WO2011125328A1 - 無線電力伝送システム - Google Patents
無線電力伝送システム Download PDFInfo
- Publication number
- WO2011125328A1 WO2011125328A1 PCT/JP2011/002041 JP2011002041W WO2011125328A1 WO 2011125328 A1 WO2011125328 A1 WO 2011125328A1 JP 2011002041 W JP2011002041 W JP 2011002041W WO 2011125328 A1 WO2011125328 A1 WO 2011125328A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inductor
- power transmission
- power
- resonator
- wiring
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 140
- 230000000694 effects Effects 0.000 description 17
- 239000003990 capacitor Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 239000004020 conductor Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000006872 improvement Effects 0.000 description 6
- 230000005674 electromagnetic induction Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000001646 magnetic resonance method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2823—Wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
Definitions
- the present invention relates to a wireless power transmission system in which energy is charged and supplied or collected without contact.
- the resonator may use a self-resonance phenomenon inherent to a loop coil having both ends opened. . Further, as described in paragraph [0038], a coil loaded with a capacity may be used.
- Patent Document 3 describes that a plurality of windings are connected in parallel as a method of increasing the Q value without increasing the size of an antenna (coil) used for non-contact power transmission.
- the present invention solves the above problem, and in a wireless power transmission system in which a size difference exists between power transmitting and receiving resonators, wireless power transmission that maintains high transmission efficiency without unnecessarily increasing the total amount of wiring.
- the purpose is to provide a system.
- the wireless power transmission system of the present invention is a wireless power transmission system that includes a power transmission resonator and a power reception resonator, and transmits power in a contactless manner via a resonant magnetic field having a resonance frequency f0, and includes the power transmission resonator and the power reception
- One of the resonators has a first inductor having a first size, and the other has a second inductor having a second size smaller than the first size,
- the resistance value Rs per unit length at the resonance frequency f0 of at least a part of the constituent wiring is set to be lower than the resistance value RL per unit length at the resonance frequency f0 of the wiring constituting the first inductor. .
- the wiring that constitutes the second inductor has a parallel wiring structure, and the number of parallel wirings in at least a part of the wiring that constitutes the second inductor is the number of wirings that constitute the first inductor. Has a larger value.
- each of the wires constituting the first inductor and the second inductor has a parallel wiring structure, and the number of parallel wires in at least a part of the wires constituting the second inductor is: It has a value larger than the number of parallel wires of the wires constituting the first inductor.
- the second inductor partially includes a wiring having at least one of a diameter, a thickness, and a height that is larger than that of the wiring configuring the first inductor.
- the resistance value Rs is set lower than the resistance value RL in a portion other than the outermost portion of the wiring constituting the second inductor.
- the resistance value Rs is set lower than the resistance value RL in at least the innermost portion of the wiring constituting the second inductor.
- an optimal input impedance of the power transmission resonator that includes a power transmitter that supplies power to the power transmission resonator and maximizes transmission efficiency between the power transmission resonator and the power reception resonator is the power transmission resonator. Matches the output impedance of the appliance.
- the power receiving resonator includes a power receiving device that receives power from the power receiving resonator, and an optimum output impedance of the power receiving resonator that maximizes transmission efficiency between the power transmitting resonator and the power receiving resonator is the power receiving device. Match the input impedance.
- the output impedance of the power receiver matches the load impedance.
- the wireless power transmission system of the present invention it is possible to provide a wireless power transmission system that maintains high transmission efficiency without unnecessarily increasing the total amount of wiring even if there is a size difference between power transmission and reception resonators. Become. Therefore, it is possible to provide a wireless power transmission system capable of realizing resource saving, light weight, volume saving, and low cost.
- FIG. 1 is a block diagram of a wireless power transmission system according to Embodiment 1 of the present invention.
- 1 is a schematic perspective view of a wireless power transmission system according to Embodiment 1 of the present invention.
- (A), (b) and (c) are sectional views perpendicular to the major axis direction showing an example of a parallel wiring structure
- (A) and (c) are sectional views perpendicular to the major axis direction showing another example of the parallel wiring structure
- the perspective schematic diagram of the small antenna in Embodiment 1 of this invention Configuration block diagram of wireless power transmission system of the present invention
- the placement plane of the inductor which is a component of the power transmission resonator or the power reception resonator, is the XY plane, and the height direction of the inductor is the Z direction.
- the same or corresponding components are given the same reference numerals.
- FIG. 1 is a block diagram showing a configuration of a wireless power transmission system according to Embodiment 1 of the present invention.
- the wireless power transmission system of this embodiment includes a power transmission resonator 105 and a power reception resonator 107, and is contactless between the power transmission resonator 105 and the power reception resonator 107 via a resonant magnetic field.
- the power transmission resonator 105 and the power reception resonator 107 are designed to resonate at the frequency f0.
- a power transmitter 103 is connected to the power transmission resonator 105.
- the power transmitter 103 receives DC or AC energy (electric energy) from a power source (not shown) and converts it into RF energy having a frequency f0.
- the RF energy emitted from the power transmitter 103 is given to the power transmission resonator 105.
- the power transmission resonator 105 and the power reception resonator 107 configured to resonate at the same frequency are coupled by a resonance magnetic field (resonance frequency f0). For this reason, the power receiving resonator 107 can efficiently receive the RF energy transmitted by the power transmitting resonator 105.
- the resonance frequency f0 since wireless power transmission is performed with a resonant magnetic field that vibrates at the resonance frequency f0, the resonance frequency f0 may be referred to as a transmission frequency.
- FIG. 2 is a diagram illustrating an example of an equivalent circuit of the power transmission resonator 105 and the power reception resonator 107.
- the power transmission resonator 105 is a series resonance circuit in which an inductor 105a and a capacitive element 105b are connected in series.
- the power receiving resonator 107 is a parallel resonant circuit in which an inductor 107a and a capacitive element 107b are connected in parallel.
- the series resonance circuit of the power transmission resonator 105 has a resistance component R1
- the parallel resonance circuit of the power reception resonator 107 has a resistance component R2.
- the power transmission resonator 105 is configured by a series resonant circuit and the reception resonator 109 is configured by a parallel resonant circuit, but the present invention is not limited to this example.
- One of the power transmission resonator 105 and the power reception resonator 107 may be configured by a series resonance circuit, or both may be configured by a series resonance circuit or a parallel resonance circuit.
- a circuit configuration in which the resonator and the external circuit are separated in a direct current manner and RF energy is supplied from the external circuit to the resonator via an electromagnetic induction coil (not shown) may be used.
- both ends of the wiring constituting the resonator may be opened, or a closed loop may be formed via a capacitor. In either case, the self-resonant frequency is set to the same value as the transmission frequency.
- FIG. 3 is a perspective view illustrating a configuration example of the power transmission resonator 105 and the power reception resonator 107 in the present embodiment.
- one of the power transmission resonator 105 and the power reception resonator 107 has the first inductor LL having the first size, and the other has the second size smaller than the first size. Ls.
- the “size” of the inductor means the area of a region surrounded by the wiring of the inductor. Power transmission is performed between the power transmission resonator 105 and the power reception resonator 107, and the characteristics of the power transmission resonator 105 and the power reception resonator 107 are bidirectional.
- a relatively large inductor (large inductor) LL is an inductor (power transmission inductor) in the power transmission resonator 105
- a relatively small inductor (small inductor) Ls is a power reception resonator 107.
- An example of an inductor (power receiving inductor) will be described.
- the power transmission resonator 105 in this embodiment is a series resonance circuit of a power transmission inductor LL and a power transmission capacitor CL.
- the power receiving resonator 107 is a series resonant circuit of a power receiving inductor Ls and a power receiving capacitor Cs.
- the resistance value per unit length at the frequency f0 of the wiring that configures the power transmission inductor LL is “resistance value RL”
- the resistance value per unit length at the frequency f0 of the wiring that configures the power receiving inductor Ls is “resistance value Rs”.
- the resistance value Rs of at least a part of the wiring configuring the power receiving inductor Ls is set to a value lower than the resistance value RL of at least a part of the wiring configuring the power transmission inductor LL.
- the resistance value RL of the wiring that configures the power transmission inductor LL has a constant value over the entire path.
- the resistance value RL may be set lower than the other portions in a part of the wiring configuring the power transmission inductor LL.
- Each of the spiral inductors LL and Ls may have a structure in which wirings having different resistance values per unit length at the wireless power transmission frequency f0 are connected in series, and each resistance value is constant. You may have the following wiring structure.
- FIG. 3 also shows a cross-sectional configuration example of an inductor having a parallel structure including a plurality of conductor wirings (wires) 20.
- FIG. 4 is a cross-sectional view showing an example of a parallel wiring structure.
- 4A shows an example of a cross section of a wiring structure having a relatively high resistance value
- FIG. 4B shows an example of a cross section of a low resistance portion in the inductor wiring.
- the number of parallel wirings in at least a part of the wiring configuring the power receiving inductor Ls is as follows. What is necessary is just to have a bigger value than the number of parallel wiring of the wiring which comprises the power transmission inductor LL. Note that both inductors LL and Ls do not have to have a parallel wiring structure.
- the diameter of the wire 20 is changed to the diameter of the wire 20 in another part without changing the number of the wires 20 arranged in parallel. It may be larger.
- FIG. 5 shows another cross-sectional configuration example of the inductor.
- FIG. 5A shows an example of a cross section of a wiring having a relatively high resistance value
- FIGS. 5B and 5C show examples of a cross section of a low resistance portion, respectively.
- the thickness of the wire rod 20 is made larger than the thickness of the wire rod 20 in the other portion without changing the number of the wire rods 20 arranged in parallel.
- variety of the wire 20 is made larger than the width
- the number of wires having a diameter, thickness, and / or width larger than those in other portions in the low resistance portion may be at least one.
