Nothing Special   »   [go: up one dir, main page]

WO2011105004A1 - 瞳孔検出装置及び瞳孔検出方法 - Google Patents

瞳孔検出装置及び瞳孔検出方法 Download PDF

Info

Publication number
WO2011105004A1
WO2011105004A1 PCT/JP2011/000359 JP2011000359W WO2011105004A1 WO 2011105004 A1 WO2011105004 A1 WO 2011105004A1 JP 2011000359 W JP2011000359 W JP 2011000359W WO 2011105004 A1 WO2011105004 A1 WO 2011105004A1
Authority
WO
WIPO (PCT)
Prior art keywords
pupil
image
unit
pupil detection
imaging
Prior art date
Application number
PCT/JP2011/000359
Other languages
English (en)
French (fr)
Inventor
築澤宗太郎
岡兼司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180001860.1A priority Critical patent/CN102439627B/zh
Priority to EP11746977.5A priority patent/EP2541493B1/en
Priority to JP2011521790A priority patent/JP5694161B2/ja
Priority to US13/318,431 priority patent/US8810642B2/en
Publication of WO2011105004A1 publication Critical patent/WO2011105004A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor

Definitions

  • the present invention relates to a pupil detection device and a pupil detection method.
  • Pupil detection is performed in gaze detection or expression detection. If this pupil detection is performed when the illumination is low, "red eye phenomenon” may occur. This red-eye phenomenon is caused by imaging of blood vessels in the retina, particularly when flash photography is performed with the pupil widely open in a dark place or the like. The luminance of the pupil peripheral image of the pupil image in which the red eye phenomenon occurs is higher than the luminance of the pupil peripheral image of a normal pupil image in which the red eye phenomenon does not occur. Therefore, under the condition where the red eye phenomenon occurs, it is difficult to perform stable pupil detection even if the pupil detection method targeting the normal pupil where the red eye phenomenon does not occur is applied.
  • a pupil detection method at the time of occurrence of the red eye phenomenon has been proposed (see, for example, Patent Document 1).
  • this pupil detection method a pupil image in which a red eye phenomenon has occurred is detected based on the saturation and luminance of the eye area.
  • the pupil detection accuracy may decrease or it may be difficult to apply in the first place.
  • the pupil detection result may be used for gaze detection as described above. Therefore, when the pupil detection accuracy is lowered, the accuracy of processing (for example, line-of-sight detection processing) in which the pupil detection result is used is also lowered.
  • An object of the present invention is to provide a pupil detection device and a pupil detection method capable of selecting and outputting a detection result with high accuracy even when a grayscale image using near infrared light is used.
  • a first imaging pair consisting of imaging means separated by a predetermined separation distance and light emitting means emitting light at the time of imaging, and the second separation distance larger than the first imaging pair
  • a first pupil image is detected from an imaging pair and a first person image in which a person is imaged by the first imaging pair, and a second person image in which the person is imaged by the second imaging pair
  • a detection unit for detecting a second pupil image, a calculated value of red eye generation intensity which is a relative luminance of the luminance in the first pupil image to the luminance of a peripheral image outside the first pupil image, and a red eye
  • output switching means for selectively outputting the detection result of the first pupil image or the detection result of the second pupil image based on the correlation characteristic between the generation intensity and the pupil detection accuracy value.
  • a first imaging pair consisting of imaging means separated by a predetermined separation distance and light emitting means emitting light at the time of imaging, and the second separation distance larger than the first imaging pair
  • a pupil detection method in a pupil detection device comprising an imaging pair, comprising: detecting a first pupil image from a first person image in which a person is imaged by the first imaging pair; Detecting a second pupil image from a second person image in which the person is imaged by the imaging pair; and luminance of a peripheral image outside the first pupil image of the luminance in the first pupil image
  • the detection result of the first pupil image or the detection result of the second pupil image is calculated based on the calculated value of the red eye generation intensity, which is relative luminance to the image, and the correlation characteristic between the red eye generation intensity and the pupil detection accuracy value.
  • Selective output step Comprising a.
