Nothing Special   »   [go: up one dir, main page]

WO2011118375A1 - Filler for glass production container, filler layer for glass production container, glass production apparatus, and method for producing glass production apparatus - Google Patents

Filler for glass production container, filler layer for glass production container, glass production apparatus, and method for producing glass production apparatus Download PDF

Info

Publication number
WO2011118375A1
WO2011118375A1 PCT/JP2011/055306 JP2011055306W WO2011118375A1 WO 2011118375 A1 WO2011118375 A1 WO 2011118375A1 JP 2011055306 W JP2011055306 W JP 2011055306W WO 2011118375 A1 WO2011118375 A1 WO 2011118375A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
filler
container
glass production
mass
Prior art date
Application number
PCT/JP2011/055306
Other languages
French (fr)
Japanese (ja)
Inventor
真 東條
正隆 川口
孝志 相徳
仁 金谷
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2011510773A priority Critical patent/JP5776548B2/en
Publication of WO2011118375A1 publication Critical patent/WO2011118375A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor
    • C03B5/1675Platinum group metals

Definitions

  • the present invention relates to a filler for a glass production container, a filler layer for a glass production container formed by firing the glass, a glass production apparatus including the same, and a method for producing the glass production apparatus.
  • the present invention relates to a coating material for forming a fired film on the surface of a noble metal glass production container, comprising a glass production container having a glass component coated on the surface and a support material.
  • the present invention relates to a filler for a glass production container filled in between, a filler layer for a glass production container formed by firing it, a glass production apparatus including the same, and a method for producing the glass production apparatus.
  • a glass production container for producing high-quality glass such as optical glass and display glass
  • a glass production container made of a noble metal such as Pt or an alloy containing a noble metal hereinafter referred to as “Pt container”.
  • Pt container a glass production container made of a noble metal such as Pt or an alloy containing a noble metal
  • the container for glass manufacture is normally fixed by the outer side being covered with a support material, and the filler being filled and solidified in the gap between the container for glass manufacture and the support material.
  • non-alkali glass that is substantially free of alkali metal components and used as display glass has a high viscosity even at high temperatures and is difficult to defoam. Cheap.
  • Patent Documents 1 to 4 propose a method for suppressing the generation of bubbles due to moisture in glass when a container made of Pt or an alloy containing Pt is used. ing.
  • Patent Document 1 by controlling the partial pressure of hydrogen outside the Pt container with respect to the partial pressure of hydrogen inside the Pt container at the time of glass production, bubbles caused by moisture in the glass are controlled. A method for suppressing the occurrence has been proposed.
  • Patent Documents 2 and 3 a method for suppressing the generation of bubbles due to moisture in the glass by reducing the hydrogen permeability of the Pt container by applying a glass barrier coating to the outer surface of the Pt container is proposed. Has been.
  • Patent Documents 2 to 4 when a barrier coating layer containing a glass component is formed on the outer surface of a Pt container to suppress generation of bubbles due to moisture in the glass, It is not always necessary to continue supplying hydrogen.
  • Patent Document 4 when the outer surface of a Pt container is coated with a coating material containing a refractory component such as alumina particles and silica particles together with a glass component, described in Patent Documents 2 and 3.
  • a coating material containing a refractory component such as alumina particles and silica particles together with a glass component.
  • the present invention has been made in view of the above points, and its purpose is to provide a container body and a support material, the surface of which is coated with a coating material for forming a fired film on the surface of a glass manufacturing container made of precious metal. It is an object of the present invention to provide a filler for glass production containers that can be formed between the two, and can form a fired coating film that does not easily react with the coating material and has a high hydrogen shielding property in the coating material firing step.
  • the filler for a glass production container according to the present invention is used to form a fired film on the surface of a glass production container made of a noble metal, and the glass production container and the support material having a coating material containing a glass component coated on the surface. It is a filler filled in between.
  • the “glass production container” refers to a member having an inner surface in contact with the glass melt and an outer surface not in contact with the glass melt and capable of holding or transporting the glass melt.
  • the “glass production container” includes a container capable of holding a glass melt such as a melting tank, a clarification tank, and a stirring tank, a glass transport pipe capable of transporting the glass melt, and a molding member.
  • the “forming member” refers to a member used for forming a glass melt into a member having a predetermined shape.
  • the “molding member” includes a molding sleeve, a nozzle, and the like.
  • a glass production container made of noble metal refers to a glass production container made of a noble metal or an alloy containing a noble metal.
  • the noble metal include Pt, Rh, Ir, Pd, Au and the like.
  • the alloy containing a noble metal include an alloy containing one or more selected from the group consisting of Pt, Rh, Ir, Pd and Au.
  • Specific examples of the alloy containing a noble metal include a Pt / Rh alloy, a Pt / Ir alloy, and a Pt / Pd alloy.
  • the “support material” is a member for supporting the glass manufacturing container.
  • the support material is made of, for example, a refractory provided around the glass manufacturing container.
  • the filler for glass production containers according to the present invention contains a glass component. For this reason, it is hard to react with the coating material containing a glass component compared with the filler like the mortar which does not contain the conventional glass component, for example. Therefore, by using the filler for glass production containers according to the present invention, it is possible to suppress a deviation in the composition of the fired film due to the reaction between the coating material and the filler. That is, by using the filler for glass production containers according to the present invention, a fired film having a desired composition and high hydrogen gas shielding properties can be formed. Therefore, it is possible to manufacture a glass manufacturing apparatus in which hydrogen gas bubbles are less likely to be generated in the glass melt.
  • the glass component content in the glass production container filler is preferably close to the glass component content in the coating material.
  • the content of the glass component in the coating material is preferably 20% by mass or more, and more preferably 45% by mass or more.
  • content of the glass component in the filler for glass manufacturing containers is also 20 mass% or more, and it is more preferable that it is 45 mass% or more.
  • the glass component content in the glass production container filler is in the range of 0.9 to 1.5 times the glass component content in the coating material.
  • the type and form of the glass component are not particularly limited.
  • a form of the glass component for example, glass powder can be used.
  • the glass component is preferably borosilicate glass or silicate glass, for example, borosilicate glass or silicate glass with a low content of alkali metal or alkaline earth metal. More preferably. It is preferable that the kind of glass component contained in the filler for glass manufacturing containers is substantially equal to the kind of glass component contained in the coating material.
  • the glass component includes crystallized glass.
  • the filler for glass production containers needs to contain a glass component.
  • the glass component has a low melting point and is easily melted as compared with, for example, a refractory component.
  • a glass component dissolve and to fall out from a filler layer easily.
  • the filler layer contracts, and a gap may be generated between the glass production container and the support material. If it does so, it may become impossible to fix a glass manufacturing container firmly to a support material.
  • the filler for glass production containers is composed of alumina fibers and alumina fine particles having an average particle diameter in the range of 5 nm to 50 nm (hereinafter referred to as “alumina fine particles having an average particle diameter in the range of 5 nm to 50 nm” together with the glass component. "Is simply referred to as” alumina fine particles ").
  • alumina fine particles having an average particle diameter in the range of 5 nm to 50 nm together with the glass component.
  • alumina fine particles having an average particle diameter in the range of 5 nm to 50 nm together with the glass component.
  • alumina fine particles having an average particle diameter in the range of 5 nm to 50 nm” together with the glass component.
  • alumina fine particles having an average particle diameter in the range of 5 nm to 50 nm” together with the glass component.
  • alumina fine particles having an average particle diameter in the range of 5 nm to 50 nm alumina fine particles having an average particle diameter
  • the “average particle diameter” means D 50 (volume-based average particle diameter), which is a value measured by a laser diffraction / scattering particle size distribution analyzer.
  • alumina fiber is a material having an elongated shape and containing alumina as a main component.
  • the alumina fiber is preferably substantially cylindrical.
  • the diameter of the alumina fiber in the cross section is preferably about 1 ⁇ m to 30 ⁇ m.
  • the average particle diameter (fiber length) in the longitudinal direction of the alumina fiber is preferably about 20 ⁇ m to 300 ⁇ m.
  • the ratio of the average particle diameter in the longitudinal direction of the alumina fiber to the diameter in the cross section of the alumina fiber ranges from 2 to 200 It is preferable to be within.
  • the alumina fiber may be composed only of alumina, or may contain alumina as a main component and further contain other than alumina as a subcomponent.
  • the content of alumina in the alumina fiber is preferably 60% by mass or more, and more preferably 90% by mass or more.
  • the reason why the glass component can be prevented from falling off from the filler layer when the coating material is baked by including the alumina fiber in the filler for the glass production container is as follows. That is, it is considered that the alumina fiber having an elongated shape and having a high melting point plays a role as a structure maintaining member for the filler layer, so that the structure of the filler layer is not easily broken.
  • the reason why the glass component can be prevented from falling off from the filler layer during firing of the coating material by including the alumina fine particles in the filler for glass production container is as follows. That is, the alumina fine particles having a small average particle diameter are easily dissolved in the glass component at the time of firing the coating material even at a low temperature. For this reason, when alumina fine particles are contained in the filler for glass production containers, it dissolves in the glass component from a relatively low temperature when the coating material is fired. As a result, the viscosity of the glass component increases from the low temperature. Therefore, it becomes difficult for the glass component to fall off the filler layer.
  • the alumina fine particles having a small average particle diameter are highly reactive, and easily generate crystals with a high melting point together with other materials contained in the glass component. For this reason, when alumina fine particles are contained in the filler for glass production containers, a high melting point crystal is generated from a relatively low temperature during the firing of the coating material, and the high melting point crystal is the structure of the filler layer. It functions as a maintenance member. Therefore, it becomes difficult for the glass component to fall off the filler layer.
  • mullite is an aluminum silicate compound represented by Al 2 O 3 .nSiO 2 (where n is in the range of 1/2 to 2/3) and stable at high temperatures. Since the mullite crystals have a particularly high rigidity at high temperatures, it is particularly effective to generate mullite when the coating material is fired.
  • the filler for glass manufacturing containers contains both an alumina fiber and an alumina fine particle.
  • the glass manufacturing container filler contains both alumina fibers and alumina fine particles.
  • the structure maintaining effect by alumina fibers, the viscosity increasing effect of the glass component by dissolving the alumina fine particles in the glass component, and the high melting point crystal forming effect by the reaction of the alumina fine particles can be obtained. Dropping of the glass component from the filler layer can be more effectively suppressed.
  • the total amount of alumina fiber and alumina fine particles in the filler for glass production container is preferably 5% by mass or more. This is because if the total amount of the alumina fibers and the alumina fine particles is too small, the glass component may not be sufficiently removed from the filler layer during firing of the coating material.
  • the total amount of alumina fibers and fine alumina particles in the filler for glass production container is preferably substantially equal to the total amount of alumina fibers and fine alumina particles in the coating material.
  • the total amount of alumina fibers and alumina fine particles in the coating material is preferably 5% by mass to 25% by mass, and 5% by mass to 20% by mass. It is more preferable that Therefore, the total amount of alumina fibers and alumina fine particles in the filler for glass production containers is also preferably 5% by mass to 25% by mass, and more preferably 5% by mass to 20% by mass.
  • the content of alumina fiber in the filler for glass production container is 5% by mass to 25% by mass. It is preferably 5% by mass to 15% by mass.
  • the content of the alumina fine particles in the filler for glass production containers is 5% by mass to 20% by mass. It is preferably 5% by mass to 15% by mass.
  • the content of alumina fibers in the filler for glass production containers is preferably 5% by mass to 20% by mass.
  • the content of alumina fine particles in the filler for glass production containers is preferably 5% by mass to 20% by mass, and preferably 5% by mass to 15% by mass. .
  • the glass production container filler according to the present invention preferably contains a Si component in the glass component. If the Si component is contained in the glass component, mullite is likely to precipitate due to the reaction with the alumina fine particles. Moreover, it is preferable that the filler for glass manufacturing containers contains a silica particle. In this case, the content of silica particles is preferably 15% by mass to 35% by mass, and more preferably 20% by mass to 30% by mass. If the content of silica particles is too small, mullite crystals may be difficult to form, or the shrinkage of the filler during firing of the coating material may become too large.
  • the average particle size of the silica particles is preferably 0.5 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 50 ⁇ m. If the average particle diameter of the silica particles is too small, the gap between the silica particles inside the filler becomes large, and excessive shrinkage may occur during firing. On the other hand, if the average particle diameter of the silica particles is too large, it may be difficult to dissolve in the glass, the formation of mullite will be slow, and the flow of vitreous during firing may be difficult to suppress.
  • the filler for glass production containers according to the present invention is generally used as a paste by adding water. Specifically, a paste produced by adding water to a filler for glass production containers and kneading is filled between a glass production container having a coating material coated on the surface and a support material. Then, the filler for glass manufacturing containers is also baked with the baking of the coating material, and a filler layer for glass manufacturing containers is formed between the glass manufacturing container and the support material.
  • the filler for glass manufacturing containers will shrink
  • the water content in the filler for glass production containers is small.
  • the filler for glass production containers contains a peptizer together with water, good fluidity can be obtained and high filling can be achieved even when the water content is reduced. Can do. For example, it becomes possible to reliably fill the paste-like glass production container filler even in a very narrow gap of about 5 mm. Therefore, it is preferable that the filler for glass manufacturing containers contains a peptizer with water.
  • the “peptizer” refers to a drug that peptidizes the solid content of the filler for glass manufacturing containers. Peptidation refers to the dispersion of solidified solids. Many peptizers are generally in a solution state and may be used in a state dissolved in a solvent such as water.
  • the peptizer include ammonium carboxylate polymer compounds such as polycarboxylic acid ammonium salt, sodium salt of carboxylic acid, sodium salt of phosphoric acid, and the like.
  • an ammonium carboxylate polymer compound is preferable because it has a large effect of improving the fluidity of the filler.
  • one type of these peptizers may be used, or a plurality of types of peptizers may be used in combination.
  • the content of the peptizer is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the solid content of the glass production container filler, and is in the range of 1 to 10 parts by mass. It is preferably within the range of 1 to 9 parts by mass. If the content of the peptizer with respect to the solid content of the filler for glass production containers is too small, the effect of improving the dispersibility of the solid content by adding the peptizer may not be sufficiently obtained. On the other hand, if the content of the peptizer relative to the solid content of the filler for glass manufacturing containers is too large, the organic component contained in the peptizer itself, particularly the carbon component, reduces the glass component in the filler. The characteristic may be changed.
  • the water content is in the range of 10 to 65 parts by mass with respect to 100 parts by mass of the glass production container filler. It is preferably within a range of 15 to 60 parts by mass, and more preferably within a range of 20 to 50 parts by mass.
