WO2011129554A2 - 고효율 연속변속장치 - Google Patents
고효율 연속변속장치 Download PDFInfo
- Publication number
- WO2011129554A2 WO2011129554A2 PCT/KR2011/002493 KR2011002493W WO2011129554A2 WO 2011129554 A2 WO2011129554 A2 WO 2011129554A2 KR 2011002493 W KR2011002493 W KR 2011002493W WO 2011129554 A2 WO2011129554 A2 WO 2011129554A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- regenerative
- hydraulic
- pump
- carrier
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H47/00—Combinations of mechanical gearing with fluid clutches or fluid gearing
- F16H47/02—Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
- F16H47/04—Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/02—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
- F16H37/06—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
- F16H37/08—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
- F16H37/10—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
- F16H2037/101—Power split variators with one differential at each end of the CVT
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/20—Transmissions using gears with orbital motion
- F16H2200/2002—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
- F16H2200/2007—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
Definitions
- the present invention relates to a high efficiency continuous transmission device, and more particularly, as a type of continuously variable transmission, a high efficiency continuous speed shifting operation is easily performed using a planetary gear, a hydraulic pump, a hydraulic motor, and a flow control valve. Relates to a device.
- the continuously variable transmission is a device that can continuously change the rotational speed of the engine without a step, and the engine is operated in the region with the highest efficiency, improving fuel economy, and no impact due to the change in the number of stages. There is an advantage.
- CVT is mainly composed of driving pulley, driven pulley, high tension belt connected between drive and driven pulley, and continuous stepless transmission is achieved by these configurations. Much research has been done on the method of adjustment and actual product has been made.
- a traction type continuous increase / deceleration ratio adjusting apparatus is as follows.
- Conventional traction-type continuous increase / deceleration ratio adjusting device is a kind of continuously variable transmission, and the rotation speed is increased or decreased by the difference between the radius Rin of the input shaft 11 and the radius Rout of the output shaft 12, and the cone
- the increase / deceleration ratio can be continuously changed. It is structured.
- the conventional continuous increase / deceleration ratio adjusting device as described above cannot transmit high rotational power because it transmits power by friction at the surface where the cone 13 is contacted, it is difficult to process the contact surface, and it is difficult to obtain a high reduction ratio.
- the largest transmission ratio can be made only by the difference in the cone angle.
- the belt-type continuous increase / deceleration ratio adjusting apparatus will be briefly described as follows.
- Conventional belt type continuous gear ratio adjustment device is also a kind of continuously variable speed gear, and the variable pulleys (23, 24) having variable widths are mounted on two shafts (21, 22), respectively, so that the width of the variable pulleys (23, 24) can be adjusted. It is designed to continuously change the radius of rotation transmitted by changing, thereby obtaining a continuous increase / deceleration ratio.
- the conventional belt-type continuous increase / deceleration ratio adjusting device as described above requires a separate device for shifting the width of the variable pulleys 23 and 24, and its rotation radius cannot be reduced indefinitely, so that the reduction ratio is not large and the belt of high tension It is difficult to transfer the high rotational power because the 25 continuously produces variations in the rotation radius along with a slip phenomenon that slides along the surfaces of the variable pulleys 23 and 24.
- the present invention has been studied in order to solve the above problems, using the input planetary gear device and regenerative planetary gear device, high transmission power from the infinite gear ratio to the gear ratio possible due to the characteristics of the planetary gear Can be continuously shifted, and the hydraulic motor is driven by the discharge oil pressure of the hydraulic pump connected to the input planetary gear device to regenerate the rotational force of the output stage, but continuously according to the flow rate discharged from the hydraulic pump by the operation of the flow control valve. It is an object of the present invention to provide a high-efficiency continuous transmission that allows shifting.
- a high efficiency continuous transmission device for achieving the above object includes: a first planetary input including a first sun gear and a first carrier having a first ring gear and a first planetary gear A gear device; A second planetary gear device for regeneration including a second carrier gear and a second carrier having a second ring gear and a second planetary gear; An intermediate gear meshing with the first ring gear and the second ring gear at the same time; An input shaft connected to the intermediate gear; An output shaft connected to the first sun gear and the second sun gear; A pump drive gear connected to the first carrier of the first planetary gear device; A pump drive idle gear meshing with the pump drive gear; A pump gear engaged with the pump drive idle gear; A hydraulic pump for pumping hydraulic oil by driving of the pump gear; A regenerative hydraulic motor connected to the hydraulic pump and a hydraulic line to operate when the hydraulic pump is driven; A regenerative output gear connected to the second carrier of the regenerative second planetary gear device; A regenerative idle gear gear meshed with the re
- a high efficiency continuous transmission device for achieving the above object includes: a first planetary input including a first sun gear and a first carrier having a first ring gear and a first planetary gear A gear device; A second planetary gear device for regeneration including a second carrier gear and a second carrier having a second ring gear and a second planetary gear; An intermediate gear meshing with the first ring gear and the second ring gear at the same time; An input shaft connected to the intermediate gear; A transmission gear to which the first carrier and the second carrier are simultaneously connected; An output gear meshed with the transmission gear and connected to the output shaft; A pump drive gear connected to the first sun gear of the first planetary gear device; A pump drive idle gear meshing with the pump drive gear; A pump gear engaged with the pump drive idle gear; A hydraulic pump for pumping hydraulic oil by driving of the pump gear; A regenerative hydraulic motor connected to the hydraulic pump and a hydraulic line to operate when the hydraulic pump is driven; A regenerative output gear connected to the second sun gear of the regenerative
- a high efficiency continuous transmission device for achieving the above object includes: a first planetary input including a first sun gear and a first carrier having a first ring gear and a first planetary gear A gear device; A second planetary gear device for regeneration including a second carrier gear and a second carrier having a second ring gear and a second planetary gear; A second intermediate gear connected to the first carrier and the second carrier at the same time; An input shaft engaged with the second mediated gear and connected to the first mediated gear; A transmission gear connected to the first ring gear and the second ring gear at the same time; An output gear meshed with the transmission gear and connected to the output shaft; A pump drive gear connected to the first sun gear of the first planetary gear device; A pump drive idle gear meshing with the pump drive gear; A pump gear engaged with the pump drive idle gear; A hydraulic pump for pumping hydraulic oil by driving of the pump gear; A regenerative hydraulic motor connected to the hydraulic pump and a hydraulic line to operate when the hydraulic pump is driven; A regenerative output gear
- a high efficiency continuous transmission device for achieving the above object includes: a first planetary input including a first sun gear and a first carrier having a first ring gear and a first planetary gear A gear device; A second planetary gear device for regeneration including a second carrier gear and a second carrier having a second ring gear and a second planetary gear; A second intermediate gear connected to the first carrier and the second carrier at the same time; An input shaft engaged with the second mediated gear and connected to the first mediated gear; An output shaft to which the first sun gear and the second sun gear are simultaneously connected; A pump drive gear connected to the first ring gear of the first planetary gear device; A pump drive idle gear meshing with the pump drive gear; A pump gear engaged with the pump drive idle gear; A hydraulic pump for pumping hydraulic oil by driving of the pump gear; A regenerative hydraulic motor connected to the hydraulic pump and a hydraulic line to operate when the hydraulic pump is driven; A regenerative output gear connected to the second ring gear of the regenerative second planetary gear device;
- the flow rate control valve is installed in the hydraulic supply line between the hydraulic pump and the regenerative hydraulic motor to control the flow rate of the regenerative hydraulic motor to obtain a continuous stepless speed ratio.
- the hydraulic discharge line between the regenerative hydraulic motor and the hydraulic pump is characterized in that the relief valve is connected to the hydraulic supply line to correct the flow rate and pressure difference.
- the flow rate control valve is installed in the hydraulic supply line between the hydraulic pump and the regenerative hydraulic motor to control the flow rate of the regenerative hydraulic motor to obtain a continuous stepless speed ratio.
- the hydraulic discharge line between the hydraulic motor and the hydraulic pump is characterized in that the relief valve is connected to the hydraulic supply line to correct the flow rate and pressure difference.
- Flow rate control is characterized by using a variable hydraulic pump, and using a variable hydraulic motor to achieve a rotational speed corresponding to the speed of the output shaft using the discharged flow rate.
- the present invention provides the following effects.
- the rotational force is input to any one element of the sun gear, the carrier including the planetary gear, and the ring gear in the configuration of the input planetary gear device, the rotation speed by connecting the hydraulic pump and the flow control valve to the other element And the rotational force is output through the other element, so that the continuous shifting by the input planetary gear device is easily performed, and the shifting of high loads is easily performed by adjusting the hydraulic lift by the hydraulic pump and the flow control valve. Can be done.
- 1 is a schematic view showing an example of a conventional continuously variable transmission
- Figure 2 is a schematic diagram showing another example of a conventional continuously variable transmission
- FIG. 3 is a schematic diagram illustrating the principle of the planetary gear
- Figure 4 is a power transmission system showing a first embodiment of a high efficiency continuous transmission according to the present invention
- FIG. 5 is a cross-sectional view of a continuous transmission configured using the power transmission system diagram of FIG.
- FIG. 6 is a power transmission system showing a second embodiment of a high efficiency continuous transmission according to the present invention.
- FIG. 7 is a power transmission system showing a third embodiment of the high efficiency continuous transmission apparatus according to the present invention.
- FIG. 8 is a power transmission system showing a fourth embodiment of the high efficiency continuous transmission according to the present invention.
- FIG. 9 is a power transmission system showing a fifth embodiment of the high efficiency continuous transmission apparatus according to the present invention.
- FIG. 10 is a power transmission system diagram showing a sixth embodiment of a high efficiency continuous transmission apparatus according to the present invention.
- first ring gear 106 first planetary gear
- first carrier 110 input first planetary gear device
- first intermediate gear 126b second intermediate gear
- hydraulic pump 140 regenerative hydraulic motor
- the planetary gear device G shown in FIG. 3 is composed of three gear elements including a sun gear 32, a planetary gear carrier 35 (hereinafter referred to as a carrier) provided with a planetary gear 33, and a ring gear 34.
- a carrier planetary gear carrier
- FIG. One of the three gear elements is connected to the input side (drive side), the other to the output side, and the other is a fixed element.
- the rotational direction and the rotation speed of the output shaft change as the role of the three gear elements is changed due to the characteristic of the planetary gear G.
- Table 1 below shows the gear ratio and rotation direction according to the role change of the three gear elements included in the planetary gear device (G).
- the present invention utilizes the principle of the planetary gear device as described above, and adopts the first planetary gear device for input and the second planetary gear device for regenerative, and the rotational speed of the fixed side gear element hydraulic pump and hydraulic motor or flow control It is characterized by the adjustment using a valve.
- the hydraulic pump discharges oil proportionally according to the input rotational speed of the hydraulic pump.
- the hydraulic pump is to control the rotation speed of the fixed gear element of the input planetary gear device.
- the present invention includes: i) a gear element of three planetary gear devices including an input first planetary gear device and a regenerative second planetary gear device, and a sun gear, a carrier, and a ring gear of the first planetary gear device for input; Rotational power is input to any one of the elements, the other rotational element is the input rotational power is output, the other element is connected to the hydraulic pump; ii) The hydraulic motor rotated by the oil discharged from the hydraulic pump connected to the input first planetary gear device is connected to the regenerative second planetary gear device, and the hydraulic motor discharged from the hydraulic pump at the input end is connected to the hydraulic motor at the output end.
- the hydraulic circuit connecting the hydraulic pump and the hydraulic motor is provided with a flow control valve for controlling the oil volume from the hydraulic pump and a relief valve for compensating the difference between the flow rate and pressure of the hydraulic pump and the hydraulic motor.
- Continuous shifting is made according to the flow rate discharged from the hydraulic pump by the operation of or by using a variable hydraulic motor instead of the flow control valve and the relief valve to make a continuous shift;
- An object of the present invention is to provide a high efficiency continuous transmission device.
- FIG. 4 is a power transmission system diagram showing a first embodiment of the high efficiency continuous transmission apparatus according to the present invention
- FIG. 5 is a cross-sectional view of the continuous transmission apparatus constructed using the power transmission system diagram of FIG.
- the input shaft is connected to the sun gear
- the carrier is connected to the output shaft
- the fixed gear element is a ring gear
- a continuous transmission device includes an input first including a first carrier (108) having a first sun gear (102), a first ring gear (104), and a first planetary gear (106).
- the second planetary gear device 120 for regeneration including a planetary gear device 110 and a second carrier 118 having a second sun gear 112, a second ring gear 114, and a second planetary gear 116. ) Is combined, and the input shaft 100 extending from the crankshaft of the engine is simultaneously connected to the first and second sun gears 102 and 112.
- the first carrier 108 and the second carrier 118 are integrally connected to each other, and the transmission gear 122 is connected to an externally connected outer diameter thereof.
- an output gear 124 is engaged with the transmission gear 122, and an output shaft 130 is connected to the output gear 124.
- a pump drive gear 132 is connected to the first ring gear 104, which is a fixed side gear element of the first planetary gear device 110, and a pump drive idle gear 134 is connected to the pump drive gear 132. Is engaged, and the pump gear 136 is meshed with the pump drive idle gear 134.
- the shaft of the pump gear 136 is connected to the regenerative hydraulic pump 138 that operates while pumping hydraulic oil from the oil pan 156 by the driving of the pump gear 136.
- a regenerative output gear 146 is connected to the second ring gear 114, which is a fixed side gear element of the regenerative second planetary gear device 120, and the regenerative output gear 146 is connected to the regenerative idle gear.
- the gear 144 meshes with the regenerative input gear 142 in the regenerative idle gear 144.
- the regenerative input gear 142 is connected to the output shaft of the regenerative hydraulic motor 140, and receives the rotational power.
- the hydraulic pump 138 and the regenerative hydraulic motor 140 is connected by the hydraulic supply line 152 to supply the hydraulic pressure from the hydraulic pump 138 to the regenerative hydraulic motor 140, at the same time for regenerative
- the hydraulic discharge line 154 is connected between the hydraulic motor 140 and the oil pan 156 to return the flow rate used in the hydraulic motor 140.
- the hydraulic supply line 152 between the hydraulic pump 138 and the regenerative hydraulic motor 140 has a flow control valve ( 160 is installed, the relief valve 162 is installed in the hydraulic discharge line 154 between the regenerative hydraulic motor 140 and the hydraulic pump 138, the relief valve is a hydraulic motor 140 and hydraulic In order to correct the difference between the flow rate and the pressure between the pumps (138) serves to supply a partial return flow rate to the hydraulic supply line (152).
- the operation flow for the continuous transmission apparatus according to the first embodiment is as follows.
- the first sun gear 102 of the first planetary gear device 110 When the rotational power transmitted from the input shaft 100 is input to the first sun gear 102 of the first planetary gear device 110 for input and the second sun gear 112 of the second planetary gear device 120, the first sun gear The first and second planetary gears 106 and 116, which are rotated at the same speed as the 102 and the second sun gear 112, are engaged with the outer circumferences of the first and second sun gears 102 and 112, respectively. Rotation and idle rotation are performed along the second ring gears 104 and 114.
- the first and second carriers 108 and 118 integrated with the first and second planetary gears 106 and 116 rotate, and the transmission gear 122 connected to the outer diameters of the first and second carriers 108 and 118, respectively. And through the output gear 124 meshed with the transmission gear 122, the output to the output shaft 130 is made.
- the first ring gear 104 which is the fixed side gear element of the first planetary gear device 110
- the second ring gear 114 which is the fixed side gear element of the second planetary gear device 120
- the hydraulic oil pumped from the oil pan 156 by the driving of the hydraulic pump 138 is supplied to the regenerative hydraulic motor 140 along the hydraulic supply line 152 to drive the regenerative hydraulic motor 140.
- the hydraulic oil exiting the hydraulic motor 140 is returned to the oil pan 156 along the hydraulic discharge line 154.
- the flow rate control of the hydraulic oil supplied to the regenerative hydraulic motor 140 by the flow control valve 160 installed in the hydraulic supply line 152 is made, along the hydraulic discharge line 154 to the oil pan 156.
- the relief valve 162 As a part of the returned hydraulic oil is supplied to the hydraulic supply line 152 through the relief valve 162, compensation for the flow rate and pressure difference between the hydraulic motor 140 and the hydraulic pump 138 is performed.
- the hydraulic pump 138 is driven by the rotation of the first ring gear 104 to discharge hydraulic oil in proportion to the input rotational speed of the hydraulic pump 138.
- the flow control valve 160 By controlling the discharge flow rate of the hydraulic oil in the), the hydraulic pump 138 eventually serves to control the rotational speed of the first ring gear 104, which is a fixed side gear element.
- the rotation speed of the first ring gear 104 is varied and the rotation speed of the first planetary gear 106 is also varied.
- the rotation of the first carrier 108 connected to the output shaft 130 is adjusted, and the shift of the output shaft 130 is freely made.
- the first planetary gear 106 is controlled by the discharge flow rate of the hydraulic pump 138 and the flow rate control by the flow control valve 160 to increase the rotation speed of the first ring gear 104.
- the first carrier gear 108 and the first carrier 108 under the control that the output shaft 130 rotates at high speed and the rotation speed of the first ring gear 104 is decreased.
- the number of revolutions of 108 decreases so that various speed changes are continuously performed, such as the output shaft 130 rotates at a low speed.
- the rotation speed of the first ring gear 104 is controlled by the hydraulic pump 138 and the flow control valve 160, and the rotational force is added or outputted through the first carrier 108, thereby enabling continuous shifting.
- the hydraulic pump 138 and the flow control valve 160 In accordance with the increase in the hydraulic pressure, it is possible to easily change the speed of the high load.
- the hydraulic motor 140 is driven by the flow rate discharged from the hydraulic pump 138 and passed through the flow control valve 160, the rotational power of the hydraulic motor 140 at this time is the regenerative input gear 142 At the same time the rotation direction is made in the regenerative idle gear 144 at the same time, it is transmitted to the regenerative output gear 146.