  • the present invention it is possible to provide a pupil detection device and a pupil detection method capable of selecting and outputting a detection result with high accuracy even when a grayscale image using near infrared light is used.
  • a block diagram showing a configuration of a pupil detection device according to Embodiment 1 of the present invention Block diagram showing the configuration of the image input unit Block diagram showing the configuration of the image input unit Diagram showing the configuration of the imaging unit Block diagram showing the configuration of the pupil detection unit Block diagram showing the configuration of the pupil detection unit Block diagram showing the configuration of the switching determination unit Flow chart for explaining the operation of the pupil detection device
  • a diagram used to explain the correlation characteristics between red-eye occurrence intensity and pupil detection accuracy rate Diagram used to explain fluctuation trend characteristics A block diagram showing a configuration of a pupil detection device according to a second embodiment of the present invention
  • Block diagram showing the configuration of the switching determination unit Flow chart for explaining the operation of the pupil detection device Diagram showing the correspondence between illuminance and illuminance coefficient
  • Block diagram showing a configuration of a pupil detection device according to a third embodiment of the present invention Block diagram showing the configuration of the switching determination unit Diagram showing configuration variation of image input unit
  • FIG. 1 is a block diagram showing a configuration of a pupil detection apparatus 100 according to Embodiment 1 of the present invention.
  • the pupil detection device 100 is provided, for example, in a compartment of a car and connected to an alarm device for use.
  • the alarm device detects the line of sight direction of the driver based on the detection result of the pupil detection device 100, and warns the driver to warn when the driver does not turn to the front for a long time.
  • the pupil detection device 100 is set in the vehicle compartment of a car will be described as an example.
  • pupil detection apparatus 100 includes image input units 101 and 102, pupil detection units 103 and 104, switching determination unit 105, and evaluation value storage unit 106.
  • the image input units 101 and 102 emit light to illuminate an imaging target (that is, a person here), and capture an image of the imaging target.
  • the target image data is output to pupil detection units 103 and 104, respectively.
  • the image input unit 101 includes an imaging unit 111, an irradiation unit 112, and a synchronization unit 113, as shown in FIG.
  • the imaging unit 111 captures an imaging target at timing according to the synchronization signal received from the synchronization unit 113, and outputs a target image signal to the pupil detection unit 103.
  • the imaging unit 111 includes an image sensor such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • the irradiation unit 112 emits light at timing according to the synchronization signal received from the synchronization unit 113.
  • the irradiation unit 112 includes an infrared LED.
  • the infrared light emitted from the infrared LED is invisible but is sensed by the imaging unit 111. That is, the imaging unit 111 has infrared sensitivity.
  • the irradiation part 112 may be always on, not synchronous pulse drive.
  • the synchronization unit 113 controls the light emission timing of the irradiation unit 112 and the exposure timing of the imaging unit 111 by outputting a synchronization signal to the imaging unit 111 and the irradiation unit 112.
  • the imaging target can be imaged at the timing when the imaging target is illuminated.
  • the image input unit 102 includes an imaging unit 121, an irradiation unit 122, and a synchronization unit 123.
  • the imaging unit 121, the irradiation unit 122, and the synchronization unit 123 have the same functions as the imaging unit 111, the irradiation unit 112, and the synchronization unit 113.
  • the separation distance d1 between the imaging unit 111 and the irradiation unit 112 (that is, the distance from the optical axis of the imaging unit 111 to the irradiation unit 112) is shorter than the separation processing d2 between the imaging unit 121 and the irradiation unit 122. That is, in the image captured by the imaging unit 111, the red eye phenomenon is more likely to occur than the image captured by the imaging unit 121.
  • the image input units 101 and 102 having the above configuration constitute an imaging unit 200 as shown in FIG. 4.
  • the imaging unit 200 is installed in front of the driver's seat, for example, on a steering wheel of a car or on a dashboard.
