a recess for mounting a wafer is formed,
The support is formed of silicon carbide;
The concave portion has a substantially circular shape in a plan view and has a bottom formed by a plurality of annular steps provided concentrically around the center of the concave portion in a plan view. Support. - 前記凹部の周縁部から前記凹部の中心に向かうにつれて前記上面から前記底部までの深さが深くなることを特徴とする請求項1に記載の支持体。 2. The support according to claim 1, wherein a depth from the upper surface to the bottom becomes deeper from a peripheral edge of the recess toward a center of the recess.
- 前記凹部の中央では、
前記底部が球面形状であることを特徴とする請求項1または2に記載の支持体。 In the center of the recess,
The support according to claim 1, wherein the bottom portion has a spherical shape. - ウエハを支持体に載置するウエハ載置工程と、
前記ウエハを成膜するウエハ成膜工程とを有するウエハ成膜処理方法であって、
前記支持体は、ウエハを載置する凹部が形成されている上面を有するとともに、炭化ケイ素によって形成されており、
前記凹部は、平面視において略円形状であるとともに、平面視における前記凹部の中心を中心とした同心円状に設けられた複数の円環状の段によって形成されている底部を有し、
前記凹部の周縁部から前記凹部の中心に向かうにつれて前記上面から前記底部までの深さが深くなり、
前記複数の円環状の段におけるそれぞれの段は、平面視における前記凹部の中心に近い端部である内周端を有し、
前記ウエハ載置工程において、平面視におけるウエハと重なる段のうち、少なくとも前記上面に最も近い段の内周端にウエハが接触することを特徴とするウエハ成膜処理方法。 A wafer mounting step of mounting the wafer on a support;
A wafer film forming process comprising: forming a wafer;
The support has a top surface on which a recess for mounting a wafer is formed, and is formed of silicon carbide,
The concave portion is substantially circular in plan view, and has a bottom formed by a plurality of annular steps provided concentrically around the center of the concave portion in plan view,
The depth from the upper surface to the bottom increases toward the center of the recess from the peripheral edge of the recess,
Each step in the plurality of annular steps has an inner peripheral end that is an end portion close to the center of the concave portion in plan view,
In the wafer placing step, the wafer is in contact with an inner peripheral end of at least a step closest to the upper surface among the steps overlapping with the wafer in plan view. - 前記ウエハ載置工程において、平面視におけるウエハと重なる段のうち、前記上面に最も近い段の内周端にのみウエハが接触することを特徴とする請求項4に記載のウエハ成膜処理方法。 5. The wafer film forming method according to claim 4, wherein, in the wafer placing step, the wafer contacts only the inner peripheral edge of the step closest to the upper surface among the steps overlapping with the wafer in plan view.
- 前記ウエハ載置工程において、平面視におけるウエハと重なる段のうち、複数の段の内周端にウエハが接触することを特徴とする請求項4に記載のウエハ成膜処理方法。 5. The wafer film forming method according to claim 4, wherein, in the wafer placing step, the wafer contacts an inner peripheral end of a plurality of steps among the steps overlapping with the wafer in plan view.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010229449A JP2012084683A (en) | 2010-10-12 | 2010-10-12 | Support and wafer film formation treating method |
JP2010-229449 | 2010-10-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012050117A1 true WO2012050117A1 (en) | 2012-04-19 |
Family
ID=45938345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/073403 WO2012050117A1 (en) | 2010-10-12 | 2011-10-12 | Supporting body and wafer film formation method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012084683A (en) |
WO (1) | WO2012050117A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014100024A1 (en) | 2014-01-02 | 2015-07-02 | Aixtron Se | Device for the arrangement of substrates, in particular susceptor of a CVD reactor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170032992A1 (en) * | 2015-07-31 | 2017-02-02 | Infineon Technologies Ag | Substrate carrier, a method and a processing device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5378765A (en) * | 1976-12-23 | 1978-07-12 | Toshiba Corp | Semiconductor wafer heating stand for gas phase growth |
JPS61215289A (en) * | 1985-03-19 | 1986-09-25 | Toshiba Mach Co Ltd | Vapor-phase growth apparatus |
-
2010
- 2010-10-12 JP JP2010229449A patent/JP2012084683A/en not_active Withdrawn
-
2011
- 2011-10-12 WO PCT/JP2011/073403 patent/WO2012050117A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5378765A (en) * | 1976-12-23 | 1978-07-12 | Toshiba Corp | Semiconductor wafer heating stand for gas phase growth |
JPS61215289A (en) * | 1985-03-19 | 1986-09-25 | Toshiba Mach Co Ltd | Vapor-phase growth apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014100024A1 (en) | 2014-01-02 | 2015-07-02 | Aixtron Se | Device for the arrangement of substrates, in particular susceptor of a CVD reactor |
Also Published As
Publication number | Publication date |
---|---|
JP2012084683A (en) | 2012-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI461570B (en) | Tray for CVD and film forming method using the same | |
JP4669476B2 (en) | Holder for supporting wafers during semiconductor manufacturing | |
CN107039330B (en) | Edge ring for thermal processing chamber | |
TWI694539B (en) | Substrate holding device and manufacturing method thereof | |
CN105765113A (en) | Epitaxial wafer growth apparatus | |
JP6494605B2 (en) | Susceptor with support element | |
JP6128198B1 (en) | Wafer double-side polishing method and epitaxial wafer manufacturing method using the same | |
KR20170012359A (en) | Thermal processing susceptor | |
CN211045385U (en) | Base seat | |
CN106796867A (en) | For the upper dome of EPI chambers | |
KR20150115821A (en) | Substrate support with controlled sealing gap | |
CN107407004B (en) | Lift pin and method for manufacturing same | |
WO2012050117A1 (en) | Supporting body and wafer film formation method | |
TWI650829B (en) | Wafer carrier tray and support structure thereof | |
CN109414799B (en) | Double-side grinding device | |
WO2020071308A1 (en) | Susceptor | |
JPWO2018207942A1 (en) | Susceptor, method for manufacturing epitaxial substrate, and epitaxial substrate | |
WO2021120189A1 (en) | Wafer susceptor and chemical vapor deposition equipment | |
TW202037753A (en) | Substrate holder for use in a cvd reactor | |
JP2010278196A (en) | Substrate holding jig | |
TW201332055A (en) | Susceptor | |
WO2017217309A1 (en) | Quartz glass member with increased exposed area, method for manufacturing same, and blade withi multiple peripheral cutting edges | |
KR101762123B1 (en) | Manufacturing method for hollow SiC structure | |
CN211992445U (en) | Chemical mechanical polishing pad | |
KR101671624B1 (en) | Forming mold for glass and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11832552 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11832552 Country of ref document: EP Kind code of ref document: A1 |