WO2011115031A1 - Polyamide resin composition for injection moulding - Google Patents
Polyamide resin composition for injection moulding Download PDFInfo
- Publication number
- WO2011115031A1 WO2011115031A1 PCT/JP2011/055884 JP2011055884W WO2011115031A1 WO 2011115031 A1 WO2011115031 A1 WO 2011115031A1 JP 2011055884 W JP2011055884 W JP 2011055884W WO 2011115031 A1 WO2011115031 A1 WO 2011115031A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyamide resin
- resin composition
- glass fiber
- injection molding
- amorphous
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/33—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
- C08G2261/332—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
- C08G2261/3323—Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other monocyclic systems
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/45—Friedel-Crafts-type
Definitions
- the present invention relates to a polyamide resin composition for injection molding, and in particular, it is excellent in mechanical strength, thin-wall moldability, and dimensional stability, can reduce the occurrence of burrs in injection molded products as much as possible, and is excellent in paint adhesion. It is a polyamide resin composition.
- Patent Document 1 Since it deteriorates, the filling of the fibrous reinforcing material is limited to about 20% by weight (for example, Patent Document 1), and it has been considered that it is difficult to achieve both high rigidity by the amorphous resin and thinning of the molded product. It was.
- crystalline polyamide resin is generally highly fluid and can maintain sufficient fluidity for thin-wall molding even when a fibrous reinforcing material is added, so crystalline polyamide resin is used for electronic device casings. It is coming.
- Amorphous polyamide or polyamide 6 crystalline polyamide resin is blended with amorphous polyamide resin, and a fibrous material is highly filled with molding material (Patent Document 2) or low viscosity crystalline polyamide resin.
- Patent Documents 3 and 4 There has been proposed a molding material in which crystalline polyamide resin and glass fiber having an irregular cross-sectional shape are blended by 40% by weight or more to improve rigidity and strength.
- Patent Documents 3 and 4 are mainly composed of crystalline polyamide resin and have a complicated composition due to the blending of various types of resins, reactive resins and compounds. There is variation in the dimensional stability and burr generation suppression effect, and there is room for improvement.
- the present invention is intended to solve the above-mentioned problems, has a simple composition and excellent production stability, has little fluctuation in mechanical strength, thin-wall moldability, dimensional stability, etc., and generates burrs in thin-wall injection molded products. It is an object of the present invention to provide a polyamide resin composition that can reduce as much as possible and is excellent in paint adhesion.
- the inventors have intensively studied to achieve both excellent thin moldability and suppression of burrs, and in order to prevent molding defects when filling the mold cavity with molten molding resin, Change the injection speed pattern of the molding resin from fast (initial) to slow (final) so that the flow front speed is constant, and the flow front speed is suitable for the molten molding resin.
- high fluidity can be achieved if the melt viscosity can be lowered at a high shear rate at the initial stage when the injection speed is high (high shear rate), which is the peak of filling the mold cavity into the mold cavity.
- melt viscosity can be increased at a low shear rate at the end of a low rate (low shear rate), it is considered that the generation of burrs can be suppressed. Further, if it is amorphous, the solidification rate is slow, the restriction on the flow front speed is small, and the range of molding conditions can be widened. Therefore, as a result of earnest research on the melt flow characteristics when the molten resin composition is filled into the mold, the amorphous polyamide resin having a specific composition, a small amount of the terpene phenol resin, and a modified cross-section glass having a modified cross section.
- melt viscosity characteristics are set in a specific range by combining fibers, even if the glass fiber content exceeds 40% by mass, the melt fluidity can be increased, thin molding is easy, and The inventors have found that generation can be suppressed and have reached the present invention.
- the present invention (1) Amorphous polyamide resin (A) having an alicyclic group and no aromatic group (A), terpene phenol resin (B), and variant having a major axis / minor axis ratio of 1.5 to 10
- the amount of the amorphous polyamide resin (A) is based on the total mass of the amorphous polyamide resin (A), the terpene phenol resin (B), and the modified cross-section glass fiber (C). 30 to 69.5 mass%, the blending amount of the terpene phenol resin (B) is 0.5 to 10 mass%, and the blending amount of the modified cross-section glass fiber (C) is 30 to 60 mass% ( The polyamide resin composition for injection molding as described in 1).
- amorphous polyamide resin (A) is a polyamide resin formed by polycondensation of an aliphatic dicarboxylic acid and an alicyclic diamine. Composition.
- the aliphatic dicarboxylic acid of the amorphous polyamide resin (A) is selected from dicarboxylic acids having 12 to 18 carbon atoms, and the alicyclic diamine is bis (4-amino-cyclohexyl) methane, bis (3-) is selected from (3-amino-cyclohexyl) methane, bis (3-methyl-4-amino-cyclohexyl) methane, and 2,2-bis (4-amino-cyclohexyl) propane.
- Polyamide resin composition for injection molding (5)
- 0.1 to 3 parts by mass of a silane coupling agent is added to 100 parts by mass of the irregular cross-section glass fiber (C).
- the ratio (LSv / HSv) of the melt viscosity (LSv) at a shear rate of 12.2 sec ⁇ 1 to the melt viscosity (HSv) at a shear rate of 1216 sec ⁇ 1 is 4.0 to 7.0
- the polyamide resin composition of the present invention is mainly composed of an amorphous polyamide resin of a specific component and a glass fiber having an irregular cross section, contains a terpene phenol resin, has an apparent glass transition temperature within a specific range, and is injected. Since the melt viscosity at the time of molding is controlled to be within a specific range at a low shear rate and a high shear rate, it is possible to achieve both thin formability and suppression of burr generation, and glass that does not require deburring A fiber-reinforced polyamide injection molded article can be provided.
- FIG. 1 is a projection view of a model molded product that has been evaluated for occurrence of burrs. It is a mobile phone model shape, details are as follows. Molded product thickness: 1.3 mm, gate position: ⁇ position in the figure, ⁇ 1.2 mm pin gate, degassing, 0.02 mm groove is installed around the entire circumference of the molded product, burr observation section (1): position in the figure , Near the gate, Beauty observation section (2): position in the figure, near the final filling section
- the polyamide resin composition of the present invention has an alicyclic group, an amorphous polyamide resin (A) having no aromatic group, a terpene phenol resin (B), and a ratio of major axis / minor axis of 1.
- the glass fiber (C) having a modified cross section having a modified cross section of 5 to 10 is contained, and the apparent glass transition temperature of the polyamide resin composition is 125 to 160 ° C.
- the apparent glass transition temperature is preferably from 130 to 155 ° C, more preferably from 135 to 153 ° C.
- the apparent glass transition temperature of the polyamide resin composition is less than 125 ° C., the glass transition temperature is further lowered by water absorption, so that the rigidity during heating is lowered and there is a possibility that problems such as deformation may occur, which is not preferable. If the temperature exceeds 160 ° C., the mold temperature necessary for obtaining a filling property and a good appearance is remarkably increased, so that the moldability is impaired.
- the apparent glass transition temperature is a typical DSC measuring apparatus, heated to 300 ° C. at a rate of temperature increase of 20 ° C./min under a nitrogen stream, held at that temperature for 5 minutes, and then 10 ° C./min.
- the amorphous polyamide resin (A) in the present invention has a glass transition temperature of about 130 to 165 ° C. Is preferred. More preferably, it is 135 to 160 ° C, and still more preferably 135 to 155 ° C.
- the glass transition temperature of the amorphous polyamide resin (A) is less than 130 ° C., the glass transition temperature is further lowered by water absorption, so that the rigidity during heating is lowered, and problems such as deformation may occur.
- the glass transition temperature of the amorphous polyamide resin (A) exceeds 165 ° C., impact resistance and toughness become poor.
- the glass transition temperature is high, the filling property is difficult, so it is necessary to set the mold temperature and the resin temperature at the time of molding extremely high, which is not preferable in terms of energy saving.
- toughness will become inferior.
- the term “amorphous” as used in the present invention means that it does not show a clear melting point when DSC measurement is performed at a temperature rising rate of 20 ° C./min according to JIS K7121.
- the melt viscosity at a temperature 285 ° C. is at 1000 ⁇ 2000 Pa ⁇ s at a shear rate 12.2Sec -1, and it is necessary and shear rate 1216 sec -1 at 100 ⁇ 350 Pa ⁇ s It is. Since the melt viscosity at a temperature of 285 ° C. is 100 to 350 Pa ⁇ s at a shear rate of 1216 sec ⁇ 1 , the melt fluidity in the middle stage of molding and filling, which is the peak stage of filling of the molten resin composition into the mold cavity, is achieved.
- the amount ratio of the amorphous polyamide resin (A), the terpene phenol resin (B), and the modified cross-section glass fiber (C) is preferably the amount ratio described below.
- the molding stability is such that the ratio (LSv / HSv) of the melt viscosity (LSv) at a shear rate of 12.2 sec ⁇ 1 to the melt viscosity (HSv) at a shear rate of 1216 sec ⁇ 1 is 4.0 to 7.0. From the viewpoint of sex. When LSv / HSv exceeds 7.0, there is a tendency that variation in molding tends to occur, and when LSv / HSv is less than 4.0, there is a tendency that the burr suppressing effect is hardly exhibited.
- the melt index (temperature: 275 ° C., load: 5 kg) measured in accordance with ISO 1133 is 10 g / 10 min or more
- the polyamide resin composition of the present invention can easily achieve both the thin-wall formability and the burr generation suppressing effect. Therefore, it is preferable.
- the amorphous polyamide resin (A) having an alicyclic group and not having an aromatic group is a monomer in which at least one monomer constituting the polyamide has an alicyclic group. It is an amorphous polyamide which does not contain an aromatic group as a monomer to be used.
- the term “amorphous” in the present invention does not indicate a clear melting point peak when DSC measurement is performed at a rate of temperature increase of 20 ° C./min according to JIS K7121.
- the amorphous polyamide resin (A) in the present invention is preferably a polyamide resin formed by polycondensation of an aliphatic dicarboxylic acid and an alicyclic diamine.
- alicyclic diamines include bis (4-amino-cyclohexyl) methane (may be abbreviated as PACM), bis (3-amino-cyclohexyl) methane.
- Bis (3-methyl-4-amino-cyclohexyl) methane may be abbreviated as MACM
- 2,2-bis (4-amino-cyclohexyl) propane isophoronediamine
- 1,3-bis (aminomethyl) Cyclohexane 1,4-bis (aminomethyl) cyclohexane
- 3-aminocyclohexyl-4-aminocyclohexylmethane 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane
- bis (aminopropyl) piperazine bis (Aminoethyl) piperazine and the like
- examples of the aliphatic dicarboxylic acid include adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid (may be abbreviated as 12).
- aliphatic dicarboxylic acids having a linear or branched chain having 4 to 36 carbon atoms such as tridecanedioic acid and tetradecanedioic acid (sometimes abbreviated as 14).
- lactams such as ⁇ -caprolactam and ⁇ -laurolactam
- aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid
- tetra Aliphatic diamines such as methylene diamine, hexamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4 / 2,4,4-trimethylhexamethylene diamine and 5-methylnonamethylene diamine may be included. good.
- Examples of the monomer combinations include bis (4-amino-cyclohexyl) methane (PACM), bis (3-amino-cyclohexyl) methane, bis (3-methyl-4-amino-cyclohexyl) methane (MACM), 2,2 -Fatty acids selected from alicyclic diamines selected from bis (4-amino-cyclohexyl) propane and dicarboxylic acids having 12 to 18 carbon atoms such as undecanedioic acid, dodecanedioic acid, tridecanedioic acid and tetradecanedioic acid A combination with a group dicarboxylic acid is preferred in terms of melt flow characteristics.
- PAM bis (4-amino-cyclohexyl) methane
- MCM bis (3-methyl-4-amino-cyclohexyl) methane
- 2,2 -Fatty acids selected from alicyclic diamines selected from bis (4-amino-cycl
- dodecanedioic acid and tetradecanedioic acid are more preferable, and tetradecanedioic acid is more preferable.
- a combination of MACM and dodecanedioic acid (MACM ⁇ 12), MACM and tetradecanedioic acid (MACM ⁇ 14) is preferable in terms of low water absorption and small change in water absorption dimension.
- MACM 14 can be molded at a molding temperature of 300 ° C. or less, and is excellent in strength, rigidity, impact resistance, and toughness even when the mold temperature is 100 ° C. It is preferable in that it can be easily obtained.
- the molecular weight of the amorphous polyamide resin used in the present invention is not particularly limited, but the number average molecular weight measured by the method described below is preferably in the range of 3000 to 40000. The range of 7000 to 30000 is more preferable, and the range of 10,000 to 25000 is more preferable. If the number average molecular weight is less than 3000, the mechanical strength is lowered. Conversely, if the number average molecular weight is more than 40000, the molecular weight becomes too high and the moldability is deteriorated.
- the compounding amount of the amorphous polyamide resin in the present invention is 30 to 69.5 mass with respect to the total mass of the amorphous polyamide resin (A), the terpene phenol resin (B), and the modified cross-section glass fiber (C). % Is preferred. More preferably, it is 35 to 59% by mass, and still more preferably 40 to 54% by mass. This preferred range is derived from the ranges described below for the preferred ranges of the terpene phenol resin (B) and the modified cross-section glass fiber (C).
- the terpene phenol resin used in the present invention is compatible with the amorphous polyamide resin used in the present invention, and can lower the apparent glass transition temperature of the amorphous polyamide resin-containing composition, and increase the melt fluidity. Therefore, compared to the case where terpene phenolic resin is not blended, it is difficult for the filling property to occur even if the molding temperature and mold temperature are lowered, so the cooling time can be shortened and the molding condition range can be widened. Can be taken. In particular, the combination with MACM ⁇ 14 is preferable because the apparent glass transition temperature decreases greatly.
- the terpene phenol resin Since the terpene phenol resin has many hydroxyl groups, it is incorporated into the amide group of the polyamide by hydrogen bonding, and as a result, the glass transition temperature of the polyamide can be apparently lowered. The same effect can be obtained by water absorption or a liquid plasticizer, but the effect is difficult or unstable due to volatilization by molding or extrusion. Further, in the case of a thin molded product, if the volatilization amount at the time of molding is large, the final filling portion of the product is burnt and it is difficult to remove a good product. Since the terpene phenol resin does not volatilize and remains in the polyamide resin, a stable effect can be exhibited.
- the terpene phenolic resin used in the present invention is a reaction obtained by copolymerizing a monomer component composed of a terpene monomer and a phenolic monomer in an organic solvent in the presence of a Friedel-Craft type catalyst, or further hydrogenating after copolymerization. It means a part of the mixture or the whole composition.
- the terpene monomer is a hydrocarbon compound represented by the molecular formula of (C 5 H 8 ) n or an oxygen-containing compound derived therefrom.
- Preferred terpenes are monoterpenes, particularly pinene and limonene.
- the phenolic monomer is a compound having at least one hydroxyl group in an aromatic ring such as a benzene ring or a naphthalene ring, and may have a substituent (for example, a halogen atom, an alkyl group, etc.) in the aromatic ring.
- a substituent for example, a halogen atom, an alkyl group, etc.
- phenol, cresol, xylenol, naphthol, catechol, resorcin, hydroquinone, pyrogallol and the like can be mentioned.
- a preferred terpene phenol resin in terms of resistance to discoloration is a copolymer of monoterpenes and phenol. Copolymers of monoterpenes such as ⁇ -pinene and limonene and phenol are industrially easy to produce and more preferable.
- the hydroxyl value (KOHmg / g) of the terpene phenol resin used in the present invention is usually preferably 150 or more, and more preferably 200 or more from the viewpoint of the effect of suppressing dimensional change due to water absorption.
- the degree of polymerization of the terpene phenol resin used in the present invention is preferably about a number average molecular weight of about 500 to 10,000. If it is less than 500, the low molecular weight component may emit smoke upon heating and workability may be deteriorated. If it exceeds 10,000, it becomes a brittle material, which may affect the stickiness and compatibility. Specifically, there are, for example, YS polyster series and Mighty Ace series manufactured by Yashara Chemical Co., Ltd.
- the blending amount of the terpene phenol resin in the present invention is 0.5 to 10 with respect to the total mass of the amorphous polyamide resin (A), the terpene phenol resin (B), and the modified cross-section glass fiber (C).
- the content is preferably mass%, more preferably 1 to 5 mass%. If the amount is less than 0.5% by mass, almost no expression of the blending effect is observed, and if it exceeds 10% by mass, the mechanical strength is lowered or the terpene phenol deposited on the surface is peeled off.
- the glass fiber used in the present invention is a glass fiber having a modified cross-sectional shape having a major axis / minor axis ratio of 1.5 to 10, preferably having a major axis / minor axis ratio of 2.0 to 6.0. It is.
- the major axis / minor axis ratio is less than 1.5, the effect of reducing warpage is poor, and when the major axis / minor axis ratio exceeds 10, it is difficult to produce glass fibers themselves.
- the irregular cross-sectional shape may be any shape such as an elliptical shape, a gourd shape, an eyebrows shape, an oval shape, a rectangular shape, etc.
- the short diameter is the shortest diameter distance of the cross section
- the long diameter is the longest diameter distance of the cross section. Point to.
- the major axis is preferably 10 to 50 ⁇ m and the minor axis is preferably in the range of 5 to 20 ⁇ m.
- the chopped strand is preferably a glass fiber having a length of 3 to 6 mm, and more preferably 4 to 5 mm.