- the capacitors CL and Cs connected to the inductors LL and Lc are set so that the resonance frequency of the resonators 105 and 107 is the same as the transmission frequency f0 of electromagnetic energy.
- the transmission efficiency of the wireless power transmission system depends strongly on the loss in the inductor.
- the sizes of the transmission / reception inductors are different as shown in FIG. 3, it is possible to reduce the wiring resistance in the entire wiring path for the purpose of reducing the conductor loss in the power transmission resonator 105 formed in a wider area. This is not a realistic measure from the viewpoint of cost reduction.
- the transmission efficiency of wireless power transmission systems with different sizes of transmitting and receiving inductors is effectively improved by a realistic method. That is, the loss in the smaller inductor, which has a particularly strong influence on the transmission efficiency, is preferentially improved. Since the small inductor Ls has a higher magnetic field density in the periphery than the large inductor LL, the eddy current generated in the conductor causes more loss. Therefore, the higher the efficiency is improved in power transmission with asymmetric transmission / reception size, the more this effect is preferentially eliminated. Further, it is not necessary to wastefully increase the wiring amount by improving the resistance value of the small inductor Ls, rather than improving the resistance value of the large inductor LL. As described above, by adopting the configuration of the present invention, it is possible to improve transmission efficiency while avoiding an increase in the amount of wiring.
- FIG. 6 is a schematic diagram showing an enlarged configuration of the small inductor Ls.
- the transmission efficiency is more effectively improved while suppressing an increase in the amount of wiring by providing a low resistance portion in the wiring on the spiral inner side of the small inductor Ls.
- the inner side of the small inductor Ls has a higher magnetic field density in the periphery than the outer side. For this reason, the eddy current generated in the conductor causes more loss on the inner side of the spiral.
- the power transmission system having different transmission / reception inductor sizes has a great effect on the efficiency improvement.
- FIG. 7 is a diagram for explaining impedance matching in the wireless power transmission system of the present invention.
- functional blocks that perform feedback control are omitted.
- Blocks (not shown) that realize these functions can be added as necessary.
- Matching condition 1 Designed to match the output impedance ZTo of the power transmitter 103 with the optimum input impedance ZTx0 of the power transmission resonator. Thereby, energy reflection due to impedance mismatch between the power transmitter 103 and the power transmission resonator 105 can be reduced.
- Matching condition 2 Designed so that the optimum output impedance ZRx0 of the power receiving resonator 107 and the input impedance ZRi of the power receiving device 109 are matched. Thereby, energy reflection due to impedance mismatch between the power receiving resonator 107 and the power receiver 109 can be reduced.
- Matching condition 3 Design so that the output impedance ZRo and the load impedance RL when the power receiver 109 operates with the input impedance ZRi match. Thereby, energy reflection due to impedance mismatch between the power receiver 109 and the load 11 can be reduced.
- the number of power transmission resonators and power reception resonators included in the transmission system is not limited to one.
- the power transmission resonator group and the power reception resonator group at least one of the combinations that transmit power, and the combination of the power transmission resonator and the power reception resonator that are asymmetric in size, has the above-described configuration for reducing the resistance value. If employed, the useful effects of the present invention can be manifested.
- the capacitance circuits CL and Cs are chip capacitors, ceramic capacitors, tantalum electrolytic capacitors, aluminum electrolytic capacitors, mica capacitors, electric double layer capacitors, vacuum capacitors, MIMs formed on semiconductor processes. It may be realized by a lumped constant circuit element such as a structure. In addition, the capacitance value of the lumped constant circuit element may be determined in consideration of the value of the parasitic capacitance generated in the wiring.
- the shape of the small inductor Ls and the large inductor LL is not limited to a rectangle.
- An elliptical shape may be sufficient and arbitrary asymmetrical shapes may be sufficient.
- a loop shape may be used instead of the spiral shape.
- the corner portion has a certain curvature or more.
- a wiring shape that does not include a portion where the angle changes abruptly can avoid high-frequency current concentration and magnetic field density concentration in the surrounding space, thereby improving transmission efficiency.
- the wiring constituting the inductor is not limited to one having a planar single layer configuration, and may have a laminated structure.
- the resonance phenomenon spreads on the frequency axis. Therefore, power transmission is possible even when the resonance frequency of the resonators 105 and 107 and the transmission frequency f0 of electromagnetic energy do not exactly coincide. Even when the resonance frequencies of the resonators 105 and 107 change due to coupling between resonators, good power transmission can be realized by following the transmission frequency or changing the terminal impedance of the transmission system. Further, even when the resonance frequencies of the resonators 105 and 107 are different from each other due to manufacturing variations, transmission can be realized at a frequency near the resonance frequency.
- the resonators 105 and 107 may have a variable function. That is, a configuration in which the transmission impedance and the resonance frequency of the transmission system can be changed by switching or continuously changing the numerical values of the inductor and capacitor constituting the resonator may be adopted.
- a power transmission resonator and a power reception resonator having the configuration shown in FIG. 3 were produced. Specifically, Examples and Comparative Examples shown in Table 1 below were produced. The production procedure is as follows.
- square power transmission resonators and power reception resonators each having a large inductor LL with a side of 20 cm and a small inductor Ls with a side of 5 cm as components are fabricated.
- the area ratio of the power transmission resonator to the power reception resonator is 16.
- Each inductor was a spiral inductor having an adjacent wiring interval of 2 mm and a number of turns of 6. Two lead lines were drawn from the inner end point and the outer end point of each spiral.
- a power transmission capacitor (power transmission resonator 105 pF) composed of a multilayer chip capacitor and a power reception capacitor (1920 pF) were connected in series with the spiral wiring to form a resonator having a resonance frequency of 1.8 MHz.
- An electromagnetic induction circuit was used for coupling the resonator and the input / output external circuit.
- Litz wire consisting of multiple copper wires with a diameter of 200 microns was used in parallel to reduce the conductor loss of the resonator.
- the wiring resistance per unit length of the spiral wiring changes according to the number of parallel copper wirings constituting the litz wire.
- the number of litz wire parallel wires in the spiral wire path was set as shown in Table 1.
- four types of resonators T4, T5, T6, and T7 were manufactured as power transmission resonators, and four types of resonators R4, R5, R6, and R7 were also manufactured as power reception resonators.
- the inductor is formed from a single wiring, and no low resistance portion is provided in any portion.
- the resistance value at the resonance frequency of the inner three winding portions is reduced by adopting ten parallel wires in the inner three winding portions of the inductor.
- ten parallel wirings are employed in the outer winding side three turns of the inductor, thereby reducing the resistance value at the resonance frequency of the outer winding side three turns.
- the resonators T4 and R4 employ ten parallel wires for the entire inductor, thereby reducing the resistance value at the resonance frequency over the entire wire.
- the resistance value Rs per unit length at the resonance frequency f0 is not constant, and is reduced in part of the wiring path compared to other parts.
- the small resonator R4 on the power receiving side has an inductor structure in which the resistance value Rs per unit length at the resonance frequency f0 is reduced in the entire wiring path.
- Example 1 eight sets of transmission systems (Examples 1 to 3, Comparative Examples 1, 2a to 2c, 3) were configured by changing the combination of the inductor in the power transmission resonator and the inductor in the power reception resonator.
- Comparative Example 1 is a system using an inductor T5 as a power transmission resonator and an inductor R5 on the power reception resonator side.
- the transmission characteristics between resonators were measured.
- the power transmission and power reception resonators were fixed in a configuration in which each inductor formation surface was arranged 20 cm apart.
- Connect the input and output terminals of the electromagnetic induction coil close to both inductors to a network analyzer, measure the pass / reflection characteristics under small signal input conditions, and optimize the impedance value and maximum transmission efficiency to maximize the transmission efficiency between resonators. was measured.
- Table 1 shows a comparison of the configuration and transmission characteristics of the example and the comparative example.
- Table 1 shows the total wiring amount of the example and the comparative example as a comparison with respect to the wiring amount used in the comparative example 1 (a configuration in which wirings are not parallelized in all paths of both inductors).
- the transmission efficiency which was 88.6% in Comparative Example 1
- Example 3 In Comparative Example 3 in which resistance was reduced in all wiring paths of the small inductor and large inductor, the loss improvement effect reached 47.6% compared to Comparative Example 1, but the wiring usage also reached 10 times. On the other hand, Example 3 of the present invention was able to realize 81.5% of the loss improvement effect of Comparative Example 3 with a wiring amount of 26% of the wiring amount of Comparative Example 3.
- the useful effect of the present invention that is, a reduction in the amount of wiring used and an efficient loss improvement effect, has been demonstrated.
- Example 1 Compared with Example 1 (22.1% loss improvement effect) and Example 2 (16.9% loss improvement effect), it is better to reduce the wiring resistance in the wiring path on the inner side of the small inductor. It was found that the effect is greater than that of reducing the wiring resistance on the outer side.
- a large inductor is formed from a single resistance wiring, but the present invention is not limited to such an example. Even if the resistance value RL per unit length at the resonance frequency f0 is reduced in a part of the large inductor, the effect of the present invention can be obtained. From the viewpoint of preventing an inefficient increase in the total amount of wiring, the large inductor is preferably formed from a single resistance wiring. However, even if the resistance value RL is reduced in a part of a large inductor, if the wiring path whose resistance is reduced is sufficiently short, an increase in the total amount of wiring does not become a problem.
- the wireless power transmission system according to the present invention can be applied to office devices such as personal computers and laptop computers, and AV devices such as wall-mounted televisions and mobile AV devices.
- This wireless power transmission system can be applied not only to charging and feeding of hearing aids and healthcare devices, but also to charging systems for traveling to electric vehicles, electric motorcycles, mobile robots, charging systems for parking, and the like.