- the rotational force of the regenerative output gear 146 acts on the second ring gear 114 of the regenerative second planetary gear device 120 connected coaxially, thereby accelerating rotation of the second ring gear 114. You lose.
- the output is made through the first carrier 108 and the second carrier 118 as described above, and the hydraulic motor 140 of the output stage receives the hydraulic energy discharged from the hydraulic pump 138 to receive the rotational force.
- the rotational force of the second ring gear 114 is transmitted to the second planetary gear 116 and the second carrier 118, and is connected to the second carrier 118. High efficiency and high load power transmission to the output shaft 130 is made.
- FIG. 6 is a power transmission system diagram showing a second embodiment of a high efficiency continuous transmission according to the present invention.
- the input shaft is connected to the sun gear
- the ring gear is connected to the output shaft
- the fixed gear element is a carrier
- a continuous transmission device also includes an input first including a first carrier 108 having a first sun gear 102, a first ring gear 104, and a first planetary gear 106.
- the second planetary gear device 120 for regeneration including a planetary gear device 110 and a second carrier 118 having a second sun gear 112, a second ring gear 114, and a second planetary gear 116. ) Is combined, and the input shaft 100 extending from the crankshaft of the engine is simultaneously connected to the first and second sun gears 102 and 112.
- the transmission gear 122 is connected to the first ring gear 104 and the second ring gear 114 at the same time, the output gear 124 is meshed with the transmission gear 122, the output gear 124
- the output shaft 130 is connected coaxially.
- a pump drive gear 132 is connected to the first carrier 108, which is a fixed side gear element of the first planetary gear device 110, and a pump drive idle gear 134 is connected to the pump drive gear 132.
- the gear gear 136 is also engaged with the pump drive idle gear 134.
- the shaft of the pump gear 136 is connected to the regenerative hydraulic pump 138 that operates while pumping hydraulic oil from the oil pan 156 by the driving of the pump gear 136.
- a regenerative output gear 146 is connected to the second carrier 118, which is a fixed side gear element of the regenerative second planetary gear device 120, and a regenerative idle gear is connected to the regenerative output gear 146.
- 144 is meshed with the regenerative input gear 142 to the regenerative idle gear 144.
- the regenerative input gear 142 is connected to the output shaft of the regenerative hydraulic motor 140, and receives the rotational power.
- the hydraulic supply line 152 to supply the hydraulic pressure from the hydraulic pump 138 to the regenerative hydraulic motor 140.
- the regenerative hydraulic motor 140 and the oil pan 156 is connected to the hydraulic discharge line 154 to return the flow rate used in the hydraulic motor 140.
- the hydraulic supply line 152 between the hydraulic pump 138 and the regenerative hydraulic motor 140 has a flow control valve ( 160 is installed, the relief valve 162 is installed in the hydraulic discharge line 154 between the regenerative hydraulic motor 140 and the hydraulic pump 138, the relief valve is a hydraulic motor 140 and hydraulic In order to correct the difference between the flow rate and the pressure between the pumps (138) serves to supply a partial return flow rate to the hydraulic supply line (152).
- the first sun gear 102 of the first planetary gear device 110 When the rotational power transmitted from the input shaft 100 is input to the first sun gear 102 of the first planetary gear device 110 for input and the second sun gear 112 of the second planetary gear device 120, the first sun gear The first and second planetary gears 106 and 116, which are rotated at the same speed as the 102 and the second sun gear 112, are engaged with the outer circumferences of the first and second sun gears 102 and 112, respectively. The first and second ring gears 104 and 114 are rotated while rotating and rotating along the second ring gears 104 and 114.
- the first carrier 108 which is the fixed side gear element of the first planetary gear device 110 and the second carrier 118 that is the fixed side gear element of the second planetary gear device 120 are separate brakes. Since it is not constrained by the rotational force, the rotational force of the first and second planetary gears 106 and 116 is transmitted.
- the rotational force of the first carrier 108 is transmitted to the pump drive gear 132 and at the same time the rotational direction is changed in the pump drive idle gear 134 to transmit the rotational force to the pump gear 136, thereby, the pump gear A hydraulic pump 138 coaxially connected with 136 is driven.
- the hydraulic oil pumped from the oil pan 156 by the driving of the hydraulic pump 138 is supplied to the regenerative hydraulic motor 140 along the hydraulic supply line 152 to drive the regenerative hydraulic motor 140.
- the hydraulic oil exiting the hydraulic motor 140 is returned to the oil pan 156 along the hydraulic discharge line 154.
- the flow rate control of the hydraulic oil supplied to the regenerative hydraulic motor 140 by the flow control valve 160 installed in the hydraulic supply line 152 is made, along the hydraulic discharge line 154 to the oil pan 156.
- the relief valve 162 As a part of the returned hydraulic oil is supplied to the hydraulic supply line 152 through the relief valve 162, compensation for the flow rate and pressure difference between the hydraulic motor 140 and the hydraulic pump 138 is performed.
- the hydraulic pump 138 is driven by the rotation of the first carrier 108 to discharge hydraulic oil proportionally according to the input rotational speed of the hydraulic pump 138, but the flow control valve 160 By controlling the discharge flow rate of the hydraulic oil in, the hydraulic pump 138 eventually serves to control the rotational speed of the first carrier 108, which is a fixed side gear element.
- the rotation speed of the first carrier 108 is varied and the rotation speed of the first planetary gear 106 is also varied.
- the rotation speed of the first ring gear 104 connected to the output shaft 130 is adjusted, the shift to the output shaft 130 is freely made.
- the first planetary gear 106 is controlled by the discharge flow rate of the hydraulic pump 138 and the flow rate control by the flow control valve 160 to increase the rotation speed of the first carrier 108. And the first planetary gear 106 and the first ring gear when the output shaft 130 rotates at high speed and the rotation speed of the first carrier 108 is reduced. The rotational speed of the 104 is reduced so that various speed changes are continuously performed, such as the output shaft 130 rotates at a low speed.
- the rotational speed of the first carrier 108 is controlled by the hydraulic pump 138 and the flow control valve 160, and the rotational force is added or outputted through the first ring gear 104, thereby enabling continuous shifting.
- the hydraulic pump 138 and the flow control valve 160 In accordance with the increase in the hydraulic pressure, it is possible to easily change the speed of the high load.
- the hydraulic motor 140 is driven by the flow rate discharged from the hydraulic pump 138 and passed through the flow control valve 160, the rotational power of the hydraulic motor 140 at this time is the regenerative input gear 142 At the same time the rotation direction is made in the regenerative idle gear 144 at the same time, it is transmitted to the regenerative output gear 146.
- the rotational force of the regenerative output gear 146 acts on the second carrier 118 of the regenerative second planetary gear device 120 which is coaxially connected, thereby accelerating rotation of the second carrier 118. .
- the output is made through the first and second ring gears 104 and 114 as described above, and the hydraulic motor 140 of the output stage receives the hydraulic energy discharged from the hydraulic pump 138 to reproduce the rotational force.
- the rotational force of the second carrier 118 is eventually transmitted to the second planetary gear 116 and the second ring gear 114, which is connected to the second ring gear 114 High efficiency and high load power transmission to the output shaft 130 is made.
- FIG. 7 is a power transmission system diagram showing a third embodiment of the high efficiency continuous transmission apparatus according to the present invention.
- the input shaft is connected to the ring gear
- the sun gear is connected to the output shaft
- the fixed side gear element is a carrier
- a continuous transmission device also includes an input first including a first carrier 108 having a first sun gear 102, a first ring gear 104, and a first planetary gear 106.
- the second planetary gear device 120 for regeneration including a planetary gear device 110 and a second carrier 118 having a second sun gear 112, a second ring gear 114, and a second planetary gear 116. ) Is combined, and the input shaft 100 extending from the crankshaft of the engine is simultaneously connected to the first and second ring gears 104 and 114.
- first ring gear 104 and the second ring gear 114 is connected to the input shaft 100 through the intermediate gear 126, the output shaft to the first sun gear 102 and the second sun gear 112. 130 is directly connected.
- the pump drive gear 132 is connected to the first carrier 108, which is the fixed side gear element of the first planetary gear device 110, and the pump drive gear 132 is connected to the pump drive.
- the idle gear 134 is engaged, and the pump gear 136 is also engaged with the pump drive idle gear 134.
- the shaft of the pump gear 136 is connected to the regenerative hydraulic pump 138 that operates while pumping hydraulic oil from the oil pan 156 by the driving of the pump gear 136.
- a regenerative output gear 146 is connected to the second carrier 118, which is a fixed side gear element of the regenerative second planetary gear device 120, and a regenerative idle gear is connected to the regenerative output gear 146.
- 144 is meshed with the regenerative input gear 142 to the regenerative idle gear 144.
- the regenerative input gear 142 is connected to the output shaft of the regenerative hydraulic motor 140, and receives the rotational power.
- the hydraulic pump 138 and the regenerative hydraulic motor 140 are provided by the hydraulic supply line 152 to supply the hydraulic pressure from the hydraulic pump 138 to the regenerative hydraulic motor 140. Is connected, and at the same time between the regenerative hydraulic motor 140 and the oil pan 156 is connected to the hydraulic discharge line 154 to return the flow rate used in the hydraulic motor 140.
- the hydraulic supply line 152 between the hydraulic pump 138 and the regenerative hydraulic motor 140 has a flow control valve ( 160 is installed, the relief valve 162 is installed in the hydraulic discharge line 154 between the regenerative hydraulic motor 140 and the hydraulic pump 138, the relief valve is a hydraulic motor 140 and hydraulic In order to correct the difference between the flow rate and the pressure between the pumps (138) serves to supply a partial return flow rate to the hydraulic supply line (152).
- the operation flow for the continuous transmission apparatus according to the third embodiment is as follows.
- the rotational force transmitted from the input shaft 100 passes through the intermediate gear 126 to the first ring gear 104 of the first planetary gear device 110 for input and the second ring gear of the second planetary gear device 120 ( If the first ring gear 104 and the second ring gear 114 are rotated at the same speed, the first and second ring gears 104 and 114 are engaged with the inner circumferences of the first and second ring gears 104 and 114, respectively.
- the planetary gears 106 and 116 rotate the first and second sun gears 102 and 112 while rotating and revolving along the first and second ring gears 104 and 114.
- the rotational force of the first and second planetary gears 106 and 116 is output to the output shaft 130 through the first and second sun gears 102 and 112.
- the first carrier 108 which is the fixed side gear element of the first planetary gear device 110 and the second carrier 118 that is the fixed side gear element of the second planetary gear device 120 are separate brakes. Since it is not constrained by the rotational force, the rotational force of the first and second planetary gears 106 and 116 is transmitted.
- the rotational force of the first carrier 108 is transmitted to the pump drive gear 132 and at the same time the rotational direction is changed in the pump drive idle gear 134 to transmit the rotational force to the pump gear 136, thereby, the pump gear A hydraulic pump 138 coaxially connected with 136 is driven.
- the hydraulic oil pumped from the oil pan 156 by the driving of the hydraulic pump 138 is supplied to the regenerative hydraulic motor 140 along the hydraulic supply line 152 to drive the regenerative hydraulic motor 140.
- the hydraulic oil exiting the hydraulic motor 140 is returned to the oil pan 156 along the hydraulic discharge line 154.
- the flow rate control of the hydraulic oil supplied to the regenerative hydraulic motor 140 by the flow control valve 160 installed in the hydraulic supply line 152 is made, along the hydraulic discharge line 154 to the oil pan 156.
- the relief valve 162 As a part of the returned hydraulic oil is supplied to the hydraulic supply line 152 through the relief valve 162, compensation for the flow rate and pressure difference between the hydraulic motor 140 and the hydraulic pump 138 is performed.
- the hydraulic pump 138 is driven by the rotation of the first carrier 108 to discharge hydraulic oil proportionally according to the input rotational speed of the hydraulic pump 138, but the flow control valve 160 By controlling the discharge flow rate of the hydraulic oil in, the hydraulic pump 138 eventually serves to control the rotational speed of the first carrier 108, which is a fixed side gear element.
- the rotation speed of the first carrier 108 is varied and the rotation speed of the first planetary gear 106 is also varied.
- the rotation speed of the first sun gear 102 connected to the output shaft 130 is adjusted, the shift of the output shaft 130 is freely made.
- the first planetary gear 106 is controlled by the discharge flow rate of the hydraulic pump 138 and the flow rate control by the flow control valve 160 to increase the rotation speed of the first carrier 108. And the first planetary gear 106 and the first sun gear 102 under the control of the rotation speed of the first sun gear 102 increased and the output shaft 130 rotating at a high speed, and the rotation speed of the first carrier 108 reduced. Rotational speed of the output shaft 130 is rotated at a low speed such that a variety of speed changes are made continuously.
- the rotation speed of the first carrier 108 is controlled by the hydraulic pump 138 and the flow control valve 160, and the rotational force is added or decreased through the first sun gear 102, thereby allowing continuous shifting.
- the increase in the hydraulic pressure can be made easily the speed change.
- the hydraulic motor 140 is driven by the flow rate discharged from the hydraulic pump 138 and passed through the flow control valve 160, the rotational power of the hydraulic motor 140 at this time is the regenerative input gear 142 At the same time the rotation direction is made in the regenerative idle gear 144 at the same time, it is transmitted to the regenerative output gear 146.
- the rotational force of the regenerative output gear 146 acts on the second carrier 118 of the regenerative second planetary gear device 120 which is coaxially connected, thereby accelerating rotation of the second carrier 118. .
- the output is made through the first and second sun gears 102 and 112 as described above, and the hydraulic motor 140 at the output stage receives the hydraulic energy discharged from the hydraulic pump 138 to regenerate the rotational force to generate the second rotational force.
- the rotational force of the second carrier 118 is eventually transmitted to the second planetary gear 116 and the second sun gear 112, the output shaft 130 is connected to the second sun gear 112 High efficiency and high load power transmission is achieved.
- FIG. 8 is a power transmission system diagram showing a fourth embodiment of the high efficiency continuous transmission apparatus according to the present invention.
- the input shaft is connected to the ring gear
- the carrier is connected to the output shaft
- the fixed gear element is a sun gear
- a continuous transmission device also includes an input first including a first carrier 108 having a first sun gear 102, a first ring gear 104, and a first planetary gear 106.
- the second planetary gear device 120 for regeneration including a planetary gear device 110 and a second carrier 118 having a second sun gear 112, a second ring gear 114, and a second planetary gear 116. ) Is combined, and the input shaft 100 extending from the crankshaft of the engine is simultaneously connected to the first and second ring gears 104 and 114.
- the first ring gear 104 and the second ring gear 114 are connected to the input shaft 100 through the intermediate gear 126, and the transmission gear (1) to the first carrier 108 and the second carrier 118 122 is connected at the same time, the output gear 124 is engaged with the transmission gear 122 and the output shaft 130 is connected to the output gear 124.
- the pump drive gear 132 is connected to the first sun gear 102, which is the fixed side gear element of the first planetary gear device 110, and the pump drive idle gear 134 is connected to the pump drive gear 132.
- the gear gear 136 is also engaged with the pump drive idle gear 134.
- the shaft of the pump gear 136 is connected to the regenerative hydraulic pump 138 that operates while pumping hydraulic oil from the oil pan 156 by the driving of the pump gear 136.
- a regenerative output gear 146 is connected to the second sun gear 112, which is a fixed side gear element of the regenerative second planetary gear device 120, and a regenerative idle gear is connected to the regenerative output gear 146.
- 144 is meshed with the regenerative input gear 142 to the regenerative idle gear 144.
- the regenerative input gear 142 is connected to the output shaft of the regenerative hydraulic motor 140, and receives the rotational power.
- the hydraulic supply line 152 to supply the hydraulic pressure from the hydraulic pump 138 to the regenerative hydraulic motor 140.
- the regenerative hydraulic motor 140 and the oil pan 156 is connected to the hydraulic discharge line 154 to return the flow rate used in the hydraulic motor 140.
- the hydraulic supply line 152 between the hydraulic pump 138 and the regenerative hydraulic motor 140 has a flow control valve ( 160 is installed, the relief valve 162 is installed in the hydraulic discharge line 154 between the regenerative hydraulic motor 140 and the hydraulic pump 138, the relief valve is a hydraulic motor 140 and hydraulic In order to correct the difference between the flow rate and the pressure between the pumps (138) serves to supply a partial return flow rate to the hydraulic supply line (152).
- the operation flow for the continuous transmission device according to the fourth embodiment is as follows.
- the rotational force transmitted from the input shaft 100 passes through the intermediate gear 126 to the first ring gear 104 of the first planetary gear device 110 for input and the second ring gear of the second planetary gear device 120 ( If the first ring gear 104 and the second ring gear 114 are rotated at the same speed, the first and second ring gears 104 and 114 are engaged with the inner circumferences of the first and second ring gears 104 and 114, respectively.
- the planetary gears 106 and 116 rotate and revolve along the first and second ring gears 104 and 114.
- the first and second carriers 108 and 118 which are integrated with the first and second planetary gears 106 and 116, respectively, rotate, and the transmission gear 122 connected to the first and second carriers 108 and 118, respectively.
- the output gear 124 meshed with the transmission gear 122 the output to the output shaft 130 is made.
- the first sun gear 102 which is the fixed side gear element of the first planetary gear device 110
- the second sun gear 112 which is the fixed side gear element of the second planetary gear device 120
- the rotational force of the first sun gear 102 is transmitted to the pump drive gear 132 and at the same time the rotational direction is changed in the pump drive idle gear 134 to transmit the rotational force to the pump gear 136, thereby, the pump gear A hydraulic pump 138 coaxially connected with 136 is driven.
- the hydraulic oil pumped from the oil pan 156 by the driving of the hydraulic pump 138 is supplied to the regenerative hydraulic motor 140 along the hydraulic supply line 152, thereby regenerative hydraulic pressure
- the motor 140 is driven, and the hydraulic oil exiting the hydraulic motor 140 is returned to the oil pan 156 along the hydraulic discharge line 154.