- the blending amount of the irregular cross-section glass fiber in the present invention is 30 to 60 mass with respect to the total mass of the amorphous polyamide resin (A), the terpene phenol resin (B), and the irregular cross-section glass fiber (C). % Is preferred. More preferably, it is 40 to 60% by mass, and still more preferably 45 to 55% by mass. If it is less than 30% by mass, the mechanical strength of the molded product is low, and if it exceeds 60% by mass, the resin has poor fluidity, and if it is thin, it is difficult to obtain a molded product with high dimensional accuracy.
- the modified cross-section glass fiber is preferably treated with a coupling agent such as a silane-based or titanate-based fiber, and particularly preferably treated with a silane-based coupling agent.
- a coupling agent such as a silane-based or titanate-based fiber
- Preferred silane coupling agents include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and ⁇ -anilinopropyl.
- trimethoxysilane examples include trimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, and the like.
- Glycidoxypropyltrimethoxysilane, ⁇ -anilinopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane are preferred.
- the silane coupling agent is preferably newly added immediately before compounding with the polyamide resin, in addition to those previously given at the time of glass fiber production.
- the amount of coupling agent applied is preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the glass fiber. If it is less than 0.1 parts by mass, the effect of imparting is small, and if it exceeds 3 parts by mass, it is not economical, and gas generation during molding increases, and the appearance deteriorates. However, in the case of using a glass fiber having an improved silane coupling agent that is preliminarily applied at the time of glass fiber production, no new application is particularly required.
- the polyamide resin composition of the present invention includes a light or heat stabilizer, an antioxidant, an ultraviolet absorber, a light stabilizer, a plasticizer, a lubricant, a crystal nucleus within a known range as necessary.
- Additives, mold release agents, antistatic agents, combinations of halogenated flame retardants and antimony trioxide, various phosphate flame retardants, melamine flame retardants, inorganic pigments, organic pigments, dyes, or other types of polymers I can do it.
- the polyamide resin composition of the present invention As a production method for producing the polyamide resin composition of the present invention, at least the components (A), (B) and (C) described above and other blends are blended in any blending sequence in the blending composition. After that, the mixture is mixed with a tumbler or a Henschel mixer and melted and kneaded.
- the melt kneading method can be any method known to those skilled in the art, and a single screw extruder, a twin screw extruder, a kneader, a Banbury mixer, a roll, etc. can be used, among which a twin screw extruder is used. It is preferable to do.
- glass fiber having a modified cross-sectional shape of the component (C) that is easily damaged during extrusion processing is introduced from the side port of the twin-screw extruder to prevent the glass fiber from being damaged, but is particularly limited. It is not something.
- a silane coupling agent may be added simultaneously with raw material components other than (C), it is preferable to add to the (C) component in advance.
- the side opening of the glass fiber input portion and the tip of the extruder It is desirable to perform suction with a vacuum pump between the die head.
- (A) Polyamide resin MACM 14: Arkema G350, glass transition temperature 145 ° C., number average molecular weight 14200, amorphous MACM 12: EMS TR-90, glass transition temperature 155 ° C., number average molecular weight 13300, Amorphous MACM 12 ⁇ I: TR-55 manufactured by EMS, glass transition temperature 162 ° C., number average molecular weight 18600, amorphous polyamide 66: manufactured by Toray Industries, Inc., E3000F, glass transition temperature 49 ° C., weight average molecular weight 13000, Crystalline 6T6I (6T / 6I 33/67 (mol%)): EMS Grivory G21, glass transition temperature 125 ° C., number average molecular weight 15100, amorphous MACM is bis (3-methyl-4-amino-cyclohexyl) ) Methane, 12 is dodecanedioic acid, 14 is tetradecanedioic acid, I is is
- the number average molecular weight was determined as follows. 2 mg of each sample was weighed and dissolved in 4 ml of HFIP / sodium trifluoroacetate 10 mM. It filtered with the 0.2 micrometer membrane filter, and the gel permeation chromatography (GPC) analysis of the obtained sample solution was performed on the following conditions.
- the molecular weight conversion was calculated in terms of standard polymethyl methacrylate. The molecular weight was calculated by excluding those having a molecular weight of 1000 or less as oligomers.
- -Mold release agent Montanic acid ester Clariant Japan Co., Ltd., WE40; 0.6 mass part was used with respect to a total of 100 mass parts of (A), (B), (C).
- Coupling agent Aminopropyltriethoxysilane, manufactured by Momentive Performance Materials Japan G.K., A-1100; 0.3 parts by mass with respect to 100 parts by mass of the modified cross-section glass fiber (C) was used.
- Table 3 shows the burrs generated in the observation part (1) as “minimum value ( ⁇ m) to maximum value ( ⁇ m)” and the burrs generated in the observation part (2) as “average value ( ⁇ m)”.
- the maximum value and variation (difference between the maximum value and minimum value) of the burr generated in 200 shots of the observation part (1) are as follows. It was evaluated as follows. A: Maximum burr value is 50 ⁇ m or less and variation is 25 ⁇ m or less B: Maximum burr value is 60 ⁇ m or less and variation is 30 ⁇ m or less ⁇ : Maximum burr value is 100 ⁇ m or less and variation 50 ⁇ m or less x: The maximum value of burr exceeds 100 ⁇ m
- the apparent glass transition temperature and the melt viscosity satisfy the scope of the present invention, so that the moldability is excellent and the burr generation suppressing effect is excellent. It can be seen that the paint adhesion is also excellent. In particular, in Examples 1 and 3, it can be seen that the tensile elongation and the bending deflection ratio are large and the toughness is excellent. Furthermore, since molding can be performed without problems even at a low filling pressure, the stability during continuous molding is also excellent. In addition, the dimensional change after water absorption is very small and the dimensional stability of the product is excellent.
- Comparative Example 1 in which no terpene phenol-based resin is blended, there is room for improvement in moldability, burr suppression effect, paint adhesion, and the like.
- filling is not performed unless a very high filling pressure is applied, so that the amount of burrs generated varies even when the resin stays during continuous molding or the mold temperature slightly changes.
- Comparative Example 2 using an amorphous polyamide resin having an alicyclic group but having an aromatic group has a high glass transition temperature, the filling property is lowered and the effect of suppressing the generation of burrs is inferior and the toughness of the molded product is low. Inferior. There is also a variation in the occurrence of burrs.
- the amorphous polyamide resin of Comparative Example 3 had good moldability even when terpene phenol was not added since the original glass transition temperature was low, but the result was poor dimensional stability upon water absorption. . Moreover, since the aromatic ratio was high, it became a very brittle molded product.
- the crystalline polyamide of Comparative Example 4 was inferior in dimensional stability and difficult to suppress burrs.
- the polyamide resin composition of the present invention is excellent in production stability, has little fluctuation in mechanical strength, thin-wall moldability, dimensional stability, etc., and can reduce the occurrence of burrs in thin-walled injection molded products as much as possible, and further in coating adhesion
- portable electrical appliances that place importance on weight reduction and design as well as mechanical properties, such as mobile phones, portable music listening products, portable video viewing products, and portable personal computer casings. It is suitable for materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Casings For Electric Apparatus (AREA)
Abstract
Provided is a polyamide resin composition comprising an amorphous polyamide resin (A) that contains alicyclic groups but not aromatic groups, a terpene phenolic resin (B), and modified cross section glass fibres (C) that have a modified cross section with a long diameter to short diameter ratio of 1.5 to 10. The polyamide resin composition for injection moulding has (i) a surface glass transition temperature of 125-160 °C, and (ii) a melt viscosity at 285 °C of 1000-2000 Pa⋅s at a shear velocity of 12.2 sec-1 and 100-350 Pa⋅s at a shear velocity of 1216 sec-1. The polyamide resin composition is exceptionally stable during production, has low variation in mechanical strength, thin wall mouldability, dimensional stability, etc., can minimise burr development in thin wall injection moulding products, and furthermore, has excellent coating adhesion.
Description
本発明は、射出成形用ポリアミド樹脂組成物に関し、詳しくは機械的強度、薄肉成形性、寸法安定性に優れるとともに、射出成形品のバリ発生を極力低減でき、さらには、塗装密着性に優れたポリアミド樹脂組成物である。
The present invention relates to a polyamide resin composition for injection molding, and in particular, it is excellent in mechanical strength, thin-wall moldability, and dimensional stability, can reduce the occurrence of burrs in injection molded products as much as possible, and is excellent in paint adhesion. It is a polyamide resin composition.
携帯電話、携帯ゲーム機、PDA(Personal Digital Assistant)などの小型電子機器は、近年ますます機器全体の薄型軽量化の要求が高くなり、この要求に応えるためには射出成形で製造される電子機器筐体の薄肉化が必要である。この電子機器筐体の薄肉化を達成するためには、射出成形機が射出成形時に高い射出圧力や射出速度を実現するとともに、成形材料としては機械強度、薄肉成形性、寸法安定性などが求められる。
ポリカーボネート(PC)やABS樹脂などの非晶性樹脂は、高寸法安定性や高靭性を有するが、流動性が低く、繊維状補強材を加えると、さらに流動性が低下して成形性がより悪化するため、繊維状補強材の充填は20重量%程度が限度であり(例えば特許文献1)、非晶性樹脂による高剛性化と成形品の薄肉化の両立は困難であると考えられてきた。
一方、結晶性ポリアミド樹脂は、一般的に高流動性であり、繊維状補強材を加えても薄肉成形に十分な流動性を維持できるため、結晶性ポリアミド樹脂が電子機器筐体用に使用されてきている。
芳香族ポリアミド、ポリアミド6の結晶性ポリアミド樹脂に非晶性ポリアミド樹脂を配合し、繊維状補強材を高充填した成形材料(特許文献2)や低粘度の結晶性ポリアミド樹脂に非晶性または微結晶性ポリアミド樹脂と異形断面形状のガラス繊維を40重量%以上配合し、剛性と強度を向上させた成形材料が提案されている(特許文献3、4)。
しかしながら、これらの方法では、結晶性ポリアミド樹脂を主体とし、多品種の樹脂の配合や反応性の樹脂、化合物の配合などで複雑な組成であるため、製造安定性に難点があるとともに、成形時の寸法安定性やバリ発生抑制効果にバラツキがあり、改善の余地がある。 In recent years, small electronic devices such as mobile phones, portable game machines, and PDAs (Personal Digital Assistants) have been increasingly required to be thin and light, and electronic devices manufactured by injection molding to meet this demand. It is necessary to reduce the thickness of the housing. In order to achieve thinning of the electronic equipment casing, the injection molding machine must achieve high injection pressure and injection speed during injection molding, and the molding material must have mechanical strength, thin formability, dimensional stability, etc. It is done.
Amorphous resins such as polycarbonate (PC) and ABS resin have high dimensional stability and high toughness, but they have low fluidity, and when a fibrous reinforcing material is added, the fluidity is further lowered and the moldability is further improved. Since it deteriorates, the filling of the fibrous reinforcing material is limited to about 20% by weight (for example, Patent Document 1), and it has been considered that it is difficult to achieve both high rigidity by the amorphous resin and thinning of the molded product. It was.
On the other hand, crystalline polyamide resin is generally highly fluid and can maintain sufficient fluidity for thin-wall molding even when a fibrous reinforcing material is added, so crystalline polyamide resin is used for electronic device casings. It is coming.
Amorphous polyamide or polyamide 6 crystalline polyamide resin is blended with amorphous polyamide resin, and a fibrous material is highly filled with molding material (Patent Document 2) or low viscosity crystalline polyamide resin. There has been proposed a molding material in which crystalline polyamide resin and glass fiber having an irregular cross-sectional shape are blended by 40% by weight or more to improve rigidity and strength (Patent Documents 3 and 4).
However, these methods are mainly composed of crystalline polyamide resin and have a complicated composition due to the blending of various types of resins, reactive resins and compounds. There is variation in the dimensional stability and burr generation suppression effect, and there is room for improvement.
ポリカーボネート(PC)やABS樹脂などの非晶性樹脂は、高寸法安定性や高靭性を有するが、流動性が低く、繊維状補強材を加えると、さらに流動性が低下して成形性がより悪化するため、繊維状補強材の充填は20重量%程度が限度であり(例えば特許文献1)、非晶性樹脂による高剛性化と成形品の薄肉化の両立は困難であると考えられてきた。
一方、結晶性ポリアミド樹脂は、一般的に高流動性であり、繊維状補強材を加えても薄肉成形に十分な流動性を維持できるため、結晶性ポリアミド樹脂が電子機器筐体用に使用されてきている。
芳香族ポリアミド、ポリアミド6の結晶性ポリアミド樹脂に非晶性ポリアミド樹脂を配合し、繊維状補強材を高充填した成形材料(特許文献2)や低粘度の結晶性ポリアミド樹脂に非晶性または微結晶性ポリアミド樹脂と異形断面形状のガラス繊維を40重量%以上配合し、剛性と強度を向上させた成形材料が提案されている(特許文献3、4)。
しかしながら、これらの方法では、結晶性ポリアミド樹脂を主体とし、多品種の樹脂の配合や反応性の樹脂、化合物の配合などで複雑な組成であるため、製造安定性に難点があるとともに、成形時の寸法安定性やバリ発生抑制効果にバラツキがあり、改善の余地がある。 In recent years, small electronic devices such as mobile phones, portable game machines, and PDAs (Personal Digital Assistants) have been increasingly required to be thin and light, and electronic devices manufactured by injection molding to meet this demand. It is necessary to reduce the thickness of the housing. In order to achieve thinning of the electronic equipment casing, the injection molding machine must achieve high injection pressure and injection speed during injection molding, and the molding material must have mechanical strength, thin formability, dimensional stability, etc. It is done.
Amorphous resins such as polycarbonate (PC) and ABS resin have high dimensional stability and high toughness, but they have low fluidity, and when a fibrous reinforcing material is added, the fluidity is further lowered and the moldability is further improved. Since it deteriorates, the filling of the fibrous reinforcing material is limited to about 20% by weight (for example, Patent Document 1), and it has been considered that it is difficult to achieve both high rigidity by the amorphous resin and thinning of the molded product. It was.
On the other hand, crystalline polyamide resin is generally highly fluid and can maintain sufficient fluidity for thin-wall molding even when a fibrous reinforcing material is added, so crystalline polyamide resin is used for electronic device casings. It is coming.
Amorphous polyamide or polyamide 6 crystalline polyamide resin is blended with amorphous polyamide resin, and a fibrous material is highly filled with molding material (Patent Document 2) or low viscosity crystalline polyamide resin. There has been proposed a molding material in which crystalline polyamide resin and glass fiber having an irregular cross-sectional shape are blended by 40% by weight or more to improve rigidity and strength (Patent Documents 3 and 4).
However, these methods are mainly composed of crystalline polyamide resin and have a complicated composition due to the blending of various types of resins, reactive resins and compounds. There is variation in the dimensional stability and burr generation suppression effect, and there is room for improvement.
本発明は上記の問題点を解決しようとするものであり、簡単な組成で製造安定性に優れ、機械的強度、薄肉成形性、寸法安定性などに変動が少なく、薄肉射出成形品のバリ発生を極力低減でき、さらには、塗装密着性にも優れるポリアミド樹脂組成物を提供しようとするものである。
The present invention is intended to solve the above-mentioned problems, has a simple composition and excellent production stability, has little fluctuation in mechanical strength, thin-wall moldability, dimensional stability, etc., and generates burrs in thin-wall injection molded products. It is an object of the present invention to provide a polyamide resin composition that can reduce as much as possible and is excellent in paint adhesion.
本発明者らは、優れた薄肉成形性とバリ発生の抑制とを両立させるべく鋭意検討し、金型のキャビティ内へ溶融成形樹脂を充填させる際に、成形不良を発生させないためには、溶融成形樹脂の射出速度のパターンを、速く(初期)―遅く(終期)と変化させてフローフロント速度が一定になるようにし、かつその溶融成形樹脂に適した過不足のないフローフロント速度になるようにすることであることを知見した。
すなわち、溶融成形樹脂の金型キャビティ内への充填の最盛期である射出速度が速い(高いせん断速度)初期に、高いせん断速度で溶融粘度を低下させることができれば高流動性を発現でき、射出速度が遅い(低いせん断速度)終期に、低いせん断速度で溶融粘度を上昇させることができればバリ発生を抑制できると考えられる。また、非晶性であれば固化速度は遅く、フローフロント速度の制約は小さく、成形条件幅を広くできると考えられる。
そこで、溶融樹脂組成物が金型内へ充填される際の溶融流動特性について鋭意研究を重ねた結果、特定組成の非晶性ポリアミド樹脂と少量のテルペンフェノール系樹脂と異形断面を有する異形断面ガラス繊維とを組み合わせて、溶融粘度特性を特定の範囲にすると、ガラス繊維の含有率が40質量%を超える高含有率であっても、溶融流動性を高くでき、薄肉成形が容易で、しかもバリ発生の抑制ができることを見出し本発明に到達した。 The inventors have intensively studied to achieve both excellent thin moldability and suppression of burrs, and in order to prevent molding defects when filling the mold cavity with molten molding resin, Change the injection speed pattern of the molding resin from fast (initial) to slow (final) so that the flow front speed is constant, and the flow front speed is suitable for the molten molding resin. I found out that
In other words, high fluidity can be achieved if the melt viscosity can be lowered at a high shear rate at the initial stage when the injection speed is high (high shear rate), which is the peak of filling the mold cavity into the mold cavity. If the melt viscosity can be increased at a low shear rate at the end of a low rate (low shear rate), it is considered that the generation of burrs can be suppressed. Further, if it is amorphous, the solidification rate is slow, the restriction on the flow front speed is small, and the range of molding conditions can be widened.