  • the dispersibility of solid content will worsen and the fluidity
  • the shrinkage amount of the filler for glass manufacturing containers at the time of baking may become large too much.
  • the filler layer for glass production containers according to the present invention is obtained by firing the filler for glass production containers according to the present invention.
  • the filler for glass manufacturing containers which concerns on this invention does not react easily with a coating material at the time of baking. Therefore, by using the filler layer for a glass production container according to the present invention, it is possible to produce a glass production container in which bubbles are not easily generated in the glass.
  • the firing temperature of the filler for glass production containers can be appropriately set according to the composition of the filler for glass production containers.
  • the firing temperature of the filler for glass production containers can be, for example, about 900 ° C. to 1600 ° C.
  • a glass manufacturing apparatus includes a glass manufacturing container made of a noble metal having a fired coating formed on a surface thereof, a support material, and a filler for a glass manufacturing container positioned between the glass manufacturing container and the support material.
  • the glass manufacturing container filler layer according to the present invention is used as the glass manufacturing container filler layer. For this reason, glass with few bubbles can be manufactured by manufacturing glass using the glass manufacturing apparatus of this invention.
  • the glass manufacturing apparatus is filled with the filler for a glass manufacturing container according to the present invention, for example, between a glass manufacturing container on which a coating material for forming a fired coating is applied and a support material. And it can manufacture by baking.
  • the support material is low in moisture permeability, the moisture is vaporized in the firing step, and the pressure in the region between the glass production container and the support material increases rapidly. As a result, the coating material layer and the glass manufacturing container may be damaged. Therefore, it is preferable that the support material has high moisture permeability.
  • the support material preferably has a porosity of 1% or more, more preferably 7% or more. However, if the porosity of the support material is too high, the rigidity of the support material may be too low. Therefore, the porosity of the support material is preferably 20% or less, and more preferably 15% or less.
  • the thickness of the support material is preferably in the range of 5 mm to 200 mm, and more preferably in the range of 25 mm to 100 mm.
  • the clearance between the glass production container and the support material is preferably in the range of 1 mm to 200 mm, and more preferably in the range of 1 mm to 20 mm. If the clearance between the glass production container and the support material is too small, it may be difficult to reliably fill the glass production container filler between the glass production container and the support material. On the other hand, if the clearance between the glass production container and the support material is too large, moisture may be insufficiently removed during the firing.
  • the fired film formed on the surface of the glass production container is formed by firing a coating material containing a glass component, and is for suppressing the permeation of hydrogen gas. That is, the fired coating has a lower hydrogen gas permeability than the glass production container.
  • the coating material preferably contains a glass component and a refractory component for holding the glass component.
  • the glass component contained in the coating material is not particularly limited, for example, borosilicate glass or silicate glass is preferable, and borosilicate glass having a low content of alkali metal or alkaline earth metal is preferable. A silicate glass is more preferable.
  • the content of the glass component in the coating material is not particularly limited, but is preferably 20% by mass or more, preferably 40% by mass to 70% by mass, and further preferably 50% by mass to 60% by mass. preferable.
  • the content of the glass component in the coating material is too small, the hydrogen gas shielding property of the fired film may not be sufficiently obtained.
  • the content of the glass component in the coating material is too large, the glass component tends to fall off during firing, and the shielding property of hydrogen gas may deteriorate.
  • Refractory components contained in the coating material include silica and alumina.
  • the coating material preferably contains all of the glass component, silica, and alumina.
  • the content of silica in the coating material is preferably 15% by mass to 40% by mass, and more preferably 20% by mass to 30% by mass. If the coating material contains too little silica, less silica will dissolve in the glass component and the glassy viscosity will not increase, so the coating will flow and fall off during firing, or the firing coating will have low rigidity. There is. When the content of silica in the coating material is too large, alumina is relatively decreased and the amount of mullite crystals generated is decreased, so that the rigidity of the fired film may be decreased.
  • the average particle diameter of silica contained in the coating material is preferably 50 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • colloidal silica containing finer silica particles it is preferable to use colloidal silica containing finer silica particles. This is because if the average particle size of silica contained in the coating material is too large, silica will not easily dissolve in the glass component, so that the formation of mullite will be slow and it may be difficult to suppress the flow of the glass component during firing. .
  • Colloidal silica refers to silica particles having an average particle diameter of 1 nm to 30 nm dispersed in a dispersion medium.
  • the content of alumina in the coating material is preferably 10% by mass to 40% by mass, and more preferably 16% by mass to 27% by mass. If the content of alumina in the coating material is too large, the vitreous may be insufficient and cracks may occur in the fired film. If the content of alumina in the coating material is too small, the amount of alumina that dissolves in the glass component decreases, and the viscosity of the vitreous is not sufficiently high, and the glass component may fall off during firing.
  • the alumina contained in the coating material is preferably alumina particles having an average particle diameter of 1 ⁇ m to 100 ⁇ m.
  • alumina fine particles or alumina fibers having an average particle diameter of nano-order for example, 5 nm to 50 nm.
  • Alumina fine particles are rapidly dissolved in glass components. For this reason, since the viscosity of the glass component can be increased by adding alumina fine particles, it is possible to suppress the glass component from falling off during firing. Moreover, the strength of the fired film can be improved by adding alumina fiber.
  • composition of the coating material needs to be appropriately adjusted depending on the operating temperature of the glass production container.
  • the operating temperature of the glass production container is as high as 1300 ° C. or higher, it is preferable to increase the content of the refractory component or to use glass having a higher softening temperature as the glass component.
  • the manufacturing method of the glass manufacturing apparatus includes a step of applying a coating material for forming a fired film on the surface of a glass manufacturing container made of noble metal, and a step of providing a support material around the glass manufacturing container. And a step of filling a filler between the glass production container and the support material, and a step of firing the coating material and the filler to form a fired coating and a filler layer.
  • the filler contains a glass component.
  • the glass manufacturing apparatus According to the present invention, it is possible to suitably manufacture the glass manufacturing apparatus according to the present invention, which can manufacture glass with less bubbles.
  • the coating material can be applied onto the surface of the glass manufacturing container made of precious metal by, for example, spraying with a spray, or using a brush or a spatula. Especially, it is preferable to apply
  • Filling of the filler can be performed, for example, by pouring a filler having fluidity into the clearance between the glass production container and the support material.
  • a fired film is formed by firing the coating material, and a filler layer is formed by firing the filler.
  • the firing temperature of the coating material and the filler can be appropriately set according to the composition of the coating material and the filler.
  • the coating material and the fired coating can be fired at, for example, about 900 ° C. to 1600 ° C.
  • the filler and the like may be dried.
  • the present invention it is possible to provide a filler for a glass production container that is difficult to react with a coating material in the firing step of the coating material and can form a fired film having a high hydrogen shielding property.
  • FIG.1 (a) is a typical perspective view of the member for evaluation used for evaluation of a filling property and shrinkage
  • FIG. 1B is a schematic plan view of an evaluation member used for evaluation of fillability and shrinkability.
  • FIG.1 (c) is a typical side view of the member for evaluation used for evaluation of filling property and shrinkability.
  • FIG. 2 is a cross-sectional photograph of Sample 1 in the fillability evaluation.
  • FIG. 3 is a cross-sectional photograph of Sample 2 in the fillability evaluation.
  • FIG. 4 is a cross-sectional photograph of Sample 3 in the fillability evaluation.
  • FIG. 5 is a cross-sectional photograph of Sample 5 in the fillability evaluation.
  • FIG. 6 is a cross-sectional photograph of Sample 6 in the fillability evaluation.
  • FIG. 1B is a schematic plan view of an evaluation member used for evaluation of fillability and shrinkability.
  • FIG. 1B is a schematic plan view of an evaluation member used for evaluation of fillability and shrinkability.
  • FIG. 7 is a cross-sectional photograph of Sample 1 in the shrinkage evaluation.
  • FIG. 8 is a cross-sectional photograph of Sample 2 in shrinkage evaluation.
  • FIG. 9 is a cross-sectional photograph of Sample 3 in shrinkage evaluation.
  • FIG. 10 is a cross-sectional photograph of Sample 5 in the shrinkage evaluation.
  • FIG. 11 is a cross-sectional photograph of Sample 6 in the shrinkage evaluation.
  • FIG. 12 is a plan photograph after firing of the filler button produced from Sample 10.
  • FIG. 13 is a side photograph after firing the filler button produced from Sample 10.
  • FIG. 14 is a plan photograph after firing of the filler button produced from Sample 11.
  • FIG. 15 is a side photograph after firing of the filler button produced from Sample 11.
  • FIG. 16 is a plane photograph after firing of the filler button produced from Sample 12.
  • FIG. 12 is a plan photograph after firing of the filler button produced from Sample 10.
  • FIG. 13 is a side photograph after firing the filler button produced from Sample 10.
  • FIG. 17 is a plane photograph after firing of the filler button produced from Sample 13.
  • FIG. 18 is a plane photograph after firing of the filler button produced from Sample 15.
  • FIG. 19 is a plane photograph after firing of the filler button prepared from Sample 15.
  • FIG. 20 is a plane photograph after firing of the filler button produced from Sample 16.
  • FIG. 21 is a plane photograph after firing of the filler button prepared from Sample 16.
  • a plurality of types of fillers were prepared by variously changing the amount of water to be added and the amount of peptizer. With respect to the plural kinds of fillers, the filling property and shrinkage were evaluated.
  • non-alkali glass OA-10G manufactured by Nippon Electric Glass Co., Ltd. was used as the glass powder.
  • the average particle diameter of the glass powder was 10 ⁇ m.
  • the average particle diameter of the alumina fine particles used was 20 nm.
  • Denka Alsene B97N3 (average fiber diameter: 3 ⁇ m, Al 2 O 3 : 97 mass%, SiO 2 : 3 mass%) manufactured by Denki Kagaku Kogyo Co., Ltd. was pulverized with a mixer (average particle diameter: 25 ⁇ m). ⁇ 32 ⁇ m) was used.
  • AL-42A average particle diameter: 45 ⁇ m to 55 ⁇ m
  • Sumitomo Chemical Co., Ltd. was used as the alumina particles.
  • MK Fine N average particle size: 45 ⁇ m to 55 ⁇ m manufactured by TAM was used.
  • polyacrylic acid ammonium salt (Seruna D305 manufactured by Chukyo Yushi Co., Ltd.) was used.
  • the evaluation member 1 includes first and second alumina tubes 11 and 12 bonded to a substrate 10 made of alumina using an Aron ceramic (Aron Ceramic D manufactured by Toagosei Co., Ltd.). I have.
  • the first and second alumina tubes 11 and 12 those manufactured by Nikkato Co., Ltd. made of SSA-S were used.
  • the first alumina tube 11 has an inner diameter of 18 mm and an outer diameter of 25 mm.
  • the second alumina tube 12 is arranged coaxially with the first alumina tube 11.
  • the inner diameter of the second alumina tube 12 is 35 mm, and the outer diameter is 42 mm. For this reason, the width of the clearance 13 between the first and second alumina tubes 11 and 12 is 5 mm.
  • the heights of the first and second alumina tubes 11 and 12 are 50 mm.
  • Each sample of the filler prepared above was poured into the clearance 13 of the evaluation member 1 and then dried at 60 ° C. for half a day. Thereafter, the evaluation member 1 was cut using a diamond cutter, and the state of the filler was visually evaluated.
  • Sample 1 having a water content of 33 parts by mass and a peptizer content of 3 parts by mass with respect to 100 parts by mass of the solid content had good filling properties and a low shrinkage rate.
  • Sample 4 which does not contain a peptizer and has a small water content of 33 parts by mass with respect to 100 parts by mass of solids was difficult to fill the clearance 13 with slurry. Sample 4 was not evaluated for shrinkage.
  • Sample 5 Although it did not contain a deflocculant, Sample 5 had a high water content of 69 parts by mass with respect to 100 parts by mass of solids, and it was possible to produce a slurry and good filling properties. However, the shrinkage ratio during firing was high, and large cracks occurred in the filler layer.
  • Sample 6 having a water content of 26 parts by mass and a peptizer content of 9 parts by mass with respect to 100 parts by mass of the solid content has good filling properties despite the low water content. The shrinkage rate was low.
  • the fluidity of the filler slurry can be increased by adding the peptizer, and as a result, the filling property can be improved.
  • the shrinkage rate at the time of baking can be made low by content of water with respect to 100 mass parts of solid content being 65 mass parts or less, Preferably, it is 60 mass parts or less, More preferably, it is 50 mass parts or less.
  • the more preferred amount of peptizer added is 1 to 10 parts by mass with respect to 100 parts by mass of the solid content.
  • FIGS. 12 and 13 show planar photographs after firing of the filler button produced from Sample 10.
  • FIG. FIG. 14 and FIG. 15 show a plane photograph after firing of the filler button produced from Sample 11.
  • FIG. FIG. 16 shows a planar photograph after firing of the filler button produced from Sample 12.
  • FIG. 17 shows a planar photograph after firing of the filler button produced from Sample 13.
  • FIGS. 18 and 19 show a plane photograph after firing of the filler button produced from Sample 15.
  • FIG. 20 and FIG. 21 show a plane photograph after firing of the filler button produced from Sample 16.
  • FIG. 12 and 13 show planar photographs after firing of the filler button produced from Sample 10.
  • FIG. 14 and FIG. 15 show a plane photograph after firing of the filler button produced from Sample 11.
  • FIG. FIG. 16 shows a planar photograph after firing of the filler button produced from Sample 12.
  • FIG. 17 shows a planar photograph after firing of the filler button produced from Sample 13.
  • FIG. FIGS. 18 and 19 show a plane photograph after firing of
  • the button diameter change rate (%) shown in Tables 3 to 5 below is ((diameter of the button after firing) ⁇ (diameter of the button before firing)) / (diameter of the button before firing).
  • Samples 7 to 12, 14, 15, 17, and 18 containing alumina fibers or alumina fine particles had a small flow of glass components during firing. From this result, it can be seen that the flow of the glass component during firing can be effectively suppressed by including at least one of alumina fiber and alumina fine particles. Further, among samples 7 to 16 where the firing temperature was 1300 ° C., samples 7 to 9, 12, 14, and 15 had a smaller flow of glass components during firing. From this result, it can be seen that when the alumina fiber is contained in an amount of 5% by mass or more, or the alumina fiber is not contained, it is more preferable that the alumina fine particle is contained in an amount of 10% by mass or more.
  • the coating material is applied to the outer surface of a crucible made of platinum rhodium alloy having an inner diameter of 46 mm and a height of 40 mm and containing 10% by mass of rhodium in several times using an air spray, whereby a coating layer having a thickness of 1 mm Formed.
  • the crucible formed with the coating layer was placed in a refractory crucible having an inner diameter of 56 mm so that a clearance of 5 mm was formed, and a filler slurry having the composition shown in Table 6 below was poured into the clearance, Dry at room temperature. Then, it baked at 1300 degreeC for 3 days, and cooled to room temperature. Thereby, the coating layer becomes a fired film.
  • the glass powder, alumina fine particles, alumina fibers, alumina particles, and silica particles shown in Table 6 were the same as those in Experimental Example 2.
  • non-alkali glass (OA-10G manufactured by Nippon Electric Glass Co., Ltd.) was put into the crucible, and the temperature was raised to 1300 ° C. and held at 1300 ° C. for 2 hours. Thereafter, the mixture was cooled to room temperature, and the glass in the crucible was observed using a digital scope (VHX-500F, manufactured by Keyence Corporation), and the area ratio of bubbles per unit area was calculated. The results are shown in Table 6 below.
  • Example 27 an experiment was performed under the same conditions except that alumina castable (NC-UFR-MF manufactured by Mino Ceramics Co., Ltd.) was used as the filler slurry. The results are shown in Table 6 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Disclosed is a filler for a glass production container, which is capable of providing a fired coating film that has high hydrogen blocking performance. Specifically disclosed is a filler for a glass production container, which is filled between a supporting body and a glass production container that is formed of a noble metal. The surface of the glass production container is coated with a coating material that contains a glass component and forms a fired coating film on the surface of the glass production container. The filler for a glass production container contains a glass component.