- the present invention can be applied to a wide range of fields, such as a power collection system from solar cells and fuel cells, connection points with devices in a DC power supply system, and AC outlet replacement.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Coils Of Transformers For General Uses (AREA)
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
無線電力伝送システムは、共振周波数f0の共振磁界を介してサイズが異なる送電共振器105と受電共振器107間で非接触な電力伝送を行うシステムである。送電インダクタと受電インダクタのうちサイズが小さい方のインダクタLsを構成する配線の周波数f0での単位長さあたりの抵抗値Rsを、サイズが大きい方のインダクタLLを構成する配線の抵抗値RLよりも、少なくとも一部で低く設定する。
Description
本発明は、非接触でエネルギーを充給電または集電する無線電力伝送システムに関するものである。
電子機器のモビリティ確保・防水対応や、壁掛けテレビの配線レス化、電気自動車などの大型設備への簡便な充給電に至るまで、非接点・非接触でのエネルギー充給電技術に注目が高まっている。
非接触での電力伝送方式として、従来検討されてきた電磁誘導方式だけでなく、特許文献1に記載の磁気共振方式が提案されている。共振アンテナ間の共振モード間結合を利用して、従来の電磁誘導方式より長距離、高効率な電力伝送が可能であり、特に共振磁界を利用すれば、共振電界を利用した場合よりも、周辺生体への影響も回避できるものと考えられている。
磁気共振方式について、更に詳細を述べると、共振器は特許文献1の明細書における段落[0033]に記述されているように、両端を開放したループコイルに固有の自己共振現象を用いても良い。また、段落[0038]に記述されているように、容量を装荷したコイルでもよい。
特許文献2の段落[0006]においては、送電コイルまたは受電コイルに大きな電流が流れるため、発生する発熱を軽減する目的で、リッツ線、編組線等の多芯線をコイルの配線部に用いた例が開示されている。
また、特許文献3には、非接触電力伝送に用いるアンテナ(コイル)を大型化することなく、そのQ値を高める方法として、複数の巻線を並列接続することが記載されている。
従来の磁気共振方式の無線電力伝送システムにおいて、送電共振器と受電共振器との間にサイズの差異が存在する場合には、伝送効率を高い値に維持し続けることが困難であり、その回避には配線総量を著しく増大させる必要がある、という課題がある。
本発明は、上記の課題を解決するものであり、送受電共振器間にサイズ差が存在する無線電力伝送システムにおいて、配線総量を無駄に増大させることなく、高い伝送効率を維持した無線電力伝送システムの提供を目的とする。
本発明の無線電力伝送システムは、送電共振器および受電共振器を備え、共振周波数f0の共振磁界を介して非接触で電力を伝送する無線電力伝送システムであって、前記送電共振器および前記受電共振器の一方は第1のサイズを有する第1インダクタを有し、かつ、他方は前記第1のサイズよりも小さな第2のサイズを有する第2インダクタを有しており、前記第2インダクタを構成する配線の少なくとも一部の共振周波数f0における単位長さあたりの抵抗値Rsは、前記第1インダクタを構成する配線の共振周波数f0における単位長さあたりの抵抗値RLよりも低く設定されている。
好ましい実施形態において、前記第2インダクタを構成する配線は並列配線構造を有しており、前記第2インダクタを構成する配線の少なくとも一部における並列配線数は、第1インダクタを構成する配線の数よりも大きな値を有している。
好ましい実施形態において、前記第1インダクタおよび前記第2インダクタを構成する配線は、いずれも、並列配線構造を有しており、前記第2インダクタを構成する配線の少なくとも一部における並列配線数は、第1インダクタを構成する配線の並列配線数よりも大きな値を有している。
好ましい実施形態において、前記第2インダクタは、前記第1インダクタを構成する配線に比べて直径、厚さ、および高さの少なくとも1つが大きな配線を一部に含んでいる。
好ましい実施形態において、前記第2インダクタを構成する配線の最外郭以外の部分において、抵抗値Rsが抵抗値RLよりも低く設定されている。
好ましい実施形態において、前記第2インダクタを構成する配線の少なくとも最内郭の部分において、抵抗値Rsが抵抗値RLよりも低く設定されている。
好ましい実施形態において、前記送電共振器に電力を供給する送電器を備え、前記送電共振器と前記受電共振器との間の伝送効率を最大化する前記送電共振器の最適入力インピーダンスが、前記送電器の出力インピーダンスに一致する。
好ましい実施形態において、前記受電共振器から電力を受け取る受電器を備え、前記送電共振器と前記受電共振器との間の伝送効率を最大化する前記受電共振器の最適出力インピーダンスが、前記受電器の入力インピーダンスに一致する。
好ましい実施形態において、前記受電器の出力インピーダンスが負荷インピーダンスと一致する。
本発明の無線電力伝送システムによれば、送受電共振器間にサイズ差が存在しても、配線総量を無駄に増大させることなく、高い伝送効率を維持した無線電力伝送システムの提供が可能となる。このため、省資源、軽量、省容積、低コストを実現することが可能な無線電力伝送システムを提供できる。
以下、図面を参照しながら、本発明による無線電力伝送システムの実施形態を説明する。図中に示すXYZ座標では、送電共振器または受電共振器の構成要素であるインダクタの配置面をXY平面とし、インダクタの高さ方向をZ方向としている。図中、同一または対応する構成要素には、同一の参照番号を付与している。
(実施形態1)
図1は、本発明の実施形態1における無線電力伝送システムの構成を示すブロック図である。
図1は、本発明の実施形態1における無線電力伝送システムの構成を示すブロック図である。
本実施形態の無線電力伝送システムは、図1に示すように、送電共振器105および受電共振器107を備え、送電共振器105と受電共振器107との間で、共振磁界を介して非接触で電力を伝送する。この無線電力伝送システムでは、送電共振器105および受電共振器107が周波数f0で共振するように設計されている。
送電共振器105には送電器103が接続されている。送電器103は、不図示の電源から直流または交流のエネルギー(電気エネルギー)を受け取り、周波数f0のRFエネルギーに変換する。送電器103から出たRFエネルギーは送電共振器105に与えられる。同一の周波数で共振するように構成された送電共振器105および受電共振器107は、共振磁界(共振周波数f0)によって結合される。このため、受電共振器107は、送電共振器105によって送出されたRFエネルギーを効率良く受け取ることができる。本明細書では、共振周波数f0で振動する共振磁界で無線電力伝送が行われるため、共振周波数f0を伝送周波数と称する場合がある。
次に、図2を参照する。
図2は、送電共振器105および受電共振器107の等価回路の一例を示す図である。図2に示す例では、送電共振器105は、インダクタ105aおよび容量素子105bが直列に接続された直列共振回路である。一方、受電共振器107は、インダクタ107aおよび容量素子107bが並列に接続された並列共振回路である。なお、送電共振器105の直列共振回路は抵抗成分R1を有し、受電共振器107の並列共振回路は抵抗成分R2を有している。
図2の例では、送電共振器105が直列共振回路から構成され、受信共振器109が並列共振回路から構成されているが、本発明はこの例に限定されない。送電共振器105および受電共振器107の一方が直列共振回路から構成されていてもよいし、両方が直列共振回路、または並列共振回路から構成されていてもよい。また共振器と外部回路とを直流的に分離し、不図示の電磁誘導コイルを介して外部回路から共振器へRFエネルギーを給電する回路構成でもよい。この場合、共振器を構成する配線の両端を開放してもよいし、容量を介して閉ループを形成してもよい。いずれの場合も自己共振周波数が伝送周波数と同一の値に設定される。
以下、図3を参照しながら、本実施形態における送電共振器105および受電共振器107の構成を詳細に説明する。図3は、本実施形態における送電共振器105および受電共振器107の構成例を示す斜視図である。
本発明では、送電共振器105および受電共振器107の一方が第1のサイズを有する第1インダクタLLを有し、かつ、他方が第1のサイズよりも小さな第2のサイズを有する第2インダクタLsを有している。なお、本明細書においてインダクタの「サイズ」とは、インダクタの配線によって囲まれる領域の面積を意味するものとする。電力伝送は、送電共振器105と受電共振器107との間で行われ、送電共振器105および受電共振器107の特性は双方向である。ここでは、簡単のため、サイズが相対的に大きなインダクタ(大型インダクタ)LLが送電共振器105におけるインダクタ(送電インダクタ)であり、サイズが相対的に小さなインダクタ(小型インダクタ)Lsが受電共振器107におけるインダクタ(受電インダクタ)である例を説明する。
以下、これらのインダクタの構成について、より詳細に説明する。
本実施形態における送電共振器105は、送電インダクタLLと送電キャパシタCLの直列共振回路である。一方、受電共振器107は、受電インダクタLsと受電キャパシタCsの直列共振回路である。送電インダクタLLを構成する配線の周波数f0における単位長さあたりの抵抗値を「抵抗値RL」とし、受電インダクタLsを構成する配線の周波数f0における単位長さあたりの抵抗値を「抵抗値Rs」とする。本実施形態では、受電インダクタLsを構成する配線の少なくとも一部の抵抗値Rsが、送電インダクタLLを構成する配線の少なくとも一部の抵抗値RLより低い値に設定されている。典型的には、送電インダクタLLを構成する配線の抵抗値RLは、全経路にわたった一定の値を有している。しかし、送電インダクタLLを構成する配線の一部で抵抗値RLが他の部分よりも低く設定されていても良い。
スパイラル形状のインダクタLL、Lsは、それぞれ、無線電力伝送周波数f0における単位長さ辺りの抵抗値が相互に異なる配線を直列に接続した構造を有していても良いし、各々の抵抗値が一定の配線構造を有していても良い。図3には、複数の導体配線(線材)20を含む並列構造を備えたインダクタの断面構成例も図示されている。
インダクタを構成する配線の特定部分(低抵抗部分)における単位長さあたりの配線抵抗を、他の部分よりも低くするためには、その特定部分の配線材料に導電率が高い材料を採用することや、他の部分よりも配線数を増加させた並列配線構造を採用することが有効である。また、配線表面が酸化しないように導電率が高い材質の金属でめっきすることも効果がある。並列配線構造を採用する場合には、並列配置した複数の配線同士を撚って配置することがより好ましい。
図4は、並列配線構造の一例を示す断面図である。図4(a)は、抵抗値が比較的高い配線構造の断面の一例を示し、図4(b)は、インダクタ配線における低抵抗部分の断面の一例を示している。低抵抗部分では、他の配線部分よりも多い本数の線材20が並列に配置されている。図3に示す例のように、小型の受電インダクタLsおよび大型の送電インダクタLLの両方が並列配線構造を有している場合、受電インダクタLsを構成する配線の少なくとも一部における並列配線数が、送電インダクタLLを構成する配線の並列配線数よりも大きな値を有していればよい。なお、両方のインダクタLL、Lsが並列配線構造を有している必要はない。
インダクタ配線の一部に低抵抗部分を設けるには、図4(c)に示すように、並列配置した線材20の本数を変化させずに、線材20の直径を他の部分における線材20の直径より大きくしても良い。
図5は、インダクタの他の断面構成例を示している。図5(a)は、抵抗値が比較的高い配線の断面の一例を示し、図5(b)および図5(c)は、それぞれ、低抵抗部分の断面の例を示している。図5(b)に示す低抵抗部分では、並列配置した線材20の本数を変化させずに、線材20の厚さを他の部分における線材20の厚さより大きくしている。また、図5(c)に示す低抵抗部分では、並列配置した線材20の本数を変化させずに、線材20の幅を他の部分における線材20の幅より大きくしている。低抵抗部分において直径、厚さ、および/または幅が他の部分における値よりも大きい線材の本数は、少なくとも1本であればよい。
再び図3を参照する。
インダクタLL、Lcに接続される容量CL、Csは、共振器105、107の共振周波数が電磁エネルギーの伝送周波数f0と同一となるように設定される。
無線電力伝送システムの伝送効率は、インダクタでの損失に強く依存する。インダクタでの損失を低減するには、インダクタ配線の導体構造を並列化し、単位長さ辺りの抵抗値を低減することが好ましい。しかし、図3のように送受インダクタのサイズが異なる場合、より広い面積に形成される送電共振器105において導体損失低減を図る目的で配線経路の全体において配線抵抗低減を実現することは、配線重量、低コスト化の観点から現実的な方策ではない。
本発明では、現実的な方法で、送受インダクタのサイズが異なる無線電力伝送システムの伝送効率を効果的に改善する。すなわち、伝送効率に特に強く影響を与えている、より小型のインダクタでの損失を優先的に改善する。小型インダクタLsの方が大型インダクタLLと比較して周辺での磁界密度が強くなっているため、導体で発生する渦電流がより多くの損失を発生させてしまっている。よって、この影響を優先的に排除するほど、送受サイズが非対称な電力伝送において効率改善に大きな効果が得られる。また、大型インダクタLLの抵抗値を改善するより、小型インダクタLsの抵抗値を改善する方が、配線量を無駄に増加させずにすむ。以上、本発明の構成の採用により、配線量の増大を回避しつつ、伝送効率を改善することが可能である。
(部分的な配線抵抗低減の効果)
本発明の無線電力伝送システムのインダクタLsにおいて、伝送効率改善のために配線抵抗値を低減する際に、インダクタLsの配線経路の全てにおいて、配線抵抗を低減する必要はない。本発明の効果は、インダクタLsの経路の一部の配線抵抗低減によっても実現できる。
本発明の無線電力伝送システムのインダクタLsにおいて、伝送効率改善のために配線抵抗値を低減する際に、インダクタLsの配線経路の全てにおいて、配線抵抗を低減する必要はない。本発明の効果は、インダクタLsの経路の一部の配線抵抗低減によっても実現できる。
図6は、小型インダクタLsの構成を拡大して示す模式図である。図6に示す例では、小型インダクタLsのスパイラル内郭側の配線に低抵抗部分を設けることにより、配線量の増加を抑制しながら伝送効率をより効果的に改善している。小型インダクタLsの内郭側は、外郭側よりも周辺での磁界密度が強くなっている。このため、スパイラルの内郭側では、導体で発生する渦電流がより多くの損失を発生させてしまっている。この影響を優先的に排除するほど、送受インダクタのサイズが異なる電力伝送システムにおいて、効率改善に大きな効果がある。また、大型インダクタLLの抵抗値を改善するより、小型インダクタLsの抵抗値を改善する方が、配線量を無駄に増加させずにすむ。以上、本発明の構成の採用により、更に配線量の増大を回避し、効率的に伝送効率を改善することが可能である。
(各ブロック間のインピーダンス整合)
図7は、本発明の無線電力伝送システムにおけるインピーダンス整合を説明するための図である。図7では、フィードバック制御を行う機能ブロックなどは省略されている。これらの機能を実現する不図示のブロックが必要に応じて追加され得る。
図7は、本発明の無線電力伝送システムにおけるインピーダンス整合を説明するための図である。図7では、フィードバック制御を行う機能ブロックなどは省略されている。これらの機能を実現する不図示のブロックが必要に応じて追加され得る。
整合条件1: 送電器103の出力インピーダンスZToと送電共振器の最適入力インピーダンスZTx0とを一致させるよう設計する。これにより、送電器103と送電共振器105との間のインピーダンス不整合によるエネルギー反射を低減することが可能である。
整合条件2: 受電共振器107の最適出力インピーダンスZRx0と受電器109の入力インピーダンスZRiとを一致させるよう設計する。これにより、受電共振器107と受電器109との間のインピーダンス不整合によるエネルギー反射を低減することが可能である。
