WO2011115247A1 - リチウムイオン二次電池 - Google Patents
リチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2011115247A1 WO2011115247A1 PCT/JP2011/056533 JP2011056533W WO2011115247A1 WO 2011115247 A1 WO2011115247 A1 WO 2011115247A1 JP 2011056533 W JP2011056533 W JP 2011056533W WO 2011115247 A1 WO2011115247 A1 WO 2011115247A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- graphite
- lithium ion
- ion secondary
- secondary battery
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a lithium ion secondary battery having a high capacity and excellent cycle characteristics.
- Lithium ion secondary batteries are smaller in volume and larger in weight capacity density than secondary batteries such as conventional alkaline storage batteries.
- the lithium ion secondary battery is widely used as a power source for small devices and widely used as a power source for mobile devices such as mobile phones and laptop computers.
- demand for large-capacity batteries that require large capacity and long life, such as electric vehicles (EV) and power storage has increased due to consideration for environmental issues and increased awareness of energy conservation. It is growing.
- a lithium ion secondary battery includes a negative electrode using a carbon material capable of occluding and releasing lithium ions as a negative electrode active material, a positive electrode using a lithium composite oxide capable of occluding and releasing lithium ions as a positive electrode active material, and a negative electrode and a positive electrode. And a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent.
- examples of the carbon material used as the negative electrode active material include amorphous carbon and highly crystalline graphite.
- graphite is generally used.
- Graphite materials are broadly classified into natural graphite and artificial graphite.
- natural graphite has a large specific surface area and high reactivity with an electrolytic solution, and has a problem that it is easily deformed by pressurization and oriented. For this reason, it has been difficult for natural graphite to obtain the high cycle characteristics required for electric vehicle batteries. Therefore, attempts have been made to reduce the reactivity with the electrolyte by reducing the specific surface area by coating the particle surface with amorphous carbon. Attempts have also been made to reduce the orientation by spheroidizing natural graphite. However, no fundamental solution has been reached.
- artificial graphite is said to be excellent in cycle characteristics because it is less reactive with an electrolyte than natural graphite and has less particle orientation.
- artificial graphite has various particle properties such as crystallinity, particle shape, and particle hardness depending on its production method. If an electrode design suitable for the particle property is not performed, the performance of artificial graphite is fully exploited. It is not possible.
- Patent Document 1 discloses a carbon material for battery electrodes that has low deformation and orientation of particles due to pressurization and high Coulomb efficiency.
- the problem of the present embodiment is to provide a lithium ion secondary battery with excellent cycle characteristics by preventing a decrease in conductivity of the electrode, which becomes a problem when using a graphite material with little deformation and orientation due to pressurization It is to be.
- the present inventors have conducted intensive studies. As a result, in a negative electrode using graphite with little deformation and orientation, the absorption amount of DBP (butyl phthalate) as a conductive additive is reduced. By using carbon black with a defined structure developed, it is possible to obtain a negative electrode that has low orientation and high lithium ion acceptance, and that sufficiently retains the conductivity of the electrode. It was found to exhibit cycle characteristics.
- DBP butyl phthalate
- a negative electrode capable of occluding and releasing lithium ions a positive electrode capable of occluding and releasing lithium ions, a separator separating the negative electrode and the positive electrode, and a nonaqueous electrolytic solution in which lithium salt is dissolved.
- the negative electrode includes a negative electrode mixture composed of a negative electrode active material mainly composed of graphite, a binder, and a conductive additive, The graphite has a peak intensity ratio of (002) plane to (110) plane of 30 to 70 in an X-ray diffraction spectrum measured after forming the negative electrode mixture and pressing at a pressure of 98 MPa (1000 kgf / cm 2 ).
- the conductive additive DBP absorption (cm 3 / 100g) is a lithium-ion secondary battery is carbon black 250 to 500.
- the negative electrode mixture is formed on the current collector by pressing the negative electrode mixture at a pressure of 98 MPa (1000 kgf / cm 2 ) or more, and the electrode density in the negative electrode mixture after pressing is 1.3 g / cm 3 or more 1.6 g / cm 3 is in the lithium ion secondary battery is less.
- the graphite, the lithium ion R value is the peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near 1580 cm -1 in the laser Raman spectrum is graphite 0.01-0.1 It is a secondary battery.
- One of the embodiments is the lithium ion secondary battery in which the graphite is massive artificial graphite that is substantially amorphous carbon and the surface is not coated.
- One embodiment of the present invention is the lithium ion secondary battery in which the graphite has a region of a graphite structure and an amorphous structure dispersed from the surface to the center of the particle.
- One of the embodiments is the lithium ion secondary battery containing a cyclic disulfonic acid ester represented by the formula (1) as an additive of the non-aqueous electrolyte.
- a lithium ion secondary battery has a negative electrode in which a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions is formed in a negative electrode current collector. Moreover, the lithium ion secondary battery has a positive electrode in which a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions is formed on a positive electrode current collector. Further, the negative electrode and the positive electrode are arranged to face each other with a separator interposed therebetween. Further, the lithium secondary battery has a non-aqueous electrolyte solution in which a lithium salt is dissolved.
- the negative electrode is formed by forming, on a current collector, a negative electrode mixture composed of a negative electrode active material mainly composed of graphite, a binder, and a conductive additive.
- the negative electrode is formed by forming a negative electrode mixture layer on at least one surface of the negative electrode current collector.
- the negative electrode mixture layer has a composite in which a negative electrode active material, which is a main material, and a conductive additive are bound by a binder.
- the negative electrode active material is mainly composed of graphite.
- a carbon material such as amorphous carbon, a material that forms an alloy with Li such as Si, Sn, or Al, a Si oxide, and a metal element other than Si and Si are used.
- a mixed Si composite oxide, Sn oxide, Sn composite oxide containing Sn and a metal element other than Sn, or Li 4 Ti 5 O 12 may be used.
- Graphite is broadly classified into natural graphite and artificial graphite.
- natural graphite tends to have a higher orientation due to pressurization than artificial graphite.
- artificial graphite is superior to natural graphite in terms of lithium ion acceptability and electrolyte solution impregnation, and has low reactivity with the electrolyte solution. Therefore, in applications where a long life is required, it is preferable that graphite is mainly composed of artificial graphite.
- graphite there are various shapes of graphite such as lump, flakes, and spheres, but lump graphite and spheroidal graphite are less oriented when pressed than flake graphite.
- massive graphite makes contact between particles easier than spherical graphite. Accordingly, the graphite preferably has a massive form. Therefore, it is more preferable to use massive artificial graphite as the graphite.
- the particle diameter and specific surface area of graphite affect the coatability and cycle characteristics of the slurry. Accordingly, graphite preferably has an average particle diameter of 5 to 40 ⁇ m and a specific surface area of 0.4 to 10 m 2 / g, an average particle diameter of 10 to 25 ⁇ m, and a specific surface area of 0.5 to 1.5 m 2 / g. Are more preferred.
- the negative electrode active material massive artificial graphite having an average particle size of 10 to 25 ⁇ m and a specific surface area of 0.5 to 1.5 m 2 / g is particularly preferable.
- the average particle diameter (d50) can be defined as the particle diameter when the cumulative weight (volume) of particles is 50% in the particle size distribution curve. This can be measured by a laser diffraction scattering method (microtrack method).
- the specific surface area can be measured by the BET method using N 2 gas.