- the flow rate control of the hydraulic oil supplied to the regenerative hydraulic motor 140 by the flow control valve 160 installed in the hydraulic supply line 152 is made, along the hydraulic discharge line 154 to the oil pan 156.
- the relief valve 162 As a part of the returned hydraulic oil is supplied to the hydraulic supply line 152 through the relief valve 162, compensation for the flow rate and pressure difference between the hydraulic motor 140 and the hydraulic pump 138 is performed.
- the hydraulic pump 138 is driven by the rotation of the first sun gear 102, the hydraulic oil is proportionally discharged according to the input rotational speed of the hydraulic pump 138, but the flow control valve 160 By controlling the discharge flow rate of the hydraulic oil in, the hydraulic pump 138 eventually serves to control the rotational speed of the first sun gear 102, which is a fixed side gear element.
- the rotation speed of the first sun gear 102 is varied and the rotation speed of the first planetary gear 106 is also varied.
- the rotation speed of the first carrier 108 connected to the output shaft 130 is adjusted, the shift of the output shaft 130 is freely made.
- the first planetary gear 106 when the rotation speed of the first sun gear 102 is controlled by the discharge flow rate of the hydraulic pump 138 and the flow rate control by the flow rate control valve 160, the first planetary gear 106 is controlled. And the first planetary gear 106 and the first carrier 108 when the output shaft 130 is rotated at a high speed and the rotation speed of the first sun gear 102 is reduced. Rotational speed of the output shaft 130 is rotated at a low speed such that a variety of speed changes are made continuously.
- the rotation speed of the first sun gear 102 is controlled by the hydraulic pump 138 and the flow control valve 160, and the rotational force is added or decreased through the first carrier 108, so that continuous shifting is possible.
- the increase in the hydraulic pressure can be made easily the speed change.
- the hydraulic motor 140 is driven by the flow rate discharged from the hydraulic pump 138 and passed through the flow control valve 160. At this time, the rotational power of the hydraulic motor 140 is regenerated. It is transmitted to the dragon input gear 142 and at the same time the rotation direction is changed in the regenerative idle gear 144, it is transmitted to the regenerative output gear 146.
- the rotational force of the regenerative output gear 146 acts on the second sun gear 112 of the regenerative second planetary gear device 120 connected coaxially, thereby accelerating rotation of the second sun gear 112. .
- the output is made through the first and second carriers 108 and 118 as described above, and the hydraulic motor 140 of the output stage receives the hydraulic energy discharged from the hydraulic pump 138 to regenerate the rotational force to generate a second rotational force.
- the rotational force of the second sun gear 112 is eventually transmitted to the second planetary gear 116 and the second carrier 118, the output shaft 130 is connected to the second carrier 118 High efficiency and high load power transmission is achieved.
- FIG. 9 is a power transmission system diagram showing a fifth embodiment of a high efficiency continuous transmission device according to the present invention.
- the input shaft is connected to the carrier
- the ring gear is connected to the output shaft
- the fixed gear element is a sun gear
- a continuous transmission device also includes an input first including a first carrier 108 having a first sun gear 102, a first ring gear 104, and a first planetary gear 106.
- the second planetary gear device 120 for regeneration including a planetary gear device 110 and a second carrier 118 having a second sun gear 112, a second ring gear 114, and a second planetary gear 116. ) Is combined, the input shaft 100 extending from the crankshaft of the engine is simultaneously connected to the first and second carriers 108, 118.
- a second intermediate gear 126b is connected to the first and second carriers 108 and 118, and a first intermediate gear 126a connected to the input shaft 100 is engaged with the second intermediate gear 126b.
- the output shaft 130 is connected to the first and second ring gears 104 and 114 via a transmission gear 122.
- the pump drive gear 132 is connected to the first sun gear 102, which is the fixed side gear element of the first planetary gear device 110, and the pump drive idle gear 134 is connected to the pump drive gear 132.
- the gear gear 136 is also engaged with the pump drive idle gear 134.
- the shaft of the pump gear 136 is connected to the regenerative hydraulic pump 138 that operates while pumping hydraulic oil from the oil pan 156 by the driving of the pump gear 136.
- a regenerative output gear 146 is connected to the second sun gear 112, which is a fixed side gear element of the regenerative second planetary gear device 120, and a regenerative idle gear is connected to the regenerative output gear 146.
- 144 is meshed with the regenerative input gear 142 to the regenerative idle gear 144.
- the regenerative input gear 142 is connected to the output shaft of the regenerative hydraulic motor 140, and receives the rotational power.
- the hydraulic supply line 152 to supply the hydraulic pressure from the hydraulic pump 138 to the regenerative hydraulic motor 140.
- the regenerative hydraulic motor 140 and the oil pan 156 is connected to the hydraulic discharge line 154 to return the flow rate used in the hydraulic motor 140.
- the hydraulic supply line 152 between the hydraulic pump 138 and the regenerative hydraulic motor 140 has a flow control valve ( 160 is installed, the relief valve 162 is installed in the hydraulic discharge line 154 between the regenerative hydraulic motor 140 and the hydraulic pump 138, the relief valve is a hydraulic motor 140 and hydraulic In order to correct the difference between the flow rate and the pressure between the pumps (138) serves to supply a partial return flow rate to the hydraulic supply line (152).
- the operation flow for the continuous transmission device according to the fifth embodiment is as follows.
- the rotational force transmitted from the input shaft 100 is transmitted to the first carrier 108 and the second planetary gear device 120 of the first planetary gear device 110 for input through the first and second intermediate gears 126a and 126b.
- the first and second carriers 108, 118 rotatably fixed to the first And rotate the first and second ring gears 104 and 114 while rotating the second planetary gears 106 and 116 while rotating and rotating along the circumscribed first and second ring gears 104 and 114.
- the first sun gear 102 which is the fixed side gear element of the first planetary gear device 110
- the second sun gear 112 which is the fixed side gear element of the second planetary gear device 120
- the rotational force of the first sun gear 102 is transmitted to the pump drive gear 132 and at the same time the rotational direction is changed in the pump drive idle gear 134 to transmit the rotational force to the pump gear 136, thereby, the pump gear A hydraulic pump 138 coaxially connected with 136 is driven.
- the hydraulic oil pumped from the oil pan 156 by the driving of the hydraulic pump 138 is supplied to the regenerative hydraulic motor 140 along the hydraulic supply line 152, thereby regenerative hydraulic pressure
- the motor 140 is driven, and the hydraulic oil exiting the hydraulic motor 140 is returned to the oil pan 156 along the hydraulic discharge line 154.
- the flow rate control of the hydraulic oil supplied to the regenerative hydraulic motor 140 by the flow control valve 160 installed in the hydraulic supply line 152 is made, along the hydraulic discharge line 154 to the oil pan 156.
- the relief valve 162 As a part of the returned hydraulic oil is supplied to the hydraulic supply line 152 through the relief valve 162, compensation for the flow rate and pressure difference between the hydraulic motor 140 and the hydraulic pump 138 is performed.
- the hydraulic pump 138 is driven by the rotation of the first sun gear 102, the hydraulic oil is proportionally discharged according to the input rotational speed of the hydraulic pump 138, but the flow control valve 160 By controlling the discharge flow rate of the hydraulic oil in, the hydraulic pump 138 eventually serves to control the rotational speed of the first sun gear 102, which is a fixed side gear element.
- the rotation speed of the first sun gear 102 is varied and the rotation speed of the first planetary gear 106 is also varied.
- the rotation speed of the first ring gear 104 connected to the output shaft 130 is adjusted, the shift to the output shaft 130 is freely made.
- the first planetary gear 106 when the rotation speed of the first sun gear 102 is controlled by the discharge flow rate of the hydraulic pump 138 and the flow rate control by the flow rate control valve 160, the first planetary gear 106 is controlled. And the first planetary gear 106 and the first ring gear when the output shaft 130 rotates at high speed and the rotation speed of the first sun gear 108 is reduced. The rotational speed of the 104 is reduced so that various speed changes are continuously performed, such as the output shaft 130 rotates at a low speed.
- the rotation speed of the first sun gear 102 is controlled by the hydraulic pump 138 and the flow control valve 160, and the rotational force is added or decreased through the first ring gear 104, thereby allowing continuous shifting.
- the increase in the hydraulic pressure it is possible to easily change the speed of the high load.
- the hydraulic motor 140 is driven by the flow rate discharged from the hydraulic pump 138 and passed through the flow control valve 160. At this time, the rotational power of the hydraulic motor 140 is regenerated. It is transmitted to the dragon input gear 142 and at the same time the rotation direction is changed in the regenerative idle gear 144, it is transmitted to the regenerative output gear 146.
- the rotational force of the regenerative output gear 146 acts on the second sun gear 112 of the regenerative second planetary gear device 120 connected coaxially, thereby accelerating rotation of the second sun gear 112. .
- the output is made through the first and second ring gears 104 and 114 as described above, and the hydraulic motor 140 of the output stage receives the hydraulic energy discharged from the hydraulic pump 138 to reproduce the rotational force.
- the rotational force of the second sun gear 112 is eventually transmitted to the second planetary gear 116 and the second ring gear 114, which is connected to the second ring gear 114 High efficiency and high load power transmission to the output shaft 130 is made.
- FIG. 10 is a power transmission system diagram showing a sixth embodiment of a high efficiency continuous transmission apparatus according to the present invention.
- the input shaft is connected to the carrier
- the sun gear is connected to the output shaft
- the fixed gear element is a ring gear
- a continuous transmission device also includes an input first including a first carrier 108 having a first sun gear 102, a first ring gear 104, and a first planetary gear 106.
- the second planetary gear device 120 for regeneration including a planetary gear device 110 and a second carrier 118 having a second sun gear 112, a second ring gear 114, and a second planetary gear 116. ) Is combined, the input shaft 100 extending from the crankshaft of the engine is simultaneously connected to the first and second carriers 108, 118.
- a second intermediate gear 126b is connected to the first and second carriers 108 and 118, and a first intermediate gear 126a connected to the input shaft 100 is engaged with the second intermediate gear 126b.
- the output shaft 130 is directly connected to the first and second sun gears 102 and 112.
- a pump drive gear 132 is connected to the first ring gear 104, which is a fixed side gear element of the first planetary gear device 110, and a pump drive idle gear 134 is connected to the pump drive gear 132. Is engaged, and the pump gear 136 is meshed with the pump drive idle gear 134.
- the shaft of the pump gear 136 is connected to the regenerative hydraulic pump 138 that operates while pumping hydraulic oil from the oil pan 156 by the driving of the pump gear 136.
- a regenerative output gear 146 is connected to the second ring gear 114, which is a fixed side gear element of the regenerative second planetary gear device 120, and the regenerative output gear 146 is connected to the regenerative idle gear.
- the gear 144 meshes with the regenerative input gear 142 in the regenerative idle gear 144.
- the regenerative input gear 142 is connected to the output shaft of the regenerative hydraulic motor 140, and receives the rotational power.
- the hydraulic supply line 152 to supply the hydraulic pressure from the hydraulic pump 138 to the regenerative hydraulic motor 140.
- the regenerative hydraulic motor 140 and the oil pan 156 is connected to the hydraulic discharge line 154 to return the flow rate used in the hydraulic motor 140.
- the hydraulic supply line 152 between the hydraulic pump 138 and the regenerative hydraulic motor 140 has a flow control valve ( 160 is installed, the relief valve 162 is installed in the hydraulic discharge line 154 between the regenerative hydraulic motor 140 and the hydraulic pump 138, the relief valve is a hydraulic motor 140 and hydraulic In order to correct the difference between the flow rate and the pressure between the pumps (138) serves to supply a partial return flow rate to the hydraulic supply line (152).
- the operation flow for the continuous transmission device according to the fifth embodiment is as follows.
- the rotational force transmitted from the input shaft 100 is transmitted to the first carrier 108 and the second planetary gear device 120 of the first planetary gear device 110 for input through the first and second intermediate gears 126a and 126b.
- the first and second carriers 108, 118 rotatably fixed to the first And by rotating the first and second sun gears 102 and 112 which are inscribed at the same time as the second planetary gears 106 and 116 rotate, the output of the output shaft 130 connected to the first and second sun gears 102 and 112 is achieved.
- first and second planetary gears 106 and 116 rotate the first and second ring gears 104 and 114 while rotating and rotating.
- the first ring gear 104 which is the fixed side gear element of the first planetary gear device 110
- the second ring gear 114 which is the fixed side gear element of the second planetary gear device 120
- the hydraulic oil pumped from the oil pan 156 by the driving of the hydraulic pump 138 is supplied to the regenerative hydraulic motor 140 along the hydraulic supply line 152, thereby regenerative hydraulic pressure
- the motor 140 is driven, and the hydraulic oil exiting the hydraulic motor 140 is returned to the oil pan 156 along the hydraulic discharge line 154.
- the flow rate control of the hydraulic oil supplied to the regenerative hydraulic motor 140 by the flow control valve 160 installed in the hydraulic supply line 152 is made, along the hydraulic discharge line 154 to the oil pan 156.
- the relief valve 162 As a part of the returned hydraulic oil is supplied to the hydraulic supply line 152 through the relief valve 162, compensation for the flow rate and pressure difference between the hydraulic motor 140 and the hydraulic pump 138 is performed.
- the hydraulic pump 138 is driven by the rotation of the first ring gear 104 to discharge hydraulic oil in proportion to the input rotational speed of the hydraulic pump 138.
- the flow control valve 160 By controlling the discharge flow rate of the hydraulic oil in the), the hydraulic pump 138 eventually serves to control the rotational speed of the first ring gear 104, which is a fixed side gear element.
- the rotation speed of the first ring gear 104 is varied and the rotation speed of the first planetary gear 106 is also varied.
- the rotation speed of the first sun gear 102 connected to the output shaft 130 is adjusted so that the shift of the output shaft 130 is freely made.
- the first planetary gear 106 is controlled by the discharge flow rate of the hydraulic pump 138 and the flow rate control by the flow control valve 160 to increase the rotation speed of the first ring gear 104.
- the first sun gear 102 is increased, and the output shaft 130 rotates at high speed, and when the rotation speed of the first ring gear 104 is controlled, the first planetary gear 106 and the first sun gear ( The number of revolutions of the 102 decreases, such that the output shaft 130 rotates at low speed, and various speed changes are continuously performed.
- the rotational speed of the first ring gear 104 is controlled by the hydraulic pump 138 and the flow control valve 160, and the rotational force is added or decreased through the first sun gear 102, thereby allowing continuous shifting.
- the increase in the hydraulic pressure it is possible to easily change the speed of the high load.
- the hydraulic motor 140 is driven by the flow rate discharged from the hydraulic pump 138 and passed through the flow control valve 160. At this time, the rotational power of the hydraulic motor 140 is regenerated. It is transmitted to the dragon input gear 142 and at the same time the rotation direction is changed in the regenerative idle gear 144, it is transmitted to the regenerative output gear 146.
- the rotational force of the regenerative output gear 146 acts on the second ring gear 114 of the regenerative second planetary gear device 120 connected coaxially, thereby accelerating rotation of the second ring gear 114. You lose.
- the output is made through the first and second sun gears 102 and 112 as described above, and the hydraulic motor 140 at the output stage receives the hydraulic energy discharged from the hydraulic pump 138 to reproduce the rotational force.
- the rotational force of the second ring gear 114 is eventually transmitted to the second planetary gear 116 and the second sun gear 112, the output shaft connected to the second sun gear 112 High efficiency and high load power transfer is achieved for 130.
- the present invention relates to a high efficiency continuous transmission device, and more particularly, as a type of continuously variable transmission, a high efficiency continuous speed shifting operation is easily performed using a planetary gear, a hydraulic pump, a hydraulic motor, and a flow control valve. Relates to a device.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Structure Of Transmissions (AREA)
- Transmission Devices (AREA)
Abstract
본 발명은 고효율 연속변속장치에 관한 것으로, 더욱 상세하게는 일종의 무단변속장치로서, 유성치차, 유압펌프, 유압모터 및 유량제어밸브 등을 이용하여 연속적인 변속이 용이하게 이루어질 수 있도록 한 고효율 연속변속장치에 관한 것이다. 즉, 본 발명은 입력 유성기어장치와 회생 유성기어장치를 이용하여, 고하중의 동력을 무한대의 기어비로부터 유성치차의 특성상 가능한 기어비까지 높은 전달효율을 가지고 연속적으로 변속시킬 수 있고, 입력 유성기어장치에 연결된 유압펌프의 토출 오일압에 의하여 유압모터가 구동하여 출력단의 회전력을 재생하되, 유량제어밸브의 작동으로 유압펌프에서 토출되는 유량에 따라 연속적으로 변속이 이루어질 수 있도록 한 고효율 연속변속장치를 제공하고자 한 것이다.
Description
본 발명은 고효율 연속변속장치에 관한 것으로, 더욱 상세하게는 일종의 무단변속장치로서, 유성치차, 유압펌프, 유압모터 및 유량제어밸브 등을 이용하여 연속적인 변속이 용이하게 이루어질 수 있도록 한 고효율 연속변속장치에 관한 것이다.
잘 알려진 바와 같이, 무단변속기는 엔진의 회전 속도를 단계(段階) 없이 연속적으로 바꿀 수 있는 장치로서, 엔진이 최고 효율이 좋은 영역에서 운전되어 연비가 향상되고, 단수 변경에 따른 충격이 없는 등 여러가지 장점이 있다.
무단변속기(CVT)는 대개 구동풀리와 종동풀리, 구동 및 종동풀리간에 연결되는 고장력 벨트 등을 주된 구성으로 하며, 이러한 구성들에 의하여 연속적인 무단 변속이 이루어지는 바, 무단변속을 위한 감속비를 연속적으로 조정하는 방법 등을 위주로 그 동안 많은 연구가 이루어져 왔고, 실제 제품화가 이루어져 왔다.