Description

ガラス製造容器用充填材、ガラス製造容器用充填材層、ガラス製造装置及びガラス製造装置の製造方法Glass production container filler, glass production container filler layer, glass production apparatus, and glass production apparatus production method
 本発明は、ガラス製造容器用充填材、それが焼成されてなるガラス製造容器用充填材層、それを備えるガラス製造装置及びガラス製造装置の製造方法に関する。特には、本発明は、貴金属製のガラス製造容器の表面上に焼成被膜を形成するためのコーティング材であって、ガラス成分を含むコーティング材が表面にコーティングされたガラス製造容器と支持材との間に充填されるガラス製造容器用充填材、それが焼成されてなるガラス製造容器用充填材層、それを備えるガラス製造装置及びガラス製造装置の製造方法に関する。 The present invention relates to a filler for a glass production container, a filler layer for a glass production container formed by firing the glass, a glass production apparatus including the same, and a method for producing the glass production apparatus. In particular, the present invention relates to a coating material for forming a fired film on the surface of a noble metal glass production container, comprising a glass production container having a glass component coated on the surface and a support material. The present invention relates to a filler for a glass production container filled in between, a filler layer for a glass production container formed by firing it, a glass production apparatus including the same, and a method for producing the glass production apparatus.
 光学ガラスやディスプレイ用ガラスなどの高品位なガラスを製造するためのガラス製造容器としては、従来、Ptなどの貴金属または貴金属を含む合金からなるガラス製造容器(以下、「Pt容器」とする。)が広く用いられている。その理由は、Pt容器は、1000℃以上といった高温雰囲気中においても高い剛性を有し、かつ、内部のガラスを汚染しにくいためである。なお、ガラス製造用容器は、通常外側が支持材で覆われ、ガラス製造用容器と支持材との空隙に充填材が充填固化されることにより固定される。 Conventionally, as a glass production container for producing high-quality glass such as optical glass and display glass, a glass production container made of a noble metal such as Pt or an alloy containing a noble metal (hereinafter referred to as “Pt container”). Is widely used. The reason is that the Pt container has high rigidity even in a high temperature atmosphere of 1000 ° C. or higher and hardly contaminates the internal glass. In addition, the container for glass manufacture is normally fixed by the outer side being covered with a support material, and the filler being filled and solidified in the gap between the container for glass manufacture and the support material.
 しかしながら、Pt容器をガラスの製造に用いた場合、ガラス中の水分に起因する泡が、容器の溶融ガラス側の表面に発生する場合がある。この泡が発生する原因は、ガラス中に含まれる水が分解することで生じた水素がPt容器を透過して外部に放出されることによって、Pt容器の表面付近に位置する溶融ガラスの酸素濃度が増大するためであると考えられている(具体的には、特許文献1参照)。すなわち、特許文献1によれば、下記の式(1)に示す反応により生じた水素がPt容器を透過して外部に放出される一方、Pt容器を透過できない酸素がPt容器の表面近傍に位置する溶融ガラス中に溶存することにより、Pt容器の表面付近に位置する溶融ガラスの酸素濃度が溶解度限界よりも高くなり、泡が発生するものと考えられている。 However, when a Pt container is used for the production of glass, bubbles due to moisture in the glass may be generated on the surface of the container on the molten glass side. The cause of this bubble is that oxygen generated by the decomposition of water contained in the glass passes through the Pt container and is released to the outside, so that the oxygen concentration of the molten glass located near the surface of the Pt container Is considered to increase (specifically, refer to Patent Document 1). That is, according to Patent Document 1, hydrogen generated by the reaction shown in the following formula (1) passes through the Pt container and is released to the outside, while oxygen that cannot pass through the Pt container is located near the surface of the Pt container. It is believed that by dissolving in the molten glass, the oxygen concentration of the molten glass located near the surface of the Pt container becomes higher than the solubility limit and bubbles are generated.
 OH → 1/2O + 1/2H + e  ・・・  (1) OH → 1 / 2O 2 + 1 / 2H 2 + e (1)
 特に、ディスプレイ用ガラスなどとして利用される、アルカリ金属成分を実質的に含まない所謂無アルカリガラスは、高温時においても粘度が高く、脱泡が困難であるため、泡の発生は大きな問題になりやすい。 In particular, so-called non-alkali glass that is substantially free of alkali metal components and used as display glass has a high viscosity even at high temperatures and is difficult to defoam. Cheap.
 このような問題に鑑み、例えば、下記の特許文献1~4では、PtまたはPtを含む合金からなる容器を用いた場合に、ガラス中の水分に起因する泡の発生を抑制する方法が提案されている。 In view of such problems, for example, the following Patent Documents 1 to 4 propose a method for suppressing the generation of bubbles due to moisture in glass when a container made of Pt or an alloy containing Pt is used. ing.
 例えば、下記の特許文献1では、ガラス製造時に、Pt容器の外側の水素の分圧を、Pt容器の内側の水素の分圧に対して制御することにより、ガラス中の水分に起因する泡の発生を抑制する方法が提案されている。 For example, in Patent Document 1 below, by controlling the partial pressure of hydrogen outside the Pt container with respect to the partial pressure of hydrogen inside the Pt container at the time of glass production, bubbles caused by moisture in the glass are controlled. A method for suppressing the occurrence has been proposed.
 下記の特許文献2,3では、Pt容器の外表面にガラスのバリアコーティングを施してPt容器の水素透過性を低下させることにより、ガラス中の水分に起因する泡の発生を抑制する方法が提案されている。 In the following Patent Documents 2 and 3, a method for suppressing the generation of bubbles due to moisture in the glass by reducing the hydrogen permeability of the Pt container by applying a glass barrier coating to the outer surface of the Pt container is proposed. Has been.
 また、下記の特許文献4では、アルミナとシリカとを含む耐火成分と、ガラス成分とを含むコーティング材によりPt容器の外表面を被覆することにより、ガラス中の水分に起因する泡の発生を抑制する方法が提案されている。 Moreover, in the following patent document 4, generation | occurrence | production of the bubble resulting from the water | moisture content in glass is suppressed by coat | covering the outer surface of a Pt container with the coating material containing a refractory component containing an alumina and silica, and a glass component. A method has been proposed.
特表2001-503008号公報Special table 2001-503008 gazette 特表2004-523449号公報JP-T-2004-523449 特表2006-522001号公報Special table 2006-522001 gazette WO2006/030738 A1号公報WO2006 / 030737 A1 Publication
 上記の特許文献1に記載の方法によりガラス中の水分に起因する泡の発生を抑制しようとすると、ガラス製造中に水素を供給し続ける必要がある。このため、ガラスの製造コストが上昇するという問題がある。また、Pt容器の外側の水素分圧が高すぎると、水素がPt容器の外側からPt容器を透過してPt容器内に進入し、ガラス融液中に溶け込むため、水素の泡が発生するおそれがある。従って、ガラス融液中に泡が発生することを十分に抑制することは困難であるという問題がある。また、水素が白金とガラス成分の反応を助長し、結果として、白金損傷が生じて溶融ガラスが流出するおそれがある。 If an attempt is made to suppress the generation of bubbles due to moisture in the glass by the method described in Patent Document 1, it is necessary to continue supplying hydrogen during glass production. For this reason, there exists a problem that the manufacturing cost of glass rises. Also, if the hydrogen partial pressure outside the Pt container is too high, hydrogen will pass through the Pt container from the outside of the Pt container and enter the Pt container and melt into the glass melt, which may cause hydrogen bubbles. There is. Therefore, there is a problem that it is difficult to sufficiently suppress the generation of bubbles in the glass melt. In addition, hydrogen promotes the reaction between platinum and glass components, and as a result, platinum damage may occur and molten glass may flow out.
 特許文献2~4に記載のように、Pt容器の外表面にガラス成分を含むバリアコーティング層を形成することによりガラス中の水分に起因する泡の発生の抑制を図る場合は、ガラス溶融中に水素を供給し続ける必要は必ずしもない。特に、特許文献4に記載のように、ガラス成分と共に、アルミナ粒子とシリカ粒子などの耐火物成分を含むコーティング材を用いてPt容器の外表面を被覆した場合は、特許文献2,3に記載のように、ガラス成分からなるバリアコーティング層を形成した場合よりも高い水素遮断性が得られやすい。従って、ガラス融液中の水に起因する泡の発生を効果的に抑制し得る。 As described in Patent Documents 2 to 4, when a barrier coating layer containing a glass component is formed on the outer surface of a Pt container to suppress generation of bubbles due to moisture in the glass, It is not always necessary to continue supplying hydrogen. In particular, as described in Patent Document 4, when the outer surface of a Pt container is coated with a coating material containing a refractory component such as alumina particles and silica particles together with a glass component, described in Patent Documents 2 and 3. Thus, it is easy to obtain a higher hydrogen barrier property than when a barrier coating layer made of a glass component is formed. Therefore, generation | occurrence | production of the bubble resulting from the water in a glass melt can be suppressed effectively.
 しかしながら、本発明者らが鋭意研究した結果、特許文献4に記載のように、ガラス成分と耐火物成分とを含むバリアコーティング層によりPt容器の外表面を被覆したとしても、泡の発生を十分に抑制できない場合があることが分かった。本発明者らは、さらに鋭意研究の結果、泡の発生を十分に抑制できない原因が、焼成によりバリアコーティング層を形成する工程で、コーティング材と充填材であるモルタルとが反応し、得られるバリアコーティング層の水素ガス遮蔽性が所望の水素ガス遮蔽性よりも低くなっていることにあることを見出した。 However, as a result of intensive studies by the present inventors, even if the outer surface of the Pt container is covered with a barrier coating layer containing a glass component and a refractory component as described in Patent Document 4, the generation of bubbles is sufficient. It was found that there are cases where it cannot be suppressed. As a result of further intensive studies, the inventors have found that the reason why the generation of bubbles cannot be sufficiently suppressed is that the coating material and the mortar that is the filler react with each other in the step of forming the barrier coating layer by firing. It has been found that the hydrogen gas shielding property of the coating layer is lower than the desired hydrogen gas shielding property.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、貴金属製のガラス製造容器の表面上に焼成被膜を形成するためのコーティング材が表面にコーティングされた容器本体と支持材との間に充填される充填材であって、コーティング材の焼成工程において、コーティング材と反応し難く、水素遮蔽性の高い焼成被膜を形成できるガラス製造容器用充填材を提供することにある。 The present invention has been made in view of the above points, and its purpose is to provide a container body and a support material, the surface of which is coated with a coating material for forming a fired film on the surface of a glass manufacturing container made of precious metal. It is an object of the present invention to provide a filler for glass production containers that can be formed between the two, and can form a fired coating film that does not easily react with the coating material and has a high hydrogen shielding property in the coating material firing step.
 本発明に係るガラス製造容器用充填材は、貴金属製のガラス製造容器の表面上に焼成被膜を形成するために使用され、ガラス成分を含むコーティング材が表面にコーティングされたガラス製造容器と支持材との間に充填される充填材である。 The filler for a glass production container according to the present invention is used to form a fired film on the surface of a glass production container made of a noble metal, and the glass production container and the support material having a coating material containing a glass component coated on the surface. It is a filler filled in between.
 なお、本発明において、「ガラス製造容器」とは、ガラス融液と接触する内表面と、ガラス融液と接触しない外表面とを有し、ガラス融液を保持または搬送できる部材のことをいう。「ガラス製造容器」には、溶融槽、清澄槽、撹拌槽等のガラス融液を保持できる容器、ガラス融液を搬送できるガラス搬送パイプ、成形用部材等が含まれる。ここで、「成形用部材」とは、ガラス融液を所定の形状を有する部材に成形するために用いる部材をいう。従って、「成形用部材」には、成形用スリーブ、ノズル等が含まれるものとする。 In the present invention, the “glass production container” refers to a member having an inner surface in contact with the glass melt and an outer surface not in contact with the glass melt and capable of holding or transporting the glass melt. . The “glass production container” includes a container capable of holding a glass melt such as a melting tank, a clarification tank, and a stirring tank, a glass transport pipe capable of transporting the glass melt, and a molding member. Here, the “forming member” refers to a member used for forming a glass melt into a member having a predetermined shape. Accordingly, the “molding member” includes a molding sleeve, a nozzle, and the like.
 本発明において、「貴金属製のガラス製造容器」とは、貴金属または貴金属を含む合金からなるガラス製造容器をいう。貴金属の具体例としては、Pt、Rh、Ir、Pd、Au等が挙げられる。貴金属を含む合金としては、Pt、Rh、Ir、Pd及びAuからなる群から選ばれた一種以上を含む合金が挙げられる。貴金属を含む合金の具体例としては、Pt/Rh合金、Pt/Ir合金、Pt/Pd合金などが挙げられる。 In the present invention, “a glass production container made of noble metal” refers to a glass production container made of a noble metal or an alloy containing a noble metal. Specific examples of the noble metal include Pt, Rh, Ir, Pd, Au and the like. Examples of the alloy containing a noble metal include an alloy containing one or more selected from the group consisting of Pt, Rh, Ir, Pd and Au. Specific examples of the alloy containing a noble metal include a Pt / Rh alloy, a Pt / Ir alloy, and a Pt / Pd alloy.
 本発明において、「支持材」とは、ガラス製造容器を支持するための部材である。支持材は、例えば、ガラス製造容器の周囲に設けられた耐火物からなる。 In the present invention, the “support material” is a member for supporting the glass manufacturing container. The support material is made of, for example, a refractory provided around the glass manufacturing container.
 本発明に係るガラス製造容器用充填材は、ガラス成分を含む。このため、例えば、従来のガラス成分を含まないモルタルのような充填材と比較して、ガラス成分を含むコーティング材と反応し難い。従って、本発明に係るガラス製造容器用充填材を用いることによって、コーティング材と充填材とが反応することに起因する焼成被膜の組成のずれを抑制することができる。つまり、本発明に係るガラス製造容器用充填材を用いることによって、所望の組成を有し、高い水素ガス遮蔽性を有する焼成被膜を形成することができる。従って、ガラス融液中に水素ガスの泡が発生しにくいガラス製造装置を作製することができる。 The filler for glass production containers according to the present invention contains a glass component. For this reason, it is hard to react with the coating material containing a glass component compared with the filler like the mortar which does not contain the conventional glass component, for example. Therefore, by using the filler for glass production containers according to the present invention, it is possible to suppress a deviation in the composition of the fired film due to the reaction between the coating material and the filler. That is, by using the filler for glass production containers according to the present invention, a fired film having a desired composition and high hydrogen gas shielding properties can be formed. Therefore, it is possible to manufacture a glass manufacturing apparatus in which hydrogen gas bubbles are less likely to be generated in the glass melt.
 コーティング材の焼成時におけるコーティング材と充填材との反応を抑制する観点からは、ガラス製造容器用充填材におけるガラス成分の含有量は、コーティング材におけるガラス成分の含有量と近いことが好ましい。ここで、水素ガス遮蔽性の高い焼成被膜を形成するためには、コーティング材におけるガラス成分の含有量は、20質量%以上であることが好ましく、45質量%以上であることがより好ましい。このため、ガラス製造容器用充填材におけるガラス成分の含有量も20質量%以上であることが好ましく、45質量%以上であることがより好ましい。 From the viewpoint of suppressing the reaction between the coating material and the filler during firing of the coating material, the glass component content in the glass production container filler is preferably close to the glass component content in the coating material. Here, in order to form a fired film having a high hydrogen gas shielding property, the content of the glass component in the coating material is preferably 20% by mass or more, and more preferably 45% by mass or more. For this reason, it is preferable that content of the glass component in the filler for glass manufacturing containers is also 20 mass% or more, and it is more preferable that it is 45 mass% or more.