- the negative electrode active material graphite having a small particle orientation with respect to pressure is used.
- a graphite material in which an XRD diffraction intensity ratio I (002) / I (110) measured by forming a negative electrode mixture and pressing at 98 MPa (1000 kgf / cm 2 ) is 30 or more and 70 or less. Is preferred.
- I (002) / I (110) is 70 or less, the orientation of the particles is small and the lithium ion acceptability is also good.
- the lower limit value of I (002) / I (110) is not particularly limited as battery performance, but in actuality, the value when the particles are completely randomly oriented (non-oriented) is the lower limit value, specifically 30. That's it.
- the negative electrode mixture layer used for XRD measurement can be formed by a general method. That is, a slurry obtained by mixing and dispersing graphite, which is an active material, a conductive additive and a binder in a solvent such as NMP, is applied to a current collector (Cu), dried, and evaporated to evaporate NMP. Can do. Usually, the ratio of graphite serving as an active material in the negative electrode mixture is 90% or more, but the strength ratio of XRD does not change so much in such a composition range.
- the pressing can be performed by a uniaxial press, and the pressing pressure is obtained by dividing the actually applied load by the area of the negative electrode mixture.
- the press pressure of 98 MPa (1000 kgf / cm 2 ) is a value used as a reference point for evaluating the orientation of the graphite material, and does not mean a press pressure when manufacturing a negative electrode incorporated in an actual battery. .
- the XRD strength can be evaluated after re-pressing the electrode after the roll press with a uniaxial press.
- the peak intensity ratio is obtained from the ratio of the peak height near 26.4 ° corresponding to the (002) plane after background removal and the peak height near 77.2 ° corresponding to the (110) plane. Background removal can be performed by drawing a baseline by linear approximation and subtracting the baseline value at that peak. The spectrum of the current collector (Cu) is also observed in the XRD spectrum, but the peak intensity ratio is not affected.
- the negative electrode is formed on the current collector by pressing the negative electrode mixture at a pressure of 98 MPa (1000 kgf / cm 2 ) or higher, and the electrode density in the negative electrode mixture after pressing is 1.3 g / cm 3. It is preferable to use graphite that is not less than 1.6 g / cm 3 and hard and difficult to deform.
- the electrode density can be determined by dividing the weight (g / cm 2) per unit area of the negative electrode mixture by the thickness (cm) of the negative electrode mixture. In such a negative electrode, there is little crushing of the particles when the electrode is pressed, and an increase in reactivity with the electrolytic solution due to the exposure of the new surface can be prevented.
- the volume energy density is decreased, so that it is preferably 1.3 g / cm 3 or more. If it is 1.6 g / cm 3 or less, it can be suitably used for applications in which long life and weight energy density are important, such as batteries for electric vehicles.
- a graphite laser R value in Raman spectrum (1580 cm -1 peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near) is 0.01-0.1, a substantially surface It is preferable to use massive artificial graphite not coated with amorphous carbon.
- the peak intensity ratio is determined by the ratio of the height of each peak.
- coating the surface of the active material with amorphous carbon is expected to improve cycle characteristics due to the effect of reducing the specific surface area and reducing the reactivity with the electrolyte, but charging / discharging due to the irreversible capacity of the amorphous carbon layer There is a problem that the efficiency is lowered and the battery capacity is lowered.
- the presence or absence of the amorphous carbon layer on the surface can be determined by the R value of the Raman spectrum, and when the amorphous carbon layer is present, the R value is at least greater than 0.1.
- the R value is 0.1 or less and the amorphous carbon layer is not substantially present on the surface, so that high charge / discharge efficiency and cycle characteristics are obtained. Can do. This is presumably because the presence of an amorphous carbon layer increases the irreversible capacity and degrades the quality of the SEI (Solid Electrolyte Interface) film that suppresses the reaction with the electrolyte.
- SEI Solid Electrolyte Interface
- the negative electrode active material may be graphite in which the regions of the graphite structure and the amorphous structure are dispersed from the surface of the particle to the central portion. Dispersion of minute amorphous regions in the particles makes the particles harder and hardly deforms due to pressure. As a result, the orientation can be suppressed. In addition, since the amorphous structure in the particles is less than that of the graphite structure, both structures are almost uniformly dispersed, and the charge / discharge efficiency is not impaired.
- the graphite structure (graphite crystalline part) and amorphous structure (amorphous carbon part) of the carbonaceous particles can be discriminated by analyzing a bright field image with a transmission electron microscope.
- SAD limited-field electron diffraction
- the graphite crystalline region refers to, for example, one showing characteristics of a diffraction pattern in graphitized carbon treated at 2800 ° C. (in the limited field diffraction pattern, two or more spot-like diffraction patterns are shown).
- the amorphous region refers to, for example, a characteristic of a diffraction pattern of non-graphitizable carbon treated at 1200 to 2800 ° C. (in the limited field diffraction pattern, only one spot derived from the (002) plane appears. Shows the diffraction pattern).
- the negative electrode using graphite which is difficult to be oriented and hard to deform as described above, has the advantage of smooth movement of lithium ions and less particle breakage during pressing, but the particles in the electrode.
- the contact area between the particles decreases to become point contact, and contact between particles becomes impossible due to expansion and contraction associated with the charge / discharge cycle, resulting in deterioration of cycle characteristics. Therefore, it has been necessary to use an appropriate conductive auxiliary agent that can sufficiently maintain the conductivity of the electrode for such graphite.
- the conductive assistant for example, various carbon materials such as flake graphite, granular carbons, and carbon black are used.
- carbon black having different particle sizes, specific surface areas, DBP absorption amounts and the like. The higher the DBP absorption amount, the more the structure is developed, and the carbon particles have a chain-like structure, which functions as a network of electronic conduction in the electrode.
- this structure structure plays the role which hold
- the use of carbon black with a developed structure as a conductive aid will improve the electron conductivity of the electrode and improve the cycle characteristics, but in the negative electrode, the active material graphite itself has a high electron conductivity. Therefore, it is considered that the improvement of the cycle characteristics by the conductive auxiliary agent is limited, and so far no attention has been paid to the DBP absorption amount of the conductive auxiliary agent in the negative electrode mixture.
- the DBP adsorption amount can be measured according to JIS K 6217-4.
- DBP absorption amount (cm 3 / 100g) is preferably set to 250 or more and 500 or less.
- the content of the conductive auxiliary is preferably 0.2% by mass or more and 3.0% by mass or less, and more preferably 0.5% by mass or more and 1.5% by mass or less with respect to the negative electrode mixture.
- the amount of the conductive auxiliary is 0.2% by mass or more, it becomes easy to sufficiently maintain the conductivity of the electrode. Further, when the amount of the conductive auxiliary is 1.5% by mass or less, the viscosity of the electrode slurry is prevented from becoming too high, the coating property is likely to be improved, and the increase in irreversible capacity is suppressed to charge and discharge. Efficiency is likely to improve.
- the binder is not particularly limited, and examples thereof include polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), and an acrylic polymer.
- PVDF polyvinylidene fluoride
- SBR styrene butadiene rubber
- acrylic polymer an acrylic polymer.
- NMP N-methyl-2-pyrrolidone
- CMC carboxymethyl cellulose
- SBR and acrylic polymers have less swelling with respect to the electrolyte than PVDF, they can be suitably used as the binder of this embodiment.