整合条件3: 入力インピーダンスZRiでの受電器109が動作したときの出力インピーダンスZRoと負荷インピーダンスRLが一致するよう設計する。これにより、受電器109と負荷11との間のインピーダンス不整合によるエネルギー反射を低減することが可能である。
上記の3つの整合条件を同時に満足することにより、伝送効率を最大化することができる。なお、上記の3つの整合条件は必ずしも同時に満足されていなくてもよい。
(送電共振器と受電共振器の個数)
伝送システム内に含まれる送電共振器と受電共振器の台数はそれぞれ1に限定されない。送電共振器群と受電共振器群の中で、電力の伝送を行う組み合わせの内の少なくとも一組の、サイズが非対称な送電共振器と受電共振器の組み合わせにおいて、上述した抵抗値低減の構成が採用されれば本発明の有用な効果は発現し得る。
伝送システム内に含まれる送電共振器と受電共振器の台数はそれぞれ1に限定されない。送電共振器群と受電共振器群の中で、電力の伝送を行う組み合わせの内の少なくとも一組の、サイズが非対称な送電共振器と受電共振器の組み合わせにおいて、上述した抵抗値低減の構成が採用されれば本発明の有用な効果は発現し得る。
(回路素子の具体的な構成について)
送電共振器および受電共振器において、容量回路CL、Csは、チップ容量素子やセラミックコンデンサ、タンタル電解コンデンサ、アルミ電解コンデンサ、マイカコンデンサ、電気二重層コンデンサ、真空コンデンサ、半導体プロセス上で形成されるMIM構造などの集中定数回路素子で実現されてよい。また、配線に分布して発生する寄生容量の値を考慮し、上記集中定数回路素子の容量値は決定されてよい。
送電共振器および受電共振器において、容量回路CL、Csは、チップ容量素子やセラミックコンデンサ、タンタル電解コンデンサ、アルミ電解コンデンサ、マイカコンデンサ、電気二重層コンデンサ、真空コンデンサ、半導体プロセス上で形成されるMIM構造などの集中定数回路素子で実現されてよい。また、配線に分布して発生する寄生容量の値を考慮し、上記集中定数回路素子の容量値は決定されてよい。
小型インダクタLs、大型インダクタLLの形状は矩形に限定されない。楕円形状であってもよいし、任意の非対称形状であってもよい。スパイラル形状の代わりにループ形状を有していてもよい。矩形スパイラルの形状を採用する場合は、角部分で一定以上の曲率を有することが好ましい。急激に角度が変化する部分を含まない配線形状は、高周波電流の集中、周辺空間の磁界密度集中を回避でき、伝送効率を向上させる。
インダクタを構成する配線は、平面単層構成を有するものに限定されず、積層構造を有していても良い。
なお、共振器105、107は有限のQ値を有するため、共振現象は周波数軸上で拡がりをもつ。したがって、共振器105、107の共振周波数と電磁エネルギーの伝送周波数f0とが厳密に一致しない場合でも、電力伝送は可能である。また、共振器間結合によって共振器105、107の共振周波数が変化した場合でも、伝送周波数を追従させたり、伝送システムの端子インピーダンスを変更したりすることにより、良好な電力伝送を実現できる。また、製造ばらつきにより、共振器105、107の共振周波数が相互に異なった場合においても、共振周波数近傍の周波数において伝送を実現できる。
なお、共振器105、107は可変機能を有してもよい。すなわち、共振器を構成するインダクタ、キャパシタの数値を切り替えたり、連続的に変化させたりすることにより、伝送システムの伝送インピーダンスや共振周波数を変化させることができる構成を採用してもよい。
本発明の有利な効果を実証するため、図3に示す構成を有する送電共振器と受電共振器とを作製した。具体的には、以下の表1に示す実施例および比較例を作製した。作製の手順は、以下の通りである。
まず、一辺20cmの大型インダクタLL、一辺5cmの小型インダクタLsを構成要素とする、それぞれ正方形の送電共振器と受電共振器を作製した。送電共振器と受電共振器の面積比は16である。いずれのインダクタも隣接配線間隔2mm、巻数6のスパイラルインダクタとした。それぞれのスパイラルの内部終端点と外部終端点から2本の引き出し線を引き出した。そして、スパイラル配線と直列になるよう、積層チップコンデンサからなる送電キャパシタ(送電共振器105pF)と受電キャパシタ(1920pF)を接続し、共振周波数1.8MHzの共振器を形成した。共振器と入出力外部回路との結合には電磁誘導回路を用いた。
インダクタの配線として、直径200ミクロンの銅配線を複数本並列して成るリッツ線を採用し、共振器の導体損失を低減した。リッツ線を構成する並列銅配線の本数に応じてスパイラル配線の単位長さ辺りの配線抵抗が変化する。スパイラル配線経路内でのリッツ線の並列配線本数を表1に示すように設定した。こうして、送電共振器として4種類の共振器T4、T5、T6、T7を作製し、受電共振器にも4種類の共振器R4、R5、R6、R7を作製した。共振器T5、R5においては、インダクタは単一の配線から形成されており、どの部分にも低抵抗部分を設けていない。一方、共振器T6、R6においては、インダクタにおいて内郭側3巻の部分に10本並列配線を採用することにより、内郭側3巻の部分の共振周波数における抵抗値を低減している。共振器T7、R7は、インダクタの外郭側3巻の部分に10本並列配線を採用することにより、外郭側3巻の部分の共振周波数における抵抗値を低減している。共振器T4、R4は、インダクタの全体に10本並列配線を採用することにより、配線全体で共振周波数における抵抗値を低減している。
以上の説明からわかるように、受電側における小型の共振器R6、R7では、共振周波数f0における単位長さあたりの抵抗値Rsが一定ではなく、配線経路の一部で他の部分よりも低減されたインダクタ構造を有している。また、受電側における小型の共振器R4では、共振周波数f0における単位長さあたりの抵抗値Rsが配線経路の全体で低減されたインダクタ構造を有している。
表1に示すように、送電共振器におけるインダクタと受電共振器におけるインダクタの組合せを変えることにより、8組の伝送システム(実施例1~3、比較例1、2a~2c、3)を構成した。例えば、比較例1は、表1に示されるように、送電共振器にインダクタT5、受電共振器側にインダクタR5を用いたシステムである。表1に示す各システムについて、共振器間伝送特性を測定した。
伝送特性測定時は、送電および受電共振器を、各インダクタ形成面を20cm平行に離して配置した構成で固定した。両インダクタの重心はx=y=0の座標点に固定した。両インダクタに近接させた電磁誘導コイルの入出力端子をネットワークアナライザに接続し、小信号入力条件で通過/反射特性を測定し、共振器間伝送効率を最大化する最適インピーダンス値および、最大伝送効率を測定した。
表1に、実施例と比較例の構成と伝送特性の比較を示す。また、表1には、実施例と比較例の総配線量を、比較例1(両インダクタの全経路で配線の並列化を一切しない構成)において用いた配線量に対する比較として示した。
表1に示すように、比較例1において88.6%だった伝送効率は、小型インダクタの少なくとも一部において配線抵抗を低減した実施例1~3では、それぞれ、91.1%、90.5%、93.0%に増加した。すなわち、実施例1~3では、16.9%から38.8%の損失低減効果が得られた。また、実施例1~3では、各配線量が比較例1の配線量の1.69~2.62倍の範囲内にあるにもかかわらず、上記の効果を得ることができた。
一方、大型インダクタの少なくとも一部の配線経路において配線抵抗の低減を図った比較例2a~2cでは、配線量は比較例1に対して4.5~8.4倍を使用したにもかかわらず、損失低減効果は2.6%から8%にしかならなかった。
小型インダクタおよび大型インダクタの全配線経路において抵抗低減を図った比較例3では、比較例1に対して損失改善効果が47.6%に達したものの、配線使用量も10倍に達した。一方、本発明の実施例3は、比較例3の損失改善効果の81.5%を、比較例3における配線量の26%の配線量で実現することができた。
以上のように、配線使用量の削減と効率的な損失改善効果の両立という本発明の有用な効果が実証された。
なお、実施例1(22.1%の損失改善効果)と実施例2(16.9%の損失改善効果)の比較より、小型インダクタの内郭側の配線経路で配線抵抗低減を図る方が、外郭側で配線抵抗低減を図るよりもより効果が大きいことがわかった。
上記の各実施例では、大型のインダクタを単一抵抗配線から形成しているが、本発明は、このような例に限定されるものではない。大型のインダクタの一部で共振周波数f0における単位長さあたりの抵抗値RLが低減されていても、本願発明の効果を得ることは可能である。配線総量の非効率的な増大を招かないようにするという観点からは、大型のインダクタは単一抵抗配線から形成されていることが好ましい。ただし、大型のインダクタの一部で抵抗値RLが低減されている場合であっても、低抵抗化された配線経路が十分に短ければ、配線総量の増加は問題にならない。
本発明にかかる無線電力伝送システムは、パソコン、ノートパソコンなどのオフィス機器や、壁掛けテレビ、モバイルAV機器などのAV機器に適用できる。この無線電力伝送システムは、補聴器、ヘルスケア機器への充給電にも適用できるだけでなく、電気自動車、電動バイク、移動ロボットへの走行中充電システム、駐車中充電システム等へも適用できる。更に、太陽電池や燃料電池からの集電システム、直流給電システムにおける機器との接続箇所、交流コンセント代替など幅広い分野に応用できる。
20 導体配線(線材)
101 電源
102 送電器
105 送電共振器
107 受電共振器
109 受電器
111 負荷
Ls 小型インダクタ
LL 大型インダクタ
101 電源
102 送電器
105 送電共振器
107 受電共振器
109 受電器
111 負荷
Ls 小型インダクタ
LL 大型インダクタ
Claims (9)
- 送電共振器および受電共振器を備え、共振周波数f0の共振磁界を介して非接触で電力を伝送する無線電力伝送システムであって、
前記送電共振器および前記受電共振器の一方は第1のサイズを有する第1インダクタを有し、かつ、他方は前記第1のサイズよりも小さな第2のサイズを有する第2インダクタを有しており、
前記第2インダクタを構成する配線の少なくとも一部の共振周波数f0における単位長さあたりの抵抗値Rsは、前記第1インダクタを構成する配線の共振周波数f0における単位長さあたりの抵抗値RLよりも低く設定されている無線電力伝送システム。 - 前記第2インダクタを構成する配線は並列配線構造を有しており、前記第2インダクタを構成する配線の少なくとも一部における並列配線数は、第1インダクタを構成する配線の数よりも大きな値を有している、請求項1に記載の無線電力伝送システム。
- 前記第1インダクタおよび前記第2インダクタを構成する配線は、いずれも、並列配線構造を有しており、
前記第2インダクタを構成する配線の少なくとも一部における並列配線数は、第1インダクタを構成する配線の並列配線数よりも大きな値を有している、請求項1に記載の無線電力伝送システム。 - 前記第2インダクタは、前記第1インダクタを構成する配線に比べて直径、厚さ、および高さの少なくとも1つが大きな配線を一部に含んでいる、請求項1から3のいずれかに記載の無線電力伝送システム。
- 前記第2インダクタを構成する配線の最外郭以外の部分において、抵抗値Rsが抵抗値RLよりも低く設定されている請求項1から4のいずれかに記載の無線電力伝送システム。
- 前記第2インダクタを構成する配線の少なくとも最内郭の部分において、抵抗値Rsが抵抗値RLよりも低く設定されている請求項5に記載の無線電力伝送システム。
- 前記送電共振器に電力を供給する送電器を備え、
前記送電共振器と前記受電共振器との間の伝送効率を最大化する前記送電共振器の最適入力インピーダンスが、前記送電器の出力インピーダンスに一致する請求項1から6のいずれかに記載の無線電力伝送システム。 - 前記受電共振器から電力を受け取る受電器を備え、
前記送電共振器と前記受電共振器との間の伝送効率を最大化する前記受電共振器の最適出力インピーダンスが、前記受電器の入力インピーダンスに一致する請求項1から7のいずれかに記載の無線電力伝送システム。 - 前記受電器の出力インピーダンスが負荷インピーダンスと一致する請求項8に記載の無線電力伝送システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180002312.0A CN102473512B (zh) | 2010-04-07 | 2011-04-06 | 无线电力传输系统 |
EP11765230.5A EP2428970B1 (en) | 2010-04-07 | 2011-04-06 | Wireless power transmission system |
JP2011545135A JP5750583B2 (ja) | 2010-04-07 | 2011-04-06 | 無線電力伝送システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32154110P | 2010-04-07 | 2010-04-07 | |
US61/321,541 | 2010-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011125328A1 true WO2011125328A1 (ja) | 2011-10-13 |
Family
ID=44760406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/002041 WO2011125328A1 (ja) | 2010-04-07 | 2011-04-06 | 無線電力伝送システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US8742626B2 (ja) |
EP (1) | EP2428970B1 (ja) |
JP (3) | JP5750583B2 (ja) |
CN (2) | CN103779973B (ja) |
WO (1) | WO2011125328A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012178479A (ja) * | 2011-02-26 | 2012-09-13 | Ryukoku Univ | 無線電力伝送システム |
WO2013099221A1 (ja) * | 2011-12-27 | 2013-07-04 | パナソニック株式会社 | 非接触充電装置 |
JP2014011332A (ja) * | 2012-06-29 | 2014-01-20 | Toyota Motor Corp | 非接触電力伝送用コイルユニット、受電装置、車両、および送電装置 |
JP2014135382A (ja) * | 2013-01-10 | 2014-07-24 | Swcc Showa Device Technology Co Ltd | 非接触給電システム |
JP2015019022A (ja) * | 2013-07-12 | 2015-01-29 | 東芝テック株式会社 | 電力伝送装置及びコイル装置 |
JP2020092225A (ja) * | 2018-12-07 | 2020-06-11 | 大日本印刷株式会社 | コイル対、送電装置及び受電装置並びに電力伝送システム |
Families Citing this family (265)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8115448B2 (en) | 2007-06-01 | 2012-02-14 | Michael Sasha John | Systems and methods for wireless power |
US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
US8643326B2 (en) | 2008-09-27 | 2014-02-04 | Witricity Corporation | Tunable wireless energy transfer systems |
US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
US8497601B2 (en) | 2008-09-27 | 2013-07-30 | Witricity Corporation | Wireless energy transfer converters |