Therefore, as a result of earnest research on the melt flow characteristics when the molten resin composition is filled into the mold, the amorphous polyamide resin having a specific composition, a small amount of the terpene phenol resin, and a modified cross-section glass having a modified cross section. When the melt viscosity characteristics are set in a specific range by combining fibers, even if the glass fiber content exceeds 40% by mass, the melt fluidity can be increased, thin molding is easy, and The inventors have found that generation can be suppressed and have reached the present invention.
すなわち、溶融成形樹脂の金型キャビティ内への充填の最盛期である射出速度が速い(高いせん断速度)初期に、高いせん断速度で溶融粘度を低下させることができれば高流動性を発現でき、射出速度が遅い(低いせん断速度)終期に、低いせん断速度で溶融粘度を上昇させることができればバリ発生を抑制できると考えられる。また、非晶性であれば固化速度は遅く、フローフロント速度の制約は小さく、成形条件幅を広くできると考えられる。
そこで、溶融樹脂組成物が金型内へ充填される際の溶融流動特性について鋭意研究を重ねた結果、特定組成の非晶性ポリアミド樹脂と少量のテルペンフェノール系樹脂と異形断面を有する異形断面ガラス繊維とを組み合わせて、溶融粘度特性を特定の範囲にすると、ガラス繊維の含有率が40質量%を超える高含有率であっても、溶融流動性を高くでき、薄肉成形が容易で、しかもバリ発生の抑制ができることを見出し本発明に到達した。 The inventors have intensively studied to achieve both excellent thin moldability and suppression of burrs, and in order to prevent molding defects when filling the mold cavity with molten molding resin, Change the injection speed pattern of the molding resin from fast (initial) to slow (final) so that the flow front speed is constant, and the flow front speed is suitable for the molten molding resin. I found out that
In other words, high fluidity can be achieved if the melt viscosity can be lowered at a high shear rate at the initial stage when the injection speed is high (high shear rate), which is the peak of filling the mold cavity into the mold cavity. If the melt viscosity can be increased at a low shear rate at the end of a low rate (low shear rate), it is considered that the generation of burrs can be suppressed. Further, if it is amorphous, the solidification rate is slow, the restriction on the flow front speed is small, and the range of molding conditions can be widened.
Therefore, as a result of earnest research on the melt flow characteristics when the molten resin composition is filled into the mold, the amorphous polyamide resin having a specific composition, a small amount of the terpene phenol resin, and a modified cross-section glass having a modified cross section. When the melt viscosity characteristics are set in a specific range by combining fibers, even if the glass fiber content exceeds 40% by mass, the melt fluidity can be increased, thin molding is easy, and The inventors have found that generation can be suppressed and have reached the present invention.
すなわち本発明は、
(1) 脂環族基を有し、芳香族基を有さない非晶性ポリアミド樹脂(A)、テルペンフェノール系樹脂(B)、及び長径/短径の比が1.5~10の異形断面を有する異形断面ガラス繊維(C)を含有するポリアミド樹脂組成物で、該組成物が下記特性を示すことを特徴とする射出成形用ポリアミド樹脂組成物。
(イ)見かけのガラス転移温度が125~160℃
(ロ)温度285℃での溶融粘度が、せん断速度12.2sec-1において1000~2000Pa・sで、かつせん断速度1216sec-1において100~350Pa・s
(2) 前記非晶性ポリアミド樹脂(A)、前記テルペンフェノール系樹脂(B)、及び前記異形断面ガラス繊維(C)の合計質量に対し、前記非晶性ポリアミド樹脂(A)の配合量が30~69.5質量%、前記テルペンフェノール系樹脂(B)の配合量が0.5~10質量%であり、前記異形断面ガラス繊維(C)の配合量が30~60質量%である(1)に記載の射出成形用ポリアミド樹脂組成物。
(3) 前記非晶性ポリアミド樹脂(A)が、脂肪族ジカルボン酸と脂環族ジアミンとの重縮合により形成されたポリアミド樹脂である(1)または(2)に記載の射出成形用ポリアミド樹脂組成物。
(4) 前記非晶性ポリアミド樹脂(A)の脂肪族ジカルボン酸が、炭素原子12~18個を有するジカルボン酸から選択され、脂環族ジアミンが、ビス(4-アミノ-シクロヘキシル)メタン、ビス(3-アミノ-シクロヘキシル)メタン、ビス(3-メチル-4-アミノ-シクロヘキシル)メタン、2,2-ビス(4-アミノ-シクロヘキシル)プロパンから選択されたものである、(3)に記載の射出成形用ポリアミド樹脂組成物。
(5) 異形断面ガラス繊維(C)が配合される際に、異形断面ガラス繊維(C)100質量部に対し、0.1~3質量部のシランカップリング剤が付与されてなる、(1)~(4)のいずれかに記載の射出成形用ポリアミド樹脂組成物。
(6) せん断速度12.2sec-1における溶融粘度(LSv)とせん断速度1216sec-1における溶融粘度(HSv)との比(LSv/HSv)が、4.0~7.0である(1)~(5)のいずれかに記載の射出成形用ポリアミド樹脂組成物。
(7) (1)~(6)のいずれかに記載の射出成形用ポリアミド樹脂組成物で成形された電子機器用成形品。
(8) 電子機器が携帯電子機器である(7)の電子機器用成形品。 That is, the present invention
(1) Amorphous polyamide resin (A) having an alicyclic group and no aromatic group (A), terpene phenol resin (B), and variant having a major axis / minor axis ratio of 1.5 to 10 A polyamide resin composition containing a modified cross-section glass fiber (C) having a cross section, wherein the composition exhibits the following characteristics:
(B) Apparent glass transition temperature of 125 to 160 ° C
(B) melt viscosity at a temperature 285 ° C. is, shear rates in 12.2Sec -1 at 1000 ~ 2000 Pa · s, and 100 to the shear rate of 1216 sec -1 350 Pa · s
(2) The amount of the amorphous polyamide resin (A) is based on the total mass of the amorphous polyamide resin (A), the terpene phenol resin (B), and the modified cross-section glass fiber (C). 30 to 69.5 mass%, the blending amount of the terpene phenol resin (B) is 0.5 to 10 mass%, and the blending amount of the modified cross-section glass fiber (C) is 30 to 60 mass% ( The polyamide resin composition for injection molding as described in 1).
(3) The polyamide resin for injection molding according to (1) or (2), wherein the amorphous polyamide resin (A) is a polyamide resin formed by polycondensation of an aliphatic dicarboxylic acid and an alicyclic diamine. Composition.
(4) The aliphatic dicarboxylic acid of the amorphous polyamide resin (A) is selected from dicarboxylic acids having 12 to 18 carbon atoms, and the alicyclic diamine is bis (4-amino-cyclohexyl) methane, bis (3-) is selected from (3-amino-cyclohexyl) methane, bis (3-methyl-4-amino-cyclohexyl) methane, and 2,2-bis (4-amino-cyclohexyl) propane. Polyamide resin composition for injection molding.
(5) When the irregular cross-section glass fiber (C) is blended, 0.1 to 3 parts by mass of a silane coupling agent is added to 100 parts by mass of the irregular cross-section glass fiber (C). The polyamide resin composition for injection molding as described in any one of) to (4).
(6) The ratio (LSv / HSv) of the melt viscosity (LSv) at a shear rate of 12.2 sec −1 to the melt viscosity (HSv) at a shear rate of 1216 sec −1 is 4.0 to 7.0 (1) The polyamide resin composition for injection molding according to any one of (5) to (5).
(7) A molded article for an electronic device molded from the polyamide resin composition for injection molding according to any one of (1) to (6).
(8) The molded product for an electronic device according to (7), wherein the electronic device is a portable electronic device.
(1) 脂環族基を有し、芳香族基を有さない非晶性ポリアミド樹脂(A)、テルペンフェノール系樹脂(B)、及び長径/短径の比が1.5~10の異形断面を有する異形断面ガラス繊維(C)を含有するポリアミド樹脂組成物で、該組成物が下記特性を示すことを特徴とする射出成形用ポリアミド樹脂組成物。
(イ)見かけのガラス転移温度が125~160℃
(ロ)温度285℃での溶融粘度が、せん断速度12.2sec-1において1000~2000Pa・sで、かつせん断速度1216sec-1において100~350Pa・s
(2) 前記非晶性ポリアミド樹脂(A)、前記テルペンフェノール系樹脂(B)、及び前記異形断面ガラス繊維(C)の合計質量に対し、前記非晶性ポリアミド樹脂(A)の配合量が30~69.5質量%、前記テルペンフェノール系樹脂(B)の配合量が0.5~10質量%であり、前記異形断面ガラス繊維(C)の配合量が30~60質量%である(1)に記載の射出成形用ポリアミド樹脂組成物。
(3) 前記非晶性ポリアミド樹脂(A)が、脂肪族ジカルボン酸と脂環族ジアミンとの重縮合により形成されたポリアミド樹脂である(1)または(2)に記載の射出成形用ポリアミド樹脂組成物。
(4) 前記非晶性ポリアミド樹脂(A)の脂肪族ジカルボン酸が、炭素原子12~18個を有するジカルボン酸から選択され、脂環族ジアミンが、ビス(4-アミノ-シクロヘキシル)メタン、ビス(3-アミノ-シクロヘキシル)メタン、ビス(3-メチル-4-アミノ-シクロヘキシル)メタン、2,2-ビス(4-アミノ-シクロヘキシル)プロパンから選択されたものである、(3)に記載の射出成形用ポリアミド樹脂組成物。
(5) 異形断面ガラス繊維(C)が配合される際に、異形断面ガラス繊維(C)100質量部に対し、0.1~3質量部のシランカップリング剤が付与されてなる、(1)~(4)のいずれかに記載の射出成形用ポリアミド樹脂組成物。
(6) せん断速度12.2sec-1における溶融粘度(LSv)とせん断速度1216sec-1における溶融粘度(HSv)との比(LSv/HSv)が、4.0~7.0である(1)~(5)のいずれかに記載の射出成形用ポリアミド樹脂組成物。
(7) (1)~(6)のいずれかに記載の射出成形用ポリアミド樹脂組成物で成形された電子機器用成形品。
(8) 電子機器が携帯電子機器である(7)の電子機器用成形品。 That is, the present invention
(1) Amorphous polyamide resin (A) having an alicyclic group and no aromatic group (A), terpene phenol resin (B), and variant having a major axis / minor axis ratio of 1.5 to 10 A polyamide resin composition containing a modified cross-section glass fiber (C) having a cross section, wherein the composition exhibits the following characteristics:
(B) Apparent glass transition temperature of 125 to 160 ° C
(B) melt viscosity at a temperature 285 ° C. is, shear rates in 12.2Sec -1 at 1000 ~ 2000 Pa · s, and 100 to the shear rate of 1216 sec -1 350 Pa · s
(2) The amount of the amorphous polyamide resin (A) is based on the total mass of the amorphous polyamide resin (A), the terpene phenol resin (B), and the modified cross-section glass fiber (C). 30 to 69.5 mass%, the blending amount of the terpene phenol resin (B) is 0.5 to 10 mass%, and the blending amount of the modified cross-section glass fiber (C) is 30 to 60 mass% ( The polyamide resin composition for injection molding as described in 1).
(3) The polyamide resin for injection molding according to (1) or (2), wherein the amorphous polyamide resin (A) is a polyamide resin formed by polycondensation of an aliphatic dicarboxylic acid and an alicyclic diamine. Composition.
(4) The aliphatic dicarboxylic acid of the amorphous polyamide resin (A) is selected from dicarboxylic acids having 12 to 18 carbon atoms, and the alicyclic diamine is bis (4-amino-cyclohexyl) methane, bis (3-) is selected from (3-amino-cyclohexyl) methane, bis (3-methyl-4-amino-cyclohexyl) methane, and 2,2-bis (4-amino-cyclohexyl) propane. Polyamide resin composition for injection molding.
(5) When the irregular cross-section glass fiber (C) is blended, 0.1 to 3 parts by mass of a silane coupling agent is added to 100 parts by mass of the irregular cross-section glass fiber (C). The polyamide resin composition for injection molding as described in any one of) to (4).
(6) The ratio (LSv / HSv) of the melt viscosity (LSv) at a shear rate of 12.2 sec −1 to the melt viscosity (HSv) at a shear rate of 1216 sec −1 is 4.0 to 7.0 (1) The polyamide resin composition for injection molding according to any one of (5) to (5).
(7) A molded article for an electronic device molded from the polyamide resin composition for injection molding according to any one of (1) to (6).
(8) The molded product for an electronic device according to (7), wherein the electronic device is a portable electronic device.
本発明のポリアミド樹脂組成物は、特定の構成成分の非晶性ポリアミド樹脂と異形断面のガラス繊維とを主体とし、テルペンフェノール系樹脂を含有させて、見かけのガラス転移温度を特定範囲とし、射出成形時の溶融粘度を低せん断速度と高せん断速度で特定の範囲になるように制御しているため、薄肉成形性とバリ発生の抑制とを両立させることができ、バリ取り作業が不要なガラス繊維強化系のポリアミド射出成形品を提供することができる。
The polyamide resin composition of the present invention is mainly composed of an amorphous polyamide resin of a specific component and a glass fiber having an irregular cross section, contains a terpene phenol resin, has an apparent glass transition temperature within a specific range, and is injected. Since the melt viscosity at the time of molding is controlled to be within a specific range at a low shear rate and a high shear rate, it is possible to achieve both thin formability and suppression of burr generation, and glass that does not require deburring A fiber-reinforced polyamide injection molded article can be provided.
以下に本発明を具体的に説明する。
本発明のポリアミド樹脂組成物は、脂環族基を有し、芳香族基を有さない非晶性ポリアミド樹脂(A)、テルペンフェノール系樹脂(B)、及び長径/短径の比が1.5~10の異形断面を有する異形断面ガラス繊維(C)を含有し、該ポリアミド樹脂組成物の見かけのガラス転移温度が125~160℃である。見かけのガラス転移温度は、130~155℃が好ましく、135~153℃がより好ましい。ポリアミド樹脂組成物の見かけのガラス転移温度が125℃未満だと、吸水によってガラス転移温度が更に低下するために熱時の剛性が低下し、変形などの問題が発生する恐れがあり好ましくない。160℃を超えると、充填性や良好な外観を得るために必要な金型温度が著しく高くなるために成形性を損なうために好ましくない。
見かけのガラス転移温度とは、一般的なDSC測定装置を用い、窒素気流下で20℃/分の昇温速度で300℃まで昇温し、その温度で5分間保持した後、10℃/分の速度にて50℃まで降温させたときに認められるJIS K7121に記載の中間点ガラス転移温度(Tmg)を測定した数値である。
本発明のポリアミド樹脂組成物が、見かけのガラス転移温度が125~160℃を示すためには、本発明における非晶性ポリアミド樹脂(A)は、ガラス転移温度が130~165℃程度であることが好ましい。より好ましくは、135~160℃、さらに好ましくは135~155℃である。非晶性ポリアミド樹脂(A)のガラス転移温度が130℃未満では吸水によってガラス転移温度が更に低下するために熱時の剛性が低下し、変形などの問題が発生する恐れがあり好ましくない。非晶性ポリアミド樹脂(A)のガラス転移温度が165℃を超えると、耐衝撃性や靭性が劣るようになる。また、ガラス転移温度が高い場合には充填性に難があるために成形時の金型温度や樹脂温度を極めて高く設定する必要があり、省エネの点でも好ましくない。また、芳香族基を有すると靭性が劣るようになる。
本発明における非晶性とは、JIS K7121に準じて昇温速度20℃/分でDSC測定した場合に、明確な融点を示さないものである。 The present invention will be specifically described below.
The polyamide resin composition of the present invention has an alicyclic group, an amorphous polyamide resin (A) having no aromatic group, a terpene phenol resin (B), and a ratio of major axis / minor axis of 1. The glass fiber (C) having a modified cross section having a modified cross section of 5 to 10 is contained, and the apparent glass transition temperature of the polyamide resin composition is 125 to 160 ° C. The apparent glass transition temperature is preferably from 130 to 155 ° C, more preferably from 135 to 153 ° C. If the apparent glass transition temperature of the polyamide resin composition is less than 125 ° C., the glass transition temperature is further lowered by water absorption, so that the rigidity during heating is lowered and there is a possibility that problems such as deformation may occur, which is not preferable. If the temperature exceeds 160 ° C., the mold temperature necessary for obtaining a filling property and a good appearance is remarkably increased, so that the moldability is impaired.
The apparent glass transition temperature is a typical DSC measuring apparatus, heated to 300 ° C. at a rate of temperature increase of 20 ° C./min under a nitrogen stream, held at that temperature for 5 minutes, and then 10 ° C./min. It is the numerical value which measured the midpoint glass transition temperature (Tmg) as described in JISK7121 recognized when it temperature-falls to 50 degreeC with the speed | rate of (5).