그 일례로서, 첨부한 도 1을 참조로 트랙션(traction)식의 연속 증감속비 조정장치를 살펴보면 다음과 같다.
종래의 트랙션(traction)식 연속 증감속비 조정장치는 일종의 무단변속장치로서, 입력축(11)의 반경(Rin)과 출력축(12)의 반경(Rout) 차이에 의하여 회전속도의 증감이 이루어지며, 콘(13,cone)의 앵글(angle)를 연속적으로 변화시키는 동시에 입력축(11)의 반경(Rin)과 출력축(12)의 반경(Rout)이 연속적으로 변화함으로써, 증감속비를 연속적으로 변화시킬 수 있는 구조로 되어 있다.
그러나, 위와 같은 종래의 연속 증감속비 조정장치는 콘(13)이 접촉되는 면에서 마찰에 의하여 동력을 전달하기 때문에 고회전력을 전달할 수 없고, 접촉면의 가공이 어렵우며, 또한 높은 감속비를 얻기 어려울 뿐만 아니라, 가장 큰 변속비를 콘 앵글의 차이만큼 밖에 만들 수 없다는 단점이 있다.
다른 예로서, 첨부한 도 2를 참조로 벨트(belt)식의 연속 증감속비 조정장치를 간략하게 살펴보면 다음과 같다.
종래의 벨트식 연속 증감속비 조장장치 또한 일종의 무단변속장치로서, 두 개의 축(21,22)에 가변폭을 갖는 가변풀리(23,24)를 각각 장착하여 가변풀리(23,24)의 폭을 변화시킴으로서 전달되는 회전반경의 변동을 연속적으로 일으켜서 연속적인 증감속비를 얻는 구조로 되어 있다.
그러나, 위와 같은 종래의 벨트식 연속 증감속비 조정장치는 가변풀리(23,24)의 폭을 변속시키기 위한 별도의 장치가 필요하고, 그 회전반경을 무한정 줄일 수 없어서 감속비가 크지 않으며, 고장력의 벨트(25)가 가변풀리(23,24)의 면을 따라 미끄러지는 슬립(slip) 현상과 함께 회전반경의 변동을 연속적으로 일으키기 때문에 고회전력을 전달하기 어렵다는 단점이 있다.
본 발명은 상기한 종래의 문제점을 해결하기 위하여 연구된 결과물로서, 입력 유성기어장치와 회생 유성기어장치를 이용하여, 고하중의 동력을 무한대의 기어비로부터 유성치차의 특성상 가능한 기어비까지 높은 전달효율을 가지고 연속적으로 변속시킬 수 있고, 입력 유성기어장치에 연결된 유압펌프의 토출 오일압에 의하여 유압모터가 구동하여 출력단의 회전력을 재생하되, 유량제어밸브의 작동으로 유압펌프에서 토출되는 유량에 따라 연속적으로 변속이 이루어질 수 있도록 한 고효율 연속변속장치를 제공하는데 그 목적이 있다.
상기한 목적을 달성하기 위한 본 발명의 제1구현예에 따른 고효율 연속변속장치는: 입력축과; 상기 입력축과 연결되는 제1선기어를 비롯하여, 제1링기어 및 제1유성기어를 갖는 제1캐리어를 포함하는 입력용 제1유성기어장치와; 상기 입력축과 연결되는 제2선기어를 비롯하여, 제2링기어 및 제2유성기어를 갖는 제2캐리어를 포함하는 회생용 제2유성기어장치와; 서로 연결되는 제1캐리어 및 제2캐리어의 외경에 연결되는 전달기어와; 상기 전달기어에 맞물리는 동시에 출력축에 연결되는 출력기어와; 상기 제1유성기어장치의 제1링기어에 연결되는 펌프 드라이브 기어와; 상기 펌프 드라이브 기어에 맞물리는 펌프 드라이브 아이들기어와; 상기 펌프 드라이브 아이들기어에 맞물리는 펌프 기어와; 상기 펌프 기어의 구동에 의하여 유압유를 펌핑 작동시키는 유압펌프와; 상기 유압펌프와 유압라인에 의하여 연결되어, 유압펌프의 구동시 작동하는 회생용 유압모터와; 상기 회생용 제2유성기어장치의 제2링기어와 연결되는 회생용 출력기어와; 상기 회생용 출력기어와 맞물리는 회생용 아이들기어와; 상기 회생용 아이들기어와 맞물리는 동시에 회생용 유압모터와 연결되는 회생용 입력기어; 를 포함하여 구성된 것을 특징으로 한다.
상기한 목적을 달성하기 위한 본 발명의 제2구현예에 따른 고효율 연속변속장치는: 입력축과; 상기 입력축과 연결되는 제1선기어를 비롯하여, 제1링기어 및 제1유성기어를 갖는 제1캐리어를 포함하는 입력용 제1유성기어장치와; 상기 입력축과 연결되는 제2선기어를 비롯하여, 제2링기어 및 제2유성기어를 갖는 제2캐리어를 포함하는 회생용 제2유성기어장치와; 제1링기어 및 제2링기어에 동시에 연결되는 전달기어와; 상기 전달기어에 맞물리는 동시에 출력축에 연결되는 출력기어와; 상기 제1유성기어장치의 제1캐리어에 연결되는 펌프 드라이브 기어와; 상기 펌프 드라이브 기어에 맞물리는 펌프 드라이브 아이들기어와; 상기 펌프 드라이브 아이들기어에 맞물리는 펌프 기어와; 상기 펌프 기어의 구동에 의하여 유압유를 펌핑 작동시키는 유압펌프와; 상기 유압펌프와 유압라인에 의하여 연결되어, 유압펌프의 구동시 작동하는 회생용 유압모터와; 상기 회생용 제2유성기어장치의 제2캐리어와 연결되는 회생용 출력기어와; 상기 회생용 출력기어와 맞물리는 회생용 아이들기어와; 상기 회생용 아이들기어와 맞물리는 동시에 회생용 유압모터와 연결되는 회생용 입력기어; 를 포함하여 구성된 것을 특징으로 한다.
상기한 목적을 달성하기 위한 본 발명의 제3구현예에 따른 고효율 연속변속장치는: 제1선기어를 비롯하여, 제1링기어 및 제1유성기어를 갖는 제1캐리어를 포함하는 입력용 제1유성기어장치와; 제2선기어를 비롯하여, 제2링기어 및 제2유성기어를 갖는 제2캐리어를 포함하는 회생용 제2유성기어장치와; 상기 제1링기어 및 제2링기어와 동시에 맞물리는 매개기어와; 상기 매개기어에 연결되는 입력축과; 상기 제1선기어 및 제2선기어에 연결되는 출력축과; 상기 제1유성기어장치의 제1캐리어에 연결되는 펌프 드라이브 기어와; 상기 펌프 드라이브 기어에 맞물리는 펌프 드라이브 아이들기어와; 상기 펌프 드라이브 아이들기어에 맞물리는 펌프 기어와; 상기 펌프 기어의 구동에 의하여 유압유를 펌핑 작동시키는 유압펌프와; 상기 유압펌프와 유압라인에 의하여 연결되어, 유압펌프의 구동시 작동하는 회생용 유압모터와; 상기 회생용 제2유성기어장치의 제2캐리어와 연결되는 회생용 출력기어와; 상기 회생용 출력기어와 맞물리는 회생용 아이들기어와; 상기 회생용 아이들기어와 맞물리는 동시에 회생용 유압모터와 연결되는 회생용 입력기어; 를 포함하여 구성된 것을 특징으로 한다.
상기한 목적을 달성하기 위한 본 발명의 제4구현예에 따른 고효율 연속변속장치는: 제1선기어를 비롯하여, 제1링기어 및 제1유성기어를 갖는 제1캐리어를 포함하는 입력용 제1유성기어장치와; 제2선기어를 비롯하여, 제2링기어 및 제2유성기어를 갖는 제2캐리어를 포함하는 회생용 제2유성기어장치와; 상기 제1링기어 및 제2링기어와 동시에 맞물리는 매개기어와; 상기 매개기어에 연결되는 입력축과; 상기 제1캐리어 및 제2캐리어가 동시에 연결되는 전달기어와; 상기 전달기어에 맞물리는 동시에 출력축에 연결되는 출력기어와; 상기 제1유성기어장치의 제1선기어에 연결되는 펌프 드라이브 기어와; 상기 펌프 드라이브 기어에 맞물리는 펌프 드라이브 아이들기어와; 상기 펌프 드라이브 아이들기어에 맞물리는 펌프 기어와; 상기 펌프 기어의 구동에 의하여 유압유를 펌핑 작동시키는 유압펌프와; 상기 유압펌프와 유압라인에 의하여 연결되어, 유압펌프의 구동시 작동하는 회생용 유압모터와; 상기 회생용 제2유성기어장치의 제2선기어와 연결되는 회생용 출력기어와; 상기 회생용 출력기어와 맞물리는 회생용 아이들기어와; 상기 회생용 아이들기어와 맞물리는 동시에 회생용 유압모터와 연결되는 회생용 입력기어; 를 포함하여 구성된 것을 특징으로 한다.
상기한 목적을 달성하기 위한 본 발명의 제5구현예에 따른 고효율 연속변속장치는: 제1선기어를 비롯하여, 제1링기어 및 제1유성기어를 갖는 제1캐리어를 포함하는 입력용 제1유성기어장치와; 제2선기어를 비롯하여, 제2링기어 및 제2유성기어를 갖는 제2캐리어를 포함하는 회생용 제2유성기어장치와; 상기 제1캐리어 및 제2캐리어가 동시에 연결되는 제2매개기어와; 상기 제2매개기어에 맞물리는 동시에 제1매개기어와 연결되는 입력축과; 상기 제1링기어 및 제2링기어에 동시에 연결되는 전달기어와; 상기 전달기어에 맞물리는 동시에 출력축에 연결되는 출력기어와; 상기 제1유성기어장치의 제1선기어에 연결되는 펌프 드라이브 기어와; 상기 펌프 드라이브 기어에 맞물리는 펌프 드라이브 아이들기어와; 상기 펌프 드라이브 아이들기어에 맞물리는 펌프 기어와; 상기 펌프 기어의 구동에 의하여 유압유를 펌핑 작동시키는 유압펌프와; 상기 유압펌프와 유압라인에 의하여 연결되어, 유압펌프의 구동시 작동하는 회생용 유압모터와; 상기 회생용 제2유성기어장치의 제2선기어와 연결되는 회생용 출력기어와; 상기 회생용 출력기어와 맞물리는 회생용 아이들기어와; 상기 회생용 아이들기어와 맞물리는 동시에 회생용 유압모터와 연결되는 회생용 입력기어; 를 포함하여 구성된 것을 특징으로 한다.
상기한 목적을 달성하기 위한 본 발명의 제6구현예에 따른 고효율 연속변속장치는: 제1선기어를 비롯하여, 제1링기어 및 제1유성기어를 갖는 제1캐리어를 포함하는 입력용 제1유성기어장치와; 제2선기어를 비롯하여, 제2링기어 및 제2유성기어를 갖는 제2캐리어를 포함하는 회생용 제2유성기어장치와; 상기 제1캐리어 및 제2캐리어가 동시에 연결되는 제2매개기어와; 상기 제2매개기어에 맞물리는 동시에 제1매개기어와 연결되는 입력축과; 상기 제1선기어 및 제2선기어가 동시에 연결되는 출력축과; 상기 제1유성기어장치의 제1링기어에 연결되는 펌프 드라이브 기어와; 상기 펌프 드라이브 기어에 맞물리는 펌프 드라이브 아이들기어와; 상기 펌프 드라이브 아이들기어에 맞물리는 펌프 기어와; 상기 펌프 기어의 구동에 의하여 유압유를 펌핑 작동시키는 유압펌프와; 상기 유압펌프와 유압라인에 의하여 연결되어, 유압펌프의 구동시 작동하는 회생용 유압모터와; 상기 회생용 제2유성기어장치의 제2링기어와 연결되는 회생용 출력기어와; 상기 회생용 출력기어와 맞물리는 회생용 아이들기어와; 상기 회생용 아이들기어와 맞물리는 동시에 회생용 유압모터와 연결되는 회생용 입력기어; 를 포함하여 구성된 것을 특징으로 한다.
이러한 본 발명의 구현예들에서, 상기 회생용 유압모터의 유량을 제어하여 연속적인 무단 변속비를 얻을 수 있도록 상기 유압펌프와 회생용 유압모터 사이의 유압공급라인에는 유량제어밸브가 설치된 것을 특징으로 한다.
또한, 상기 회생용 유압모터와 유압펌프 사이의 유압배출라인에는 유량 및 압력 차이를 보정하기 위하여 유압공급라인으로 통하는 릴리프밸브가 설치된 것을 특징으로 한다.
이러한 본 발명의 구현예들에서, 상기 회생용 유압모터의 유량을 제어하여 연속적인 무단 변속비를 얻을 수 있도록 상기 유압펌프와 회생용 유압모터 사이의 유압공급라인에는 유량제어밸브를 설치하고, 상기 회생용 유압모터와 유압펌프 사이의 유압배출라인에는 유량 및 압력 차이를 보정하기 위하여 유압공급라인으로 통하는 릴리프밸브가 설치된 것을 특징으로 한다.
또한, 이러한 본 발명의 구현예들에서, 상기 회생용 유압모터의 유량을 제어하여 연속적인 무단 변속비를 얻을 수 있도록 유량제어밸브와 릴리프밸브 대신에 상기 유압펌프와 유압모터의 형식을 가변형으로 사용하여 유량 제어는 가변형 유압펌프를 이용하고, 토출된 유량을 이용하여 출력축의 속도에 상응하는 회전속도를 낼 수 있도록 가변형 유압모터를 이용하는 것을 특징으로 한다.
본 발명의 구현예들에서, 가변형 유압펌프와 유압모터를 이용할 경우에는 유량제어밸브와 릴리프밸브를 사용하지 않아도 된다.
상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공한다.
본 발명에 따르면, 입력 유성기어장치의 구성중 선기어, 유성기어를 포함하는 캐리어, 링기어 중 어느 하나의 요소에 회전력이 입력되고, 다른 하나의 요소에 유압펌프 및 유량제어 밸브를 연결하여 회전수를 제어하고, 나머지 하나의 요소를 통하여 회전력을 출력함으로써, 입력용 유성기어장치에 의한 연속적인 변속이 용이하게 이루어지는 동시에 유압펌프 및유량제어 밸브에 의한 유압 상승 조절에 따라 고하중의 변속도 용이하게 이루어질 수 있다.
특히, 유압펌프에서 토출되어 유량제어밸브를 통하여 흘러나오는 손실 동력을 회생용 유성기어장치에 연결된 유압모터에 제공하는 동시에 이를 회생용 유성기어장치에서 회전력으로 변환하여 출력축에 전달함으로써, 고효율의 동력 전달이 이루어지는 장점이 있다.
도 1은 종래의 무단변속장치에 대한 일례를 나타낸 개략도,
도 2는 종래의 무단변속장치에 대한 다른 예를 보인 개략도,
도 3은 유성치차의 원리를 설명하는 개략도,
도 4는 본 발명에 따른 고효율 연속변속장치의 제1실시예를 나타내는 동력전달계통도,
도 5는 도 4의 동력전달 계통도를 이용하여 구성한 연속변속장치의 단면도,
도 6은 본 발명에 따른 고효율 연속변속장치의 제2실시예를 나타내는 동력전달계통도,
도 7은 본 발명에 따른 고효율 연속변속장치의 제3실시예를 나타내는 동력전달계통도,
도 8은 본 발명에 따른 고효율 연속변속장치의 제4실시예를 나타내는 동력전달계통도,
도 9는 본 발명에 따른 고효율 연속변속장치의 제5실시예를 나타내는 동력전달계통도,
도 10은 본 발명에 따른 고효율 연속변속장치의 제6실시예를 나타내는 동력전달계통도.
100 : 입력축 102 : 제1선기어
104 : 제1링기어 106 : 제1유성기어
108 : 제1캐리어 110 : 입력용 제1유성기어장치
112 : 제2선기어 114 : 제2링기어
116 : 제2유성기어 118 : 제2캐리어
120 : 회생용 제2유성기어장치 122 : 전달기어
124 : 출력기어 126 : 매개기어
126a : 제1매개기어 126b : 제2매개기어
130 : 출력축 132 : 펌프 드라이브 기어
134 : 펌프 드라이브 아이들기어 136 : 펌프 기어
138 : 유압펌프 140 : 회생용 유압모터
142 : 회생용 입력기어 144 : 회생용 아이들기어
146 : 회생용 출력기어 152 : 유압공급라인
154 : 유압배출라인 156 : 오일팬
160 : 유량제어밸브 162 : 릴리프밸브
이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명하기로 한다.
먼저, 본 발명의 이해를 돕기 위하여, 첨부한 도 3을 참조로 유성기어장치의 원리를 설명하면 다음과 같다.
도 3에 도시된 유성기어장치(G)는, 선기어(32), 유성기어(33)가 설치된 유성기어캐리어(35, 이하 캐리어라고 칭함), 링기어(34)로 이루어진 3개의 기어요소로 구성되는 바, 3개의 기어요소들중 하나는 입력측(구동측)과 연결되고, 다른 하나는 출력측과 연결되며, 나머지 하나는 고정요소가 된다.
유성치차(G)의 특성상 3개의 기어요소의 역할이 달라짐에 따라 출력축의 회전방향과 회전수가 변화된다.
아래의 표 1은 유성기어장치(G)에 포함된 3개의 기어요소의 역할 변경에 따른 기어비와 회전방향을 나타낸다.
본 발명은 상기와 같은 유성기어장치의 원리를 이용하되, 입력용 제1유성기어장치와 회생용 제2유성기어장치를 채택하고, 고정측 기어요소의 회전수를 유압펌프 및 유압모터 또는 유량제어밸브를 이용하여 조정한 점에 특징이 있다.