 より好ましくは、ガラス製造容器用充填材におけるガラス成分の含有量は、コーティング材におけるガラス成分の含有量の0.9~1.5倍の範囲内である。 More preferably, the glass component content in the glass production container filler is in the range of 0.9 to 1.5 times the glass component content in the coating material.
 なお、ガラス成分の種類や形態は、特に限定されない。ガラス成分の形態としては、例えば、ガラス粉末を用いることができる。ガラス成分の種類としては、ガラス軟化温度が高いガラスであることが好ましい。具体的には、ガラス成分は、例えば、硼珪酸塩系ガラスや珪酸塩系ガラスであることが好ましく、アルカリ金属やアルカリ土類金属の含有量が少ない硼珪酸塩系ガラスや珪酸塩系ガラスであることがより好ましい。ガラス製造容器用充填材に含まれるガラス成分の種類は、コーティング材に含まれるガラス成分の種類と実質的に等しいことが好ましい。 Note that the type and form of the glass component are not particularly limited. As a form of the glass component, for example, glass powder can be used. As a kind of glass component, it is preferable that it is glass with a high glass softening temperature. Specifically, the glass component is preferably borosilicate glass or silicate glass, for example, borosilicate glass or silicate glass with a low content of alkali metal or alkaline earth metal. More preferably. It is preferable that the kind of glass component contained in the filler for glass manufacturing containers is substantially equal to the kind of glass component contained in the coating material.
 なお、本発明において、ガラス成分には、結晶化ガラスが含まれるものとする。 In the present invention, the glass component includes crystallized glass.
 ところで、上述のように、コーティング材との反応性を低下させる観点からは、ガラス製造容器用充填材がガラス成分を含有している必要がある。しかしながら、ガラス成分は、例えば耐火成分などと比べて融点が低く溶けやすい。このため、コーティング材の焼成時に、ガラス成分が溶けて、充填材層から脱落しやすくなる傾向にある。その結果、充填材層が収縮してしまい、ガラス製造容器と支持材との間に隙間が生じる場合がある。そうすると、ガラス製造容器を支持材に強固に固定できなくなる場合がある。 Incidentally, as described above, from the viewpoint of reducing the reactivity with the coating material, the filler for glass production containers needs to contain a glass component. However, the glass component has a low melting point and is easily melted as compared with, for example, a refractory component. For this reason, at the time of baking of a coating material, it exists in the tendency for a glass component to melt | dissolve and to fall out from a filler layer easily. As a result, the filler layer contracts, and a gap may be generated between the glass production container and the support material. If it does so, it may become impossible to fix a glass manufacturing container firmly to a support material.
 なお、ガラス成分が脱落し、ガラス製造容器と支持材との間に隙間が生じた場合、通常その隙間はそれほど大きくないため埋めるのは困難である。 When the glass component falls off and a gap is generated between the glass production container and the support material, it is usually difficult to fill the gap because the gap is not so large.
 このため、ガラス製造容器用充填材は、ガラス成分と共に、アルミナファイバー及び平均粒子径が5nm~50nmの範囲内にあるアルミナ微粒子(以下、「平均粒子径が5nm~50nmの範囲内にあるアルミナ微粒子」を単に「アルミナ微粒子」とする。)の少なくとも一方をさらに含むことが好ましい。この場合、コーティング材の焼成時に、ガラス成分が充填材層から脱落しにくくなる。よって、コーティング材の焼成時に、充填材層が収縮することが効果的に抑制される。従って、ガラス製造容器と支持材との間に隙間が生じることを抑制することができる。その結果、ガラス製造容器を支持材に強固に固定することができる。 For this reason, the filler for glass production containers is composed of alumina fibers and alumina fine particles having an average particle diameter in the range of 5 nm to 50 nm (hereinafter referred to as “alumina fine particles having an average particle diameter in the range of 5 nm to 50 nm” together with the glass component. "Is simply referred to as" alumina fine particles "). In this case, it becomes difficult for the glass component to fall off from the filler layer when the coating material is fired. Therefore, the shrinkage of the filler layer during firing of the coating material is effectively suppressed. Therefore, it can suppress that a clearance gap produces between a glass manufacturing container and a support material. As a result, the glass production container can be firmly fixed to the support material.
 なお、本発明において、「平均粒子径」とは、D50(体積基準の平均粒子径)を意味し、レーザー回折散乱式粒度分布測定装置により測定された値をいう。 In the present invention, the “average particle diameter” means D 50 (volume-based average particle diameter), which is a value measured by a laser diffraction / scattering particle size distribution analyzer.
 本発明において、「アルミナファイバー」とは、細長形状を有し、アルミナを主成分として含む材料である。アルミナファイバーは、例えば、略円柱状であることが好ましい。アルミナファイバーの横断面における直径は、1μm~30μm程度であることが好ましい。アルミナファイバーの長手方向における平均粒子径(繊維長さ)は、20μm~300μm程度であることが好ましい。アルミナファイバーの横断面における直径に対する、アルミナファイバーの長手方向における平均粒子径の比((アルミナファイバーの長手方向における平均粒子径)/(アルミナファイバーの横断面における直径))は、2~200の範囲内であることが好ましい。 In the present invention, “alumina fiber” is a material having an elongated shape and containing alumina as a main component. For example, the alumina fiber is preferably substantially cylindrical. The diameter of the alumina fiber in the cross section is preferably about 1 μm to 30 μm. The average particle diameter (fiber length) in the longitudinal direction of the alumina fiber is preferably about 20 μm to 300 μm. The ratio of the average particle diameter in the longitudinal direction of the alumina fiber to the diameter in the cross section of the alumina fiber ((average particle diameter in the longitudinal direction of the alumina fiber) / (diameter in the cross section of the alumina fiber)) ranges from 2 to 200 It is preferable to be within.
 また、アルミナファイバーは、アルミナのみからなるものであってもよいし、アルミナを主成分として含み、さらにアルミナ以外を副成分として含むものであってもよい。アルミナファイバーにおけるアルミナの含有量は、60質量%以上であることが好ましく、90質量%以上であることがより好ましい。 Further, the alumina fiber may be composed only of alumina, or may contain alumina as a main component and further contain other than alumina as a subcomponent. The content of alumina in the alumina fiber is preferably 60% by mass or more, and more preferably 90% by mass or more.
 ガラス製造容器用充填材にアルミナファイバーを含ませることにより、コーティング材の焼成時におけるガラス成分の充填材層からの脱落を抑制できるのは、次の理由によるものと考えられる。すなわち、細長形状を有しており、融点が高いアルミナファイバーが充填材層の構造維持部材としての機能を担うため、充填材層の構造が崩れにくくなるためであると考えられる。 It is thought that the reason why the glass component can be prevented from falling off from the filler layer when the coating material is baked by including the alumina fiber in the filler for the glass production container is as follows. That is, it is considered that the alumina fiber having an elongated shape and having a high melting point plays a role as a structure maintaining member for the filler layer, so that the structure of the filler layer is not easily broken.
 一方、ガラス製造容器用充填材にアルミナ微粒子を含ませることにより、コーティング材の焼成時におけるガラス成分の充填材層からの脱落を抑制できるのは、次のような理由によるものと考えられる。すなわち、平均粒子径が小さなアルミナ微粒子は、低温においても、コーティング材の焼成時にガラス成分中に溶解しやすい。このため、ガラス製造容器用充填材中にアルミナ微粒子が含まれる場合は、コーティング材の焼成時において、比較的低い温度からガラス成分中に溶解する。その結果、低温時からガラス成分の粘度が高まる。従って、ガラス成分が充填材層から脱落しにくくなる。また、平均粒子径が小さなアルミナ微粒子は、反応性が高く、ガラス成分に含まれる他の材料と共に、高融点の結晶を生成しやすい。このため、ガラス製造容器用充填材中にアルミナ微粒子が含まれる場合は、コーティング材の焼成時において、比較的低い温度から高融点の結晶が生成し、その高融点の結晶が充填材層の構造維持部材として機能する。従って、ガラス成分が充填材層から脱落しにくくなる。 On the other hand, it is thought that the reason why the glass component can be prevented from falling off from the filler layer during firing of the coating material by including the alumina fine particles in the filler for glass production container is as follows. That is, the alumina fine particles having a small average particle diameter are easily dissolved in the glass component at the time of firing the coating material even at a low temperature. For this reason, when alumina fine particles are contained in the filler for glass production containers, it dissolves in the glass component from a relatively low temperature when the coating material is fired. As a result, the viscosity of the glass component increases from the low temperature. Therefore, it becomes difficult for the glass component to fall off the filler layer. In addition, the alumina fine particles having a small average particle diameter are highly reactive, and easily generate crystals with a high melting point together with other materials contained in the glass component. For this reason, when alumina fine particles are contained in the filler for glass production containers, a high melting point crystal is generated from a relatively low temperature during the firing of the coating material, and the high melting point crystal is the structure of the filler layer. It functions as a maintenance member. Therefore, it becomes difficult for the glass component to fall off the filler layer.
 なお、アルミナ微粒子との反応により生じる高融点の結晶の具体例としては、ムライトの結晶が挙げられる。ここで、「ムライト」とは、Al・nSiO(但し、nは、1/2~2/3の範囲内)で表される、高温下で安定な珪酸アルミニウム化合物である。このムライトの結晶は、高温時における剛性が特に高いため、コーティング材の焼成時に、ムライトを生成させることが特に効果的である。 A specific example of the high melting point crystal produced by the reaction with the alumina fine particles is a mullite crystal. Here, “mullite” is an aluminum silicate compound represented by Al 2 O 3 .nSiO 2 (where n is in the range of 1/2 to 2/3) and stable at high temperatures. Since the mullite crystals have a particularly high rigidity at high temperatures, it is particularly effective to generate mullite when the coating material is fired.
 上述のように、アルミナファイバーを添加することにより得られる主たる効果と、アルミナ微粒子を添加することにより得られる主たる効果とは、異なる。このため、ガラス製造容器用充填材は、アルミナファイバーとアルミナ微粒子との両方を含むことが好ましい。特に、ガラス製造容器が、例えば、1300℃以上といった高温で使用される場合は、ガラス製造容器用充填材がアルミナファイバーとアルミナ微粒子との両方を含むことが好ましい。 As described above, the main effect obtained by adding alumina fibers is different from the main effect obtained by adding alumina fine particles. For this reason, it is preferable that the filler for glass manufacturing containers contains both an alumina fiber and an alumina fine particle. In particular, when the glass manufacturing container is used at a high temperature such as 1300 ° C. or higher, it is preferable that the glass manufacturing container filler contains both alumina fibers and alumina fine particles.
 その場合、アルミナファイバーによる構造維持効果、アルミナ微粒子がガラス成分に溶解することによるガラス成分の粘度増大効果、及びアルミナ微粒子の反応による高融点結晶の生成効果が得られるため、コーティング材の焼成時におけるガラス成分の充填材層からの脱落をさらに効果的に抑制することができる。 In that case, the structure maintaining effect by alumina fibers, the viscosity increasing effect of the glass component by dissolving the alumina fine particles in the glass component, and the high melting point crystal forming effect by the reaction of the alumina fine particles can be obtained. Dropping of the glass component from the filler layer can be more effectively suppressed.
 本発明において、ガラス製造容器用充填材におけるアルミナファイバー及びアルミナ微粒子の合量は、5質量%以上であることが好ましい。アルミナファイバー及びアルミナ微粒子の合量が少なすぎると、コーティング材の焼成時におけるガラス成分の充填材層からの脱落を十分に抑制できない場合があるためである。ガラス製造容器用充填材におけるアルミナファイバー及びアルミナ微粒子の合量は、コーティング材におけるアルミナファイバー及びアルミナ微粒子の合量と実質的に等しいことが好ましい。ここで、水素ガス遮蔽性が高い焼成被膜を得る観点からは、コーティング材におけるアルミナファイバー及びアルミナ微粒子の合量は、5質量%~25質量%であることが好ましく、5質量%~20質量%であることがより好ましい。このため、ガラス製造容器用充填材におけるアルミナファイバー及びアルミナ微粒子の合量も、5質量%~25質量%であることが好ましく、5質量%~20質量%であることがより好ましい。 In the present invention, the total amount of alumina fiber and alumina fine particles in the filler for glass production container is preferably 5% by mass or more. This is because if the total amount of the alumina fibers and the alumina fine particles is too small, the glass component may not be sufficiently removed from the filler layer during firing of the coating material. The total amount of alumina fibers and fine alumina particles in the filler for glass production container is preferably substantially equal to the total amount of alumina fibers and fine alumina particles in the coating material. Here, from the viewpoint of obtaining a fired film having a high hydrogen gas shielding property, the total amount of alumina fibers and alumina fine particles in the coating material is preferably 5% by mass to 25% by mass, and 5% by mass to 20% by mass. It is more preferable that Therefore, the total amount of alumina fibers and alumina fine particles in the filler for glass production containers is also preferably 5% by mass to 25% by mass, and more preferably 5% by mass to 20% by mass.
 ガラス製造容器用充填材が、アルミナファイバーとアルミナ微粒子とのうちのアルミナファイバーのみを含む場合には、ガラス製造容器用充填材におけるアルミナファイバーの含有量は、5質量%~25質量%であることが好ましく、5質量%~15質量%であることがより好ましい。 When the filler for glass production container contains only alumina fiber of alumina fiber and alumina fine particles, the content of alumina fiber in the filler for glass production container is 5% by mass to 25% by mass. It is preferably 5% by mass to 15% by mass.
 ガラス製造容器用充填材が、アルミナファイバーとアルミナ微粒子とのうちのアルミナ微粒子のみを含む場合には、ガラス製造容器用充填材におけるアルミナ微粒子の含有量は、5質量%~20質量%であることが好ましく、5質量%~15質量%であることがより好ましい。 When the filler for glass production containers contains only alumina fine particles of alumina fibers and alumina fine particles, the content of the alumina fine particles in the filler for glass production containers is 5% by mass to 20% by mass. It is preferably 5% by mass to 15% by mass.
 ガラス製造容器用充填材が、アルミナファイバーとアルミナ微粒子との両方を含む場合は、ガラス製造容器用充填材におけるアルミナファイバーの含有量は、5質量%~20質量%であることが好ましく、5質量%~15質量%であることが好ましく、ガラス製造容器用充填材におけるアルミナ微粒子の含有量は、5質量%~20質量%であることが好ましく、5質量%~15質量%であることが好ましい。 When the filler for glass production containers contains both alumina fibers and alumina fine particles, the content of alumina fibers in the filler for glass production containers is preferably 5% by mass to 20% by mass. The content of alumina fine particles in the filler for glass production containers is preferably 5% by mass to 20% by mass, and preferably 5% by mass to 15% by mass. .