In order for the polyamide resin composition of the present invention to have an apparent glass transition temperature of 125 to 160 ° C., the amorphous polyamide resin (A) in the present invention has a glass transition temperature of about 130 to 165 ° C. Is preferred. More preferably, it is 135 to 160 ° C, and still more preferably 135 to 155 ° C. If the glass transition temperature of the amorphous polyamide resin (A) is less than 130 ° C., the glass transition temperature is further lowered by water absorption, so that the rigidity during heating is lowered, and problems such as deformation may occur. When the glass transition temperature of the amorphous polyamide resin (A) exceeds 165 ° C., impact resistance and toughness become poor. Further, when the glass transition temperature is high, the filling property is difficult, so it is necessary to set the mold temperature and the resin temperature at the time of molding extremely high, which is not preferable in terms of energy saving. Moreover, when it has an aromatic group, toughness will become inferior.
The term “amorphous” as used in the present invention means that it does not show a clear melting point when DSC measurement is performed at a temperature rising rate of 20 ° C./min according to JIS K7121.
本発明のポリアミド樹脂組成物は、脂環族基を有し、芳香族基を有さない非晶性ポリアミド樹脂(A)、テルペンフェノール系樹脂(B)、及び長径/短径の比が1.5~10の異形断面を有する異形断面ガラス繊維(C)を含有し、該ポリアミド樹脂組成物の見かけのガラス転移温度が125~160℃である。見かけのガラス転移温度は、130~155℃が好ましく、135~153℃がより好ましい。ポリアミド樹脂組成物の見かけのガラス転移温度が125℃未満だと、吸水によってガラス転移温度が更に低下するために熱時の剛性が低下し、変形などの問題が発生する恐れがあり好ましくない。160℃を超えると、充填性や良好な外観を得るために必要な金型温度が著しく高くなるために成形性を損なうために好ましくない。
見かけのガラス転移温度とは、一般的なDSC測定装置を用い、窒素気流下で20℃/分の昇温速度で300℃まで昇温し、その温度で5分間保持した後、10℃/分の速度にて50℃まで降温させたときに認められるJIS K7121に記載の中間点ガラス転移温度(Tmg)を測定した数値である。
本発明のポリアミド樹脂組成物が、見かけのガラス転移温度が125~160℃を示すためには、本発明における非晶性ポリアミド樹脂(A)は、ガラス転移温度が130~165℃程度であることが好ましい。より好ましくは、135~160℃、さらに好ましくは135~155℃である。非晶性ポリアミド樹脂(A)のガラス転移温度が130℃未満では吸水によってガラス転移温度が更に低下するために熱時の剛性が低下し、変形などの問題が発生する恐れがあり好ましくない。非晶性ポリアミド樹脂(A)のガラス転移温度が165℃を超えると、耐衝撃性や靭性が劣るようになる。また、ガラス転移温度が高い場合には充填性に難があるために成形時の金型温度や樹脂温度を極めて高く設定する必要があり、省エネの点でも好ましくない。また、芳香族基を有すると靭性が劣るようになる。
本発明における非晶性とは、JIS K7121に準じて昇温速度20℃/分でDSC測定した場合に、明確な融点を示さないものである。 The present invention will be specifically described below.
The polyamide resin composition of the present invention has an alicyclic group, an amorphous polyamide resin (A) having no aromatic group, a terpene phenol resin (B), and a ratio of major axis / minor axis of 1. The glass fiber (C) having a modified cross section having a modified cross section of 5 to 10 is contained, and the apparent glass transition temperature of the polyamide resin composition is 125 to 160 ° C. The apparent glass transition temperature is preferably from 130 to 155 ° C, more preferably from 135 to 153 ° C. If the apparent glass transition temperature of the polyamide resin composition is less than 125 ° C., the glass transition temperature is further lowered by water absorption, so that the rigidity during heating is lowered and there is a possibility that problems such as deformation may occur, which is not preferable. If the temperature exceeds 160 ° C., the mold temperature necessary for obtaining a filling property and a good appearance is remarkably increased, so that the moldability is impaired.
The apparent glass transition temperature is a typical DSC measuring apparatus, heated to 300 ° C. at a rate of temperature increase of 20 ° C./min under a nitrogen stream, held at that temperature for 5 minutes, and then 10 ° C./min. It is the numerical value which measured the midpoint glass transition temperature (Tmg) as described in JISK7121 recognized when it temperature-falls to 50 degreeC with the speed | rate of (5).
In order for the polyamide resin composition of the present invention to have an apparent glass transition temperature of 125 to 160 ° C., the amorphous polyamide resin (A) in the present invention has a glass transition temperature of about 130 to 165 ° C. Is preferred. More preferably, it is 135 to 160 ° C, and still more preferably 135 to 155 ° C. If the glass transition temperature of the amorphous polyamide resin (A) is less than 130 ° C., the glass transition temperature is further lowered by water absorption, so that the rigidity during heating is lowered, and problems such as deformation may occur. When the glass transition temperature of the amorphous polyamide resin (A) exceeds 165 ° C., impact resistance and toughness become poor. Further, when the glass transition temperature is high, the filling property is difficult, so it is necessary to set the mold temperature and the resin temperature at the time of molding extremely high, which is not preferable in terms of energy saving. Moreover, when it has an aromatic group, toughness will become inferior.
The term “amorphous” as used in the present invention means that it does not show a clear melting point when DSC measurement is performed at a temperature rising rate of 20 ° C./min according to JIS K7121.
本発明のポリアミド樹脂組成物は、温度285℃での溶融粘度が、せん断速度12.2sec-1において1000~2000Pa・sで、かつせん断速度1216sec-1において100~350Pa・sであることが必要である。温度285℃での溶融粘度が、せん断速度1216sec-1において100~350Pa・sであることにより、溶融樹脂組成物の金型キャビティ内への充填の最盛期である成形充填中期の溶融流動性が確保されて薄肉成形性が良好であり、せん断速度12.2sec-1において1000~2000Pa・sであることにより、成形充填終期に溶融流動性が低下してバリ発生抑制効果が発現される。
この溶融流動性の挙動は、脂環族基を有し、芳香族基を有さない非晶性ポリアミド樹脂(A)、テルペンフェノール系樹脂(B)、及び長径/短径の比が1.5~10の異形断面を有する異形断面ガラス繊維(C)との組み合わせによって発現させることができる。
非晶性ポリアミド樹脂(A)、テルペンフェノール系樹脂(B)、及び異形断面ガラス繊維(C)の配合量比は、下記で説明する量比が好ましい。 The polyamide resin composition of the present invention, the melt viscosity at a temperature 285 ° C. is at 1000 ~ 2000 Pa · s at a shear rate 12.2Sec -1, and it is necessary and shear rate 1216 sec -1 at 100 ~ 350 Pa · s It is. Since the melt viscosity at a temperature of 285 ° C. is 100 to 350 Pa · s at a shear rate of 1216 sec −1 , the melt fluidity in the middle stage of molding and filling, which is the peak stage of filling of the molten resin composition into the mold cavity, is achieved. By being ensured and having good thin-wall formability and a shear rate of 12.2 sec −1 of 1000 to 2000 Pa · s, the melt fluidity is lowered at the end of molding filling, and the effect of suppressing the occurrence of burrs is exhibited.
The behavior of the melt fluidity is such that the ratio of major axis / minor axis is 1. Amorphous polyamide resin (A) having no alicyclic group and no aromatic group, terpene phenol resin (B), and major axis / minor axis ratio. It can be expressed by combination with a modified cross-section glass fiber (C) having a modified cross section of 5 to 10.
The amount ratio of the amorphous polyamide resin (A), the terpene phenol resin (B), and the modified cross-section glass fiber (C) is preferably the amount ratio described below.
この溶融流動性の挙動は、脂環族基を有し、芳香族基を有さない非晶性ポリアミド樹脂(A)、テルペンフェノール系樹脂(B)、及び長径/短径の比が1.5~10の異形断面を有する異形断面ガラス繊維(C)との組み合わせによって発現させることができる。
非晶性ポリアミド樹脂(A)、テルペンフェノール系樹脂(B)、及び異形断面ガラス繊維(C)の配合量比は、下記で説明する量比が好ましい。 The polyamide resin composition of the present invention, the melt viscosity at a temperature 285 ° C. is at 1000 ~ 2000 Pa · s at a shear rate 12.2Sec -1, and it is necessary and shear rate 1216 sec -1 at 100 ~ 350 Pa · s It is. Since the melt viscosity at a temperature of 285 ° C. is 100 to 350 Pa · s at a shear rate of 1216 sec −1 , the melt fluidity in the middle stage of molding and filling, which is the peak stage of filling of the molten resin composition into the mold cavity, is achieved. By being ensured and having good thin-wall formability and a shear rate of 12.2 sec −1 of 1000 to 2000 Pa · s, the melt fluidity is lowered at the end of molding filling, and the effect of suppressing the occurrence of burrs is exhibited.
The behavior of the melt fluidity is such that the ratio of major axis / minor axis is 1. Amorphous polyamide resin (A) having no alicyclic group and no aromatic group, terpene phenol resin (B), and major axis / minor axis ratio. It can be expressed by combination with a modified cross-section glass fiber (C) having a modified cross section of 5 to 10.
The amount ratio of the amorphous polyamide resin (A), the terpene phenol resin (B), and the modified cross-section glass fiber (C) is preferably the amount ratio described below.
また、せん断速度12.2sec-1における溶融粘度(LSv)とせん断速度1216sec-1における溶融粘度(HSv)との比(LSv/HSv)は、4.0~7.0であることが成形安定性の点で好ましい。LSv/HSvが7.0を超える場合は成形のバラツキが発生しやすい傾向があり、LSv/HSvが4.0未満では、バリ抑制効果の発現がしにくくなる傾向がある。
Further, the molding stability is such that the ratio (LSv / HSv) of the melt viscosity (LSv) at a shear rate of 12.2 sec −1 to the melt viscosity (HSv) at a shear rate of 1216 sec −1 is 4.0 to 7.0. From the viewpoint of sex. When LSv / HSv exceeds 7.0, there is a tendency that variation in molding tends to occur, and when LSv / HSv is less than 4.0, there is a tendency that the burr suppressing effect is hardly exhibited.
さらに、本発明のポリアミド樹脂組成物は、ISO1133に準じて測定したメルトインデックス(温度275℃、荷重5kg)が10g/10分以上であると、薄肉成形性とバリ発生抑制効果の両立をさせやすくなるため好ましい。
Furthermore, when the melt index (temperature: 275 ° C., load: 5 kg) measured in accordance with ISO 1133 is 10 g / 10 min or more, the polyamide resin composition of the present invention can easily achieve both the thin-wall formability and the burr generation suppressing effect. Therefore, it is preferable.
本発明における脂環族基を有し、芳香族基を有さない非晶性ポリアミド樹脂(A)は、ポリアミドを構成するモノマーの少なくとも1種が、脂環族基を有するモノマーであり、構成するモノマーとして芳香族基を含有しない非晶性ポリアミドである。本発明における非晶性とは、前記した通り、JIS K7121に準じて昇温速度20℃/分でDSC測定した場合に、明確な融点ピークを示さないものである。
本発明における非晶性ポリアミド樹脂(A)としては、脂肪族ジカルボン酸と脂環族ジアミンとの重縮合により形成されたポリアミド樹脂であることが好ましい。 In the present invention, the amorphous polyamide resin (A) having an alicyclic group and not having an aromatic group is a monomer in which at least one monomer constituting the polyamide has an alicyclic group. It is an amorphous polyamide which does not contain an aromatic group as a monomer to be used. As described above, the term “amorphous” in the present invention does not indicate a clear melting point peak when DSC measurement is performed at a rate of temperature increase of 20 ° C./min according to JIS K7121.
The amorphous polyamide resin (A) in the present invention is preferably a polyamide resin formed by polycondensation of an aliphatic dicarboxylic acid and an alicyclic diamine.
本発明における非晶性ポリアミド樹脂(A)としては、脂肪族ジカルボン酸と脂環族ジアミンとの重縮合により形成されたポリアミド樹脂であることが好ましい。 In the present invention, the amorphous polyamide resin (A) having an alicyclic group and not having an aromatic group is a monomer in which at least one monomer constituting the polyamide has an alicyclic group. It is an amorphous polyamide which does not contain an aromatic group as a monomer to be used. As described above, the term “amorphous” in the present invention does not indicate a clear melting point peak when DSC measurement is performed at a rate of temperature increase of 20 ° C./min according to JIS K7121.
The amorphous polyamide resin (A) in the present invention is preferably a polyamide resin formed by polycondensation of an aliphatic dicarboxylic acid and an alicyclic diamine.
非晶性ポリアミド樹脂(A)を構成するモノマーのうち、脂環族ジアミンとしては、ビス(4-アミノ-シクロヘキシル)メタン(PACMと略記することがある)、ビス(3-アミノ-シクロヘキシル)メタン、ビス(3-メチル-4-アミノ-シクロヘキシル)メタン(MACMと略記することがある)、2,2-ビス(4-アミノ-シクロヘキシル)プロパン、イソホロンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、3-アミノシクロヘキシル-4-アミノシクロヘキシルメタン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス(アミノプロピル)ピペラジン、ビス(アミノエチル)ピペラジンなどが挙げられる。
非晶性ポリアミド樹脂(A)を構成するモノマーのうち、脂肪族ジカルボン酸としては、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸(12と略記することがある)、トリデカン二酸、テトラデカン二酸(14と略記することがある)など、炭素原子数4~36の直鎖状または分岐鎖を有する脂肪族ジカルボン酸類が挙げられる。
非晶性ポリアミド樹脂(A)を構成するモノマーとして、ε-カプロラクタム、ω-ラウロラクタムなどのラクタム類、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸などのアミノカルボン酸、テトラメチレンジアミン、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミンなどの脂肪族ジアミン類が含まれても良い。 Among the monomers constituting the amorphous polyamide resin (A), alicyclic diamines include bis (4-amino-cyclohexyl) methane (may be abbreviated as PACM), bis (3-amino-cyclohexyl) methane. Bis (3-methyl-4-amino-cyclohexyl) methane (may be abbreviated as MACM), 2,2-bis (4-amino-cyclohexyl) propane, isophoronediamine, 1,3-bis (aminomethyl) Cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 3-aminocyclohexyl-4-aminocyclohexylmethane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis (aminopropyl) piperazine, bis (Aminoethyl) piperazine and the like can be mentioned.
Among the monomers constituting the amorphous polyamide resin (A), examples of the aliphatic dicarboxylic acid include adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid (may be abbreviated as 12). And aliphatic dicarboxylic acids having a linear or branched chain having 4 to 36 carbon atoms, such as tridecanedioic acid and tetradecanedioic acid (sometimes abbreviated as 14).
As monomers constituting the amorphous polyamide resin (A), lactams such as ε-caprolactam and ω-laurolactam, aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid, tetra Aliphatic diamines such as methylene diamine, hexamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4 / 2,4,4-trimethylhexamethylene diamine and 5-methylnonamethylene diamine may be included. good.
非晶性ポリアミド樹脂(A)を構成するモノマーのうち、脂肪族ジカルボン酸としては、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸(12と略記することがある)、トリデカン二酸、テトラデカン二酸(14と略記することがある)など、炭素原子数4~36の直鎖状または分岐鎖を有する脂肪族ジカルボン酸類が挙げられる。
非晶性ポリアミド樹脂(A)を構成するモノマーとして、ε-カプロラクタム、ω-ラウロラクタムなどのラクタム類、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸などのアミノカルボン酸、テトラメチレンジアミン、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミンなどの脂肪族ジアミン類が含まれても良い。 Among the monomers constituting the amorphous polyamide resin (A), alicyclic diamines include bis (4-amino-cyclohexyl) methane (may be abbreviated as PACM), bis (3-amino-cyclohexyl) methane. Bis (3-methyl-4-amino-cyclohexyl) methane (may be abbreviated as MACM), 2,2-bis (4-amino-cyclohexyl) propane, isophoronediamine, 1,3-bis (aminomethyl) Cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 3-aminocyclohexyl-4-aminocyclohexylmethane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis (aminopropyl) piperazine, bis (Aminoethyl) piperazine and the like can be mentioned.
Among the monomers constituting the amorphous polyamide resin (A), examples of the aliphatic dicarboxylic acid include adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid (may be abbreviated as 12). And aliphatic dicarboxylic acids having a linear or branched chain having 4 to 36 carbon atoms, such as tridecanedioic acid and tetradecanedioic acid (sometimes abbreviated as 14).
As monomers constituting the amorphous polyamide resin (A), lactams such as ε-caprolactam and ω-laurolactam, aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid, tetra Aliphatic diamines such as methylene diamine, hexamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4 / 2,4,4-trimethylhexamethylene diamine and 5-methylnonamethylene diamine may be included. good.
上記モノマーの組み合わせとしては、ビス(4-アミノ-シクロヘキシル)メタン(PACM)、ビス(3-アミノ-シクロヘキシル)メタン、ビス(3-メチル-4-アミノ-シクロヘキシル)メタン(MACM)、2,2-ビス(4-アミノ-シクロヘキシル)プロパンから選択される脂環族ジアミンと、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸などの炭素数12~18のジカルボン酸から選択される脂肪族ジカルボン酸との組み合わせが溶融流動特性の点で好ましい。脂肪族ジカルボン酸としては、より好ましくはドデカン二酸、テトラデカン二酸であり、さらに好ましくはテトラデカン二酸である。
また、MACMとドデカン二酸(MACM・12)、MACMとテトラデカン二酸(MACM・14)の組み合わせが、吸水率が低く、吸水寸法変化が小さい点で好ましい。中でも、MACM・14は、成形温度を300℃以下で成形でき、金型温度を100℃でも薄肉成形性とバリ発生抑制性が優れ、強度、剛性、耐衝撃性、靭性に優れた成形品が得られやすい点で好ましい。 Examples of the monomer combinations include bis (4-amino-cyclohexyl) methane (PACM), bis (3-amino-cyclohexyl) methane, bis (3-methyl-4-amino-cyclohexyl) methane (MACM), 2,2 -Fatty acids selected from alicyclic diamines selected from bis (4-amino-cyclohexyl) propane and dicarboxylic acids having 12 to 18 carbon atoms such as undecanedioic acid, dodecanedioic acid, tridecanedioic acid and tetradecanedioic acid A combination with a group dicarboxylic acid is preferred in terms of melt flow characteristics. As the aliphatic dicarboxylic acid, dodecanedioic acid and tetradecanedioic acid are more preferable, and tetradecanedioic acid is more preferable.