- the content of the binder is preferably 0.5% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 5% by mass or less with respect to the negative electrode mixture.
- the content of the binder is 0.5% by mass or more, sufficient adhesion is easily obtained.
- the content of the binder is 10% by mass or less, it becomes easy to prevent a decrease in battery capacity.
- the negative electrode current collector is not particularly limited, and for example, copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
- the positive electrode active material is not particularly limited, and a material that can occlude and release lithium ions can be used.
- a lithium-containing composite oxide is used. More specifically, as the lithium-containing composite oxide, for example, LiMO 2 (M is one kind selected from Mn, Fe, Co, Ni, or a mixture of two or more kinds, a part of which is Mg, Al , Ti or other cations), LiMn 2-x A x O 4 (A is at least one element other than Mn), and the like can be used.
- the additive element (A) include Mg, Al, Co, Ni, Fe, and B.
- An olivine type material represented by LiFePO 4 can also be used.
- lithium manganate represented by LiMn 2-x A x O 4 in particular has a lower capacity than lithium cobaltate (LiCoO 2 ) and lithium nickelate (LiNiO 2 ), but compared with Ni and Co. Therefore, there is a merit that the material cost is low because of the large amount of Mn produced, and the thermal stability is high because of the spinel structure. Therefore, lithium manganate represented by LiMn 2-x A x O 4 is suitably used as a positive electrode material for large batteries such as electric vehicles and power storage. Therefore, the positive electrode active material preferably contains lithium manganate as a main component.
- the negative electrode and the positive electrode can be produced as follows, for example. First, the active material and the conductive additive are dispersed and kneaded in a solvent such as NMP together with a binder such as PVDF to prepare a slurry. Next, the slurry is applied to the current collector on a hot plate using a doctor blade or the like, and then the solvent is dried to produce an electrode. The obtained electrode can be compressed to a suitable density by a method such as a roll press.
- a nonaqueous solvent in which an electrolyte is dissolved can be used.
- a lithium salt can be used as the electrolyte.
- the lithium salt is not particularly limited, for example, lithium imide salt, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, etc. LiSbF 6 and the like. Among these, LiPF 6 and LiBF 4 are preferable.
- the lithium imide salt include LiN (C k F 2k + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (k and m are each independently 1 or 2). These can be used alone or in combination of two or more.
- non-aqueous solvent is not particularly limited, but examples thereof include cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones, cyclic ethers, chain ethers and the like. At least one organic solvent selected from organic solvents of the above fluorinated derivatives can be used.
- the cyclic carbonates include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and derivatives thereof.
- chain carbonates include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof.
- Examples of the aliphatic carboxylic acid esters include methyl formate, methyl acetate, ethyl propionate, and derivatives thereof.
- Examples of ⁇ -lactones include ⁇ -butyrolactone and derivatives thereof.
- Examples of cyclic ethers include tetrahydrofuran and 2-methyltetrahydrofuran.
- Examples of chain ethers include 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), diethyl ether, and derivatives thereof.
- dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane , Methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated Carboxylic acid ester etc. can be mentioned. These can be used alone or in combination of two or more.
- an additive may be added to the electrolytic solution in order to form a high-quality SEI film on the negative electrode surface.
- the SEI film functions to suppress the reactivity with the electrolytic solution, or to smooth the desolvation reaction accompanying the insertion / desorption of lithium ions to prevent structural deterioration of the active material.
- Examples of such additives include propane sultone (PS), vinylene carbonate (VC), and cyclic disulfonic acid esters.
- PS propane sultone
- VC vinylene carbonate
- cyclic disulfonic acid esters examples include propane sultone (PS), vinylene carbonate (VC), and cyclic disulfonic acid esters.
- the cyclic disulfonic acid ester is particularly preferable because it can form a dense and high-quality SEI film.
- the cyclic disulfonic acid ester is a compound represented by the following formula (1).
- the content of the additive is preferably 0.1% by mass or more and 10% by mass or less in the electrolytic solution, and more preferably 0.5% by mass or more and 3% by mass or less.
- the content of the additive is 0.5% by mass or more, it becomes easy to form a good film.
- the content of the additive is 10% by mass or less, an increase in resistance can be suppressed, and a large amount of gas generation can be suppressed.
- Q represents an oxygen atom, a methylene group or a single bond.
- A represents a branched or unsubstituted alkylene group having 1 to 5 carbon atoms which may be branched, a carbonyl group, a sulfinyl group, a branched group.
- a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms which may be branched including an ether bond, or may be branched including a substituted or unsubstituted perfluoroalkylene group having 1 to 6 carbon atoms or an ether bond.
- the outer package of the lithium ion secondary battery according to the present embodiment is not particularly limited, but a laminate outer package is preferable.
- a laminate outer package made of a flexible film made of a laminate of a synthetic resin and a metal foil is preferable for reducing the weight and improving the battery energy density.
- the laminate type battery is excellent in heat dissipation, it can be suitably used as a battery for vehicles such as an electric vehicle.
- Example 0-1 Preparation of negative electrode
- artificial graphite As an anode active material, artificial graphite as massive artificial graphite A; (average particle diameter D50 17 .mu.m, specific surface area of 1m 2 / g), DBP absorption as a conductive additive (cm 3/100 g) 360 Carbon black ( (Average particle diameter 40 nm, specific surface area 800 m 2 / g), SBR as a binder, and CMC as a thickener in ion-exchanged water at a mass ratio of 97.5: 0.5: 1: 1.
- a slurry was prepared by kneading and dispersing.
- a slurry was prepared by uniformly dispersing in NMP. The slurry was applied on an aluminum foil having a thickness of 20 ⁇ m to be a positive electrode current collector. Then, the positive electrode mixture layer was formed by evaporating NMP at 125 ° C. for 10 minutes. The amount of the positive electrode mixture per unit area after drying was set to 0.025 g / cm 2 .
- the positive electrode and the negative electrode produced as described above were cut into 5 cm ⁇ 6.0 cm, respectively. Among these, a side of 5 cm ⁇ 1 cm is an uncoated portion for connecting the tab, and the active material layer is 5 cm ⁇ 5 cm.
- An aluminum positive electrode tab having a width of 5 mm, a length of 3 cm, and a thickness of 0.1 mm was ultrasonically welded to the uncoated positive electrode portion at a length of 1 cm.
- a nickel negative electrode tab having the same size as the positive electrode tab was ultrasonically welded to the negative electrode uncoated portion.
- the negative electrode and the positive electrode were arranged on both sides of a 6 cm ⁇ 6 cm separator made of polyethylene and polypropylene so that the active material layer overlapped with the separator to obtain an electrode laminate.
- a bag-like laminate outer package was prepared by bonding one side of the two 7 cm ⁇ 10 cm aluminum laminate films, excluding one of the long sides, to a width of 5 mm by thermal fusion.
- the electrode laminate was inserted so as to be a distance of 1 cm from one short side of the laminate outer package. After the nonaqueous electrolyte solution was injected in an amount of 1.5 times the pore volume of the electrode laminate and vacuum impregnated, the opening was heat-sealed at a width of 5 mm under reduced pressure. By sealing, a laminate type battery was produced.
- Example 0-2 A battery was fabricated in the same manner as in Example 0-1, except that artificial graphite C (average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g), which is flaky artificial graphite, was used as the negative electrode active material. Then, a cycle test was conducted.