 本発明に係るガラス製造容器用充填材は、ガラス成分中にSi成分を含有することが好ましい。ガラス成分中にSi成分を含有していれば、アルミナ微粒子との反応によってムライトを析出しやすくなる。また、ガラス製造容器用充填材は、シリカ粒子を含むことが好ましい。この場合、シリカ粒子の含有量は、15質量%~35質量%であることが好ましく、20質量%~30質量%であることがより好ましい。シリカ粒子の含有量が少なすぎると、ムライトの結晶が生成しにくくなったり、コーティング材の焼成時における充填材の収縮が大きくなりすぎたりする場合がある。一方、シリカ粒子の含有量が多すぎると、その分、ガラス成分の含有量が少なくなるため、コーティング材の焼成時におけるコーティング材と充填材との反応を十分に抑制できなくなる場合がある。また、シリカ粒子の平均粒子径は、0.5μm~100μmであることが好ましく、1μm~50μmであることが好ましい。シリカ粒子の平均粒子径が小さすぎると、充填材内部におけるシリカ粒子同士の隙間が大きくなり、焼成時に過度の収縮を起こす場合がある。一方、シリカ粒子の平均粒子径が大きすぎると、ガラスに溶け込みにくくなってムライトの形成が遅くなり、焼成時におけるガラス質の流動を抑制しにくくなる場合がある。 The glass production container filler according to the present invention preferably contains a Si component in the glass component. If the Si component is contained in the glass component, mullite is likely to precipitate due to the reaction with the alumina fine particles. Moreover, it is preferable that the filler for glass manufacturing containers contains a silica particle. In this case, the content of silica particles is preferably 15% by mass to 35% by mass, and more preferably 20% by mass to 30% by mass. If the content of silica particles is too small, mullite crystals may be difficult to form, or the shrinkage of the filler during firing of the coating material may become too large. On the other hand, when the content of the silica particles is too large, the content of the glass component is reduced accordingly, so that the reaction between the coating material and the filler during firing of the coating material may not be sufficiently suppressed. The average particle size of the silica particles is preferably 0.5 μm to 100 μm, and more preferably 1 μm to 50 μm. If the average particle diameter of the silica particles is too small, the gap between the silica particles inside the filler becomes large, and excessive shrinkage may occur during firing. On the other hand, if the average particle diameter of the silica particles is too large, it may be difficult to dissolve in the glass, the formation of mullite will be slow, and the flow of vitreous during firing may be difficult to suppress.
 ところで、本発明に係るガラス製造容器用充填材は、一般的に、水を加えてペースト状として使用される。具体的には、ガラス製造容器用充填材に水を加えて混練することにより作製したペーストを、コーティング材が表面にコーティングされたガラス製造容器と支持材との間に充填する。その後、コーティング材の焼成と共に、ガラス製造容器用充填材も焼成し、ガラス製造容器と支持材との間に、ガラス製造容器用充填材層を形成する。 By the way, the filler for glass production containers according to the present invention is generally used as a paste by adding water. Specifically, a paste produced by adding water to a filler for glass production containers and kneading is filled between a glass production container having a coating material coated on the surface and a support material. Then, the filler for glass manufacturing containers is also baked with the baking of the coating material, and a filler layer for glass manufacturing containers is formed between the glass manufacturing container and the support material.
 このため、ガラス製造容器用充填材と水とを含有するペーストにおける水の含有量が多すぎると、焼成時にガラス製造容器用充填材が大きく収縮してしまい、充填材層にひび割れなどが発生する場合がある。このため、焼成時におけるガラス製造容器用充填材の収縮を抑制する観点からは、ガラス製造容器用充填材における水の含有量は、少ない方が好ましい。 For this reason, when there is too much water content in the paste containing the filler for glass manufacturing containers and water, the filler for glass manufacturing containers will shrink | contract greatly at the time of baking, and a crack etc. will generate | occur | produce in a filler layer. There is a case. For this reason, from the viewpoint of suppressing shrinkage of the filler for glass production containers during firing, it is preferable that the water content in the filler for glass production containers is small.
 しかしながら、ガラス製造容器用充填材における水の含有量が少なすぎると、ペースト状ガラス製造容器用充填材の流動性が低下し、ガラス製造容器と支持材との間のクリアランスが小さい場合は、ガラス製造容器と支持材との間にペースト状ガラス製造容器用充填材を確実に充填することが困難となる。すなわち、ガラス製造容器と支持材との間に、ペースト状ガラス製造容器用充填材が充填されない部分が生じやすくなる。 However, if the water content in the glass production container filler is too small, the fluidity of the paste glass production container filler will decrease, and if the clearance between the glass production container and the support material is small, It becomes difficult to reliably fill the filler for the paste-like glass production container between the production container and the support material. That is, it becomes easy to produce the part which is not filled with the filler for paste-form glass manufacturing containers between a glass manufacturing container and a support material.
 このように、ガラス製造容器用充填材に単に水を加えてペースト状ガラス製造容器用充填材を作製した場合は、高い充填性と、焼成時におけるガラス製造容器用充填材の収縮の抑制とを両立させることが困難である。 Thus, when water is simply added to the filler for glass production containers to produce a filler for paste-like glass production containers, high filling properties and suppression of shrinkage of the filler for glass production containers during firing are achieved. It is difficult to achieve both.
 ここで、ガラス製造容器用充填材が、水と共に解膠剤を含む場合は、水の含有量を減らした場合であっても、良好な流動性が得られ、かつ高い充填性を実現することができる。例えば、5mm程度の非常に狭い隙間にもペースト状ガラス製造容器用充填材を確実に充填することが可能となる。従って、ガラス製造容器用充填材は、水と共に解膠剤を含むことが好ましい。 Here, when the filler for glass production containers contains a peptizer together with water, good fluidity can be obtained and high filling can be achieved even when the water content is reduced. Can do. For example, it becomes possible to reliably fill the paste-like glass production container filler even in a very narrow gap of about 5 mm. Therefore, it is preferable that the filler for glass manufacturing containers contains a peptizer with water.
 ここで、「解膠剤」とは、ガラス製造容器用充填材の固形分をペプチダゼーション(解膠)させる薬剤をいう。ペプチダゼーション(解膠)とは、凝結した固形分を分散させることをいう。解膠剤は、一般的に溶液状態であるものが多く、水などの溶媒に溶解した状態で用いられる場合もある。 Here, the “peptizer” refers to a drug that peptidizes the solid content of the filler for glass manufacturing containers. Peptidation refers to the dispersion of solidified solids. Many peptizers are generally in a solution state and may be used in a state dissolved in a solvent such as water.
 解膠剤の具体例としては、ポリカルボン酸アンモニウム塩などのカルボン酸アンモニウム系高分子化合物や、カルボン酸のナトリウム塩、リン酸のナトリウム塩などが挙げられる。なかでもカルボン酸アンモニウム系高分子化合物は充填材の流動性を向上させる効果が大きいため好ましい。本発明においては、これらの解膠剤のうちの1種類を用いてもよいし、複数種類の解膠剤を併用してもよい。 Specific examples of the peptizer include ammonium carboxylate polymer compounds such as polycarboxylic acid ammonium salt, sodium salt of carboxylic acid, sodium salt of phosphoric acid, and the like. Among these, an ammonium carboxylate polymer compound is preferable because it has a large effect of improving the fluidity of the filler. In the present invention, one type of these peptizers may be used, or a plurality of types of peptizers may be used in combination.
 解膠剤の含有量は、ガラス製造容器用充填材の固形分100質量部に対して0.1質量部~10質量部の範囲内であることが好ましく、1質量部~10質量部の範囲内であることが好ましく、1質量部~9質量部の範囲内であることが好ましい。ガラス製造容器用充填材の固形分に対する解膠剤の含有量が少なすぎると、解膠剤を添加することによる固形分の分散性向上効果が十分に得られない場合がある。一方、ガラス製造容器用充填材の固形分に対する解膠剤の含有量が多すぎると、解膠剤自体に含まれる有機成分、特に炭素成分が充填材内のガラス成分を還元させるなど充填材の特性を変化させてしまう場合がある。 The content of the peptizer is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the solid content of the glass production container filler, and is in the range of 1 to 10 parts by mass. It is preferably within the range of 1 to 9 parts by mass. If the content of the peptizer with respect to the solid content of the filler for glass production containers is too small, the effect of improving the dispersibility of the solid content by adding the peptizer may not be sufficiently obtained. On the other hand, if the content of the peptizer relative to the solid content of the filler for glass manufacturing containers is too large, the organic component contained in the peptizer itself, particularly the carbon component, reduces the glass component in the filler. The characteristic may be changed.
 ガラス製造容器用充填材に水及び解膠剤を添加した場合、水の含有量は、ガラス製造容器用充填材の固形分100質量部に対して10質量部~65質量部の範囲内であることが好ましく、15質量部~60質量部の範囲内であることがより好ましく、20質量部~50質量部の範囲内であることがさらに好ましい。ガラス製造容器用充填材の固形分に対する水の含有量が少なすぎると、固形分の分散性が悪くなり、ペースト状ガラス製造容器用充填材の流動性が低くなりすぎる場合がある。一方、ガラス製造容器用充填材の固形分に対する水の含有量が多すぎると、焼成時におけるガラス製造容器用充填材の収縮量が大きくなりすぎる場合がある。 When water and a peptizer are added to the glass production container filler, the water content is in the range of 10 to 65 parts by mass with respect to 100 parts by mass of the glass production container filler. It is preferably within a range of 15 to 60 parts by mass, and more preferably within a range of 20 to 50 parts by mass. When there is too little content of water with respect to solid content of the filler for glass manufacturing containers, the dispersibility of solid content will worsen and the fluidity | liquidity of the filler for paste-form glass manufacturing containers may become low too much. On the other hand, when there is too much water content with respect to solid content of the filler for glass manufacturing containers, the shrinkage amount of the filler for glass manufacturing containers at the time of baking may become large too much.
 本発明に係るガラス製造容器用充填材層は、上記本発明に係るガラス製造容器用充填材が焼成されてなるものである。上述の通り、本発明に係るガラス製造容器用充填材は、焼成時にコーティング材と反応し難い。従って、本発明に係るガラス製造容器用充填材層を用いることにより、ガラス中に泡が発生しにくいガラス製造容器を作製することができる。 The filler layer for glass production containers according to the present invention is obtained by firing the filler for glass production containers according to the present invention. As above-mentioned, the filler for glass manufacturing containers which concerns on this invention does not react easily with a coating material at the time of baking. Therefore, by using the filler layer for a glass production container according to the present invention, it is possible to produce a glass production container in which bubbles are not easily generated in the glass.
 なお、ガラス製造容器用充填材の焼成温度は、ガラス製造容器用充填材の組成などに応じて適宜設定することができる。ガラス製造容器用充填材の焼成温度は、例えば、900℃~1600℃程度とすることができる。 In addition, the firing temperature of the filler for glass production containers can be appropriately set according to the composition of the filler for glass production containers. The firing temperature of the filler for glass production containers can be, for example, about 900 ° C. to 1600 ° C.
 本発明に係るガラス製造装置は、焼成被膜が表面に形成されている貴金属製のガラス製造容器と、支持材と、ガラス製造容器と支持材との間に位置しているガラス製造容器用充填材層とを備えており、ガラス製造容器用充填材層として、上記本発明に係るガラス製造容器用充填材層を用いたものである。このため、本発明のガラス製造装置を用いてガラスを製造することにより、泡の少ないガラスを製造することができる。 A glass manufacturing apparatus according to the present invention includes a glass manufacturing container made of a noble metal having a fired coating formed on a surface thereof, a support material, and a filler for a glass manufacturing container positioned between the glass manufacturing container and the support material. The glass manufacturing container filler layer according to the present invention is used as the glass manufacturing container filler layer. For this reason, glass with few bubbles can be manufactured by manufacturing glass using the glass manufacturing apparatus of this invention.
 本発明に係るガラス製造装置は、例えば、焼成被膜を形成するためのコーティング材が表面に塗布されたガラス製造容器と支持材との間に、上記本発明に係るガラス製造容器用充填材を充填し、焼成することにより製造することができる。ここで、例えば、支持材が水分透過性の低いものである場合は、焼成工程において水分が気化し、ガラス製造容器と支持材との間の領域における圧力が急激に上昇する。その結果、コーティング材層やガラス製造容器が損傷してしまう虞がある。従って、支持材は、水分透過性の高いものであることが好ましい。具体的には、支持材は、気孔率が1%以上であるものが好ましく、7%以上であるものが好ましい。但し、支持材の気孔率が高すぎると、支持材の剛性が低くなりすぎる場合がある。従って、支持材の気孔率は、20%以下であることが好ましく、15%以下であることがより好ましい。 The glass manufacturing apparatus according to the present invention is filled with the filler for a glass manufacturing container according to the present invention, for example, between a glass manufacturing container on which a coating material for forming a fired coating is applied and a support material. And it can manufacture by baking. Here, for example, when the support material is low in moisture permeability, the moisture is vaporized in the firing step, and the pressure in the region between the glass production container and the support material increases rapidly. As a result, the coating material layer and the glass manufacturing container may be damaged. Therefore, it is preferable that the support material has high moisture permeability. Specifically, the support material preferably has a porosity of 1% or more, more preferably 7% or more. However, if the porosity of the support material is too high, the rigidity of the support material may be too low. Therefore, the porosity of the support material is preferably 20% or less, and more preferably 15% or less.
 支持材の気孔率が1%~20%の範囲内にある場合は、支持材の厚みは、5mm~200mmの範囲内にあることが好ましく、25mm~100mmの範囲内にあることがさらに好ましい。このような厚みの支持材を採用することによって、支持材の十分に高い剛性を確保しつつ、十分に優れた水分透過性を確保することができる。また、支持材の厚みを上記範囲とすることによってガラス製造装置が大型化しすぎることを抑制することができる。ガラス製造容器の使用温度との関係で、気孔率の小さな耐火物を設置する必要がある場合には、充填材と接触する表層部分にだけに上記の気孔率の耐火物を使用し、他の部分を気孔率の小さな耐火物で構成してもよい。 When the porosity of the support material is in the range of 1% to 20%, the thickness of the support material is preferably in the range of 5 mm to 200 mm, and more preferably in the range of 25 mm to 100 mm. By adopting the support material having such a thickness, it is possible to ensure a sufficiently excellent moisture permeability while ensuring a sufficiently high rigidity of the support material. Moreover, it can suppress that a glass manufacturing apparatus enlarges too much by making the thickness of a support material into the said range. When it is necessary to install a refractory with a low porosity in relation to the operating temperature of the glass manufacturing container, use the refractory with the above porosity only on the surface layer part that contacts the filler. You may comprise a part with a refractory material with a small porosity.
 ガラス製造容器と支持材との間のクリアランスは、1mm~200mmの範囲内であることが好ましく、1mm~20mmの範囲内であることがより好ましい。ガラス製造容器と支持材との間のクリアランスが小さすぎるとガラス製造容器と支持材との間にガラス製造容器用充填材を確実に充填することが困難となる場合がある。一方、ガラス製造容器と支持材との間のクリアランスが大きすぎると、上記焼成時における水分の抜けが不十分になる場合がある。 The clearance between the glass production container and the support material is preferably in the range of 1 mm to 200 mm, and more preferably in the range of 1 mm to 20 mm. If the clearance between the glass production container and the support material is too small, it may be difficult to reliably fill the glass production container filler between the glass production container and the support material. On the other hand, if the clearance between the glass production container and the support material is too large, moisture may be insufficiently removed during the firing.
 本発明において、ガラス製造容器の表面に形成されている焼成被膜は、ガラス成分を含むコーティング材を焼成してなるものであり、水素ガスの透過を抑制するためのものである。すなわち、焼成被膜は、ガラス製造容器よりも水素ガス透過性が低いものである。コーティング材は、ガラス成分と、ガラス成分を保持するための耐火成分とを含むものであることが好ましい。 In the present invention, the fired film formed on the surface of the glass production container is formed by firing a coating material containing a glass component, and is for suppressing the permeation of hydrogen gas. That is, the fired coating has a lower hydrogen gas permeability than the glass production container. The coating material preferably contains a glass component and a refractory component for holding the glass component.