즉, 고정부의 일단에 기어 또는 체인으로 회전력을 유압펌프에 연결하면 유압펌프는 유압펌프의 입력 회전수에 따라 비례적으로 오일을 토출하게 되는 바, 이 유압펌프의 오일 출구 회로에 유량제어밸브를 부착하거나 가변형 유압펌프를 사용하여 토출되는 유량을 제어함으로써, 유압펌프가 입력용 유성기어장치의 고정측 기어요소 회전수를 제어할 수 있도록 한 것이다.
이를 위해, 본 발명은 i)입력용 제1유성기어장치와 회생용 제2유성기어장치를 포함하고, 입력용 제1유성기어장치의 선기어, 캐리어, 링기어 등 3개의 유성기어장치의 기어요소 중 어느 하나 요소에 회전 동력이 입력되고, 연동되어 회전하는 다른 하나의 요소에는 입력된 회전동력이 출력되며, 나머지 하나 요소에는 유압 펌프가 연결되는 점; ii)회생용 제2유성기어장치에는 입력용 제1유성기어장치에 연결된 유압펌프에서 토출되는 오일에 의하여 회전하는 유압모터가 연결되고, 입력단의 유압펌프에서 토출되는 유압에너지를 출력단의 유압모터가 받아서 출력단에서 회전력을 재생하는 점; iii)유압펌프와 유압모터를 연결하는 유압회로에는 유압펌프에서 나오는 오일량을 제어하는 유량제어밸브와, 유압펌프와 유압모터의 유량 및 압력의 차이를 보정해주는 릴리프밸브가 설치되어, 유량제어밸브의 작동으로 유압펌프에서 토출되는 유량에 따라 연속적인 변속이 이루어지도록 하거나 유량제어밸브와 릴리프밸브 대신에 가변형 유압모터를 이용하여 연속적인 변속이 이루어지도록 한 점; 등을 특징으로 하는 고효율 연속변속장치를 제공하고자 한 것이다.
여기서, 본 발명에 따른 고효율 연속변속장치를 각 실시예를 통하여 더욱 상세하게 설명하기로 하며, 본 발명이 하기의 실시예에 한정되는 것은 아니다.
제1실시예
첨부한 도 4는 본 발명에 따른 고효율 연속변속장치의 제1실시예를 나타내는 동력전달계통도이고, 도 5는 도 4의 동력전달 계통도를 이용하여 구성한 연속변속장치의 단면도이다.
본 발명의 제1실시예에 따른 연속변속장치는 입력축이 선기어와 연결되고, 출력축에 캐리어가 연결되며, 고정측 기어요소는 링기어가 된다.
본 발명의 제1실시예에 따른 연속변속장치는 제1선기어(102), 제1링기어(104) 및 제1유성기어(106)를 갖는 제1캐리어(108)를 포함하는 입력용 제1유성기어장치(110), 그리고 제2선기어(112), 제2링기어(114) 및 제2유성기어(116)를 갖는 제2캐리어(118)를 포함하는 회생용 제2유성기어장치(120)가 조합된 것으로서, 엔진의 크랭크샤프트로부터 연장된 입력축(100)이 제1 및 제2선기어(102,112)에 동시에 연결된다.
상기 제1캐리어(108) 및 제2캐리어(118)는 일체로 연결되고, 일체로 연결된 그 외경에 전달기어(122)가 연결된다.
또한, 상기 전달기어(122)에는 출력기어(124)가 맞물리고, 이 출력기어(124)에는 출력축(130)이 연결된다.
한편, 상기 제1유성기어장치(110)의 고정측 기어요소인 제1링기어(104)에는 펌프 드라이브 기어(132)가 연결되고, 이 펌프 드라이브 기어(132)에는 펌프 드라이브 아이들기어(134)가 맞물리며, 또한 펌프 드라이브 아이들기어(134)에는 펌프 기어(136)가 맞물리게 된다.
이때, 상기 펌프 기어(136)의 축에는 펌프 기어(136)의 구동에 의하여 오일팬(156)으로부터 유압유를 펌핑하며 작동하는 회생용 유압펌프(138)가 연결된다.
특히, 상기 회생용 제2유성기어장치(120)의 고정측 기어요소인 제2링기어(114)에는 회생용 출력기어(146)가 연결되고, 이 회생용 출력기어(146)에는 회생용 아이들기어(144)가 맞물리며, 또한 회생용 아이들기어(144)에는 회생용 입력기어(142)가 맞물리게 된다.
이때, 상기 회생용 입력기어(142)는 회생용 유압모터(140)의 출력축과 연결되어, 회전동력을 입력받게 된다.
한편, 상기 유압펌프(138)와 회생용 유압모터(140)는 유압펌프(138)에서 회생용 유압모터(140)로 유압이 공급되도록 한 유압공급라인(152)에 의하여 연결되고, 동시에 회생용 유압모터(140)와 오일팬(156)간에는 유압모터(140)에서 사용된 유량이 복귀하는 유압배출라인(154)이 연결된다.
또한, 상기 회생용 유압모터(140)의 유량을 제어하여 연속적인 무단 변속비를 얻을 수 있도록 상기 유압펌프(138)와 회생용 유압모터(140) 사이의 유압공급라인(152)에는 유량제어밸브(160)가 설치되고, 상기 회생용 유압모터(140)와 유압펌프(138) 사이의 유압배출라인(154)에는 릴리프밸브(162)가 설치되는 바, 이 릴리프 밸브는 유압모터(140)와 유압펌프(138)간의 유량 및 압력 차이를 보정하기 위하여 일부 복귀 유량을 유압공급라인(152)으로 공급하는 역할을 한다.
여기서, 제1실시예에 따른 연속변속장치에 대한 작동 흐름을 살펴보면 다음과 같다.
입력축(100)으로부터 전달된 회전동력이 입력용 제1유성기어장치(110)의 제1선기어(102) 및 제2유성기어장치(120)의 제2선기어(112)에 입력되면, 제1선기어(102)와 제2선기어(112)가 동일 속도로 회전을 하게 되고, 제1 및 제2선기어(102,112)의 외주에 각각 맞물린 제1 및 제2유성기어(106,116)가 외접하고 있는 제1 및 제2링기어(104,114)를 따라 자전 및 공전 회전을 하게 된다.
이에, 제1 및 제2유성기어(106,116)와 각각 일체로 된 제1 및 제2캐리어(108,118)가 회전을 하게 되고, 제1 및 제2캐리어(108,118)의 외경에 연결된 전달기어(122)와 이 전달기어(122)에 맞물린 출력기어(124)를 통하여, 출력축(130)에 대한 출력이 이루어진다.
이때, 상기 제1유성기어장치(110)의 고정측 기어요소인 제1링기어(104)와, 상기 제2유성기어장치(120)의 고정측 기어요소인 제2링기어(114)는 별도의 브레이크에 의하여 구속된 상태가 아니므로, 제1 및 제2유성기어(106,116)의 회전력을 전달받아 회전을 하게 된다.
이와 동시에, 상기 제1링기어(104)의 회전력이 펌프 드라이브 기어(132)에 전달되는 동시에 펌프 드라이브 아이들기어(134)에서 회전방향을 변경하여 펌프 기어(136)에 회전력을 전달하게 됨으로써, 펌프 기어(136)와 동축으로 연결된 유압펌프(138)가 구동하게 된다.
이에, 유압펌프(138)의 구동에 의하여 오일팬(156)으로부터 펌핑된 유압오일이 유압공급라인(152)을 따라 회생용 유압모터(140)쪽으로 공급되어, 회생용 유압모터(140)의 구동이 이루어지며, 이 유압모터(140)를 빠져나온 유압유는 유압배출라인(154)을 따라 오일팬(156)으로 복귀된다.
이때, 유압공급라인(152)에 설치된 유량제어밸브(160)에 의하여 회생용 유압모터(140)쪽으로 공급되는 유압유의 유량제어가 이루어지고, 유압배출라인(154)을 따라 오일팬(156)으로 복귀되는 유압유의 일부를 릴리프밸브(162)를 통해 유압공급라인(152)으로 공급함에 따라 유압모터(140)와 유압펌프(138)간의 유량 및 압력 차이에 대한 보상이 이루어진다.
이와 같이, 상기 제1링기어(104)의 회전에 의하여 유압펌프(138)가 구동하여, 유압펌프(138)의 입력 회전수에 따라 비례적인 유압 오일의 토출이 이루어지지만, 유량제어밸브(160)에서 유압 오일의 토출 유량을 제어함으로써, 결국 유압펌프(138)가 고정측 기어요소인 제1링기어(104)의 회전수를 제어하는 역할을 하게 된다.
즉, 유압펌프(138)의 토출 유량 및 유량제어밸브(160)에 의한 유량 제어에 의하여, 제1링기어(104)의 회전수가 가변되는 동시에 제1유성기어(106)의 회전수도 가변되어, 결국 출력축(130)과 연결되는 제1캐리어(108)의 회전수가 조절되면서 출력축(130)에 대한 변속이 자유롭게 이루어지게 된다.
보다 상세하게는, 상기 유압펌프(138)의 토출 유량 및 유량제어밸브(160)에 의한 유량 제어에 의하여, 상기 제1링기어(104)의 회전수가 증가되는 제어를 받으면 제1유성기어(106) 및 제1캐리어(108)의 회전수가 증가하여 출력축(130)이 고속회전하고, 상기 제1링기어(104)의 회전수가 감소되는 제어를 받으면 제1유성기어(106) 및 제1캐리어(108)의 회전수가 감소하여 출력축(130)이 저속회전하는 등 다양한 속도 변화가 연속적으로 이루어지게 된다.
이렇게, 상기 제1링기어(104)의 회전수를 유압펌프(138) 및 유량제어밸브(160)에서 제어하고, 제1캐리어(108)를 통하여 회전력을 가감 출력함으로써, 연속적인 변속이 가능하고, 유압의 상승에 따라 고하중의 변속도 용이하게 이루어질 수 있다.
한편, 유압펌프(138)에서 토출되어 유량제어밸브(160)를 지난 유량에 의하여 유압모터(140)가 구동하게 되는 바, 이때의 유압모터(140)의 회전동력이 회생용 입력기어(142)로 전달되는 동시에 회생용 아이들기어(144)에서 회전방향 전환이 이루어진 후, 회생용 출력기어(146)로 전달된다.
이에, 회생용 출력기어(146)의 회전력이 동축으로 연결된 상기 회생용 제2유성기어장치(120)의 제2링기어(114)에 작용하여, 제2링기어(114)의 가속회전이 이루어지게 된다.
보다 상세하게는, 상기와 같이 제1캐리어(108) 및 제2캐리어(118)를 통한 출력이 이루어지는 동시에, 유압펌프(138)에서 토출되는 유압에너지를 출력단의 유압모터(140)가 받아서 회전력을 재생하여 제2링기어(114)로 전달함으로써, 결국 제2링기어(114)의 회전력이 제2유성기어(116) 및 제2캐리어(118)로 전달되어, 제2캐리어(118)와 연결되는 출력축(130)에 대한 고효율 및 고하중의 동력 전달이 이루어지게 된다.
제2실시예
첨부한 도 6은 본 발명에 따른 고효율 연속변속장치의 제2실시예를 나타내는 동력전달계통도이다.
본 발명의 제2실시예에 따른 연속변속장치는 입력축이 선기어와 연결되고, 출력축에 링기어가 연결되며, 고정측 기어요소는 캐리어가 된다.
본 발명의 제2실시예에 따른 연속변속장치도 제1선기어(102), 제1링기어(104) 및 제1유성기어(106)를 갖는 제1캐리어(108)를 포함하는 입력용 제1유성기어장치(110), 그리고 제2선기어(112), 제2링기어(114) 및 제2유성기어(116)를 갖는 제2캐리어(118)를 포함하는 회생용 제2유성기어장치(120)가 조합된 것으로서, 엔진의 크랭크샤프트로부터 연장된 입력축(100)이 제1 및 제2선기어(102,112)에 동시에 연결된다.
이때, 상기 제1링기어(104) 및 제2링기어(114)에 전달기어(122)가 동시에 연결되고, 이 전달기어(122)에는 출력기어(124)가 맞물리게 되며, 출력기어(124)에는 출력축(130)이 동축으로 연결된다.
한편, 상기 제1유성기어장치(110)의 고정측 기어요소인 제1캐리어(108)에는 펌프 드라이브 기어(132)가 연결되고, 이 펌프 드라이브 기어(132)에는 펌프 드라이브 아이들기어(134)가 맞물리며, 또한 펌프 드라이브 아이들기어(134)에는 펌프 기어(136)가 맞물리게 된다.
이때, 상기 펌프 기어(136)의 축에는 펌프 기어(136)의 구동에 의하여 오일팬(156)으로부터 유압유를 펌핑하며 작동하는 회생용 유압펌프(138)가 연결된다.
특히, 상기 회생용 제2유성기어장치(120)의 고정측 기어요소인 제2캐리어(118)에는 회생용 출력기어(146)가 연결되고, 이 회생용 출력기어(146)에는 회생용 아이들기어(144)가 맞물리며, 또한 회생용 아이들기어(144)에는 회생용 입력기어(142)가 맞물리게 된다.
이때, 상기 회생용 입력기어(142)는 회생용 유압모터(140)의 출력축과 연결되어, 회전동력을 입력받게 된다.
한편, 제1실시예와 마찬가지로 상기 유압펌프(138)와 회생용 유압모터(140)는 유압펌프(138)에서 회생용 유압모터(140)로 유압이 공급되도록 한 유압공급라인(152)에 의하여 연결되고, 동시에 회생용 유압모터(140)와 오일팬(156)간에는 유압모터(140)에서 사용된 유량이 복귀하는 유압배출라인(154)이 연결된다.
또한, 상기 회생용 유압모터(140)의 유량을 제어하여 연속적인 무단 변속비를 얻을 수 있도록 상기 유압펌프(138)와 회생용 유압모터(140) 사이의 유압공급라인(152)에는 유량제어밸브(160)가 설치되고, 상기 회생용 유압모터(140)와 유압펌프(138) 사이의 유압배출라인(154)에는 릴리프밸브(162)가 설치되는 바, 이 릴리프 밸브는 유압모터(140)와 유압펌프(138)간의 유량 및 압력 차이를 보정하기 위하여 일부 복귀 유량을 유압공급라인(152)으로 공급하는 역할을 한다.
여기서, 제2실시예에 따른 연속변속장치에 대한 작동 흐름을 살펴보면 다음과 같다.
입력축(100)으로부터 전달된 회전동력이 입력용 제1유성기어장치(110)의 제1선기어(102) 및 제2유성기어장치(120)의 제2선기어(112)에 입력되면, 제1선기어(102)와 제2선기어(112)가 동일 속도로 회전을 하게 되고, 제1 및 제2선기어(102,112)의 외주에 각각 맞물린 제1 및 제2유성기어(106,116)가 외접하고 있는 제1 및 제2링기어(104,114)를 따라 자전 및 공전 회전을 하면서 제1 및 제2링기어(104,114)를 회전시키게 된다.
이에, 상기 제1 및 제2링기어(104,114)의 회전력이 전달기어(122) 및 출력기어(124)를 통하여 출력축(130)으로 출력된다.
이때, 상기 제1유성기어장치(110)의 고정측 기어요소인 제1캐리어(108)와, 상기 제2유성기어장치(120)의 고정측 기어요소인 제2캐리어(118)는 별도의 브레이크에 의하여 구속된 상태가 아니므로, 제1 및 제2유성기어(106,116)의 회전력을 전달받아 회전을 하게 된다.
이와 동시에, 상기 제1캐리어(108)의 회전력이 펌프 드라이브 기어(132)에 전달되는 동시에 펌프 드라이브 아이들기어(134)에서 회전방향을 변경하여 펌프 기어(136)에 회전력을 전달하게 됨으로써, 펌프 기어(136)와 동축으로 연결된 유압펌프(138)가 구동하게 된다.
이에, 유압펌프(138)의 구동에 의하여 오일팬(156)으로부터 펌핑된 유압오일이 유압공급라인(152)을 따라 회생용 유압모터(140)쪽으로 공급되어, 회생용 유압모터(140)의 구동이 이루어지며, 이 유압모터(140)를 빠져나온 유압유는 유압배출라인(154)을 따라 오일팬(156)으로 복귀된다.
이때, 유압공급라인(152)에 설치된 유량제어밸브(160)에 의하여 회생용 유압모터(140)쪽으로 공급되는 유압유의 유량제어가 이루어지고, 유압배출라인(154)을 따라 오일팬(156)으로 복귀되는 유압유의 일부를 릴리프밸브(162)를 통해 유압공급라인(152)으로 공급함에 따라 유압모터(140)와 유압펌프(138)간의 유량 및 압력 차이에 대한 보상이 이루어진다.
이와 같이, 상기 제1캐리어(108)의 회전에 의하여 유압펌프(138)가 구동하여, 유압펌프(138)의 입력 회전수에 따라 비례적인 유압 오일의 토출이 이루어지지만, 유량제어밸브(160)에서 유압 오일의 토출 유량을 제어함으로써, 결국 유압펌프(138)가 고정측 기어요소인 제1캐리어(108)의 회전수를 제어하는 역할을 하게 된다.
즉, 유압펌프(138)의 토출 유량 및 유량제어밸브(160)에 의한 유량 제어에 의하여, 제1캐리어(108)의 회전수가 가변되는 동시에 제1유성기어(106)의 회전수도 가변되어, 결국 출력축(130)과 연결되는 제1링기어(104)의 회전수가 조절되면서 출력축(130)에 대한 변속이 자유롭게 이루어지게 된다.
보다 상세하게는, 상기 유압펌프(138)의 토출 유량 및 유량제어밸브(160)에 의한 유량 제어에 의하여, 상기 제1캐리어(108)의 회전수가 증가되는 제어를 받으면 제1유성기어(106) 및 제1링기어(104)의 회전수가 증가하여 출력축(130)이 고속회전하고, 상기 제1캐리어(108)의 회전수가 감소되는 제어를 받으면 제1유성기어(106) 및 제1링기어(104)의 회전수가 감소하여 출력축(130)이 저속회전하는 등 다양한 속도 변화가 연속적으로 이루어지게 된다.
이렇게, 상기 제1캐리어(108)의 회전수를 유압펌프(138) 및 유량제어밸브(160)에서 제어하고, 제1링기어(104)를 통하여 회전력을 가감 출력함으로써, 연속적인 변속이 가능하고, 유압의 상승에 따라 고하중의 변속도 용이하게 이루어질 수 있다.
한편, 유압펌프(138)에서 토출되어 유량제어밸브(160)를 지난 유량에 의하여 유압모터(140)가 구동하게 되는 바, 이때의 유압모터(140)의 회전동력이 회생용 입력기어(142)로 전달되는 동시에 회생용 아이들기어(144)에서 회전방향 전환이 이루어진 후, 회생용 출력기어(146)로 전달된다.
이에, 회생용 출력기어(146)의 회전력이 동축으로 연결된 상기 회생용 제2유성기어장치(120)의 제2캐리어(118)에 작용하여, 제2캐리어(118)의 가속회전이 이루어지게 된다.
보다 상세하게는, 상기와 같이 제1 및 제2링기어(104, 114)를 통한 출력이 이루어지는 동시에, 유압펌프(138)에서 토출되는 유압에너지를 출력단의 유압모터(140)가 받아서 회전력을 재생하여 제2캐리어(118)로 전달함으로써, 결국 제2캐리어(118)의 회전력이 제2유성기어(116) 및 제2링기어(114)로 전달되어, 제2링기어(114)와 연결되는 출력축(130)에 대한 고효율 및 고하중의 동력 전달이 이루어지게 된다.
제3실시예
첨부한 도 7은 본 발명에 따른 고효율 연속변속장치의 제3실시예를 나타내는 동력전달계통도이다.
본 발명의 제3실시예에 따른 연속변속장치는 입력축이 링기어와 연결되고, 출력축에 선기어가 연결되며, 고정측 기어요소는 캐리어가 된다.
본 발명의 제3실시예에 따른 연속변속장치도 제1선기어(102), 제1링기어(104) 및 제1유성기어(106)를 갖는 제1캐리어(108)를 포함하는 입력용 제1유성기어장치(110), 그리고 제2선기어(112), 제2링기어(114) 및 제2유성기어(116)를 갖는 제2캐리어(118)를 포함하는 회생용 제2유성기어장치(120)가 조합된 것으로서, 엔진의 크랭크샤프트로부터 연장된 입력축(100)이 제1 및 제2링기어(104,114)에 동시에 연결된다.
이때, 상기 제1링기어(104) 및 제2링기어(114)는 매개기어(126)를 통해 입력축(100)과 연결되고, 상기 제1선기어(102) 및 제2선기어(112)에 출력축(130)이 직접 연결된다.
한편, 제2실시예와 마찬가지로 상기 제1유성기어장치(110)의 고정측 기어요소인 제1캐리어(108)에는 펌프 드라이브 기어(132)가 연결되고, 이 펌프 드라이브 기어(132)에는 펌프 드라이브 아이들기어(134)가 맞물리며, 또한 펌프 드라이브 아이들기어(134)에는 펌프 기어(136)가 맞물리게 된다.
이때, 상기 펌프 기어(136)의 축에는 펌프 기어(136)의 구동에 의하여 오일팬(156)으로부터 유압유를 펌핑하며 작동하는 회생용 유압펌프(138)가 연결된다.
특히, 상기 회생용 제2유성기어장치(120)의 고정측 기어요소인 제2캐리어(118)에는 회생용 출력기어(146)가 연결되고, 이 회생용 출력기어(146)에는 회생용 아이들기어(144)가 맞물리며, 또한 회생용 아이들기어(144)에는 회생용 입력기어(142)가 맞물리게 된다.
이때, 상기 회생용 입력기어(142)는 회생용 유압모터(140)의 출력축과 연결되어, 회전동력을 입력받게 된다.
한편, 제2실시예와 마찬가지로 상기 유압펌프(138)와 회생용 유압모터(140)는 유압펌프(138)에서 회생용 유압모터(140)로 유압이 공급되도록 한 유압공급라인(152)에 의하여 연결되고, 동시에 회생용 유압모터(140)와 오일팬(156)간에는 유압모터(140)에서 사용된 유량이 복귀하는 유압배출라인(154)이 연결된다.
또한, 상기 회생용 유압모터(140)의 유량을 제어하여 연속적인 무단 변속비를 얻을 수 있도록 상기 유압펌프(138)와 회생용 유압모터(140) 사이의 유압공급라인(152)에는 유량제어밸브(160)가 설치되고, 상기 회생용 유압모터(140)와 유압펌프(138) 사이의 유압배출라인(154)에는 릴리프밸브(162)가 설치되는 바, 이 릴리프 밸브는 유압모터(140)와 유압펌프(138)간의 유량 및 압력 차이를 보정하기 위하여 일부 복귀 유량을 유압공급라인(152)으로 공급하는 역할을 한다.
여기서, 제3실시예에 따른 연속변속장치에 대한 작동 흐름을 살펴보면 다음과 같다.
입력축(100)으로부터 전달된 회전동력이 매개기어(126)을 통하여 입력용 제1유성기어장치(110)의 제1링기어(104) 및 제2유성기어장치(120)의 제2링기어(114)에 입력되면, 제1링기어(104)와 제2링기어(114)가 동일 속도로 회전을 하게 되고, 제1 및 제2링기어(104,114)의 내주에 각각 맞물린 제1 및 제2유성기어(106,116)가 제1 및 제2링기어(104,114)를 따라 자전 및 공전 회전을 하면서 제1 및 제2선기어(102,112)를 회전시키게 된다.
이에, 상기 제1 및 제2유성기어(106,116)의 회전력이 제1 및 제2선기어(102,112)를 통하여 출력축(130)으로 출력된다.
이때, 상기 제1유성기어장치(110)의 고정측 기어요소인 제1캐리어(108)와, 상기 제2유성기어장치(120)의 고정측 기어요소인 제2캐리어(118)는 별도의 브레이크에 의하여 구속된 상태가 아니므로, 제1 및 제2유성기어(106,116)의 회전력을 전달받아 회전을 하게 된다.
이와 동시에, 상기 제1캐리어(108)의 회전력이 펌프 드라이브 기어(132)에 전달되는 동시에 펌프 드라이브 아이들기어(134)에서 회전방향을 변경하여 펌프 기어(136)에 회전력을 전달하게 됨으로써, 펌프 기어(136)와 동축으로 연결된 유압펌프(138)가 구동하게 된다.
이에, 유압펌프(138)의 구동에 의하여 오일팬(156)으로부터 펌핑된 유압오일이 유압공급라인(152)을 따라 회생용 유압모터(140)쪽으로 공급되어, 회생용 유압모터(140)의 구동이 이루어지며, 이 유압모터(140)를 빠져나온 유압유는 유압배출라인(154)을 따라 오일팬(156)으로 복귀된다.
이때, 유압공급라인(152)에 설치된 유량제어밸브(160)에 의하여 회생용 유압모터(140)쪽으로 공급되는 유압유의 유량제어가 이루어지고, 유압배출라인(154)을 따라 오일팬(156)으로 복귀되는 유압유의 일부를 릴리프밸브(162)를 통해 유압공급라인(152)으로 공급함에 따라 유압모터(140)와 유압펌프(138)간의 유량 및 압력 차이에 대한 보상이 이루어진다.
이와 같이, 상기 제1캐리어(108)의 회전에 의하여 유압펌프(138)가 구동하여, 유압펌프(138)의 입력 회전수에 따라 비례적인 유압 오일의 토출이 이루어지지만, 유량제어밸브(160)에서 유압 오일의 토출 유량을 제어함으로써, 결국 유압펌프(138)가 고정측 기어요소인 제1캐리어(108)의 회전수를 제어하는 역할을 하게 된다.
즉, 유압펌프(138)의 토출 유량 및 유량제어밸브(160)에 의한 유량 제어에 의하여, 제1캐리어(108)의 회전수가 가변되는 동시에 제1유성기어(106)의 회전수도 가변되어, 결국 출력축(130)과 연결되는 제1선기어(102)의 회전수가 조절되면서 출력축(130)에 대한 변속이 자유롭게 이루어지게 된다.
보다 상세하게는, 상기 유압펌프(138)의 토출 유량 및 유량제어밸브(160)에 의한 유량 제어에 의하여, 상기 제1캐리어(108)의 회전수가 증가되는 제어를 받으면 제1유성기어(106) 및 제1선기어(102)의 회전수가 증가하여 출력축(130)이 고속회전하고, 상기 제1캐리어(108)의 회전수가 감소되는 제어를 받으면 제1유성기어(106) 및 제1선기어(102)의 회전수가 감소하여 출력축(130)이 저속회전하는 등 다양한 속도 변화가 연속적으로 이루어지게 된다.
이렇게, 상기 제1캐리어(108)의 회전수를 유압펌프(138) 및 유량제어밸브(160)에서 제어하고, 제1선기어(102)를 통하여 회전력을 가감 출력함으로써, 연속적인 변속이 가능하고, 유압의 상승에 따라 고하중의 변속도 용이하게 이루어질 수 있다.
한편, 유압펌프(138)에서 토출되어 유량제어밸브(160)를 지난 유량에 의하여 유압모터(140)가 구동하게 되는 바, 이때의 유압모터(140)의 회전동력이 회생용 입력기어(142)로 전달되는 동시에 회생용 아이들기어(144)에서 회전방향 전환이 이루어진 후, 회생용 출력기어(146)로 전달된다.
이에, 회생용 출력기어(146)의 회전력이 동축으로 연결된 상기 회생용 제2유성기어장치(120)의 제2캐리어(118)에 작용하여, 제2캐리어(118)의 가속회전이 이루어지게 된다.
보다 상세하게는, 상기와 같이 제1 및 제2선기어(102,112)를 통한 출력이 이루어지는 동시에, 유압펌프(138)에서 토출되는 유압에너지를 출력단의 유압모터(140)가 받아서 회전력을 재생하여 제2캐리어(118)로 전달함으로써, 결국 제2캐리어(118)의 회전력이 제2유성기어(116) 및 제2선기어(112)로 전달되어, 제2선기어(112)와 연결되는 출력축(130)에 대한 고효율 및 고하중의 동력 전달이 이루어지게 된다.
제4실시예
첨부한 도 8은 본 발명에 따른 고효율 연속변속장치의 제4실시예를 나타내는 동력전달계통도이다.
본 발명의 제4실시예에 따른 연속변속장치는 입력축이 링기어와 연결되고, 출력축에 캐리어가 연결되며, 고정측 기어요소는 선기어가 된다.
본 발명의 제4실시예에 따른 연속변속장치도 제1선기어(102), 제1링기어(104) 및 제1유성기어(106)를 갖는 제1캐리어(108)를 포함하는 입력용 제1유성기어장치(110), 그리고 제2선기어(112), 제2링기어(114) 및 제2유성기어(116)를 갖는 제2캐리어(118)를 포함하는 회생용 제2유성기어장치(120)가 조합된 것으로서, 엔진의 크랭크샤프트로부터 연장된 입력축(100)이 제1 및 제2링기어(104,114)에 동시에 연결된다.
상기 제1링기어(104) 및 제2링기어(114)는 매개기어(126)를 통해 입력축(100)과 연결되고, 상기 제1캐리어(108) 및 제2캐리어(118)에는 전달기어(122)가 동시에 연결되며, 이 전달기어(122)에는 출력기어(124)가 맞물리는 동시에 출력기어(124)에는 출력축(130)이 연결된다.
한편, 상기 제1유성기어장치(110)의 고정측 기어요소인 제1선기어(102)에는 펌프 드라이브 기어(132)가 연결되고, 이 펌프 드라이브 기어(132)에는 펌프 드라이브 아이들기어(134)가 맞물리며, 또한 펌프 드라이브 아이들기어(134)에는 펌프 기어(136)가 맞물리게 된다.
이때, 상기 펌프 기어(136)의 축에는 펌프 기어(136)의 구동에 의하여 오일팬(156)으로부터 유압유를 펌핑하며 작동하는 회생용 유압펌프(138)가 연결된다.
특히, 상기 회생용 제2유성기어장치(120)의 고정측 기어요소인 제2선기어(112)에는 회생용 출력기어(146)가 연결되고, 이 회생용 출력기어(146)에는 회생용 아이들기어(144)가 맞물리며, 또한 회생용 아이들기어(144)에는 회생용 입력기어(142)가 맞물리게 된다.
이때, 상기 회생용 입력기어(142)는 회생용 유압모터(140)의 출력축과 연결되어, 회전동력을 입력받게 된다.
한편, 제1실시예와 마찬가지로 상기 유압펌프(138)와 회생용 유압모터(140)는 유압펌프(138)에서 회생용 유압모터(140)로 유압이 공급되도록 한 유압공급라인(152)에 의하여 연결되고, 동시에 회생용 유압모터(140)와 오일팬(156)간에는 유압모터(140)에서 사용된 유량이 복귀하는 유압배출라인(154)이 연결된다.
또한, 상기 회생용 유압모터(140)의 유량을 제어하여 연속적인 무단 변속비를 얻을 수 있도록 상기 유압펌프(138)와 회생용 유압모터(140) 사이의 유압공급라인(152)에는 유량제어밸브(160)가 설치되고, 상기 회생용 유압모터(140)와 유압펌프(138) 사이의 유압배출라인(154)에는 릴리프밸브(162)가 설치되는 바, 이 릴리프 밸브는 유압모터(140)와 유압펌프(138)간의 유량 및 압력 차이를 보정하기 위하여 일부 복귀 유량을 유압공급라인(152)으로 공급하는 역할을 한다.
여기서, 제4실시예에 따른 연속변속장치에 대한 작동 흐름을 살펴보면 다음과 같다.
입력축(100)으로부터 전달된 회전동력이 매개기어(126)를 통하여 입력용 제1유성기어장치(110)의 제1링기어(104) 및 제2유성기어장치(120)의 제2링기어(114)에 입력되면, 제1링기어(104)와 제2링기어(114)가 동일 속도로 회전을 하게 되고, 제1 및 제2링기어(104,114)의 내주에 각각 맞물린 제1 및 제2유성기어(106,116)가 제1 및 제2링기어(104,114)를 따라 자전 및 공전 회전을 하게 된다.
이에, 제1 및 제2유성기어(106,116)와 각각 일체로 된 제1 및 제2캐리어(108,118)가 회전을 하게 되고, 제1 및 제2캐리어(108,118)에 연결된 전달기어(122)와 이 전달기어(122)에 맞물린 출력기어(124)를 통하여, 출력축(130)에 대한 출력이 이루어진다.
이때, 상기 제1유성기어장치(110)의 고정측 기어요소인 제1선기어(102)와, 상기 제2유성기어장치(120)의 고정측 기어요소인 제2선기어(112)는 별도의 브레이크에 의하여 구속된 상태가 아니므로, 제1 및 제2유성기어(106,116)의 회전력을 전달받아 회전을 하게 된다.
이와 동시에, 상기 제1선기어(102)의 회전력이 펌프 드라이브 기어(132)에 전달되는 동시에 펌프 드라이브 아이들기어(134)에서 회전방향을 변경하여 펌프 기어(136)에 회전력을 전달하게 됨으로써, 펌프 기어(136)와 동축으로 연결된 유압펌프(138)가 구동하게 된다.
이에, 제1실시예와 마찬가지로 유압펌프(138)의 구동에 의하여 오일팬(156)으로부터 펌핑된 유압오일이 유압공급라인(152)을 따라 회생용 유압모터(140)쪽으로 공급되어, 회생용 유압모터(140)의 구동이 이루어지며, 이 유압모터(140)를 빠져나온 유압유는 유압배출라인(154)을 따라 오일팬(156)으로 복귀된다.
이때, 유압공급라인(152)에 설치된 유량제어밸브(160)에 의하여 회생용 유압모터(140)쪽으로 공급되는 유압유의 유량제어가 이루어지고, 유압배출라인(154)을 따라 오일팬(156)으로 복귀되는 유압유의 일부를 릴리프밸브(162)를 통해 유압공급라인(152)으로 공급함에 따라 유압모터(140)와 유압펌프(138)간의 유량 및 압력 차이에 대한 보상이 이루어진다.
이와 같이, 상기 제1선기어(102)의 회전에 의하여 유압펌프(138)가 구동하여, 유압펌프(138)의 입력 회전수에 따라 비례적인 유압 오일의 토출이 이루어지지만, 유량제어밸브(160)에서 유압 오일의 토출 유량을 제어함으로써, 결국 유압펌프(138)가 고정측 기어요소인 제1선기어(102)의 회전수를 제어하는 역할을 하게 된다.
즉, 유압펌프(138)의 토출 유량 및 유량제어밸브(160)에 의한 유량 제어에 의하여, 제1선기어(102)의 회전수가 가변되는 동시에 제1유성기어(106)의 회전수도 가변되어, 결국 출력축(130)과 연결되는 제1캐리어(108)의 회전수가 조절되면서 출력축(130)에 대한 변속이 자유롭게 이루어지게 된다.
보다 상세하게는, 상기 유압펌프(138)의 토출 유량 및 유량제어밸브(160)에 의한 유량 제어에 의하여, 상기 제1선기어(102)의 회전수가 증가되는 제어를 받으면 제1유성기어(106) 및 제1캐리어(108)의 회전수가 증가하여 출력축(130)이 고속회전하고, 상기 제1선기어(102)의 회전수가 감소되는 제어를 받으면 제1유성기어(106) 및 제1캐리어(108)의 회전수가 감소하여 출력축(130)이 저속회전하는 등 다양한 속도 변화가 연속적으로 이루어지게 된다.
이렇게, 상기 제1선기어(102)의 회전수를 유압펌프(138) 및 유량제어밸브(160)에서 제어하고, 제1캐리어(108)를 통하여 회전력을 가감 출력함으로써, 연속적인 변속이 가능하고, 유압의 상승에 따라 고하중의 변속도 용이하게 이루어질 수 있다.