Further, a combination of MACM and dodecanedioic acid (MACM · 12), MACM and tetradecanedioic acid (MACM · 14) is preferable in terms of low water absorption and small change in water absorption dimension. Among them, MACM 14 can be molded at a molding temperature of 300 ° C. or less, and is excellent in strength, rigidity, impact resistance, and toughness even when the mold temperature is 100 ° C. It is preferable in that it can be easily obtained.
また、MACMとドデカン二酸(MACM・12)、MACMとテトラデカン二酸(MACM・14)の組み合わせが、吸水率が低く、吸水寸法変化が小さい点で好ましい。中でも、MACM・14は、成形温度を300℃以下で成形でき、金型温度を100℃でも薄肉成形性とバリ発生抑制性が優れ、強度、剛性、耐衝撃性、靭性に優れた成形品が得られやすい点で好ましい。 Examples of the monomer combinations include bis (4-amino-cyclohexyl) methane (PACM), bis (3-amino-cyclohexyl) methane, bis (3-methyl-4-amino-cyclohexyl) methane (MACM), 2,2 -Fatty acids selected from alicyclic diamines selected from bis (4-amino-cyclohexyl) propane and dicarboxylic acids having 12 to 18 carbon atoms such as undecanedioic acid, dodecanedioic acid, tridecanedioic acid and tetradecanedioic acid A combination with a group dicarboxylic acid is preferred in terms of melt flow characteristics. As the aliphatic dicarboxylic acid, dodecanedioic acid and tetradecanedioic acid are more preferable, and tetradecanedioic acid is more preferable.
Further, a combination of MACM and dodecanedioic acid (MACM · 12), MACM and tetradecanedioic acid (MACM · 14) is preferable in terms of low water absorption and small change in water absorption dimension. Among them, MACM 14 can be molded at a molding temperature of 300 ° C. or less, and is excellent in strength, rigidity, impact resistance, and toughness even when the mold temperature is 100 ° C. It is preferable in that it can be easily obtained.
本発明に用いる非晶性ポリアミド樹脂の分子量は特に限定されないが、下記に記載の方法で測定した数平均分子量が、3000~40000の範囲であることが好ましい。7000~30000の範囲がより好ましく、10000~25000の範囲がさらに好ましい。数平均分子量が3000より小さいと機械的強度が低下し、逆に40000より大きいと分子量が高くなりすぎて成形性が悪くなるので好ましくない。本発明における非晶性ポリアミド樹脂の配合量は、該非晶性ポリアミド樹脂(A)、テルペンフェノール系樹脂(B)、及び異形断面ガラス繊維(C)の合計質量に対し、30~69.5質量%が好ましい。より好ましくは、35~59質量%であり、さらに好ましくは、40~54質量%である。この好ましい範囲は、テルペンフェノール系樹脂(B)、及び異形断面ガラス繊維(C)の好ましい範囲を下記で説明しているが、これら範囲から導き出される。
The molecular weight of the amorphous polyamide resin used in the present invention is not particularly limited, but the number average molecular weight measured by the method described below is preferably in the range of 3000 to 40000. The range of 7000 to 30000 is more preferable, and the range of 10,000 to 25000 is more preferable. If the number average molecular weight is less than 3000, the mechanical strength is lowered. Conversely, if the number average molecular weight is more than 40000, the molecular weight becomes too high and the moldability is deteriorated. The compounding amount of the amorphous polyamide resin in the present invention is 30 to 69.5 mass with respect to the total mass of the amorphous polyamide resin (A), the terpene phenol resin (B), and the modified cross-section glass fiber (C). % Is preferred. More preferably, it is 35 to 59% by mass, and still more preferably 40 to 54% by mass. This preferred range is derived from the ranges described below for the preferred ranges of the terpene phenol resin (B) and the modified cross-section glass fiber (C).
本発明に用いるテルペンフェノール系樹脂は、本発明に用いる非晶性ポリアミド樹脂と相溶して非晶性ポリアミド樹脂含有組成物の見かけのガラス転移温度を下げることができ、かつ溶融流動性を高めることができるため、テルペンフェノール系樹脂を配合しない場合に比べて成形温度や金型温度を下げても充填性に問題が出難いため、冷却時間の短縮が可能となったり、成形条件幅を広く取ることができる。特に、MACM・14との組み合わせは、見かけのガラス転移温度低下が大きく好ましい。
The terpene phenol resin used in the present invention is compatible with the amorphous polyamide resin used in the present invention, and can lower the apparent glass transition temperature of the amorphous polyamide resin-containing composition, and increase the melt fluidity. Therefore, compared to the case where terpene phenolic resin is not blended, it is difficult for the filling property to occur even if the molding temperature and mold temperature are lowered, so the cooling time can be shortened and the molding condition range can be widened. Can be taken. In particular, the combination with MACM · 14 is preferable because the apparent glass transition temperature decreases greatly.
テルペンフェノール系樹脂は、多くの水酸基を有するため、ポリアミドのアミド基中に水素結合によって取り込まれ、その結果ポリアミドのガラス転移温度を見かけ上、下げることが可能である。吸水や液状の可塑剤によっても同様の効果を出し得るが、成形や押出し加工によって揮発するために、効果が出にくかったり、安定しなかったりする。また、薄肉の成形品の場合、成形時の揮発量が多いと製品の最終充填部が焦げたりして良品が取りにくい。テルペンフェノール樹脂は揮発せずにポリアミド樹脂中に残存するために、安定した効果を発揮することが可能である。
Since the terpene phenol resin has many hydroxyl groups, it is incorporated into the amide group of the polyamide by hydrogen bonding, and as a result, the glass transition temperature of the polyamide can be apparently lowered. The same effect can be obtained by water absorption or a liquid plasticizer, but the effect is difficult or unstable due to volatilization by molding or extrusion. Further, in the case of a thin molded product, if the volatilization amount at the time of molding is large, the final filling portion of the product is burnt and it is difficult to remove a good product. Since the terpene phenol resin does not volatilize and remains in the polyamide resin, a stable effect can be exhibited.
本発明に用いるテルペンフェノール系樹脂は、テルペン類モノマーとフェノール系モノマーから成るモノマー成分を有機溶媒中でフリーデルクラフト型触媒存在下で共重合、または共重合後さらに水素添加処理して得られる反応混合物の一部または組成物全体を意味する。
The terpene phenolic resin used in the present invention is a reaction obtained by copolymerizing a monomer component composed of a terpene monomer and a phenolic monomer in an organic solvent in the presence of a Friedel-Craft type catalyst, or further hydrogenating after copolymerization. It means a part of the mixture or the whole composition.
テルペン類モノマーとは、(C5H8)nの分子式で表される炭化水素化合物またはこれから導かれる含酸素化合物であり、例えばモノテルペン類(n=2の場合、ミルセン、オシメン、ピネン、リモネン、シトロネオール、ボルネオール、メントール、ショウノウ等)、セスキテルペン類(n=3の場合、クルクメン等)、ジテルペン類(n=4の場合、カンホレン、ヒノキオール等)、テトラテルペン類(n=8の場合、カロチノイド等)、ポリテルペン(天然ゴム)などを挙げることができる。好ましいテルペン類は、モノテルペン類であり、特にピネン、リモネン等である。
The terpene monomer is a hydrocarbon compound represented by the molecular formula of (C 5 H 8 ) n or an oxygen-containing compound derived therefrom. For example, monoterpenes (when n = 2, myrcene, osymene, pinene, limonene) , Citronole, borneol, menthol, camphor, etc.), sesquiterpenes (when n = 3, curcumen, etc.), diterpenes (when n = 4, camphorene, hinokiol, etc.), tetraterpenes (when n = 8) , Carotenoids, etc.) and polyterpenes (natural rubber). Preferred terpenes are monoterpenes, particularly pinene and limonene.
フェノール類モノマーとは、ベンゼン環、ナフタレン環等の芳香環にヒドロキシル基を少なくとも1個有する化合物であり、芳香環に置換基(例えばハロゲン原子、アルキル基等)を有していても良い。例えばフェノール、クレゾール、キシレノール、ナフトール、カテコール、レゾルシン、ヒドロキノン、ピロガロール等が挙げられる。
The phenolic monomer is a compound having at least one hydroxyl group in an aromatic ring such as a benzene ring or a naphthalene ring, and may have a substituent (for example, a halogen atom, an alkyl group, etc.) in the aromatic ring. For example, phenol, cresol, xylenol, naphthol, catechol, resorcin, hydroquinone, pyrogallol and the like can be mentioned.
耐変色性の点で好ましいテルペンフェノール系樹脂は、モノテルペン類とフェノールの共重合体である。α-ピネンやリモネンなどのモノテルペン類とフェノールとの共重合体が、工業的に製造が容易でより好ましい。
本発明に用いるテルペンフェノール系樹脂の水酸基価(KOHmg/g)は、通常、150以上であることが好ましく、吸水による寸法変化の抑制効果の観点から、より好ましくは200以上である。 A preferred terpene phenol resin in terms of resistance to discoloration is a copolymer of monoterpenes and phenol. Copolymers of monoterpenes such as α-pinene and limonene and phenol are industrially easy to produce and more preferable.
The hydroxyl value (KOHmg / g) of the terpene phenol resin used in the present invention is usually preferably 150 or more, and more preferably 200 or more from the viewpoint of the effect of suppressing dimensional change due to water absorption.
本発明に用いるテルペンフェノール系樹脂の水酸基価(KOHmg/g)は、通常、150以上であることが好ましく、吸水による寸法変化の抑制効果の観点から、より好ましくは200以上である。 A preferred terpene phenol resin in terms of resistance to discoloration is a copolymer of monoterpenes and phenol. Copolymers of monoterpenes such as α-pinene and limonene and phenol are industrially easy to produce and more preferable.
The hydroxyl value (KOHmg / g) of the terpene phenol resin used in the present invention is usually preferably 150 or more, and more preferably 200 or more from the viewpoint of the effect of suppressing dimensional change due to water absorption.
本発明に用いるテルペンフェノール系樹脂の重合度は、数平均分子量500~10000程度が好ましい。500未満であると、低分子量成分が加熱時に発煙して作業性が悪化する可能性がある。10000を超えると脆い材料となり、粘着性や相溶性の点で影響が出ることがある。具体的には、例えばヤスハラケミカル(株)製のYSポリスターシリーズ、マイティエースシリーズなどがある。
The degree of polymerization of the terpene phenol resin used in the present invention is preferably about a number average molecular weight of about 500 to 10,000. If it is less than 500, the low molecular weight component may emit smoke upon heating and workability may be deteriorated. If it exceeds 10,000, it becomes a brittle material, which may affect the stickiness and compatibility. Specifically, there are, for example, YS polyster series and Mighty Ace series manufactured by Yashara Chemical Co., Ltd.
本発明におけるテルペンフェノール系樹脂の配合量は、前記非晶性ポリアミド樹脂(A)、該テルペンフェノール系樹脂(B)、及び異形断面ガラス繊維(C)の合計質量に対し、0.5~10質量%であることが好ましく、より好ましくは1~5質量%である。0.5質量%未満では、配合効果の発現がほとんど認められず、10質量%を超えると、機械的強度が低下したり、表面に析出したテルペンフェノールが剥離したりするため好ましくない。
The blending amount of the terpene phenol resin in the present invention is 0.5 to 10 with respect to the total mass of the amorphous polyamide resin (A), the terpene phenol resin (B), and the modified cross-section glass fiber (C). The content is preferably mass%, more preferably 1 to 5 mass%. If the amount is less than 0.5% by mass, almost no expression of the blending effect is observed, and if it exceeds 10% by mass, the mechanical strength is lowered or the terpene phenol deposited on the surface is peeled off.
本発明に用いるガラス繊維は、長径/短径の比が1.5~10である異形断面形状のガラス繊維であり、好ましくは、長径/短径の比が2.0~6.0のものである。長径/短径比が1.5未満では反りを低減させる効果に乏しく、長径/短径比が10超のものはガラス繊維自体の製造が困難である。異形断面形状とは、楕円型、ひょうたん型、まゆ型、長円型、矩形などいずれの形状でもよく、短径とは、断面の最短径距離であり、長径とは、断面の最長径距離を指す。長径は、10~50μm、短径は、5~20μmの範囲内のものが好ましい。
The glass fiber used in the present invention is a glass fiber having a modified cross-sectional shape having a major axis / minor axis ratio of 1.5 to 10, preferably having a major axis / minor axis ratio of 2.0 to 6.0. It is. When the major axis / minor axis ratio is less than 1.5, the effect of reducing warpage is poor, and when the major axis / minor axis ratio exceeds 10, it is difficult to produce glass fibers themselves. The irregular cross-sectional shape may be any shape such as an elliptical shape, a gourd shape, an eyebrows shape, an oval shape, a rectangular shape, etc., the short diameter is the shortest diameter distance of the cross section, and the long diameter is the longest diameter distance of the cross section. Point to. The major axis is preferably 10 to 50 μm and the minor axis is preferably in the range of 5 to 20 μm.
また、ガラス繊維は、短繊維タイプのチョップドストランドを用いることが好ましい。チョップドストランドは、長さが3~6mmのガラス繊維であることが好ましく、長さが4~5mmであることが更に好ましい。
Further, it is preferable to use short fiber type chopped strands for the glass fiber. The chopped strand is preferably a glass fiber having a length of 3 to 6 mm, and more preferably 4 to 5 mm.
本発明における異形断面ガラス繊維の配合量は、前記非晶性ポリアミド樹脂(A)、前記テルペンフェノール系樹脂(B)、及び該異形断面ガラス繊維(C)の合計質量に対し、30~60質量%が好ましい。より好ましくは、40~60質量%であり、さらに好ましくは、45~55質量%である。30質量%未満であると成形品の機械的強度が低く、60質量%超であると樹脂の流動性が悪く、薄肉の場合、寸法精度が高い成形体を得ることが難しい。
The blending amount of the irregular cross-section glass fiber in the present invention is 30 to 60 mass with respect to the total mass of the amorphous polyamide resin (A), the terpene phenol resin (B), and the irregular cross-section glass fiber (C). % Is preferred. More preferably, it is 40 to 60% by mass, and still more preferably 45 to 55% by mass. If it is less than 30% by mass, the mechanical strength of the molded product is low, and if it exceeds 60% by mass, the resin has poor fluidity, and if it is thin, it is difficult to obtain a molded product with high dimensional accuracy.
異形断面ガラス繊維は、シラン系、チタネート系などのカップリング剤で処理されているものが好ましく、特にシラン系カップリング剤で処理されているものが好ましく使用できる。
好ましいシラン系カップリング剤としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン等を例示することができ、特にγ-グリシドキシプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシランが好ましい。
シラン系カップリング剤は、ガラス繊維製造時に予め付与されたもの以外に、ポリアミド樹脂に配合する直前に新たに付与することが好ましい。カップリング剤の付与量はガラス繊維100質量部に対して0.1~3質量部が好ましい。0.1質量部未満では付与の効果が小さく、3質量部を超えることは経済的でなく、また、成形時のガス発生が多くなり、外観が悪くなったりするため好ましくない。但し、ガラス繊維製造時に予め付与されるシラン系カップリング剤の改良されたガラス繊維を使用する場合は、新たな付与は特に必要としない。 The modified cross-section glass fiber is preferably treated with a coupling agent such as a silane-based or titanate-based fiber, and particularly preferably treated with a silane-based coupling agent.
Preferred silane coupling agents include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ-anilinopropyl. Examples include trimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and the like. Glycidoxypropyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, and γ-methacryloxypropyltrimethoxysilane are preferred.
The silane coupling agent is preferably newly added immediately before compounding with the polyamide resin, in addition to those previously given at the time of glass fiber production. The amount of coupling agent applied is preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the glass fiber. If it is less than 0.1 parts by mass, the effect of imparting is small, and if it exceeds 3 parts by mass, it is not economical, and gas generation during molding increases, and the appearance deteriorates. However, in the case of using a glass fiber having an improved silane coupling agent that is preliminarily applied at the time of glass fiber production, no new application is particularly required.
好ましいシラン系カップリング剤としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン等を例示することができ、特にγ-グリシドキシプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシランが好ましい。
シラン系カップリング剤は、ガラス繊維製造時に予め付与されたもの以外に、ポリアミド樹脂に配合する直前に新たに付与することが好ましい。カップリング剤の付与量はガラス繊維100質量部に対して0.1~3質量部が好ましい。0.1質量部未満では付与の効果が小さく、3質量部を超えることは経済的でなく、また、成形時のガス発生が多くなり、外観が悪くなったりするため好ましくない。但し、ガラス繊維製造時に予め付与されるシラン系カップリング剤の改良されたガラス繊維を使用する場合は、新たな付与は特に必要としない。 The modified cross-section glass fiber is preferably treated with a coupling agent such as a silane-based or titanate-based fiber, and particularly preferably treated with a silane-based coupling agent.