- artificial graphite C average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g
- Example 0-2 A battery was fabricated and subjected to a cycle test in the same manner as in Example 0-1, except that 1.5% by mass of 1,3-propane sultone was further added as an additive to the electrolytic solution.
- Example 0-3 A battery was prepared and subjected to a cycle test in the same manner as in Example 0-1 except that 1.5% by mass of vinylene carbonate as an additive was added to the electrolyte solution.
- Table 1 shows I (002) obtained by measuring XRD diffraction spectra of negative electrodes pressed at 98 MPa (1000 kgf / cm 2 ) for Examples 0-1 to 0-3 and Comparative Examples 0-1 to 0-2. / I (110) and the capacity retention after 500 cycles at 60 ° C. (hereinafter simply referred to as capacity retention).
- the XRD spectrum was obtained by measuring a range of 20 to 100 ° at a scan rate of 2 ° / min at intervals of 0.01 ° at an X-ray intensity of 30 kV-15 mA using CuK ⁇ rays (wavelength 0.15418 nm).
- I (002) / I (110 ) is a DBP absorption amount of 70 or less (cm 3 / 100g) 250 or more of a high capacity retention ratio was obtained.
- I (002) / I (110) was greater than 70, the capacity retention rate was low.
- I (002) / I ( 110) is a DBP absorption amount of 70 or less (cm 3 / 100g) was found to be preferable 250-500.
- Example 1 As a conductive additive, DBP absorption amount (cm 3/100 g) 250 Carbon black (average particle diameter 60 nm, specific surface area 80 m 2 / g), as an additive to the electrolyte, the additive compound 102 shown above A battery was prepared and subjected to a cycle test in the same manner as in Example 0-1, except that a mixture of 1.5% by mass further was used.
- Example 2 As a conductive additive, DBP absorption amount (cm 3/100 g) 360 Carbon black (average particle diameter 40 nm, specific surface area 800 m 2 / g) of except for using, cycle manufactured in the same manner as the battery of Example 1 A test was conducted.
- Example 3 As a conductive additive, DBP absorption amount (cm 3/100 g) 500 Carbon black (average particle diameter 34 nm, specific surface area 1270 m 2 / g) except for using the cycle was prepared in the same manner as the battery of Example 1 A test was conducted.
- Example 4 A battery was fabricated and tested in the same manner as in Example 1 except that artificial graphite B (average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g), which is massive artificial graphite, was used as the negative electrode active material. Went.
- artificial graphite B average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g
- Example 5 A battery was produced and cycle tested in the same manner as in Example 2 except that artificial graphite B (average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g), which is massive artificial graphite, was used as the negative electrode active material. Went.
- artificial graphite B average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g
- Example 2 A battery was fabricated in the same manner as in Example 2 except that artificial graphite C (average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g), which is flaky artificial graphite, was used as the negative electrode active material. A cycle test was conducted.
- artificial graphite C average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g
- Comparative Example 4 Comparative example except that natural graphite A (average particle diameter D50; 20 ⁇ m, specific surface area 1.0 m 2 / g), which is spherical natural graphite coated with amorphous carbon, was used as the negative electrode active material. A battery was produced in the same manner as in Example 2 and a cycle test was performed.
- natural graphite A average particle diameter D50; 20 ⁇ m, specific surface area 1.0 m 2 / g
- Table 2 shows I (002) / I (110) obtained by measuring the XRD diffraction spectrum of the negative electrode pressed at 98 MPa (1000 kgf / cm 2 ) for Examples 1 to 5 and Comparative Examples 1 to 4, and 60
- capacity retention ratio after 500 cycles at 0 ° C. (hereinafter simply referred to as capacity retention ratio) was shown.
- the XRD spectrum was obtained by measuring a range of 20 to 100 ° at a scan rate of 2 ° / min at intervals of 0.01 ° at an X-ray intensity of 30 kV-15 mA using CuK ⁇ rays (wavelength 0.15418 nm).
- I (002) / I (110 ) is a DBP absorption amount of 70 or less (cm 3 / 100g) 250 or more of a high capacity retention ratio was obtained.
- I (002) / I (110) was greater than 70, the capacity retention rate was low.
- I (002) / I ( 110) is a DBP absorption amount of 70 or less (cm 3 / 100g) was found to be preferable 250-500.
- the amount of the additive can be variously changed (0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0% by weight), the same effect as described above was obtained.
- Example 6 A battery was produced and subjected to a cycle test in the same manner as in Example 2 except that the negative electrode was pressed at 98 MPa (1000 kgf / cm 2 ) and the density was 1.33 g / cm 3.
- Example 7 A battery was fabricated and subjected to a cycle test in the same manner as in Example 2 except that the negative electrode was pressed at 196 MPa (2000 kgf / cm 2 ) and the density was 1.52 g / cm 3.
- Example 8 A battery was fabricated and subjected to a cycle test in the same manner as in Example 2 except that the negative electrode was pressed at 490 MPa (5000 kgf / cm 2 ) and the density was 1.57 g / cm 3.
- Example 9 A battery was produced and subjected to a cycle test in the same manner as in Example 5 except that the negative electrode was pressed at 98 MPa (1000 kgf / cm 2 ) and the density was 1.60 g / cm 3.
- Example 10 A battery was fabricated and subjected to a cycle test in the same manner as in Example 5 except that the negative electrode was pressed at 196 MPa (2000 kgf / cm 2 ) and the density was 1.75 g / cm 3.
- Table 3 shows the density and capacity retention rate of the negative electrodes of Examples 6 to 10.
- a high capacity retention ratio was obtained with artificial graphite A having an electrode density of 1.3 to 1.6 g / cm 3 when pressed at 98 MPa (1000 kgf / cm 2 ) or more. This is presumably because the artificial graphite A, which is not easily deformed by pressurization, has little deterioration due to particle crushing.
- Example 11 The charge / discharge efficiency was determined for the secondary battery obtained in Example 2.
- the charge / discharge efficiency was determined as the ratio of the initial discharge capacity to the initial charge capacity (initial discharge capacity / initial charge capacity ⁇ 100).
- the laser Raman spectrum was measured for the powder of artificial graphite A, it was determined R value (1580 cm -1 peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near).
- the Raman spectrum was measured in a macro Raman mode (beam diameter 100 ⁇ m) using an Ar + laser (wavelength 514.5 nm, beam intensity 10 mW).
- the Raman intensity ratio was determined as the ratio of the height of each peak.
- Example 12 For the secondary battery obtained in Example 5, the charge and discharge efficiency was determined in the same manner as in Example 11.
- Example 13 An artificial graphite A coated with 5% by mass of amorphous carbon using a CVD method (artificial graphite A ′) was determined in the same manner as in Example 11 to obtain an R value.
- a battery was produced in the same manner as in Example 2 except that artificial graphite A ′ was used instead of artificial graphite A. About the obtained battery, the cycle test was done and charge / discharge efficiency was calculated
- Table 4 shows the charge / discharge efficiency (discharge capacity / charge capacity ⁇ 100%) and the capacity retention rate during the first charge / discharge of Examples 11, 12, and 13.
- Examples 11 and 12 are the same batteries as Example 2 and Example 5, respectively, the capacity retention ratio is also the same.
- the R value was 0.1 or less, the charge / discharge efficiency was high and the capacity retention rate was also high.
- the amorphous carbon coating was performed and the R value was increased to 0.25, the charge / discharge efficiency and the capacity retention rate were both lowered. This is probably because the irreversible capacity of the amorphous carbon layer is large and the quality of the SEI film on the surface is lowered.
- the artificial graphite A was cut into thin pieces, and a limited field diffraction pattern of a bright field image was observed with a transmission electron microscope. It was found that a graphite structure showing two or more spot-like diffraction patterns and an amorphous structure showing a diffraction pattern showing only one spot derived from the (002) plane were dispersed in the particles. The ratio of the graphite structure to the amorphous structure was estimated to be approximately 90:10. In artificial graphite B, a similar structure was not recognized.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
前記負極は、黒鉛を主体とする負極活物質と、結着剤と、導電助剤と、からなる負極合剤を含み、
前記黒鉛は、前記負極合剤を形成して98MPa(1000kgf/cm2)の圧力でプレスした後に測定されるX線回折スペクトルにおける(110)面に対する(002)面のピーク強度比が30以上70以下の値を有するものであり、
前記導電助剤はDBP吸収量(cm3/100g)が250以上500以下のカーボンブラックであるリチウムイオン二次電池である。
リチウムイオン二次電池は、負極集電体にリチウムイオンを吸蔵放出し得る負極活物質を含有する負極合剤層が形成された負極を有する。また、リチウムイオン二次電池は、正極集電体にリチウムイオンを吸蔵放出し得る正極活物質を含有する正極合剤層が形成された正極を有する。また、負極と正極とは、セパレータを介して対向して配置される。また、リチウム二次電池は、リチウム塩を溶解した非水電解液を有する。
負極は、黒鉛を主体とする負極活物質と、結着剤と、導電助剤と、からなる負極合剤を集電体に形成されてなる。また、負極は、負極集電体の少なくとも一方の面に負極合剤層が形成されてなる。負極合剤層は、主材である負極活物質と導電助剤とが結着剤によって結合された複合体を有している。
正極集電体としては、特に制限されるものではないが、例えば、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金などを用いることができる。また、負極集電体としては、特に制限されるものではないが、例えば、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。
セパレータとしては、特に制限されるものではないが、例えば、ポリプロピレン、ポリエチレンなどのポリオレフィン、フッ素樹脂などの多孔性フィルムが用いられる。
正極活物質としては、特に制限されるものではなく、リチウムイオンを吸蔵放出し得るものを用いることができる。正極活物質としては、例えば、リチウム含有複合酸化物が用いられる。リチウム含有複合酸化物としては、より具体的には、例えば、LiMO2(MはMn、Fe、Co、Niより選ばれる1種のみ、または2種以上の混合物であり、一部をMg、Al、Tiなどその他カチオンで置換してもよい)、LiMn2-xAxO4(AはMn以外の少なくとも一種の元素。)などの材料を用いることができる。添加元素(A)としては、例えば、Mg、Al、Co、Ni、Fe、Bなどが挙げられる。また、LiFePO4で表されるオリビン型材料を用いることもできる。これらは、例えばLi過剰組成など非化学量論組成であっても良い。これらの中で、特にLiMn2-xAxO4で表されるマンガン酸リチウムは、コバルト酸リチウム(LiCoO2)やニッケル酸リチウム(LiNiO2)より容量は低いものの、NiやCoと比較してMnの産出量が多いため材料コストが低く、スピネル構造を有するため熱的安定性が高いといったメリットがある。そのため、LiMn2-xAxO4で表されるマンガン酸リチウムは、電気自動車や電力貯蔵用などの大型電池向けの正極材料として好適に用いられる。したがって、正極活物質は、マンガン酸リチウムを主体として含むことが好ましい。
電解液は、電解質が溶解された非水溶媒を用いることができる。電解質は、リチウム二次電池の場合にはリチウム塩を用いることができる。リチウム塩としては、特に制限されるものではないが、例えば、リチウムイミド塩、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6などが挙げられる。これらの中でもLiPF6、LiBF4が好ましい。リチウムイミド塩としては、例えば、LiN(CkF2k+1SO2)(CmF2m+1SO2)(k、mはそれぞれ独立して1または2である)が挙げられる。これらは単独で、または複数種を組み合わせて用いることができる。
(負極の作製)
負極活物質として、塊状人造黒鉛である人造黒鉛A(平均粒径D50;17μm、比表面積が1m2/g)と、導電助剤としてDBP吸収量(cm3/100g)が360のカーボンブラック(平均粒子径40nm、比表面積800m2/g)と、結着剤としてSBRと、増粘剤としてCMCと、を質量比で97.5:0.5:1:1の割合でイオン交換水中に混練・分散させてスラリーを調製した。このスラリーを負極集電体となる厚み15μmの銅箔上に塗布後、50℃にて10分間水分を蒸発させた。その後、さらに110℃で30分乾燥させることにより負極合剤層を形成した。その後、負極合剤層をプレスして、負極密度が1.40g/cm2の片面塗布した負極を作製した。乾燥後の単位面積当たりの負極合剤量は0.008g/cm2とした。
正極活物質として平均粒径D50;10μmのLi1.1Mn1.9O4粉末と、結着剤としてPVDFと、導電助剤として炭素質粉末と、を質量比を92:4:4でNMP中に均一に分散させてスラリーを調製した。そのスラリーを正極集電体となる厚み20μmのアルミ箔上に塗布した。その後、125℃にて10分間NMPを蒸発させることにより正極合剤層を形成した。乾燥後の単位面積当たりの正極合剤量は0.025g/cm2とした。
電解液は、溶媒としてEC:DEC=30:70(体積%)に、電解質として1mol/LのLiPF6を溶解したものを用いた。
上記のように作製した正極と負極を各々5cm×6.0cmに切り出した。このうち、一辺5cm×1cmはタブを接続するための未塗布部であって、活物質層は5cm×5cmである。幅5mm、長さ3cm、厚み0.1mmのアルミ製の正極タブを正極未塗布部に長さ1cmで超音波溶接した。同様に、正極タブと同サイズのニッケル製の負極タブを負極未塗布部に超音波溶接した。6cm×6cmのポリエチレンおよびポリプロピレンからなるセパレータの両面に上記負極と正極を活物質層がセパレータを隔てて重なるように配置して電極積層体を得た。2枚の7cm×10cmのアルミラミネートフィルムの長辺の一方を除いて三辺を熱融着により幅5mmにて接着して袋状のラミネート外装体を作製した。ラミネート外装体の一方の短辺より1cmの距離となるように上記電極積層体を挿入した。上記非水電解液を上記電極積層体が有する空孔体積に対して1.5倍となる量を注液して真空含浸させた後、減圧下にて開口部を熱融着により幅5mmで封止することで、ラミネート型電池を作製した。
上記のように作製したラミネート型電池のサイクル試験を行った。具体的には、60mAの定電流で4.2Vまで充電した後合計で2.5時間の4.2V定電圧充電を行ってから、60mAで3.0Vまで定電流放電するという充放電サイクルを500回繰り返した。初回放電容量に対する500サイクル後の放電容量の比率を容量維持率(%)として求めた。試験温度は、高温環境下での劣化試験および加速試験を目的として、60℃とした。
導電助剤として、DBP吸収量(cm3/100g)が175のカーボンブラック(平均粒子径35nm、比表面積68m2/g)を用いた以外は、実施例0-1と同様に電池を作製してサイクル試験を行った。
負極活物質として、燐片状人造黒鉛である人造黒鉛C(平均粒径D50;30μm、比表面積が1.2m2/g)を用いた以外は、実施例0-1と同様に電池を作製してサイクル試験を行った。
電解液に添加剤として、1、3-プロパンスルトンを1.5質量%さらに混合したものを用いた以外は、実施例0-1と同様に電池を作製してサイクル試験を行った。
電解液に添加剤として、ビニレンカーボネートを1.5質量%さらに混合したものを用いた以外は、実施例0-1と同様に電池を作製してサイクル試験を行った。
導電助剤として、DBP吸収量(cm3/100g)が250のカーボンブラック(平均粒子径60nm、比表面積80m2/g)、電解液に添加剤として、上記で示した化合物102の添加剤を1.5質量%さらに混合したものを用いた以外は、実施例0-1と同様に電池を作製してサイクル試験を行った。
導電助剤として、DBP吸収量(cm3/100g)が360のカーボンブラック(平均粒子径40nm、比表面積800m2/g)を用いた以外は、実施例1と同様に電池を作製してサイクル試験を行った。
導電助剤として、DBP吸収量(cm3/100g)が500のカーボンブラック(平均粒子径34nm、比表面積1270m2/g)を用いた以外は、実施例1と同様に電池を作製してサイクル試験を行った。
負極活物質として、塊状人造黒鉛である人造黒鉛B(平均粒径D50;30μm、比表面積が1.2m2/g)を用いた以外は、実施例1と同様に電池を作製してサイクル試験を行った。