US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
US8410636B2 (en) | 2008-09-27 | 2013-04-02 | Witricity Corporation | Low AC resistance conductor designs |
US8692412B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Temperature compensation in a wireless transfer system |
US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
US8598743B2 (en) | 2008-09-27 | 2013-12-03 | Witricity Corporation | Resonator arrays for wireless energy transfer |
US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
US9577436B2 (en) | 2008-09-27 | 2017-02-21 | Witricity Corporation | Wireless energy transfer for implantable devices |
US8772973B2 (en) | 2008-09-27 | 2014-07-08 | Witricity Corporation | Integrated resonator-shield structures |
US8629578B2 (en) | 2008-09-27 | 2014-01-14 | Witricity Corporation | Wireless energy transfer systems |
US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
US8669676B2 (en) | 2008-09-27 | 2014-03-11 | Witricity Corporation | Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor |
US8723366B2 (en) | 2008-09-27 | 2014-05-13 | Witricity Corporation | Wireless energy transfer resonator enclosures |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US8400017B2 (en) | 2008-09-27 | 2013-03-19 | Witricity Corporation | Wireless energy transfer for computer peripheral applications |
US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
US8482158B2 (en) | 2008-09-27 | 2013-07-09 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
CN103843229B (zh) | 2011-08-04 | 2018-02-23 | 韦特里西提公司 | 可调谐无线电源架构 |
EP2998153B1 (en) | 2011-09-09 | 2023-11-01 | WiTricity Corporation | Foreign object detection in wireless energy transfer systems |
US20130062966A1 (en) | 2011-09-12 | 2013-03-14 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
CA2852924A1 (en) * | 2011-10-18 | 2013-04-25 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
JP2015502729A (ja) | 2011-11-04 | 2015-01-22 | ワイトリシティ コーポレーションWitricity Corporation | 無線エネルギー伝送モデリングツール |
US9306635B2 (en) | 2012-01-26 | 2016-04-05 | Witricity Corporation | Wireless energy transfer with reduced fields |
JP2013162533A (ja) * | 2012-02-01 | 2013-08-19 | Yazaki Corp | 非接触電力伝送システム |
US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US9954374B1 (en) | 2014-05-23 | 2018-04-24 | Energous Corporation | System and method for self-system analysis for detecting a fault in a wireless power transmission Network |
US9991741B1 (en) | 2014-07-14 | 2018-06-05 | Energous Corporation | System for tracking and reporting status and usage information in a wireless power management system |
US9847679B2 (en) | 2014-05-07 | 2017-12-19 | Energous Corporation | System and method for controlling communication between wireless power transmitter managers |
US10291066B1 (en) | 2014-05-07 | 2019-05-14 | Energous Corporation | Power transmission control systems and methods |
US9853458B1 (en) | 2014-05-07 | 2017-12-26 | Energous Corporation | Systems and methods for device and power receiver pairing |
US10206185B2 (en) | 2013-05-10 | 2019-02-12 | Energous Corporation | System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions |
US10291055B1 (en) | 2014-12-29 | 2019-05-14 | Energous Corporation | Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device |
US9941747B2 (en) | 2014-07-14 | 2018-04-10 | Energous Corporation | System and method for manually selecting and deselecting devices to charge in a wireless power network |
US9252628B2 (en) | 2013-05-10 | 2016-02-02 | Energous Corporation | Laptop computer as a transmitter for wireless charging |
US10090886B1 (en) | 2014-07-14 | 2018-10-02 | Energous Corporation | System and method for enabling automatic charging schedules in a wireless power network to one or more devices |
US10223717B1 (en) | 2014-05-23 | 2019-03-05 | Energous Corporation | Systems and methods for payment-based authorization of wireless power transmission service |
US10211680B2 (en) | 2013-07-19 | 2019-02-19 | Energous Corporation | Method for 3 dimensional pocket-forming |
US10186913B2 (en) | 2012-07-06 | 2019-01-22 | Energous Corporation | System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas |
US9973021B2 (en) | 2012-07-06 | 2018-05-15 | Energous Corporation | Receivers for wireless power transmission |
US9941754B2 (en) | 2012-07-06 | 2018-04-10 | Energous Corporation | Wireless power transmission with selective range |
US9853692B1 (en) | 2014-05-23 | 2017-12-26 | Energous Corporation | Systems and methods for wireless power transmission |
US9939864B1 (en) | 2014-08-21 | 2018-04-10 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US9900057B2 (en) | 2012-07-06 | 2018-02-20 | Energous Corporation | Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas |
US10063064B1 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US10063106B2 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for a self-system analysis in a wireless power transmission network |
US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
US10141768B2 (en) | 2013-06-03 | 2018-11-27 | Energous Corporation | Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position |
US9824815B2 (en) | 2013-05-10 | 2017-11-21 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US10224982B1 (en) | 2013-07-11 | 2019-03-05 | Energous Corporation | Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations |
US10218227B2 (en) | 2014-05-07 | 2019-02-26 | Energous Corporation | Compact PIFA antenna |
US9843213B2 (en) | 2013-08-06 | 2017-12-12 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US10148097B1 (en) | 2013-11-08 | 2018-12-04 | Energous Corporation | Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers |
US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
US10312715B2 (en) | 2015-09-16 | 2019-06-04 | Energous Corporation | Systems and methods for wireless power charging |
US9891669B2 (en) * | 2014-08-21 | 2018-02-13 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US10199835B2 (en) | 2015-12-29 | 2019-02-05 | Energous Corporation | Radar motion detection using stepped frequency in wireless power transmission system |
US9806564B2 (en) | 2014-05-07 | 2017-10-31 | Energous Corporation | Integrated rectifier and boost converter for wireless power transmission |
US9941707B1 (en) | 2013-07-19 | 2018-04-10 | Energous Corporation | Home base station for multiple room coverage with multiple transmitters |
US10038337B1 (en) | 2013-09-16 | 2018-07-31 | Energous Corporation | Wireless power supply for rescue devices |
US20150326070A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Methods and Systems for Maximum Power Point Transfer in Receivers |
US9899873B2 (en) | 2014-05-23 | 2018-02-20 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US10224758B2 (en) | 2013-05-10 | 2019-03-05 | Energous Corporation | Wireless powering of electronic devices with selective delivery range |
US9438045B1 (en) | 2013-05-10 | 2016-09-06 | Energous Corporation | Methods and systems for maximum power point transfer in receivers |
US9825674B1 (en) | 2014-05-23 | 2017-11-21 | Energous Corporation | Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions |
US10199849B1 (en) | 2014-08-21 | 2019-02-05 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US20140008993A1 (en) | 2012-07-06 | 2014-01-09 | DvineWave Inc. | Methodology for pocket-forming |