Preferred silane coupling agents include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ-anilinopropyl. Examples include trimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and the like. Glycidoxypropyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, and γ-methacryloxypropyltrimethoxysilane are preferred.
The silane coupling agent is preferably newly added immediately before compounding with the polyamide resin, in addition to those previously given at the time of glass fiber production. The amount of coupling agent applied is preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the glass fiber. If it is less than 0.1 parts by mass, the effect of imparting is small, and if it exceeds 3 parts by mass, it is not economical, and gas generation during molding increases, and the appearance deteriorates. However, in the case of using a glass fiber having an improved silane coupling agent that is preliminarily applied at the time of glass fiber production, no new application is particularly required.
また、本発明のポリアミド樹脂組成物には、前記以外に、必要に応じて公知の範囲で光又は熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、滑材、結晶核剤、離型剤、帯電防止剤、ハロゲン系難燃剤と酸三化アンチモンの組み合わせ、各種リン酸系難燃剤、メラミン系難燃剤、無機顔料、有機顔料、染料、あるいは他種ポリマーなども添加することが出来る。
In addition to the above, the polyamide resin composition of the present invention includes a light or heat stabilizer, an antioxidant, an ultraviolet absorber, a light stabilizer, a plasticizer, a lubricant, a crystal nucleus within a known range as necessary. Additives, mold release agents, antistatic agents, combinations of halogenated flame retardants and antimony trioxide, various phosphate flame retardants, melamine flame retardants, inorganic pigments, organic pigments, dyes, or other types of polymers I can do it.
本発明のポリアミド樹脂組成物を製造する製造法としては、上述した少なくとも(A)、(B)、(C)の各成分、およびその他の配合物を上記配合組成にて任意の配合順列で配合した後、タンブラー或いはヘンシェルミキサー等で混合し、溶融混錬される。溶融混錬方法は、当業者に周知のいずれかの方法が可能であり、単軸押出機、2軸押出機、ニーダー、バンバリーミキサー、ロール等が使用できるが、なかでも2軸押出機を使用することが好ましい。
また、押出加工時に破損し易い(C)成分の異形断面形状を有するガラス繊維等は、2軸押出機のサイド口から投入し、該ガラス繊維の破損を防止することが好ましいが、特に限定されるものではない。また、シランカップリング剤は、(C)以外の原料成分と同時に添加しても良いが、あらかじめ(C)成分に付与して添加するのが好ましい。
また、加工時の揮発成分、分解低分子成分を除去するため、さらに、変性された樹脂や強化材とポリアミド樹脂の反応性を高めるためには、ガラス繊維投入部分のサイド口と押し出し機先端のダイヘッドとの間で真空ポンプによる吸引を行うことが望ましい。 As a production method for producing the polyamide resin composition of the present invention, at least the components (A), (B) and (C) described above and other blends are blended in any blending sequence in the blending composition. After that, the mixture is mixed with a tumbler or a Henschel mixer and melted and kneaded. The melt kneading method can be any method known to those skilled in the art, and a single screw extruder, a twin screw extruder, a kneader, a Banbury mixer, a roll, etc. can be used, among which a twin screw extruder is used. It is preferable to do.
In addition, it is preferable that glass fiber having a modified cross-sectional shape of the component (C) that is easily damaged during extrusion processing is introduced from the side port of the twin-screw extruder to prevent the glass fiber from being damaged, but is particularly limited. It is not something. Moreover, although a silane coupling agent may be added simultaneously with raw material components other than (C), it is preferable to add to the (C) component in advance.
In addition, in order to remove volatile components and decomposed low-molecular components during processing, and to increase the reactivity of the modified resin and reinforcing material with the polyamide resin, the side opening of the glass fiber input portion and the tip of the extruder It is desirable to perform suction with a vacuum pump between the die head.
また、押出加工時に破損し易い(C)成分の異形断面形状を有するガラス繊維等は、2軸押出機のサイド口から投入し、該ガラス繊維の破損を防止することが好ましいが、特に限定されるものではない。また、シランカップリング剤は、(C)以外の原料成分と同時に添加しても良いが、あらかじめ(C)成分に付与して添加するのが好ましい。
また、加工時の揮発成分、分解低分子成分を除去するため、さらに、変性された樹脂や強化材とポリアミド樹脂の反応性を高めるためには、ガラス繊維投入部分のサイド口と押し出し機先端のダイヘッドとの間で真空ポンプによる吸引を行うことが望ましい。 As a production method for producing the polyamide resin composition of the present invention, at least the components (A), (B) and (C) described above and other blends are blended in any blending sequence in the blending composition. After that, the mixture is mixed with a tumbler or a Henschel mixer and melted and kneaded. The melt kneading method can be any method known to those skilled in the art, and a single screw extruder, a twin screw extruder, a kneader, a Banbury mixer, a roll, etc. can be used, among which a twin screw extruder is used. It is preferable to do.
In addition, it is preferable that glass fiber having a modified cross-sectional shape of the component (C) that is easily damaged during extrusion processing is introduced from the side port of the twin-screw extruder to prevent the glass fiber from being damaged, but is particularly limited. It is not something. Moreover, although a silane coupling agent may be added simultaneously with raw material components other than (C), it is preferable to add to the (C) component in advance.
In addition, in order to remove volatile components and decomposed low-molecular components during processing, and to increase the reactivity of the modified resin and reinforcing material with the polyamide resin, the side opening of the glass fiber input portion and the tip of the extruder It is desirable to perform suction with a vacuum pump between the die head.
次に実施例および比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(1)実施例、比較例で使用した原材料
実施例、比較例で使用した原材料は以下である。 EXAMPLES Next, although this invention is demonstrated concretely using an Example and a comparative example, this invention is not limited to these.
(1) Raw materials used in Examples and Comparative Examples Raw materials used in Examples and Comparative Examples are as follows.
(1)実施例、比較例で使用した原材料
実施例、比較例で使用した原材料は以下である。 EXAMPLES Next, although this invention is demonstrated concretely using an Example and a comparative example, this invention is not limited to these.
(1) Raw materials used in Examples and Comparative Examples Raw materials used in Examples and Comparative Examples are as follows.
(A)ポリアミド樹脂
MACM・14:アルケマ社製G350、ガラス転移温度145℃、数平均分子量14200、非晶性
MACM・12:EMS社製TR-90、ガラス転移温度155℃、数平均分子量13300、非晶性
MACM・12・I:EMS社製TR-55、ガラス転移温度162℃、数平均分子量18600、非晶性
ポリアミド66:東レ社製、E3000F、ガラス転移温度49℃、重量平均分子量13000、結晶性
6T6I(6T/6I=33/67(モル%)):EMS社製グリボリーG21、ガラス転移温度125℃、数平均分子量15100、非晶性
MACMはビス(3-メチル-4-アミノ-シクロヘキシル)メタン、12はドデカン二酸、14はテトラデカン二酸、Iはイソフタル酸、Tはテレフタル酸を表す。
数平均分子量は、次の様に求めた。
各試料を2mg秤量し、4mlのHFIP/トリフルオロ酢酸ナトリウム10mMに溶解させた。0.2μmのメンブレンフィルターでろ過し、得られた試料溶液のゲルパーミエーションクロマトグラフィー(GPC)分析を次の条件で行った。
装置:TOSOH HLC-8220GPC
カラム:TSKgel SuperHM-H×2、TSKgel SuperH2000
流速:0.25ml/分、濃度:0.05%、温度:40℃、検出器:RI
分子量換算は標準ポリメチルメタクリレート換算で計算した。
分子量は、1000以下のものは、オリゴマーとして除いて計算した。 (A) Polyamide resin MACM 14: Arkema G350, glass transition temperature 145 ° C., number average molecular weight 14200, amorphous MACM 12: EMS TR-90, glass transition temperature 155 ° C., number average molecular weight 13300, Amorphous MACM 12 · I: TR-55 manufactured by EMS, glass transition temperature 162 ° C., number average molecular weight 18600, amorphous polyamide 66: manufactured by Toray Industries, Inc., E3000F, glass transition temperature 49 ° C., weight average molecular weight 13000, Crystalline 6T6I (6T / 6I = 33/67 (mol%)): EMS Grivory G21, glass transition temperature 125 ° C., number average molecular weight 15100, amorphous MACM is bis (3-methyl-4-amino-cyclohexyl) ) Methane, 12 is dodecanedioic acid, 14 is tetradecanedioic acid, I is isophthalic acid, T is terephthalic acid To express.
The number average molecular weight was determined as follows.
2 mg of each sample was weighed and dissolved in 4 ml of HFIP / sodium trifluoroacetate 10 mM. It filtered with the 0.2 micrometer membrane filter, and the gel permeation chromatography (GPC) analysis of the obtained sample solution was performed on the following conditions.
Equipment: TOSOH HLC-8220GPC
Column: TSKgel SuperHM-H × 2, TSKgel SuperH2000
Flow rate: 0.25 ml / min, concentration: 0.05%, temperature: 40 ° C., detector: RI
The molecular weight conversion was calculated in terms of standard polymethyl methacrylate.
The molecular weight was calculated by excluding those having a molecular weight of 1000 or less as oligomers.
MACM・14:アルケマ社製G350、ガラス転移温度145℃、数平均分子量14200、非晶性
MACM・12:EMS社製TR-90、ガラス転移温度155℃、数平均分子量13300、非晶性
MACM・12・I:EMS社製TR-55、ガラス転移温度162℃、数平均分子量18600、非晶性
ポリアミド66:東レ社製、E3000F、ガラス転移温度49℃、重量平均分子量13000、結晶性
6T6I(6T/6I=33/67(モル%)):EMS社製グリボリーG21、ガラス転移温度125℃、数平均分子量15100、非晶性
MACMはビス(3-メチル-4-アミノ-シクロヘキシル)メタン、12はドデカン二酸、14はテトラデカン二酸、Iはイソフタル酸、Tはテレフタル酸を表す。
数平均分子量は、次の様に求めた。
各試料を2mg秤量し、4mlのHFIP/トリフルオロ酢酸ナトリウム10mMに溶解させた。0.2μmのメンブレンフィルターでろ過し、得られた試料溶液のゲルパーミエーションクロマトグラフィー(GPC)分析を次の条件で行った。
装置:TOSOH HLC-8220GPC
カラム:TSKgel SuperHM-H×2、TSKgel SuperH2000
流速:0.25ml/分、濃度:0.05%、温度:40℃、検出器:RI
分子量換算は標準ポリメチルメタクリレート換算で計算した。
分子量は、1000以下のものは、オリゴマーとして除いて計算した。 (A) Polyamide resin MACM 14: Arkema G350, glass transition temperature 145 ° C., number average molecular weight 14200, amorphous MACM 12: EMS TR-90, glass transition temperature 155 ° C., number average molecular weight 13300, Amorphous MACM 12 · I: TR-55 manufactured by EMS, glass transition temperature 162 ° C., number average molecular weight 18600, amorphous polyamide 66: manufactured by Toray Industries, Inc., E3000F, glass transition temperature 49 ° C., weight average molecular weight 13000, Crystalline 6T6I (6T / 6I = 33/67 (mol%)): EMS Grivory G21, glass transition temperature 125 ° C., number average molecular weight 15100, amorphous MACM is bis (3-methyl-4-amino-cyclohexyl) ) Methane, 12 is dodecanedioic acid, 14 is tetradecanedioic acid, I is isophthalic acid, T is terephthalic acid To express.
The number average molecular weight was determined as follows.
2 mg of each sample was weighed and dissolved in 4 ml of HFIP / sodium trifluoroacetate 10 mM. It filtered with the 0.2 micrometer membrane filter, and the gel permeation chromatography (GPC) analysis of the obtained sample solution was performed on the following conditions.
Equipment: TOSOH HLC-8220GPC
Column: TSKgel SuperHM-H × 2, TSKgel SuperH2000
Flow rate: 0.25 ml / min, concentration: 0.05%, temperature: 40 ° C., detector: RI
The molecular weight conversion was calculated in terms of standard polymethyl methacrylate.
The molecular weight was calculated by excluding those having a molecular weight of 1000 or less as oligomers.
(B)テルペンフェノール系樹脂
ヤスハラケミカル社製、YSポリスターS145
(C-1)異形断面ガラス繊維
日東紡(株)製 3PA820S(長径/短径の比 4)
(C-2)異形断面ガラス繊維2
日東紡(株)製 3PA810S(長径/短径の比 4)
(D)その他の添加剤
・安定剤:ヒンダードフェノール チバ・スペシャリティケミカルズ社製、IRGANOX245;(A)、(B)、(C-1)または(C-2)の合計100質量部に対して、0.5質量部を使用した。
・離型剤:モンタン酸エステル クラリアントジャパン社製、WE40;(A)、(B)、(C)の合計100質量部に対して、0.6質量部を使用した。
・カップリング剤:アミノプロピルトリエトキシシラン、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、A-1100;異型断面ガラス繊維(C)100質量部に対して0.3質量部を使用した。 (B) Terpene phenol-based resin YShara Chemical Co., Ltd. YS Polystar S145
(C-1) Modified cross section glass fiber 3PA820S manufactured by Nittobo Co., Ltd. (ratio of major axis / minor axis 4)
(C-2) Modified cross-section glass fiber 2
Nittobo Co., Ltd. 3PA810S (major axis / minor axis ratio 4)
(D) Other additives ・ Stabilizer: Hindered phenol Ciba Specialty Chemicals, IRGANOX245; (A), (B), (C-1) or (C-2) to 100 parts by mass in total 0.5 parts by mass were used.
-Mold release agent: Montanic acid ester Clariant Japan Co., Ltd., WE40; 0.6 mass part was used with respect to a total of 100 mass parts of (A), (B), (C).
Coupling agent: Aminopropyltriethoxysilane, manufactured by Momentive Performance Materials Japan G.K., A-1100; 0.3 parts by mass with respect to 100 parts by mass of the modified cross-section glass fiber (C) was used.
ヤスハラケミカル社製、YSポリスターS145
(C-1)異形断面ガラス繊維
日東紡(株)製 3PA820S(長径/短径の比 4)
(C-2)異形断面ガラス繊維2
日東紡(株)製 3PA810S(長径/短径の比 4)
(D)その他の添加剤
・安定剤:ヒンダードフェノール チバ・スペシャリティケミカルズ社製、IRGANOX245;(A)、(B)、(C-1)または(C-2)の合計100質量部に対して、0.5質量部を使用した。
・離型剤:モンタン酸エステル クラリアントジャパン社製、WE40;(A)、(B)、(C)の合計100質量部に対して、0.6質量部を使用した。
・カップリング剤:アミノプロピルトリエトキシシラン、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、A-1100;異型断面ガラス繊維(C)100質量部に対して0.3質量部を使用した。 (B) Terpene phenol-based resin YShara Chemical Co., Ltd. YS Polystar S145
(C-1) Modified cross section glass fiber 3PA820S manufactured by Nittobo Co., Ltd. (ratio of major axis / minor axis 4)
(C-2) Modified cross-section glass fiber 2
Nittobo Co., Ltd. 3PA810S (major axis / minor axis ratio 4)
(D) Other additives ・ Stabilizer: Hindered phenol Ciba Specialty Chemicals, IRGANOX245; (A), (B), (C-1) or (C-2) to 100 parts by mass in total 0.5 parts by mass were used.
-Mold release agent: Montanic acid ester Clariant Japan Co., Ltd., WE40; 0.6 mass part was used with respect to a total of 100 mass parts of (A), (B), (C).
Coupling agent: Aminopropyltriethoxysilane, manufactured by Momentive Performance Materials Japan G.K., A-1100; 0.3 parts by mass with respect to 100 parts by mass of the modified cross-section glass fiber (C) was used.
(2)特性および物性値
以下に実施例、比較例において示した樹脂及び樹脂組成物の各特性および物性値は、下記に示した試験方法を採用した。
(イ)ガラス転移温度:
DSC測定装置(セイコーインスツルメンツ社製、EXSTAR6000)を使用した。窒素気流下で20℃/分の昇温速度で300℃まで昇温し、その温度で5分間保持した後、10℃/分の速度にて50℃まで降温させたときに認められるJIS K7121に記載の中間点ガラス転移温度(Tmg)を測定した。
ガラス転移温度の測定は、吸水の影響や熱履歴の影響を除くために、同一サンプルを用いて同一条件で2サイクル測定し、2サイクル目の結果から求めた。 (2) Characteristics and physical property values The following test methods were adopted for the respective properties and physical property values of the resins and resin compositions shown in the Examples and Comparative Examples below.
(B) Glass transition temperature:
A DSC measuring device (EXSTAR6000, manufactured by Seiko Instruments Inc.) was used. According to JIS K7121 recognized when the temperature was raised to 300 ° C at a rate of temperature increase of 20 ° C / min under a nitrogen stream, held at that temperature for 5 minutes, and then decreased to 50 ° C at a rate of 10 ° C / min. The described midpoint glass transition temperature (Tmg) was measured.
The glass transition temperature was measured from the results of the second cycle by measuring two cycles under the same conditions using the same sample in order to eliminate the effects of water absorption and thermal history.