 コーティング材に含まれるガラス成分は、特に限定されないが、例えば、硼珪酸塩系ガラスや珪酸塩系ガラスであることが好ましく、アルカリ金属やアルカリ土類金属の含有量が少ない硼珪酸塩系ガラスや珪酸塩系ガラスであることがより好ましい。 Although the glass component contained in the coating material is not particularly limited, for example, borosilicate glass or silicate glass is preferable, and borosilicate glass having a low content of alkali metal or alkaline earth metal is preferable. A silicate glass is more preferable.
 コーティング材におけるガラス成分の含有量は、特に限定されないが、20質量%以上であることが好ましく、40質量%~70質量%であることが好ましく、50質量%~60質量%であることがさらに好ましい。コーティング材におけるガラス成分の含有量が少なすぎると、焼成被膜の水素ガスの遮蔽性が十分に得られない場合がある。一方、コーティング材におけるガラス成分の含有量が多すぎると、焼成時にガラス成分が脱落しやすくなり、水素ガスの遮蔽性が劣化する場合がある。 The content of the glass component in the coating material is not particularly limited, but is preferably 20% by mass or more, preferably 40% by mass to 70% by mass, and further preferably 50% by mass to 60% by mass. preferable. When the content of the glass component in the coating material is too small, the hydrogen gas shielding property of the fired film may not be sufficiently obtained. On the other hand, when the content of the glass component in the coating material is too large, the glass component tends to fall off during firing, and the shielding property of hydrogen gas may deteriorate.
 コーティング材に含まれる耐火成分としては、シリカやアルミナなどが含まれる。コーティング材は、ガラス成分と、シリカと、アルミナとの全てを含むものであることが好ましい。この場合、コーティング材におけるシリカの含有量は、15質量%~40質量%であることが好ましく、20質量%~30質量%であることがさらに好ましい。コーティング材におけるシリカの含有量が少なすぎると、ガラス成分に溶け込むシリカが少なくなり、ガラス質の粘度が高くならないため、焼成途中に被膜が流動し脱落したり、焼成被膜の剛性が低くなったり場合がある。コーティング材におけるシリカの含有量が多すぎると、相対的にアルミナが少なくなり、ムライト結晶の生成量が少なくなるため、焼成被膜の剛性が低くなる場合がある。 Refractory components contained in the coating material include silica and alumina. The coating material preferably contains all of the glass component, silica, and alumina. In this case, the content of silica in the coating material is preferably 15% by mass to 40% by mass, and more preferably 20% by mass to 30% by mass. If the coating material contains too little silica, less silica will dissolve in the glass component and the glassy viscosity will not increase, so the coating will flow and fall off during firing, or the firing coating will have low rigidity. There is. When the content of silica in the coating material is too large, alumina is relatively decreased and the amount of mullite crystals generated is decreased, so that the rigidity of the fired film may be decreased.
 コーティング材に含まれるシリカの平均粒子径は、50μm以下であることが好ましく、10μm以下であることがさらに好ましい。特に、より細かなシリカの粒子を含むコロイダルシリカを用いることが好ましい。コーティング材に含まれるシリカの平均粒子径が大きすぎると、シリカがガラス成分に溶け込みにくくなるため、ムライトの形成が遅くなり、焼成時におけるガラス成分の流動を抑制しにくくなる場合があるためである。 The average particle diameter of silica contained in the coating material is preferably 50 μm or less, and more preferably 10 μm or less. In particular, it is preferable to use colloidal silica containing finer silica particles. This is because if the average particle size of silica contained in the coating material is too large, silica will not easily dissolve in the glass component, so that the formation of mullite will be slow and it may be difficult to suppress the flow of the glass component during firing. .
 なお、「コロイダルシリカ」とは、分散媒中に平均粒子径が1nm~30nmのシリカ微粒子が分散しているものをいう。 “Colloidal silica” refers to silica particles having an average particle diameter of 1 nm to 30 nm dispersed in a dispersion medium.
 コーティング材におけるアルミナの含有量は、10質量%~40質量%であることが好ましく、16質量%~27質量%であることがさらに好ましい。コーティング材におけるアルミナの含有量が多すぎると、ガラス質が不足し焼成被膜にクラックが入る場合がある。コーティング材におけるアルミナの含有量が少なすぎると、ガラス成分に溶け込むアルミナが少なくなり、ガラス質の粘度が十分に高くならず、焼成時にガラス成分が脱落する場合がある。コーティング材に含まれるアルミナは、平均粒子径が1μm~100μmのアルミナ粒子であることが好ましい。このような平均粒子径を有するアルミナ粒子を添加することにより、焼成被膜の変形やタレを効果的に抑制できるとともに、均一な焼成被膜が形成しやすくなる。なお、平均粒子径がナノオーダー(例えば5nm~50nm)のアルミナ微粒子やアルミナファイバーをさらに添加することが好ましい。アルミナ微粒子は、ガラス成分への溶け込みが速い。このため、アルミナ微粒子を添加することにより、ガラス成分の粘性を増大させることができるので、焼成時におけるガラス成分の脱落を抑制することができる。またアルミナファイバーを加えることで、焼成被膜の強度を向上させることができる。 The content of alumina in the coating material is preferably 10% by mass to 40% by mass, and more preferably 16% by mass to 27% by mass. If the content of alumina in the coating material is too large, the vitreous may be insufficient and cracks may occur in the fired film. If the content of alumina in the coating material is too small, the amount of alumina that dissolves in the glass component decreases, and the viscosity of the vitreous is not sufficiently high, and the glass component may fall off during firing. The alumina contained in the coating material is preferably alumina particles having an average particle diameter of 1 μm to 100 μm. By adding alumina particles having such an average particle diameter, deformation and sagging of the fired film can be effectively suppressed, and a uniform fired film can be easily formed. It is preferable to further add alumina fine particles or alumina fibers having an average particle diameter of nano-order (for example, 5 nm to 50 nm). Alumina fine particles are rapidly dissolved in glass components. For this reason, since the viscosity of the glass component can be increased by adding alumina fine particles, it is possible to suppress the glass component from falling off during firing. Moreover, the strength of the fired film can be improved by adding alumina fiber.
 なお、コーティング材の組成は、ガラス製造容器の使用温度によって適宜調製する必要がある。例えば、ガラス製造容器の使用温度が1300℃以上と高い場合は、耐火成分の含有量を多くしたり、ガラス成分として、軟化温度がより高いガラスを用いたりすることが好ましい。 It should be noted that the composition of the coating material needs to be appropriately adjusted depending on the operating temperature of the glass production container. For example, when the operating temperature of the glass production container is as high as 1300 ° C. or higher, it is preferable to increase the content of the refractory component or to use glass having a higher softening temperature as the glass component.
 本発明に係るガラス製造装置の製造方法は、貴金属製のガラス製造容器の表面上に、焼成被膜を形成するためのコーティング材を塗布する工程と、ガラス製造容器の周りに支持材を設ける工程と、ガラス製造容器と支持材との間に充填材を充填する工程と、コーティング材及び充填材を焼成して焼成被膜及び充填材層を形成する工程とを備えている。本発明に係るガラス製造装置の製造方法では、充填材がガラス成分を含んでいる。 The manufacturing method of the glass manufacturing apparatus according to the present invention includes a step of applying a coating material for forming a fired film on the surface of a glass manufacturing container made of noble metal, and a step of providing a support material around the glass manufacturing container. And a step of filling a filler between the glass production container and the support material, and a step of firing the coating material and the filler to form a fired coating and a filler layer. In the manufacturing method of the glass manufacturing apparatus according to the present invention, the filler contains a glass component.
 本発明によれば、泡の少ないガラスを製造することができる、上記本発明に係るガラス製造装置を好適に製造することができる。 According to the present invention, it is possible to suitably manufacture the glass manufacturing apparatus according to the present invention, which can manufacture glass with less bubbles.
 本発明において、貴金属製のガラス製造容器の表面上へのコーティング材の塗布は、例えば、スプレーによる吹き付けにより行うこともできるし、刷毛やへらなどを用いて行うこともできる。なかでも、貴金属製のガラス製造容器の表面上へのコーティング材の塗布は、スプレーによる吹き付けにより行うことが好ましい。均一にコーティング材を塗布できるためである。 In the present invention, the coating material can be applied onto the surface of the glass manufacturing container made of precious metal by, for example, spraying with a spray, or using a brush or a spatula. Especially, it is preferable to apply | coat the coating material on the surface of the glass manufacturing container made from a noble metal by spraying with a spray. This is because the coating material can be applied uniformly.
 充填材の充填は、例えば、流動性を有する充填材をガラス製造容器と支持材との間のクリアランスに流し込むことにより行うことができる。 Filling of the filler can be performed, for example, by pouring a filler having fluidity into the clearance between the glass production container and the support material.
 本発明においては、コーティング材の焼成により焼成被膜が形成され、充填材の焼成により充填剤層が形成される。コーティング材及び充填材の焼成温度は、コーティング材や充填材の組成などに応じて適宜設定することができる。コーティング材及び焼成被膜の焼成は、例えば、900℃~1600℃程度で行うことができる。 In the present invention, a fired film is formed by firing the coating material, and a filler layer is formed by firing the filler. The firing temperature of the coating material and the filler can be appropriately set according to the composition of the coating material and the filler. The coating material and the fired coating can be fired at, for example, about 900 ° C. to 1600 ° C.
 なお、コーティング材及び充填材の焼成に先立って、充填材等の乾燥を行うようにしてもよい。 Note that prior to firing the coating material and the filler, the filler and the like may be dried.
 本発明によれば、コーティング材の焼成工程において、コーティング材と反応し難く、水素遮蔽性の高い焼成被膜を形成できるガラス製造容器用充填材を提供することができる。 According to the present invention, it is possible to provide a filler for a glass production container that is difficult to react with a coating material in the firing step of the coating material and can form a fired film having a high hydrogen shielding property.
図1(a)は、充填性及び収縮性の評価に用いた評価用部材の模式的斜視図である。図1(b)は、充填性及び収縮性の評価に用いた評価用部材の模式的平面図である。図1(c)は、充填性及び収縮性の評価に用いた評価用部材の模式的側面図である。Fig.1 (a) is a typical perspective view of the member for evaluation used for evaluation of a filling property and shrinkage | contraction property. FIG. 1B is a schematic plan view of an evaluation member used for evaluation of fillability and shrinkability. FIG.1 (c) is a typical side view of the member for evaluation used for evaluation of filling property and shrinkability. 図2は、充填性評価におけるサンプル1の断面写真である。FIG. 2 is a cross-sectional photograph of Sample 1 in the fillability evaluation. 図3は、充填性評価におけるサンプル2の断面写真である。FIG. 3 is a cross-sectional photograph of Sample 2 in the fillability evaluation. 図4は、充填性評価におけるサンプル3の断面写真である。FIG. 4 is a cross-sectional photograph of Sample 3 in the fillability evaluation. 図5は、充填性評価におけるサンプル5の断面写真である。FIG. 5 is a cross-sectional photograph of Sample 5 in the fillability evaluation. 図6は、充填性評価におけるサンプル6の断面写真である。FIG. 6 is a cross-sectional photograph of Sample 6 in the fillability evaluation. 図7は、収縮性評価におけるサンプル1の断面写真である。FIG. 7 is a cross-sectional photograph of Sample 1 in the shrinkage evaluation. 図8は、収縮性評価におけるサンプル2の断面写真である。FIG. 8 is a cross-sectional photograph of Sample 2 in shrinkage evaluation. 図9は、収縮性評価におけるサンプル3の断面写真である。FIG. 9 is a cross-sectional photograph of Sample 3 in shrinkage evaluation. 図10は、収縮性評価におけるサンプル5の断面写真である。FIG. 10 is a cross-sectional photograph of Sample 5 in the shrinkage evaluation. 図11は、収縮性評価におけるサンプル6の断面写真である。FIG. 11 is a cross-sectional photograph of Sample 6 in the shrinkage evaluation. 図12は、サンプル10により作製した充填材ボタンの焼成後の平面写真である。FIG. 12 is a plan photograph after firing of the filler button produced from Sample 10. 図13は、サンプル10により作製した充填材ボタンの焼成後の側面写真である。FIG. 13 is a side photograph after firing the filler button produced from Sample 10. 図14は、サンプル11により作製した充填材ボタンの焼成後の平面写真である。FIG. 14 is a plan photograph after firing of the filler button produced from Sample 11. 図15は、サンプル11により作製した充填材ボタンの焼成後の側面写真である。FIG. 15 is a side photograph after firing of the filler button produced from Sample 11. 図16は、サンプル12により作製した充填材ボタンの焼成後の平面写真である。FIG. 16 is a plane photograph after firing of the filler button produced from Sample 12. 図17は、サンプル13により作製した充填材ボタンの焼成後の平面写真である。FIG. 17 is a plane photograph after firing of the filler button produced from Sample 13. 図18は、サンプル15により作製した充填材ボタンの焼成後の平面写真である。FIG. 18 is a plane photograph after firing of the filler button produced from Sample 15. 図19は、サンプル15により作製した充填材ボタンの焼成後の平面写真である。FIG. 19 is a plane photograph after firing of the filler button prepared from Sample 15. 図20は、サンプル16により作製した充填材ボタンの焼成後の平面写真である。FIG. 20 is a plane photograph after firing of the filler button produced from Sample 16. 図21は、サンプル16により作製した充填材ボタンの焼成後の平面写真である。FIG. 21 is a plane photograph after firing of the filler button prepared from Sample 16.
 以下、本発明について、実験例に基づいてさらに詳細に説明する。但し、以下の実験例は、単なる例示である。本発明は、以下の実験例に何ら限定されない。 Hereinafter, the present invention will be described in more detail based on experimental examples. However, the following experimental examples are merely illustrative. The present invention is not limited to the following experimental examples.
 《実験例1》
 本実験例1においては、ガラス製造容器用充填材(以下、「ガラス製造容器用充填材」を、単に「充填材」とする。)における水分及び解膠剤の含有量と、充填材の流動性及び焼成時の収縮量との関係について評価した。
<< Experiment 1 >>
In Experimental Example 1, the content of moisture and peptizer in the filler for glass production containers (hereinafter, “filler for glass production containers” is simply referred to as “filler”) and the flow of the filler The relationship between the properties and shrinkage during firing was evaluated.
 具体的には、添加する水分量及び解膠剤の量を種々変化させて複数種類の充填材を作製した。その複数種類の充填材について、充填性及び収縮性の評価を行った。 Specifically, a plurality of types of fillers were prepared by variously changing the amount of water to be added and the amount of peptizer. With respect to the plural kinds of fillers, the filling property and shrinkage were evaluated.
 (充填材の作製)
 充填材(サンプル1~6)は、下記の表1に示す固形分と、下記の表2に示す量の水及び解膠剤とを混練することにより作製した。
(Filling material production)
Fillers (samples 1 to 6) were prepared by kneading the solids shown in Table 1 below with the amounts of water and peptizer shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、ガラス粉末としては、日本電気硝子社製の無アルカリガラスOA-10Gを使用した。ガラス粉末の平均粒子径は、10μmであった。 As the glass powder, non-alkali glass OA-10G manufactured by Nippon Electric Glass Co., Ltd. was used. The average particle diameter of the glass powder was 10 μm.
 使用したアルミナ微粒子の平均粒子径は、20nmであった。 The average particle diameter of the alumina fine particles used was 20 nm.
 アルミナファイバーとしては、電気化学工業社製のデンカアルセンB97N3(平均繊維径:3μm、Al:97質量%、SiO:3質量%)を混合機で粉砕したもの(平均粒子径:25μm~32μm)を使用した。 As the alumina fiber, Denka Alsene B97N3 (average fiber diameter: 3 μm, Al 2 O 3 : 97 mass%, SiO 2 : 3 mass%) manufactured by Denki Kagaku Kogyo Co., Ltd. was pulverized with a mixer (average particle diameter: 25 μm). ~ 32 μm) was used.
 アルミナ粒子としては、住友化学社製AL-42A(平均粒子径:45μm~55μm)を使用した。 As the alumina particles, AL-42A (average particle diameter: 45 μm to 55 μm) manufactured by Sumitomo Chemical Co., Ltd. was used.