US9831718B2 (en) | 2013-07-25 | 2017-11-28 | Energous Corporation | TV with integrated wireless power transmitter |
US10243414B1 (en) | 2014-05-07 | 2019-03-26 | Energous Corporation | Wearable device with wireless power and payload receiver |
US10263432B1 (en) | 2013-06-25 | 2019-04-16 | Energous Corporation | Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access |
US10128699B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | Systems and methods of providing wireless power using receiver device sensor inputs |
US9859756B2 (en) | 2012-07-06 | 2018-01-02 | Energous Corporation | Transmittersand methods for adjusting wireless power transmission based on information from receivers |
US10230266B1 (en) | 2014-02-06 | 2019-03-12 | Energous Corporation | Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof |
US9876379B1 (en) | 2013-07-11 | 2018-01-23 | Energous Corporation | Wireless charging and powering of electronic devices in a vehicle |
US10103582B2 (en) | 2012-07-06 | 2018-10-16 | Energous Corporation | Transmitters for wireless power transmission |
US9912199B2 (en) | 2012-07-06 | 2018-03-06 | Energous Corporation | Receivers for wireless power transmission |
US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
US9812890B1 (en) | 2013-07-11 | 2017-11-07 | Energous Corporation | Portable wireless charging pad |
US10128693B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US9882430B1 (en) | 2014-05-07 | 2018-01-30 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US9893555B1 (en) | 2013-10-10 | 2018-02-13 | Energous Corporation | Wireless charging of tools using a toolbox transmitter |
US12057715B2 (en) | 2012-07-06 | 2024-08-06 | Energous Corporation | Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device |
US9893554B2 (en) | 2014-07-14 | 2018-02-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
US10205239B1 (en) | 2014-05-07 | 2019-02-12 | Energous Corporation | Compact PIFA antenna |
US9906065B2 (en) | 2012-07-06 | 2018-02-27 | Energous Corporation | Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array |
US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US10193396B1 (en) | 2014-05-07 | 2019-01-29 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US9893768B2 (en) | 2012-07-06 | 2018-02-13 | Energous Corporation | Methodology for multiple pocket-forming |
US9859757B1 (en) | 2013-07-25 | 2018-01-02 | Energous Corporation | Antenna tile arrangements in electronic device enclosures |
US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
US9882427B2 (en) | 2013-05-10 | 2018-01-30 | Energous Corporation | Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters |
US9887584B1 (en) | 2014-08-21 | 2018-02-06 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
US9859797B1 (en) | 2014-05-07 | 2018-01-02 | Energous Corporation | Synchronous rectifier design for wireless power receiver |
US9368020B1 (en) | 2013-05-10 | 2016-06-14 | Energous Corporation | Off-premises alert system and method for wireless power receivers in a wireless power network |
US9838083B2 (en) | 2014-07-21 | 2017-12-05 | Energous Corporation | Systems and methods for communication with remote management systems |
US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
US9887739B2 (en) | 2012-07-06 | 2018-02-06 | Energous Corporation | Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves |
US9966765B1 (en) | 2013-06-25 | 2018-05-08 | Energous Corporation | Multi-mode transmitter |
US9793758B2 (en) | 2014-05-23 | 2017-10-17 | Energous Corporation | Enhanced transmitter using frequency control for wireless power transmission |
US10211674B1 (en) | 2013-06-12 | 2019-02-19 | Energous Corporation | Wireless charging using selected reflectors |
US9124125B2 (en) | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
US10075008B1 (en) | 2014-07-14 | 2018-09-11 | Energous Corporation | Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network |
US9143000B2 (en) | 2012-07-06 | 2015-09-22 | Energous Corporation | Portable wireless charging pad |
US9923386B1 (en) | 2012-07-06 | 2018-03-20 | Energous Corporation | Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver |
US9847677B1 (en) | 2013-10-10 | 2017-12-19 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US9871398B1 (en) | 2013-07-01 | 2018-01-16 | Energous Corporation | Hybrid charging method for wireless power transmission based on pocket-forming |
US10141791B2 (en) | 2014-05-07 | 2018-11-27 | Energous Corporation | Systems and methods for controlling communications during wireless transmission of power using application programming interfaces |
US10211682B2 (en) | 2014-05-07 | 2019-02-19 | Energous Corporation | Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network |
US10270261B2 (en) | 2015-09-16 | 2019-04-23 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US9948135B2 (en) | 2015-09-22 | 2018-04-17 | Energous Corporation | Systems and methods for identifying sensitive objects in a wireless charging transmission field |
US9876648B2 (en) | 2014-08-21 | 2018-01-23 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US9899861B1 (en) | 2013-10-10 | 2018-02-20 | Energous Corporation | Wireless charging methods and systems for game controllers, based on pocket-forming |
US9843201B1 (en) | 2012-07-06 | 2017-12-12 | Energous Corporation | Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof |
US10050462B1 (en) | 2013-08-06 | 2018-08-14 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US10008889B2 (en) | 2014-08-21 | 2018-06-26 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US10124754B1 (en) | 2013-07-19 | 2018-11-13 | Energous Corporation | Wireless charging and powering of electronic sensors in a vehicle |
US10090699B1 (en) | 2013-11-01 | 2018-10-02 | Energous Corporation | Wireless powered house |
US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
EP2909912B1 (en) | 2012-10-19 | 2022-08-10 | WiTricity Corporation | Foreign object detection in wireless energy transfer systems |
US9842684B2 (en) | 2012-11-16 | 2017-12-12 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
KR102042685B1 (ko) | 2013-03-14 | 2019-11-11 | 삼성전자주식회사 | 무선 전력 전송 장치 및 무선 전력 수신 장치 |
US9419443B2 (en) | 2013-05-10 | 2016-08-16 | Energous Corporation | Transducer sound arrangement for pocket-forming |
US9538382B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | System and method for smart registration of wireless power receivers in a wireless power network |
US9819230B2 (en) | 2014-05-07 | 2017-11-14 | Energous Corporation | Enhanced receiver for wireless power transmission |
US9537357B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | Wireless sound charging methods and systems for game controllers, based on pocket-forming |
US9866279B2 (en) | 2013-05-10 | 2018-01-09 | Energous Corporation | Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network |
US10103552B1 (en) | 2013-06-03 | 2018-10-16 | Energous Corporation | Protocols for authenticated wireless power transmission |
US10003211B1 (en) | 2013-06-17 | 2018-06-19 | Energous Corporation | Battery life of portable electronic devices |
US10021523B2 (en) | 2013-07-11 | 2018-07-10 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US9979440B1 (en) | 2013-07-25 | 2018-05-22 | Energous Corporation | Antenna tile arrangements configured to operate as one functional unit |
WO2015023899A2 (en) | 2013-08-14 | 2015-02-19 | Witricity Corporation | Impedance tuning |