한편, 제1실시예와 마찬가지로 유압펌프(138)에서 토출되어 유량제어밸브(160)를 지난 유량에 의하여 유압모터(140)가 구동하게 되는 바, 이때의 유압모터(140)의 회전동력이 회생용 입력기어(142)로 전달되는 동시에 회생용 아이들기어(144)에서 회전방향 전환이 이루어진 후, 회생용 출력기어(146)로 전달된다.
이에, 회생용 출력기어(146)의 회전력이 동축으로 연결된 상기 회생용 제2유성기어장치(120)의 제2선기어(112)에 작용하여, 제2선기어(112)의 가속회전이 이루어지게 된다.
보다 상세하게는, 상기와 같이 제1 및 제2캐리어(108,118)를 통한 출력이 이루어지는 동시에, 유압펌프(138)에서 토출되는 유압에너지를 출력단의 유압모터(140)가 받아서 회전력을 재생하여 제2선기어(112)로 전달함으로써, 결국 제2선기어(112)의 회전력이 제2유성기어(116) 및 제2캐리어(118)로 전달되어, 제2캐리어(118)와 연결되는 출력축(130)에 대한 고효율 및 고하중의 동력 전달이 이루어지게 된다.
제5실시예
첨부한 도 9는 본 발명에 따른 고효율 연속변속장치의 제5실시예를 나타내는 동력전달계통도이다.
본 발명의 제5실시예에 따른 연속변속장치는 입력축이 캐리어와 연결되고, 출력축에 링기어가 연결되며, 고정측 기어요소는 선기어가 된다.
본 발명의 제5실시예에 따른 연속변속장치도 제1선기어(102), 제1링기어(104) 및 제1유성기어(106)를 갖는 제1캐리어(108)를 포함하는 입력용 제1유성기어장치(110), 그리고 제2선기어(112), 제2링기어(114) 및 제2유성기어(116)를 갖는 제2캐리어(118)를 포함하는 회생용 제2유성기어장치(120)가 조합된 것으로서, 엔진의 크랭크샤프트로부터 연장된 입력축(100)이 제1 및 제2캐리어(108,118)에 동시에 연결된다.
이때, 상기 제1 및 제2캐리어(108,118)에는 제2매개기어(126b)가 연결되고, 이 제2매개기어(126b)에는 입력축(100)과 연결되는 제1매개기어(126a)가 맞물리며, 또한, 상기 제1 및 제2링기어(104,114)에는 전달기어(122)를 매개로 출력축(130)이 연결된다.
한편, 상기 제1유성기어장치(110)의 고정측 기어요소인 제1선기어(102)에는 펌프 드라이브 기어(132)가 연결되고, 이 펌프 드라이브 기어(132)에는 펌프 드라이브 아이들기어(134)가 맞물리며, 또한 펌프 드라이브 아이들기어(134)에는 펌프 기어(136)가 맞물리게 된다.
이때, 상기 펌프 기어(136)의 축에는 펌프 기어(136)의 구동에 의하여 오일팬(156)으로부터 유압유를 펌핑하며 작동하는 회생용 유압펌프(138)가 연결된다.
특히, 상기 회생용 제2유성기어장치(120)의 고정측 기어요소인 제2선기어(112)에는 회생용 출력기어(146)가 연결되고, 이 회생용 출력기어(146)에는 회생용 아이들기어(144)가 맞물리며, 또한 회생용 아이들기어(144)에는 회생용 입력기어(142)가 맞물리게 된다.
이때, 상기 회생용 입력기어(142)는 회생용 유압모터(140)의 출력축과 연결되어, 회전동력을 입력받게 된다.
한편, 제1실시예와 마찬가지로 상기 유압펌프(138)와 회생용 유압모터(140)는 유압펌프(138)에서 회생용 유압모터(140)로 유압이 공급되도록 한 유압공급라인(152)에 의하여 연결되고, 동시에 회생용 유압모터(140)와 오일팬(156)간에는 유압모터(140)에서 사용된 유량이 복귀하는 유압배출라인(154)이 연결된다.
또한, 상기 회생용 유압모터(140)의 유량을 제어하여 연속적인 무단 변속비를 얻을 수 있도록 상기 유압펌프(138)와 회생용 유압모터(140) 사이의 유압공급라인(152)에는 유량제어밸브(160)가 설치되고, 상기 회생용 유압모터(140)와 유압펌프(138) 사이의 유압배출라인(154)에는 릴리프밸브(162)가 설치되는 바, 이 릴리프 밸브는 유압모터(140)와 유압펌프(138)간의 유량 및 압력 차이를 보정하기 위하여 일부 복귀 유량을 유압공급라인(152)으로 공급하는 역할을 한다.
여기서, 제5실시예에 따른 연속변속장치에 대한 작동 흐름을 살펴보면 다음과 같다.
입력축(100)으로부터 전달된 회전동력이 제1 및 제2매개기어(126a,126b)를 통하여 입력용 제1유성기어장치(110)의 제1캐리어(108) 및 제2유성기어장치(120)의 제2캐리어(118)에 입력되면, 제1캐리어(108)와 제2캐리어(118)가 동일 속도로 회전을 하게 되고, 제1 및 제2캐리어(108,118)에 회전 가능하게 고정된 제1 및 제2유성기어(106,116)가 회전을 하는 동시에 외접하고 있는 제1 및 제2링기어(104,114)를 따라 자전 및 공전 회전을 하면서 제1 및 제2링기어(104,114)를 회전시키게 된다.
이에, 상기 제1 및 제2링기어(104,114)의 회전력이 출력기어(124)를 통하여 출력축(130)으로 출력된다.
이때, 상기 제1유성기어장치(110)의 고정측 기어요소인 제1선기어(102)와, 상기 제2유성기어장치(120)의 고정측 기어요소인 제2선기어(112)는 별도의 브레이크에 의하여 구속된 상태가 아니므로, 제1 및 제2유성기어(106,116)의 회전력을 전달받아 회전을 하게 된다.
이와 동시에, 상기 제1선기어(102)의 회전력이 펌프 드라이브 기어(132)에 전달되는 동시에 펌프 드라이브 아이들기어(134)에서 회전방향을 변경하여 펌프 기어(136)에 회전력을 전달하게 됨으로써, 펌프 기어(136)와 동축으로 연결된 유압펌프(138)가 구동하게 된다.
이에, 제1실시예와 마찬가지로 유압펌프(138)의 구동에 의하여 오일팬(156)으로부터 펌핑된 유압오일이 유압공급라인(152)을 따라 회생용 유압모터(140)쪽으로 공급되어, 회생용 유압모터(140)의 구동이 이루어지며, 이 유압모터(140)를 빠져나온 유압유는 유압배출라인(154)을 따라 오일팬(156)으로 복귀된다.
이때, 유압공급라인(152)에 설치된 유량제어밸브(160)에 의하여 회생용 유압모터(140)쪽으로 공급되는 유압유의 유량제어가 이루어지고, 유압배출라인(154)을 따라 오일팬(156)으로 복귀되는 유압유의 일부를 릴리프밸브(162)를 통해 유압공급라인(152)으로 공급함에 따라 유압모터(140)와 유압펌프(138)간의 유량 및 압력 차이에 대한 보상이 이루어진다.
이와 같이, 상기 제1선기어(102)의 회전에 의하여 유압펌프(138)가 구동하여, 유압펌프(138)의 입력 회전수에 따라 비례적인 유압 오일의 토출이 이루어지지만, 유량제어밸브(160)에서 유압 오일의 토출 유량을 제어함으로써, 결국 유압펌프(138)가 고정측 기어요소인 제1선기어(102)의 회전수를 제어하는 역할을 하게 된다.
즉, 유압펌프(138)의 토출 유량 및 유량제어밸브(160)에 의한 유량 제어에 의하여, 제1선기어(102)의 회전수가 가변되는 동시에 제1유성기어(106)의 회전수도 가변되어, 결국 출력축(130)과 연결되는 제1링기어(104)의 회전수가 조절되면서 출력축(130)에 대한 변속이 자유롭게 이루어지게 된다.
보다 상세하게는, 상기 유압펌프(138)의 토출 유량 및 유량제어밸브(160)에 의한 유량 제어에 의하여, 상기 제1선기어(102)의 회전수가 증가되는 제어를 받으면 제1유성기어(106) 및 제1링기어(104)의 회전수가 증가하여 출력축(130)이 고속회전하고, 상기 제1선기어(108)의 회전수가 감소되는 제어를 받으면 제1유성기어(106) 및 제1링기어(104)의 회전수가 감소하여 출력축(130)이 저속회전하는 등 다양한 속도 변화가 연속적으로 이루어지게 된다.
이렇게, 상기 제1선기어(102)의 회전수를 유압펌프(138) 및 유량제어밸브(160)에서 제어하고, 제1링기어(104)를 통하여 회전력을 가감 출력함으로써, 연속적인 변속이 가능하고, 유압의 상승에 따라 고하중의 변속도 용이하게 이루어질 수 있다.
한편, 제1실시예와 마찬가지로 유압펌프(138)에서 토출되어 유량제어밸브(160)를 지난 유량에 의하여 유압모터(140)가 구동하게 되는 바, 이때의 유압모터(140)의 회전동력이 회생용 입력기어(142)로 전달되는 동시에 회생용 아이들기어(144)에서 회전방향 전환이 이루어진 후, 회생용 출력기어(146)로 전달된다.
이에, 회생용 출력기어(146)의 회전력이 동축으로 연결된 상기 회생용 제2유성기어장치(120)의 제2선기어(112)에 작용하여, 제2선기어(112)의 가속회전이 이루어지게 된다.
보다 상세하게는, 상기와 같이 제1 및 제2링기어(104, 114)를 통한 출력이 이루어지는 동시에, 유압펌프(138)에서 토출되는 유압에너지를 출력단의 유압모터(140)가 받아서 회전력을 재생하여 제2선기어(112)로 전달함으로써, 결국 제2선기어(112)의 회전력이 제2유성기어(116) 및 제2링기어(114)로 전달되어, 제2링기어(114)와 연결되는 출력축(130)에 대한 고효율 및 고하중의 동력 전달이 이루어지게 된다.
제6실시예
첨부한 도 10은 본 발명에 따른 고효율 연속변속장치의 제6실시예를 나타내는 동력전달계통도이다.
본 발명의 제6실시예에 따른 연속변속장치는 입력축이 캐리어와 연결되고, 출력축에 선기어가 연결되며, 고정측 기어요소는 링기어가 된다.
본 발명의 제6실시예에 따른 연속변속장치도 제1선기어(102), 제1링기어(104) 및 제1유성기어(106)를 갖는 제1캐리어(108)를 포함하는 입력용 제1유성기어장치(110), 그리고 제2선기어(112), 제2링기어(114) 및 제2유성기어(116)를 갖는 제2캐리어(118)를 포함하는 회생용 제2유성기어장치(120)가 조합된 것으로서, 엔진의 크랭크샤프트로부터 연장된 입력축(100)이 제1 및 제2캐리어(108,118)에 동시에 연결된다.
이때, 상기 제1 및 제2캐리어(108,118)에는 제2매개기어(126b)가 연결되고, 이 제2매개기어(126b)에는 입력축(100)과 연결되는 제1매개기어(126a)가 맞물리며, 또한, 상기 제1 및 제2선기어(102,112)에 직접 출력축(130)이 연결된다.
한편, 상기 제1유성기어장치(110)의 고정측 기어요소인 제1링기어(104)에는 펌프 드라이브 기어(132)가 연결되고, 이 펌프 드라이브 기어(132)에는 펌프 드라이브 아이들기어(134)가 맞물리며, 또한 펌프 드라이브 아이들기어(134)에는 펌프 기어(136)가 맞물리게 된다.
이때, 상기 펌프 기어(136)의 축에는 펌프 기어(136)의 구동에 의하여 오일팬(156)으로부터 유압유를 펌핑하며 작동하는 회생용 유압펌프(138)가 연결된다.
특히, 상기 회생용 제2유성기어장치(120)의 고정측 기어요소인 제2링기어(114)에는 회생용 출력기어(146)가 연결되고, 이 회생용 출력기어(146)에는 회생용 아이들기어(144)가 맞물리며, 또한 회생용 아이들기어(144)에는 회생용 입력기어(142)가 맞물리게 된다.
이때, 상기 회생용 입력기어(142)는 회생용 유압모터(140)의 출력축과 연결되어, 회전동력을 입력받게 된다.
한편, 제1실시예와 마찬가지로 상기 유압펌프(138)와 회생용 유압모터(140)는 유압펌프(138)에서 회생용 유압모터(140)로 유압이 공급되도록 한 유압공급라인(152)에 의하여 연결되고, 동시에 회생용 유압모터(140)와 오일팬(156)간에는 유압모터(140)에서 사용된 유량이 복귀하는 유압배출라인(154)이 연결된다.
또한, 상기 회생용 유압모터(140)의 유량을 제어하여 연속적인 무단 변속비를 얻을 수 있도록 상기 유압펌프(138)와 회생용 유압모터(140) 사이의 유압공급라인(152)에는 유량제어밸브(160)가 설치되고, 상기 회생용 유압모터(140)와 유압펌프(138) 사이의 유압배출라인(154)에는 릴리프밸브(162)가 설치되는 바, 이 릴리프 밸브는 유압모터(140)와 유압펌프(138)간의 유량 및 압력 차이를 보정하기 위하여 일부 복귀 유량을 유압공급라인(152)으로 공급하는 역할을 한다.
여기서, 제5실시예에 따른 연속변속장치에 대한 작동 흐름을 살펴보면 다음과 같다.
입력축(100)으로부터 전달된 회전동력이 제1 및 제2매개기어(126a,126b)를 통하여 입력용 제1유성기어장치(110)의 제1캐리어(108) 및 제2유성기어장치(120)의 제2캐리어(118)에 입력되면, 제1캐리어(108)와 제2캐리어(118)가 동일 속도로 회전을 하게 되고, 제1 및 제2캐리어(108,118)에 회전 가능하게 고정된 제1 및 제2유성기어(106,116)가 회전을 하는 동시에 내접하고 있는 제1 및 제2선기어(102,112)를 회전시킴으로써, 제1 및 제2선기어(102,112)에 연결된 출력축(130)의 출력이 이루어진다.
이때, 상기 제1 및 제2유성기어(106,116)이 자전 및 공전 회전을 하면서 제1 및 제2링기어(104,114)를 회전시키게 된다.
이때, 상기 제1유성기어장치(110)의 고정측 기어요소인 제1링기어(104)와, 상기 제2유성기어장치(120)의 고정측 기어요소인 제2링기어(114)는 별도의 브레이크에 의하여 구속된 상태가 아니므로, 제1 및 제2유성기어(106,116)의 회전력을 전달받아 회전을 하게 된다.
이와 동시에, 상기 제1링기어(104)의 회전력이 펌프 드라이브 기어(132)에 전달되는 동시에 펌프 드라이브 아이들기어(134)에서 회전방향을 변경하여 펌프 기어(136)에 회전력을 전달하게 됨으로써, 펌프 기어(136)와 동축으로 연결된 유압펌프(138)가 구동하게 된다.
이에, 제1실시예와 마찬가지로 유압펌프(138)의 구동에 의하여 오일팬(156)으로부터 펌핑된 유압오일이 유압공급라인(152)을 따라 회생용 유압모터(140)쪽으로 공급되어, 회생용 유압모터(140)의 구동이 이루어지며, 이 유압모터(140)를 빠져나온 유압유는 유압배출라인(154)을 따라 오일팬(156)으로 복귀된다.
이때, 유압공급라인(152)에 설치된 유량제어밸브(160)에 의하여 회생용 유압모터(140)쪽으로 공급되는 유압유의 유량제어가 이루어지고, 유압배출라인(154)을 따라 오일팬(156)으로 복귀되는 유압유의 일부를 릴리프밸브(162)를 통해 유압공급라인(152)으로 공급함에 따라 유압모터(140)와 유압펌프(138)간의 유량 및 압력 차이에 대한 보상이 이루어진다.
이와 같이, 상기 제1링기어(104)의 회전에 의하여 유압펌프(138)가 구동하여, 유압펌프(138)의 입력 회전수에 따라 비례적인 유압 오일의 토출이 이루어지지만, 유량제어밸브(160)에서 유압 오일의 토출 유량을 제어함으로써, 결국 유압펌프(138)가 고정측 기어요소인 제1링기어(104)의 회전수를 제어하는 역할을 하게 된다.
즉, 유압펌프(138)의 토출 유량 및 유량제어밸브(160)에 의한 유량 제어에 의하여, 제1링기어(104)의 회전수가 가변되는 동시에 제1유성기어(106)의 회전수도 가변되어, 결국 출력축(130)과 연결되는 제1선기어(102)의 회전수가 조절되면서 출력축(130)에 대한 변속이 자유롭게 이루어지게 된다.
보다 상세하게는, 상기 유압펌프(138)의 토출 유량 및 유량제어밸브(160)에 의한 유량 제어에 의하여, 상기 제1링기어(104)의 회전수가 증가되는 제어를 받으면 제1유성기어(106) 및 제1선기어(102)의 회전수가 증가하여 출력축(130)이 고속회전하고, 상기 제1링기어(104)의 회전수가 감소되는 제어를 받으면 제1유성기어(106) 및 제1선기어(102)의 회전수가 감소하여 출력축(130)이 저속회전하는 등 다양한 속도 변화가 연속적으로 이루어지게 된다.
이렇게, 상기 제1링기어(104)의 회전수를 유압펌프(138) 및 유량제어밸브(160)에서 제어하고, 제1선기어(102)를 통하여 회전력을 가감 출력함으로써, 연속적인 변속이 가능하고, 유압의 상승에 따라 고하중의 변속도 용이하게 이루어질 수 있다.