 シリカ粒子としては、TAM社製MKファインN(平均粒子径:45μm~55μm)を使用した。 As the silica particles, MK Fine N (average particle size: 45 μm to 55 μm) manufactured by TAM was used.
 解膠剤としては、ポリアクリル酸アンモニウム塩(中京油脂社製セルナD305)を用いた。 As the peptizer, polyacrylic acid ammonium salt (Seruna D305 manufactured by Chukyo Yushi Co., Ltd.) was used.
 (充填性の評価)
 充填性の評価は、図1に示す評価用部材1を用いて行った。図1に示すように、評価用部材1は、アルミナからなる基盤10上に、アロンセラミック(東亞合成社製アロンセラミックD)を用いて接着された第1及び第2のアルミナ管11,12を備えている。第1及び第2のアルミナ管11,12としては、SSA-Sからなるニッカトー社製のものを使用した。第1のアルミナ管11の内径は18mmであり、外径は25mmである。第2のアルミナ管12は、第1のアルミナ管11と同軸上に配置されている。第2のアルミナ管12の内径は35mmであり、外径は42mmである。このため、第1及び第2のアルミナ管11,12の間のクリアランス13の幅は、5mmである。第1及び第2のアルミナ管11,12の高さは、50mmである。
(Evaluation of fillability)
The evaluation of the filling property was performed using the evaluation member 1 shown in FIG. As shown in FIG. 1, the evaluation member 1 includes first and second alumina tubes 11 and 12 bonded to a substrate 10 made of alumina using an Aron ceramic (Aron Ceramic D manufactured by Toagosei Co., Ltd.). I have. As the first and second alumina tubes 11 and 12, those manufactured by Nikkato Co., Ltd. made of SSA-S were used. The first alumina tube 11 has an inner diameter of 18 mm and an outer diameter of 25 mm. The second alumina tube 12 is arranged coaxially with the first alumina tube 11. The inner diameter of the second alumina tube 12 is 35 mm, and the outer diameter is 42 mm. For this reason, the width of the clearance 13 between the first and second alumina tubes 11 and 12 is 5 mm. The heights of the first and second alumina tubes 11 and 12 are 50 mm.
 この評価用部材1のクリアランス13に、上記作製の充填材の各サンプルを流し込んだ後に、60℃で半日乾燥させた。その後、ダイヤモンドカッターを用いて、評価用部材1を切断し、充填材の様子を目視評価した。 Each sample of the filler prepared above was poured into the clearance 13 of the evaluation member 1 and then dried at 60 ° C. for half a day. Thereafter, the evaluation member 1 was cut using a diamond cutter, and the state of the filler was visually evaluated.
 ここで、クリアランス13全体に充填材が充填されている場合を「○」とした。クリアランス13に、充填材を、ある程度充填できたが、途中で充填材の流動が止まり、クリアランス13内に大きな隙間が生じた場合を「△」とした。充填材の粘度が高すぎて、充填材がクリアランス13に全く侵入しなかった場合を「×」とした。結果を、上記表2に示す。また、サンプル1~3,5,6の断面写真を図2~図6に示す。 Here, the case where the entire clearance 13 is filled with a filler is indicated as “◯”. The clearance 13 was filled with the filler to some extent, but the case where the filler stopped flowing in the middle and a large gap was generated in the clearance 13 was indicated as “Δ”. The case where the viscosity of the filler was too high and the filler did not enter the clearance 13 at all was indicated as “x”. The results are shown in Table 2 above. Moreover, cross-sectional photographs of Samples 1 to 3, 5 and 6 are shown in FIGS.
 (収縮性の評価)
 上記充填性の評価とは別個の評価用部材1のクリアランス13に、上記作製の充填材の各サンプルを流し込んだ後に、60℃で半日乾燥させた。その後、電気炉にて、10℃/分の昇温スピードで1300℃まで加熱し、1300℃で一日保持した後に、710℃で1時間アニールし室温まで2℃/分の冷却スピードで冷却した。その後、ダイヤモンドカッターを用いて、評価用部材1を切断し、充填材の様子を目視観察した。
(Evaluation of shrinkage)
Each sample of the prepared filler was poured into the clearance 13 of the evaluation member 1 separate from the evaluation of the filling property, and then dried at 60 ° C. for half a day. After that, it was heated to 1300 ° C. at a heating rate of 10 ° C./min in an electric furnace, held at 1300 ° C. for one day, annealed at 710 ° C. for 1 hour, and cooled to room temperature at a cooling rate of 2 ° C./min. . Thereafter, the evaluation member 1 was cut using a diamond cutter, and the state of the filler was visually observed.
 ここで、充填材層にひび割れ等が発生していない場合を「○」とし、充填材層にひび割れ等が発生している場合を「×」とした。結果を、上記表2に示す。また、サンプル1~3,5,6の断面写真を図7~図11に示す。 Here, the case where cracks or the like did not occur in the filler layer was indicated as “◯”, and the case where cracks or the like occurred in the filler layer was indicated as “x”. The results are shown in Table 2 above. Further, cross-sectional photographs of Samples 1 to 3, 5, and 6 are shown in FIGS.
 (サンプル1の評価)
 固形分100質量部に対する水の含有量が33質量部であり、解膠剤の含有量が3質量部であるサンプル1では、充填性が良好であり、収縮率が低かった。
(Evaluation of sample 1)
Sample 1 having a water content of 33 parts by mass and a peptizer content of 3 parts by mass with respect to 100 parts by mass of the solid content had good filling properties and a low shrinkage rate.
 (サンプル2の評価)
 固形分100質量部に対する水の含有量が48質量部であり、解膠剤の含有量が1質量部であるサンプル2では、充填性が良好であり、収縮率が低かった。
(Evaluation of sample 2)
Sample 2 with a water content of 48 parts by mass and a peptizer content of 1 part by mass with respect to 100 parts by mass of the solid content had good filling properties and a low shrinkage.
 (サンプル3の評価)
 解膠剤を含まないサンプル3では、水の含有量がサンプル2と同様であるにもかかわらず、充填性がサンプル2よりも低かった。
(Evaluation of sample 3)
Sample 3 containing no peptizer had a lower fillability than Sample 2 despite the water content being similar to Sample 2.
 (サンプル4の評価)
 解膠剤を含まず、固形分100質量部に対する水の含有量が33質量部と少ないサンプル4では、サンプル3とは異なり、クリアランス13にスラリーを充填することが困難であった。なお、サンプル4については、収縮性の評価は行っていない。
(Evaluation of sample 4)
Unlike Sample 3, Sample 4 which does not contain a peptizer and has a small water content of 33 parts by mass with respect to 100 parts by mass of solids was difficult to fill the clearance 13 with slurry. Sample 4 was not evaluated for shrinkage.
 (サンプル5の評価)
 解膠剤を含まないものの、固形分100質量部に対する水の含有量が69質量部と多いサンプル5では、スラリーの作製が可能であり、充填性も良好であった。しかしながら、焼成時における収縮率が高く、充填材層に大きなひび割れが発生した。
(Evaluation of sample 5)
Although it did not contain a deflocculant, Sample 5 had a high water content of 69 parts by mass with respect to 100 parts by mass of solids, and it was possible to produce a slurry and good filling properties. However, the shrinkage ratio during firing was high, and large cracks occurred in the filler layer.
 (サンプル6の評価)
 固形分100質量部に対する水の含有量が26質量部であり、解膠剤の含有量が9質量部であるサンプル6は、水の含有量が少ないにも関わらず、充填性が良好であり、収縮率が低かった。
(Evaluation of sample 6)
Sample 6 having a water content of 26 parts by mass and a peptizer content of 9 parts by mass with respect to 100 parts by mass of the solid content has good filling properties despite the low water content. The shrinkage rate was low.
 以上の結果から、水の含有量が少ない場合であっても、解膠剤を添加することにより充填材スラリーの流動性を高めることができ、その結果、充填性を高めることができることが分かる。また、固形分100質量部に対する水の含有量を65質量部以下、好ましくは、60質量部以下、さらに好ましくは、50質量部以下とすることにより焼成時の収縮率を低くできることが分かる。また、より好ましい解膠剤の添加量は、固形分100質量部に対して1~10質量部であることが分かる。 From the above results, it can be seen that even when the water content is low, the fluidity of the filler slurry can be increased by adding the peptizer, and as a result, the filling property can be improved. Moreover, it turns out that the shrinkage rate at the time of baking can be made low by content of water with respect to 100 mass parts of solid content being 65 mass parts or less, Preferably, it is 60 mass parts or less, More preferably, it is 50 mass parts or less. It can also be seen that the more preferred amount of peptizer added is 1 to 10 parts by mass with respect to 100 parts by mass of the solid content.
 《実験例2》
 下記の表3~表5に示す組成の充填材スラリーを作製した。作製したスラリーを鋳型に流し込み、直径が35mmで厚みが10mmである充填材ボタンを作製した。その後、表3~表5に示す温度で、24時間焼成した後のボタンの直径を測定した。その結果、焼成により、ボタンの直径が大きくなっているものは、焼成時に充填材が流動しているものとして、「×」とした。また、焼成により、ボタンの直径が、焼成前よりも10%以上小さくなっているものも、大きく収縮したとして、「×」とした。一方、焼成によるボタンの直径が、焼成前よりも10%以下の範囲内で小さくなった場合及び焼成によりボタンの直径が変化しなかった場合は、焼成時に大きな流動が発生せず、大きく収縮しないものとして、「○」とした。結果を、下記の表3~表5に示す。また、図12及び図13にサンプル10により作製した充填材ボタンの焼成後平面写真を示す。図14及び図15にサンプル11により作製した充填材ボタンの焼成後平面写真を示す。図16にサンプル12により作製した充填材ボタンの焼成後平面写真を示す。図17にサンプル13により作製した充填材ボタンの焼成後平面写真を示す。図18及び図19にサンプル15により作製した充填材ボタンの焼成後平面写真を示す。図20及び図21にサンプル16により作製した充填材ボタンの焼成後平面写真を示す。
<< Experiment 2 >>
Filler slurries having the compositions shown in Tables 3 to 5 below were prepared. The prepared slurry was poured into a mold to prepare a filler button having a diameter of 35 mm and a thickness of 10 mm. Thereafter, the button diameter after firing for 24 hours at the temperatures shown in Tables 3 to 5 was measured. As a result, when the diameter of the button was increased by firing, the filler was flowing during firing, and the result was “x”. In addition, the case where the diameter of the button was 10% or more smaller than that before firing due to firing was marked as “x” because it was greatly contracted. On the other hand, when the diameter of the button by firing becomes smaller within 10% or less than before firing, or when the diameter of the button does not change by firing, no large flow occurs during firing and the button does not shrink significantly. As a thing, it was set as "(circle)". The results are shown in Tables 3 to 5 below. FIGS. 12 and 13 show planar photographs after firing of the filler button produced from Sample 10. FIG. FIG. 14 and FIG. 15 show a plane photograph after firing of the filler button produced from Sample 11. FIG. FIG. 16 shows a planar photograph after firing of the filler button produced from Sample 12. FIG. FIG. 17 shows a planar photograph after firing of the filler button produced from Sample 13. FIG. FIGS. 18 and 19 show a plane photograph after firing of the filler button produced from Sample 15. FIG. 20 and FIG. 21 show a plane photograph after firing of the filler button produced from Sample 16. FIG.
 なお、充填材スラリーとしては、下記の固形分100質量部に対して、水を33質量部、解膠剤(ポリアクリル酸アンモニウム塩(中京油脂社製セルナD305))を3質量部加えたものを使用した。また、アルミナ微粒子、アルミナファイバー、アルミナ粒子、シリカ粒子は、上記実験例1で使用したものと同様のものを使用した。 In addition, as a filler slurry, what added 33 mass parts of water and 3 mass parts of peptizers (polyacrylic acid ammonium salt (Cerna D305 by Chukyo Yushi Co., Ltd.)) with respect to 100 mass parts of the following solid content. It was used. The same alumina fine particles, alumina fibers, alumina particles, and silica particles as those used in Experimental Example 1 were used.
 下記の表3~表5に示すボタン直径変化率(%)は、((焼成後のボタンの直径)-(焼成前のボタンの直径))/(焼成前のボタンの直径)である。 The button diameter change rate (%) shown in Tables 3 to 5 below is ((diameter of the button after firing) − (diameter of the button before firing)) / (diameter of the button before firing).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表3~表5に示すように、アルミナファイバーまたはアルミナ微粒子を含むサンプル7~12,14,15,17及び18は、焼成時におけるガラス成分の流動が小さかった。この結果から、アルミナファイバー及びアルミナ微粒子の少なくとも一方を含ませることにより、焼成時におけるガラス成分の流動を効果的に抑制できることが分かる。また、焼成温度が1300℃であったサンプル7~16のなかでも、サンプル7~9,12,14,15は、焼成時におけるガラス成分の流動がより小さかった。この結果から、アルミナファイバーを5質量%以上含むか、アルミナファイバーを含まない場合は、アルミナ微粒子を10質量%以上含むことがより好ましいことが分かる。 As shown in Tables 3 to 5, Samples 7 to 12, 14, 15, 17, and 18 containing alumina fibers or alumina fine particles had a small flow of glass components during firing. From this result, it can be seen that the flow of the glass component during firing can be effectively suppressed by including at least one of alumina fiber and alumina fine particles. Further, among samples 7 to 16 where the firing temperature was 1300 ° C., samples 7 to 9, 12, 14, and 15 had a smaller flow of glass components during firing. From this result, it can be seen that when the alumina fiber is contained in an amount of 5% by mass or more, or the alumina fiber is not contained, it is more preferable that the alumina fine particle is contained in an amount of 10% by mass or more.
 《実験例3》
 まず、ガラス粉末(平均粒子径:10μm)を50質量%、アルミナ微粒子(平均粒子径:20nm)を10質量%、アルミナファイバー(平均粒子径:30μm)を10質量%、アルミナ粒子(平均粒子径:56μm)を7質量%及びシリカ微粒子(コロイダルシリカ、平均粒子径:10nm)を23質量%含み、これらの原料粉末100gに対して、メチルセルロース1.5質量%水溶液200gを添加したコーティング材を用意した。このコーティング材を、内径46mm、高さ40mmの、ロジウムを10質量%含む白金ロジウム合金製の坩堝の外表面にエアスプレーを用いて複数回に分けて塗布することにより、厚みが1mmのコーティング層を形成した。
<< Experimental Example 3 >>
First, 50% by mass of glass powder (average particle size: 10 μm), 10% by mass of alumina fine particles (average particle size: 20 nm), 10% by mass of alumina fibers (average particle size: 30 μm), and alumina particles (average particle size) : 56 μm) containing 7% by mass and silica fine particles (colloidal silica, average particle size: 10 nm) of 23% by mass, and a coating material prepared by adding 200 g of methylcellulose 1.5% by mass aqueous solution to 100 g of these raw material powders did. The coating material is applied to the outer surface of a crucible made of platinum rhodium alloy having an inner diameter of 46 mm and a height of 40 mm and containing 10% by mass of rhodium in several times using an air spray, whereby a coating layer having a thickness of 1 mm Formed.
 次に、コーティング層を形成した坩堝を、内径56mmの耐火物坩堝内に、5mmのクリアランスが形成されるように設置し、そのクリアランスに、下記の表6に示す組成の充填材スラリーを流し込み、室温にて乾燥させた。その後、1300℃で3日間焼成し、室温まで冷却した。これにより、上記コーティング層は、焼成被膜となる。なお、表6に示す、ガラス粉末、アルミナ微粒子、アルミナファイバー、アルミナ粒子及びシリカ粒子は、実験例2と同様のものを使用した。 Next, the crucible formed with the coating layer was placed in a refractory crucible having an inner diameter of 56 mm so that a clearance of 5 mm was formed, and a filler slurry having the composition shown in Table 6 below was poured into the clearance, Dry at room temperature. Then, it baked at 1300 degreeC for 3 days, and cooled to room temperature. Thereby, the coating layer becomes a fired film. The glass powder, alumina fine particles, alumina fibers, alumina particles, and silica particles shown in Table 6 were the same as those in Experimental Example 2.
 次に、坩堝内に無アルカリガラス(日本電気硝子社製OA-10G)を投入し、1300℃にまで昇温し、1300℃で2時間保持した。その後、室温まで冷却し、坩堝内のガラスを、デジタルスコープ(キーエンス社製VHX-500F)を用いて観察し、単位面積あたりに占める泡の面積比率を算出した。結果を下記の表6に示す。 Next, non-alkali glass (OA-10G manufactured by Nippon Electric Glass Co., Ltd.) was put into the crucible, and the temperature was raised to 1300 ° C. and held at 1300 ° C. for 2 hours. Thereafter, the mixture was cooled to room temperature, and the glass in the crucible was observed using a digital scope (VHX-500F, manufactured by Keyence Corporation), and the area ratio of bubbles per unit area was calculated. The results are shown in Table 6 below.
 また、比較例(サンプル27)として、充填材スラリーとしてアルミナキャスタブル(美濃窯業社製NC-UFR-MF)を用いたこと以外は、同様の条件で実験を行った。結果を下記の表6に示す。 Also, as a comparative example (sample 27), an experiment was performed under the same conditions except that alumina castable (NC-UFR-MF manufactured by Mino Ceramics Co., Ltd.) was used as the filler slurry. The results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示す結果から、ガラス成分を含む充填材を用いることにより、ガラス融液中に泡が発生することを効果的に抑制することができる。また、焼成被膜中におけるガラス成分の含有比率に対する、充填材中におけるガラス成分の含有比率の比((充填材中におけるガラス成分の含有比率)/(焼成被膜中におけるガラス成分の含有比率))、表6における「ガラス成分の含有比率」を0.9~1.5とすることにより、泡の発生をより効果的に抑制できることが分かる。
 