EP3057113A4 (en) * | 2013-09-17 | 2016-08-17 | Panasonic Ip Man Co Ltd | CONTACTLESS ENERGY TRANSMISSION DEVICE |
US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
US9935482B1 (en) | 2014-02-06 | 2018-04-03 | Energous Corporation | Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device |
US10075017B2 (en) | 2014-02-06 | 2018-09-11 | Energous Corporation | External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power |
US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9966784B2 (en) | 2014-06-03 | 2018-05-08 | Energous Corporation | Systems and methods for extending battery life of portable electronic devices charged by sound |
US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
US10018744B2 (en) | 2014-05-07 | 2018-07-10 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10153645B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters |
US9800172B1 (en) | 2014-05-07 | 2017-10-24 | Energous Corporation | Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves |
US10170917B1 (en) | 2014-05-07 | 2019-01-01 | Energous Corporation | Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter |
US9973008B1 (en) | 2014-05-07 | 2018-05-15 | Energous Corporation | Wireless power receiver with boost converters directly coupled to a storage element |
US10153653B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver |
US9876536B1 (en) | 2014-05-23 | 2018-01-23 | Energous Corporation | Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers |
US9954375B2 (en) | 2014-06-20 | 2018-04-24 | Witricity Corporation | Wireless power transfer systems for surfaces |
WO2016007674A1 (en) | 2014-07-08 | 2016-01-14 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
US9871301B2 (en) | 2014-07-21 | 2018-01-16 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US10116143B1 (en) | 2014-07-21 | 2018-10-30 | Energous Corporation | Integrated antenna arrays for wireless power transmission |
US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US9965009B1 (en) | 2014-08-21 | 2018-05-08 | Energous Corporation | Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver |
US9917477B1 (en) | 2014-08-21 | 2018-03-13 | Energous Corporation | Systems and methods for automatically testing the communication between power transmitter and wireless receiver |
US10122415B2 (en) | 2014-12-27 | 2018-11-06 | Energous Corporation | Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver |
US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
US9893535B2 (en) | 2015-02-13 | 2018-02-13 | Energous Corporation | Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy |
CN104779717A (zh) * | 2015-04-29 | 2015-07-15 | 浙江大学 | 用于三维叠层芯片的磁耦合谐振无线供电系统及其控制方法 |
US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US9906275B2 (en) | 2015-09-15 | 2018-02-27 | Energous Corporation | Identifying receivers in a wireless charging transmission field |
US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
US9941752B2 (en) | 2015-09-16 | 2018-04-10 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US9893538B1 (en) | 2015-09-16 | 2018-02-13 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10199850B2 (en) | 2015-09-16 | 2019-02-05 | Energous Corporation | Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter |
US10158259B1 (en) | 2015-09-16 | 2018-12-18 | Energous Corporation | Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field |
US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
US10008875B1 (en) | 2015-09-16 | 2018-06-26 | Energous Corporation | Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver |
US10211685B2 (en) | 2015-09-16 | 2019-02-19 | Energous Corporation | Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10186893B2 (en) | 2015-09-16 | 2019-01-22 | Energous Corporation | Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US11710321B2 (en) | 2015-09-16 | 2023-07-25 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10020678B1 (en) | 2015-09-22 | 2018-07-10 | Energous Corporation | Systems and methods for selecting antennas to generate and transmit power transmission waves |
US10135294B1 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers |
US10027168B2 (en) | 2015-09-22 | 2018-07-17 | Energous Corporation | Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter |
US10050470B1 (en) | 2015-09-22 | 2018-08-14 | Energous Corporation | Wireless power transmission device having antennas oriented in three dimensions |
US10135295B2 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for nullifying energy levels for wireless power transmission waves |
US10153660B1 (en) | 2015-09-22 | 2018-12-11 | Energous Corporation | Systems and methods for preconfiguring sensor data for wireless charging systems |
US10033222B1 (en) | 2015-09-22 | 2018-07-24 | Energous Corporation | Systems and methods for determining and generating a waveform for wireless power transmission waves |
US10128686B1 (en) | 2015-09-22 | 2018-11-13 | Energous Corporation | Systems and methods for identifying receiver locations using sensor technologies |
US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
US10734717B2 (en) | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
US10333332B1 (en) | 2015-10-13 | 2019-06-25 | Energous Corporation | Cross-polarized dipole antenna |
WO2017066322A2 (en) | 2015-10-14 | 2017-04-20 | Witricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
WO2017070227A1 (en) | 2015-10-19 | 2017-04-27 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
WO2017070009A1 (en) | 2015-10-22 | 2017-04-27 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US9853485B2 (en) | 2015-10-28 | 2017-12-26 | Energous Corporation | Antenna for wireless charging systems |
US9899744B1 (en) | 2015-10-28 | 2018-02-20 | Energous Corporation | Antenna for wireless charging systems |
US10063108B1 (en) | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
US10135112B1 (en) | 2015-11-02 | 2018-11-20 | Energous Corporation | 3D antenna mount |
US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
US11863001B2 (en) | 2015-12-24 | 2024-01-02 | Energous Corporation | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns |
US10277054B2 (en) | 2015-12-24 | 2019-04-30 | Energous Corporation | Near-field charging pad for wireless power charging of a receiver device that is temporarily unable to communicate |
US10079515B2 (en) | 2016-12-12 | 2018-09-18 | Energous Corporation | Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10320446B2 (en) | 2015-12-24 | 2019-06-11 | Energous Corporation | Miniaturized highly-efficient designs for near-field power transfer system |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US10256677B2 (en) | 2016-12-12 | 2019-04-09 | Energous Corporation | Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad |
CN108473067A (zh) * | 2015-12-28 | 2018-08-31 | 日本电产株式会社 | 移动体系统 |
US10263476B2 (en) | 2015-12-29 | 2019-04-16 | Energous Corporation | Transmitter board allowing for modular antenna configurations in wireless power transmission systems |
EP3462574B1 (en) | 2016-02-02 | 2021-11-17 | WiTricity Corporation | Controlling wireless power transfer systems |
CN109075614B (zh) | 2016-02-08 | 2021-11-02 | 韦特里西提公司 | 可变电容装置、阻抗匹配系统、传输系统、阻抗匹配网络 |
JP6868841B2 (ja) * | 2016-02-19 | 2021-05-12 | パナソニックIpマネジメント株式会社 | 電動装置 |
US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