한편, 제1실시예와 마찬가지로 유압펌프(138)에서 토출되어 유량제어밸브(160)를 지난 유량에 의하여 유압모터(140)가 구동하게 되는 바, 이때의 유압모터(140)의 회전동력이 회생용 입력기어(142)로 전달되는 동시에 회생용 아이들기어(144)에서 회전방향 전환이 이루어진 후, 회생용 출력기어(146)로 전달된다.
이에, 회생용 출력기어(146)의 회전력이 동축으로 연결된 상기 회생용 제2유성기어장치(120)의 제2링기어(114)에 작용하여, 제2링기어(114)의 가속회전이 이루어지게 된다.
보다 상세하게는, 상기와 같이 제1 및 제2선기어(102, 112)를 통한 출력이 이루어지는 동시에, 유압펌프(138)에서 토출되는 유압에너지를 출력단의 유압모터(140)가 받아서 회전력을 재생하여 제2링기어(114)로 전달함으로써, 결국 제2링기어(114)의 회전력이 제2유성기어(116) 및 제2선기어(112)로 전달되어, 제2선기어(112)와 연결되는 출력축(130)에 대한 고효율 및 고하중의 동력 전달이 이루어지게 된다.
본 발명은 고효율 연속변속장치에 관한 것으로, 더욱 상세하게는 일종의 무단변속장치로서, 유성치차, 유압펌프, 유압모터 및 유량제어밸브 등을 이용하여 연속적인 변속이 용이하게 이루어질 수 있도록 한 고효율 연속변속장치에 관한 것이다.
Claims (10)
- 입력축(100)과;상기 입력축(100)과 연결되는 제1선기어(102)를 비롯하여, 제1링기어(104) 및 제1유성기어(106)를 갖는 제1캐리어(108)를 포함하는 입력용 제1유성기어장치(110)와;상기 입력축(100)과 연결되는 제2선기어(112)를 비롯하여, 제2링기어(114) 및 제2유성기어(116)를 갖는 제2캐리어(118)를 포함하는 회생용 제2유성기어장치(120)와;서로 연결되는 제1캐리어(108) 및 제2캐리어(118)의 외경에 연결되는 전달기어(122)와;상기 전달기어(122)에 맞물리는 동시에 출력축(130)에 연결되는 출력기어(124)와;상기 제1유성기어장치(110)의 제1링기어(104)에 연결되는 펌프 드라이브 기어(132)와;상기 펌프 드라이브 기어(132)에 맞물리는 펌프 드라이브 아이들기어(134)와;상기 펌프 드라이브 아이들기어(134)에 맞물리는 펌프 기어(136)와;상기 펌프 기어(136)의 구동에 의하여 유압유를 펌핑 작동시키는 유압펌프(138)와;상기 유압펌프(138)와 유압라인(152,154)에 의하여 연결되어, 유압펌프(138)의 구동시 작동하는 회생용 유압모터(140)와;상기 회생용 제2유성기어장치(120)의 제2링기어(114)와 연결되는 회생용 출력기어(146)와;상기 회생용 출력기어(146)와 맞물리는 회생용 아이들기어(144)와;상기 회생용 아이들기어(144)와 맞물리는 동시에 회생용 유압모터(140)와 연결되는 회생용 입력기어(142);를 포함하여 구성된 것을 특징으로 하는 고효율 연속변속장치.
- 입력축(100)과;상기 입력축(100)과 연결되는 제1선기어(102)를 비롯하여, 제1링기어(104) 및 제1유성기어(106)를 갖는 제1캐리어(108)를 포함하는 입력용 제1유성기어장치(110)와;상기 입력축(100)과 연결되는 제2선기어(112)를 비롯하여, 제2링기어(114) 및 제2유성기어(116)를 갖는 제2캐리어(118)를 포함하는 회생용 제2유성기어장치(120)와;제1링기어(104) 및 제2링기어(114)에 동시에 연결되는 전달기어(122)와;상기 전달기어(122)에 맞물리는 동시에 출력축(130)에 연결되는 출력기어(124)와;상기 제1유성기어장치(110)의 제1캐리어(108)에 연결되는 펌프 드라이브 기어(132)와;상기 펌프 드라이브 기어(132)에 맞물리는 펌프 드라이브 아이들기어(134)와;상기 펌프 드라이브 아이들기어(134)에 맞물리는 펌프 기어(136)와;상기 펌프 기어(136)의 구동에 의하여 유압유를 펌핑 작동시키는 유압펌프(138)와;상기 유압펌프(138)와 유압라인(152,154)에 의하여 연결되어, 유압펌프(138)의 구동시 작동하는 회생용 유압모터(140)와;상기 회생용 제2유성기어장치(120)의 제2캐리어(118)와 연결되는 회생용 출력기어(146)와;상기 회생용 출력기어(146)와 맞물리는 회생용 아이들기어(144)와;상기 회생용 아이들기어(144)와 맞물리는 동시에 회생용 유압모터(140)와 연결되는 회생용 입력기어(142);를 포함하여 구성된 것을 특징으로 하는 고효율 연속변속장치.
- 제1선기어(102)를 비롯하여, 제1링기어(104) 및 제1유성기어(106)를 갖는 제1캐리어(108)를 포함하는 입력용 제1유성기어장치(110)와;제2선기어(112)를 비롯하여, 제2링기어(114) 및 제2유성기어(116)를 갖는 제2캐리어(118)를 포함하는 회생용 제2유성기어장치(120)와;상기 제1링기어(104) 및 제2링기어(114)와 동시에 맞물리는 매개기어(126)와;상기 매개기어(126)에 연결되는 입력축(100)과;상기 제1선기어(102) 및 제2선기어(112)에 연결되는 출력축(130)과;상기 제1유성기어장치의 제1캐리어(108)에 연결되는 펌프 드라이브 기어(132)와;상기 펌프 드라이브 기어(132)에 맞물리는 펌프 드라이브 아이들기어(134)와;상기 펌프 드라이브 아이들기어(134)에 맞물리는 펌프 기어(136)와;상기 펌프 기어(136)의 구동에 의하여 유압유를 펌핑 작동시키는 유압펌프(138)와;상기 유압펌프(138)와 유압라인에 의하여 연결되어, 유압펌프(138)의 구동시 작동하는 회생용 유압모터(140)와;상기 회생용 제2유성기어장치(120)의 제2캐리어(118)와 연결되는 회생용 출력기어(146)와;상기 회생용 출력기어(146)와 맞물리는 회생용 아이들기어(144)와;상기 회생용 아이들기어(144)와 맞물리는 동시에 회생용 유압모터(140)와 연결되는 회생용 입력기어(142);를 포함하여 구성된 것을 특징으로 하는 고효율 연속변속장치.
- 제1선기어(102)를 비롯하여, 제1링기어(104) 및 제1유성기어(106)를 갖는 제1캐리어(108)를 포함하는 입력용 제1유성기어장치(110)와;제2선기어(112)를 비롯하여, 제2링기어(114) 및 제2유성기어(116)를 갖는 제2캐리어(118)를 포함하는 회생용 제2유성기어장치(120)와;상기 제1링기어(104) 및 제2링기어(114)와 동시에 맞물리는 매개기어(126)와;상기 매개기어(126)에 연결되는 입력축(100)과;상기 제1캐리어(108) 및 제2캐리어(118)가 동시에 연결되는 전달기어(122)와;상기 전달기어(122)에 맞물리는 동시에 출력축(130)에 연결되는 출력기어(124)와;상기 제1유성기어장치의 제1선기어(102)에 연결되는 펌프 드라이브 기어(132)와;상기 펌프 드라이브 기어(132)에 맞물리는 펌프 드라이브 아이들기어(134)와;상기 펌프 드라이브 아이들기어(134)에 맞물리는 펌프 기어(136)와;상기 펌프 기어(136)의 구동에 의하여 유압유를 펌핑 작동시키는 유압펌프(138)와;상기 유압펌프(138)와 유압라인에 의하여 연결되어, 유압펌프(138)의 구동시 작동하는 회생용 유압모터(140)와;상기 회생용 제2유성기어장치(120)의 제2선기어(112)와 연결되는 회생용 출력기어(146)와;상기 회생용 출력기어(146)와 맞물리는 회생용 아이들기어(144)와;상기 회생용 아이들기어(144)와 맞물리는 동시에 회생용 유압모터(140)와 연결되는 회생용 입력기어(142);를 포함하여 구성된 것을 특징으로 하는 고효율 연속변속장치.
- 제1선기어(102)를 비롯하여, 제1링기어(104) 및 제1유성기어(106)를 갖는 제1캐리어(108)를 포함하는 입력용 제1유성기어장치(110)와;제2선기어(112)를 비롯하여, 제2링기어(114) 및 제2유성기어(116)를 갖는 제2캐리어(118)를 포함하는 회생용 제2유성기어장치(120)와;상기 제1캐리어(108) 및 제2캐리어(118)가 동시에 연결되는 제2매개기어(126b)와;상기 제2매개기어(126b)에 맞물리는 동시에 제1매개기어(126a)와 연결되는 입력축(100)과;상기 제1링기어(104) 및 제2링기어(114)에 동시에 연결되는 전달기어(122)와;상기 전달기어(122)에 맞물리는 동시에 출력축(130)에 연결되는 출력기어와;상기 제1유성기어장치의 제1선기어(102)에 연결되는 펌프 드라이브 기어(132)와;상기 펌프 드라이브 기어(132)에 맞물리는 펌프 드라이브 아이들기어(134)와;상기 펌프 드라이브 아이들기어(134)에 맞물리는 펌프 기어(136)와;상기 펌프 기어(136)의 구동에 의하여 유압유를 펌핑 작동시키는 유압펌프(138)와;상기 유압펌프(138)와 유압라인에 의하여 연결되어, 유압펌프(138)의 구동시 작동하는 회생용 유압모터(140)와;상기 회생용 제2유성기어장치(120)의 제2선기어(112)와 연결되는 회생용 출력기어(146)와;상기 회생용 출력기어(146)와 맞물리는 회생용 아이들기어(144)와;상기 회생용 아이들기어(144)와 맞물리는 동시에 회생용 유압모터(140)와 연결되는 회생용 입력기어(142);를 포함하여 구성된 것을 특징으로 하는 고효율 연속변속장치.
- 제1선기어(102)를 비롯하여, 제1링기어(104) 및 제1유성기어(106)를 갖는 제1캐리어(108)를 포함하는 입력용 제1유성기어장치(110)와;제2선기어(112)를 비롯하여, 제2링기어(114) 및 제2유성기어(116)를 갖는 제2캐리어(118)를 포함하는 회생용 제2유성기어장치(120)와;상기 제1캐리어(108) 및 제2캐리어(118)가 동시에 연결되는 제2매개기어(126b)와;상기 제2매개기어(126b)에 맞물리는 동시에 제1매개기어(126a)와 연결되는 입력축(100)과;상기 제1선기어(102) 및 제2선기어(112)가 동시에 연결되는 출력축(130)과;상기 제1유성기어장치의 제1링기어(104)에 연결되는 펌프 드라이브 기어(132)와;상기 펌프 드라이브 기어(132)에 맞물리는 펌프 드라이브 아이들기어(134)와;상기 펌프 드라이브 아이들기어(134)에 맞물리는 펌프 기어(136)와;상기 펌프 기어(136)의 구동에 의하여 유압유를 펌핑 작동시키는 유압펌프(138)와;상기 유압펌프(138)와 유압라인에 의하여 연결되어, 유압펌프(138)의 구동시 작동하는 회생용 유압모터(140)와;상기 회생용 제2유성기어장치(120)의 제2링기어(114)와 연결되는 회생용 출력기어(146)와;상기 회생용 출력기어(146)와 맞물리는 회생용 아이들기어(144)와;상기 회생용 아이들기어(144)와 맞물리는 동시에 회생용 유압모터(140)와 연결되는 회생용 입력기어(142);를 포함하여 구성된 것을 특징으로 하는 고효율 연속변속장치.
- 청구항 1 내지 청구항 6중 어느 하나의 항에 있어서,상기 회생용 유압모터(140)의 유량을 제어하여 연속적인 무단 변속비를 얻을 수 있도록 상기 유압펌프(138)와 회생용 유압모터(140) 사이의 유압공급라인(152)에는 유량제어밸브(160)가 설치된 것을 특징으로 하는 고효율 연속변속장치.
- 청구항 1 내지 청구항 6중 어느 하나의 항에 있어서,상기 회생용 유압모터(140)와 유압펌프(138) 사이의 유압배출라인(154)에는 유량 및 압력 차이를 보정하기 위하여 유압공급라인(152)으로 통하는 릴리프밸브(162)가 설치된 것을 특징으로 하는 고효율 연속변속장치.
- 청구항 1 내지 청구항 6중 어느 하나의 항에 있어서,상기 회생용 유압모터(140)와 유압펌프(138)를 가변형 타입으로 사용하여, 유량 조절 및 연속적인 변속이 이루어지도록 한 고효율 연속변속장치.
- 청구항 1 내지 청구항 6중 어느 하나의 항에 있어서,상기 펌프 드라이브 기어(132)와 펌프 기어(136)는 체인으로 연결되고, 상기 회생용 출력기어(146)와 회생용 입력기어(142)도 체인으로 연결될 수 있는 것을 특징으로 하는 고효율 연속변속장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0033720 | 2010-04-13 | ||
KR1020100033720A KR101068209B1 (ko) | 2010-04-13 | 2010-04-13 | 고효율 연속변속장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011129554A2 true WO2011129554A2 (ko) | 2011-10-20 |
WO2011129554A3 WO2011129554A3 (ko) | 2011-12-29 |
Family
ID=44799137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/002493 WO2011129554A2 (ko) | 2010-04-13 | 2011-04-08 | 고효율 연속변속장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101068209B1 (ko) |
WO (1) | WO2011129554A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013095213A1 (en) * | 2011-12-23 | 2013-06-27 | Volvo Construction Equipment Ab | Continuously variable transmission and a working machine including a continuously variable transmission |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000351332A (ja) * | 1999-06-10 | 2000-12-19 | Kanzaki Kokyukoki Mfg Co Ltd | 車輌の走行用トランスミッション |
KR20080103063A (ko) * | 2006-07-06 | 2008-11-26 | 가부시끼 가이샤 구보다 | 변속 전동 장치 |
KR20090090095A (ko) * | 2008-02-20 | 2009-08-25 | 이명희 | 유성치차를 이용한 고변속장치 |
KR20090103143A (ko) * | 2008-03-27 | 2009-10-01 | 이명희 | 유성치차를 이용한 연속 고변속장치 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4789507B2 (ja) * | 2005-05-24 | 2011-10-12 | 株式会社小松製作所 | 変速装置 |
-
2010
- 2010-04-13 KR KR1020100033720A patent/KR101068209B1/ko not_active IP Right Cessation
-
2011
- 2011-04-08 WO PCT/KR2011/002493 patent/WO2011129554A2/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000351332A (ja) * | 1999-06-10 | 2000-12-19 | Kanzaki Kokyukoki Mfg Co Ltd | 車輌の走行用トランスミッション |
KR20080103063A (ko) * | 2006-07-06 | 2008-11-26 | 가부시끼 가이샤 구보다 | 변속 전동 장치 |
KR20090090095A (ko) * | 2008-02-20 | 2009-08-25 | 이명희 | 유성치차를 이용한 고변속장치 |
KR20090103143A (ko) * | 2008-03-27 | 2009-10-01 | 이명희 | 유성치차를 이용한 연속 고변속장치 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013095213A1 (en) * | 2011-12-23 | 2013-06-27 | Volvo Construction Equipment Ab | Continuously variable transmission and a working machine including a continuously variable transmission |
US9285015B2 (en) | 2011-12-23 | 2016-03-15 | Volvo Construction Equipment Ab | Continuously variable transmission and a working machine including a continuously variable transmission |
Also Published As
Publication number | Publication date |
---|---|
WO2011129554A3 (ko) | 2011-12-29 |
KR101068209B1 (ko) | 2011-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016099023A1 (ko) | 치차 결합 방식의 조타 장치 및 이를 이용한 조타 방법 | |
WO2010104320A2 (ko) | 유성기어를 이용한 동력 전달 장치 | |
CN100359207C (zh) | 车辆用变速器 | |
WO2014123312A1 (ko) | 허브 내장형 다단 변속기 | |
WO2014123320A1 (ko) | 허브 내장형 다단 변속기 | |
WO2019103288A1 (ko) | 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기 | |
WO2013151402A1 (ko) | 변속 장치 | |
WO2010134732A2 (ko) | 다단 자동 변속기 | |
WO2012008778A2 (ko) | 승강기 와이어로프 장력 자동 균등화 장치 | |
WO2017150933A1 (ko) | 가변형 중력토크 보상장치 및 이의 제어 방법 | |
WO2014025130A1 (ko) | 다단 변속기 | |
WO2014168291A1 (ko) | 자동변속기 | |
WO2018151511A1 (ko) | 배관내부 주행로봇 | |
WO2011129554A2 (ko) | 고효율 연속변속장치 | |
WO2020050692A1 (ko) | 송전용 지중케이블 와인딩장치 및 그를 포함하는 송전용 지중케이블 설치시스템 | |
WO2016108299A1 (ko) | 무단 변속장치 | |
WO2011102606A2 (ko) | 자전거용 변속기 | |
WO2019194390A1 (ko) | 전기자동차용 변속 시스템 | |
WO2011083958A9 (ko) | 무단 변속장치 | |
WO2011055878A1 (ko) | 2개의 회전동력원과 기어결합체를 이용한 변속장치 | |
WO2017073993A1 (ko) | 무단 변속기 | |
WO2013159421A1 (zh) | 液晶显示模组差分信号接收终端异常的检测方法及装置 | |
WO2021101263A1 (en) | Planetary gear transmission device and robot having the same | |
WO2020067707A1 (ko) | 전기 자동차용 구동장치 | |
WO2020204296A1 (ko) | 전기 자동차용 건식 토크 컨버터 및 그 제어방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11769020 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11769020 Country of ref document: EP Kind code of ref document: A2 |