以下に実施例、比較例において示した樹脂及び樹脂組成物の各特性および物性値は、下記に示した試験方法を採用した。
(イ)ガラス転移温度:
DSC測定装置(セイコーインスツルメンツ社製、EXSTAR6000)を使用した。窒素気流下で20℃/分の昇温速度で300℃まで昇温し、その温度で5分間保持した後、10℃/分の速度にて50℃まで降温させたときに認められるJIS K7121に記載の中間点ガラス転移温度(Tmg)を測定した。
ガラス転移温度の測定は、吸水の影響や熱履歴の影響を除くために、同一サンプルを用いて同一条件で2サイクル測定し、2サイクル目の結果から求めた。 (2) Characteristics and physical property values The following test methods were adopted for the respective properties and physical property values of the resins and resin compositions shown in the Examples and Comparative Examples below.
(B) Glass transition temperature:
A DSC measuring device (EXSTAR6000, manufactured by Seiko Instruments Inc.) was used. According to JIS K7121 recognized when the temperature was raised to 300 ° C at a rate of temperature increase of 20 ° C / min under a nitrogen stream, held at that temperature for 5 minutes, and then decreased to 50 ° C at a rate of 10 ° C / min. The described midpoint glass transition temperature (Tmg) was measured.
The glass transition temperature was measured from the results of the second cycle by measuring two cycles under the same conditions using the same sample in order to eliminate the effects of water absorption and thermal history.
(ロ)溶融せん断粘度:
キャピラリーレオメーター(東洋精機(株)、製品名キャピログラフ1B)を使用した。
キャピラリー形状:穴の直径1.0mm、長さ30mm
せん断速度:12.2sec-1(1.0mm/分)
せん断速度:1216sec-1(100.0mm/分)
測定温度:285℃ (B) Melt shear viscosity:
A capillary rheometer (Toyo Seiki Co., Ltd., product name Capillograph 1B) was used.
Capillary shape: hole diameter 1.0mm, length 30mm
Shear rate: 12.2 sec −1 (1.0 mm / min)
Shear rate: 1216 sec −1 (100.0 mm / min)
Measurement temperature: 285 ° C
キャピラリーレオメーター(東洋精機(株)、製品名キャピログラフ1B)を使用した。
キャピラリー形状:穴の直径1.0mm、長さ30mm
せん断速度:12.2sec-1(1.0mm/分)
せん断速度:1216sec-1(100.0mm/分)
測定温度:285℃ (B) Melt shear viscosity:
A capillary rheometer (Toyo Seiki Co., Ltd., product name Capillograph 1B) was used.
Capillary shape: hole diameter 1.0mm, length 30mm
Shear rate: 12.2 sec −1 (1.0 mm / min)
Shear rate: 1216 sec −1 (100.0 mm / min)
Measurement temperature: 285 ° C
(ハ)メルトインデックス:
ISO1133に準じて測定した。
測定温度:275℃
荷重:5kg (C) Melt index:
It measured according to ISO1133.
Measurement temperature: 275 ° C
Load: 5kg
ISO1133に準じて測定した。
測定温度:275℃
荷重:5kg (C) Melt index:
It measured according to ISO1133.
Measurement temperature: 275 ° C
Load: 5kg
(ニ)引張強度、引張伸度:ISO-527-1.2に準じて測定した。
(ホ)曲げ強度、曲げ弾性率、曲げたわみ率:ISO-178に準じて測定した。
(ヘ)シャルピー衝撃強度:ISO-179-1eAに準じて測定した。 (D) Tensile strength, tensile elongation: measured in accordance with ISO-527-1.2.
(E) Bending strength, bending elastic modulus, bending deflection rate: Measured according to ISO-178.
(F) Charpy impact strength: Measured according to ISO-179-1eA.
(ホ)曲げ強度、曲げ弾性率、曲げたわみ率:ISO-178に準じて測定した。
(ヘ)シャルピー衝撃強度:ISO-179-1eAに準じて測定した。 (D) Tensile strength, tensile elongation: measured in accordance with ISO-527-1.2.
(E) Bending strength, bending elastic modulus, bending deflection rate: Measured according to ISO-178.
(F) Charpy impact strength: Measured according to ISO-179-1eA.
(ト)塗装密着性:
ウレタン塗料をスプレーガンで、塗料膜厚は約30μmに塗装した。焼付温度は100℃×30分で行い、密着性の強度は、φ10mm長さ300mm片側フック付き円筒形治具の金属治具を塗装後の成形品にアロンアルファ101を用いて接着し、フック部分をプッシュプルゲージで引張って塗膜の剥離力を求めた。
◎: 剥離力が25Kgを超え、剥離した塗料に破壊した母材が付着している。
○: 剥離力が15Kg以上、25Kg以下。
×: 剥離力が15Kg未満。 (G) Paint adhesion:
Urethane paint was applied with a spray gun to a paint film thickness of about 30 μm. The baking temperature is 100 ° C. × 30 minutes, and the adhesion strength is φ10 mm, length 300 mm, a cylindrical jig with a hook on one side is bonded to the molded product using Aron Alpha 101, and the hook part is bonded. The peel strength of the coating film was determined by pulling with a push-pull gauge.
A: The peel strength exceeds 25 kg, and the broken base material is attached to the peeled paint.
○: Peeling force is 15 kg or more and 25 kg or less.
X: Peeling force is less than 15 kg.
ウレタン塗料をスプレーガンで、塗料膜厚は約30μmに塗装した。焼付温度は100℃×30分で行い、密着性の強度は、φ10mm長さ300mm片側フック付き円筒形治具の金属治具を塗装後の成形品にアロンアルファ101を用いて接着し、フック部分をプッシュプルゲージで引張って塗膜の剥離力を求めた。
◎: 剥離力が25Kgを超え、剥離した塗料に破壊した母材が付着している。
○: 剥離力が15Kg以上、25Kg以下。
×: 剥離力が15Kg未満。 (G) Paint adhesion:
Urethane paint was applied with a spray gun to a paint film thickness of about 30 μm. The baking temperature is 100 ° C. × 30 minutes, and the adhesion strength is φ10 mm, length 300 mm, a cylindrical jig with a hook on one side is bonded to the molded product using Aron Alpha 101, and the hook part is bonded. The peel strength of the coating film was determined by pulling with a push-pull gauge.
A: The peel strength exceeds 25 kg, and the broken base material is attached to the peeled paint.
○: Peeling force is 15 kg or more and 25 kg or less.
X: Peeling force is less than 15 kg.
(チ)寸法安定性:
実施例、比較例の組成物で、100×100×2mm(フィルムゲート)の平板を成形(シリンダー温度295℃、金型温度110℃)し、95%RH平衡吸水時の寸法増加率で評価した。吸水処理は、95%相対湿度の恒温槽中で80℃にて加速吸水処理した。
◎:0.05%未満、 ○:0.05~0.1%未満、 ×:0.1%以上 (H) Dimensional stability:
A plate of 100 × 100 × 2 mm (film gate) was molded (cylinder temperature 295 ° C., mold temperature 110 ° C.) with the compositions of Examples and Comparative Examples, and evaluated by the dimensional increase rate at the time of 95% RH equilibrium water absorption. . The water absorption treatment was an accelerated water absorption treatment at 80 ° C. in a constant temperature bath of 95% relative humidity.
A: Less than 0.05%, B: 0.05 to less than 0.1%, X: 0.1% or more
実施例、比較例の組成物で、100×100×2mm(フィルムゲート)の平板を成形(シリンダー温度295℃、金型温度110℃)し、95%RH平衡吸水時の寸法増加率で評価した。吸水処理は、95%相対湿度の恒温槽中で80℃にて加速吸水処理した。
◎:0.05%未満、 ○:0.05~0.1%未満、 ×:0.1%以上 (H) Dimensional stability:
A plate of 100 × 100 × 2 mm (film gate) was molded (cylinder temperature 295 ° C., mold temperature 110 ° C.) with the compositions of Examples and Comparative Examples, and evaluated by the dimensional increase rate at the time of 95% RH equilibrium water absorption. . The water absorption treatment was an accelerated water absorption treatment at 80 ° C. in a constant temperature bath of 95% relative humidity.
A: Less than 0.05%, B: 0.05 to less than 0.1%, X: 0.1% or more
(3)成形特性
易成形性及びバリの評価
射出成形機(東芝機械社製、EC-100N、電動式成形機、型締め力100ton、スクリュー口径はφ32mm)で、図1に示した形状の携帯電話モデル金型(φ1.2mmピンゲート1点、厚み1.3mm、幅45mm、長さ100mm)を用いて、成形のしやすさについて、必要とするシリンダー温度、金型温度、射出圧力を表1の評価点で評価した。 (3) Molding characteristics Easy moldability and evaluation of burrs An injection molding machine (manufactured by Toshiba Machine Co., Ltd., EC-100N, electric molding machine,mold clamping force 100 ton, screw diameter is 32 mm) and has the shape shown in FIG. Table 1 shows the required cylinder temperature, mold temperature, and injection pressure for ease of molding using a telephone model mold (φ1.2 mm pin gate, thickness 1.3 mm, width 45 mm, length 100 mm). It was evaluated with the evaluation score.
易成形性及びバリの評価
射出成形機(東芝機械社製、EC-100N、電動式成形機、型締め力100ton、スクリュー口径はφ32mm)で、図1に示した形状の携帯電話モデル金型(φ1.2mmピンゲート1点、厚み1.3mm、幅45mm、長さ100mm)を用いて、成形のしやすさについて、必要とするシリンダー温度、金型温度、射出圧力を表1の評価点で評価した。 (3) Molding characteristics Easy moldability and evaluation of burrs An injection molding machine (manufactured by Toshiba Machine Co., Ltd., EC-100N, electric molding machine,
・易成形性
上記の得点の合計を以下のように、易成形性を判定した。
6以上:◎(良好)、
5~3:○(ほぼ良好)
2~1:△(やや不良)
1~0:×(不良)
・バリの評価:
図1に示した携帯電話モデル金型による成形品のバリの発生しやすいゲート付近部と最終充填部付近の2箇所をHIROX社製マイクロスコープ
KH-7700で測定した。
200ショット成形して、観察部(1)、観察部(2)で発生したバリのばらつきを評価した。表3には、観察部(1)で発生したバリを「最小値(μm)~最大値(μm)」、観察部(2)で発生したバリを「平均値(μm)」で表す。
生産性に関係するバリ発生の安定性評価については、200ショット成形して、観察部(1)の200ショット中の発生したバリの最大値、ばらつき(最大値と最小値の差)から、以下のように評価した。
◎:バリの最大値が50μm以下で、かつばらつきが25μm以下である
○:バリの最大値が60μm以下で、かつばらつきが30μm以下である
△:バリの最大値が100μm以下で、かつばらつきが50μm以下である
×:バリの最大値が100μmを超える -Easily moldable The easy moldability was determined from the total of the above scores as follows.
6 or more: ◎ (good),
5-3: ○ (almost good)
2 to 1: △ (somewhat bad)
1 to 0: × (defect)
・ Bali evaluation:
Two portions near the gate and the final filling portion where burrs are likely to occur in the molded product using the mobile phone model mold shown in FIG. 1 were measured with a microscope KH-7700 manufactured by HIROX.
200 shots were molded, and the variation of burrs generated in the observation part (1) and the observation part (2) was evaluated. Table 3 shows the burrs generated in the observation part (1) as “minimum value (μm) to maximum value (μm)” and the burrs generated in the observation part (2) as “average value (μm)”.
Regarding the stability evaluation of burr generation related to productivity, 200 shots are molded, and the maximum value and variation (difference between the maximum value and minimum value) of the burr generated in 200 shots of the observation part (1) are as follows. It was evaluated as follows.
A: Maximum burr value is 50 μm or less and variation is 25 μm or less B: Maximum burr value is 60 μm or less and variation is 30 μm or less Δ: Maximum burr value is 100 μm or less and variation 50 μm or less x: The maximum value of burr exceeds 100 μm
上記の得点の合計を以下のように、易成形性を判定した。
6以上:◎(良好)、
5~3:○(ほぼ良好)
2~1:△(やや不良)
1~0:×(不良)
・バリの評価:
図1に示した携帯電話モデル金型による成形品のバリの発生しやすいゲート付近部と最終充填部付近の2箇所をHIROX社製マイクロスコープ
KH-7700で測定した。
200ショット成形して、観察部(1)、観察部(2)で発生したバリのばらつきを評価した。表3には、観察部(1)で発生したバリを「最小値(μm)~最大値(μm)」、観察部(2)で発生したバリを「平均値(μm)」で表す。
生産性に関係するバリ発生の安定性評価については、200ショット成形して、観察部(1)の200ショット中の発生したバリの最大値、ばらつき(最大値と最小値の差)から、以下のように評価した。
◎:バリの最大値が50μm以下で、かつばらつきが25μm以下である
○:バリの最大値が60μm以下で、かつばらつきが30μm以下である
△:バリの最大値が100μm以下で、かつばらつきが50μm以下である
×:バリの最大値が100μmを超える -Easily moldable The easy moldability was determined from the total of the above scores as follows.
6 or more: ◎ (good),
5-3: ○ (almost good)
2 to 1: △ (somewhat bad)
1 to 0: × (defect)
・ Bali evaluation:
Two portions near the gate and the final filling portion where burrs are likely to occur in the molded product using the mobile phone model mold shown in FIG. 1 were measured with a microscope KH-7700 manufactured by HIROX.
200 shots were molded, and the variation of burrs generated in the observation part (1) and the observation part (2) was evaluated. Table 3 shows the burrs generated in the observation part (1) as “minimum value (μm) to maximum value (μm)” and the burrs generated in the observation part (2) as “average value (μm)”.
Regarding the stability evaluation of burr generation related to productivity, 200 shots are molded, and the maximum value and variation (difference between the maximum value and minimum value) of the burr generated in 200 shots of the observation part (1) are as follows. It was evaluated as follows.
A: Maximum burr value is 50 μm or less and variation is 25 μm or less B: Maximum burr value is 60 μm or less and variation is 30 μm or less Δ: Maximum burr value is 100 μm or less and variation 50 μm or less x: The maximum value of burr exceeds 100 μm
実施例1~7、比較例1~4
後記の表2に示す組成(前記の安定剤、離型剤を含む)になるように、ガラス繊維を除く各成分をタンブラーにてブレンド後、二軸押出機(コペリオン社製STS35)で溶融混練して組成物ペレットを得た。なお、アミノシランカップリング剤は、ガラス繊維をサイドフィードで投入する直前に、所定量をガラス繊維にまぶして添加した。
得られた組成物ペレットを乾燥後、上記した方法によって評価した。その結果を表2、3に示した。 Examples 1-7, Comparative Examples 1-4
After blending each component except glass fiber with a tumbler so as to have the composition shown in Table 2 below (including the stabilizer and mold release agent), it is melt-kneaded with a twin-screw extruder (STE35 manufactured by Coperion). Thus, composition pellets were obtained. The aminosilane coupling agent was added by coating a predetermined amount on the glass fiber immediately before the glass fiber was added by side feed.
The obtained composition pellets were dried and then evaluated by the method described above. The results are shown in Tables 2 and 3.
後記の表2に示す組成(前記の安定剤、離型剤を含む)になるように、ガラス繊維を除く各成分をタンブラーにてブレンド後、二軸押出機(コペリオン社製STS35)で溶融混練して組成物ペレットを得た。なお、アミノシランカップリング剤は、ガラス繊維をサイドフィードで投入する直前に、所定量をガラス繊維にまぶして添加した。
得られた組成物ペレットを乾燥後、上記した方法によって評価した。その結果を表2、3に示した。 Examples 1-7, Comparative Examples 1-4
After blending each component except glass fiber with a tumbler so as to have the composition shown in Table 2 below (including the stabilizer and mold release agent), it is melt-kneaded with a twin-screw extruder (STE35 manufactured by Coperion). Thus, composition pellets were obtained. The aminosilane coupling agent was added by coating a predetermined amount on the glass fiber immediately before the glass fiber was added by side feed.
The obtained composition pellets were dried and then evaluated by the method described above. The results are shown in Tables 2 and 3.
実施例1~7の樹脂組成物は、見かけのガラス転移温度及び溶融粘度が本発明の範囲を満足しているため、成形性に優れてバリ発生抑制効果が優れ、しかも、成形品の物性や塗装密着性にも優れていることが判る。特に、実施例1、3においては、引張伸度や曲げたわみ率が大きく、靭性に優れることが判る。さらに充填圧力低くても問題なく成形可能なため、連続成形時の安定性にも優れている。また、吸水後の寸法変化も極めて小さく製品の寸法安定性にも優れている。
テルペンフェノール系樹脂が配合されていない比較例1は、成形性、バリ抑制効果、塗装密着性などに改善の余地が認められる。特に、成形性が悪いために極めて高い充填圧力を掛けないと充填しないため、連続成形時の樹脂の滞留や金型温度が僅かに変化しただけで、バリの発生量にばらつきが発生している。脂環族基を有するが芳香族基を有する非晶性ポリアミド樹脂を用いた比較例2は、ガラス転移温度が高いために、充填性が低下しバリ発生抑制効果が劣るとともに成形品の靭性が劣る。また、バリの発生にもばらつきが見られる。
比較例3の非晶性ポリアミド樹脂は、元々のガラス転移温度が低いためテルペンフェノールを添加しなくても、成形性については良好であったが、吸水時の寸法安定性が劣る結果であった。また、芳香族比率が高いために、非常に脆い成形品となった。比較例4の結晶性ポリアミドは、寸法安定性に劣るとともにバリ抑制が困難であった。 In the resin compositions of Examples 1 to 7, the apparent glass transition temperature and the melt viscosity satisfy the scope of the present invention, so that the moldability is excellent and the burr generation suppressing effect is excellent. It can be seen that the paint adhesion is also excellent. In particular, in Examples 1 and 3, it can be seen that the tensile elongation and the bending deflection ratio are large and the toughness is excellent. Furthermore, since molding can be performed without problems even at a low filling pressure, the stability during continuous molding is also excellent. In addition, the dimensional change after water absorption is very small and the dimensional stability of the product is excellent.
In Comparative Example 1 in which no terpene phenol-based resin is blended, there is room for improvement in moldability, burr suppression effect, paint adhesion, and the like. In particular, due to poor moldability, filling is not performed unless a very high filling pressure is applied, so that the amount of burrs generated varies even when the resin stays during continuous molding or the mold temperature slightly changes. . Since Comparative Example 2 using an amorphous polyamide resin having an alicyclic group but having an aromatic group has a high glass transition temperature, the filling property is lowered and the effect of suppressing the generation of burrs is inferior and the toughness of the molded product is low. Inferior. There is also a variation in the occurrence of burrs.
The amorphous polyamide resin of Comparative Example 3 had good moldability even when terpene phenol was not added since the original glass transition temperature was low, but the result was poor dimensional stability upon water absorption. . Moreover, since the aromatic ratio was high, it became a very brittle molded product. The crystalline polyamide of Comparative Example 4 was inferior in dimensional stability and difficult to suppress burrs.
テルペンフェノール系樹脂が配合されていない比較例1は、成形性、バリ抑制効果、塗装密着性などに改善の余地が認められる。特に、成形性が悪いために極めて高い充填圧力を掛けないと充填しないため、連続成形時の樹脂の滞留や金型温度が僅かに変化しただけで、バリの発生量にばらつきが発生している。脂環族基を有するが芳香族基を有する非晶性ポリアミド樹脂を用いた比較例2は、ガラス転移温度が高いために、充填性が低下しバリ発生抑制効果が劣るとともに成形品の靭性が劣る。また、バリの発生にもばらつきが見られる。
比較例3の非晶性ポリアミド樹脂は、元々のガラス転移温度が低いためテルペンフェノールを添加しなくても、成形性については良好であったが、吸水時の寸法安定性が劣る結果であった。また、芳香族比率が高いために、非常に脆い成形品となった。比較例4の結晶性ポリアミドは、寸法安定性に劣るとともにバリ抑制が困難であった。 In the resin compositions of Examples 1 to 7, the apparent glass transition temperature and the melt viscosity satisfy the scope of the present invention, so that the moldability is excellent and the burr generation suppressing effect is excellent. It can be seen that the paint adhesion is also excellent. In particular, in Examples 1 and 3, it can be seen that the tensile elongation and the bending deflection ratio are large and the toughness is excellent. Furthermore, since molding can be performed without problems even at a low filling pressure, the stability during continuous molding is also excellent. In addition, the dimensional change after water absorption is very small and the dimensional stability of the product is excellent.
In Comparative Example 1 in which no terpene phenol-based resin is blended, there is room for improvement in moldability, burr suppression effect, paint adhesion, and the like. In particular, due to poor moldability, filling is not performed unless a very high filling pressure is applied, so that the amount of burrs generated varies even when the resin stays during continuous molding or the mold temperature slightly changes. . Since Comparative Example 2 using an amorphous polyamide resin having an alicyclic group but having an aromatic group has a high glass transition temperature, the filling property is lowered and the effect of suppressing the generation of burrs is inferior and the toughness of the molded product is low. Inferior. There is also a variation in the occurrence of burrs.
The amorphous polyamide resin of Comparative Example 3 had good moldability even when terpene phenol was not added since the original glass transition temperature was low, but the result was poor dimensional stability upon water absorption. . Moreover, since the aromatic ratio was high, it became a very brittle molded product. The crystalline polyamide of Comparative Example 4 was inferior in dimensional stability and difficult to suppress burrs.
本発明のポリアミド樹脂組成物は、製造安定性に優れ、機械強度、薄肉成形性、寸法安定性などに変動が少なく、薄肉射出成形品のバリ発生を極力低減でき、さらには、塗装密着性にも優れるため、機械特性と共に軽量化と意匠性が重視される携帯用電化製品、例えば、例えば携帯電話、携帯用の音楽を聞く製品、携帯用の映像を見る製品および携帯用パソコン等の筐体用材料などに適するものである。
The polyamide resin composition of the present invention is excellent in production stability, has little fluctuation in mechanical strength, thin-wall moldability, dimensional stability, etc., and can reduce the occurrence of burrs in thin-walled injection molded products as much as possible, and further in coating adhesion For example, portable electrical appliances that place importance on weight reduction and design as well as mechanical properties, such as mobile phones, portable music listening products, portable video viewing products, and portable personal computer casings. It is suitable for materials.
1:ゲート位置
2:バリ観察部(1);ゲート付近
3:バリ観察部(2);最終充填部付近
1: Gate position 2: Burr observation part (1); Near gate 3: Burr observation part (2); Near final filling part
2:バリ観察部(1);ゲート付近
3:バリ観察部(2);最終充填部付近
1: Gate position 2: Burr observation part (1); Near gate 3: Burr observation part (2); Near final filling part
Claims (8)
- 脂環族基を有し、芳香族基を有さない非晶性ポリアミド樹脂(A)、テルペンフェノール系樹脂(B)、及び長径/短径の比が1.5~10の異形断面を有する異形断面ガラス繊維(C)を含有するポリアミド樹脂組成物で、該組成物が下記特性を示すことを特徴とする射出成形用ポリアミド樹脂組成物。
(イ)見かけのガラス転移温度が125~160℃
(ロ)温度285℃での溶融粘度が、せん断速度12.2sec-1において1000~2000Pa・sで、かつせん断速度1216sec-1において100~350Pa・s Amorphous polyamide resin (A) having no alicyclic group and no aromatic group (A), terpene phenol resin (B), and an irregular cross section having a major axis / minor axis ratio of 1.5 to 10 A polyamide resin composition containing a modified cross-section glass fiber (C), wherein the composition exhibits the following characteristics:
(B) Apparent glass transition temperature of 125 to 160 ° C
(B) melt viscosity at a temperature 285 ° C. is, shear rates in 12.2Sec -1 at 1000 ~ 2000 Pa · s, and 100 to the shear rate of 1216 sec -1 350 Pa · s - 前記非晶性ポリアミド樹脂(A)、前記テルペンフェノール系樹脂(B)、及び前記異形断面ガラス繊維(C)の合計質量に対し、前記非晶性ポリアミド樹脂(A)の配合量が30~69.5質量%、前記テルペンフェノール系樹脂(B)の配合量が0.5~10質量%であり、前記異形断面ガラス繊維(C)の配合量が30~60質量%である請求項1に記載の射出成形用ポリアミド樹脂組成物。 The blending amount of the amorphous polyamide resin (A) is 30 to 69 with respect to the total mass of the amorphous polyamide resin (A), the terpene phenol resin (B), and the modified cross-section glass fiber (C). The blending amount of the terpene phenolic resin (B) is 0.5 to 10% by weight, and the blending amount of the modified cross-section glass fiber (C) is 30 to 60% by weight. The polyamide resin composition for injection molding as described.
- 前記非晶性ポリアミド樹脂(A)が、脂肪族ジカルボン酸と脂環族ジアミンとの重縮合により形成されたポリアミド樹脂である請求項1または2に記載の射出成形用ポリアミド樹脂組成物。 3. The polyamide resin composition for injection molding according to claim 1, wherein the amorphous polyamide resin (A) is a polyamide resin formed by polycondensation of an aliphatic dicarboxylic acid and an alicyclic diamine.
- 前記非晶性ポリアミド樹脂(A)の脂肪族ジカルボン酸が、炭素原子12~18個を有するジカルボン酸から選択され、脂環族ジアミンが、ビス(4-アミノ-シクロヘキシル)メタン、ビス(3-アミノ-シクロヘキシル)メタン、ビス(3-メチル-4-アミノ-シクロヘキシル)メタン、2,2-ビス(4-アミノ-シクロヘキシル)プロパンから選択されたものである、請求項3に記載の射出成形用ポリアミド樹脂組成物。 The aliphatic dicarboxylic acid of the amorphous polyamide resin (A) is selected from dicarboxylic acids having 12 to 18 carbon atoms, and the alicyclic diamine is bis (4-amino-cyclohexyl) methane, bis (3- 4. For injection molding according to claim 3, wherein the compound is selected from amino-cyclohexyl) methane, bis (3-methyl-4-amino-cyclohexyl) methane, and 2,2-bis (4-amino-cyclohexyl) propane. Polyamide resin composition.
- 異形断面ガラス繊維(C)が配合される際に、異形断面ガラス繊維(C)100質量部に対し、0.1~3質量部のシランカップリング剤が付与されてなる、請求項1~4のいずれかに記載の射出成形用ポリアミド樹脂組成物。 The silane coupling agent of 0.1 to 3 parts by mass is added to 100 parts by mass of the irregularly shaped glass fiber (C) when the irregularly shaped glass fiber (C) is blended. The polyamide resin composition for injection molding according to any one of the above.
- せん断速度12.2sec-1における溶融粘度(LSv)とせん断速度1216sec-1における溶融粘度(HSv)との比(LSv/HSv)が、4.0~7.0である請求項1~5のいずれかに記載の射出成形用ポリアミド樹脂組成物。 The ratio (LSv / HSv) of the melt viscosity (LSv) at a shear rate of 12.2 sec -1 to the melt viscosity (HSv) at a shear rate of 1216 sec -1 is 4.0 to 7.0. The polyamide resin composition for injection molding according to any one of the above.
- 請求項1~6のいずれかに記載の射出成形用ポリアミド樹脂組成物で成形された電子機器用成形品。 A molded article for electronic equipment molded from the polyamide resin composition for injection molding according to any one of claims 1 to 6.
- 電子機器が携帯電子機器である請求項7の電子機器用成形品。
The molded product for an electronic device according to claim 7, wherein the electronic device is a portable electronic device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011513774A JP5067506B2 (en) | 2010-03-15 | 2011-03-14 | Polyamide resin composition for injection molding |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-057379 | 2010-03-15 | ||
JP2010057379 | 2010-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011115031A1 true WO2011115031A1 (en) | 2011-09-22 |
Family
ID=44649124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/055884 WO2011115031A1 (en) | 2010-03-15 | 2011-03-14 | Polyamide resin composition for injection moulding |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5067506B2 (en) |
TW (1) | TW201139556A (en) |
WO (1) | WO2011115031A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014195226A1 (en) * | 2013-06-05 | 2014-12-11 | Solvay Specialty Polymers Usa, Llc | Filled polymer compositions for mobile electronic devices |
JP2020152925A (en) * | 2020-06-26 | 2020-09-24 | 旭化成株式会社 | Cellulose-containing resin composition |
CN114605269A (en) * | 2022-04-02 | 2022-06-10 | 南京工业大学 | Full-bio-based aliphatic bicyclic diamine epoxy resin curing agent and preparation method and application thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2949704B1 (en) * | 2012-12-21 | 2019-04-24 | Ems-Patent Ag | Discolouration-resistant articles and their use |
EP2746341B2 (en) | 2012-12-21 | 2018-11-14 | Ems-Patent Ag | Stain-resistant articles and their use |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0551527A (en) * | 1991-08-28 | 1993-03-02 | Daicel Huels Ltd | Polyamide resin composition |
JPH05271536A (en) * | 1992-03-25 | 1993-10-19 | Daicel Huels Ltd | Polyamide elastomer composition |
JPH08109324A (en) * | 1994-10-11 | 1996-04-30 | Nippon G Ii Plast Kk | Thermoplastic resin composition |
JP2001207052A (en) * | 2000-01-25 | 2001-07-31 | Yasuhara Chemical Co Ltd | Polyamide resin composition |
JP2004026869A (en) * | 2002-06-21 | 2004-01-29 | Sumitomo Chem Co Ltd | Thermoplastic resin composition |
JP2008163340A (en) * | 2006-12-28 | 2008-07-17 | Ems-Chemie Ag | Injection-molded product prepared of reinforced polyamide molding material and polyamide molding material using flat glass fiber |
JP2008280483A (en) * | 2007-05-14 | 2008-11-20 | Asahi Fiber Glass Co Ltd | Amorphous polyamide resin composition and molded product |
JP2009256651A (en) * | 2008-03-24 | 2009-11-05 | Asahi Kasei Chemicals Corp | Polyamide composition |
JP2010248406A (en) * | 2009-04-17 | 2010-11-04 | Toyobo Co Ltd | Polyamide resin composition and molded product using the same |
JP2010260889A (en) * | 2009-04-30 | 2010-11-18 | Toyobo Co Ltd | Polyamide resin composition and molded article using the same |
-
2011
- 2011-03-14 WO PCT/JP2011/055884 patent/WO2011115031A1/en active Application Filing
- 2011-03-14 TW TW100108457A patent/TW201139556A/en unknown
- 2011-03-14 JP JP2011513774A patent/JP5067506B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0551527A (en) * | 1991-08-28 | 1993-03-02 | Daicel Huels Ltd | Polyamide resin composition |
JPH05271536A (en) * | 1992-03-25 | 1993-10-19 | Daicel Huels Ltd | Polyamide elastomer composition |
JPH08109324A (en) * | 1994-10-11 | 1996-04-30 | Nippon G Ii Plast Kk | Thermoplastic resin composition |
JP2001207052A (en) * | 2000-01-25 | 2001-07-31 | Yasuhara Chemical Co Ltd | Polyamide resin composition |
JP2004026869A (en) * | 2002-06-21 | 2004-01-29 | Sumitomo Chem Co Ltd | Thermoplastic resin composition |
JP2008163340A (en) * | 2006-12-28 | 2008-07-17 | Ems-Chemie Ag | Injection-molded product prepared of reinforced polyamide molding material and polyamide molding material using flat glass fiber |
JP2008280483A (en) * | 2007-05-14 | 2008-11-20 | Asahi Fiber Glass Co Ltd | Amorphous polyamide resin composition and molded product |
JP2009256651A (en) * | 2008-03-24 | 2009-11-05 | Asahi Kasei Chemicals Corp | Polyamide composition |
JP2010248406A (en) * | 2009-04-17 | 2010-11-04 | Toyobo Co Ltd | Polyamide resin composition and molded product using the same |
JP2010260889A (en) * | 2009-04-30 | 2010-11-18 | Toyobo Co Ltd | Polyamide resin composition and molded article using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014195226A1 (en) * | 2013-06-05 | 2014-12-11 | Solvay Specialty Polymers Usa, Llc | Filled polymer compositions for mobile electronic devices |
JP2020152925A (en) * | 2020-06-26 | 2020-09-24 | 旭化成株式会社 | Cellulose-containing resin composition |
JP7203791B2 (en) | 2020-06-26 | 2023-01-13 | 旭化成株式会社 | Cellulose-containing resin composition |
CN114605269A (en) * | 2022-04-02 | 2022-06-10 | 南京工业大学 | Full-bio-based aliphatic bicyclic diamine epoxy resin curing agent and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011115031A1 (en) | 2013-06-27 |
JP5067506B2 (en) | 2012-11-07 |
TW201139556A (en) | 2011-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5499512B2 (en) | Polyamide resin composition and molded product using the same | |
TWI510549B (en) | Polycarbonate resin composition | |
JP2012136620A (en) | Reinforced polyamide resin composition and molded article using the same | |
JP5407530B2 (en) | Polyamide resin composition and molded product using the same | |
JP5067506B2 (en) | Polyamide resin composition for injection molding | |
TWI443151B (en) | Galss-fiber reinforced polyamide resin composition | |
KR20020074079A (en) | Filled polyamide moulding materials having improved processing behaviour | |
JP6748423B2 (en) | Carbon fiber reinforced thermoplastic resin composition and molded article produced thereby | |
KR20190024898A (en) | Thermally dissolvable laminate type three-dimensional printer material and filament for heat dissolving laminate type three-dimensional printer using the same | |
JP6172279B2 (en) | Crystalline polyamide resin composition | |
JP2007302866A (en) | Polyamide resin composition for portable electronic device and molding for portable electronic device | |
WO2016002682A1 (en) | Polyamide resin composition and molded article comprising same | |
JP2007277391A (en) | Glass filament reinforced polyamide resin composition and molded product | |
JP2008106265A (en) | Polyamide resin composition and molded article comprising the same | |
JP7273032B2 (en) | Use of a copolyamide composition as a matrix for fillers with glass fibers having a circular cross-section to limit warpage | |
US11577496B2 (en) | Polyamide resin composition and molded article comprising the same | |
US20120232184A1 (en) | Environmentally Friendly Polyamide Resin Composition and Molded Product Using the Same | |
JP2011148997A (en) | Polyamide resin composition | |
US20170029621A1 (en) | Polyamide Resin Composition and Article Produced Therefrom | |
JP6447041B2 (en) | Manufacturing method of polyamide resin molded product | |
CN104114364B (en) | The stacked resin composite body of rubber | |
KR102252000B1 (en) | Polyamide resin composition and article comprising the same | |
CN113677760B (en) | Polyamide resin composition and molded article comprising same | |
JP2011241296A (en) | Process for manufacturing long fiber-reinforced polyamide resin composition | |
KR20050122086A (en) | A polyamide resin composition for automobile interior materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011513774 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11756216 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11756216 Country of ref document: EP Kind code of ref document: A1 |