負極活物質として、塊状人造黒鉛である人造黒鉛B(平均粒径D50;30μm、比表面積が1.2m2/g)を用いた以外は、実施例2と同様に電池を作製してサイクル試験を行った。
導電助剤として、DBP吸収量(cm3/100g)が175のカーボンブラック(平均粒子径35nm、比表面積68m2/g)を用いた以外は、実施例1と同様に電池を作製してサイクル試験を行った。
負極活物質として、燐片状人造黒鉛である人造黒鉛C(平均粒径D50;30μm、比表面積が1.2m2/g)を用いた以外は、実施例2と同様に電池を作製してサイクル試験を行った。
導電助剤として、DBP吸収量(cm3/100g)が175のカーボンブラック(平均粒子径35nm、比表面積68m2/g)を用いた以外は、比較例2と同様に電池を作製してサイクル試験を行った。
負極活物質として、非晶質炭素で被覆された球状天然黒鉛である天然黒鉛A(平均粒径D50;20μm、比表面積が1.0m2/g)を用いた以外を用いた以外は、比較例2と同様に電池を作製してサイクル試験を行った。
負極を98MPa(1000kgf/cm2)でプレスして、密度を1.33g/cm3としたものを用いた以外は、実施例2と同様にして電池を作製してサイクル試験を行った。
負極を196MPa(2000kgf/cm2)でプレスして、密度を1.52g/cm3としたものを用いた以外は、実施例2と同様にして電池を作製してサイクル試験を行った。
負極を490MPa(5000kgf/cm2)でプレスして、密度を1.57g/cm3としたものを用いた以外は、実施例2と同様にして電池を作製してサイクル試験を行った。
負極を98MPa(1000kgf/cm2)でプレスして、密度を1.60g/cm3としたものを用いた以外は、実施例5と同様にして電池を作製してサイクル試験を行った。
負極を196MPa(2000kgf/cm2)でプレスして、密度を1.75g/cm3としたものを用いた以外は、実施例5と同様にして電池を作製してサイクル試験を行った。
実施例2で得られた二次電池について、充放電効率を求めた。
実施例5で得られた二次電池について、実施例11と同様の方法で充放電効率を求めた。
人造黒鉛Aに対してCVD法を用いて5質量%の非晶質炭素を被覆したもの(人造黒鉛A’)を実施例11と同様にしてR値を求めた。
Claims (6)
- リチウムイオンを吸蔵放出し得る負極と、リチウムイオンを吸蔵放出し得る正極と、前記負極と前記正極を隔てるセパレータと、リチウム塩を溶解した非水電解液と、を有するリチウムイオン二次電池において、
前記負極は、黒鉛を主体とする負極活物質と、結着剤と、導電助剤と、からなる負極合剤を集電体に形成されてなり、
前記黒鉛は、前記負極合剤を形成して98MPa(1000kgf/cm2)の圧力でプレスした後に測定されるX線回折スペクトルにおける(110)面に対する(002)面のピーク強度比が30以上70以下の値を有するものであり、
前記導電助剤はDBP吸収量(cm3/100g)が250以上500以下のカーボンブラックであることを特徴とするリチウムイオン二次電池。 - 前記負極は、前記負極合剤をプレスして前記集電体上に形成され、プレス後の前記負極合剤における電極密度が1.3g/cm3以上1.6g/cm3以下である請求項1に記載のリチウムイオン二次電池。
- 前記黒鉛は、レーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるR値が0.01以上0.1以下である黒鉛である請求項1または2に記載のリチウムイオン二次電池。
- 前記黒鉛は、実質的に非晶質炭素で表面が被覆されていない塊状人造黒鉛である請求項3に記載のリチウムイオン二次電池。
- 前記黒鉛は、粒子の表面から中心部分までグラファイト組織とアモルファス組織の領域が分散している請求項4に記載のリチウムイオン二次電池。
- 前記非水電解液の添加剤として、下記式(1)で表される環状ジスルホン酸エステルを含有する請求項1乃至5のいずれかに記載のリチウムイオン二次電池。
(式(1)において、Qは酸素原子、メチレン基または単結合を表す。Aは、分岐していても良い置換もしくは無置換の炭素数1~5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1~5のパーフルオロアルキレン基、分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のパーフルオロアルキレン基またはエーテル結合を含み分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基を示す。Bは置換もしくは無置換のアルキレン基、置換若しくは無置換のフルオロアルキレン基、または酸素原子を示す)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/635,596 US20130011747A1 (en) | 2010-03-18 | 2011-03-18 | Lithium ion secondary battery |
EP11756430.2A EP2549569A4 (en) | 2010-03-18 | 2011-03-18 | Lithium ion secondary battery |
JP2012505762A JPWO2011115247A1 (ja) | 2010-03-18 | 2011-03-18 | リチウムイオン二次電池 |
CN2011800145289A CN102792490A (zh) | 2010-03-18 | 2011-03-18 | 锂离子二次电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010063030 | 2010-03-18 | ||
JP2010-063030 | 2010-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011115247A1 true WO2011115247A1 (ja) | 2011-09-22 |
Family
ID=44649326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056533 WO2011115247A1 (ja) | 2010-03-18 | 2011-03-18 | リチウムイオン二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130011747A1 (ja) |
EP (1) | EP2549569A4 (ja) |
JP (1) | JPWO2011115247A1 (ja) |
CN (1) | CN102792490A (ja) |
WO (1) | WO2011115247A1 (ja) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014196177A1 (ja) * | 2013-06-06 | 2014-12-11 | 株式会社Gsユアサ | 非水電解質二次電池及び非水電解質二次電池の製造方法 |
WO2015037367A1 (ja) * | 2013-09-13 | 2015-03-19 | 日本電気株式会社 | 非水電解液二次電池 |
US20150104711A1 (en) * | 2012-06-04 | 2015-04-16 | Nec Energy Devices, Ltd. | Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery |
CN104756288A (zh) * | 2012-10-30 | 2015-07-01 | 日本电气株式会社 | 锂二次电池 |
JP2015122236A (ja) * | 2013-12-24 | 2015-07-02 | 日産自動車株式会社 | 非水電解質二次電池の製造方法 |
US20160020492A1 (en) * | 2013-03-01 | 2016-01-21 | Nec Corporation | Lithium ion secondary battery |
US20160028118A1 (en) * | 2013-03-01 | 2016-01-28 | Nec Corporation | Electrolyte solution for secondary batteries, and secondary battery using same |
KR20170002302A (ko) | 2015-06-29 | 2017-01-06 | 신닛테츠 수미킨 가가쿠 가부시키가이샤 | 리튬이온 이차전지용 부극 및 이차전지 |
US9780411B2 (en) | 2013-03-01 | 2017-10-03 | Nec Corporation | Nonaqueous electrolyte solution secondary battery |
JP2018156931A (ja) * | 2017-03-17 | 2018-10-04 | Tdk株式会社 | リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
JP2019029158A (ja) * | 2017-07-28 | 2019-02-21 | オートモーティブエナジーサプライ株式会社 | リチウムイオン二次電池用負極 |
US10615406B2 (en) | 2017-03-17 | 2020-04-07 | Tdk Corporation | Negative electrode for lithium ion secondary battery and lithium ion secondary battery |
KR20200127785A (ko) * | 2019-05-03 | 2020-11-11 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
JP2021048132A (ja) * | 2016-05-05 | 2021-03-25 | キャボット コーポレイションCabot Corporation | 高構造カーボンブラックを有する電極、組成物、及びデバイス |