CN110535252A (zh) | 2016-12-12 | 2019-12-03 | 艾诺格思公司 | 用于管理发射设备的操作的集成电路和射频发射设备 |
US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
US11011942B2 (en) | 2017-03-30 | 2021-05-18 | Energous Corporation | Flat antennas having two or more resonant frequencies for use in wireless power transmission systems |
US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
US11043848B2 (en) | 2017-06-29 | 2021-06-22 | Witricity Corporation | Protection and control of wireless power systems |
US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
US11515732B2 (en) | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
DE102018118572A1 (de) * | 2018-07-31 | 2020-02-06 | Zollner Elektronik Ag | Induktive Ladeanordnung mit geteilter Litze |
US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
EP3918691A1 (en) | 2019-01-28 | 2021-12-08 | Energous Corporation | Systems and methods for miniaturized antenna for wireless power transmissions |
WO2020163574A1 (en) | 2019-02-06 | 2020-08-13 | Energous Corporation | Systems and methods of estimating optimal phases to use for individual antennas in an antenna array |
US11381118B2 (en) | 2019-09-20 | 2022-07-05 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
WO2021055899A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers |
US11139699B2 (en) | 2019-09-20 | 2021-10-05 | Energous Corporation | Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems |
WO2021055898A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
EP4073905A4 (en) | 2019-12-13 | 2024-01-03 | Energous Corporation | CHARGING PAD WITH GUIDING CONTOURS FOR ALIGNING AN ELECTRONIC DEVICE ON THE CHARGING PAD AND FOR EFFICIENTLY TRANSMITTING NEAR FIELD HIGH FREQUENCY ENERGY TO THE ELECTRONIC DEVICE |
US10985617B1 (en) | 2019-12-31 | 2021-04-20 | Energous Corporation | System for wirelessly transmitting energy at a near-field distance without using beam-forming control |
US11799324B2 (en) | 2020-04-13 | 2023-10-24 | Energous Corporation | Wireless-power transmitting device for creating a uniform near-field charging area |
US11916398B2 (en) | 2021-12-29 | 2024-02-27 | Energous Corporation | Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03218611A (ja) * | 1989-11-08 | 1991-09-26 | Toshiba Corp | 回転トランス装置および磁気記録再生装置 |
JPH03124618U (ja) * | 1990-03-29 | 1991-12-17 | ||
JPH07263935A (ja) | 1994-03-24 | 1995-10-13 | Hochiki Corp | アンテナ装置 |
JP2008104319A (ja) | 2006-10-20 | 2008-05-01 | Toko Inc | 非接触電力伝送装置 |
US20080278264A1 (en) | 2005-07-12 | 2008-11-13 | Aristeidis Karalis | Wireless energy transfer |
JP2009504115A (ja) * | 2005-07-27 | 2009-01-29 | エルエス ケーブル リミテッド | 充電効率のバラツキが改善された無線充電器 |
JP2009124878A (ja) * | 2007-11-15 | 2009-06-04 | Meleagros Corp | 電力伝送装置、電力伝送装置の送電装置および受電装置 |
JP2009188131A (ja) * | 2008-02-05 | 2009-08-20 | Nec Tokin Corp | 非接触電力伝送装置 |
JP2010073976A (ja) * | 2008-09-19 | 2010-04-02 | Yazaki Corp | ワイヤレス電力伝送装置の通信コイル構造 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0746848A (ja) * | 1993-08-02 | 1995-02-14 | Matsushita Electric Works Ltd | 電源装置 |
EP3979481A1 (en) | 2005-07-12 | 2022-04-06 | Massachusetts Institute of Technology (MIT) | Wireless non-radiative energy transfer |
JP3124618U (ja) | 2006-06-12 | 2006-08-24 | 幸隆 杉本 | 閉蓋防止容器 |
JP4453741B2 (ja) * | 2007-10-25 | 2010-04-21 | トヨタ自動車株式会社 | 電動車両および車両用給電装置 |
JP2009267077A (ja) * | 2008-04-25 | 2009-11-12 | Seiko Epson Corp | コイルユニット及びそれを用いた電子機器 |
US8278784B2 (en) * | 2008-07-28 | 2012-10-02 | Qualcomm Incorporated | Wireless power transmission for electronic devices |
JP2010063324A (ja) * | 2008-09-07 | 2010-03-18 | Hideo Kikuchi | 誘導電力伝送回路 |
JP2010074937A (ja) * | 2008-09-18 | 2010-04-02 | Toyota Motor Corp | 非接触受電装置およびそれを備える車両 |
US8410636B2 (en) * | 2008-09-27 | 2013-04-02 | Witricity Corporation | Low AC resistance conductor designs |
US8716900B2 (en) * | 2010-03-30 | 2014-05-06 | Panasonic Corporation | Wireless power transmission system |
-
2011
- 2011-04-06 JP JP2011545135A patent/JP5750583B2/ja active Active
- 2011-04-06 EP EP11765230.5A patent/EP2428970B1/en active Active
- 2011-04-06 US US13/081,083 patent/US8742626B2/en active Active
- 2011-04-06 WO PCT/JP2011/002041 patent/WO2011125328A1/ja active Application Filing
- 2011-04-06 CN CN201410049575.2A patent/CN103779973B/zh active Active
- 2011-04-06 CN CN201180002312.0A patent/CN102473512B/zh active Active
-
2015
- 2015-02-12 JP JP2015025400A patent/JP5934935B2/ja active Active
- 2015-02-12 JP JP2015025399A patent/JP5934934B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03218611A (ja) * | 1989-11-08 | 1991-09-26 | Toshiba Corp | 回転トランス装置および磁気記録再生装置 |
JPH03124618U (ja) * | 1990-03-29 | 1991-12-17 | ||
JPH07263935A (ja) | 1994-03-24 | 1995-10-13 | Hochiki Corp | アンテナ装置 |
US20080278264A1 (en) | 2005-07-12 | 2008-11-13 | Aristeidis Karalis | Wireless energy transfer |
JP2009504115A (ja) * | 2005-07-27 | 2009-01-29 | エルエス ケーブル リミテッド | 充電効率のバラツキが改善された無線充電器 |
JP2008104319A (ja) | 2006-10-20 | 2008-05-01 | Toko Inc | 非接触電力伝送装置 |
JP2009124878A (ja) * | 2007-11-15 | 2009-06-04 | Meleagros Corp | 電力伝送装置、電力伝送装置の送電装置および受電装置 |
JP2009188131A (ja) * | 2008-02-05 | 2009-08-20 | Nec Tokin Corp | 非接触電力伝送装置 |
JP2010073976A (ja) * | 2008-09-19 | 2010-04-02 | Yazaki Corp | ワイヤレス電力伝送装置の通信コイル構造 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012178479A (ja) * | 2011-02-26 | 2012-09-13 | Ryukoku Univ | 無線電力伝送システム |
WO2013099221A1 (ja) * | 2011-12-27 | 2013-07-04 | パナソニック株式会社 | 非接触充電装置 |
JP2014011332A (ja) * | 2012-06-29 | 2014-01-20 | Toyota Motor Corp | 非接触電力伝送用コイルユニット、受電装置、車両、および送電装置 |
JP2014135382A (ja) * | 2013-01-10 | 2014-07-24 | Swcc Showa Device Technology Co Ltd | 非接触給電システム |
JP2015019022A (ja) * | 2013-07-12 | 2015-01-29 | 東芝テック株式会社 | 電力伝送装置及びコイル装置 |
JP2020092225A (ja) * | 2018-12-07 | 2020-06-11 | 大日本印刷株式会社 | コイル対、送電装置及び受電装置並びに電力伝送システム |
JP7167677B2 (ja) | 2018-12-07 | 2022-11-09 | 大日本印刷株式会社 | コイル対、送電装置及び受電装置並びに電力伝送システム |
Also Published As
Publication number | Publication date |
---|---|
EP2428970A1 (en) | 2012-03-14 |
CN103779973B (zh) | 2016-03-16 |
US20110248573A1 (en) | 2011-10-13 |
JP5750583B2 (ja) | 2015-07-22 |
EP2428970B1 (en) | 2019-02-13 |
JP2015122533A (ja) | 2015-07-02 |
CN103779973A (zh) | 2014-05-07 |
JP2015122532A (ja) | 2015-07-02 |
JPWO2011125328A1 (ja) | 2013-07-08 |
US8742626B2 (en) | 2014-06-03 |
CN102473512A (zh) | 2012-05-23 |
JP5934934B2 (ja) | 2016-06-15 |
EP2428970A4 (en) | 2016-08-03 |
JP5934935B2 (ja) | 2016-06-15 |
CN102473512B (zh) | 2014-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5934935B2 (ja) | 無線電力伝送システム | |
JP5810291B2 (ja) | 無線電力伝送システム | |
US10103581B2 (en) | Wireless power transmission system | |
US9947462B2 (en) | Wireless power transmission system, power transmitting device, and power receiving device | |
JP6288519B2 (ja) | 無線電力伝送システム | |
JP6172607B2 (ja) | 無線電力伝送装置 | |
CN104521100B (zh) | 无线电力传输装置、供电装置以及受电装置 | |
JP6108310B2 (ja) | 無線電力伝送装置 | |
JP6094820B2 (ja) | 無線電力伝送装置 | |
JP2016004990A (ja) | 共振器 | |
JP2014138509A (ja) | 共振器及び無線給電システム | |
JP2015220891A (ja) | 共振器及び無線給電システム | |
JP2016021852A (ja) | 共振器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180002312.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011545135 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11765230 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011765230 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |