Nothing Special   »   [go: up one dir, main page]

WO2011115042A1 - Curable resin composition, cured material and fluorinated polymer - Google Patents

Curable resin composition, cured material and fluorinated polymer Download PDF

Info

Publication number
WO2011115042A1
WO2011115042A1 PCT/JP2011/055908 JP2011055908W WO2011115042A1 WO 2011115042 A1 WO2011115042 A1 WO 2011115042A1 JP 2011055908 W JP2011055908 W JP 2011055908W WO 2011115042 A1 WO2011115042 A1 WO 2011115042A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon
represented
carbon atoms
fluorine
Prior art date
Application number
PCT/JP2011/055908
Other languages
French (fr)
Japanese (ja)
Inventor
隆宏 北原
義人 田中
琢磨 川部
剣吾 伊藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020127026824A priority Critical patent/KR20120130782A/en
Priority to CN201180013926.9A priority patent/CN102803377B/en
Priority to JP2012505661A priority patent/JP5440690B2/en
Publication of WO2011115042A1 publication Critical patent/WO2011115042A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/186Monomers containing fluorine with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond

Definitions

  • the present invention relates to a curable resin composition, a cured product, and a fluoropolymer. More specifically, the present invention relates to a curable resin composition that can be cured by a hydrosilylation reaction, a cured product obtained by curing the curable resin composition, and a fluorine-containing polymer suitable for the curable resin composition.
  • Patent Document 1 proposes a composition comprising a curable fluorine-containing polymer having an ethylenic carbon-carbon double bond at a side chain end.
  • Patent Document 2 discloses a curable composition containing a specific fluorine-containing amide compound having vinyl groups at both ends, a specific fluorine-containing organohydrogensiloxane, and a catalytic amount of a platinum group compound.
  • the crosslinking reaction disclosed in Patent Document 1 is a photocuring reaction, and a curing system based on a hydrosilylation reaction is not disclosed.
  • the curable fluorinated polymer is composed of a chain monomer having a specific structure.
  • the fluorine-containing amide compound described in Patent Document 2 is obtained by introducing a carbon-carbon double bond at the terminal after the production of a polymer, and therefore the amount of crosslinking points cannot be easily adjusted. There was room for improvement.
  • An object of the present invention is to provide a curable resin composition that is easy to manufacture and that can easily adjust the crosslinking density.
  • the present invention is a curable resin composition
  • a curable resin composition comprising a fluoropolymer (A) and a hydrosilylation crosslinking agent (B), wherein the fluoropolymer (A) is a polymer unit derived from a fluoromonomer. And a fluoropolymer comprising polymerized units derived from a norbornene monomer having two or more carbon-carbon double bonds, and the hydrosilylation crosslinking agent (B) has a hydrogen atom bonded directly to a silicon atom.
  • a curable resin composition which is a siloxane compound having two or more groups in a molecule.
  • the present invention is also a cured product obtained by curing the curable resin composition.
  • the present invention relates to tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ⁇ CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms. And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (a):
  • R 1 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 10 carbon atoms.
  • R 2 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms. It is also a fluorine-containing polymer comprising polymerized units derived from a norbornene monomer having two or more carbon-carbon double bonds represented by the formula:
  • the present invention relates to tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ⁇ CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms. And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (b):
  • R 3 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 5 carbon atoms.
  • R 4 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms.
  • R 5 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms, n is an integer of 0 to 10.
  • It is also a fluorine-containing polymer comprising polymerized units derived from a norbornene monomer having 2 or more.
  • the present invention relates to tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ⁇ CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms. And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (c):
  • R 6 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms
  • a norbornene monomer having two or more carbon-carbon double bonds represented by It is also a fluorine-containing polymer characterized by comprising polymer units derived therefrom.
  • the curable resin composition of the present invention includes a polymer in which a norbornene monomer having two or more carbon-carbon double bonds is polymerized to introduce a crosslinking site, the amount of the crosslinking site can be easily adjusted. Can be manufactured easily. Moreover, it is possible to obtain a cured product having a high crosslinking density. Furthermore, since it can prepare even if a solvent is not included, the process of removing a solvent from the hardened
  • the cured product of the present invention is obtained by curing the curable resin composition, it has high transparency and can be easily and inexpensively produced.
  • the crosslinking density can be increased.
  • the fluoropolymer of the present invention is easy to produce, the amount of cross-linking sites can be easily adjusted, and it is easy to dissolve or disperse in a hydrosilylation cross-linking agent, so it is suitably used for the curable resin composition. be able to.
  • the curable resin composition of the present invention has (A) a polymer unit derived from a fluorine-containing monomer (hereinafter also referred to as “fluorine-containing monomer unit”) and two or more carbon-carbon double bonds. It comprises a fluorine-containing polymer comprising polymer units derived from norbornene monomers (hereinafter also referred to as “norbornene monomer units”), and (B) a hydrosilylation crosslinking agent.
  • the curable resin composition of the present invention is composed of the fluorine-containing polymer (A) containing a fluorine-containing monomer unit, the refractive index of the resulting cured product and the transparency in the ultraviolet or near infrared region.
  • the optical properties such as light resistance, weather resistance, heat resistance, water absorption, water and oil repellency, and chemical resistance can be made excellent.
  • the crosslinking reaction of the curable resin composition of the present invention is not a reaction in which a desorbing component such as water or salt is generated but an addition reaction, it does not require a step of removing a by-product.
  • a composition having a predetermined viscosity can be prepared without using a solvent, and crosslinking (curing) can be easily performed. Moreover, the process of removing a solvent from the hardened
  • the norbornene monomer unit has a carbon-carbon double bond (crosslinking site)
  • a step of introducing a crosslinking site into the fluoropolymer is unnecessary.
  • the manufacturing process can be simplified.
  • the amount of crosslinking sites can be easily adjusted, and a molded product having a high crosslinking density can be obtained.
  • the fluoropolymer (A) is composed of a polymer unit derived from a fluoromonomer and a polymer unit derived from a norbornene monomer having two or more carbon-carbon double bonds. Become.
  • the fluorine-containing polymer (A) is a polymer having a crosslinking site, and the amount of the crosslinking site can be easily adjusted when producing the fluorine-containing polymer (A).
  • the fluoropolymer (A) is surprisingly dissolved or dispersed in the hydrosilylation crosslinking agent, the curable resin composition of the present invention can dispense with a solvent.
  • the amount of the crosslinking site (carbon-carbon double bond) can be easily adjusted by changing the kind of norbornene monomer and the ratio of the norbornene monomer to the total monomer amount.
  • the presence of a crosslinking site in the fluoropolymer (A) can be confirmed, for example, by 1 H-NMR.
  • a norbornene monomer having two or more carbon-carbon double bonds is a monomer having a norbornene skeleton and further having one or more carbon-carbon double bonds in a portion other than the norbornene skeleton.
  • the norbornene monomer may have a fluorine atom or may not have a fluorine atom, but preferably has no fluorine atom.
  • the norbornene monomer is preferably, for example, a monomer having a norbornene skeleton and a group having one or more carbon-carbon double bonds and / or a dicyclopentadiene skeleton.
  • the norbornene skeleton has the following formula:
  • the dicyclopentadiene skeleton has the following formula:
  • the norbornene monomer is a monomer having a group having one or more carbon-carbon double bonds
  • the norbornene monomer has one group having one or more carbon-carbon double bonds. You may have, and you may have two or more.
  • the norbornene monomer is preferably one having a norbornene skeleton and one group having one or more carbon-carbon double bonds, and one norbornene skeleton and one group having one carbon-carbon double bond. It is more preferable to have one.
  • Examples of the group having one or more carbon-carbon double bonds include an alkenyl group such as a vinyl group, an allyl group, an isopropenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, and an octenyl group; a vinylphenyl group, Alkenyl group-containing aryl groups such as isopropenylphenyl group; alkenyl group-containing aralkyl groups such as vinylphenylmethyl group; alkylidene groups such as vinylidene group; and the like.
  • an alkenyl group such as a vinyl group, an allyl group, an isopropenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, and an octenyl group
  • a vinylphenyl group Alkenyl group-containing aryl
  • the group having one or more carbon-carbon double bonds is preferably at least one group selected from the group consisting of an alkenyl group, an alkenyl group-containing aryl group, an alkenyl group-containing aralkyl group, and an alkylidene group. More preferably, they are an alkenyl group and / or an alkylidene group.
  • Examples of the group having two or more carbon-carbon double bonds include two or more introduced by reacting a compound such as Karenz BEI manufactured by Showa Denko KK with a norbornene monomer having an OH group. And a group having two carbon-carbon double bonds.
  • Examples of the norbornene monomer include the following formula (a):
  • R 1 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 10 carbon atoms.
  • R 2 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms.
  • R 1 is more preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 2 is more preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 1 examples include a hydrogen atom; methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, t -Pentyl group, neopentyl group, hexyl group, isohexyl group, heptyl group, octyl group, nonyl group, decyl group and the like.
  • R 1 is more preferably a methyl group.
  • R 2 examples include the same as R 1 .
  • R 2 is preferably a hydrogen atom.
  • the “hydrocarbon group which may contain an oxygen atom” is preferably, for example, an alkyl group, an alkenyl group, an alkyl ether group or an alkenyl ether group.
  • R 7 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 7 is more preferably a norbornene monomer having two carbon-carbon double bonds.
  • R 7 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group.
  • R 3 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 5 carbon atoms.
  • R 4 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms.
  • R 5 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms, n is an integer of 0 to 10.
  • Norbornene monomers having 2 or more are also preferred.
  • R 3 is more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 4 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 5 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom.
  • n is preferably an integer of 0 to 5, and more preferably 0 or 1.
  • R 8 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 8 is more preferably a norbornene monomer having two carbon-carbon double bonds.
  • R 8 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom.
  • Examples of the norbornene monomer represented by the above formula (a) or (b) include 5-methylene-2-norbornene, 5-vinyl-2-norbornene, 5- (2-propenyl) -2-norbornene, 5- (3-butenyl) -2-norbornene, 5- (1-methyl-2-propenyl) -2-norbornene, 5- (4-pentenyl) -2-norbornene, 5- (1-methyl-3-butenyl) ) -2-norbornene, 5- (5-hexenyl) -2-norbornene, 5- (1-methyl-4-pentenyl) -2-norbornene, 5- (2,3-dimethyl-3-butenyl) -2- Norbornene, 5- (2-ethyl-3-butenyl) -2-norbornene, 5- (6-heptenyl) -2-norbornene, 5- (3-methyl-5-hexenyl) -2
  • R 6 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms), and a norbornene monomer having two or more carbon-carbon double bonds represented by preferable.
  • a norbornene monomer having two carbon-carbon double bonds represented by
  • the norbornene monomer represented by the formula (a), the norbornene monomer represented by the formula (b), and the norbornene monomer represented by the formula (b) from the viewpoint of being easily dissolved or dispersed in the hydrosilylation crosslinking agent (B)
  • the monomer is preferably at least one monomer selected from the group consisting of norbornene monomers represented by the formula (c). More preferably, it is selected from the group consisting of a norbornene monomer represented by formula (1), a norbornene monomer represented by formula (2), and a norbornene monomer represented by formula (3). At least one monomer. More preferred is a norbornene monomer represented by the formula (1).
  • the fluorine-containing monomer in the present invention is a monomer having a fluorine atom that can be copolymerized with the norbornene monomer.
  • the fluorine-containing monomer preferably does not have a norbornene skeleton. More preferred is a monomer having a carbon-carbon double bond having no norbornene skeleton.
  • fluorine-containing monomer examples include tetrafluoroethylene [TFE], vinylidene fluoride [VdF], chlorotrifluoroethylene [CTFE], vinyl fluoride, hexafluoropropylene [HFP], hexafluoroisobutene, and CH 2.
  • PAVE examples include perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], perfluoro (butyl vinyl ether), etc.
  • PMVE PEVE or PPVE is more preferable.
  • alkyl perfluorovinyl ether derivative those in which Rf 2 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 ⁇ CF—OCH 2 —CF 2 CF 3 is more preferable.
  • TFE and / or CTFE are more preferable, and TFE is still more preferable.
  • the fluorine-containing polymer (A) includes a fluorine-containing monomer unit, a norbornene monomer unit derived from a norbornene monomer having two or more carbon-carbon double bonds, and the fluorine monomer and It may be composed of a monomer unit derived from another monomer copolymerizable with a norbornene monomer having two or more carbon-carbon double bonds. Said other monomer is a monomer which does not contain a fluorine atom.
  • the other monomer is preferably a fluorine-free ethylenic monomer excluding the norbornene monomer having two or more carbon-carbon double bonds.
  • the other monomer include ethylene, propylene, 1-butene, 2-butene, vinyl chloride, vinylidene chloride, alkyl vinyl ether, hydroxyl group-containing vinyl ether monomer, vinyl ester monomer, unsaturated carboxylic acid, and carbon- Preference is given to at least one fluorine-free ethylenic monomer selected from the group consisting of norbornene monomers having one carbon double bond.
  • the alkyl vinyl ether include methyl vinyl ether and ethyl vinyl ether.
  • Examples of the hydroxyl group-containing vinyl ether monomer include 4-hydroxybutyl vinyl ether and 2-hydroxyethyl vinyl ether.
  • Examples of the vinyl ester monomer include vinyl versatate, vinyl laurate, vinyl stearate, vinyl cyclohexylcarboxylate, and vinyl acetate.
  • As the other monomer a norbornene monomer having one carbon-carbon double bond is preferable.
  • a norbornene monomer having one carbon-carbon double bond is a monomer having a norbornene skeleton and having no carbon-carbon double bond in a portion other than the norbornene skeleton.
  • R 14 is an alkyl group having 1 to 10 carbon atoms, x is an integer of 0 to 2), and preferably represented by the following formula:
  • the norbornene monomer represented by is more preferable.
  • the unsaturated carboxylic acid has at least one carbon-carbon double bond that enables copolymerization in one molecule, and one molecule of a carbonyloxy group [—C ( ⁇ O) —O—].
  • Those having at least one are preferable, and may be an aliphatic unsaturated monocarboxylic acid, or may be an aliphatic unsaturated polycarboxylic acid having two or more carboxyl groups.
  • aliphatic unsaturated carboxylic acid examples include (meth) acrylic acid, crotonic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid and aconite More preferably, it is at least one selected from the group consisting of acids.
  • the molar ratio of the fluorinated monomer unit to the norbornene monomer unit is preferably 90:10 to 10:90. More preferably, it is 70:30 to 30:70.
  • the total of the fluorinated monomer units and the norbornene monomer units is preferably 30 mol% or more based on the total polymerized units. More preferably, it is 50 mol% or more.
  • the other monomer units are preferably 70 mol% or less based on the total monomer units. More preferably, it is 50 mol% or less.
  • the number average molecular weight of the fluorinated polymer (A) is not particularly limited, but is preferably 1,000 to 1,000,000 from the viewpoint of solubility or dispersibility in the hydrosilylation crosslinking agent (B) or the solvent (D). Preferably, it is 1,000 to 500,000.
  • the fluoropolymer (A) preferably has a glass transition temperature of 30 to 200 ° C, more preferably 45 to 150 ° C.
  • the fluorinated polymer (A) is preferably an alternating copolymer of the fluorinated monomer and the norbornene monomer from the viewpoint of obtaining a cured product having a uniform crosslinking density.
  • Such an alternating copolymer can be preferably obtained by setting the monomer composition ratio during the polymerization to about 1: 1.
  • the fluoropolymer (A) can be produced by solution polymerization, suspension polymerization, emulsion polymerization, or the like.
  • a polymerization initiator, a surfactant, a chain transfer agent, and a solvent can be used, and conventionally known ones can be used.
  • an oil-soluble radical polymerization initiator or a water-soluble radical initiator can be used as said polymerization initiator.
  • the oil-soluble radical polymerization initiator may be a known oil-soluble peroxide, such as diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, etc.
  • Peroxyesters such as dialkyl peroxycarbonates, t-butyl peroxyisobutyrate and t-butyl peroxypivalate, dialkyl peroxides such as di-t-butyl peroxide, and the like -Hydro-dodecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-tetradecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-hexadecafluorononanoyl) peroxide, di (perfluorobutyryl) peroxide , Di (Perful Pareril) -Oxide, di (perfluorohexanoyl) peroxide, di (perfluoroheptanoyl) peroxide, di (perfluorooctanoyl) peroxide, di (perfluorononanoyl) peroxide, di ( ⁇ -chloro-hexafluoro) Butyryl
  • the water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts such as persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, percarbonate, potassium salts, sodium salts. , T-butyl permaleate, t-butyl hydroperoxide and the like.
  • a reducing agent such as sulfites and sulfites may be used in combination with the peroxide, and the amount used may be 0.1 to 20 times that of the peroxide.
  • a known surfactant can be used.
  • a nonionic surfactant an anionic surfactant, a cationic surfactant, or the like can be used.
  • fluorine-containing anionic surfactants are preferred, and may contain an ether-bonded oxygen atom (that is, an oxygen atom may be inserted between carbon atoms), or a straight or branched chain having 4 to 20 carbon atoms. More preferred are fluorine-containing anionic surfactants.
  • the addition amount (with respect to polymerization water) is preferably 50 to 5000 ppm.
  • the polymerization is performed in a solvent capable of dissolving the reactive monomer, and the resulting polymer may be dissolved or precipitated in the solvent.
  • a solution polymerization solvent include CF 3 CH 2 CF 2 CH 3 , CF 3 CHFCHFCF 2 CF 3 , and the following formula:
  • a fluorocarbon solvent is preferred in view of the fact that chain transfer is small.
  • a solvent can be used individually or in mixture of 2 or more types.
  • a fluorine-based solvent may be used in addition to water.
  • the fluorine-based solvent include hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, and CF 2 ClCF 2 CFHCl; perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3 Perfluoroalkanes such as CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 2 CF 3, and the like.
  • the polymerization temperature is not particularly limited, and may be 0 to 100 ° C.
  • the polymerization pressure is appropriately determined according to other polymerization conditions such as the type, amount and vapor pressure of the solvent to be used, and the polymerization temperature, but it may usually be 0 to 9.8 MPaG.
  • hydrocarbons such as ethane, isopentane, n-hexane and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Chain transfer agents such as alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; and halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride may be used.
  • hydrocarbons such as ethane, isopentane, n-hexane and cyclohexane
  • aromatics such as toluene and xylene
  • ketones such as acetone
  • acetates such as ethyl acetate and butyl acetate
  • Chain transfer agents such as alcohols such as methanol and ethanol
  • mercaptans such as
  • the hydrosilylation reaction is an addition reaction between a carbon-carbon double bond and a hydrogen atom directly bonded to a silicon atom.
  • the hydrosilylation crosslinker (B) in the present invention is a hydrogen atom.
  • the hydrosilylation crosslinking agent is preferably liquid.
  • hydrosilylation crosslinking agent (B) for example, those described in International Publication No. 2008/153002 pamphlet, International Publication No. 2008/044765 pamphlet, International Publication No. 2008/072716 pamphlet and the like can be used.
  • B1, B2 or B3 described in International Publication No. 2008/044765 pamphlet can be used.
  • hydrosilylation crosslinking agent (B) As hydrosilylation crosslinking agent (B), the following formula: -O-SiR 8 H- A siloxane compound having two or more structures represented by the formula (wherein R 8 is a monovalent hydrocarbon group having 1 to 10 carbon atoms) is preferable.
  • R 8 is the same or different and is preferably an alkyl group having 1 to 10 carbon atoms or an aryl group.
  • R 8 is more preferably at least one group selected from the group consisting of a methyl group, an ethyl group, and a phenyl group, and more preferably a methyl group.
  • hydrosilylation crosslinking agent (B) As hydrosilylation crosslinking agent (B), the following formula: -O-SiR 8 2 H
  • a siloxane compound having a diorganosiloxy group (b1) represented by the formula (wherein R 8 is the same or different and is a monovalent hydrocarbon group having 1 to 10 carbon atoms) is preferable.
  • R 8 is the same or different and is preferably an alkyl group having 1 to 10 carbon atoms or an aryl group.
  • R 8 is more preferably at least one group selected from the group consisting of a methyl group, an ethyl group, and a phenyl group, and more preferably a methyl group.
  • diorganosiloxy group (b1) for example, the formula: —O—Si (CH 3 ) 2 H A group represented by the formula: —O—Si (C 6 H 5 ) 2 H A group represented by the formula: —O—Si (CH 3 ) (C 6 H 5 ) H A group represented by the formula: —O—Si (C 2 H 5 ) 2 H The group represented by these can be illustrated.
  • the hydrosilylation crosslinking agent (B) is a liquid siloxane compound (hereinafter referred to as “a”) having two or more groups in which hydrogen atoms capable of dissolving or dispersing the fluoropolymer (A) are directly bonded to silicon atoms.
  • It may be a siloxane compound having at least one (hereinafter also referred to as “hydrosilylation crosslinking agent (B5)”).
  • Hydrosilylation cross-linking agent (B4) is a liquid that has two or more groups in the molecule that can dissolve or disperse the fluoropolymer (A) and in which hydrogen atoms are directly bonded to silicon atoms. It is a siloxane compound.
  • the hydrosilylation crosslinking agent (B4) is a siloxane compound that has the ability to crosslink (cur) the fluoropolymer (A) by a hydrosilylation reaction and can dissolve or disperse the fluoropolymer (A). .
  • this hydrosilylation crosslinking agent (B4) When this hydrosilylation crosslinking agent (B4) is used, a solvent for dissolving or dispersing the fluoropolymer (A) (the solvent (D) described later) is not required, and a so-called solventless curable resin composition is used. It can be.
  • the solvent-free curable resin composition When the solvent-free curable resin composition is used, it is not necessary to remove the organic solvent, and the molding process and the like can be simplified. Furthermore, the solventless curable resin composition is useful even in cases where the inclusion of volatile components is not allowed due to the molding process conditions. For example, it is advantageous in applications such as filling and sealing in an airtight container.
  • hydrosilylation crosslinking agent (B4) for example, B1 or B2 described in International Publication No. 2008/044765 pamphlet can be used.
  • each R 9 is the same or different, and an alkyl group having 1 to 10 carbon atoms, an aryl group, a (meth) acryl group-containing organic group, in which part or all of hydrogen atoms may be substituted with fluorine, Or an epoxy group-containing organic group, wherein R 10 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or the following formula: -SiR 8 2 H (Wherein R 8 are the same or different and each represents a monovalent hydrocarbon group having 1 to 10 carbon atoms), and represents a diorganosilyl group (b2).
  • R 10 in one molecule are diorganosilyl groups (b2).
  • b is an integer of 0-2.
  • R 8 is the same or different and is preferably an alkyl group having 1 to 10 carbon atoms or an aryl group.
  • R 8 is more preferably at least one group selected from the group consisting of a methyl group, an ethyl group, and a phenyl group, and more preferably a methyl group.
  • R 9 is preferably the same or different, and is an alkyl group having 1 to 10 carbon atoms or an aryl group, in which some or all of hydrogen atoms may be substituted with fluorine.
  • b is preferably 1, two R 10 are the above diorganosilyl groups (b2), one R 10 is a hydrogen atom, or all three R 10 are diorganosilyl. The group (b2) is preferred.
  • hydrosilylation crosslinking agent (B4) following formula (5): R 9 c1 (R 10 O) 3-c1 Si—R 11 —SiR 9 c2 (OR 10 ) 3-c2 (5)
  • R 9 is the same or different, and an alkyl group having 1 to 10 carbon atoms, an aryl group, a (meth) acryl group-containing organic group, in which some or all of hydrogen atoms may be substituted with fluorine, or Represents an epoxy group-containing organic group
  • R 10 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or the following formula: -SiR 8 2 H (Wherein R 8 are the same or different and each represents a monovalent hydrocarbon group having 1 to 10 carbon atoms), and represents a diorganosilyl group (b2).
  • R 10 in one molecule are diorganosilyl groups (b2).
  • R 11 is a divalent organic group.
  • c1 is an integer from 0 to 3
  • c2 is an integer from 0 to 3.
  • c1 and c2 are not both 3.
  • the (meth) acryl group-containing organic group is preferably a C 1-10 alkyl group having a (meth) acryl group, or a C 1-10 alkyl ether group having a (meth) acryl group. .
  • the epoxy group-containing organic group is preferably an alkyl group having 1 to 10 carbon atoms or an alkyl ether group having 1 to 10 carbon atoms having an epoxy group.
  • the hydrosilylation crosslinking agent (B) is preferably at least one compound selected from the group consisting of hydrosilylation crosslinking agents (B6) and (B7).
  • hydrosilylation crosslinking agent (B6) or (B7) specifically, the formula: CH 3 Si ⁇ OSi (CH 3 ) 2 H ⁇ 3 A siloxane compound represented by the formula: CH 3 (C 6 H 5) Si ⁇ OSi (CH 3) 2 H ⁇ 2 A siloxane compound represented by the formula: C 3 H 7 Si ⁇ OSi (CH 3 ) 2 H ⁇ 3 A siloxane compound represented by the formula: C 4 H 9 Si ⁇ OSi ( CH 3) 2 H ⁇ 3 A siloxane compound represented by the formula: C 6 H 13 Si ⁇ OSi (CH 3 ) 2 H ⁇ 3 A siloxane compound represented by the formula: C 8 H 17 Si ⁇ OSi (CH 3 ) 2 H ⁇ 3 A siloxane compound represented by the formula: C 6 H 5 Si ⁇ OSi (CH 3 ) 2 H ⁇ 3 A siloxane compound represented by the formula: (C 6 H 5 ) 2 Si ⁇ OSi (CH 3 ) 2 H ⁇ 2 A siloxane compound represented by the
  • a fluorine-containing hydrosilylation crosslinking agent (B8) is also preferable. Since the fluorine-containing hydrosilylation crosslinking agent (B8) is highly compatible with the fluorine-containing polymer (A), it is easy to obtain a uniform composition. When this fluorine-containing hydrosilylation crosslinking agent (B8) is used, it does not require a solvent for dissolving or dispersing the fluorine-containing polymer (A) (the solvent (D) described later), and is a so-called solventless curable resin. It can be a composition.
  • fluorine-containing hydrosilylated crosslinking agent (B8) examples include, for example, JP-A No. 05-320175, JP-A No. 06-306060, JP-A No. 08-003178, JP-A No. 08-134084, and JP-A No. 08-.
  • the compounds described in JP-A No. 157486, JP-A No. 09-2221489, JP-A No. 09-316264, JP-A No. 11-116687, and JP-A No. 2003-137891 can be used.
  • the fluorine-containing hydrosilylation crosslinking agent (B8) is preferably linear rather than cyclic, and the fluorine-containing group is preferably introduced into the side chain rather than the terminal or main chain.
  • Typical structural formulas include the following.
  • Rf 3 is a monovalent group containing fluorine
  • Rf 4 is a divalent group containing fluorine.
  • Rf 3 is a monovalent group containing fluorine
  • Me is a methyl group
  • X is a divalent organic group
  • R represents a monovalent organic group.
  • N 11 , m 11 And o 11 are the same or different and each represents an integer of 0 or more.
  • Rf 3 is a divalent group in which .Me, X, R, n 11 and m 11 are the same. As above containing fluorine) straight chain terminated Rf 3 group was introduced which is represented by Fluorine-containing siloxane compound having the following formula:
  • Rf 4 , Me, X, R, n 11 , m 11, and o 11 are the same as described above.
  • P 11 is an integer of 0 or more
  • Rf 4 group is introduced into the main chain represented by Linear fluorinated siloxane compound having the following formula:
  • Rf 3 , Me, X, R, n 11 , m 11, and o 11 are the same as above
  • R is preferably a monovalent hydrocarbon group having 1 to 20 carbon atoms, and for example, is preferably the same or different and is preferably a methyl group, an ethyl group or a phenyl group. More preferably, they are the same or different and are a methyl group or a phenyl group.
  • X is independently, -CH 2 -, - CH 2 O -, - CH 2 OCH 2 -, or, -Y-NR 12 -CO- (where, Y is -CH 2 - or the following formula:
  • R 12 is a monovalent organic group. ) Is preferable.
  • Rf 5 is a monovalent group containing fluorine
  • R 12 is a monovalent represents an organic group
  • R 13 is a divalent represents an organic group.
  • Rf 5 group at the terminal represented by A linear fluorine-containing siloxane compound into which is introduced is also preferred.
  • Rf 5 is preferably a trifluoromethyl group
  • R 12 is preferably a methyl group (—CH 3 )
  • R 13 is preferably a methylene group (—CH 2 —CH 2 —).
  • hydrosilylation crosslinking agent (B4) of the present invention also has the following formula:
  • n 12 is an integer of 1-10.
  • the siloxane compound represented by is preferable.
  • n 12 is preferably 3 to 10, more preferably 3 to 5, and still more preferably 4.
  • hydrosilylation crosslinking agent (B4) of the present invention also has the following formula:
  • (B5) A siloxane compound having two or more groups in which a hydrogen atom is directly bonded to a silicon atom in a liquid or solid state in which the hydrosilylation crosslinking agent fluoropolymer (A) is not dissolved or dispersed.
  • hydrosilylation crosslinking agent (B5) it is preferable to use a solvent (D) that dissolves or disperses the fluoropolymer (A) or to use a hydrosilylation crosslinking agent (B4) in combination.
  • hydrosilylation crosslinking agent (B5) for example, B3 described in International Publication No. 2008/044765 pamphlet can be used as it is.
  • specific examples of the hydrosilylation crosslinking agent (B5) include an average unit formula: ⁇ H (CH 3 ) 2 SiO 1/2 ⁇ d (SiO 4/2 ) f
  • the content of the hydrosilylation crosslinking agent (B) varies depending on the type of the fluoropolymer, the type of the hydrosilylation crosslinking agent, the presence or absence of a solvent, the type, and the like. It is preferable that they are 5 mass parts or more and 500 mass parts or less with respect to 100 mass parts of polymers (A). More preferably, they are 10 mass parts or more and 300 mass parts or less, More preferably, they are 20 mass parts or more and 200 mass parts or less.
  • the content of the hydrosilylation crosslinking agent (B) is based on 100 parts by mass of the fluoropolymer (A) from the viewpoint of the function as a crosslinking agent. And 5 parts by mass or more is preferable. More preferably, it is 10 mass parts or more, More preferably, it is 20 mass parts or more. Moreover, it is preferable that it is 90 mass parts or less, More preferably, it is 70 mass parts or less, More preferably, it is 50 mass parts or less.
  • the curable resin composition of the present invention does not contain a solvent (D), that is, when the hydrosilylation crosslinking agent (B) also serves as a solvent for the fluoropolymer (A), hydrosilylation
  • the crosslinking agent (B) is 30 parts by mass or more, further 50 parts by mass or more, particularly 70 parts by mass or more, and 500 parts by mass or less, further 100 parts by mass with respect to the fluoropolymer (A). 300 parts by mass or less, particularly 200 parts by mass or less are preferable.
  • the hydrosilylation crosslinking agent (B) is preferably a hydrosilylation crosslinking agent (B4), and among them, a fluorinated hydrosilylation crosslinking agent (B8). ) Is more preferable.
  • the curable resin composition of the present invention preferably further comprises a hydrosilylation catalyst (C).
  • the hydrosilylation catalyst (C) is a catalyst for promoting the hydrosilylation reaction of the composition of the present invention.
  • Such a catalyst is preferably at least one catalyst selected from the group consisting of platinum-based catalysts, palladium-based catalysts, rhodium-based catalysts, ruthenium-based catalysts, and iridium-based catalysts. From the viewpoint of availability, a platinum-based catalyst is preferable.
  • the platinum-based catalyst include chloroplatinic acid, alcohol-modified chloroplatinic acid, platinum carbonyl complex, platinum olefin complex, platinum alkenylsiloxane complex, and the like.
  • the hydrosilylation catalyst (C) is not limited to those described above, and a compound that catalyzes a known hydrosilylation reaction can be used.
  • a compound that catalyzes a known hydrosilylation reaction can be used.
  • those described in International Publication No. 2008/153002, International Publication No. 2008/044765, International Patent Application PCT / JP2007 / 074066, International Patent Application PCT / JP2008 / 060555, etc. Can be used.
  • the content of the hydrosilylation catalyst (C) may be any catalyst amount that promotes the curing of the composition of the present invention.
  • the content of the hydrosilylation catalyst (C) is preferably 0.1 to 1000 ppm by mass with respect to the curable resin composition of the present invention. More preferably, it is 1 to 500 ppm. If the content of the hydrosilylation catalyst (C) is too low, curing of the resulting composition may not be sufficiently promoted, and if it is too high, problems such as coloring may occur in the resulting cured product. .
  • the curable resin composition of the present invention is a solvent. May not be included. However, the solvent (D) may be included as necessary.
  • the solvent (D) in the present invention mainly has a role of dissolving or dispersing the fluoropolymer (A).
  • the solvent used only to dissolve or disperse the fluoropolymer (A) may cause a problem that the organic solvent remains in the cured product when the removal is insufficient, or the influence of the remaining organic solvent. Since problems such as heat resistance, a decrease in mechanical strength, and white turbidity may occur or voids may be generated due to volatilization of the solvent, it is desirable to remove the solvent as completely as possible. Therefore, it is desirable not to use it as much as possible from the viewpoint of reducing environmental load and cost, including the work burden for that purpose. That is, it is preferable that the curable resin composition of the present invention does not contain the solvent (D).
  • a solvent (D) that can dissolve or disperse the fluoropolymer (A) is used as a non-silicon-based reaction involved in the hydrosilylation crosslinking reaction.
  • the solvent is classified into a solvent (D1) and a solvent (D2) not involved in the hydrosilylation crosslinking reaction.
  • the hydrosilylation crosslinking agent (B4) is a compound that dissolves or disperses the fluoropolymer (A) and participates in the hydrosilylation crosslinking reaction. It differs from the solvent (D1) in that it is a siloxane compound.
  • “participating in hydrosilylation crosslinking reaction” means any reactive group participating in hydrosilylation reaction which is an addition reaction between a carbon-carbon double bond and a hydrogen atom directly bonded to a silicon atom ( Having a carbon-carbon double bond or a silicon atom-bonded hydrogen atom-containing group), and as a result, incorporated into the reaction product of the hydrosilylation crosslinking reaction. Moreover, it is preferable to have a some reactive group from a viewpoint that there exists crosslinking
  • polyvalent allyl compounds such as ethylene glycol diallyl, diethylene glycol diallyl, triethylene glycol diallyl, 1,4-cyclohexanedimethanol diallyl, triallyl isocyanurate (TAIC); ethylene glycol divinyl ether, diethylene glycol Divinyl ether, triethylene glycol divinyl ether, bisphenol A bis (vinyloxyethylene) ether, bis (vinyloxyethylene) ether, hydroquinone bis (vinyloxyethylene) ether, 1,4-cyclohexanedimethanol divinyl ether,
  • TAIC triallyl isocyanurate
  • Polyvalent vinyl ether compounds such as ethylene glycol diacrylate (EDA), diethylene glycol diacrylate (DiEDA), triethylene glycol diacrylate (TriEDA), 1,4-butanediol diacrylate (1,4-BuDA), 1,3 -Butanediol diacrylate (1,3-BuDA), 2,2-bis [4- (2-hydroxy-3-acryloxypropoxy) phenyl] propane (Bis-GA), 2,2-bis (4-acrylic) Roxyphenyl) propane (BPDA), 2,2-bis (4-acryloxyethoxyphenyl) propane (Bis-AEPP), 2,2-bis (4-acryloxypolyethoxyphenyl) propane (Bis-APPP), di (Acryloxyethyl) trimethylhexamethyle Polyacrylic compounds such as diurethane (UDA) and trimethylolpropane triacrylate (TMPA); ethylene glycol dimethacrylate (EDMA), diethylene glycol dimethacrylate (DiEDMA), tri
  • At least one compound selected from the group consisting of TAIC, EDMA, EDA, TMPT, and TMPA is preferable from the viewpoint of good solubility and compatibility.
  • the non-silicon-based reactive solvent (D1) may be used alone as the reactive solvent for the fluoropolymer (A), or the hydrosilylation crosslinking agent (B4) or the non-reactive solvent (D2) described later. You may use together.
  • the compounding amount of the non-silicon-based reactive solvent (D1) varies depending on the type of the fluoropolymer (A), the type of the solvent (D1), the presence or type of other solvents, etc., but the fluoropolymer (A) 5 mass parts or more and 500 mass parts or less are preferable with respect to 100 mass parts. From the point of proceeding the hydrosilylation reaction smoothly, it is 5 parts by mass or more, further 10 parts by mass or more, particularly 20 parts by mass or more, and 90 parts by mass with respect to 100 parts by mass of the fluoropolymer (A). Hereinafter, it is preferably 70 parts by mass or less, particularly preferably 50 parts by mass or less.
  • the role as a solvent of a fluoropolymer (A) when the role as a solvent of a fluoropolymer (A) can also be used, it is 30 mass parts or more with respect to 100 mass parts of fluoropolymer (A), Furthermore, 50 mass parts or more, Especially 70 mass parts or more. Moreover, 500 mass parts or less, Furthermore, 300 mass parts or less, Especially 200 mass parts or less are preferable.
  • This solvent (D2) is a fluorine-containing polymer in the case where the hydrosilylation crosslinking agent (B4) or the non-silicon-based reactive solvent (D1) is not blended or by itself. It may be used when the solubility or dispersibility of A) is not sufficient.
  • aliphatic hydrocarbons such as hexane, cyclohexane, heptane, octane, nonane, decane, undecane, dodecane, and mineral spirits; aromatic hydrocarbons such as benzene, toluene, xylene, naphthalene, and solvent naphtha; Methyl, ethyl acetate, propyl acetate, n-butyl acetate, isobutyl acetate, isopropyl acetate, isobutyl acetate, cellosolve acetate, propylene glycol methyl ether acetate, carbitol acetate, diethyl oxalate, ethyl pyruvate, ethyl-2-hydroxybutyrate Rate, ethyl acetoacetate, amyl acetate, methyl lactate, ethyl lactate, methyl 3-methoxyprop
  • fluorine-based solvent for example, CH 3 CCl 2 F (HCFC-141b), CF 3 CF 2 CHCl 2 / CClF 2 CF 2 CHClF mixture (HCFC-225), perfluorohexane, perfluoro (2- Butyltetrahydrofuran), methoxy-nonafluorobutane, 1,3-bistrifluoromethylbenzene, etc.
  • fluorinated solvents may be used alone or as a mixed solvent of fluorinated solvents, a non-fluorinated solvent and one or more fluorinated solvents.
  • the curable resin composition of the present invention does not use the solvent (D2) that does not participate in the hydrosilylation crosslinking reaction, that is, the curable resin composition of the present invention does not contain the solvent (D2).
  • the solvent (D2) By not using the solvent (D2), it is not necessary to remove the solvent (D2) from the curable resin composition, the molding process can be simplified, and the solvent (D2) remains in the cured product. Does not occur.
  • the solventless curable resin composition is useful even in cases where the inclusion of volatile components is not allowed due to the molding process conditions. For example, it is used for filling and sealing in an airtight container.
  • the curable resin composition of the present invention is prepared by mixing the fluorine-containing polymer (A), the hydrosilylation crosslinking agent (B), and, if necessary, the hydrosilylation catalyst (C) by a usual method. be able to. *
  • the crosslinking of the curable resin composition of the present invention may be appropriately determined depending on the crosslinking agent used, but is usually cured at a temperature of room temperature (for example, 20 ° C.) to 200 ° C. for 1 minute to 24 hours. Moreover, it can bridge
  • the crosslinking method is not particularly limited, and a steam crosslinking, a pressure molding method, and a usual method in which a crosslinking reaction is started by heating can be employed.
  • the curable resin composition of the present invention varies depending on the application, for example, for applications such as sealing, if the viscosity at 30 ° C. is too low, there is a lot of liquid dripping, and on the contrary, the handleability is lowered. It is preferably 1 mPa ⁇ s or more, more preferably 5 mPa ⁇ s or more from the viewpoint of good thin film formability, and further preferably 10 mPa ⁇ s or more from the viewpoint of small cure shrinkage during curing.
  • mPa ⁇ s or less is preferable, and from the viewpoint that the curable composition spreads over the details during molding, 5000 mPa ⁇ s or less is more preferable, and when a thin film is formed. From the viewpoint of good leveling (surface smoothness), 2000 mPa ⁇ s or less is more preferable.
  • the curable resin composition of the present invention includes, in addition to those mentioned above, for example, a reaction inhibitor, a pigment such as titanium oxide, bengara, and carbon black, a filler such as alumina and silica, a dispersant, and a thickener. , Preservatives, ultraviolet absorbers, antifoaming agents, leveling agents and the like may be optionally added.
  • reaction inhibitor examples include 1-ethynyl-1-cyclohexanol, 2-ethynylisopropanol, 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, 2-phenyl Acetylenic alcohols such as -3-butyn-2-ol; alkenyl siloxanes such as 1,3,5,7-tetravinyltetramethylcyclotetrasiloxane; malate compounds such as diallyl fumarate, dimethyl fumarate, and diethyl fumarate; Other examples include triallyl cyanurate and triazole.
  • the effect of being able to make the obtained composition one component and the pot life (pot life) of the resulting composition to be sufficiently long is exhibited.
  • the content of the reaction inhibitor is not particularly limited, but is preferably such an amount that it is 10 to 50000 ppm (mass basis) in the composition of the present invention.
  • the curable resin composition can be cured to form a cured film and used for various applications.
  • a method of forming the film a known method suitable for the application can be employed. For example, when it is necessary to control the film thickness, roll coating, gravure coating, micro gravure coating, flow coating, bar coating, spray coating, die coating, spin coating, dip coating, etc. are used. it can.
  • the curable resin composition of the present invention may be used for film formation, but is particularly useful as a molding material for various molded products.
  • As the molding method extrusion molding, injection molding, compression molding, blow molding, transfer molding, stereolithography, nanoimprinting, vacuum molding and the like can be adopted.
  • the curable resin composition of this invention can use as a material of a sealing member, an optical member, a photoelectric imaging tube, various sensors, an antireflection material, for example.
  • the curable resin composition of the present invention is preferably a sealing material.
  • cured material obtained from the curable resin composition of this invention is excellent in transparency, it can utilize suitably as an optical material which forms an optical member.
  • it can also be used as a sealing member material for electronic semiconductors, a water and moisture resistant adhesive, and an adhesive for optical components and elements.
  • Examples of usage of the curable resin composition of the present invention include light emitting elements such as light emitting diodes (LEDs), EL elements, and nonlinear optical elements, and packages of optical functional elements such as light receiving elements such as CCD, CMOS, and PD ( Encapsulation), mounting and the like. Moreover, sealing members (or fillers) for optical members such as lenses for deep ultraviolet microscopes are also included.
  • LEDs light emitting diodes
  • EL elements electrostatic light emitting diodes
  • nonlinear optical elements and packages of optical functional elements such as light receiving elements such as CCD, CMOS, and PD ( Encapsulation), mounting and the like.
  • sealing members (or fillers) for optical members such as lenses for deep ultraviolet microscopes are also included.
  • the curable resin composition of the present invention is excellent in transparency, it can be suitably used particularly as a sealing material for optical elements.
  • the sealed optical element is used in various places. Although it does not specifically limit as an optical element, For example, in addition to light emitting elements, such as a light emitting diode (LED), EL element, and a nonlinear optical element, light receiving elements, such as CCD, CMOS, and PD, a high mount stop lamp and a meter Light emitting elements such as a panel, a backlight of a mobile phone, a light source of a remote control device of various electric products; a camera autofocus, a light receiving element for an optical pickup for CD / DVD, and the like.
  • the curable resin composition of the present invention does not need to contain the solvent (D), and further has a higher barrier property (that is, lower permeability) than the case of using silicone or the like because it is made of a resin.
  • the curable resin composition of the present invention is suitable as a material for forming an optical member. Since the curable resin composition of the present invention contains fluorine, the obtained cured product becomes an optical member having a low refractive index, and is useful as an optical transmission medium, for example.
  • the curable resin composition of the present invention includes, in particular, a plastic clad material whose core material is quartz or optical glass, an optical fiber clad material, an all plastic optical fiber clad material whose core material is plastic, an antireflection coating material, It can be used as a lens material, an optical waveguide material, a prism material, an optical window material, an optical storage disk material, a non-linear optical element material, a hologram material, a photolithographic material, a light emitting element sealing material, and the like. It can also be used as a material for optical devices.
  • optical devices such as optical waveguides, OADMs, optical switches, optical filters, optical connectors, multiplexers / demultiplexers, and other optical devices are known and useful for forming these devices.
  • Material various functional compounds (non-linear optical materials, fluorescent light-emitting functional dyes, photorefractive materials, etc.) are contained and used for functional devices for optical devices such as modulators, wavelength conversion elements, and optical amplifiers. Is suitable.
  • As a sensor application there is an effect such as an improvement in sensitivity of an optical sensor or a pressure sensor, and protection of the sensor by water / oil repellency characteristics, which is useful.
  • the present invention is also a cured product obtained by curing the curable resin composition.
  • the cured product of the present invention can be obtained by hydrosilylation crosslinking the curable resin composition. Since the curable resin composition of the present invention does not need to contain a solvent, the organic solvent removing step can be omitted, and the molding step of the cured product can be simplified. Furthermore, it can be suitably used as a sealing member that does not allow the inclusion of volatile components due to the molding process conditions. That is, the cured product of the present invention is preferably a sealing member.
  • a cured product obtained by curing the curable resin composition can be suitably used as an optical member in terms of excellent transparency.
  • the cured product of the present invention preferably has a light transmittance of 80% or more. More preferably, it is 85% or more, and still more preferably 90% or more.
  • the light transmittance of the cured product can be measured at a wavelength of 550 nm using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.).
  • the cured product of the present invention is not only excellent in transparency but also exhibits special performance as a sealing member as described above, and is particularly suitable as a sealing member for optical elements. .
  • the present invention relates to tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ⁇ CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms. And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (a):
  • R 1 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 10 carbon atoms.
  • R 2 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms.
  • It is also a fluorine-containing polymer (a1) characterized by comprising polymerized units derived from a norbornene monomer having two or more carbon-carbon double bonds represented by the following formula:
  • the norbornene monomer represented by the above formula (a) the following formula (1):
  • R 7 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 7 is preferably a norbornene monomer having two carbon-carbon double bonds.
  • the preferred form of the fluoromonomer is the same as described above.
  • the fluorinated polymer (a1) contains a monomer unit derived from a fluorinated monomer and another monomer copolymerizable with the norbornene monomer represented by the formula (a). Also good. Preferred forms of other monomers are the same as those described above.
  • the fluorine-containing polymer (a1) has the following formula:
  • R 7 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the present invention relates to tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ⁇ CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms. And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (b):
  • R 3 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 5 carbon atoms.
  • R 4 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms.
  • R 5 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms, n is an integer of 0 to 10.
  • It is also a fluorinated polymer (a2) comprising polymerized units derived from a norbornene monomer having 2 or more.
  • the norbornene monomer represented by the above formula (b) the following formula (2):
  • R 8 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the preferred form of the fluoromonomer is the same as described above.
  • the fluorine-containing polymer (a2) contains a monomer unit derived from a fluorine-containing monomer and another monomer copolymerizable with the norbornene monomer represented by the formula (2). Also good. Preferred forms of other monomers are the same as those described above.
  • the fluoropolymer (a2) has the following formula:
  • R 8 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 8 preferably has a norbornene monomer unit.
  • the present invention relates to tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ⁇ CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms. And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (c):
  • R 6 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms
  • a norbornene monomer having two or more carbon-carbon double bonds represented by It is also a fluorine-containing polymer (a3) characterized by comprising derived polymer units.
  • the norbornene monomer represented by the above formula (c) the following formula (3):
  • the fluorine-containing polymer (a3) contains a monomer unit derived from a fluorine-containing monomer and another monomer copolymerizable with the norbornene monomer represented by the formula (3). Also good. Preferred forms of other monomers are the same as those described above.
  • the fluoropolymer (a3) has the following formula:
  • (A1), (a2) and (a3) are fluorine-containing monomer units, norbornene monomer units derived from norbornene monomers having two or more carbon-carbon double bonds, and the above It may be composed of a monomer unit derived from another monomer copolymerizable with a fluorine monomer and a norbornene monomer having two or more carbon-carbon double bonds. Said other monomer is a monomer which does not contain a fluorine atom.
  • a norbornene monomer having one carbon-carbon double bond is preferable.
  • a norbornene monomer having one carbon-carbon double bond is a monomer having a norbornene skeleton and having no carbon-carbon double bond in a portion other than the norbornene skeleton.
  • the norbornene monomer the following formula (d):
  • R 14 is an alkyl group having 1 to 10 carbon atoms, x is an integer of 0 to 2), and preferably represented by the following formula:
  • the norbornene monomer represented by is more preferable.
  • the above (a1), (a2), and (a3) have two or more carbon-carbon double bonds, and the above-mentioned curable resin composition is more easily dissolved or dispersed in the hydrosilylation crosslinking agent.
  • (a1) is particularly preferable.
  • Refractive index (n D ) Measurement is performed using an Abbe refractometer manufactured by Atago Optical Instruments Co., Ltd. at 25 ° C. using sodium D line (589 nm) as a light source.
  • Tg Glass transition temperature
  • Viscosity Using an E-type viscometer manufactured by Toki Sangyo Co., Ltd. conforming to JIS K7117-2, the viscosity is measured at 27 ° C. (mPa ⁇ sec).
  • Synthesis Example 1 (TFE / ENB copolymer) After degassing an autoclave with a stainless steel stirrer with an internal volume of 0.5 L, tetrachloropentafluoropropane (HCFC-225) (200 g) and 5-ethylidene-2-norbornene (ENB) (22 g) were charged, and the mixture was stirred at 300 rpm.
  • HCFC-225 tetrachloropentafluoropropane
  • ENB 5-ethylidene-2-norbornene
  • TFE fluoroethylene
  • 10 g of a 1H, 1H, 3H-tetrafluoropropanol solution of 40% by mass of dinormalpropyl peroxydicarbonate was injected to perform polymerization. Initiated and allowed to react for 20 hours. After completion of the reaction, unreacted TFE was blown at room temperature, and then the content uniformly dissolved in HCFC-225 was put into ethanol.
  • the precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 14 g of white powder.
  • This white powder was dissolved in deuterated chloroform, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE and ENB.
  • a peak of CHCH 3 was confirmed at 5.33 ppm, and it was confirmed that double bonds derived from ENB ethylidene were present in the copolymer.
  • the temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] was reduced by 1 mass% was 212 ° C.
  • the number average molecular weight measured by GPC analysis was 1,582, and the weight average molecular weight was 2,422.
  • This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
  • a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane
  • Synthesis Example 2 (TFE / ENB copolymer) After degassing a 300 ml stainless steel autoclave equipped with a valve, pressure gauge and thermometer, after charging 105 g of dichloropentafluoropropane (HCFC-225) and 4 g of 5-ethylidene-2-norbornene (ENB) Then, 25 g of tetrafluoroethylene (TFE) was charged, the temperature in the autoclave was adjusted to 40 ° C., and 8 g of a 1% 1H, 1H, 3H-tetrafluoropropanol solution of 40% by mass of dinormalpropyl peroxydicarbonate was injected. The polymerization reaction was performed while shaking at 80 ° C.
  • the precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 0.86 g of a solid.
  • This solid was dissolved in deuterated acetone, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE and ENB.
  • 1 H-NMR measurement a peak of ⁇ CHCH 3 was confirmed as in Synthesis Example 1, and it was confirmed that double bonds derived from ENB ethylidene were present in the copolymer.
  • the temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] decreased by 1 mass% was 230 ° C.
  • the number average molecular weight measured by GPC analysis was 2294, and the weight average molecular weight was 3219.
  • This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
  • a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane
  • Synthesis Example 3 (TFE / ENB copolymer) After degassing a 300 ml stainless steel autoclave equipped with a valve, pressure gauge and thermometer, after charging 105 g of dichloropentafluoropropane (HCFC-225) and 36 g of 5-ethylidene-2-norbornene (ENB) Then, 25 g of tetrafluoroethylene (TFE) was charged, the temperature in the autoclave was adjusted to 40 ° C., and 8 g of a 1% 1H, 1H, 3H-tetrafluoropropanol solution of 40% by mass of dinormalpropyl peroxydicarbonate was injected. The polymerization reaction was performed while shaking at 80 ° C.
  • the precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 1.54 g of a solid.
  • This solid was dissolved in deuterated acetone, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE and ENB.
  • 1 H-NMR measurement a peak of ⁇ CHCH 3 was confirmed as in Synthesis Example 1, and it was confirmed that double bonds derived from ENB ethylidene were present in the copolymer.
  • the temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] was reduced by 1 mass% was 180 ° C.
  • the number average molecular weight measured by GPC analysis was 1071, and the weight average molecular weight was 1753.
  • This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
  • a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane
  • Synthesis Example 4 (TFE / VNB copolymer) A 300 ml stainless steel autoclave equipped with a valve, pressure gauge, and thermometer was degassed, then 105 g of dichloropentafluoropropane (HCFC-225), 5-vinylbicyclo [2,2,1] hepta-2- After charging 11 g of ene (VNB), 25 g of tetrafluoroethylene (TFE) was charged, the temperature in the autoclave was adjusted to 40 ° C., and then 40% by mass of 1H, 1H, 3H-tetra of dinormalpropyl peroxydicarbonate.
  • HCFC-225 dichloropentafluoropropane
  • VNB 5-vinylbicyclo [2,2,1] hepta-2-
  • TFE tetrafluoroethylene
  • a polymerization reaction was carried out while 8 g of a fluoropropanol solution was injected and shaken at 40 ° C. under the condition of 80 rpm. After 24 hours from the start of polymerization, the temperature was returned to room temperature, and unreacted TFE was blown to obtain a content uniformly dissolved in HCFC-225. This solution was then poured into ethanol.
  • the precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 1.03 g of a liquid polymer.
  • This polymer was dissolved in deuterated acetone, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE and VNB.
  • 1 H-NMR measurement a peak of —CH ⁇ CH 2 was confirmed, and it was confirmed that double bonds derived from VNB allyl were present in the copolymer.
  • the temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] decreased by 1 mass% was 202 ° C.
  • the number average molecular weight measured by GPC analysis was 1805, and the weight average molecular weight was 3169.
  • This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
  • a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane
  • the precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 13 g of a solid polymer.
  • This polymer was dissolved in deuterated acetone, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE, NB and ENB. .
  • a peak of CHCH 3 was confirmed, and it was confirmed that a double bond derived from ethylidene of ENB was present in the copolymer.
  • the elemental analysis of fluorine of this copolymer was 37.7% by mass, and the elemental analysis of carbon was 56.8% by mass.
  • This copolymer is colorless and transparent.
  • a differential scanning calorimeter RDC220 manufactured by Seiko Instruments
  • the heat measurement was performed at a temperature rising rate of 10 ° C./min up to 200 ° C., there was no melting point and 90 ° C.
  • the glass transition temperature is shown in (Endothermic end temperature).
  • the temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] decreased by 1 mass% was 248 ° C.
  • the number average molecular weight measured by GPC analysis was 2181, and the weight average molecular weight was 2859.
  • This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
  • a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane
  • Synthesis Examples 6 to 8 (TFE / NB / ENB copolymer) Polymerization was conducted in the same manner as in Synthesis Example 5 except that the initial charge amounts of NB and ENB were changed as shown in Table 1 in Synthesis Example 5. The analytical values of the obtained polymer are summarized in Table 1 together with the results of Synthesis Example 5.
  • Synthesis Example 9 (TFE / NB / VNB copolymer) After degassing a 300 ml stainless steel autoclave equipped with a valve, pressure gauge and thermometer, 105 g of dichloropentafluoropropane (HCFC-225), 8.8 g of norbornene (NB) and 5-vinylbicyclo [2, 2,1] hept-2-ene (VNB) (2.2 g), tetrafluoroethylene (TFE) (25 g), and the temperature in the autoclave was adjusted to 40 ° C.
  • HCFC-225 dichloropentafluoropropane
  • NB norbornene
  • VNB 5-vinylbicyclo [2, 2,1] hept-2-ene
  • TFE tetrafluoroethylene
  • the precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 11 g of a solid polymer.
  • This polymer was dissolved in deuterated acetone, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE, NB and ENB. .
  • 1 H-NMR measurement a peak of —CH ⁇ CH 2 was confirmed, and it was confirmed that double bonds derived from VNB allyl were present in the copolymer.
  • the elemental analysis of fluorine of this copolymer was 36.7% by mass, and the elemental analysis of carbon was 57.7% by mass, whereby the composition of the copolymer was TFE.
  • Unit / NB unit / VNB unit 46/40/14 mol% was calculated.
  • This copolymer was colorless and transparent, and when a differential scanning calorimeter RDC220 (manufactured by Seiko Instruments) was used for heat measurement up to 200 ° C. at a temperature rising rate of 10 ° C./min, there was no melting point and 80 ° C. The glass transition temperature is shown in (Endothermic end temperature).
  • the temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] decreased by 1 mass% was 207 ° C.
  • the number average molecular weight measured by GPC analysis was 1750, and the weight average molecular weight was 2805.
  • This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
  • a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane
  • Synthesis Example 10 (TFE / NB / CPD copolymer) After degassing a 300 ml stainless steel autoclave equipped with a valve, pressure gauge and thermometer, 105 g of dichloropentafluoropropane (HCFC-225), 8.8 g of norbornene (NB) and cyclopentadiene (CPD) 2. After charging 2 g, 25 g of tetrafluoroethylene (TFE) was charged, and then the temperature in the autoclave was adjusted to 40 ° C., and then 8 g of a 1% 1H, 1H, 3H-tetrafluoropropanol solution of 40% by mass of di-propylpropylperoxydicarbonate.
  • TFE tetrafluoroethylene
  • the polymerization reaction was carried out while shaking at 40 ° C. under the condition of 80 rpm. After 24 hours from the start of polymerization, the temperature was returned to room temperature, and unreacted TFE was blown to obtain a content uniformly dissolved in HCFC-225. This solution was then poured into ethanol.
  • the precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 10 g of a solid polymer.
  • This polymer was dissolved in deuterated acetone, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE, NB and ENB. .
  • 1 H-NMR measurement a peak of —CH ⁇ CH— was confirmed, and it was confirmed that a double bond derived from an olefin of CPD was present in the copolymer.
  • the elemental analysis of fluorine of this copolymer was 35.3% by mass, and the elemental analysis of carbon was 59.1% by mass.
  • the composition of the copolymer was TFE.
  • Unit / NB unit / CPD unit 45/41/14 mol%.
  • This copolymer was colorless and transparent.
  • a differential scanning calorimeter RDC220 manufactured by Seiko Instruments
  • the heat measurement was performed at a temperature rising rate of 10 ° C./min up to 200 ° C., there was no melting point, and 105 ° C.
  • the glass transition temperature is shown in (Endothermic end temperature).
  • the temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] decreased by 1 mass% was 232 ° C.
  • the number average molecular weight measured by GPC analysis was 1505, and the weight average molecular weight was 2408.
  • This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
  • a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane
  • Example 1 (curable resin composition: solvent xylene) Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si ⁇ OSi (CH 3 ) 2 H ⁇ as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.54 g, 1.0 g of the TFE / ENB copolymer obtained in Synthesis Example 1 and 1.0 g of xylene as a diluent solvent were uniformly mixed and dissolved at 60 ° C., and then cooled to room temperature.
  • Phenyltris (dimethylsiloxy) silane C 6 H 5 Si ⁇ OSi (CH 3 ) 2 H ⁇ as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.54 g
  • the refractive index was determined by measuring a thin film (thickness 150 nm) formed on a silicon wafer by spin coating using a spectroscopic ellipsometer (M-2000D, manufactured by J-Woolum Japan Co., Ltd.), resulting in 1.4795 (598 nm). Met.
  • Example 2 (Solvent-free curable resin composition) Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si ⁇ OSi (CH 3 ) 2 H ⁇ as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) After 0.29 g, 0.25 g of the TFE / ENB copolymer obtained in Synthesis Example 2 and 0.125 g of triallyl isocyanate (TAIC) as a reactive diluent were uniformly mixed and dissolved at 60 ° C. Cooled to room temperature.
  • TAIC triallyl isocyanate
  • the refractive index was determined by measuring a thin film (film thickness: 150 nm) formed on a silicon wafer by spin coating using a spectroscopic ellipsometer (M-2000D, manufactured by J-Woollam Japan Co., Ltd.), resulting in 1.4845 (598 nm). Met.
  • Example 3 (Solvent-free curable resin composition) Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si ⁇ OSi (CH 3 ) 2 H ⁇ as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.61 g and 1 g of the TFE / ENB copolymer obtained in Synthesis Example 3 were uniformly mixed and dissolved at 60 ° C., and then cooled to room temperature. Next, 50 ppm of a cyclic methylvinylsiloxane solution containing 2% platinum as a platinum catalyst was added and mixed uniformly. Then, the mixed solution was poured onto the fluororesin FEP film, and a hydrosilylation reaction was performed in an oven at 125 ° C. for 8 hours. A film-like cured product was obtained.
  • Phenyltris (dimethylsiloxy) silane C 6
  • the refractive index was measured by using a spectroscopic ellipsometer (M-2000D, manufactured by JA Woollam Japan) of a thin film (film thickness: 150 nm) formed on a silicon wafer by a spin coat method. As a result, 1.4763 (598 nm) Met.
  • Example 4 (Solvent-free curable resin composition) Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si ⁇ OSi (CH 3 ) 2 H ⁇ as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.79 g and 1 g of the TFE / NB / ENB terpolymer obtained in Synthesis Example 5 were uniformly mixed and dissolved at 60 ° C., and then cooled to room temperature. Next, 50 ppm of a cyclic methylvinylsiloxane solution containing 2% platinum as a platinum catalyst was added and mixed uniformly. Then, the mixed solution was poured onto the fluororesin FEP film, and a hydrosilylation reaction was performed in an oven at 125 ° C. for 8 hours. A film-like cured product was obtained.
  • Examples 5 to 7 (solvent-free curable resin composition) Aside from using the TFE / NB / ENB ternary copolymer obtained in Synthesis Examples 6 to 8 instead of the TFE / NB / ENB ternary copolymer obtained in Synthesis Example 5 used in Example 4, In the same manner as in Example 4, after preparing a solventless composition, it was cured under the same conditions to obtain a cured film.
  • Table 2 The results of the formulation of the solventless cured resin and the measurement of film properties are summarized in Table 2 together with the results of Example 4.
  • Example 8 (solvent-free curable resin composition) Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si ⁇ OSi (CH 3 ) 2 H ⁇ as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.31 g, 0.25 g of TFE / VNB copolymer obtained in Synthesis Example 4 and 0.125 g of TAIC as a reactive diluent were uniformly mixed and dissolved at 60 ° C. and then cooled to room temperature. .
  • Examples 9 to 11 solvent-free curable resin composition
  • phenyltris (dimethylsiloxy) silane used in Example 4
  • tetrakis (dimethylsilyloxy) silane used in Example 4
  • phenylhydrocyclosiloxane including straight chain
  • tri A solventless composition was prepared in the same manner as in Example 4 except that fluoropropyltetrakis (dimethylsilyloxy) silane (Example 11) was used, and then cured under the same conditions to obtain a film-like cured product.
  • Table 3 summarizes the results of the formulation of the solventless cured resin and the measurement of film properties.
  • Example 12 (Solvent-free curable resin composition) Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si ⁇ OSi (CH 3 ) 2 H ⁇ as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.76 g, 1 g of the TFE / NB / VNB terpolymer obtained in Synthesis Example 9 and 0.5 g of TAIC as a reactive diluent were uniformly mixed and dissolved at 60 ° C., and then to room temperature. Cooled down.
  • Phenyltris (dimethylsiloxy) silane C 6 H 5 Si ⁇ OSi (CH 3 ) 2 H ⁇ as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.76 g, 1
  • Example 13 Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si ⁇ OSi (CH 3 ) 2 H ⁇ as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.75 g, 1 g of the TFE / NB / CPD copolymer obtained in Synthesis Example 10 and 0.5 g of TAIC as a reactive diluent were uniformly mixed and dissolved at 60 ° C. and then cooled to room temperature. .
  • Phenyltris (dimethylsiloxy) silane C 6 H 5 Si ⁇ OSi (CH 3 ) 2 H ⁇ as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.75 g, 1 g of the TFE / NB / CPD
  • Example 14 (water vapor transmission data) 5 g of TFE / NB / ENB terpolymer obtained in Synthesis Example 5, 0.65 g of phenyltris (dimethylsiloxy) silane, platinum-divinyltetramethyldisiloxane complex as a platinum catalyst, xylene solution (2.1-2. 4% platinum) 5 ⁇ L was dissolved in a butyl acetate solvent to make a total of 14 g. Then, after filtering using a 0.45 ⁇ m PTFE filter, it was applied onto a 100 ⁇ m thick PET film (Lumirror manufactured by Toray Industries, Inc.) using a bar coat (# 24). After pre-drying at room temperature for 1 hour, it was cured for 3 days in a blower dryer at 60 ° C. It was 24.4 micrometers as a result of measuring the film thickness after hardening with a micrometer.
  • the produced laminated film was cut into a size of 100 mm ⁇ 100 mm, and Dr. based on JISK7129 (Method A).
  • the water vapor transmission rate was measured using a water vapor transmission meter L80-5000 manufactured by Lyssy. Note that the surface side in direct contact with water vapor is PET, and the dry air side is the cured film of the present invention.
  • the water vapor permeability of only the PET film of the substrate was measured in advance, and the water vapor permeability of the cured film layer was calculated by the following formula.
  • the transmission coefficient P of the entire film when the thickness of the nth layer and the gas permeability coefficient are respectively ln and Pn can be calculated by the above formula: High Molecules and moisture Chapter 7: The Society of Polymer Science, Koshobo (1973).
  • the water vapor permeability determined by the above method was 7.5 g / m 2 ⁇ day.
  • Comparative Example 1 The water vapor permeability of KJR9022E-2 manufactured by Shin-Etsu Silicone, which is commercially available as an LED sealing resin, was measured by a cup method based on JIS Z0208. As a result, it was 314 g / m 2 ⁇ day.
  • Example 15 (viscosity, transmittance) The TFE / ENB copolymer obtained in Synthesis Example 1 and phenyltris (dimethylsiloxy) silane as a SiH crosslinking agent and TAIC were mixed in the proportions shown in Table 4, and the viscosity at 27 ° C. was measured.
  • the curable resin composition of the present invention is suitably used for a sealing member, an optical material, a photoelectronic imaging tube, various sensors, an antireflection material, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Disclosed is a curable resin composition that is easy to produce and in which the cross-link density can be easily adjusted. Specifically disclosed is a curable resin composition formed from a fluorinated polymer (A) and a hydrosilylated cross-linking agent (B). The curable resin composition is characterized in that the fluorinated polymer (A) is formed from a polymerization unit originating in a fluorinated monomer and a polymerization unit originating in a norbornene monomer having two or more carbon-carbon double bonds. The hydrosilylated cross-linking agent (B) is a siloxane compound having two or more groups where a hydrogen atom is directly bonded to a silicon atom in the molecule.

Description

硬化性樹脂組成物、硬化物及び含フッ素重合体Curable resin composition, cured product and fluoropolymer
本発明は、硬化性樹脂組成物、硬化物及び含フッ素重合体に関する。より詳しくは、ヒドロシリル化反応により硬化することができる硬化性樹脂組成物、該硬化性樹脂組成物を硬化した硬化物、及び、上記硬化性樹脂組成物に好適な含フッ素重合体に関する。 The present invention relates to a curable resin composition, a cured product, and a fluoropolymer. More specifically, the present invention relates to a curable resin composition that can be cured by a hydrosilylation reaction, a cured product obtained by curing the curable resin composition, and a fluorine-containing polymer suitable for the curable resin composition.
含フッ素重合体を用いた硬化性樹脂組成物として、例えば特許文献1には、側鎖末端にエチレン性炭素-炭素二重結合を有する硬化性含フッ素重合体からなる組成物が提案されている。特許文献2には、両末端にビニル基を有する特定の含フッ素アミド化合物と特定の含フッ素オルガノ水素シロキサンと、触媒量の白金族化合物を含有する硬化性組成物が開示されている。 As a curable resin composition using a fluorine-containing polymer, for example, Patent Document 1 proposes a composition comprising a curable fluorine-containing polymer having an ethylenic carbon-carbon double bond at a side chain end. . Patent Document 2 discloses a curable composition containing a specific fluorine-containing amide compound having vinyl groups at both ends, a specific fluorine-containing organohydrogensiloxane, and a catalytic amount of a platinum group compound.
国際公開第02/18457号パンフレットInternational Publication No. 02/18457 Pamphlet 特開平8-199070号公報JP-A-8-199070
しかしながら、特許文献1に開示されている架橋反応は光硬化反応であり、ヒドロシリル化反応による硬化系は開示されていない。また、硬化性含フッ素重合体は、特定の構造を有する鎖状の単量体からなるものである。 However, the crosslinking reaction disclosed in Patent Document 1 is a photocuring reaction, and a curing system based on a hydrosilylation reaction is not disclosed. The curable fluorinated polymer is composed of a chain monomer having a specific structure.
特許文献2に記載されている含フッ素アミド化合物は、重合体を製造した後、炭素-炭素二重結合を末端に導入したものであるため、架橋点の量を容易に調整することができない点で改善の余地があった。 The fluorine-containing amide compound described in Patent Document 2 is obtained by introducing a carbon-carbon double bond at the terminal after the production of a polymer, and therefore the amount of crosslinking points cannot be easily adjusted. There was room for improvement.
本発明の目的は、製造が容易であり、架橋密度を容易に調整することができる硬化性樹脂組成物を提供することにある。 An object of the present invention is to provide a curable resin composition that is easy to manufacture and that can easily adjust the crosslinking density.
本発明は、含フッ素重合体(A)とヒドロシリル化架橋剤(B)とからなる硬化性樹脂組成物であって、含フッ素重合体(A)は、含フッ素単量体に由来する重合単位、及び、炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位からなる含フッ素重合体であり、ヒドロシリル化架橋剤(B)は、水素原子がケイ素原子に直接結合した基を分子内に2個以上有するシロキサン化合物であることを特徴とする硬化性樹脂組成物である。 The present invention is a curable resin composition comprising a fluoropolymer (A) and a hydrosilylation crosslinking agent (B), wherein the fluoropolymer (A) is a polymer unit derived from a fluoromonomer. And a fluoropolymer comprising polymerized units derived from a norbornene monomer having two or more carbon-carbon double bonds, and the hydrosilylation crosslinking agent (B) has a hydrogen atom bonded directly to a silicon atom. A curable resin composition, which is a siloxane compound having two or more groups in a molecule.
本発明は、上記硬化性樹脂組成物を硬化して得られる硬化物でもある。 The present invention is also a cured product obtained by curing the curable resin composition.
本発明は、テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、へキサフルオロプロピレン、及び、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の含フッ素エチレン性単量体に由来する重合単位、及び、下記式(a): The present invention relates to tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ═CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms. And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (a):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位からなることを特徴とする含フッ素重合体でもある。 (In the formula, R 1 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 10 carbon atoms. R 2 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms. It is also a fluorine-containing polymer comprising polymerized units derived from a norbornene monomer having two or more carbon-carbon double bonds represented by the formula:
本発明は、テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、へキサフルオロプロピレン、及び、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の含フッ素エチレン性単量体に由来する重合単位、及び、下記式(b): The present invention relates to tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ═CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms. And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (b):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。nは0~10の整数である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位からなることを特徴とする含フッ素重合体でもある。 (In the formula, R 3 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 5 carbon atoms. R 4 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms. R 5 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms, n is an integer of 0 to 10.) It is also a fluorine-containing polymer comprising polymerized units derived from a norbornene monomer having 2 or more.
本発明は、テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、へキサフルオロプロピレン、及び、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の含フッ素エチレン性単量体に由来する重合単位、及び、下記式(c): The present invention relates to tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ═CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms. And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (c):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式中、Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位からなることを特徴とする含フッ素重合体でもある。 (Wherein R 6 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms) and a norbornene monomer having two or more carbon-carbon double bonds represented by It is also a fluorine-containing polymer characterized by comprising polymer units derived therefrom.
本発明の硬化性樹脂組成物は、炭素-炭素二重結合を2個以上有するノルボルネン単量体を重合して架橋サイトを導入したポリマーを含むため、架橋サイトの量を容易に調整することができ、製造も容易である。また、架橋密度の高い硬化物を得ることが可能である。更に、溶剤を含まなくても調製することができるため、得られる硬化物から溶剤を除去する工程を不要とすることもできる。 Since the curable resin composition of the present invention includes a polymer in which a norbornene monomer having two or more carbon-carbon double bonds is polymerized to introduce a crosslinking site, the amount of the crosslinking site can be easily adjusted. Can be manufactured easily. Moreover, it is possible to obtain a cured product having a high crosslinking density. Furthermore, since it can prepare even if a solvent is not included, the process of removing a solvent from the hardened | cured material obtained can also be made unnecessary.
本発明の硬化物は、上記硬化性樹脂組成物を硬化して得られたものであるため、透明性が高く、容易にかつ安価に製造することができる。また、架橋密度を高くすることもできる。
本発明の含フッ素重合体は製造が容易であり、架橋サイトの量を容易に調整することができ、更にヒドロシリル化架橋剤に溶解又は分散しやすいため、上記硬化性樹脂組成物に好適に用いることができる。
Since the cured product of the present invention is obtained by curing the curable resin composition, it has high transparency and can be easily and inexpensively produced. In addition, the crosslinking density can be increased.
The fluoropolymer of the present invention is easy to produce, the amount of cross-linking sites can be easily adjusted, and it is easy to dissolve or disperse in a hydrosilylation cross-linking agent, so it is suitably used for the curable resin composition. be able to.
実施例15において得られたフィルムの可視帯域の吸収スペクトルを示すグラフである。It is a graph which shows the absorption spectrum of the visible band of the film obtained in Example 15. FIG. 実施例15において得られたフィルムの可視帯域の吸収スペクトルを示すグラフである。It is a graph which shows the absorption spectrum of the visible band of the film obtained in Example 15. FIG.
本発明の硬化性樹脂組成物は、(A)含フッ素単量体に由来する重合単位(以下「含フッ素単量体単位」ともいう)、及び、炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位(以下「ノルボルネン単量体単位」ともいう)からなる含フッ素重合体と、(B)ヒドロシリル化架橋剤と、からなる。 The curable resin composition of the present invention has (A) a polymer unit derived from a fluorine-containing monomer (hereinafter also referred to as “fluorine-containing monomer unit”) and two or more carbon-carbon double bonds. It comprises a fluorine-containing polymer comprising polymer units derived from norbornene monomers (hereinafter also referred to as “norbornene monomer units”), and (B) a hydrosilylation crosslinking agent.
本発明の硬化性樹脂組成物は、含フッ素単量体単位を含む含フッ素重合体(A)からなるものであるため、得られる硬化物の屈折率や紫外域ないし近赤外域での透明性などの光学的特性、耐光性、耐候性、耐熱性、吸水性、撥水撥油性、耐薬品性を優れたものとすることができる。 Since the curable resin composition of the present invention is composed of the fluorine-containing polymer (A) containing a fluorine-containing monomer unit, the refractive index of the resulting cured product and the transparency in the ultraviolet or near infrared region. The optical properties such as light resistance, weather resistance, heat resistance, water absorption, water and oil repellency, and chemical resistance can be made excellent.
本発明の硬化性樹脂組成物の架橋反応は、水や塩などの脱離成分が発生する反応ではなく付加反応であるため、副生成物を除去する工程を必要としない。 Since the crosslinking reaction of the curable resin composition of the present invention is not a reaction in which a desorbing component such as water or salt is generated but an addition reaction, it does not require a step of removing a by-product.
また、ヒドロシリル化架橋剤を適切に選択することにより、溶剤を使用しなくても、所定の粘度の組成物を調製でき、架橋(硬化)も簡便に行うことができる。また、得られる硬化物から溶剤を除去する工程を不要とすることもできる。更に、溶剤を使用せずに調製することができるため、得られる硬化物の透明性をより高めることもできる。 Further, by appropriately selecting a hydrosilylation crosslinking agent, a composition having a predetermined viscosity can be prepared without using a solvent, and crosslinking (curing) can be easily performed. Moreover, the process of removing a solvent from the hardened | cured material obtained can also be made unnecessary. Furthermore, since it can prepare without using a solvent, the transparency of the hardened | cured material obtained can also be improved more.
本発明の硬化性樹脂組成物は、上記ノルボルネン単量体単位が炭素-炭素二重結合(架橋サイト)を有しているため、含フッ素重合体に架橋サイトを導入する工程が不要であり、製造工程の簡略化を図ることができる。また、容易に架橋サイトの量を調整することができ、架橋密度の高い成形品を得ることが可能である。 In the curable resin composition of the present invention, since the norbornene monomer unit has a carbon-carbon double bond (crosslinking site), a step of introducing a crosslinking site into the fluoropolymer is unnecessary. The manufacturing process can be simplified. In addition, the amount of crosslinking sites can be easily adjusted, and a molded product having a high crosslinking density can be obtained.
更に、国際公開第2005/085303号パンフレット、国際公開第2009/096342号パンフレットに記載されているようなフッ素系の封止材料と比較して安価に製造することができ、実用的である。 Furthermore, it can be manufactured at a lower cost than a fluorine-based sealing material as described in International Publication No. 2005/085303 pamphlet and International Publication No. 2009/096342 pamphlet, and is practical.
(A)含フッ素重合体
含フッ素重合体(A)は、含フッ素単量体に由来する重合単位、及び、炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位からなる。含フッ素重合体(A)は、架橋サイトを有する重合体であり、架橋サイトの量は含フッ素重合体(A)を製造する際に容易に調整することができる。また、含フッ素重合体(A)は、驚くべきことに、ヒドロシリル化架橋剤に溶解又は分散するため、本発明の硬化性樹脂組成物は溶剤を不要とすることができる。
架橋サイト(炭素-炭素二重結合)の量は、ノルボルネン単量体の種類、及び、全モノマー量に対するノルボルネン単量体の比率を変えることで、容易に調整することができる。含フッ素重合体(A)中の架橋サイトの存在は、例えば、H-NMRで確認することができる。
(A) Fluoropolymer The fluoropolymer (A) is composed of a polymer unit derived from a fluoromonomer and a polymer unit derived from a norbornene monomer having two or more carbon-carbon double bonds. Become. The fluorine-containing polymer (A) is a polymer having a crosslinking site, and the amount of the crosslinking site can be easily adjusted when producing the fluorine-containing polymer (A). Moreover, since the fluoropolymer (A) is surprisingly dissolved or dispersed in the hydrosilylation crosslinking agent, the curable resin composition of the present invention can dispense with a solvent.
The amount of the crosslinking site (carbon-carbon double bond) can be easily adjusted by changing the kind of norbornene monomer and the ratio of the norbornene monomer to the total monomer amount. The presence of a crosslinking site in the fluoropolymer (A) can be confirmed, for example, by 1 H-NMR.
炭素-炭素二重結合を2個以上有するノルボルネン単量体は、ノルボルネン骨格を有し、更に、ノルボルネン骨格以外の部分に炭素-炭素二重結合を1個以上有する単量体である。ノルボルネン単量体としては、炭素-炭素二重結合を2個有するノルボルネン単量体が好ましい。ノルボルネン単量体は、フッ素原子を有するものであってもよいし、フッ素原子を有していないものであってもよいが、フッ素原子を有していないものが好ましい。 A norbornene monomer having two or more carbon-carbon double bonds is a monomer having a norbornene skeleton and further having one or more carbon-carbon double bonds in a portion other than the norbornene skeleton. As the norbornene monomer, a norbornene monomer having two carbon-carbon double bonds is preferable. The norbornene monomer may have a fluorine atom or may not have a fluorine atom, but preferably has no fluorine atom.
ノルボルネン単量体は、例えば、ノルボルネン骨格と1個以上の炭素-炭素二重結合を有する基、及び/又は、ジシクロペンタジエン骨格、を有する単量体であることが好ましい。 The norbornene monomer is preferably, for example, a monomer having a norbornene skeleton and a group having one or more carbon-carbon double bonds and / or a dicyclopentadiene skeleton.
上記ノルボルネン骨格は、下記式: The norbornene skeleton has the following formula:
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
で表される炭素骨格である。 A carbon skeleton represented by
上記ジシクロペンタジエン骨格は、下記式: The dicyclopentadiene skeleton has the following formula:
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
で表される炭素骨格である。 A carbon skeleton represented by
ノルボルネン単量体が1個以上の炭素-炭素二重結合を有する基を有する単量体である場合、ノルボルネン単量体は、1個以上の炭素-炭素二重結合を有する基を1個有していてもよいし、2個以上有していてもよい。ノルボルネン単量体は、ノルボルネン骨格および1個以上の炭素-炭素二重結合を有する基を1個有するものであることが好ましく、ノルボルネン骨格および1個の炭素-炭素二重結合を有する基を1個有するものであることがより好ましい。 When the norbornene monomer is a monomer having a group having one or more carbon-carbon double bonds, the norbornene monomer has one group having one or more carbon-carbon double bonds. You may have, and you may have two or more. The norbornene monomer is preferably one having a norbornene skeleton and one group having one or more carbon-carbon double bonds, and one norbornene skeleton and one group having one carbon-carbon double bond. It is more preferable to have one.
炭素-炭素二重結合を1個以上有する基としては、例えば、ビニル基、アリル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基等のアルケニル基;ビニルフェニル基、イソプロペニルフェニル基等のアルケニル基含有アリール基;ビニルフェニルメチル基等のアルケニル基含有アラルキル基;ビニリデン基等のアルキリデン基;等が挙げられる。炭素-炭素二重結合を1個以上有する基としては、アルケニル基、アルケニル基含有アリール基、アルケニル基含有アラルキル基、及び、アルキリデン基からなる群より選択される少なくとも1種の基が好ましい。より好ましくは、アルケニル基、及び/又は、アルキリデン基である。また、炭素-炭素二重結合を2個以上有する基としては、例えば、昭和電工社製カレンズBEI等の化合物とOH基を有するノルボルネン単量体を反応させることで導入される、2個以上の炭素-炭素二重結合を2個有する基等が挙げられる。 Examples of the group having one or more carbon-carbon double bonds include an alkenyl group such as a vinyl group, an allyl group, an isopropenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, and an octenyl group; a vinylphenyl group, Alkenyl group-containing aryl groups such as isopropenylphenyl group; alkenyl group-containing aralkyl groups such as vinylphenylmethyl group; alkylidene groups such as vinylidene group; and the like. The group having one or more carbon-carbon double bonds is preferably at least one group selected from the group consisting of an alkenyl group, an alkenyl group-containing aryl group, an alkenyl group-containing aralkyl group, and an alkylidene group. More preferably, they are an alkenyl group and / or an alkylidene group. Examples of the group having two or more carbon-carbon double bonds include two or more introduced by reacting a compound such as Karenz BEI manufactured by Showa Denko KK with a norbornene monomer having an OH group. And a group having two carbon-carbon double bonds.
上記ノルボルネン単量体としては、例えば、下記式(a): Examples of the norbornene monomer include the following formula (a):
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体が好ましい。Rとしては、水素原子又は炭素数1~5のアルキル基であることがより好ましい。Rとしては、水素原子又は炭素数1~5のアルキル基であることがより好ましい。Rとして具体的には、水素原子;メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、t-ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、へプチル基、オクチル基、ノニル基、デシル基などが挙げられる。Rとしては、メチル基がより好ましい。Rとしては、Rと同様のものが挙げられる。Rとしては水素原子が好ましい。なお、本明細書中で、「酸素原子を含んでもよい炭化水素基」としては、例えば、アルキル基、アルケニル基、アルキルエーテル基又はアルケニルエーテル基であることが好ましい。 (In the formula, R 1 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 10 carbon atoms. R 2 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms. And a norbornene monomer having two or more carbon-carbon double bonds represented by the following formula: R 1 is more preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. R 2 is more preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Specific examples of R 1 include a hydrogen atom; methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, t -Pentyl group, neopentyl group, hexyl group, isohexyl group, heptyl group, octyl group, nonyl group, decyl group and the like. R 1 is more preferably a methyl group. Examples of R 2 include the same as R 1 . R 2 is preferably a hydrogen atom. In the present specification, the “hydrocarbon group which may contain an oxygen atom” is preferably, for example, an alkyl group, an alkenyl group, an alkyl ether group or an alkenyl ether group.
上記式(a)で表されるノルボルネン単量体としては、下記式(1): As the norbornene monomer represented by the above formula (a), the following formula (1):
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(式中、Rは、水素原子又は炭素数1~10のアルキル基である。)で表される炭素-炭素二重結合を2個有するノルボルネン単量体であることがより好ましい。Rとしては、水素原子又は炭素数1~5のアルキル基であることが好ましく、メチル基であることがより好ましい。 (Wherein R 7 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) and is more preferably a norbornene monomer having two carbon-carbon double bonds. R 7 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group.
上記ノルボルネン単量体としては、下記式(b): As the norbornene monomer, the following formula (b):
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。nは0~10の整数である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体も好ましい。Rとしては、水素原子又は炭素数1~3のアルキル基であることがより好ましい。Rは、水素原子又は炭素数1~5のアルキル基であることが好ましい。Rは、水素原子又は炭素数1~3のアルキル基であることが好ましく、水素原子であることがより好ましい。nは、0~5の整数であることが好ましく、0又は1であることがより好ましい。 (In the formula, R 3 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 5 carbon atoms. R 4 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms. R 5 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms, n is an integer of 0 to 10.) Norbornene monomers having 2 or more are also preferred. R 3 is more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 4 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. R 5 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom. n is preferably an integer of 0 to 5, and more preferably 0 or 1.
上記式(b)で表されるノルボルネン単量体としては、下記式(2): As the norbornene monomer represented by the above formula (b), the following formula (2):
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中Rは、水素原子又は炭素数1~5のアルキル基である。)で表される炭素-炭素二重結合を2個有するノルボルネン単量体であることがより好ましい。Rとしては、水素原子又は炭素数1~3のアルキル基であることが好ましく、水素原子であることがより好ましい。 (Wherein R 8 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms) and is more preferably a norbornene monomer having two carbon-carbon double bonds. R 8 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom.
上記式(a)又は(b)で表されるノルボルネン単量体としては、例えば、5-メチレン-2-ノルボルネン、5-ビニル-2-ノルボルネン、5-(2-プロペニル)-2-ノルボルネン、5-(3-ブテニル)-2-ノルボルネン、5-(1-メチル-2-プロペニル)-2-ノルボルネン、5-(4-ペンテニル)-2-ノルボルネン、5-(1-メチル-3-ブテニル)-2-ノルボルネン、5-(5-ヘキセニル)-2-ノルボルネン、5-(1-メチル-4-ペンテニル)-2-ノルボルネン、5-(2,3-ジメチル-3-ブテニル)-2-ノルボルネン、5-(2-エチル-3-ブテニル)-2-ノルボルネン、5-(6-ヘプテニル)-2-ノルボルネン、5-(3-メチル-5-ヘキセニル)-2-ノルボルネン、5-(3,4-ジメチル-4-ペンテニル)-2-ノルボルネン、5-(3-エチル-4-ペンテニル)-2-ノルボルネン、5-(7-オクテニル)-2-ノルボルネン、5-(2-メチル-6-ヘプテニル)-2-ノルボルネン、5-(1,2-ジメチル-5-ヘキセシル)-2-ノルボルネン、5-(5-エチル-5-ヘキセニル)-2-ノルボルネン、5-(1,2,3-トリメチル-4-ペンテニル)-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリテン-5-ノルボルネンなどが挙げられる。これらのノルボルネン単量体は、単独で、あるいは2種以上組み合わせて用いることができる。 Examples of the norbornene monomer represented by the above formula (a) or (b) include 5-methylene-2-norbornene, 5-vinyl-2-norbornene, 5- (2-propenyl) -2-norbornene, 5- (3-butenyl) -2-norbornene, 5- (1-methyl-2-propenyl) -2-norbornene, 5- (4-pentenyl) -2-norbornene, 5- (1-methyl-3-butenyl) ) -2-norbornene, 5- (5-hexenyl) -2-norbornene, 5- (1-methyl-4-pentenyl) -2-norbornene, 5- (2,3-dimethyl-3-butenyl) -2- Norbornene, 5- (2-ethyl-3-butenyl) -2-norbornene, 5- (6-heptenyl) -2-norbornene, 5- (3-methyl-5-hexenyl) -2-norbornene, 5- 3,4-dimethyl-4-pentenyl) -2-norbornene, 5- (3-ethyl-4-pentenyl) -2-norbornene, 5- (7-octenyl) -2-norbornene, 5- (2-methyl- 6-heptenyl) -2-norbornene, 5- (1,2-dimethyl-5-hexyl) -2-norbornene, 5- (5-ethyl-5-hexenyl) -2-norbornene, 5- (1,2, 3-trimethyl-4-pentenyl) -2-norbornene, 5-ethylidene-2-norbornene, 5-isopropylidene-2-norbornene, 2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene -5-norbornene. These norbornene monomers can be used alone or in combination of two or more.
上記ノルボルネン単量体としては、下記式(c):
Figure JPOXMLDOC01-appb-C000024
As the norbornene monomer, the following formula (c):
Figure JPOXMLDOC01-appb-C000024
(式中、Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体も好ましい。 (Wherein R 6 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms), and a norbornene monomer having two or more carbon-carbon double bonds represented by preferable.
上記式(c)で表されるノルボルネン単量体としては、下記式(3): As the norbornene monomer represented by the above formula (c), the following formula (3):
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
で表される炭素-炭素二重結合を2個有するノルボルネン単量体であることがより好ましい。 A norbornene monomer having two carbon-carbon double bonds represented by
ノルボルネン単量体としては、ヒドロシリル化架橋剤(B)に溶解又は分散しやすい点から、式(a)で表されるノルボルネン単量体、式(b)で表されるノルボルネン単量体、及び、式(c)で表されるノルボルネン単量体からなる群より選択される少なくとも1種の単量体であることが好ましい。より好ましくは、式(1)で表されるノルボルネン単量体、式(2)で表されるノルボルネン単量体、及び、式(3)で表されるノルボルネン単量体からなる群より選択される少なくとも1種の単量体である。更に好ましくは、式(1)で表されるノルボルネン単量体である。 As the norbornene monomer, the norbornene monomer represented by the formula (a), the norbornene monomer represented by the formula (b), and the norbornene monomer represented by the formula (b) from the viewpoint of being easily dissolved or dispersed in the hydrosilylation crosslinking agent (B) The monomer is preferably at least one monomer selected from the group consisting of norbornene monomers represented by the formula (c). More preferably, it is selected from the group consisting of a norbornene monomer represented by formula (1), a norbornene monomer represented by formula (2), and a norbornene monomer represented by formula (3). At least one monomer. More preferred is a norbornene monomer represented by the formula (1).
本発明における含フッ素単量体は、上記ノルボルネン単量体と共重合可能な、フッ素原子を有する単量体である。上記含フッ素単量体は、ノルボルネン骨格を有していないことが好ましい。より好ましくは、ノルボルネン骨格を有さない炭素-炭素二重結合を有する単量体である。 The fluorine-containing monomer in the present invention is a monomer having a fluorine atom that can be copolymerized with the norbornene monomer. The fluorine-containing monomer preferably does not have a norbornene skeleton. More preferred is a monomer having a carbon-carbon double bond having no norbornene skeleton.
上記含フッ素単量体としては、テトラフルオロエチレン〔TFE〕、フッ化ビニリデン〔VdF〕、クロロトリフルオロエチレン〔CTFE〕、フッ化ビニル、へキサフルオロプロピレン〔HFP〕、へキサフルオロイソブテン、CH=CZ(CF (式中、ZはH又はF、ZはH、F又はCl、nは1~10の整数である。)で示される単量体、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)〔PAVE〕、及び、CF=CF-OCH-Rf(式中、Rfは、炭素数1~5のパーフルオロアルキル基)で表されるアルキルパーフルオロビニルエーテル誘導体からなる群より選択される少なくとも1種の含フッ素エチレン性単量体が好ましい。 Examples of the fluorine-containing monomer include tetrafluoroethylene [TFE], vinylidene fluoride [VdF], chlorotrifluoroethylene [CTFE], vinyl fluoride, hexafluoropropylene [HFP], hexafluoroisobutene, and CH 2. = CZ 1 (CF 2 ) n 1 Z 2 (wherein Z 1 is H or F, Z 2 is H, F or Cl, and n 1 is an integer of 1 to 10), Perfluoro (alkyl vinyl ether) [PAVE] represented by CF 2 = CF-ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms), and CF 2 = CF- OCH 2 -Rf 2 (wherein, Rf 2 is a perfluoroalkyl group having 1 to 5 carbon atoms) little is selected from the group consisting of alkyl perfluorovinyl ether derivative represented by the Kutomo one fluorine-containing ethylenic monomer is preferable.
上記PAVEとしては、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、パーフルオロ(ブチルビニルエーテル)等が挙げられ、なかでも、PMVE、PEVE又はPPVEがより好ましい。 Examples of the PAVE include perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], perfluoro (butyl vinyl ether), etc. Among them, PMVE PEVE or PPVE is more preferable.
上記アルキルパーフルオロビニルエーテル誘導体としては、Rfが炭素数1~3のパーフルオロアルキル基であるものが好ましく、CF=CF-OCH-CFCFがより好ましい。 As the alkyl perfluorovinyl ether derivative, those in which Rf 2 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 ═CF—OCH 2 —CF 2 CF 3 is more preferable.
上記含フッ素単量体としては、TFE及び/又はCTFEがより好ましく、TFEが更に好ましい。 As said fluorine-containing monomer, TFE and / or CTFE are more preferable, and TFE is still more preferable.
含フッ素重合体(A)は、含フッ素単量体単位、及び、炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来するノルボルネン単量体単位、並びに、上記フッ素単量体及び炭素-炭素二重結合を2個以上有するノルボルネン単量体と共重合可能な他の単量体に由来する単量体単位からなるものであってもよい。上記他の単量体は、フッ素原子を含まない単量体である。 The fluorine-containing polymer (A) includes a fluorine-containing monomer unit, a norbornene monomer unit derived from a norbornene monomer having two or more carbon-carbon double bonds, and the fluorine monomer and It may be composed of a monomer unit derived from another monomer copolymerizable with a norbornene monomer having two or more carbon-carbon double bonds. Said other monomer is a monomer which does not contain a fluorine atom.
上記他の単量体としては、上記炭素-炭素二重結合を2個以上有するノルボルネン単量体を除く、フッ素非含有エチレン性単量体が好ましい。上記他の単量体としては、例えば、エチレン、プロピレン、1-ブテン、2-ブテン、塩化ビニル、塩化ビニリデン、アルキルビニルエーテル、水酸基含有ビニルエーテルモノマー、ビニルエステルモノマー、不飽和カルボン酸、及び、炭素-炭素二重結合を1個有するノルボルネン単量体からなる群より選択される少なくとも1種のフッ素非含有エチレン性単量体が好ましい。上記アルキルビニルエーテルとしては、例えば、メチルビニルエーテル、エチルビニルエーテル等が挙げられる。水酸基含有ビニルエーテルモノマーとしては、4-ヒドロキシブチルビニルエーテル、2-ヒドロキシエチルビニルエーテル等が挙げられる。ビニルエステルモノマーとしては、バーサティック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、シクロヘキシルカルボン酸ビニル、酢酸ビニル等が挙げられる。
他の単量体としては、なかでも炭素-炭素二重結合を1個有するノルボルネン単量体が好ましい。
The other monomer is preferably a fluorine-free ethylenic monomer excluding the norbornene monomer having two or more carbon-carbon double bonds. Examples of the other monomer include ethylene, propylene, 1-butene, 2-butene, vinyl chloride, vinylidene chloride, alkyl vinyl ether, hydroxyl group-containing vinyl ether monomer, vinyl ester monomer, unsaturated carboxylic acid, and carbon- Preference is given to at least one fluorine-free ethylenic monomer selected from the group consisting of norbornene monomers having one carbon double bond. Examples of the alkyl vinyl ether include methyl vinyl ether and ethyl vinyl ether. Examples of the hydroxyl group-containing vinyl ether monomer include 4-hydroxybutyl vinyl ether and 2-hydroxyethyl vinyl ether. Examples of the vinyl ester monomer include vinyl versatate, vinyl laurate, vinyl stearate, vinyl cyclohexylcarboxylate, and vinyl acetate.
As the other monomer, a norbornene monomer having one carbon-carbon double bond is preferable.
炭素-炭素二重結合を1個有するノルボルネン単量体は、ノルボルネン骨格を有し、ノルボルネン骨格以外の部分に、炭素-炭素二重結合を有さない単量体である。炭素-炭素二重結合を1個有するノルボルネン単量体としては、下記式(d): A norbornene monomer having one carbon-carbon double bond is a monomer having a norbornene skeleton and having no carbon-carbon double bond in a portion other than the norbornene skeleton. As a norbornene monomer having one carbon-carbon double bond, the following formula (d):
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(式中、R14は炭素数1~10のアルキル基である。xは0~2の整数である。)で示されるノルボルネン単量体であることが好ましく、下記式: (Wherein R 14 is an alkyl group having 1 to 10 carbon atoms, x is an integer of 0 to 2), and preferably represented by the following formula:
Figure JPOXMLDOC01-appb-C000027
で示されるノルボルネン単量体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000027
The norbornene monomer represented by is more preferable.
上記不飽和カルボン酸としては、共重合を可能にする炭素-炭素二重結合を1分子中に少なくとも1個有し、且つ、カルボニルオキシ基〔-C(=O)-O-〕を1分子中に少なくとも1個有するものが好ましく、脂肪族不飽和モノカルボン酸であってもよいし、カルボキシル基を2個以上有する脂肪族不飽和ポリカルボン酸であってもよい。 The unsaturated carboxylic acid has at least one carbon-carbon double bond that enables copolymerization in one molecule, and one molecule of a carbonyloxy group [—C (═O) —O—]. Those having at least one are preferable, and may be an aliphatic unsaturated monocarboxylic acid, or may be an aliphatic unsaturated polycarboxylic acid having two or more carboxyl groups.
上記脂肪族不飽和カルボン酸としては、(メタ)アクリル酸、クロトン酸、マレイン酸、マレイン酸無水物、フマル酸、イタコン酸、イタコン酸無水物、シトラコン酸、シトラコン酸無水物、メサコン酸及びアコニット酸からなる群より選択される少なくとも1種であることがより好ましい。 Examples of the aliphatic unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid and aconite More preferably, it is at least one selected from the group consisting of acids.
含フッ素重合体(A)は、含フッ素単量体単位とノルボルネン単量体単位とのモル比が90:10~10:90であることが好ましい。より好ましくは、70:30~30:70である。 In the fluorinated polymer (A), the molar ratio of the fluorinated monomer unit to the norbornene monomer unit is preferably 90:10 to 10:90. More preferably, it is 70:30 to 30:70.
含フッ素重合体(A)は、含フッ素単量体単位とノルボルネン単量体単位との合計が、全重合単位に対して30モル%以上であることが好ましい。より好ましくは、50モル%以上である。 In the fluorinated polymer (A), the total of the fluorinated monomer units and the norbornene monomer units is preferably 30 mol% or more based on the total polymerized units. More preferably, it is 50 mol% or more.
含フッ素重合体(A)は、上記他の単量体単位が、全単量体単位に対して70モル%以下であることが好ましい。より好ましくは、50モル%以下である。 In the fluoropolymer (A), the other monomer units are preferably 70 mol% or less based on the total monomer units. More preferably, it is 50 mol% or less.
含フッ素重合体(A)の数平均分子量としては、特に限定はないが、ヒドロシリル化架橋剤(B)若しくは溶剤(D)への溶解性又は分散性の点から、1000~1000000であることが好ましく、1000~500000であることがより好ましい。
含フッ素重合体(A)は、ガラス転移温度が30~200℃であることが好ましく、45~150℃であることがより好ましい。
The number average molecular weight of the fluorinated polymer (A) is not particularly limited, but is preferably 1,000 to 1,000,000 from the viewpoint of solubility or dispersibility in the hydrosilylation crosslinking agent (B) or the solvent (D). Preferably, it is 1,000 to 500,000.
The fluoropolymer (A) preferably has a glass transition temperature of 30 to 200 ° C, more preferably 45 to 150 ° C.
含フッ素重合体(A)は、架橋密度が均一な硬化物が得られる観点から、上記含フッ素単量体とノルボルネン単量体との交互共重合体であることが好ましい。このような交互共重合体は、重合中のモノマー組成比を約1:1とすることで好ましく得ることができる。 The fluorinated polymer (A) is preferably an alternating copolymer of the fluorinated monomer and the norbornene monomer from the viewpoint of obtaining a cured product having a uniform crosslinking density. Such an alternating copolymer can be preferably obtained by setting the monomer composition ratio during the polymerization to about 1: 1.
上記含フッ素重合体(A)は、溶液重合、懸濁重合、乳化重合などにより製造することができる。上記の重合においては、重合開始剤、界面活性剤、連鎖移動剤、及び、溶媒を使用することができ、それぞれ従来公知のものを使用することができる。 The fluoropolymer (A) can be produced by solution polymerization, suspension polymerization, emulsion polymerization, or the like. In the above polymerization, a polymerization initiator, a surfactant, a chain transfer agent, and a solvent can be used, and conventionally known ones can be used.
上記重合開始剤としては、油溶性ラジカル重合開始剤、または水溶性ラジカル開始剤を使用できる。油溶性ラジカル重合開始剤としては、公知の油溶性の過酸化物であってよく、たとえばジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネートなどのジアルキルパーオキシカーボネート類、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレートなどのパーオキシエステル類、ジ-t-ブチルパーオキサイドなどのジアルキルパーオキサイド類などが、また、ジ(ω-ハイドロ-ドデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルパレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロ-ドデカフルオロヘプタノイル-ω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロロ-ヘキサフルオロブチリル-ω-クロ-デカフルオロヘキサノイル-パーオキサイド、ω-ハイドロドデカフルオロヘプタノイル-パーフルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロドトリアコンタフルオロドコサノイル)パーオキサイドのジ[パーフロロ(またはフルオロクロロ)アシル]パーオキサイド類などが代表的なものとして挙げられる。 As said polymerization initiator, an oil-soluble radical polymerization initiator or a water-soluble radical initiator can be used. The oil-soluble radical polymerization initiator may be a known oil-soluble peroxide, such as diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, etc. Peroxyesters such as dialkyl peroxycarbonates, t-butyl peroxyisobutyrate and t-butyl peroxypivalate, dialkyl peroxides such as di-t-butyl peroxide, and the like -Hydro-dodecafluoroheptanoyl) peroxide, di (ω-hydro-tetradecafluoroheptanoyl) peroxide, di (ω-hydro-hexadecafluorononanoyl) peroxide, di (perfluorobutyryl) peroxide , Di (Perful Pareril) -Oxide, di (perfluorohexanoyl) peroxide, di (perfluoroheptanoyl) peroxide, di (perfluorooctanoyl) peroxide, di (perfluorononanoyl) peroxide, di (ω-chloro-hexafluoro) Butyryl) peroxide, di (ω-chloro-decafluorohexanoyl) peroxide, di (ω-chloro-tetradecafluorooctanoyl) peroxide, ω-hydro-dodecafluoroheptanoyl-ω-hydrohexadecafluoro Nonanoyl-peroxide, ω-chloro-hexafluorobutyryl-ω-chloro-decafluorohexanoyl-peroxide, ω-hydrododecafluoroheptanoyl-perfluorobutyryl-peroxide, di (dichloropentafluorobuta Yl) peroxide, di (trichlorooctafluorohexanoyl) peroxide, di (tetrachloroundecafluorooctanoyl) peroxide, di (pentachlorotetradecafluorodecanoyl) peroxide, di (undecachlorodotria contourer) Fluorodocosanoyl) peroxide di [perfluoro (or fluorochloro) acyl] peroxides and the like are typical examples.
水溶性ラジカル重合開始剤としては、公知の水溶性過酸化物であってよく、たとえば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸などのアンモニウム塩、カリウム塩、ナトリウム塩、t-ブチルパーマレエート、t-ブチルハイドロパーオキサイドなどが挙げられる。サルファイト類、亜硫酸塩類のような還元剤を過酸化物に組み合わせて使用してもよく、その使用量は過酸化物に対して0.1~20倍であってよい。 The water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts such as persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, percarbonate, potassium salts, sodium salts. , T-butyl permaleate, t-butyl hydroperoxide and the like. A reducing agent such as sulfites and sulfites may be used in combination with the peroxide, and the amount used may be 0.1 to 20 times that of the peroxide.
上記界面活性剤としては、公知の界面活性剤が使用でき、例えば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤などが使用できる。なかでも、含フッ素アニオン性界面活性剤が好ましく、エーテル結合性酸素原子を含んでもよい(すなわち、炭素原子間に酸素原子が挿入されていてもよい)、炭素数4~20の直鎖又は分岐した含フッ素アニオン性界面活性剤がより好ましい。添加量(対重合水)は、好ましくは50~5000ppmである。 As the surfactant, a known surfactant can be used. For example, a nonionic surfactant, an anionic surfactant, a cationic surfactant, or the like can be used. Of these, fluorine-containing anionic surfactants are preferred, and may contain an ether-bonded oxygen atom (that is, an oxygen atom may be inserted between carbon atoms), or a straight or branched chain having 4 to 20 carbon atoms. More preferred are fluorine-containing anionic surfactants. The addition amount (with respect to polymerization water) is preferably 50 to 5000 ppm.
溶液重合は、反応単量体を溶解し得る溶媒中で重合を行い、生成する重合体が溶媒中に溶解しても、沈澱してもよい。この様な溶液重合用溶媒としては、たとえば、CFCHCFCH、CFCHFCHFCFCF、下記式: In the solution polymerization, the polymerization is performed in a solvent capable of dissolving the reactive monomer, and the resulting polymer may be dissolved or precipitated in the solvent. Examples of such a solution polymerization solvent include CF 3 CH 2 CF 2 CH 3 , CF 3 CHFCHFCF 2 CF 3 , and the following formula:
で表される化合物、CHFCHCF、CFCFCHCl、CClFCFCHClF、CFCFCFCFOCH、CFCFCFCFOCHCH、CHFCFOCHCFなどのフルオロカーボン系の溶媒、オクタン、ヘキサンなどの脂肪族炭化水素、アセトン、メチルイソブチルケトンなどのケトン、酢酸エチルなどのエステル、キシレン、トルエンなどの芳香族炭化水素、クロロホルムなどのクロロ炭化水素、t-ブタノールなどのアルコールなどが例示される。これらの溶媒の内、連鎖移動が少ないことを考慮すれば、フルオロカーボン系の溶媒が好ましい。溶媒は、単独でまたは2種以上を混合して用いることができる。
懸濁重合では、水に加えて、フッ素系溶媒を使用してもよい。フッ素系溶媒としては、CHCClF、CHCClF、CFCFCClH、CFClCFCFHCl等のハイドロクロロフルオロアルカン類;パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF等のパーフルオロアルカン類等が挙げられる。
重合温度としては特に限定されず、0~100℃であってよい。重合圧力は、用いる溶媒の種類、量及び蒸気圧、重合温度等の他の重合条件に応じて適宜定められるが、通常、0~9.8MPaGであってよい。重合系には、必要に応じ、エタン、イソペンタン、n-ヘキサン、シクロヘキサンなどの炭化水素類;トルエン、キシレンなどの芳香族類;アセトンなどのケトン類;酢酸エチル、酢酸ブチルなどの酢酸エステル類;メタノール、エタノールなどのアルコール類;メチルメルカプタンなどのメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素などの連鎖移動剤を用いてもよい。
A compound represented by: CHF 2 CH 3 CF 3 , CF 3 CF 2 CHCl 2 , CClF 2 CF 2 CHClF, CF 3 CF 2 CF 2 CF 2 OCH 3 , CF 3 CF 2 CF 2 CF 2 OCH 2 CH 3 , Fluorocarbon solvents such as CHF 2 CF 2 OCH 2 CF 3 , aliphatic hydrocarbons such as octane and hexane, ketones such as acetone and methyl isobutyl ketone, esters such as ethyl acetate, aromatic hydrocarbons such as xylene and toluene, Examples include chlorohydrocarbons such as chloroform and alcohols such as t-butanol. Of these solvents, a fluorocarbon solvent is preferred in view of the fact that chain transfer is small. A solvent can be used individually or in mixture of 2 or more types.
In suspension polymerization, a fluorine-based solvent may be used in addition to water. Examples of the fluorine-based solvent include hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, and CF 2 ClCF 2 CFHCl; perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3 Perfluoroalkanes such as CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 2 CF 3, and the like.
The polymerization temperature is not particularly limited, and may be 0 to 100 ° C. The polymerization pressure is appropriately determined according to other polymerization conditions such as the type, amount and vapor pressure of the solvent to be used, and the polymerization temperature, but it may usually be 0 to 9.8 MPaG. For the polymerization system, if necessary, hydrocarbons such as ethane, isopentane, n-hexane and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Chain transfer agents such as alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; and halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride may be used.
(B)ヒドロシリル化架橋剤
ヒドロシリル化反応は、炭素-炭素二重結合とケイ素原子に直接結合している水素原子との付加反応であり、本発明におけるヒドロシリル化架橋剤(B)は、水素原子がケイ素原子に直接結合した基を分子内に2個以上有するシロキサン化合物である。ヒドロシリル化架橋剤は液状であることが好ましい。
(B) Hydrosilylation crosslinker The hydrosilylation reaction is an addition reaction between a carbon-carbon double bond and a hydrogen atom directly bonded to a silicon atom. The hydrosilylation crosslinker (B) in the present invention is a hydrogen atom. Is a siloxane compound having two or more groups directly bonded to silicon atoms in the molecule. The hydrosilylation crosslinking agent is preferably liquid.
ヒドロシリル化架橋剤(B)としては、たとえば国際公開第2008/153002号パンフレット、国際公開第2008/044765号パンフレット、国際公開第2008/072716号パンフレットなどに記載されているものが使用できる。 As the hydrosilylation crosslinking agent (B), for example, those described in International Publication No. 2008/153002 pamphlet, International Publication No. 2008/044765 pamphlet, International Publication No. 2008/072716 pamphlet and the like can be used.
具体的には、たとえば国際公開第2008/044765号パンフレット記載のB1、B2又はB3を使用することができる。 Specifically, for example, B1, B2 or B3 described in International Publication No. 2008/044765 pamphlet can be used.
ヒドロシリル化架橋剤(B)としては、下記式:
-O-SiRH-
(式中、Rは、炭素数1~10の1価の炭化水素基である。)で表される構造を2個以上有するシロキサン化合物が好ましい。上記Rとしては、同一又は異なって、炭素数1~10のアルキル基、又は、アリール基が好ましい。Rとして、より好ましくはメチル基、エチル基、及び、フェニル基からなる群より選択される少なくとも1種の基であり、更に好ましくは、メチル基である。
As hydrosilylation crosslinking agent (B), the following formula:
-O-SiR 8 H-
A siloxane compound having two or more structures represented by the formula (wherein R 8 is a monovalent hydrocarbon group having 1 to 10 carbon atoms) is preferable. R 8 is the same or different and is preferably an alkyl group having 1 to 10 carbon atoms or an aryl group. R 8 is more preferably at least one group selected from the group consisting of a methyl group, an ethyl group, and a phenyl group, and more preferably a methyl group.
ヒドロシリル化架橋剤(B)としては、また、下記式:
-O-SiR
(式中、Rは、同一又は異なって、炭素数1~10の1価の炭化水素基である。)で表されるジオルガノシロキシ基(b1)を有するシロキサン化合物が好ましい。上記Rとしては、同一又は異なって、炭素数1~10のアルキル基、又は、アリール基が好ましい。Rとして、より好ましくはメチル基、エチル基、及び、フェニル基からなる群より選択される少なくとも1種の基であり、更に好ましくは、メチル基である。
As hydrosilylation crosslinking agent (B), the following formula:
-O-SiR 8 2 H
A siloxane compound having a diorganosiloxy group (b1) represented by the formula (wherein R 8 is the same or different and is a monovalent hydrocarbon group having 1 to 10 carbon atoms) is preferable. R 8 is the same or different and is preferably an alkyl group having 1 to 10 carbon atoms or an aryl group. R 8 is more preferably at least one group selected from the group consisting of a methyl group, an ethyl group, and a phenyl group, and more preferably a methyl group.
ジオルガノシロキシ基(b1)としては、例えば、式:
-O-Si(CH
で表される基、式:
-O-Si(C
で表される基、式:
-O-Si(CH)(C)H
で表される基、式:
-O-Si(C
で表される基が例示できる。
As the diorganosiloxy group (b1), for example, the formula:
—O—Si (CH 3 ) 2 H
A group represented by the formula:
—O—Si (C 6 H 5 ) 2 H
A group represented by the formula:
—O—Si (CH 3 ) (C 6 H 5 ) H
A group represented by the formula:
—O—Si (C 2 H 5 ) 2 H
The group represented by these can be illustrated.
本発明においては、ヒドロシリル化架橋剤(B)は、含フッ素重合体(A)を溶解又は分散可能な水素原子がケイ素原子に直接結合した基を2個以上有する液状のシロキサン化合物(以下、「ヒドロシリル化架橋剤(B4)」ともいう。)であってもよいし、含フッ素重合体(A)を溶解及び分散しない液状または固体状であって水素原子がケイ素原子に直接結合した基を2個以上有するシロキサン化合物(以下、「ヒドロシリル化架橋剤(B5)」ともいう。)であってもよい。 In the present invention, the hydrosilylation crosslinking agent (B) is a liquid siloxane compound (hereinafter referred to as “a”) having two or more groups in which hydrogen atoms capable of dissolving or dispersing the fluoropolymer (A) are directly bonded to silicon atoms. Hydrosilylated cross-linking agent (B4) ”), or a liquid or solid state in which the fluorine-containing polymer (A) is not dissolved or dispersed, and a group in which a hydrogen atom is directly bonded to a silicon atom. It may be a siloxane compound having at least one (hereinafter also referred to as “hydrosilylation crosslinking agent (B5)”).
(B4)ヒドロシリル化架橋剤
ヒドロシリル化架橋剤(B4)は、含フッ素重合体(A)を溶解又は分散可能な、水素原子がケイ素原子に直接結合した基を分子内に2個以上有する液状のシロキサン化合物である。ヒドロシリル化架橋剤(B4)は、ヒドロシリル化反応によって含フッ素重合体(A)を架橋(硬化)させる能力を有するほか、含フッ素重合体(A)を溶解又は分散させることができるシロキサン化合物である。
(B4) Hydrosilylation cross-linking agent Hydrosilylation cross-linking agent (B4) is a liquid that has two or more groups in the molecule that can dissolve or disperse the fluoropolymer (A) and in which hydrogen atoms are directly bonded to silicon atoms. It is a siloxane compound. The hydrosilylation crosslinking agent (B4) is a siloxane compound that has the ability to crosslink (cur) the fluoropolymer (A) by a hydrosilylation reaction and can dissolve or disperse the fluoropolymer (A). .
このヒドロシリル化架橋剤(B4)を用いる場合、含フッ素重合体(A)を溶解又は分散するための溶剤(後述の溶剤(D))を必要とせず、いわゆる無溶剤型の硬化性樹脂組成物とすることができる。 When this hydrosilylation crosslinking agent (B4) is used, a solvent for dissolving or dispersing the fluoropolymer (A) (the solvent (D) described later) is not required, and a so-called solventless curable resin composition is used. It can be.
無溶剤型の硬化性樹脂組成物とするときは、有機溶剤の除去が不要となり、成形工程などを簡略化できる。さらに成形加工条件の関係から揮発分の含有が許されないケースに対しても無溶剤型の硬化性樹脂組成物は有用である。例えば、密閉容器内の充填、封止のような用途において有利である。 When the solvent-free curable resin composition is used, it is not necessary to remove the organic solvent, and the molding process and the like can be simplified. Furthermore, the solventless curable resin composition is useful even in cases where the inclusion of volatile components is not allowed due to the molding process conditions. For example, it is advantageous in applications such as filling and sealing in an airtight container.
ヒドロシリル化架橋剤(B4)としては、たとえば国際公開第2008/044765号パンフレット記載のB1又はB2が使用できる。 As the hydrosilylation crosslinking agent (B4), for example, B1 or B2 described in International Publication No. 2008/044765 pamphlet can be used.
ヒドロシリル化架橋剤(B4)として、下記式(4):
Si(OR104-b   (4)
(式中、各Rは、同一若しくは異なって、一部又は全部の水素がフッ素によって置換されていてもよい炭素数1~10のアルキル基、アリール基、(メタ)アクリル基含有有機基、または、エポキシ基含有有機基を表す。R10は、同一若しくは異なって、水素原子、炭素数1~10のアルキル基、または、下記式:
-SiR
(式中、Rは、同一又は異なって、炭素数1~10の1価の炭化水素基である。)で表されるジオルガノシリル基(b2)を表す。但し、1分子中の少なくとも2個のR10はジオルガノシリル基(b2)である。bは0~2の整数である。)で表されるシロキサン化合物(以下、ヒドロシリル化架橋剤(B6)ともいう。)が好ましい。上記Rとしては、同一又は異なって、炭素数1~10のアルキル基、又は、アリール基が好ましい。Rとして、より好ましくはメチル基、エチル基、及び、フェニル基からなる群より選択される少なくとも1種の基であり、更に好ましくは、メチル基である。Rとしては、同一又は異なって、一部又は全部の水素がフッ素によって置換されていてもよい炭素数1~10のアルキル基、又は、アリール基が好ましい。bは1であることが好ましく、2個のR10は上記ジオルガノシリル基(b2)であり、1個のR10は水素原子であるか、又は、3個のR10が全てジオルガノシリル基(b2)であることが好ましい。
As hydrosilylation crosslinking agent (B4), the following formula (4):
R 9 b Si (OR 10 ) 4-b (4)
(In the formula, each R 9 is the same or different, and an alkyl group having 1 to 10 carbon atoms, an aryl group, a (meth) acryl group-containing organic group, in which part or all of hydrogen atoms may be substituted with fluorine, Or an epoxy group-containing organic group, wherein R 10 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or the following formula:
-SiR 8 2 H
(Wherein R 8 are the same or different and each represents a monovalent hydrocarbon group having 1 to 10 carbon atoms), and represents a diorganosilyl group (b2). However, at least two R 10 in one molecule are diorganosilyl groups (b2). b is an integer of 0-2. ) (Hereinafter also referred to as hydrosilylation crosslinking agent (B6)). R 8 is the same or different and is preferably an alkyl group having 1 to 10 carbon atoms or an aryl group. R 8 is more preferably at least one group selected from the group consisting of a methyl group, an ethyl group, and a phenyl group, and more preferably a methyl group. R 9 is preferably the same or different, and is an alkyl group having 1 to 10 carbon atoms or an aryl group, in which some or all of hydrogen atoms may be substituted with fluorine. b is preferably 1, two R 10 are the above diorganosilyl groups (b2), one R 10 is a hydrogen atom, or all three R 10 are diorganosilyl. The group (b2) is preferred.
また、ヒドロシリル化架橋剤(B4)としては、下記式(5):
c1(R10O)3-c1Si-R11-SiR c2(OR103-c2(5)
(式中、Rは、同一又は異なって、一部又は全部の水素がフッ素によって置換されていてもよい炭素数1~10のアルキル基、アリール基、(メタ)アクリル基含有有機基、または、エポキシ基含有有機基を表す。R10は、同一又は異なって、水素原子、炭素数1~10のアルキル基、または、下記式:
-SiR
(式中、Rは、同一又は異なって、炭素数1~10の1価の炭化水素基である。)で表されるジオルガノシリル基(b2)を表す。但し、1分子中の少なくとも2個のR10はジオルガノシリル基(b2)である。R11は2価の有機基である。c1は0~3の整数であり、c2は0~3の整数である。但し、c1とc2が共に3となることはない。)で表されるシロキサン化合物(以下、ヒドロシリル化架橋剤(B7)ともいう。)であることも好ましい。
上記(メタ)アクリル基含有有機基は、(メタ)アクリル基を有する炭素数1~10のアルキル基、又は、(メタ)アクリル基を有する炭素数1~10のアルキルエーテル基であることが好ましい。エポキシ基含有有機基は、エポキシ基を有する、炭素数1~10のアルキル基、又は、炭素数1~10のアルキルエーテル基であることが好ましい。ヒドロシリル化架橋剤(B)としては、ヒドロシリル化架橋剤(B6)及び(B7)からなる群より選択される少なくとも1種の化合物が好ましい。
Moreover, as hydrosilylation crosslinking agent (B4), following formula (5):
R 9 c1 (R 10 O) 3-c1 Si—R 11 —SiR 9 c2 (OR 10 ) 3-c2 (5)
(Wherein R 9 is the same or different, and an alkyl group having 1 to 10 carbon atoms, an aryl group, a (meth) acryl group-containing organic group, in which some or all of hydrogen atoms may be substituted with fluorine, or Represents an epoxy group-containing organic group, and R 10 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or the following formula:
-SiR 8 2 H
(Wherein R 8 are the same or different and each represents a monovalent hydrocarbon group having 1 to 10 carbon atoms), and represents a diorganosilyl group (b2). However, at least two R 10 in one molecule are diorganosilyl groups (b2). R 11 is a divalent organic group. c1 is an integer from 0 to 3, and c2 is an integer from 0 to 3. However, c1 and c2 are not both 3. ) (Hereinafter also referred to as hydrosilylation crosslinking agent (B7)).
The (meth) acryl group-containing organic group is preferably a C 1-10 alkyl group having a (meth) acryl group, or a C 1-10 alkyl ether group having a (meth) acryl group. . The epoxy group-containing organic group is preferably an alkyl group having 1 to 10 carbon atoms or an alkyl ether group having 1 to 10 carbon atoms having an epoxy group. The hydrosilylation crosslinking agent (B) is preferably at least one compound selected from the group consisting of hydrosilylation crosslinking agents (B6) and (B7).
ヒドロシリル化架橋剤(B6)又は(B7)として、具体的には、式:
CHSi{OSi(CHH}
で表されるシロキサン化合物、式:
CH(C)Si{OSi(CHH}
で表されるシロキサン化合物、式:
Si{OSi(CHH}
で表されるシロキサン化合物、式:
Si{OSi(CHH}
で表されるシロキサン化合物、式:
13Si{OSi(CHH}
で表されるシロキサン化合物、式:
17Si{OSi(CHH}
で表されるシロキサン化合物、式:
Si{OSi(CHH}
で表されるシロキサン化合物、式:
(CSi{OSi(CHH}
で表されるシロキサン化合物、式:
CFSi{OSi(CHH}
で表されるシロキサン化合物、式:
As hydrosilylation crosslinking agent (B6) or (B7), specifically, the formula:
CH 3 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
CH 3 (C 6 H 5) Si {OSi (CH 3) 2 H} 2
A siloxane compound represented by the formula:
C 3 H 7 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
C 4 H 9 Si {OSi ( CH 3) 2 H} 3
A siloxane compound represented by the formula:
C 6 H 13 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
C 8 H 17 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
C 6 H 5 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
(C 6 H 5 ) 2 Si {OSi (CH 3 ) 2 H} 2
A siloxane compound represented by the formula:
CF 3 C 2 H 4 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
で表されるシロキサン化合物、式: A siloxane compound represented by the formula:
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
で表されるシロキサン化合物、式: A siloxane compound represented by the formula:
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
で表されるシロキサン化合物、式: A siloxane compound represented by the formula:
Figure JPOXMLDOC01-appb-C000032
で表されるシロキサン化合物、式:
Figure JPOXMLDOC01-appb-C000032
A siloxane compound represented by the formula:
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
で表されるシロキサン化合物、式: A siloxane compound represented by the formula:
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
で表されるシロキサン化合物、式:
{(CHHSiO}Si-C-Si{OSi(CHH}
で表されるシロキサン化合物、式:
{(CHHSiO}Si-C12-Si{OSi(CHH}
で表されるシロキサン化合物、式:
{(CHHSiO}CHSi-C-SiCH{OSi(CHH}
で表されるシロキサン化合物、式:
{(CHHSiO}CHSi-C12-SiCH{OSi(CHH}
で表されるシロキサン化合物、式:
{(CHSiO}Si-C-Si{OSi(CH}
で表されるシロキサン化合物、式:
{(CHSiO}Si-C12-Si{OSi(CH}
で表されるシロキサン化合物、及び、式:
{(CHHSiO}Si-C(OC (OC OC-Si{OSi(CHH}
(式中、mは0以上の整数であり、nは0以上の整数であり、m+n≧1である。)で表されるシロキサン化合物からなる群より選択される少なくとも1種のシロキサン化合物が好ましい。
A siloxane compound represented by the formula:
{(CH 3 ) 2 HSiO} 3 Si—C 2 H 4 —Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
{(CH 3 ) 2 HSiO} 3 Si—C 6 H 12 —Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
{(CH 3 ) 2 HSiO} 2 CH 3 Si—C 2 H 4 —SiCH 3 {OSi (CH 3 ) 2 H} 2
A siloxane compound represented by the formula:
{(CH 3 ) 2 HSiO} 2 CH 3 Si—C 6 H 12 —SiCH 3 {OSi (CH 3 ) 2 H} 2
A siloxane compound represented by the formula:
{(C 6 H 5 ) 2 HSiO} 3 Si—C 2 H 4 —Si {OSi (C 6 H 5 ) 2 H} 3
A siloxane compound represented by the formula:
{(C 6 H 5 ) 2 HSiO} 3 Si—C 6 H 12 —Si {OSi (C 6 H 5 ) 2 H} 3
And a siloxane compound represented by the formula:
{(CH 3 ) 2 HSiO} 3 Si—C 3 H 6 (OC 2 H 4 ) m 2 (OC 3 H 6 ) n 2 OC 3 H 6 —Si {OSi (CH 3 ) 2 H} 3
(Wherein m 2 is an integer of 0 or more, n 2 is an integer of 0 or more, and m 2 + n 2 ≧ 1), and at least one selected from the group consisting of siloxane compounds The siloxane compound is preferred.
特に溶解性や相溶性が良好な点から、式:
Si{OSi(CHH}
で表されるシロキサン化合物、式:
(CSi{OSi(CHH}
で表されるシロキサン化合物、式:
CH(C)Si{OSi(CHH}
で表されるシロキサン化合物、式:
Si{OSi(CHH}
で表されるシロキサン化合物、式:
Si{OSi(CHH}
で表されるシロキサン化合物、及び、式:
13Si{OSi(CHH}
で表されるシロキサン化合物からなる群より選択される少なくとも1種のシロキサン化合物が好ましい。
In particular, because of its good solubility and compatibility, the formula:
C 6 H 5 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
(C 6 H 5 ) 2 Si {OSi (CH 3 ) 2 H} 2
A siloxane compound represented by the formula:
CH 3 (C 6 H 5) Si {OSi (CH 3) 2 H} 2
A siloxane compound represented by the formula:
C 3 H 7 Si {OSi (CH 3 ) 2 H} 3
A siloxane compound represented by the formula:
C 4 H 9 Si {OSi ( CH 3) 2 H} 3
And a siloxane compound represented by the formula:
C 6 H 13 Si {OSi (CH 3 ) 2 H} 3
At least one siloxane compound selected from the group consisting of siloxane compounds represented by
(B8)含フッ素ヒドロシリル化架橋剤
ヒドロシリル化架橋剤(B4)としては、含フッ素ヒドロシリル化架橋剤(B8)も好ましい。含フッ素ヒドロシリル化架橋剤(B8)は含フッ素重合体(A)に対して相溶性が高いため、均一な組成物を得やすい。この含フッ素ヒドロシリル化架橋剤(B8)を用いる場合、含フッ素重合体(A)を溶解又は分散するための溶剤(後述の溶剤(D))を必要とせず、いわゆる無溶剤型の硬化性樹脂組成物とすることができる。
含フッ素ヒドロシリル化架橋剤(B8)としては、例えば、特開平05-320175号公報、特開平06-306086号公報、特開平08-003178号公報、特開平08-134084号公報、特開平08-157486号公報、特開平09-221489号公報、特開平09-316264号公報、特開平11-116685号公報、及び、特開2003-137891号公報に記載の化合物等を用いる事ができる。
(B8) Fluorine-containing hydrosilylation crosslinking agent As the hydrosilylation crosslinking agent (B4), a fluorine-containing hydrosilylation crosslinking agent (B8) is also preferable. Since the fluorine-containing hydrosilylation crosslinking agent (B8) is highly compatible with the fluorine-containing polymer (A), it is easy to obtain a uniform composition. When this fluorine-containing hydrosilylation crosslinking agent (B8) is used, it does not require a solvent for dissolving or dispersing the fluorine-containing polymer (A) (the solvent (D) described later), and is a so-called solventless curable resin. It can be a composition.
Examples of the fluorine-containing hydrosilylated crosslinking agent (B8) include, for example, JP-A No. 05-320175, JP-A No. 06-306060, JP-A No. 08-003178, JP-A No. 08-134084, and JP-A No. 08-. The compounds described in JP-A No. 157486, JP-A No. 09-2221489, JP-A No. 09-316264, JP-A No. 11-116687, and JP-A No. 2003-137891 can be used.
なかでも、相溶性が高い観点から、含フッ素ヒドロシリル化架橋剤(B8)は環状よりは直鎖状が好ましく、フッ素を含有する基は末端や主鎖よりも側鎖に導入されたものが好ましい。代表的な構造式を示すと以下のようなものが挙げられる。Rfはフッ素を含有する1価の基であり、Rfはフッ素を含有する2価の基である。下記式:  Among these, from the viewpoint of high compatibility, the fluorine-containing hydrosilylation crosslinking agent (B8) is preferably linear rather than cyclic, and the fluorine-containing group is preferably introduced into the side chain rather than the terminal or main chain. . Typical structural formulas include the following. Rf 3 is a monovalent group containing fluorine, and Rf 4 is a divalent group containing fluorine. Following formula:
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(式中、Rfはフッ素を含有する1価の基であり、Meはメチル基であり、Xは2価の有機基であり、Rは1価の有機基を表す。n11、m11及びo11は同一又は異なって、0以上の整数である。)で表される環状の含フッ素シロキサン化合物、下記式: (In the formula, Rf 3 is a monovalent group containing fluorine, Me is a methyl group, X is a divalent organic group, and R represents a monovalent organic group. N 11 , m 11 And o 11 are the same or different and each represents an integer of 0 or more.) A cyclic fluorine-containing siloxane compound represented by the following formula:
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(式中、Rfはフッ素を含有する2価の基である。Me、X、R、n11及びm11は上記と同じ。)で表される末端にRf基が導入された直鎖状の含フッ素シロキサン化合物、下記式: (Wherein, Rf 3 is a divalent group in which .Me, X, R, n 11 and m 11 are the same. As above containing fluorine) straight chain terminated Rf 3 group was introduced which is represented by Fluorine-containing siloxane compound having the following formula:
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(式中、Rf、Me、X、R、n11、m11及びo11は上記と同じ。p11は0以上の整数である。)で表される主鎖にRf基が導入された直鎖状の含フッ素シロキサン化合物、下記式: (Wherein Rf 4 , Me, X, R, n 11 , m 11, and o 11 are the same as described above. P 11 is an integer of 0 or more) Rf 4 group is introduced into the main chain represented by Linear fluorinated siloxane compound having the following formula:
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(式中、Rf、Me、X、R、n11、m11及びo11は上記と同じ。)で表される側鎖にRf基が導入された直鎖状の含フッ素シロキサン化合物が挙げられる。
各含フッ素シロキサン化合物において、Rは炭素数1~20の1価の炭化水素基であることが好ましく、例えば、同一又は異なって、メチル基、エチル基又はフェニル基であることが好ましい。更に好ましくは、同一又は異なって、メチル基又はフェニル基である。Xは、独立して、-CH-、-CHO-、-CHOCH-、又は、-Y-NR12-CO-(但し、Yは-CH-又は下記式:
(Wherein, Rf 3 , Me, X, R, n 11 , m 11, and o 11 are the same as above), a linear fluorine-containing siloxane compound in which an Rf 3 group is introduced into the side chain represented by Can be mentioned.
In each fluorine-containing siloxane compound, R is preferably a monovalent hydrocarbon group having 1 to 20 carbon atoms, and for example, is preferably the same or different and is preferably a methyl group, an ethyl group or a phenyl group. More preferably, they are the same or different and are a methyl group or a phenyl group. X is independently, -CH 2 -, - CH 2 O -, - CH 2 OCH 2 -, or, -Y-NR 12 -CO- (where, Y is -CH 2 - or the following formula:
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
で表される基である。R12は1価の有機基である。)であることが好ましい。 It is group represented by these. R 12 is a monovalent organic group. ) Is preferable.
また、含フッ素ヒドロシリル化架橋剤(B8)としては、下記式: Moreover, as a fluorine-containing hydrosilylation crosslinking agent (B8), following formula:
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(式中、Rfはフッ素を含有する1価の基であり、R12は1価の有機基を表し、R13は2価の有機基を表す。)で表される末端にRf基が導入された直鎖状の含フッ素シロキサン化合物であることも好ましい。Rfとしてはトリフルオロメチル基であることが好ましく、R12はメチル基(-CH)であることが好ましく、R13はメチレン基(-CH-CH-)であることが好ましい。 (Wherein, Rf 5 is a monovalent group containing fluorine, R 12 is a monovalent represents an organic group, R 13 is a divalent represents an organic group.) Rf 5 group at the terminal represented by A linear fluorine-containing siloxane compound into which is introduced is also preferred. Rf 5 is preferably a trifluoromethyl group, R 12 is preferably a methyl group (—CH 3 ), and R 13 is preferably a methylene group (—CH 2 —CH 2 —).
本発明のヒドロシリル化架橋剤(B4)としてはまた、下記式: The hydrosilylation crosslinking agent (B4) of the present invention also has the following formula:
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
(n12は、1~10の整数である。)で表されるシロキサン化合物も好ましい。n12は3~10であることが好ましく、より好ましくは3~5であり、さらに好ましくは4である。 (N 12 is an integer of 1-10.) The siloxane compound represented by is preferable. n 12 is preferably 3 to 10, more preferably 3 to 5, and still more preferably 4.
本発明のヒドロシリル化架橋剤(B4)としてはまた、下記式: The hydrosilylation crosslinking agent (B4) of the present invention also has the following formula:
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(n13は、3又は4である。)で表されるシロキサン化合物も好ましい。 (N 13 is 3 or 4.) Preferred siloxane compound represented by the.
(B5)ヒドロシリル化架橋剤
含フッ素重合体(A)を溶解及び分散しない液状または固体状であって水素原子がケイ素原子に直接結合した基を2個以上有するシロキサン化合物である。
(B5) A siloxane compound having two or more groups in which a hydrogen atom is directly bonded to a silicon atom in a liquid or solid state in which the hydrosilylation crosslinking agent fluoropolymer (A) is not dissolved or dispersed.
ヒドロシリル化架橋剤(B5)を用いる場合は、含フッ素重合体(A)を溶解または分散する溶剤(D)を使用するか、また、ヒドロシリル化架橋剤(B4)を併用することが好ましい。 When the hydrosilylation crosslinking agent (B5) is used, it is preferable to use a solvent (D) that dissolves or disperses the fluoropolymer (A) or to use a hydrosilylation crosslinking agent (B4) in combination.
具体的なヒドロシリル化架橋剤(B5)としては、たとえば国際公開第2008/044765号パンフレットに記載のB3がそのまま使用できる。
ヒドロシリル化架橋剤(B5)として、具体的には、平均単位式:
{H(CHSiO1/2(SiO4/2
で表されるシロキサン化合物、平均単位式:
{H(CHSiO1/2(CHSiO3/2(SiO4/2
で表されるシロキサン化合物、平均単位式:
{H(CHSiO1/2(CSiO3/2(SiO4/2
で表されるシロキサン化合物、平均単位式:
{H(CHSiO1/2(CHSiO3/2
で表されるシロキサン化合物、平均単位式:
{H(CHSiO1/2(CSiO3/2
で表されるシロキサン化合物、平均単位式:
{H(CH)(C)SiO1/2(SiO4/2
で表されるシロキサン化合物からなる群より選択される少なくとも1種のシロキサン化合物が挙げられ(なお、上記式中、d、e、fはいずれも正の数である。)、平均単位式:
{H(CHSiO1/2(SiO4/2
(式中、d、fはいずれも正の数である。)
で表されるシロキサン化合物であることが好ましい。
As a specific hydrosilylation crosslinking agent (B5), for example, B3 described in International Publication No. 2008/044765 pamphlet can be used as it is.
Specific examples of the hydrosilylation crosslinking agent (B5) include an average unit formula:
{H (CH 3 ) 2 SiO 1/2 } d (SiO 4/2 ) f
A siloxane compound represented by the formula:
{H (CH 3 ) 2 SiO 1/2 } d (CH 3 SiO 3/2 ) e (SiO 4/2 ) f
A siloxane compound represented by the formula:
{H (CH 3 ) 2 SiO 1/2 } d (C 6 H 5 SiO 3/2 ) e (SiO 4/2 ) f
A siloxane compound represented by the formula:
{H (CH 3 ) 2 SiO 1/2 } d (CH 3 SiO 3/2 ) e
A siloxane compound represented by the formula:
{H (CH 3 ) 2 SiO 1/2 } d (C 6 H 5 SiO 3/2 ) e
A siloxane compound represented by the formula:
{H (CH 3 ) (C 6 H 5 ) SiO 1/2 } d (SiO 4/2 ) f
And at least one siloxane compound selected from the group consisting of siloxane compounds (wherein, d, e, and f are all positive numbers), and an average unit formula:
{H (CH 3 ) 2 SiO 1/2 } d (SiO 4/2 ) f
(In the formula, d and f are both positive numbers.)
It is preferable that it is a siloxane compound represented by these.
本発明の硬化性樹脂組成物において、ヒドロシリル化架橋剤(B)の含有量は、含フッ素重合体の種類、ヒドロシリル化架橋剤の種類、溶剤の有無、種類などによって異なるが、例えば、含フッ素重合体(A)100質量部に対して、5質量部以上、500質量部以下であることが好ましい。より好ましくは、10質量部以上、300質量部以下であり、更に好ましくは、20質量部以上、200質量部以下である。 In the curable resin composition of the present invention, the content of the hydrosilylation crosslinking agent (B) varies depending on the type of the fluoropolymer, the type of the hydrosilylation crosslinking agent, the presence or absence of a solvent, the type, and the like. It is preferable that they are 5 mass parts or more and 500 mass parts or less with respect to 100 mass parts of polymers (A). More preferably, they are 10 mass parts or more and 300 mass parts or less, More preferably, they are 20 mass parts or more and 200 mass parts or less.
本発明の硬化性樹脂組成物が溶剤(D)を含む場合、ヒドロシリル化架橋剤(B)の含有量は、架橋剤としての機能の点から、含フッ素重合体(A)100質量部に対して、5質量部以上が好ましい。より好ましくは、10質量部以上であり、更に好ましくは、20質量部以上である。また、90質量部以下であることが好ましく、より好ましくは、70質量部以下であり、更に好ましくは50質量部以下である。 When the curable resin composition of the present invention contains a solvent (D), the content of the hydrosilylation crosslinking agent (B) is based on 100 parts by mass of the fluoropolymer (A) from the viewpoint of the function as a crosslinking agent. And 5 parts by mass or more is preferable. More preferably, it is 10 mass parts or more, More preferably, it is 20 mass parts or more. Moreover, it is preferable that it is 90 mass parts or less, More preferably, it is 70 mass parts or less, More preferably, it is 50 mass parts or less.
また、本発明の硬化性樹脂組成物が溶剤(D)を含まない場合、すなわち、ヒドロシリル化架橋剤(B)が含フッ素重合体(A)の溶剤としての役割を兼ねる場合には、ヒドロシリル化架橋剤(B)は、含フッ素重合体(A)100質量部に対して、30質量部以上、さらには50質量部以上、特に70質量部以上であり、また、500質量部以下、さらには300質量部以下、特に200質量部以下が好ましい。本発明の硬化性樹脂組成物が溶剤(D)を含まない場合、ヒドロシリル化架橋剤(B)は、ヒドロシリル化架橋剤(B4)であることが好ましく、中でも、含フッ素ヒドロシリル化架橋剤(B8)であることがより好ましい。 Further, when the curable resin composition of the present invention does not contain a solvent (D), that is, when the hydrosilylation crosslinking agent (B) also serves as a solvent for the fluoropolymer (A), hydrosilylation The crosslinking agent (B) is 30 parts by mass or more, further 50 parts by mass or more, particularly 70 parts by mass or more, and 500 parts by mass or less, further 100 parts by mass with respect to the fluoropolymer (A). 300 parts by mass or less, particularly 200 parts by mass or less are preferable. When the curable resin composition of the present invention does not contain a solvent (D), the hydrosilylation crosslinking agent (B) is preferably a hydrosilylation crosslinking agent (B4), and among them, a fluorinated hydrosilylation crosslinking agent (B8). ) Is more preferable.
(C)ヒドロシリル化触媒
本発明の硬化性樹脂組成物は、更に、ヒドロシリル化触媒(C)からなることが好ましい。ヒドロシリル化触媒(C)は、本発明の組成物のヒドロシリル化反応を促進するための触媒である。このような触媒としては、白金系触媒、パラジウム系触媒、ロジウム系触媒、ルテニウム系触媒及びイリジウム系触媒からなる群より選択される少なくとも1種の触媒であることが好ましい。入手のしやすさからは、白金系触媒が好ましい。白金系触媒としては、塩化白金酸、塩化白金酸のアルコール変性物、白金のカルボニル錯体、白金のオレフィン錯体、白金のアルケニルシロキサン錯体等が例示される。
(C) Hydrosilylation catalyst The curable resin composition of the present invention preferably further comprises a hydrosilylation catalyst (C). The hydrosilylation catalyst (C) is a catalyst for promoting the hydrosilylation reaction of the composition of the present invention. Such a catalyst is preferably at least one catalyst selected from the group consisting of platinum-based catalysts, palladium-based catalysts, rhodium-based catalysts, ruthenium-based catalysts, and iridium-based catalysts. From the viewpoint of availability, a platinum-based catalyst is preferable. Examples of the platinum-based catalyst include chloroplatinic acid, alcohol-modified chloroplatinic acid, platinum carbonyl complex, platinum olefin complex, platinum alkenylsiloxane complex, and the like.
ヒドロシリル化触媒(C)としては、上記したものに限られず、公知のヒドロシリル化反応を触媒する化合物が使用できる。たとえば、国際公開第2008/153002号パンフレット、国際公開第2008/044765号パンフレット、国際特許出願PCT/JP2007/074066号明細書、国際特許出願PCT/JP2008/060555号明細書などに記載されているものが使用できる。 The hydrosilylation catalyst (C) is not limited to those described above, and a compound that catalyzes a known hydrosilylation reaction can be used. For example, those described in International Publication No. 2008/153002, International Publication No. 2008/044765, International Patent Application PCT / JP2007 / 074066, International Patent Application PCT / JP2008 / 060555, etc. Can be used.
本発明の硬化性樹脂組成物において、ヒドロシリル化触媒(C)の含有量は本発明の組成物の硬化を促進する触媒量であればよい。ヒドロシリル化触媒(C)の含有量は、本発明の硬化性樹脂組成物に対して、質量単位で0.1~1000ppmであることが好ましい。より好ましくは、1~500ppmである。ヒドロシリル化触媒(C)の含有量が少なすぎると、得られる組成物の硬化を十分に促進することができなくなるおそれがあり、多すぎると得られる硬化物に着色等の問題を生じるおそれがある。 In the curable resin composition of the present invention, the content of the hydrosilylation catalyst (C) may be any catalyst amount that promotes the curing of the composition of the present invention. The content of the hydrosilylation catalyst (C) is preferably 0.1 to 1000 ppm by mass with respect to the curable resin composition of the present invention. More preferably, it is 1 to 500 ppm. If the content of the hydrosilylation catalyst (C) is too low, curing of the resulting composition may not be sufficiently promoted, and if it is too high, problems such as coloring may occur in the resulting cured product. .
(D)溶剤
上記含フッ素重合体(A)は、本発明の硬化性樹脂組成物が溶剤を含んでいなくとも容易に調製することができるため、本発明の硬化性樹脂組成物は、溶剤を含んでいなくてもよい。しかしながら、必要に応じて溶剤(D)を含んでいてもよい。
(D) Solvent Since the fluorinated polymer (A) can be easily prepared even if the curable resin composition of the present invention does not contain a solvent, the curable resin composition of the present invention is a solvent. May not be included. However, the solvent (D) may be included as necessary.
本発明における溶剤(D)は主として含フッ素重合体(A)を溶解または分散する役割をもつ。しかし、含フッ素重合体(A)を溶解または分散するためだけに用いる溶剤は、除去が不充分な場合、有機溶剤が硬化物内に残存するといった問題が生じたり、残存する有機溶剤の影響として耐熱性、機械的強度の低下、白濁するといった問題が生じたり、溶剤の揮発によってボイドが発生したりするおそれがあるので、溶剤の除去をできるだけ完全に行うことが望まれる。したがって、そのための作業上の負担も含め、環境負荷やコストの低減面から、できるだけ使用しない方が望ましい。すなわち、本発明の硬化性樹脂組成物は、溶剤(D)を含まないことが好ましい。 The solvent (D) in the present invention mainly has a role of dissolving or dispersing the fluoropolymer (A). However, the solvent used only to dissolve or disperse the fluoropolymer (A) may cause a problem that the organic solvent remains in the cured product when the removal is insufficient, or the influence of the remaining organic solvent. Since problems such as heat resistance, a decrease in mechanical strength, and white turbidity may occur or voids may be generated due to volatilization of the solvent, it is desirable to remove the solvent as completely as possible. Therefore, it is desirable not to use it as much as possible from the viewpoint of reducing environmental load and cost, including the work burden for that purpose. That is, it is preferable that the curable resin composition of the present invention does not contain the solvent (D).
ところで、本発明では、ヒドロシリル化架橋剤(B4)のように含フッ素重合体(A)を溶解又は分散する能力を有する化合物を使用するとき、また、後述のように、ヒドロシリル化架橋反応に関与して硬化物中に組み入れられる溶剤を用いるときには、含フッ素重合体(A)を溶解または分散するためだけの溶剤は不要である。 By the way, in this invention, when using the compound which has the capability to melt | dissolve or disperse | distribute a fluorine-containing polymer (A) like a hydrosilylation crosslinking agent (B4), it is concerned in hydrosilylation crosslinking reaction as mentioned later. When using a solvent incorporated in the cured product, a solvent only for dissolving or dispersing the fluoropolymer (A) is not necessary.
そこで本発明においては、ヒドロシリル化架橋反応に関与するか否かという観点から、含フッ素重合体(A)を溶解または分散可能な溶剤(D)を、ヒドロシリル化架橋反応に関与する非ケイ素系反応性溶剤(D1)と、ヒドロシリル化架橋反応に関与しない溶剤(D2)とに分類する。 Therefore, in the present invention, from the viewpoint of whether or not it is involved in the hydrosilylation crosslinking reaction, a solvent (D) that can dissolve or disperse the fluoropolymer (A) is used as a non-silicon-based reaction involved in the hydrosilylation crosslinking reaction. The solvent is classified into a solvent (D1) and a solvent (D2) not involved in the hydrosilylation crosslinking reaction.
(D1)ヒドロシリル化架橋反応に関与する非ケイ素系反応性溶剤
前記ヒドロシリル化架橋剤(B4)は、含フッ素重合体(A)を溶解又は分散し、ヒドロシリル化架橋反応に関与する化合物であるが、シロキサン化合物である点で、溶剤(D1)とは異なる。
(D1) Non-silicon reactive solvent involved in hydrosilylation crosslinking reaction The hydrosilylation crosslinking agent (B4) is a compound that dissolves or disperses the fluoropolymer (A) and participates in the hydrosilylation crosslinking reaction. It differs from the solvent (D1) in that it is a siloxane compound.
本発明で「ヒドロシリル化架橋反応に関与する」とは、炭素-炭素二重結合とケイ素原子に直接結合している水素原子との付加反応であるヒドロシリル化反応に関与するいずれかの反応基(炭素-炭素二重結合またはケイ素原子結合水素原子含有基)を有し、結果として、ヒドロシリル化架橋反応の反応物中に組み込まれることを意味する。また、架橋性があるという観点からは複数の反応基をもつことが好ましい。 In the present invention, “participating in hydrosilylation crosslinking reaction” means any reactive group participating in hydrosilylation reaction which is an addition reaction between a carbon-carbon double bond and a hydrogen atom directly bonded to a silicon atom ( Having a carbon-carbon double bond or a silicon atom-bonded hydrogen atom-containing group), and as a result, incorporated into the reaction product of the hydrosilylation crosslinking reaction. Moreover, it is preferable to have a some reactive group from a viewpoint that there exists crosslinking | crosslinked property.
具体的には、たとえばエチレングリコールジアリル、ジエチレングリコールジジアリル、トリエチレングリコールジジアリル、1,4-シクロヘキサンジメタノールジジアリル、トリアリルイソシアヌレート(TAIC)などの多価アリル化合物;エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、ビスフェノールAビス(ビニルオキシエチレン)エーテル、ビス(ビニルオキシエチレン)エーテル、ヒドロキノンビス(ビニルオキシエチレン)エーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、 Specific examples include polyvalent allyl compounds such as ethylene glycol diallyl, diethylene glycol diallyl, triethylene glycol diallyl, 1,4-cyclohexanedimethanol diallyl, triallyl isocyanurate (TAIC); ethylene glycol divinyl ether, diethylene glycol Divinyl ether, triethylene glycol divinyl ether, bisphenol A bis (vinyloxyethylene) ether, bis (vinyloxyethylene) ether, hydroquinone bis (vinyloxyethylene) ether, 1,4-cyclohexanedimethanol divinyl ether,
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
などの多価ビニルエーテル化合物;エチレングリコールジアクリレート(EDA)、ジエチレングリコールジアクリレート(DiEDA)、トリエチレングリコールジアクリレート(TriEDA)、1,4-ブタンジオールジアクリレート(1,4-BuDA)、1,3-ブタンジオールジアクリレート(1,3-BuDA)、2,2-ビス〔4-(2-ヒドロキシ-3-アクリロキシプロポキシ)フェニル〕プロパン(Bis-GA)、2,2-ビス(4-アクリロキシフェニル)プロパン(BPDA)、2,2-ビス(4-アクリロキシエトキシフェニル)プロパン(Bis-AEPP)、2,2-ビス(4-アクリロキシポリエトキシフェニル)プロパン(Bis-APEPP)、ジ(アクリロキシエチル)トリメチルヘキサメチレンジウレタン(UDA)、トリメチロールプロパントリアクリレート(TMPA)などの多価アクリル化合物;エチレングリコールジメタクリレート(EDMA)、ジエチレングリコールジメタクリレート(DiEDMA)、トリエチレングリコールジメタクリレート(TriEDMA)、1,4-ブタンジオールジメタクリレート(1,4-BuDMA)、1,3-ブタンジオールジメタクリレート(1,3-BuDMA)、2,2-ビス〔4-(2-ヒドロキシ-3-メタクリロキシプロポキシ)フェニル〕プロパン(Bis-GMA)、2,2-ビス(4-メタクリロキシフェニル)プロパン(BPDMA)、2,2-ビス(4-メタクリロキシエトキシフェニル)プロパン(Bis-MEPP)、2,2-ビス(4-メタクリロキシポリエトキシフェニル)プロパン(Bis-MPEPP)、ジ(メタクリロキシエチル)トリメチルヘキサメチレンジウレタン(UDMA)、トリメチロールプロパントリメタクリレート(TMPT)などの多価メタクリル化合物などが挙げられる。 Polyvalent vinyl ether compounds such as ethylene glycol diacrylate (EDA), diethylene glycol diacrylate (DiEDA), triethylene glycol diacrylate (TriEDA), 1,4-butanediol diacrylate (1,4-BuDA), 1,3 -Butanediol diacrylate (1,3-BuDA), 2,2-bis [4- (2-hydroxy-3-acryloxypropoxy) phenyl] propane (Bis-GA), 2,2-bis (4-acrylic) Roxyphenyl) propane (BPDA), 2,2-bis (4-acryloxyethoxyphenyl) propane (Bis-AEPP), 2,2-bis (4-acryloxypolyethoxyphenyl) propane (Bis-APPP), di (Acryloxyethyl) trimethylhexamethyle Polyacrylic compounds such as diurethane (UDA) and trimethylolpropane triacrylate (TMPA); ethylene glycol dimethacrylate (EDMA), diethylene glycol dimethacrylate (DiEDMA), triethylene glycol dimethacrylate (TriEDMA), 1,4-butanediol Dimethacrylate (1,4-BuDMA), 1,3-butanediol dimethacrylate (1,3-BuDMA), 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) phenyl] propane (Bis -GMA), 2,2-bis (4-methacryloxyphenyl) propane (BPDMA), 2,2-bis (4-methacryloxyethoxyphenyl) propane (Bis-MEPP), 2,2-bis (4-methacryloxy) Li ethoxyphenyl) propane (Bis-MPEPP), di (methacryloxyethyl) trimethylhexamethylene diurethane (UDMA), trimethylolpropane trimethacrylate (TMPT), and the like polyvalent methacrylic compounds such.
なかでも、溶解性、相溶性が良好な点から、TAIC、EDMA、EDA、TMPT及びTMPAからなる群より選択される少なくとも1種の化合物が好ましい。 Among these, at least one compound selected from the group consisting of TAIC, EDMA, EDA, TMPT, and TMPA is preferable from the viewpoint of good solubility and compatibility.
非ケイ素系反応性溶剤(D1)は、含フッ素重合体(A)の反応性溶剤として単独で使用してもよいし、前記ヒドロシリル化架橋剤(B4)や後述する非反応性溶剤(D2)と併用してもよい。 The non-silicon-based reactive solvent (D1) may be used alone as the reactive solvent for the fluoropolymer (A), or the hydrosilylation crosslinking agent (B4) or the non-reactive solvent (D2) described later. You may use together.
非ケイ素系反応性溶剤(D1)の配合量は、含フッ素重合体(A)の種類、溶剤(D1)の種類、他の溶剤の有無や種類などによって異なるが、含フッ素重合体(A)100質量部に対して、5質量部以上、500質量部以下が好ましい。ヒドロシリル化反応を円滑に進める点からは、含フッ素重合体(A)100質量部に対して、5質量部以上、さらには10質量部以上、特に20質量部以上であり、また、90質量部以下、さらには70質量部以下、特に50質量部以下が好ましい。 The compounding amount of the non-silicon-based reactive solvent (D1) varies depending on the type of the fluoropolymer (A), the type of the solvent (D1), the presence or type of other solvents, etc., but the fluoropolymer (A) 5 mass parts or more and 500 mass parts or less are preferable with respect to 100 mass parts. From the point of proceeding the hydrosilylation reaction smoothly, it is 5 parts by mass or more, further 10 parts by mass or more, particularly 20 parts by mass or more, and 90 parts by mass with respect to 100 parts by mass of the fluoropolymer (A). Hereinafter, it is preferably 70 parts by mass or less, particularly preferably 50 parts by mass or less.
また、含フッ素重合体(A)の溶剤としての役割もかねる場合は、含フッ素重合体(A)100質量部に対して、30質量部以上、さらには50質量部以上、特に70質量部以上であり、また、500質量部以下、さらには300質量部以下、特に200質量部以下が好ましい。 Moreover, when the role as a solvent of a fluoropolymer (A) can also be used, it is 30 mass parts or more with respect to 100 mass parts of fluoropolymer (A), Furthermore, 50 mass parts or more, Especially 70 mass parts or more. Moreover, 500 mass parts or less, Furthermore, 300 mass parts or less, Especially 200 mass parts or less are preferable.
(D2)ヒドロシリル化架橋反応に関与しない溶剤
この溶剤(D2)は、前記ヒドロシリル化架橋剤(B4)や非ケイ素系反応性溶剤(D1)を配合しない場合、またはそれらだけでは含フッ素重合体(A)の溶解性や分散性が十分ではない場合に使用すればよい。
(D2) Solvent that does not participate in hydrosilylation crosslinking reaction This solvent (D2) is a fluorine-containing polymer in the case where the hydrosilylation crosslinking agent (B4) or the non-silicon-based reactive solvent (D1) is not blended or by itself. It may be used when the solubility or dispersibility of A) is not sufficient.
具体例としては、たとえばヘキサン、シクロヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、ミネラルスピリットなどの脂肪族炭化水素類;ベンゼン、トルエン、キシレン、ナフタレン、ソルベントナフサなどの芳香族炭化水素;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸イソプロピル、酢酸イソブチル、酢酸セロソルブ、プロピレングリコールメチルエーテルアセテート、酢酸カルビトール、ジエチルオキサレート、ピルビン酸エチル、エチル-2-ヒドロキシブチレート、エチルアセトアセテート、酢酸アミル、乳酸メチル、乳酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、2-ヒドロキシイソ酪酸メチル、2-ヒドロキシイソ酪酸エチルなどのエステル類;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン、2-ヘキサノン、シクロヘキサノン、メチルアミノケトン、2-ヘプタノンなどのケトン類;エチルセロソルブ、メチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールジメチルエーテル、エチレングリコールモノアルキルエーテルなどのグリコールエーテル類;メタノール、エタノール、iso-プロパノール、n-ブタノール、イソブタノール、tert-ブタノール、sec-ブタノール、3-ペンタノール、オクチルアルコール、3-メチル-3-メトキシブタノール、tert-アミルアルコールなどのアルコール類;テトラヒドロフラン、テトラヒドロピラン、ジオキサンなどの環状エーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;メチルセロソルブ、セロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、ジエチレングリコールモノメチルエーテルなどのエーテルアルコール類;1,1,2-トリクロロ-1,2,2-トリフルオロエタン、1,2-ジクロロ-1,1,2,2-テトラフルオロエタン、ジメチルスルホキシドなどが挙げられる。あるいはこれらの2種以上の混合溶剤などが挙げられる。 Specific examples include aliphatic hydrocarbons such as hexane, cyclohexane, heptane, octane, nonane, decane, undecane, dodecane, and mineral spirits; aromatic hydrocarbons such as benzene, toluene, xylene, naphthalene, and solvent naphtha; Methyl, ethyl acetate, propyl acetate, n-butyl acetate, isobutyl acetate, isopropyl acetate, isobutyl acetate, cellosolve acetate, propylene glycol methyl ether acetate, carbitol acetate, diethyl oxalate, ethyl pyruvate, ethyl-2-hydroxybutyrate Rate, ethyl acetoacetate, amyl acetate, methyl lactate, ethyl lactate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 2-hydroxyisobutyrate, 2-hydroxyisobutyric acid Esters such as chill; ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, 2-hexanone, cyclohexanone, methylaminoketone, 2-heptanone; ethyl cellosolve, methyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol Glycol ethers such as monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol dimethyl ether, ethylene glycol monoalkyl ether; methanol , Etano Alcohols such as sodium, iso-propanol, n-butanol, isobutanol, tert-butanol, sec-butanol, 3-pentanol, octyl alcohol, 3-methyl-3-methoxybutanol, tert-amyl alcohol; tetrahydrofuran, tetrahydro Cyclic ethers such as pyran and dioxane; Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; Ether alcohols such as methyl cellosolve, cellosolve, isopropyl cellosolve, butyl cellosolve and diethylene glycol monomethyl ether; 1,1, Examples include 2-trichloro-1,2,2-trifluoroethane, 1,2-dichloro-1,1,2,2-tetrafluoroethane, dimethyl sulfoxide, and the like. Or these 2 or more types of mixed solvents are mentioned.
またさらに、フッ素系の溶剤としては、たとえばCHCClF(HCFC-141b)、CFCFCHCl/CClFCFCHClF混合物(HCFC-225)、パーフルオロヘキサン、パーフルオロ(2-ブチルテトラヒドロフラン)、メトキシ-ノナフルオロブタン、1,3-ビストリフルオロメチルベンゼンなどのほか、
H(CFCF CHOH(n:1~3の整数)、
F(CF CHOH(n:1~5の整数)、
CFCH(CF)OHなどのフッ素系アルコール類;
ベンゾトリフルオライド、パーフルオロベンゼン、パーフルオロ(トリブチルアミン)、ClCFCFClCFCFClなどが挙げられる。
Further, as the fluorine-based solvent, for example, CH 3 CCl 2 F (HCFC-141b), CF 3 CF 2 CHCl 2 / CClF 2 CF 2 CHClF mixture (HCFC-225), perfluorohexane, perfluoro (2- Butyltetrahydrofuran), methoxy-nonafluorobutane, 1,3-bistrifluoromethylbenzene, etc.
H (CF 2 CF 2 ) n 3 CH 2 OH (n 3 : an integer of 1 to 3),
F (CF 2 ) n 4 CH 2 OH (n 4 : an integer of 1 to 5),
Fluorinated alcohols such as CF 3 CH (CF 3 ) OH;
Examples thereof include benzotrifluoride, perfluorobenzene, perfluoro (tributylamine), ClCF 2 CFClCF 2 CFCl 2 and the like.
これらフッ素系溶剤は単独で使用してもよいし、フッ素系溶剤同士、非フッ素系溶剤と1種以上のフッ素系溶剤との混合溶剤として使用してもよい。 These fluorinated solvents may be used alone or as a mixed solvent of fluorinated solvents, a non-fluorinated solvent and one or more fluorinated solvents.
本発明の硬化性樹脂組成物は、ヒドロシリル化架橋反応に関与しない溶剤(D2)を用いない、すなわち、本発明の硬化性樹脂組成物は、溶剤(D2)を含まないことが好ましい。溶剤(D2)を用いないことにより、硬化性樹脂組成物から溶剤(D2)の除去が不要となり、成形工程などを簡略化でき、また、溶剤(D2)が硬化物内に残存するといった問題が生じない。残存する溶剤(D2)の影響として硬化物の耐熱性、機械的強度の低下、白濁するといった問題がある。さらに成形加工条件の関係から揮発分の含有が許されないケースに対しても無溶剤型の硬化性樹脂組成物は有用である。たとえば、密閉容器内の充填、封止のような用途である。 It is preferable that the curable resin composition of the present invention does not use the solvent (D2) that does not participate in the hydrosilylation crosslinking reaction, that is, the curable resin composition of the present invention does not contain the solvent (D2). By not using the solvent (D2), it is not necessary to remove the solvent (D2) from the curable resin composition, the molding process can be simplified, and the solvent (D2) remains in the cured product. Does not occur. As an influence of the remaining solvent (D2), there are problems such as heat resistance of the cured product, reduction in mechanical strength, and cloudiness. Furthermore, the solventless curable resin composition is useful even in cases where the inclusion of volatile components is not allowed due to the molding process conditions. For example, it is used for filling and sealing in an airtight container.
本発明の硬化性樹脂組成物は、含フッ素重合体(A)とヒドロシリル化架橋剤(B)と、必要に応じて、ヒドロシリル化触媒(C)等を通常の方法で混合することで調製することができる。  The curable resin composition of the present invention is prepared by mixing the fluorine-containing polymer (A), the hydrosilylation crosslinking agent (B), and, if necessary, the hydrosilylation catalyst (C) by a usual method. be able to. *
本発明の硬化性樹脂組成物の架橋は、使用する架橋剤などにより適宜決めればよいが、通常、室温(例えば、20℃)~200℃の温度で、1分~24時間硬化処理する。また、常圧、加圧、減圧下においても、また、空気中においても、架橋することができる。
架橋反応の進行は、例えば、硬化前後のサンプルを赤外分光法により測定し、Si-H結合の吸収ピークの変化を観察することにより確認できる。
The crosslinking of the curable resin composition of the present invention may be appropriately determined depending on the crosslinking agent used, but is usually cured at a temperature of room temperature (for example, 20 ° C.) to 200 ° C. for 1 minute to 24 hours. Moreover, it can bridge | crosslink under normal pressure, pressurization, pressure reduction, and also in the air.
The progress of the crosslinking reaction can be confirmed, for example, by measuring a sample before and after curing by infrared spectroscopy and observing a change in the absorption peak of the Si—H bond.
架橋方法としては、特に限定されず、スチーム架橋、加圧成形法、加熱により架橋反応が開始される通常の方法が採用できる。 The crosslinking method is not particularly limited, and a steam crosslinking, a pressure molding method, and a usual method in which a crosslinking reaction is started by heating can be employed.
本発明の硬化性樹脂組成物は、その用途によって異なるが、たとえば封止などの用途に対しては、30℃における粘度は、粘性が低すぎると液だれが多く、かえって取り扱い性が低下するため1mPa・s以上が好ましく、薄膜形成性が良好であるという観点から、5mPa・s以上がより好ましく、硬化の際の硬化収縮が小さいという観点から、10mPa・s以上がさらに好ましい。また、取り扱い性が良好であるという観点から、20000mPa・s以下が好ましく、成形加工の際に細部にわたって硬化性組成物がいきわたるという観点から、5000mPa・s以下がより好ましく、薄膜を形成した際にレベリング(表面平滑)性が良好であるという観点から、2000mPa・s以下がさらに好ましい。 Although the curable resin composition of the present invention varies depending on the application, for example, for applications such as sealing, if the viscosity at 30 ° C. is too low, there is a lot of liquid dripping, and on the contrary, the handleability is lowered. It is preferably 1 mPa · s or more, more preferably 5 mPa · s or more from the viewpoint of good thin film formability, and further preferably 10 mPa · s or more from the viewpoint of small cure shrinkage during curing. Further, from the viewpoint of good handleability, 20000 mPa · s or less is preferable, and from the viewpoint that the curable composition spreads over the details during molding, 5000 mPa · s or less is more preferable, and when a thin film is formed. From the viewpoint of good leveling (surface smoothness), 2000 mPa · s or less is more preferable.
本発明の硬化性樹脂組成物は、前記にあげたもの以外に、たとえば反応抑制剤、酸化チタン、ベンガラ、カーボンブラックのような顔料、アルミナ、シリカのような充填剤、分散剤、増粘剤、防腐剤、紫外線吸収剤、消泡剤、レベリング剤などを任意に添加してもよい。 The curable resin composition of the present invention includes, in addition to those mentioned above, for example, a reaction inhibitor, a pigment such as titanium oxide, bengara, and carbon black, a filler such as alumina and silica, a dispersant, and a thickener. , Preservatives, ultraviolet absorbers, antifoaming agents, leveling agents and the like may be optionally added.
反応抑制剤としては、たとえば1-エチニル-1-シクロヘキサノール、2-エチニルイソプロパノール、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、2-フェニル-3-ブチン-2-オールなどのアセチレン系アルコール;1,3,5,7-テトラビニルテトラメチルシクロテトラシロキサンなどのアルケニルシロキサン;ジアリルフマレート、ジメチルフマレート、ジエチルフマレートなどのマレート化合物;その他、トリアリルシアヌレート、トリアゾールなどが挙げられる。反応抑制剤を配合することにより、得られる組成物の一液化や、得られる組成物のポットライフ(可使時間)を十分に長くすることができるという効果が奏される。この反応抑制剤の含有量は特に限定されないが、本発明の組成物中に、10~50000ppm(質量基準)となるような量であることが好ましい。 Examples of the reaction inhibitor include 1-ethynyl-1-cyclohexanol, 2-ethynylisopropanol, 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, 2-phenyl Acetylenic alcohols such as -3-butyn-2-ol; alkenyl siloxanes such as 1,3,5,7-tetravinyltetramethylcyclotetrasiloxane; malate compounds such as diallyl fumarate, dimethyl fumarate, and diethyl fumarate; Other examples include triallyl cyanurate and triazole. By blending the reaction inhibitor, the effect of being able to make the obtained composition one component and the pot life (pot life) of the resulting composition to be sufficiently long is exhibited. The content of the reaction inhibitor is not particularly limited, but is preferably such an amount that it is 10 to 50000 ppm (mass basis) in the composition of the present invention.
たとえば、上記硬化性樹脂組成物を硬化し、硬化膜を形成して各種用途に利用できる。膜を形成する方法としては用途に応じた適切な公知の方法を採用することができる。例えば膜厚をコントロールする必要がある場合は、ロールコート法、グラビアコート法、マイクログラビアコート法、フローコート法、バーコート法、スプレーコート法、ダイコート法、スピンコート法、ディップコート法などが採用できる。 For example, the curable resin composition can be cured to form a cured film and used for various applications. As a method of forming the film, a known method suitable for the application can be employed. For example, when it is necessary to control the film thickness, roll coating, gravure coating, micro gravure coating, flow coating, bar coating, spray coating, die coating, spin coating, dip coating, etc. are used. it can.
本発明の硬化性樹脂組成物は、膜形成に用いてもよいが、各種成形品の成形材料として特に有用である。成形方法としては、押出成形、射出成形、圧縮成形、ブロー成形、トランスファー成形、光造形、ナノインプリント、真空成形などが採用できる。 The curable resin composition of the present invention may be used for film formation, but is particularly useful as a molding material for various molded products. As the molding method, extrusion molding, injection molding, compression molding, blow molding, transfer molding, stereolithography, nanoimprinting, vacuum molding and the like can be adopted.
本発明の硬化性樹脂組成物の用途としては、例えば、封止部材、光学部材、光電子撮像管、各種センサー、反射防止材の材料として用いることができる。特に封止部材を形成する材料として用いることが好ましい。すなわち、本発明の硬化性樹脂組成物は、封止材料であることが好ましい。また、本発明の硬化性樹脂組成物から得られる硬化物は透明性に優れるため、光学部材を形成する光学材料として好適に利用できる。そのほか、電子半導体用の封止部材用材料、耐水耐湿性接着剤、光学部品や素子用の接着剤としても使用できる。 As a use of the curable resin composition of this invention, it can use as a material of a sealing member, an optical member, a photoelectric imaging tube, various sensors, an antireflection material, for example. In particular, it is preferably used as a material for forming a sealing member. That is, the curable resin composition of the present invention is preferably a sealing material. Moreover, since the hardened | cured material obtained from the curable resin composition of this invention is excellent in transparency, it can utilize suitably as an optical material which forms an optical member. In addition, it can also be used as a sealing member material for electronic semiconductors, a water and moisture resistant adhesive, and an adhesive for optical components and elements.
本発明の硬化性樹脂組成物の使用形態としては、例えば発光ダイオード(LED)、EL素子、非線形光学素子などの発光素子やCCDやCMOS、PDのような受光素子などの光機能素子のパッケージ(封入)、実装などが例示できる。また、深紫外線顕微鏡のレンズなどの光学部材用封止部材(または充填材)なども挙げられる。 Examples of usage of the curable resin composition of the present invention include light emitting elements such as light emitting diodes (LEDs), EL elements, and nonlinear optical elements, and packages of optical functional elements such as light receiving elements such as CCD, CMOS, and PD ( Encapsulation), mounting and the like. Moreover, sealing members (or fillers) for optical members such as lenses for deep ultraviolet microscopes are also included.
本発明の硬化性樹脂組成物は、透明性に優れるため、特に光学素子用の封止材料として好適に利用できる。封止された光学素子は種々の場所に使用される。光学素子としては、特に限定されないが、例えば、発光ダイオード(LED)、EL素子、非線形光学素子などの発光素子や、CCDやCMOS、PDのような受光素子等の他、ハイマウントストップランプやメーターパネル、携帯電話のバックライト、各種電気製品のリモートコントロール装置の光源などの発光素子;カメラのオートフォーカス、CD/DVD用光ピックアップ用受光素子などが挙げられる。本発明の硬化性樹脂組成物は、溶剤(D)を含む必要がなく、更に樹脂から構成されているためシリコーン等を用いた場合よりも高バリア性(すなわち低透過性)である。 Since the curable resin composition of the present invention is excellent in transparency, it can be suitably used particularly as a sealing material for optical elements. The sealed optical element is used in various places. Although it does not specifically limit as an optical element, For example, in addition to light emitting elements, such as a light emitting diode (LED), EL element, and a nonlinear optical element, light receiving elements, such as CCD, CMOS, and PD, a high mount stop lamp and a meter Light emitting elements such as a panel, a backlight of a mobile phone, a light source of a remote control device of various electric products; a camera autofocus, a light receiving element for an optical pickup for CD / DVD, and the like. The curable resin composition of the present invention does not need to contain the solvent (D), and further has a higher barrier property (that is, lower permeability) than the case of using silicone or the like because it is made of a resin.
本発明の硬化性樹脂組成物は、光学部材を形成する材料として好適である。本発明の硬化性樹脂組成物は、フッ素を含有しているため、得られる硬化物が低屈折率の光学部材になり、例えば光伝送用媒体として有用である。本発明の硬化性樹脂組成物は、特に、コア材が石英もしくは光学ガラスであるプラスチッククラッド材料、光学ファイバーのクラッド材料、コア材がプラスチックである全プラスチック光学ファイバーのクラッド材料、反射防止コーテイング材料、レンズ材料、光導波路材料、プリズム材料、光学窓材料、光記憶ディスク材料、非線形型光素子材料、ホログラム材料、フォトリソグラティブ材料、発光素子の封止材料などに用いることができる。
また、光デバイス用の材料としても使用できる。光デバイスとしては、光導波路、OADM、光スイッチ、光フィルター、光コネクター、合分波器などの機能素子および光配線などの光実装が知られており、これらのデバイスを形成するのに有用な材料である。さらに種々の機能性化合物(非線形光学材料、蛍光発光性の機能性色素、フォトリフラクティブ材料など)を含有させて、モジュレータ、波長変換素子、光増幅器などの光デバイス用の機能素子に用いるのにも適している。センサー用途としては、特に光学センサーや圧力センサーなどの感度向上や撥水撥油特性によるセンサーの保護などの効果があり有用である。
The curable resin composition of the present invention is suitable as a material for forming an optical member. Since the curable resin composition of the present invention contains fluorine, the obtained cured product becomes an optical member having a low refractive index, and is useful as an optical transmission medium, for example. The curable resin composition of the present invention includes, in particular, a plastic clad material whose core material is quartz or optical glass, an optical fiber clad material, an all plastic optical fiber clad material whose core material is plastic, an antireflection coating material, It can be used as a lens material, an optical waveguide material, a prism material, an optical window material, an optical storage disk material, a non-linear optical element material, a hologram material, a photolithographic material, a light emitting element sealing material, and the like.
It can also be used as a material for optical devices. As optical devices, optical devices such as optical waveguides, OADMs, optical switches, optical filters, optical connectors, multiplexers / demultiplexers, and other optical devices are known and useful for forming these devices. Material. In addition, various functional compounds (non-linear optical materials, fluorescent light-emitting functional dyes, photorefractive materials, etc.) are contained and used for functional devices for optical devices such as modulators, wavelength conversion elements, and optical amplifiers. Is suitable. As a sensor application, there is an effect such as an improvement in sensitivity of an optical sensor or a pressure sensor, and protection of the sensor by water / oil repellency characteristics, which is useful.
本発明は、上記硬化性樹脂組成物を硬化して得られる硬化物でもある。本発明の硬化物は、上記硬化性樹脂組成物をヒドロシリル化架橋することで得ることができる。本発明の硬化性樹脂組成物は溶剤を含む必要がないため、有機溶剤の除去工程を不要とすることができ、硬化物の成形工程などを簡略化できる。さらに成形加工条件の関係から揮発分の含有が許されない封止部材として好適に利用できる。すなわち、本発明の硬化物は、封止部材であることが好ましい。 The present invention is also a cured product obtained by curing the curable resin composition. The cured product of the present invention can be obtained by hydrosilylation crosslinking the curable resin composition. Since the curable resin composition of the present invention does not need to contain a solvent, the organic solvent removing step can be omitted, and the molding step of the cured product can be simplified. Furthermore, it can be suitably used as a sealing member that does not allow the inclusion of volatile components due to the molding process conditions. That is, the cured product of the present invention is preferably a sealing member.
上記硬化性樹脂組成物を硬化させて得られる硬化物は、透明性に優れる点で光学部材として好適に利用可能である。本発明の硬化物は、光線透過率が80%以上であることが好ましい。より好ましくは、85%以上であり、更に好ましくは、90%以上である。硬化物の光線透過率は、分光光度計(日立製作所製 U-4100)を用い、波長550nmで測定することができる。本発明の硬化物は、透明性に優れるだけでなく、上述したように、封止部材としても特段の性能を発揮するものであるため、特に、光学素子用の封止部材として特に好適である。 A cured product obtained by curing the curable resin composition can be suitably used as an optical member in terms of excellent transparency. The cured product of the present invention preferably has a light transmittance of 80% or more. More preferably, it is 85% or more, and still more preferably 90% or more. The light transmittance of the cured product can be measured at a wavelength of 550 nm using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.). The cured product of the present invention is not only excellent in transparency but also exhibits special performance as a sealing member as described above, and is particularly suitable as a sealing member for optical elements. .
本発明は、テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、へキサフルオロプロピレン、及び、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の含フッ素エチレン性単量体に由来する重合単位、及び、下記式(a): The present invention relates to tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ═CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms. And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (a):
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(式中、Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位からなることを特徴とする含フッ素重合体(a1)でもある。上記式(a)で表されるノルボルネン単量体としては、下記式(1): (In the formula, R 1 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 10 carbon atoms. R 2 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms. It is also a fluorine-containing polymer (a1) characterized by comprising polymerized units derived from a norbornene monomer having two or more carbon-carbon double bonds represented by the following formula: As the norbornene monomer represented by the above formula (a), the following formula (1):
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(式中、Rは、水素原子又は炭素数1~10のアルキル基である。)で表される炭素-炭素二重結合を2個有するノルボルネン単量体であることが好ましい。 (Wherein R 7 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms) and is preferably a norbornene monomer having two carbon-carbon double bonds.
上記含フッ素重合体(a1)において、含フッ素単量体の好ましい形態は、上述したものと同じである。含フッ素重合体(a1)は、含フッ素単量体、及び、式(a)で表されるノルボルネン単量体と共重合可能な他の単量体に由来する単量体単位を含んでいてもよい。他の単量体の好ましい形態は、上述したものと同じである。 In the fluoropolymer (a1), the preferred form of the fluoromonomer is the same as described above. The fluorinated polymer (a1) contains a monomer unit derived from a fluorinated monomer and another monomer copolymerizable with the norbornene monomer represented by the formula (a). Also good. Preferred forms of other monomers are the same as those described above.
含フッ素重合体(a1)は、下記式: The fluorine-containing polymer (a1) has the following formula:
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
(式中、Rは、水素原子又は炭素数1~10のアルキル基である。)で表される重合単位を有することが好ましい。 (Wherein R 7 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms).
本発明は、テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、へキサフルオロプロピレン、及び、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の含フッ素エチレン性単量体に由来する重合単位、及び、下記式(b): The present invention relates to tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ═CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms. And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (b):
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
(式中、Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。nは0~10の整数である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位からなることを特徴とする含フッ素重合体(a2)でもある。上記式(b)で表されるノルボルネン単量体としては、下記式(2): (In the formula, R 3 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 5 carbon atoms. R 4 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms. R 5 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms, n is an integer of 0 to 10.) It is also a fluorinated polymer (a2) comprising polymerized units derived from a norbornene monomer having 2 or more. As the norbornene monomer represented by the above formula (b), the following formula (2):
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
(式中Rは、水素原子又は炭素数1~5のアルキル基である。)であることが好ましい。上記含フッ素重合体(a2)において、含フッ素単量体の好ましい形態は、上述したものと同じである。含フッ素重合体(a2)は、含フッ素単量体、及び、式(2)で表されるノルボルネン単量体と共重合可能な他の単量体に由来する単量体単位を含んでいてもよい。他の単量体の好ましい形態は、上述したものと同じである。 (Wherein R 8 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms). In the fluoropolymer (a2), the preferred form of the fluoromonomer is the same as described above. The fluorine-containing polymer (a2) contains a monomer unit derived from a fluorine-containing monomer and another monomer copolymerizable with the norbornene monomer represented by the formula (2). Also good. Preferred forms of other monomers are the same as those described above.
含フッ素重合体(a2)は、下記式: The fluoropolymer (a2) has the following formula:
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
(式中、Rは、水素原子又は炭素数1~5のアルキル基である。)で表されるノルボルネン単量体単位を有することが好ましい。 (Wherein R 8 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms) and preferably has a norbornene monomer unit.
本発明は、テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、へキサフルオロプロピレン、及び、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の含フッ素エチレン性単量体に由来する重合単位、及び、下記式(c): The present invention relates to tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ═CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms. And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (c):
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(式中、Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位からなることを特徴とする含フッ素重合体(a3)でもある。上記式(c)で表されるノルボルネン単量体としては、下記式(3): (Wherein R 6 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms) and a norbornene monomer having two or more carbon-carbon double bonds represented by It is also a fluorine-containing polymer (a3) characterized by comprising derived polymer units. As the norbornene monomer represented by the above formula (c), the following formula (3):
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
で表される炭素-炭素二重結合を2個有するノルボルネン単量体であることが好ましい。上記含フッ素重合体(a3)において、含フッ素単量体の好ましい形態は、上述したものと同じである。含フッ素重合体(a3)は、含フッ素単量体、及び、式(3)で表されるノルボルネン単量体と共重合可能な他の単量体に由来する単量体単位を含んでいてもよい。他の単量体の好ましい形態は、上述したものと同じである。 A norbornene monomer having two carbon-carbon double bonds represented by In the fluoropolymer (a3), the preferred form of the fluoromonomer is the same as described above. The fluorine-containing polymer (a3) contains a monomer unit derived from a fluorine-containing monomer and another monomer copolymerizable with the norbornene monomer represented by the formula (3). Also good. Preferred forms of other monomers are the same as those described above.
含フッ素重合体(a3)は、下記式: The fluoropolymer (a3) has the following formula:
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
で表されるノルボルネン単量体単位を有することが好ましい。 It is preferable to have a norbornene monomer unit represented by:
上記(a1)、(a2)及び(a3)は、含フッ素単量体単位、及び、炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来するノルボルネン単量体単位、並びに、上記フッ素単量体及び炭素-炭素二重結合を2個以上有するノルボルネン単量体と共重合可能な他の単量体に由来する単量体単位からなるものであってもよい。上記他の単量体は、フッ素原子を含まない単量体である。 (A1), (a2) and (a3) are fluorine-containing monomer units, norbornene monomer units derived from norbornene monomers having two or more carbon-carbon double bonds, and the above It may be composed of a monomer unit derived from another monomer copolymerizable with a fluorine monomer and a norbornene monomer having two or more carbon-carbon double bonds. Said other monomer is a monomer which does not contain a fluorine atom.
他の単量体としては、なかでも炭素-炭素二重結合を1個有するノルボルネン単量体が好ましい。炭素-炭素二重結合を1個有するノルボルネン単量体は、ノルボルネン骨格を有し、ノルボルネン骨格以外の部分に、炭素-炭素二重結合を有さない単量体である。ノルボルネン単量体としては、下記式(d):
Figure JPOXMLDOC01-appb-C000053
As the other monomer, a norbornene monomer having one carbon-carbon double bond is preferable. A norbornene monomer having one carbon-carbon double bond is a monomer having a norbornene skeleton and having no carbon-carbon double bond in a portion other than the norbornene skeleton. As the norbornene monomer, the following formula (d):
Figure JPOXMLDOC01-appb-C000053
(式中、R14は炭素数1~10のアルキル基である。xは0~2の整数である。)で示されるノルボルネン単量体であることが好ましく、下記式: (Wherein R 14 is an alkyl group having 1 to 10 carbon atoms, x is an integer of 0 to 2), and preferably represented by the following formula:
Figure JPOXMLDOC01-appb-C000054
で示されるノルボルネン単量体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000054
The norbornene monomer represented by is more preferable.
上記(a1)、(a2)及び(a3)は、炭素-炭素二重結合を2個以上有するものであり、ヒドロシリル化架橋剤に、より溶解又は分散しやすい点で上述の硬化性樹脂組成物に好適に利用することができる。中でも、(a1)が特に好ましい。 The above (a1), (a2), and (a3) have two or more carbon-carbon double bonds, and the above-mentioned curable resin composition is more easily dissolved or dispersed in the hydrosilylation crosslinking agent. Can be suitably used. Among these, (a1) is particularly preferable.
つぎに実施例をあげて本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 EXAMPLES Next, the present invention will be specifically described with reference to examples. However, the present invention is not limited only to these examples.
本明細書で採用している測定法について、以下にまとめる。 The measurement methods employed in this specification are summarized below.
(1)平均分子量の測定
ゲルパーミエーションクロマトグラフィー(GPC)により、東ソー(株)製のGPC HLC-8020を用い、Shodex社製のカラム(GPC KF-801を1本、GPC KF-802を1本、GPC KF-806Mを2本直列に接続)を使用し、溶媒としてテトラハイドロフラン(THF)を流速1ml/分で流して測定したデータより、重量平均分子量、数平均分子量を算出する。
(1) Measurement of average molecular weight By gel permeation chromatography (GPC), using GPC HLC-8020 manufactured by Tosoh Corporation, one column manufactured by Shodex (one GPC KF-801 and one GPC KF-802) The weight average molecular weight and the number average molecular weight are calculated from the data measured by flowing tetrahydrofuran (THF) as a solvent at a flow rate of 1 ml / min using two GPC KF-806M in series.
(2)フッ素含有量
酸素フラスコ燃焼法により試料10mgを燃焼し、分解ガスを脱イオン水20mlに吸収させ、吸収液中のフッ素イオン濃度をフッ素選択電極法(フッ素イオンメーター、オリオン社製 901型)で測定することにより求める(質量%)。
(2) Fluorine content 10 mg of sample was burned by the oxygen flask combustion method, the decomposition gas was absorbed in 20 ml of deionized water, and the fluorine ion concentration in the absorption liquid was determined by the fluorine selective electrode method (fluorine ion meter, model 901 manufactured by Orion) ) To obtain (mass%).
(3)屈折率(n
ナトリウムD線(589nm)を光源として25℃において(株)アタゴ光学機器製作所製のアッベ屈折率計を用いて測定する。
(3) Refractive index (n D )
Measurement is performed using an Abbe refractometer manufactured by Atago Optical Instruments Co., Ltd. at 25 ° C. using sodium D line (589 nm) as a light source.
(4)ガラス転移温度(Tg)
DSC(示差走査熱量計:SEIKO社製、RTG220)を用いて、-50℃から200℃までの温度範囲を10℃/分の条件で昇温(ファーストラン)-降温-昇温(セカンドラン)させ、セカンドランにおける吸熱曲線の中間点をTg(℃)とした。
(4) Glass transition temperature (Tg)
Using DSC (Differential Scanning Calorimeter: RTG220, manufactured by SEIKO), the temperature range from −50 ° C. to 200 ° C. is raised at a rate of 10 ° C./min (first run) -temperature fall-temperature rise (second run) The intermediate point of the endothermic curve in the second run was defined as Tg (° C.).
(5)IR分析
Perkin Elmer社製フーリエ変換赤外分光光度計1760Xで室温にて測定する。
(5) IR analysis Measured at room temperature with a Fourier transform infrared spectrophotometer 1760X manufactured by Perkin Elmer.
(6)膜厚
ジェー・エー・ウーラム・ジャパン株式会社製分光エリプソメーターEC400にて測定した。解析ソフトウェアにはWVASE32を用いた。
(6) Film thickness Measured with a spectroscopic ellipsometer EC400 manufactured by JA Woollam Japan. WVASE32 was used as analysis software.
(7)粘度
JIS K7117-2に準拠している東機産業(株)製のE型粘度計を用い、27℃にて粘度を測定する(mPa・秒)。
(7) Viscosity Using an E-type viscometer manufactured by Toki Sangyo Co., Ltd. conforming to JIS K7117-2, the viscosity is measured at 27 ° C. (mPa · sec).
合成例1(TFE/ENB共重合体)
内容積0.5Lのステンレス製攪拌機付きオートクレーブを脱気した後、ジクロロペンタフルオロプロパン(HCFC-225)200g、5-エチリデン-2-ノルボルネン(ENB)22gを仕込んだ後に300rpmで攪拌を行いながらテトラフルオロエチレン(TFE)58gを仕込み、次いでオートクレーブ内の温度を40℃に調整した後にジノルマルプロピルパーオキシジカーボネートの40質量%の1H,1H,3H-テトラフルオロプロパノール溶液10gを圧入し、重合を開始し20時間反応させた。反応終了後室温で未反応のTFEをブローし、次いでHCFC-225に均一に溶けた内容物をエタノール中に投入した。
Synthesis Example 1 (TFE / ENB copolymer)
After degassing an autoclave with a stainless steel stirrer with an internal volume of 0.5 L, tetrachloropentafluoropropane (HCFC-225) (200 g) and 5-ethylidene-2-norbornene (ENB) (22 g) were charged, and the mixture was stirred at 300 rpm. First, 58 g of fluoroethylene (TFE) was charged, and after adjusting the temperature in the autoclave to 40 ° C., 10 g of a 1H, 1H, 3H-tetrafluoropropanol solution of 40% by mass of dinormalpropyl peroxydicarbonate was injected to perform polymerization. Initiated and allowed to react for 20 hours. After completion of the reaction, unreacted TFE was blown at room temperature, and then the content uniformly dissolved in HCFC-225 was put into ethanol.
析出した固形物を濾別し80℃で12時間真空乾燥を行い、14gの白色粉末を得た。この白色粉末を重水素化クロロホルムに溶解させ、19F-NMR、13C-NMRおよびH-NMRを測定したところ、該重合物がTFEとENBの共重合体であることがわかった。また、H-NMR測定において、5.33ppmに=CHCHのピークが確認でき、共重合体中にENBのエチリデン由来の二重結合が存在する事が確認された。 The precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 14 g of white powder. This white powder was dissolved in deuterated chloroform, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE and ENB. In 1 H-NMR measurement, a peak of = CHCH 3 was confirmed at 5.33 ppm, and it was confirmed that double bonds derived from ENB ethylidene were present in the copolymer.
また、この共重合体のフッ素の元素分析を行ったところ、31.8質量%であり、これにより共重合体の組成はTFE単位/ENB単位=46/54モル%と算出した。この共重合体は無色透明であり、示差走査熱量計RDC220(Seiko Instruments社製)を用い、昇温速度10℃/分にて200℃まで熱測定を行ったところ融点は存在せず、80℃(吸熱終了温度)にガラス転移温度を示した。また、示差熱・熱重量測定装置〔TG-DTA〕を用いて加熱試験に供した共重合体の質量が1質量%減少する温度が212℃であった。またGPC分析により測定した数平均分子量は1582、重量平均分子量は2422であった。 When the elemental analysis of fluorine of this copolymer was conducted, it was 31.8% by mass, and the composition of the copolymer was calculated as TFE units / ENB units = 46/54 mol%. This copolymer was colorless and transparent, and when a differential scanning calorimeter RDC220 (manufactured by Seiko Instruments) was used for heat measurement up to 200 ° C. at a temperature rising rate of 10 ° C./min, there was no melting point and 80 ° C. The glass transition temperature is shown in (Endothermic end temperature). Further, the temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] was reduced by 1 mass% was 212 ° C. The number average molecular weight measured by GPC analysis was 1,582, and the weight average molecular weight was 2,422.
この共重合体はクロロホルム、テトラヒドロフラン、キシレン、酢酸エチル、メチルエチルケトン、ジオキサン等の溶剤に溶ける他に、SiH基を有するヒドロシリコーン化合物(例えばフェニルトリス(ジメチルシロキシ)シラン)と相溶した。 This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
合成例2(TFE/ENB共重合体)
バルブ、圧力ゲージ、温度計を備えた内容積300mlのステンレススチール製オートクレーブを脱気した後、ジクロロペンタフルオロプロパン(HCFC-225)105g、5-エチリデン-2-ノルボルネン(ENB)4gを仕込んだ後にテトラフルオロエチレン(TFE)25gを仕込み、次いでオートクレーブ内の温度を40℃に調整した後にジノルマルプロピルパーオキシジカーボネートの40質量%の1H,1H,3H-テトラフルオロプロパノール溶液8gを圧入し、40℃にて80rpmの条件で振とうさせながら重合反応を行った。重合を開始し2時間後に室温に戻し、未反応のTFEをブローしたところ、HCFC-225に均一に溶けた内容物が得られた。次いでこの溶液をメタノール中に投入した。
Synthesis Example 2 (TFE / ENB copolymer)
After degassing a 300 ml stainless steel autoclave equipped with a valve, pressure gauge and thermometer, after charging 105 g of dichloropentafluoropropane (HCFC-225) and 4 g of 5-ethylidene-2-norbornene (ENB) Then, 25 g of tetrafluoroethylene (TFE) was charged, the temperature in the autoclave was adjusted to 40 ° C., and 8 g of a 1% 1H, 1H, 3H-tetrafluoropropanol solution of 40% by mass of dinormalpropyl peroxydicarbonate was injected. The polymerization reaction was performed while shaking at 80 ° C. at 80 ° C. The polymerization was started, and after 2 hours, the temperature was returned to room temperature, and unreacted TFE was blown, whereby a content uniformly dissolved in HCFC-225 was obtained. This solution was then poured into methanol.
析出した固形物を濾別し80℃で12時間真空乾燥を行い、0.86gの固体を得た。この固体を重水素化アセトンに溶解させ、19F-NMR、13C-NMRおよびH-NMRを測定したところ、該重合物がTFEとENBの共重合体であることがわかった。また、H-NMR測定において、合成例1と同様に=CHCHのピークが確認でき、共重合体中にENBのエチリデン由来の二重結合が存在する事が確認された。 The precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 0.86 g of a solid. This solid was dissolved in deuterated acetone, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE and ENB. In 1 H-NMR measurement, a peak of ═CHCH 3 was confirmed as in Synthesis Example 1, and it was confirmed that double bonds derived from ENB ethylidene were present in the copolymer.
また、この共重合体のフッ素の元素分析を行ったところ、35.0質量%であり、これにより共重合体の組成はTFE単位/ENB単位=51/49モル%と算出した。この共重合体は無色透明であり、示差走査熱量計RDC220(Seiko Instruments社製)を用い、昇温速度10℃/分にて200℃まで熱測定を行ったところ融点は存在せず、78℃(吸熱終了温度)にガラス転移温度を示した。また、示差熱・熱重量測定装置〔TG-DTA〕を用いて加熱試験に供した共重合体の質量が1質量%減少する温度が230℃であった。またGPC分析により測定した数平均分子量は2294、重量平均分子量は3219であった。 When the elemental analysis of fluorine of this copolymer was conducted, it was 35.0% by mass, and the composition of the copolymer was calculated as TFE units / ENB units = 51/49 mol%. This copolymer is colorless and transparent. When a differential scanning calorimeter RDC220 (manufactured by Seiko Instruments Inc.) was used and the heat measurement was performed at a temperature rising rate of 10 ° C./min up to 200 ° C., there was no melting point and 78 ° C. The glass transition temperature is shown in (Endothermic end temperature). The temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] decreased by 1 mass% was 230 ° C. The number average molecular weight measured by GPC analysis was 2294, and the weight average molecular weight was 3219.
この共重合体はクロロホルム、テトラヒドロフラン、キシレン、酢酸エチル、メチルエチルケトン、ジオキサン等の溶剤に溶ける他に、SiH基を有するヒドロシリコーン化合物(例えばフェニルトリス(ジメチルシロキシ)シラン)と相溶した。 This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
合成例3(TFE/ENB共重合体)
バルブ、圧力ゲージ、温度計を備えた内容積300mlのステンレススチール製オートクレーブを脱気した後、ジクロロペンタフルオロプロパン(HCFC-225)105g、5-エチリデン-2-ノルボルネン(ENB)36gを仕込んだ後にテトラフルオロエチレン(TFE)25gを仕込み、次いでオートクレーブ内の温度を40℃に調整した後にジノルマルプロピルパーオキシジカーボネートの40質量%の1H,1H,3H-テトラフルオロプロパノール溶液8gを圧入し、40℃にて80rpmの条件で振とうさせながら重合反応を行った。重合を開始し2時間後に室温に戻し、未反応のTFEをブローしたところ、HCFC-225に均一に溶けた内容物が得られた。次いでこの溶液をメタノール中に投入した。
Synthesis Example 3 (TFE / ENB copolymer)
After degassing a 300 ml stainless steel autoclave equipped with a valve, pressure gauge and thermometer, after charging 105 g of dichloropentafluoropropane (HCFC-225) and 36 g of 5-ethylidene-2-norbornene (ENB) Then, 25 g of tetrafluoroethylene (TFE) was charged, the temperature in the autoclave was adjusted to 40 ° C., and 8 g of a 1% 1H, 1H, 3H-tetrafluoropropanol solution of 40% by mass of dinormalpropyl peroxydicarbonate was injected. The polymerization reaction was performed while shaking at 80 ° C. at 80 ° C. The polymerization was started, and after 2 hours, the temperature was returned to room temperature, and unreacted TFE was blown, whereby a content uniformly dissolved in HCFC-225 was obtained. This solution was then poured into methanol.
析出した固形物を濾別し80℃で12時間真空乾燥を行い、1.54gの固体を得た。この固体を重水素化アセトンに溶解させ、19F-NMR、13C-NMRおよびH-NMRを測定したところ、該重合物がTFEとENBの共重合体であることがわかった。また、H-NMR測定において、合成例1と同様に=CHCHのピークが確認でき、共重合体中にENBのエチリデン由来の二重結合が存在する事が確認された。 The precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 1.54 g of a solid. This solid was dissolved in deuterated acetone, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE and ENB. In 1 H-NMR measurement, a peak of ═CHCH 3 was confirmed as in Synthesis Example 1, and it was confirmed that double bonds derived from ENB ethylidene were present in the copolymer.
また、この共重合体のフッ素の元素分析を行ったところ、25.4質量%であり、これにより共重合体の組成はTFE単位/ENB単位=38/62モル%と算出した。この共重合体は無色透明であり、示差走査熱量計RDC220(Seiko Instruments社製)を用い、昇温速度10℃/分にて200℃まで熱測定を行ったところ融点は存在せず、46℃(吸熱終了温度)にガラス転移温度を示した。また、示差熱・熱重量測定装置〔TG-DTA〕を用いて加熱試験に供した共重合体の質量が1質量%減少する温度が180℃であった。またGPC分析により測定した数平均分子量は1071、重量平均分子量は1753であった。 When the elemental analysis of fluorine of this copolymer was conducted, it was 25.4% by mass, and the composition of the copolymer was calculated as TFE units / ENB units = 38/62 mol%. This copolymer is colorless and transparent. When a differential scanning calorimeter RDC220 (manufactured by Seiko Instruments) was used and the heat measurement was performed up to 200 ° C. at a temperature rising rate of 10 ° C./min, the melting point was not present and 46 ° C. The glass transition temperature is shown in (Endothermic end temperature). Further, the temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] was reduced by 1 mass% was 180 ° C. The number average molecular weight measured by GPC analysis was 1071, and the weight average molecular weight was 1753.
この共重合体はクロロホルム、テトラヒドロフラン、キシレン、酢酸エチル、メチルエチルケトン、ジオキサン等の溶剤に溶ける他に、SiH基を有するヒドロシリコーン化合物(例えばフェニルトリス(ジメチルシロキシ)シラン)と相溶した。 This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
合成例4(TFE/VNB共重合体)
バルブ、圧力ゲージ、温度計を備えた内容積300mlのステンレススチール製オートクレーブを脱気した後、ジクロロペンタフルオロプロパン(HCFC-225)105g、5-ビニルビシクロ[2,2,1]ヘプタ-2-エン(VNB)11gを仕込んだ後にテトラフルオロエチレン(TFE)25gを仕込み、次いでオートクレーブ内の温度を40℃に調整した後にジノルマルプロピルパーオキシジカーボネートの40質量%の1H,1H,3H-テトラフルオロプロパノール溶液8gを圧入し、40℃にて80rpmの条件で振とうさせながら重合反応を行った。重合を開始し24時間後に室温に戻し、未反応のTFEをブローしたところ、HCFC-225に均一に溶けた内容物が得られた。次いでこの溶液をエタノール中に投入した。
Synthesis Example 4 (TFE / VNB copolymer)
A 300 ml stainless steel autoclave equipped with a valve, pressure gauge, and thermometer was degassed, then 105 g of dichloropentafluoropropane (HCFC-225), 5-vinylbicyclo [2,2,1] hepta-2- After charging 11 g of ene (VNB), 25 g of tetrafluoroethylene (TFE) was charged, the temperature in the autoclave was adjusted to 40 ° C., and then 40% by mass of 1H, 1H, 3H-tetra of dinormalpropyl peroxydicarbonate. A polymerization reaction was carried out while 8 g of a fluoropropanol solution was injected and shaken at 40 ° C. under the condition of 80 rpm. After 24 hours from the start of polymerization, the temperature was returned to room temperature, and unreacted TFE was blown to obtain a content uniformly dissolved in HCFC-225. This solution was then poured into ethanol.
析出した固形物を濾別し80℃で12時間真空乾燥を行い、1.03gの液状の重合体を得た。この重合体を重水素化アセトンに溶解させ、19F-NMR、13C-NMRおよびH-NMRを測定したところ、該重合物がTFEとVNBの共重合体であることがわかった。また、H-NMR測定において、-CH=CHのピークが確認でき、共重合体中にVNBのアリル由来の二重結合が存在する事が確認された。 The precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 1.03 g of a liquid polymer. This polymer was dissolved in deuterated acetone, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE and VNB. In 1 H-NMR measurement, a peak of —CH═CH 2 was confirmed, and it was confirmed that double bonds derived from VNB allyl were present in the copolymer.
また、この共重合体のフッ素の元素分析を行ったところ、29.4質量%であり、これにより共重合体の組成はTFE単位/VNB単位=43/57モル%と算出した。この共重合体は無色透明であり、示差走査熱量計RDC220(Seiko Instruments社製)を用い、昇温速度10℃/分にて200℃まで熱測定を行ったところ融点は存在せず、35℃(吸熱終了温度)にガラス転移温度を示した。また、示差熱・熱重量測定装置〔TG-DTA〕を用いて加熱試験に供した共重合体の質量が1質量%減少する温度が202℃であった。またGPC分析により測定した数平均分子量は1805、重量平均分子量は3169であった。 When the elemental analysis of fluorine of this copolymer was conducted, it was 29.4% by mass, whereby the composition of the copolymer was calculated as TFE units / VNB units = 43/57 mol%. This copolymer is colorless and transparent, and when a differential scanning calorimeter RDC220 (manufactured by Seiko Instruments) is used to measure the heat up to 200 ° C. at a temperature rising rate of 10 ° C./min, there is no melting point and 35 ° C. The glass transition temperature is shown in (Endothermic end temperature). The temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] decreased by 1 mass% was 202 ° C. The number average molecular weight measured by GPC analysis was 1805, and the weight average molecular weight was 3169.
この共重合体はクロロホルム、テトラヒドロフラン、キシレン、酢酸エチル、メチルエチルケトン、ジオキサン等の溶剤に溶ける他に、SiH基を有するヒドロシリコーン化合物(例えばフェニルトリス(ジメチルシロキシ)シラン)と相溶した。 This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
合成例5(TFE/NB/ENB共重合体)
バルブ、圧力ゲージ、温度計を備えた内容積300mlのステンレススチール製オートクレーブを脱気した後、ジクロロペンタフルオロプロパン(HCFC-225)105g、ノルボルネン(NB)8.8gと5-エチリデン-2-ノルボルネン(ENB)2.2gを仕込んだ後にテトラフルオロエチレン(TFE)25gを仕込み、次いでオートクレーブ内の温度を40℃に調整した後にジノルマルプロピルパーオキシジカーボネートの40質量%の1H,1H,3H-テトラフルオロプロパノール溶液8gを圧入し、40℃にて80rpmの条件で振とうさせながら重合反応を行った。重合を開始し24時間後に室温に戻し、未反応のTFEをブローしたところ、HCFC-225に均一に溶けた内容物が得られた。次いでこの溶液をエタノール中に投入した。
Synthesis Example 5 (TFE / NB / ENB copolymer)
After degassing a 300 ml stainless steel autoclave equipped with a valve, pressure gauge and thermometer, 105 g of dichloropentafluoropropane (HCFC-225), 8.8 g of norbornene (NB) and 5-ethylidene-2-norbornene (ENB) 2.2 g was charged, tetrafluoroethylene (TFE) 25 g was charged, and then the temperature in the autoclave was adjusted to 40 ° C., and then 40% by mass of 1%, 1H, 3H— 8 g of a tetrafluoropropanol solution was injected and a polymerization reaction was performed while shaking at 40 ° C. under the condition of 80 rpm. After 24 hours from the start of polymerization, the temperature was returned to room temperature, and unreacted TFE was blown to obtain a content uniformly dissolved in HCFC-225. This solution was then poured into ethanol.
析出した固形物を濾別し80℃で12時間真空乾燥を行い、13gの固体の重合体を得た。この重合体を重水素化アセトンに溶解させ、19F-NMR、13C-NMRおよびH-NMRを測定したところ、該重合物がTFEとNBとENBの共重合体であることがわかった。また、H-NMR測定において、=CHCHのピークが確認でき、共重合体中にENBのエチリデン由来の二重結合が存在する事が確認された。 The precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 13 g of a solid polymer. This polymer was dissolved in deuterated acetone, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE, NB and ENB. . In 1 H-NMR measurement, a peak of = CHCH 3 was confirmed, and it was confirmed that a double bond derived from ethylidene of ENB was present in the copolymer.
また、この共重合体のフッ素の元素分析を行ったところ、37.7質量%であり、炭素の元素分析を行ったところ、56.8質量%であった。これにより共重合体の組成はTFE単位/NB単位/ENB単位=47/41/12モル%と算出した。この共重合体は無色透明であり、示差走査熱量計RDC220(Seiko Instruments社製)を用い、昇温速度10℃/分にて200℃まで熱測定を行ったところ融点は存在せず、90℃(吸熱終了温度)にガラス転移温度を示した。また、示差熱・熱重量測定装置〔TG-DTA〕を用いて加熱試験に供した共重合体の質量が1質量%減少する温度が248℃であった。またGPC分析により測定した数平均分子量は2181、重量平均分子量は2859であった。 Further, the elemental analysis of fluorine of this copolymer was 37.7% by mass, and the elemental analysis of carbon was 56.8% by mass. Thereby, the composition of the copolymer was calculated as TFE units / NB units / ENB units = 47/41/12 mol%. This copolymer is colorless and transparent. When a differential scanning calorimeter RDC220 (manufactured by Seiko Instruments) was used and the heat measurement was performed at a temperature rising rate of 10 ° C./min up to 200 ° C., there was no melting point and 90 ° C. The glass transition temperature is shown in (Endothermic end temperature). The temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] decreased by 1 mass% was 248 ° C. The number average molecular weight measured by GPC analysis was 2181, and the weight average molecular weight was 2859.
この共重合体はクロロホルム、テトラヒドロフラン、キシレン、酢酸エチル、メチルエチルケトン、ジオキサン等の溶剤に溶ける他に、SiH基を有するヒドロシリコーン化合物(例えばフェニルトリス(ジメチルシロキシ)シラン)と相溶した。 This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
合成例6~8(TFE/NB/ENB共重合体)
合成例5においてNBとENBの初期仕込み量を表1のように変える以外は合成例5と同様に重合した。得られた重合体の分析値を合成例5の結果とともに表1にまとめる。
Synthesis Examples 6 to 8 (TFE / NB / ENB copolymer)
Polymerization was conducted in the same manner as in Synthesis Example 5 except that the initial charge amounts of NB and ENB were changed as shown in Table 1 in Synthesis Example 5. The analytical values of the obtained polymer are summarized in Table 1 together with the results of Synthesis Example 5.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
合成例9(TFE/NB/VNB共重合体)
バルブ、圧力ゲージ、温度計を備えた内容積300mlのステンレススチール製オートクレーブを脱気した後、ジクロロペンタフルオロプロパン(HCFC-225)105g、ノルボルネン(NB)8.8gと5-ビニルビシクロ[2,2,1]ヘプタ-2-エン(VNB)2.2gを仕込んだ後にテトラフルオロエチレン(TFE)25gを仕込み、次いでオートクレーブ内の温度を40℃に調整した後にジノルマルプロピルパーオキシジカーボネートの40質量%の1H,1H,3H-テトラフルオロプロパノール溶液8gを圧入し、40℃にて80rpmの条件で振とうさせながら重合反応を行った。重合を開始し24時間後に室温に戻し、未反応のTFEをブローしたところ、HCFC-225に均一に溶けた内容物が得られた。次いでこの溶液をエタノール中に投入した。
Synthesis Example 9 (TFE / NB / VNB copolymer)
After degassing a 300 ml stainless steel autoclave equipped with a valve, pressure gauge and thermometer, 105 g of dichloropentafluoropropane (HCFC-225), 8.8 g of norbornene (NB) and 5-vinylbicyclo [2, 2,1] hept-2-ene (VNB) (2.2 g), tetrafluoroethylene (TFE) (25 g), and the temperature in the autoclave was adjusted to 40 ° C. 8 g of a 1% by mass 1H, 1H, 3H-tetrafluoropropanol solution was injected and polymerization reaction was carried out while shaking at 40 ° C. under the condition of 80 rpm. After 24 hours from the start of polymerization, the temperature was returned to room temperature, and unreacted TFE was blown to obtain a content uniformly dissolved in HCFC-225. This solution was then poured into ethanol.
析出した固形物を濾別し80℃で12時間真空乾燥を行い、11gの固体の重合体を得た。この重合体を重水素化アセトンに溶解させ、19F-NMR、13C-NMRおよびH-NMRを測定したところ、該重合物がTFEとNBとENBの共重合体であることがわかった。また、H-NMR測定において、-CH=CHのピークが確認でき、共重合体中にVNBのアリル由来の二重結合が存在する事が確認された。 The precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 11 g of a solid polymer. This polymer was dissolved in deuterated acetone, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE, NB and ENB. . In 1 H-NMR measurement, a peak of —CH═CH 2 was confirmed, and it was confirmed that double bonds derived from VNB allyl were present in the copolymer.
また、この共重合体のフッ素の元素分析を行ったところ、36.7質量%であり、炭素の元素分析を行ったところ、57.7質量%であり、これにより共重合体の組成はTFE単位/NB単位/VNB単位=46/40/14モル%と算出した。この共重合体は無色透明であり、示差走査熱量計RDC220(Seiko Instruments社製)を用い、昇温速度10℃/分にて200℃まで熱測定を行ったところ融点は存在せず、80℃(吸熱終了温度)にガラス転移温度を示した。また、示差熱・熱重量測定装置〔TG-DTA〕を用いて加熱試験に供した共重合体の質量が1質量%減少する温度が207℃であった。またGPC分析により測定した数平均分子量は1750、重量平均分子量は2805であった。 Further, the elemental analysis of fluorine of this copolymer was 36.7% by mass, and the elemental analysis of carbon was 57.7% by mass, whereby the composition of the copolymer was TFE. Unit / NB unit / VNB unit = 46/40/14 mol% was calculated. This copolymer was colorless and transparent, and when a differential scanning calorimeter RDC220 (manufactured by Seiko Instruments) was used for heat measurement up to 200 ° C. at a temperature rising rate of 10 ° C./min, there was no melting point and 80 ° C. The glass transition temperature is shown in (Endothermic end temperature). The temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] decreased by 1 mass% was 207 ° C. The number average molecular weight measured by GPC analysis was 1750, and the weight average molecular weight was 2805.
この共重合体はクロロホルム、テトラヒドロフラン、キシレン、酢酸エチル、メチルエチルケトン、ジオキサン等の溶剤に溶ける他に、SiH基を有するヒドロシリコーン化合物(例えばフェニルトリス(ジメチルシロキシ)シラン)と相溶した。 This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
合成例10(TFE/NB/CPD共重合体)
バルブ、圧力ゲージ、温度計を備えた内容積300mlのステンレススチール製オートクレーブを脱気した後、ジクロロペンタフルオロプロパン(HCFC-225)105g、ノルボルネン(NB)8.8gとシクロペンタジエン(CPD)2.2gを仕込んだ後にテトラフルオロエチレン(TFE)25gを仕込み、次いでオートクレーブ内の温度を40℃に調整した後にジノルマルプロピルパーオキシジカーボネートの40質量%の1H,1H,3H-テトラフルオロプロパノール溶液8gを圧入し、40℃にて80rpmの条件で振とうさせながら重合反応を行った。重合を開始し24時間後に室温に戻し、未反応のTFEをブローしたところ、HCFC-225に均一に溶けた内容物が得られた。次いでこの溶液をエタノール中に投入した。
Synthesis Example 10 (TFE / NB / CPD copolymer)
After degassing a 300 ml stainless steel autoclave equipped with a valve, pressure gauge and thermometer, 105 g of dichloropentafluoropropane (HCFC-225), 8.8 g of norbornene (NB) and cyclopentadiene (CPD) 2. After charging 2 g, 25 g of tetrafluoroethylene (TFE) was charged, and then the temperature in the autoclave was adjusted to 40 ° C., and then 8 g of a 1% 1H, 1H, 3H-tetrafluoropropanol solution of 40% by mass of di-propylpropylperoxydicarbonate. The polymerization reaction was carried out while shaking at 40 ° C. under the condition of 80 rpm. After 24 hours from the start of polymerization, the temperature was returned to room temperature, and unreacted TFE was blown to obtain a content uniformly dissolved in HCFC-225. This solution was then poured into ethanol.
析出した固形物を濾別し80℃で12時間真空乾燥を行い、10gの固体の重合体を得た。この重合体を重水素化アセトンに溶解させ、19F-NMR、13C-NMRおよびH-NMRを測定したところ、該重合物がTFEとNBとENBの共重合体であることがわかった。また、H-NMR測定において、-CH=CH-のピークが確認でき、共重合体中にCPDのオレフィン由来の二重結合が存在する事が確認された。 The precipitated solid was separated by filtration and vacuum dried at 80 ° C. for 12 hours to obtain 10 g of a solid polymer. This polymer was dissolved in deuterated acetone, and 19 F-NMR, 13 C-NMR and 1 H-NMR were measured, and it was found that the polymer was a copolymer of TFE, NB and ENB. . In 1 H-NMR measurement, a peak of —CH═CH— was confirmed, and it was confirmed that a double bond derived from an olefin of CPD was present in the copolymer.
また、この共重合体のフッ素の元素分析を行ったところ、35.3質量%であり、炭素の元素分析を行ったところ、59.1質量%であり、これにより共重合体の組成はTFE単位/NB単位/CPD単位=45/41/14モル%と算出した。この共重合体は無色透明であり、示差走査熱量計RDC220(Seiko Instruments社製)を用い、昇温速度10℃/分にて200℃まで熱測定を行ったところ融点は存在せず、105℃(吸熱終了温度)にガラス転移温度を示した。また、示差熱・熱重量測定装置〔TG-DTA〕を用いて加熱試験に供した共重合体の質量が1質量%減少する温度が232℃であった。またGPC分析により測定した数平均分子量は1505、重量平均分子量は2408であった。 Further, the elemental analysis of fluorine of this copolymer was 35.3% by mass, and the elemental analysis of carbon was 59.1% by mass. Thus, the composition of the copolymer was TFE. Unit / NB unit / CPD unit = 45/41/14 mol%. This copolymer was colorless and transparent. When a differential scanning calorimeter RDC220 (manufactured by Seiko Instruments) was used, and the heat measurement was performed at a temperature rising rate of 10 ° C./min up to 200 ° C., there was no melting point, and 105 ° C. The glass transition temperature is shown in (Endothermic end temperature). The temperature at which the mass of the copolymer subjected to the heating test using a differential heat / thermogravimetry apparatus [TG-DTA] decreased by 1 mass% was 232 ° C. The number average molecular weight measured by GPC analysis was 1505, and the weight average molecular weight was 2408.
この共重合体はクロロホルム、テトラヒドロフラン、キシレン、酢酸エチル、メチルエチルケトン、ジオキサン等の溶剤に溶ける他に、SiH基を有するヒドロシリコーン化合物(例えばフェニルトリス(ジメチルシロキシ)シラン)と相溶した。 This copolymer was soluble in a solvent such as chloroform, tetrahydrofuran, xylene, ethyl acetate, methyl ethyl ketone, and dioxane, and was also compatible with a hydrosilicone compound having an SiH group (for example, phenyltris (dimethylsiloxy) silane).
実施例1(硬化性樹脂組成物:溶媒キシレン)
10ccのガラス瓶にて、水素原子がケイ素原子に直接結合した基を3つ有するヒドロシリコーン化合物(シロキサン化合物)としてフェニルトリス(ジメチルシロキシ)シラン(CSi{OSi(CHH})0.54g、合成例1で得られたTFE/ENB共重合体1.0gおよび希釈溶剤としてキシレン1.0gを均一に混合して60℃で溶解させた後に室温まで冷却した。次いで、白金触媒として2%の白金を含む環状メチルビニルシロキサン溶液を50ppm添加し均一に混合した後にフッ素樹脂FEPフィルムの上に混合溶液を流し込み125℃のオーブン中で8時間、キシレンを蒸発させながらヒドロシリル化反応を行いフィルム状の硬化物を得た。
Example 1 (curable resin composition: solvent xylene)
Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si {OSi (CH 3 ) 2 H} as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.54 g, 1.0 g of the TFE / ENB copolymer obtained in Synthesis Example 1 and 1.0 g of xylene as a diluent solvent were uniformly mixed and dissolved at 60 ° C., and then cooled to room temperature. Next, 50 ppm of a cyclic methylvinylsiloxane solution containing 2% platinum as a platinum catalyst was added and mixed uniformly, and then the mixed solution was poured onto the fluororesin FEP film while evaporating xylene in an oven at 125 ° C. for 8 hours. Hydrosilylation reaction was performed to obtain a film-like cured product.
オーブンに入れる前の混合溶液の一部を赤外分光計で分析したところ、フェニルトリス(ジメチルシロキシ)シラン由来のSiH基である2134cm-1の吸収ピークが確認された。当該ピークは125℃で8時間かけて硬化させた後の硬化物では消失していた。また硬化物はキシレンには再溶解せず架橋している事が確認できた。
このフィルムの光線透過率を分光光度計(日立製作所製 U-4100)で測定したところ550nmで95.2%、405nmで92.8%であった。また屈折率はシリコンウェハー上にスピンコート法により製膜した薄膜(膜厚150nm)を分光エリプソメーター(ジェイエーウーラムジャパン社製 M-2000D)を用いて測定した結果、1.4795(598nm)であった。
When a part of the mixed solution before being put into the oven was analyzed with an infrared spectrometer, an absorption peak at 2134 cm −1 , which is a SiH group derived from phenyltris (dimethylsiloxy) silane, was confirmed. The peak disappeared in the cured product after curing at 125 ° C. for 8 hours. Further, it was confirmed that the cured product was not dissolved again in xylene and was crosslinked.
The light transmittance of this film was measured with a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.) and found to be 95.2% at 550 nm and 92.8% at 405 nm. The refractive index was determined by measuring a thin film (thickness 150 nm) formed on a silicon wafer by spin coating using a spectroscopic ellipsometer (M-2000D, manufactured by J-Woolum Japan Co., Ltd.), resulting in 1.4795 (598 nm). Met.
実施例2(無溶媒硬化性樹脂組成物)
10ccのガラス瓶にて、水素原子がケイ素原子に直接結合した基を3つ有するヒドロシリコーン化合物(シロキサン化合物)としてフェニルトリス(ジメチルシロキシ)シラン(CSi{OSi(CHH})0.29g、合成例2で得られたTFE/ENB共重合体0.25gおよび反応性希釈溶剤としてトリアリルイソシアネート(TAIC)0.125gを均一に混合して60℃で溶解させた後に室温まで冷却した。次いで、白金触媒として2%の白金を含む環状メチルビニルシロキサン溶液を20ppm添加し均一に混合した後にフッ素樹脂FEPフィルムの上に混合溶液を流し込み125℃のオーブン中で8時間、ヒドロシリル化反応を行いフィルム状の硬化物を得た。
Example 2 (Solvent-free curable resin composition)
Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si {OSi (CH 3 ) 2 H} as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) After 0.29 g, 0.25 g of the TFE / ENB copolymer obtained in Synthesis Example 2 and 0.125 g of triallyl isocyanate (TAIC) as a reactive diluent were uniformly mixed and dissolved at 60 ° C. Cooled to room temperature. Next, 20 ppm of a cyclic methylvinylsiloxane solution containing 2% platinum as a platinum catalyst was added and mixed uniformly, then the mixed solution was poured onto the fluororesin FEP film, and a hydrosilylation reaction was performed in an oven at 125 ° C. for 8 hours. A film-like cured product was obtained.
オーブンに入れる前の無溶媒組成物の一部を赤外分光計で分析したところ、フェニルトリス(ジメチルシロキシ)シラン由来のSiH基である2134cm-1の吸収ピークが確認された。当該ピークは125℃で8時間かけて硬化させた後の硬化物では消失していた。また硬化物はキシレンには溶解せず架橋している事が確認できた。
このフィルムの光線透過率を分光光度計(日立製作所製 U-4100)で測定したところ550nmで94.8%、405nmで91.2%であった。また屈折率はシリコンウェハー上にスピンコート法により製膜した薄膜(膜厚150nm)を分光エリプソメーター(ジェイエーウーラムジャパン社製 M-2000D)を用いて測定した結果、1.4845(598nm)であった。
When a part of the solventless composition before being put in the oven was analyzed with an infrared spectrometer, an absorption peak at 2134 cm −1 , which is a SiH group derived from phenyltris (dimethylsiloxy) silane, was confirmed. The peak disappeared in the cured product after curing at 125 ° C. for 8 hours. Further, it was confirmed that the cured product was not dissolved in xylene and was crosslinked.
The light transmittance of this film was measured with a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.) and found to be 94.8% at 550 nm and 91.2% at 405 nm. The refractive index was determined by measuring a thin film (film thickness: 150 nm) formed on a silicon wafer by spin coating using a spectroscopic ellipsometer (M-2000D, manufactured by J-Woollam Japan Co., Ltd.), resulting in 1.4845 (598 nm). Met.
実施例3(無溶媒硬化性樹脂組成物)
10ccのガラス瓶にて、水素原子がケイ素原子に直接結合した基を3つ有するヒドロシリコーン化合物(シロキサン化合物)としてフェニルトリス(ジメチルシロキシ)シラン(CSi{OSi(CHH})0.61g、合成例3で得られたTFE/ENB共重合体1gを均一に混合して60℃で溶解させた後に室温まで冷却した。次いで、白金触媒として2%の白金を含む環状メチルビニルシロキサン溶液を50ppm添加し均一に混合した後にフッ素樹脂FEPフィルムの上に混合溶液を流し込み125℃のオーブン中で8時間、ヒドロシリル化反応を行いフィルム状の硬化物を得た。
Example 3 (Solvent-free curable resin composition)
Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si {OSi (CH 3 ) 2 H} as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.61 g and 1 g of the TFE / ENB copolymer obtained in Synthesis Example 3 were uniformly mixed and dissolved at 60 ° C., and then cooled to room temperature. Next, 50 ppm of a cyclic methylvinylsiloxane solution containing 2% platinum as a platinum catalyst was added and mixed uniformly. Then, the mixed solution was poured onto the fluororesin FEP film, and a hydrosilylation reaction was performed in an oven at 125 ° C. for 8 hours. A film-like cured product was obtained.
オーブンに入れる前の無溶媒組成物の一部を赤外分光計で分析したところ、フェニルトリス(ジメチルシロキシ)シラン由来のSiH基である2134cm-1の吸収ピークが確認された。当該ピークは125℃で8時間かけて硬化させた後の硬化物では消失していた。また硬化物はキシレンには溶解せず架橋している事が確認できた。
このフィルムの光線透過率を分光光度計(日立製作所製 U-4100)で測定したところ550nmで94.6%、405nmで90.8%であった。また屈折率はシリコンウェハー上にスピンコート法により製膜した薄膜(膜厚150nm)を分光エリプソメーター(ジェイエーウーラムジャパン社製 M-2000D)を用いて測定した結果、1.4763(598nm)であった。
When a part of the solventless composition before being put in the oven was analyzed with an infrared spectrometer, an absorption peak at 2134 cm −1 , which is a SiH group derived from phenyltris (dimethylsiloxy) silane, was confirmed. The peak disappeared in the cured product after curing at 125 ° C. for 8 hours. Further, it was confirmed that the cured product was not dissolved in xylene and was crosslinked.
The light transmittance of this film was measured with a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.) and found to be 94.6% at 550 nm and 90.8% at 405 nm. Further, the refractive index was measured by using a spectroscopic ellipsometer (M-2000D, manufactured by JA Woollam Japan) of a thin film (film thickness: 150 nm) formed on a silicon wafer by a spin coat method. As a result, 1.4763 (598 nm) Met.
実施例4(無溶媒硬化性樹脂組成物)
10ccのガラス瓶にて、水素原子がケイ素原子に直接結合した基を3つ有するヒドロシリコーン化合物(シロキサン化合物)としてフェニルトリス(ジメチルシロキシ)シラン(CSi{OSi(CHH})0.79g、合成例5で得られたTFE/NB/ENB 3元共重合体1gを均一に混合して60℃で溶解させた後に室温まで冷却した。次いで、白金触媒として2%の白金を含む環状メチルビニルシロキサン溶液を50ppm添加し均一に混合した後にフッ素樹脂FEPフィルムの上に混合溶液を流し込み125℃のオーブン中で8時間、ヒドロシリル化反応を行いフィルム状の硬化物を得た。
Example 4 (Solvent-free curable resin composition)
Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si {OSi (CH 3 ) 2 H} as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.79 g and 1 g of the TFE / NB / ENB terpolymer obtained in Synthesis Example 5 were uniformly mixed and dissolved at 60 ° C., and then cooled to room temperature. Next, 50 ppm of a cyclic methylvinylsiloxane solution containing 2% platinum as a platinum catalyst was added and mixed uniformly. Then, the mixed solution was poured onto the fluororesin FEP film, and a hydrosilylation reaction was performed in an oven at 125 ° C. for 8 hours. A film-like cured product was obtained.
オーブンに入れる前の無溶媒組成物の一部を赤外分光計で分析したところ、フェニルトリス(ジメチルシロキシ)シラン由来のSiH基である2134cm-1の吸収ピークが確認された。当該ピークは125℃で8時間かけて硬化させた後の硬化物では消失していた。また硬化物はキシレンには溶解せず架橋している事が確認できた。
このフィルムの光線透過率および屈折率を実施例1と同様に測定した。結果を表2に示す。
When a part of the solventless composition before being put in the oven was analyzed with an infrared spectrometer, an absorption peak at 2134 cm −1 , which is a SiH group derived from phenyltris (dimethylsiloxy) silane, was confirmed. The peak disappeared in the cured product after curing at 125 ° C. for 8 hours. Further, it was confirmed that the cured product was not dissolved in xylene and was crosslinked.
The light transmittance and refractive index of this film were measured in the same manner as in Example 1. The results are shown in Table 2.
実施例5~7(無溶媒硬化性樹脂組成物)
実施例4で用いた合成例5で得られたTFE/NB/ENB 3元共重合体の変わりに、合成例6~8で得られたTFE/NB/ENB 3元共重合体を用いる以外は実施例4と同様にして、無溶媒組成物を作製後、同じ条件で硬化させフィルム状の硬化物を得た。
無溶媒硬化樹脂の配合とフィルム物性の測定の結果を実施例4の結果とあわせて表2にまとめる。
Examples 5 to 7 (solvent-free curable resin composition)
Aside from using the TFE / NB / ENB ternary copolymer obtained in Synthesis Examples 6 to 8 instead of the TFE / NB / ENB ternary copolymer obtained in Synthesis Example 5 used in Example 4, In the same manner as in Example 4, after preparing a solventless composition, it was cured under the same conditions to obtain a cured film.
The results of the formulation of the solventless cured resin and the measurement of film properties are summarized in Table 2 together with the results of Example 4.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
実施例8(無溶媒硬化性樹脂組成物)
10ccのガラス瓶にて、水素原子がケイ素原子に直接結合した基を3つ有するヒドロシリコーン化合物(シロキサン化合物)としてフェニルトリス(ジメチルシロキシ)シラン(CSi{OSi(CHH})0.31g、合成例4で得られたTFE/VNB 共重合体0.25g、反応性希釈剤としてTAICを0.125gを均一に混合して60℃で溶解させた後に室温まで冷却した。次いで、白金触媒として2%の白金を含む環状メチルビニルシロキサン溶液を20ppm添加し均一に混合した後にフッ素樹脂FEPフィルムの上に混合溶液を流し込み125℃のオーブン中で8時間、ヒドロシリル化反応を行いフィルム状の透明硬化物を得た。
Example 8 (solvent-free curable resin composition)
Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si {OSi (CH 3 ) 2 H} as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.31 g, 0.25 g of TFE / VNB copolymer obtained in Synthesis Example 4 and 0.125 g of TAIC as a reactive diluent were uniformly mixed and dissolved at 60 ° C. and then cooled to room temperature. . Next, 20 ppm of a cyclic methylvinylsiloxane solution containing 2% platinum as a platinum catalyst was added and mixed uniformly, then the mixed solution was poured onto the fluororesin FEP film, and a hydrosilylation reaction was performed in an oven at 125 ° C. for 8 hours. A film-like transparent cured product was obtained.
オーブンに入れる前の無溶媒組成物の一部を赤外分光計で分析したところ、フェニルトリス(ジメチルシロキシ)シラン由来のSiH基である2134cm-1の吸収ピークが確認された。当該ピークは125℃で8時間かけて硬化させた後の硬化物では消失していた。また硬化物はキシレンには溶解せず架橋している事が確認できた。 When a part of the solventless composition before being put in the oven was analyzed with an infrared spectrometer, an absorption peak at 2134 cm −1 , which is a SiH group derived from phenyltris (dimethylsiloxy) silane, was confirmed. The peak disappeared in the cured product after curing at 125 ° C. for 8 hours. Further, it was confirmed that the cured product was not dissolved in xylene and was crosslinked.
実施例9~11(無溶媒硬化性樹脂組成物)
実施例4で用いたフェニルトリス(ジメチルシロキシ)シランのかわりに、SiH架橋剤としてテトラキス(ジメチルシリルオキシ)シラン(実施例9)、フェニルヒドロシクロシロキサン(直鎖含む)(実施例10)、トリフルオロプロピルテトラキス(ジメチルシリルオキシ)シラン(実施例11)を用いる以外は実施例4と同様にして、無溶媒組成物を作製後、同じ条件で硬化させフィルム状の硬化物を得た。
無溶媒硬化樹脂の配合とフィルム物性の測定の結果を表3にまとめる。
Examples 9 to 11 (solvent-free curable resin composition)
Instead of phenyltris (dimethylsiloxy) silane used in Example 4, tetrakis (dimethylsilyloxy) silane (Example 9), phenylhydrocyclosiloxane (including straight chain) (Example 10), tri A solventless composition was prepared in the same manner as in Example 4 except that fluoropropyltetrakis (dimethylsilyloxy) silane (Example 11) was used, and then cured under the same conditions to obtain a film-like cured product.
Table 3 summarizes the results of the formulation of the solventless cured resin and the measurement of film properties.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
実施例12(無溶媒硬化性樹脂組成物)
10ccのガラス瓶にて、水素原子がケイ素原子に直接結合した基を3つ有するヒドロシリコーン化合物(シロキサン化合物)としてフェニルトリス(ジメチルシロキシ)シラン(CSi{OSi(CHH})0.76g、合成例9で得られたTFE/NB/VNB 3元共重合体1g、反応性希釈剤としてTAICを0.5gを均一に混合して60℃で溶解させた後に室温まで冷却した。次いで、白金触媒として2%の白金を含む環状メチルビニルシロキサン溶液を50ppm添加し均一に混合した後にフッ素樹脂FEPフィルムの上に混合溶液を流し込み125℃のオーブン中で8時間、ヒドロシリル化反応を行いフィルム状の透明硬化物を得た。
Example 12 (Solvent-free curable resin composition)
Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si {OSi (CH 3 ) 2 H} as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.76 g, 1 g of the TFE / NB / VNB terpolymer obtained in Synthesis Example 9 and 0.5 g of TAIC as a reactive diluent were uniformly mixed and dissolved at 60 ° C., and then to room temperature. Cooled down. Next, 50 ppm of a cyclic methylvinylsiloxane solution containing 2% platinum as a platinum catalyst was added and mixed uniformly. Then, the mixed solution was poured onto the fluororesin FEP film, and a hydrosilylation reaction was performed in an oven at 125 ° C. for 8 hours. A film-like transparent cured product was obtained.
オーブンに入れる前の無溶媒組成物の一部を赤外分光計で分析したところ、フェニルトリス(ジメチルシロキシ)シラン由来のSiH基である2134cm-1の吸収ピークが確認された。当該ピークは125℃で8時間かけて硬化させた後の硬化物では消失していた。また硬化物はキシレンには溶解せず架橋している事が確認できた。 When a part of the solventless composition before being put in the oven was analyzed with an infrared spectrometer, an absorption peak at 2134 cm −1 , which is a SiH group derived from phenyltris (dimethylsiloxy) silane, was confirmed. The peak disappeared in the cured product after curing at 125 ° C. for 8 hours. Further, it was confirmed that the cured product was not dissolved in xylene and was crosslinked.
実施例13(無溶媒硬化性樹脂組成物)
10ccのガラス瓶にて、水素原子がケイ素原子に直接結合した基を3つ有するヒドロシリコーン化合物(シロキサン化合物)としてフェニルトリス(ジメチルシロキシ)シラン(CSi{OSi(CHH})0.75g、合成例10で得られたTFE/NB/CPD 共重合体1g、反応性希釈剤としてTAICを0.5gを均一に混合して60℃で溶解させた後に室温まで冷却した。次いで、白金触媒として2%の白金を含む環状メチルビニルシロキサン溶液を50ppm添加し均一に混合した後にフッ素樹脂FEPフィルムの上に混合溶液を流し込み125℃のオーブン中で8時間、ヒドロシリル化反応を行いフィルム状の透明硬化物を得た。
Example 13 (solvent-free curable resin composition)
Phenyltris (dimethylsiloxy) silane (C 6 H 5 Si {OSi (CH 3 ) 2 H} as a hydrosilicone compound (siloxane compound) having three groups in which hydrogen atoms are directly bonded to silicon atoms in a 10 cc glass bottle 3 ) 0.75 g, 1 g of the TFE / NB / CPD copolymer obtained in Synthesis Example 10 and 0.5 g of TAIC as a reactive diluent were uniformly mixed and dissolved at 60 ° C. and then cooled to room temperature. . Next, 50 ppm of a cyclic methylvinylsiloxane solution containing 2% platinum as a platinum catalyst was added and mixed uniformly. Then, the mixed solution was poured onto the fluororesin FEP film, and a hydrosilylation reaction was performed in an oven at 125 ° C. for 8 hours. A film-like transparent cured product was obtained.
オーブンに入れる前の無溶媒組成物の一部を赤外分光計で分析したところ、フェニルトリス(ジメチルシロキシ)シラン由来のSiH基である2134cm-1の吸収ピークが確認された。当該ピークは125℃で8時間かけて硬化させた後の硬化物では消失していた。また硬化物はキシレンには溶解せず架橋している事が確認できた。 When a part of the solventless composition before being put in the oven was analyzed with an infrared spectrometer, an absorption peak at 2134 cm −1 , which is a SiH group derived from phenyltris (dimethylsiloxy) silane, was confirmed. The peak disappeared in the cured product after curing at 125 ° C. for 8 hours. Further, it was confirmed that the cured product was not dissolved in xylene and was crosslinked.
実施例14(水蒸気透過データ)
合成例5で得られたTFE/NB/ENB 3元共重合体 5gとフェニルトリス(ジメチルシロキシ)シラン0.65g、白金触媒として白金-ジビニルテトラメチルジシロキサン錯体 キシレン溶液(2.1-2.4%白金)5μL を酢酸ブチル溶媒に溶解させ、全体を14gとした。その後、0.45μmのPTFE製フィルターを用いて濾過後、バーコート(#24)を用いて厚み100μmのPETフィルム(東レ社製ルミラー)上に塗布した。室温で1時間予備乾燥後、60℃の条件で送風式乾燥機中で3日間硬化させた。
硬化後の膜厚をマイクロメーターで測定した結果、24.4μmであった。
Example 14 (water vapor transmission data)
5 g of TFE / NB / ENB terpolymer obtained in Synthesis Example 5, 0.65 g of phenyltris (dimethylsiloxy) silane, platinum-divinyltetramethyldisiloxane complex as a platinum catalyst, xylene solution (2.1-2. 4% platinum) 5 μL was dissolved in a butyl acetate solvent to make a total of 14 g. Then, after filtering using a 0.45 μm PTFE filter, it was applied onto a 100 μm thick PET film (Lumirror manufactured by Toray Industries, Inc.) using a bar coat (# 24). After pre-drying at room temperature for 1 hour, it was cured for 3 days in a blower dryer at 60 ° C.
It was 24.4 micrometers as a result of measuring the film thickness after hardening with a micrometer.
作製した積層フィルムを100mm×100mmのサイズにカットして、JISK7129(A法)に基づく、Dr.Lyssy社製水蒸気透過度計L80-5000を用いて、水蒸気透過度を測定した。なお、水蒸気が直接接する面側はPETで、乾燥空気側が本発明の硬化膜である。 The produced laminated film was cut into a size of 100 mm × 100 mm, and Dr. based on JISK7129 (Method A). The water vapor transmission rate was measured using a water vapor transmission meter L80-5000 manufactured by Lyssy. Note that the surface side in direct contact with water vapor is PET, and the dry air side is the cured film of the present invention.
あらかじめ、基板のPETフィルムのみの水蒸気透過度を測定しておき、下式より、硬化膜の層の水蒸気透過度を計算により求めた。 The water vapor permeability of only the PET film of the substrate was measured in advance, and the water vapor permeability of the cured film layer was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000058
Figure JPOXMLDOC01-appb-M000058
(一般にn層からなる多層フィルム(厚みl)において、第n層の厚みと気体透過係数をそれぞれ、ln、Pnとしたときのフィルム全体の透過係数Pは上記の式で算出できる参考文献:高分子と水分 第7章 高分子学会編 幸書房 (1973)。)
以上の方法で求めた水蒸気透過度は7.5g/m・dayであった。
(Generally, in a multi-layer film (thickness l) composed of n layers, the transmission coefficient P of the entire film when the thickness of the nth layer and the gas permeability coefficient are respectively ln and Pn can be calculated by the above formula: High Molecules and moisture Chapter 7: The Society of Polymer Science, Koshobo (1973).)
The water vapor permeability determined by the above method was 7.5 g / m 2 · day.
比較例1
LED封止樹脂として市販されている信越シリコーン社製KJR9022E-2の水蒸気透過度をJIS Z0208 に基くカップ法にて測定した結果、314g/m・dayであった。
Comparative Example 1
The water vapor permeability of KJR9022E-2 manufactured by Shin-Etsu Silicone, which is commercially available as an LED sealing resin, was measured by a cup method based on JIS Z0208. As a result, it was 314 g / m 2 · day.
実施例15(粘度、透過率)
合成例1で得られたTFE/ENB 共重合体とSiH架橋剤としてフェニルトリス(ジメチルシロキシ)シラン、および、TAICを表4に示した割合で混合し、27℃における粘度を測定した。
Example 15 (viscosity, transmittance)
The TFE / ENB copolymer obtained in Synthesis Example 1 and phenyltris (dimethylsiloxy) silane as a SiH crosslinking agent and TAIC were mixed in the proportions shown in Table 4, and the viscosity at 27 ° C. was measured.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
粘度を測定したサンプルに白金触媒として2%の白金を含む環状メチルビニルシロキサン溶液を50ppm添加し均一に混合した後に、フッ素樹脂FEPフィルムの上に混合溶液を流し込み125℃のオーブン中で8時間、ヒドロシリル化反応を行いフィルム状の透明硬化物を得た。得られたフィルム(25μm)の可視帯域の吸収スペクトルを測定したので、その結果を図1及び図2に示す。 After adding 50 ppm of a cyclic methylvinylsiloxane solution containing 2% platinum as a platinum catalyst to the sample for which the viscosity was measured, and uniformly mixing the mixture, the mixed solution was poured onto the fluororesin FEP film in an oven at 125 ° C. for 8 hours. Hydrosilylation reaction was performed to obtain a film-like transparent cured product. The absorption spectrum in the visible band of the obtained film (25 μm) was measured, and the results are shown in FIGS.
本発明の硬化性樹脂組成物は、封止部材、光学材料、光電子撮像管、各種センサー、反射防止材などに好適に用いられる。 The curable resin composition of the present invention is suitably used for a sealing member, an optical material, a photoelectronic imaging tube, various sensors, an antireflection material, and the like.

Claims (21)

  1. 含フッ素重合体(A)とヒドロシリル化架橋剤(B)とからなる硬化性樹脂組成物であって、
    含フッ素重合体(A)は、含フッ素単量体に由来する重合単位、及び、炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位からなる含フッ素重合体であり、
    ヒドロシリル化架橋剤(B)は、水素原子がケイ素原子に直接結合した基を分子内に2個以上有するシロキサン化合物である
    ことを特徴とする硬化性樹脂組成物。
    A curable resin composition comprising a fluoropolymer (A) and a hydrosilylation crosslinking agent (B),
    The fluorinated polymer (A) is a fluorinated polymer comprising polymerized units derived from a fluorinated monomer and polymerized units derived from a norbornene monomer having two or more carbon-carbon double bonds. ,
    The curable resin composition, wherein the hydrosilylation crosslinking agent (B) is a siloxane compound having two or more groups in which hydrogen atoms are directly bonded to silicon atoms.
  2. 炭素-炭素二重結合を2個以上有するノルボルネン単量体は、下記式(a):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体、下記式(b):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。nは0~10の整数である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体、及び、下記式(c):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体からなる群より選択される少なくとも1種の単量体である請求項1記載の硬化性樹脂組成物。
    A norbornene monomer having two or more carbon-carbon double bonds is represented by the following formula (a):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 10 carbon atoms. R 2 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms. A norbornene monomer having two or more carbon-carbon double bonds represented by the following formula (b):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 3 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 5 carbon atoms. R 4 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms. R 5 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms, n is an integer of 0 to 10.) And a norbornene monomer having two or more of the following formula (c):
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 6 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms), and a norbornene monomer having two or more carbon-carbon double bonds represented by The curable resin composition according to claim 1, wherein the curable resin composition is at least one monomer selected from the group consisting of:
  3. 炭素-炭素二重結合を2個以上有するノルボルネン単量体は、下記式(1):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは、水素原子又は炭素数1~10のアルキル基である。)で表される炭素-炭素二重結合を2個有するノルボルネン単量体、下記式(2):
    Figure JPOXMLDOC01-appb-C000005
    (式中Rは、水素原子又は炭素数1~5のアルキル基である。)で表される炭素-炭素二重結合を2個有するノルボルネン単量体、及び、下記式(3):
    Figure JPOXMLDOC01-appb-C000006
    で表される炭素-炭素二重結合を2個有するノルボルネン単量体、からなる群より選択される少なくとも1種の単量体である請求項1又は2記載の硬化性樹脂組成物。
    A norbornene monomer having two or more carbon-carbon double bonds is represented by the following formula (1):
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 7 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms), a norbornene monomer having two carbon-carbon double bonds represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000005
    (Wherein R 8 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms) and a norbornene monomer having two carbon-carbon double bonds represented by the following formula (3):
    Figure JPOXMLDOC01-appb-C000006
    The curable resin composition according to claim 1 or 2, which is at least one monomer selected from the group consisting of norbornene monomers having two carbon-carbon double bonds represented by the formula:
  4. ヒドロシリル化架橋剤(B)は、下記式:
    -O-SiRH-
    (式中、Rは、炭素数1~10の1価の炭化水素基である。)で表される構造を2個以上有するシロキサン化合物である請求項1、2又は3記載の硬化性樹脂組成物。
    The hydrosilylation crosslinking agent (B) has the following formula:
    -O-SiR 8 H-
    4. The curable resin according to claim 1, 2 or 3, which is a siloxane compound having two or more structures represented by the formula: wherein R 8 is a monovalent hydrocarbon group having 1 to 10 carbon atoms. Composition.
  5. ヒドロシリル化架橋剤(B)は、下記式(4):
    Si(OR104-b   (4)
    (式中、Rは、同一又は異なって、一部又は全部の水素がフッ素によって置換されていてもよい炭素数1~10のアルキル基、アリール基、(メタ)アクリル基含有有機基、または、エポキシ基含有有機基を表す。R10は、同一又は異なって、水素原子、炭素数1~10のアルキル基、または、下記式:
    -SiR
    (式中、Rは、同一又は異なって、炭素数1~10の炭化水素基である。)で表されるジオルガノシリル基(b2)を表す。但し、1分子中の少なくとも2個のR10はジオルガノシリル基(b2)である。bは0~2の整数である。)で表されるシロキサン化合物である請求項1、2、3又は4記載の硬化性樹脂組成物。
    The hydrosilylation crosslinking agent (B) has the following formula (4):
    R 9 b Si (OR 10 ) 4-b (4)
    (Wherein R 9 is the same or different, and an alkyl group having 1 to 10 carbon atoms, an aryl group, a (meth) acryl group-containing organic group, in which some or all of hydrogen atoms may be substituted with fluorine, or Represents an epoxy group-containing organic group, and R 10 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or the following formula:
    -SiR 8 2 H
    (Wherein R 8 is the same or different and is a hydrocarbon group having 1 to 10 carbon atoms), and represents a diorganosilyl group (b2). However, at least two R 10 in one molecule are diorganosilyl groups (b2). b is an integer of 0-2. The curable resin composition according to claim 1, 2, 3, or 4.
  6. 含フッ素単量体は、テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、フッ化ビニル、へキサフルオロプロピレン、へキサフルオロイソブテン、CH=CZ(CF(式中、ZはH又はF、ZはH、F又はCl、nは1~10の整数である。)で示される単量体、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)、及び、CF=CF-OCH-Rf(式中、Rfは、炭素数1~5のパーフルオロアルキル基)で表されるアルキルパーフルオロビニルエーテル誘導体からなる群より選択される少なくとも1種の含フッ素エチレン性単量体である請求項1、2、3、4又は5記載の硬化性樹脂組成物。 The fluorine-containing monomer includes tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, vinyl fluoride, hexafluoropropylene, hexafluoroisobutene, CH 2 = CZ 1 (CF 2 ) n Z 2 (wherein Z 1 is H or F, Z 2 is H, F or Cl, and n is an integer of 1 to 10.), CF 2 = CF-ORf 1 (wherein Rf 1 is carbon And a perfluoro (alkyl vinyl ether) represented by the formula 1-8, and CF 2 ═CF—OCH 2 —Rf 2 (wherein Rf 2 is a C 1-5 carbon atom) 6. A perfluoroalkyl group), which is at least one fluorine-containing ethylenic monomer selected from the group consisting of alkyl perfluorovinyl ether derivatives represented by: Curable resin composition of the mounting.
  7. 含フッ素単量体は、テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、へキサフルオロプロピレン、及び、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の含フッ素エチレン性単量体である請求項1、2、3、4、5又は6記載の硬化性樹脂組成物。 The fluorine-containing monomer is tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 = CF-ORf 1 (wherein Rf 1 is perfluorocarbon having 1 to 8 carbon atoms) 7. An at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by: Curable resin composition.
  8. 含フッ素重合体(A)は、更に、下記式(d):
    Figure JPOXMLDOC01-appb-C000007
    (式中、R14は炭素数1~10のアルキル基である。xは0~2の整数である。)で示されるノルボルネン単量体に由来する重合単位からなる請求項請求項1、2、3、4、5、6又は7記載の硬化性樹脂組成物。
    The fluoropolymer (A) is further represented by the following formula (d):
    Figure JPOXMLDOC01-appb-C000007
    (Wherein R 14 is an alkyl group having 1 to 10 carbon atoms, x is an integer of 0 to 2), and a polymer unit derived from a norbornene monomer represented by The curable resin composition according to 3, 4, 5, 6 or 7.
  9. 更に、(C)ヒドロシリル化触媒と、
    からなる請求項1、2、3、4、5、6、7又は8記載の硬化性樹脂組成物。
    And (C) a hydrosilylation catalyst;
    The curable resin composition according to claim 1, 2, 3, 4, 5, 6, 7 or 8.
  10. ヒドロシリル化触媒(C)は、白金系触媒、パラジウム系触媒、ロジウム系触媒、ルテニウム系触媒及びイリジウム系触媒からなる群より選択される少なくとも1種の触媒である請求項9記載の硬化性樹脂組成物。 The curable resin composition according to claim 9, wherein the hydrosilylation catalyst (C) is at least one catalyst selected from the group consisting of platinum-based catalysts, palladium-based catalysts, rhodium-based catalysts, ruthenium-based catalysts, and iridium-based catalysts. object.
  11. 封止材料である請求項1、2、3、4、5、6、7、8、9又は10記載の硬化性樹脂組成物。 11. The curable resin composition according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, which is a sealing material.
  12. 請求項1、2、3、4、5、6、7、8、9又は10記載の硬化性樹脂組成物を硬化して得られることを特徴とする硬化物。 A cured product obtained by curing the curable resin composition according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  13. 光線透過率が80%以上である請求項12記載の硬化物。 The hardened | cured material of Claim 12 whose light transmittance is 80% or more.
  14. 光学素子用の封止部材である請求項12又は13記載の硬化物。 The cured product according to claim 12, which is a sealing member for an optical element.
  15. テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、へキサフルオロプロピレン、及び、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の含フッ素エチレン性単量体に由来する重合単位、及び、下記式(a):
    Figure JPOXMLDOC01-appb-C000008
    (式中、Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位からなる
    ことを特徴とする含フッ素重合体。
    Tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ═CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms). A polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (a):
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, R 1 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 10 carbon atoms. R 2 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms. A fluorine-containing polymer comprising polymerized units derived from a norbornene monomer having two or more carbon-carbon double bonds represented by the formula:
  16. 炭素-炭素二重結合を2個以上有するノルボルネン単量体は、下記式(1):
    Figure JPOXMLDOC01-appb-C000009
    (式中、Rは、水素原子又は炭素数1~10のアルキル基である。)で表される炭素-炭素二重結合を2個有するノルボルネン単量体である請求項15記載の含フッ素重合体。
    A norbornene monomer having two or more carbon-carbon double bonds is represented by the following formula (1):
    Figure JPOXMLDOC01-appb-C000009
    16. The fluorine-containing monomer according to claim 15, which is a norbornene monomer having two carbon-carbon double bonds represented by the formula: wherein R 7 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Polymer.
  17. テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、へキサフルオロプロピレン、及び、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の含フッ素エチレン性単量体に由来する重合単位、及び、下記式(b):
    Figure JPOXMLDOC01-appb-C000010
    (式中、Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~10の酸素原子を含んでもよい炭化水素基である。Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。nは0~10の整数である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位からなる
    ことを特徴とする含フッ素重合体。
    Tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ═CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms). A polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (b):
    Figure JPOXMLDOC01-appb-C000010
    (In the formula, R 3 is a hydrogen atom or a hydrocarbon group that may contain an oxygen atom having 1 to 5 carbon atoms. R 4 is a hydrocarbon atom that may contain a hydrogen atom or an oxygen atom having 1 to 10 carbon atoms. R 5 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms, n is an integer of 0 to 10.) A fluorine-containing polymer comprising polymerized units derived from a norbornene monomer having 2 or more.
  18. 炭素-炭素二重結合を2個以上有するノルボルネン単量体は、下記式(2):
    Figure JPOXMLDOC01-appb-C000011
    (式中Rは、水素原子又は炭素数1~5のアルキル基である。)で表される炭素-炭素二重結合を2個有するノルボルネン単量体である請求項17記載の含フッ素重合体。
    A norbornene monomer having two or more carbon-carbon double bonds is represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000011
    The fluorine-containing heavy atom according to claim 17, which is a norbornene monomer having two carbon-carbon double bonds represented by the formula: wherein R 8 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Coalescence.
  19. テトラフルオロエチレン、フッ化ビニリデン、クロロトリフルオロエチレン、へキサフルオロプロピレン、及び、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)からなる群より選択される少なくとも1種の含フッ素エチレン性単量体に由来する重合単位、及び、下記式(c):
    Figure JPOXMLDOC01-appb-C000012
    (式中、Rは、水素原子又は炭素数1~5の酸素原子を含んでもよい炭化水素基である。)で表される炭素-炭素二重結合を2個以上有するノルボルネン単量体に由来する重合単位からなる
    ことを特徴とする含フッ素重合体。
    Tetrafluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, and CF 2 ═CF—ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms). And a polymerized unit derived from at least one fluorine-containing ethylenic monomer selected from the group consisting of perfluoro (alkyl vinyl ethers) represented by the following formula (c):
    Figure JPOXMLDOC01-appb-C000012
    (Wherein R 6 is a hydrogen atom or a hydrocarbon group which may contain an oxygen atom having 1 to 5 carbon atoms) and a norbornene monomer having two or more carbon-carbon double bonds represented by A fluorine-containing polymer comprising polymer units derived therefrom.
  20. 炭素-炭素二重結合を2個以上有するノルボルネン単量体は、下記式(3):
    Figure JPOXMLDOC01-appb-C000013
    で表される炭素-炭素二重結合を2個有するノルボルネン単量体である請求項19記載の含フッ素重合体。
    A norbornene monomer having two or more carbon-carbon double bonds is represented by the following formula (3):
    Figure JPOXMLDOC01-appb-C000013
    The fluorine-containing polymer according to claim 19, which is a norbornene monomer having two carbon-carbon double bonds represented by the formula:
  21. 更に、含フッ素重合体(A)は、更に、下記式(d):
    Figure JPOXMLDOC01-appb-C000014
    (式中、R14は炭素数1~10のアルキル基である。xは0~2の整数である。)で示されるノルボルネン単量体に由来する重合単位からなる請求項15、16、17、18、19又は20記載の含フッ素重合体。
    Furthermore, the fluorine-containing polymer (A) is further represented by the following formula (d):
    Figure JPOXMLDOC01-appb-C000014
    (Wherein R 14 is an alkyl group having 1 to 10 carbon atoms, x is an integer of 0 to 2), and a polymer unit derived from a norbornene monomer represented by the formula: , 18, 19 or 20.
PCT/JP2011/055908 2010-03-16 2011-03-14 Curable resin composition, cured material and fluorinated polymer WO2011115042A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127026824A KR20120130782A (en) 2010-03-16 2011-03-14 Curable resin composition, cured material and fluorinated polymer
CN201180013926.9A CN102803377B (en) 2010-03-16 2011-03-14 Curable resin composition, cured article and fluoropolymer
JP2012505661A JP5440690B2 (en) 2010-03-16 2011-03-14 Curable resin composition, cured product and fluoropolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010059906 2010-03-16
JP2010-059906 2010-03-16