US11515523B2 (en) | 2019-05-03 | 2022-11-29 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11522183B2 (en) | 2019-05-03 | 2022-12-06 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11522185B2 (en) | 2019-05-03 | 2022-12-06 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11658287B2 (en) | 2019-05-03 | 2023-05-23 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11705585B2 (en) | 2018-07-03 | 2023-07-18 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11710820B2 (en) | 2019-05-03 | 2023-07-25 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11728522B2 (en) | 2018-07-03 | 2023-08-15 | Samsung Sdi Co., Ltd. | Electrode for rechargeable lithium battery, and rechargeable lithium battery including the same |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5936406B2 (ja) * | 2012-03-26 | 2016-06-22 | オートモーティブエナジーサプライ株式会社 | リチウムイオン二次電池 |
JP2014011076A (ja) * | 2012-06-29 | 2014-01-20 | Toyota Motor Corp | 非水電解質二次電池およびその製造方法 |
CA2901234A1 (en) * | 2013-03-05 | 2014-09-12 | Nec Corporation | Lithium secondary battery |
JP2016219181A (ja) * | 2015-05-18 | 2016-12-22 | オートモーティブエナジーサプライ株式会社 | 非水電解質二次電池 |
WO2017034351A1 (ko) * | 2015-08-25 | 2017-03-02 | 주식회사 엘지화학 | 이차전지용 음극 및 이를 포함하는 이차전지 |
KR102606317B1 (ko) * | 2016-06-02 | 2023-11-23 | 에스케이온 주식회사 | 리튬 이차 전지용 음극 활물질, 이를 포함하는 음극 및 리튬 이차 전지 |
CN113228351A (zh) * | 2019-01-04 | 2021-08-06 | 昭和电工材料株式会社 | 锂离子二次电池用负极材、锂离子二次电池用负极及锂离子二次电池 |
CN109921088A (zh) * | 2019-03-20 | 2019-06-21 | 江西理工大学 | 一种圆柱形锂离子电池及其制作方法 |
CN109802088B (zh) * | 2019-03-20 | 2020-10-09 | 江西理工大学 | 一种可快充锂离子电池及其制作方法 |
EP4182983A1 (en) * | 2020-07-14 | 2023-05-24 | Nanograf Corporation | Electrode material including silicon oxide and single-walled carbon nanotubes |
CN114709415A (zh) * | 2020-12-04 | 2022-07-05 | 宁德新能源科技有限公司 | 石墨材料、二次电池和电子装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11297327A (ja) * | 1998-04-06 | 1999-10-29 | Mitsubishi Chemical Corp | リチウム二次電池 |
JP2003197182A (ja) * | 2001-12-21 | 2003-07-11 | Samsung Sdi Co Ltd | 黒鉛含有組成物並びにリチウム二次電池用の負極及びリチウム二次電池 |
JP2004281368A (ja) * | 2002-08-29 | 2004-10-07 | Nec Corp | 二次電池用電解液およびそれを用いた二次電池 |
JP2010063030A (ja) | 2008-09-05 | 2010-03-18 | Fujitsu Ten Ltd | 受信装置および受信方法 |
JP2011023221A (ja) * | 2009-07-16 | 2011-02-03 | Nec Energy Devices Ltd | リチウムイオン二次電池 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69409936T2 (de) * | 1993-12-29 | 1998-12-10 | Tdk Corp., Tokio/Tokyo | Lithiumsekundärzelle |
JP4507284B2 (ja) * | 1997-03-11 | 2010-07-21 | パナソニック株式会社 | 非水電解液二次電池 |
JPH11265716A (ja) * | 1998-03-16 | 1999-09-28 | Denso Corp | リチウム二次電池用負極活物質及びその製造方法 |
JP5430063B2 (ja) * | 2000-09-26 | 2014-02-26 | 三菱化学株式会社 | リチウム二次電池及び負極 |
JP4499498B2 (ja) * | 2003-07-16 | 2010-07-07 | 関西熱化学株式会社 | リチウムイオン二次電池用負極材料およびその製造方法、並びに、該負極材料を使用したリチウムイオン二次電池用負極及びリチウムイオン二次電池 |
JP4109184B2 (ja) * | 2003-11-20 | 2008-07-02 | Tdk株式会社 | リチウムイオン二次電池 |
KR20130024968A (ko) * | 2004-01-16 | 2013-03-08 | 히타치가세이가부시끼가이샤 | 리튬 이차전지용 음극 및 리튬 이차전지 |
JP4513385B2 (ja) * | 2004-03-31 | 2010-07-28 | 日本電気株式会社 | 二次電池用負極及び二次電池 |
CN105375064A (zh) * | 2005-10-20 | 2016-03-02 | 三菱化学株式会社 | 锂二次电池以及其中使用的非水电解液 |
JP5110380B2 (ja) * | 2008-06-13 | 2012-12-26 | 株式会社デンソー | 集電体、電極および蓄電装置 |
-
2011
- 2011-03-18 US US13/635,596 patent/US20130011747A1/en not_active Abandoned
- 2011-03-18 EP EP11756430.2A patent/EP2549569A4/en not_active Withdrawn
- 2011-03-18 JP JP2012505762A patent/JPWO2011115247A1/ja active Pending
- 2011-03-18 CN CN2011800145289A patent/CN102792490A/zh active Pending
- 2011-03-18 WO PCT/JP2011/056533 patent/WO2011115247A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11297327A (ja) * | 1998-04-06 | 1999-10-29 | Mitsubishi Chemical Corp | リチウム二次電池 |
JP2003197182A (ja) * | 2001-12-21 | 2003-07-11 | Samsung Sdi Co Ltd | 黒鉛含有組成物並びにリチウム二次電池用の負極及びリチウム二次電池 |
JP2004281368A (ja) * | 2002-08-29 | 2004-10-07 | Nec Corp | 二次電池用電解液およびそれを用いた二次電池 |
JP2010063030A (ja) | 2008-09-05 | 2010-03-18 | Fujitsu Ten Ltd | 受信装置および受信方法 |
JP2011023221A (ja) * | 2009-07-16 | 2011-02-03 | Nec Energy Devices Ltd | リチウムイオン二次電池 |
Non-Patent Citations (2)
Title |
---|
"Saishin no Tanso Zairyo Jikken Gijutsu (Bunseki/Kaiseki Hen) (Newest Carbon Material Experimental Technique (Assay/Analysis Section", 30 November 2001, SIPEC CORPORATION, pages: 18 - 26,44-50 |
See also references of EP2549569A4 * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150104711A1 (en) * | 2012-06-04 | 2015-04-16 | Nec Energy Devices, Ltd. | Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery |
EP2916374A4 (en) * | 2012-10-30 | 2016-05-18 | Nec Corp | LITHIUM SECONDARY BATTERY |
US9831526B2 (en) | 2012-10-30 | 2017-11-28 | Nec Corporation | Lithium secondary battery |