From the result shown in Table 6, it can suppress effectively that a bubble generate | occur | produces in glass melt by using the filler containing a glass component. Further, the ratio of the content ratio of the glass component in the filler to the content ratio of the glass component in the fired film ((the content ratio of the glass component in the filler) / (the content ratio of the glass component in the fired film)), It can be seen that by setting the “glass component content ratio” in Table 6 to 0.9 to 1.5, the generation of bubbles can be more effectively suppressed.

Claims (17)

  1.  貴金属製のガラス製造容器の表面上に焼成被膜を形成するために使用され、ガラス成分を含むコーティング材が表面にコーティングされたガラス製造容器と支持材との間に充填される充填材であって、
     ガラス成分を含むガラス製造容器用充填材。
    A filler used to form a fired film on the surface of a glass manufacturing container made of precious metal, and filled between a glass manufacturing container coated with a coating material containing a glass component and a support material. ,
    Filler for glass production container containing glass component.
  2.  前記ガラス成分の含有量が、20質量%以上である請求項1に記載のガラス製造容器用充填材。 The filler for glass production containers according to claim 1, wherein the content of the glass component is 20% by mass or more.
  3.  前記ガラス成分の含有量は、前記コーティング材におけるガラス成分の含有量の0.9~1.5倍の範囲内である請求項1または2に記載のガラス製造容器用充填材。 3. The filler for a glass manufacturing container according to claim 1, wherein the content of the glass component is in the range of 0.9 to 1.5 times the content of the glass component in the coating material.
  4.  アルミナファイバー及び平均粒子径が5nm~50nmの範囲内にあるアルミナ微粒子の少なくとも一方をさらに含む請求項1~3のいずれか一項に記載のガラス製造容器用充填材。 The filler for glass production containers according to any one of claims 1 to 3, further comprising at least one of alumina fibers and alumina fine particles having an average particle diameter in the range of 5 nm to 50 nm.
  5.  前記アルミナファイバーと前記平均粒子径が5nm~50nmの範囲内にあるアルミナ微粒子との合量が、5質量%以上である請求項4に記載のガラス製造容器用充填材。 The filler for glass production containers according to claim 4, wherein the total amount of the alumina fibers and the alumina fine particles having an average particle diameter in the range of 5 nm to 50 nm is 5% by mass or more.
  6.  ガラス成分は、Si成分を含有する請求項1~5のいずれか一項に記載のガラス製造容器用充填材。 6. The glass production container filler according to any one of claims 1 to 5, wherein the glass component contains a Si component.
  7.  シリカ粒子をさらに含む請求項1~6のいずれか一項に記載のガラス製造容器用充填材。 The filler for glass manufacturing containers according to any one of claims 1 to 6, further comprising silica particles.
  8.  水及び解膠剤をさらに含む請求項1~7のいずれか一項に記載のガラス製造容器用充填材。 The filler for glass production containers according to any one of claims 1 to 7, further comprising water and a peptizer.
  9.  前記解膠剤の含有量は、ガラス製造容器用充填材の固形分100質量部に対して0.1質量部~10質量部の範囲内である請求項8に記載のガラス製造容器用充填材。 The filler for glass production containers according to claim 8, wherein the content of the peptizer is in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the solid content of the glass production container filler. .
  10.  前記水の含有量は、ガラス製造容器用充填材の固形分100質量部に対して10質量部~65質量部の範囲内である請求項8または9に記載のガラス製造容器用充填材。 10. The filler for glass production containers according to claim 8 or 9, wherein the water content is in the range of 10 parts by mass to 65 parts by mass with respect to 100 parts by mass of the solid content of the filler for glass production containers.
  11.  前記解膠剤は、カルボン酸アンモニウム系高分子化合物、カルボン酸のナトリウム塩及びリン酸のナトリウム塩からなる群から選ばれた1種以上である請求項8~10のいずれか一項に記載のガラス製造容器用充填材。 The peptizer is at least one selected from the group consisting of an ammonium carboxylate polymer compound, a sodium salt of carboxylic acid, and a sodium salt of phosphoric acid. Filler for glass manufacturing containers.
  12.  請求項1~11のいずれか一項に記載のガラス製造容器用充填材が焼成されてなるガラス製造容器用充填材層。 A filler layer for glass production containers formed by firing the filler for glass production containers according to any one of claims 1 to 11.
  13.  前記焼成被膜が表面に形成されている貴金属製のガラス製造容器と、前記支持材と、前記ガラス製造容器と前記支持材との間に位置している請求項12に記載のガラス製造容器用充填材層とを備えるガラス製造装置。 The glass manufacturing container filling according to claim 12, which is located between a glass manufacturing container made of noble metal having the fired coating formed on the surface, the support material, and the glass manufacturing container and the support material. A glass manufacturing apparatus comprising a material layer.
  14.  前記支持材の気孔率が1%~20%の範囲内にある耐火物である請求項13に記載のガラス製造装置。 The glass manufacturing apparatus according to claim 13, which is a refractory having a porosity of the support material in the range of 1% to 20%.
  15.  前記支持材の厚みが5mm~200mmの範囲内にある請求項14に記載のガラス製造装置。 The glass manufacturing apparatus according to claim 14, wherein the thickness of the support material is in the range of 5 mm to 200 mm.
  16.  前記ガラス製造容器と前記支持材とのクリアランスが1mm~200mmの範囲内にある請求項13~15に記載のガラス製造装置。 The glass manufacturing apparatus according to any one of claims 13 to 15, wherein a clearance between the glass manufacturing container and the support material is in a range of 1 mm to 200 mm.
  17.  貴金属製のガラス製造容器の表面上に、焼成被膜を形成するためのコーティング材を塗布する工程と、前記ガラス製造容器の周りに支持材を設ける工程と、前記ガラス製造容器と前記支持材との間に充填材を充填する工程と、前記コーティング材及び前記充填材を焼成して前記焼成被膜及び充填材層を形成する工程とを備え、
     前記充填材がガラス成分を含むガラス製造装置の製造方法。
    A step of applying a coating material for forming a fired film on the surface of a glass production container made of precious metal, a step of providing a support material around the glass production container, and the glass production container and the support material. A step of filling a filler in between, and a step of firing the coating material and the filler to form the fired coating and the filler layer,
    The manufacturing method of the glass manufacturing apparatus in which the said filler contains a glass component.
PCT/JP2011/055306 2010-03-25 2011-03-08 Filler for glass production container, filler layer for glass production container, glass production apparatus, and method for producing glass production apparatus WO2011118375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011510773A JP5776548B2 (en) 2010-03-25 2011-03-08 Manufacturing method of glass manufacturing apparatus and glass manufacturing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010069263 2010-03-25
JP2010-069263 2010-03-25
JP2010-269296 2010-12-02
JP2010269296 2010-12-02

Publications (1)

Publication Number Publication Date
WO2011118375A1 true WO2011118375A1 (en) 2011-09-29

Family

ID=44672940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055306 WO2011118375A1 (en) 2010-03-25 2011-03-08 Filler for glass production container, filler layer for glass production container, glass production apparatus, and method for producing glass production apparatus

Country Status (3)

Country Link
JP (1) JP5776548B2 (en)
TW (1) TW201202479A (en)
WO (1) WO2011118375A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014073594A1 (en) * 2012-11-12 2016-09-08 旭硝子株式会社 Molten glass conveying equipment element, manufacturing method of molten glass conveying equipment element, glass manufacturing apparatus including molten glass conveying equipment element, and manufacturing method of glass article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656516A (en) * 1992-08-04 1994-03-01 Toto Ltd Vitreous body and its production, sanitary pottery formed by using this body and blaze for vitreous body
JP2004523449A (en) * 2000-11-30 2004-08-05 カール−ツァイス−スティフツング Coated metal parts for glass manufacturing
JP2009509898A (en) * 2005-09-26 2009-03-12 サン−ゴバン セントレ デ レシェルシェ エト デチュード ユーロピーン Sintered refractories with improved thermal shock resistance
JP2009084697A (en) * 2004-09-13 2009-04-23 Tanaka Kikinzoku Kogyo Kk Coating material for platinum material, platinum material coated with such coating material, and glass manufacturing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077318A (en) * 2004-09-13 2006-03-23 Tanaka Kikinzoku Kogyo Kk Method for modifying surface of apparatus for producing glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656516A (en) * 1992-08-04 1994-03-01 Toto Ltd Vitreous body and its production, sanitary pottery formed by using this body and blaze for vitreous body
JP2004523449A (en) * 2000-11-30 2004-08-05 カール−ツァイス−スティフツング Coated metal parts for glass manufacturing
JP2009084697A (en) * 2004-09-13 2009-04-23 Tanaka Kikinzoku Kogyo Kk Coating material for platinum material, platinum material coated with such coating material, and glass manufacturing apparatus
JP2009509898A (en) * 2005-09-26 2009-03-12 サン−ゴバン セントレ デ レシェルシェ エト デチュード ユーロピーン Sintered refractories with improved thermal shock resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014073594A1 (en) * 2012-11-12 2016-09-08 旭硝子株式会社 Molten glass conveying equipment element, manufacturing method of molten glass conveying equipment element, glass manufacturing apparatus including molten glass conveying equipment element, and manufacturing method of glass article

Also Published As

Publication number Publication date
JPWO2011118375A1 (en) 2013-07-04
JP5776548B2 (en) 2015-09-09
TW201202479A (en) 2012-01-16

Similar Documents

Publication Publication Date Title
JP4769854B2 (en) Coating material for platinum material, platinum material coated with the coating material, and glass manufacturing apparatus
US5407001A (en) Yttria-zirconia slurries and mold facecoats for casting reactive metals
KR910006896B1 (en) Forming refractory masses and composition of matter for use in forming such refractory masses
CN107739141B (en) Platinum channel, manufacturing method thereof and zirconia dry powder mixture for coating
JP2009537431A (en) Refractory and manufacturing method thereof
TW201429906A (en) Molten glass conveying equipment element, method for manufacturing molten glass conveying equipment element, glass manufacturing apparatus comprising molten glass conveying equipment element and method for manufacturing glass product
US7833923B2 (en) Monolithic refractory material having low expansibility, high strength, and crack extension resistance
TWI400216B (en) High zirconia cast refractory
JP4720777B2 (en) Glass manufacturing apparatus and manufacturing method
JP5776548B2 (en) Manufacturing method of glass manufacturing apparatus and glass manufacturing apparatus
JP5757116B2 (en) Glass production container filler, glass production container filler layer, glass production apparatus, and glass production apparatus production method
JP2009046380A (en) Glass composition for sealing
JP2011116596A (en) Fired film for glass production vessel, glass production vessel, glass production device, method for producing glass and method for producing glass production device
JP2010228942A (en) Method for manufacturing apparatus for producing glass, and apparatus for producing glass
JP2020520875A (en) Refractory articles, compositions for coating refractory articles, and methods of making refractory articles
JP2010188299A (en) Method of forming dry coating film and fired coating film of platinum material container
WO2010041305A1 (en) Apparatus and process for glassmaking
JP2011079685A (en) Coating material for glass producing vessel, burnt coated film for glass producing vessel made of the burnt coating material, glass producing vessel with the burnt coated film, glass producing apparatus with the glass producing vessel and glass producing method using the glass producing apparatus
JP4697092B2 (en) Mold powder for continuous casting of molten metal
JP5458571B2 (en) Dry coating of platinum material container and method for forming the same
JP6537286B2 (en) Unshaped refractory composition for metal casting, method for producing the same, cured product of unshaped refractory composition for metal casting
KR101471505B1 (en) Starch solution containing mold flux and the manufacturing method thereof
JP5347424B2 (en) Glass manufacturing apparatus and manufacturing method
JP4982061B2 (en) Adhesive composition
JP2024052644A (en) Basis material for casting, composite material and flow path system with base material for casting exhibiting stabilization effect

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011510773

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759183

Country of ref document: EP

Kind code of ref document: A1