Publications (1)

Publication Number Publication Date
WO2011115042A1 true WO2011115042A1 (en) 2011-09-22

Family

ID=44649135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055908 WO2011115042A1 (en) 2010-03-16 2011-03-14 Curable resin composition, cured material and fluorinated polymer

Country Status (5)

Country Link
JP (1) JP5440690B2 (en)
KR (1) KR20120130782A (en)
CN (1) CN102803377B (en)
TW (1) TWI470020B (en)
WO (1) WO2011115042A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193919B (en) * 2013-03-14 2015-04-15 北京化工大学 Preparation method and solidification method of silicyl-terminated liquid fluorine polymer
CN116655499B (en) * 2023-05-29 2024-05-17 派迈新材料(成都)有限责任公司 Norbornene derivative containing carbamate, preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266119A (en) * 1988-04-18 1989-10-24 Mitsui Petrochem Ind Ltd Fluoroelastomer and fluororubber
JP2002525683A (en) * 1998-09-23 2002-08-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Photoresists, polymers and methods of microlithography
CN101684168A (en) * 2009-06-15 2010-03-31 宁波工程学院 Catalyst used in ternary polymerization of norbornene, acrylate and tetrafluoroethylene, preparation method thereof and method for ternary polymerization

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005063355B4 (en) * 2005-09-21 2015-08-20 Carl Freudenberg Kg Rubber compound, process for its preparation and uses
CN101743281A (en) * 2007-06-15 2010-06-16 道康宁公司 Curable fluorine-containing polymer composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266119A (en) * 1988-04-18 1989-10-24 Mitsui Petrochem Ind Ltd Fluoroelastomer and fluororubber
JP2002525683A (en) * 1998-09-23 2002-08-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Photoresists, polymers and methods of microlithography
CN101684168A (en) * 2009-06-15 2010-03-31 宁波工程学院 Catalyst used in ternary polymerization of norbornene, acrylate and tetrafluoroethylene, preparation method thereof and method for ternary polymerization

Also Published As

Publication number Publication date
KR20120130782A (en) 2012-12-03
JPWO2011115042A1 (en) 2013-06-27
TW201207029A (en) 2012-02-16
JP5440690B2 (en) 2014-03-12
CN102803377B (en) 2015-08-05
CN102803377A (en) 2012-11-28
TWI470020B (en) 2015-01-21

Similar Documents

Publication Publication Date Title
TW200940572A (en) Curable composition, fluorine-containing cured product, optical material using the cured product, and light-emitting device
KR101570553B1 (en) Curable composition and cured film using same
JP5418602B2 (en) Curable resin composition
TW200934665A (en) Bilayer anti-reflective films containing nanoparticles in both layers
JP5440690B2 (en) Curable resin composition, cured product and fluoropolymer
TW200940340A (en) Bilayer anti-reflective films containing nanoparticles
JP5772891B2 (en) Fluoropolymer and production method thereof
JP2013087162A (en) Fluorine-containing polymer, curable resin composition, and cured product
JP4106723B2 (en) Coating composition for antireflection filter
JP5556016B2 (en) Curable resin composition and method for producing the same
CN109641992B (en) Fluoropolymer, method for producing same, and article having cured product of fluoropolymer
JP5392426B2 (en) Fluoropolymer and production method thereof
JP5494671B2 (en) Curable resin composition
WO2012133548A1 (en) Curable resin composition and cured product
CN102516459B (en) Fluorine-containing compound, fluorine-containing polymer and fluorine-containing resin composite
KR20070091164A (en) Antireflective film
JP5223977B2 (en) Curable resin composition and cured product
TW202132375A (en) Fluorine-containing polymer, curable composition, and cured product
JP2016180035A (en) Organopolysiloxane having halogen-containing group, method for producing the same, and curable resin composition containing organopolysiloxane having halogen-containing group
KR20120138610A (en) The flexible display substrate
KR20200095249A (en) Curable resin composition, cured film prepared therefrom, and electronic device incorporating cured film
JP2005275356A (en) Method for manufacturing optical waveguide

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013926.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756227

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505661

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127026824

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11756227

Country of ref document: EP

Kind code of ref document: A1