CN104756288A (zh) * | 2012-10-30 | 2015-07-01 | 日本电气株式会社 | 锂二次电池 |
JPWO2014069460A1 (ja) * | 2012-10-30 | 2016-09-08 | 日本電気株式会社 | リチウム二次電池 |
US9941545B2 (en) * | 2013-03-01 | 2018-04-10 | Nec Corporation | Electrolyte solution for secondary batteries, and secondary battery using same |
US9711825B2 (en) * | 2013-03-01 | 2017-07-18 | Nec Corporation | Lithium ion secondary battery |
US20160020492A1 (en) * | 2013-03-01 | 2016-01-21 | Nec Corporation | Lithium ion secondary battery |
US20160028118A1 (en) * | 2013-03-01 | 2016-01-28 | Nec Corporation | Electrolyte solution for secondary batteries, and secondary battery using same |
US9780411B2 (en) | 2013-03-01 | 2017-10-03 | Nec Corporation | Nonaqueous electrolyte solution secondary battery |
JPWO2014196177A1 (ja) * | 2013-06-06 | 2017-02-23 | 株式会社Gsユアサ | 非水電解質二次電池及び非水電解質二次電池の製造方法 |
WO2014196177A1 (ja) * | 2013-06-06 | 2014-12-11 | 株式会社Gsユアサ | 非水電解質二次電池及び非水電解質二次電池の製造方法 |
WO2015037367A1 (ja) * | 2013-09-13 | 2015-03-19 | 日本電気株式会社 | 非水電解液二次電池 |
JP2015122236A (ja) * | 2013-12-24 | 2015-07-02 | 日産自動車株式会社 | 非水電解質二次電池の製造方法 |
KR20170002302A (ko) | 2015-06-29 | 2017-01-06 | 신닛테츠 수미킨 가가쿠 가부시키가이샤 | 리튬이온 이차전지용 부극 및 이차전지 |
JP2021048132A (ja) * | 2016-05-05 | 2021-03-25 | キャボット コーポレイションCabot Corporation | 高構造カーボンブラックを有する電極、組成物、及びデバイス |
JP7116768B2 (ja) | 2016-05-05 | 2022-08-10 | キャボット コーポレイション | 高構造カーボンブラックを有する電極、組成物、及びデバイス |
JP2018156931A (ja) * | 2017-03-17 | 2018-10-04 | Tdk株式会社 | リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
US10615406B2 (en) | 2017-03-17 | 2020-04-07 | Tdk Corporation | Negative electrode for lithium ion secondary battery and lithium ion secondary battery |
JP7024439B2 (ja) | 2017-03-17 | 2022-02-24 | Tdk株式会社 | リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
JP2019029158A (ja) * | 2017-07-28 | 2019-02-21 | オートモーティブエナジーサプライ株式会社 | リチウムイオン二次電池用負極 |
US11705585B2 (en) | 2018-07-03 | 2023-07-18 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11728522B2 (en) | 2018-07-03 | 2023-08-15 | Samsung Sdi Co., Ltd. | Electrode for rechargeable lithium battery, and rechargeable lithium battery including the same |
KR20200127785A (ko) * | 2019-05-03 | 2020-11-11 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
US11522185B2 (en) | 2019-05-03 | 2022-12-06 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
KR102487627B1 (ko) | 2019-05-03 | 2023-01-12 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
US11658287B2 (en) | 2019-05-03 | 2023-05-23 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11522183B2 (en) | 2019-05-03 | 2022-12-06 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11710820B2 (en) | 2019-05-03 | 2023-07-25 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11515523B2 (en) | 2019-05-03 | 2022-11-29 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011115247A1 (ja) | 2013-07-04 |
EP2549569A4 (en) | 2014-08-06 |
CN102792490A (zh) | 2012-11-21 |
EP2549569A1 (en) | 2013-01-23 |
US20130011747A1 (en) | 2013-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011115247A1 (ja) | リチウムイオン二次電池 | |
JP5574404B2 (ja) | リチウムイオン二次電池 | |
US9034521B2 (en) | Anode material of excellent conductivity and high power secondary battery employed with the same | |
JP5582587B2 (ja) | リチウムイオン二次電池 | |
WO2015152113A1 (ja) | 黒鉛系負極活物質材料、負極及びリチウムイオン二次電池 | |
JP6398985B2 (ja) | リチウムイオン二次電池 | |
JP6685940B2 (ja) | リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
JP7028164B2 (ja) | リチウムイオン二次電池 | |
WO2014109406A1 (ja) | リチウムイオン二次電池 | |
WO2017057123A1 (ja) | リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
WO2012081348A1 (ja) | 二次電池用正極活物質 | |
WO2017217407A1 (ja) | リチウムイオン二次電池 | |
US10135095B2 (en) | Lithium secondary battery | |
WO2013008524A1 (ja) | リチウムイオン電池用負極及びリチウムイオン電池 | |
US9853288B2 (en) | Lithium secondary battery | |
WO2015152115A1 (ja) | リチウムイオン二次電池 | |
JP5855737B2 (ja) | リチウムイオン電池 | |
JP4513385B2 (ja) | 二次電池用負極及び二次電池 | |
JP5213011B2 (ja) | リチウム二次電池用負極、およびそれを用いたリチウム二次電池 | |
KR101093242B1 (ko) | 리튬 이차전지용 혼합 음극재 및 이를 포함하는 고출력리튬 이차전지 | |
KR101115390B1 (ko) | 리튬 이차전지용 혼합 음극재 및 이를 포함하는 고출력 리튬 이차전지 | |
WO2014115322A1 (ja) | リチウムイオン二次電池用負極活物質及びそれらを用いたリチウムイオン二次電池 | |
WO2020137403A1 (ja) | 二次電池電極用炭素材料分散液、二次電池電極用スラリー組成物、二次電池用電極および二次電池 | |
JP2020140895A (ja) | リチウムイオン二次電池用電極及びリチウムイオン二次電池 | |
WO2023281960A1 (ja) | 正極、蓄電素子及び蓄電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180014528.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11756430 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012505762 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13635596 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011756430 Country of ref document: EP |