  • the driver's face is irradiated by the irradiation units 112 and 122, and the driver's face is photographed by the image input units 101 and 102.
  • the pupil detection units 103 and 104 detect pupil images from the target image received from the image input unit 101 and the target image received from the image input unit 102.
  • the pupil detection unit 103 has a face detection unit 131, a face part detection unit 132, and a pupil information calculation unit 133.
  • the face detection unit 131 detects a face image from the target image received from the image input unit 101, and outputs face image data to the face part detection unit 132.
  • the face part detection unit 132 detects a face part group (that is, eye corners, eyes, etc.) from the face image received from the face detection unit 131, and outputs position coordinates of each face part to the pupil information calculation unit 133.
  • a face part group that is, eye corners, eyes, etc.
  • the pupil information calculation unit 133 calculates the center position of the pupil image and the size of the pupil image (that is, the pupil diameter) based on the position coordinates of each face component received from the face component detection unit 132.
  • the central position of the pupil image and the size of the pupil image are output to the switching determination unit 105 together with the target image output from the image input unit 101 as a pupil image detection result.
  • the central position of the pupil image and the size of the pupil image are calculated for each of the right eye and the left eye.
  • the pupil detection unit 104 includes a face detection unit 141, a face part detection unit 142, and a pupil information calculation unit 143.
  • the face detection unit 141, the face part detection unit 142, and the pupil information calculation unit 143 have functions similar to those of the face detection unit 131, the face part detection unit 132, and the pupil information calculation unit 133. However, they differ in that the data to be processed is a target image received from the image input unit 102.
  • the switching determination unit 105 calculates “red eye occurrence intensity” from the target image data received from the image input unit 101, and correlates the calculated red eye occurrence intensity with the red eye occurrence intensity and the pupil detection accuracy rate. And selects one of the pupil detection result of the pupil detection unit 103 and the pupil detection result of the pupil detection unit 104 as a signal to be output to the processing unit (for example, gaze direction calculation unit) in the subsequent stage.
  • the processing unit for example, gaze direction calculation unit
  • the switching determination unit 105 includes a red-eye occurrence intensity calculation unit 151, a characteristic calculation unit 152, and an output signal selection unit 153.
  • the red eye occurrence intensity calculation unit 151 calculates a red eye occurrence intensity based on the input image and the pupil image detection result.
  • the red-eye occurrence intensity is calculated for the target image received from the pupil detection unit 103 and the pupil image detection result.
  • This red-eye occurrence intensity means "relative luminance" with respect to the luminance of the pupil image peripheral area located outside the pupil image area of the luminance in the pupil image area.
  • the red eye generation intensity will be described in detail later.
  • the characteristic calculation unit 152 has data (hereinafter, may be simply referred to as “correlation characteristic data”) regarding the correlation characteristic between the red-eye occurrence intensity and the pupil detection accuracy rate (that is, pupil detection accuracy value).
  • the characteristic calculation unit 152 calculates the pupil detection accuracy rate corresponding to the red-eye occurrence intensity received from the red-eye occurrence intensity calculation unit 151 using the correlation characteristic data.
  • the calculated pupil detection accuracy rate is output to the output signal selection unit 153 and the evaluation value storage unit 106. In the following, this calculated pupil detection accuracy rate may be called “pupil detection reliability” in order to clearly distinguish it from the pupil detection accuracy rate in the correlation characteristic data.
  • the output signal selection unit 153 outputs a signal of the pupil detection unit 103 as a signal to be output to a processing unit (for example, the gaze direction calculation unit) in the subsequent stage based on the “variation tendency characteristic” of the pupil detection reliability received from the characteristic calculation unit 152.
  • a processing unit for example, the gaze direction calculation unit
  • One of the pupil detection result and the pupil detection result of the pupil detection unit 104 is selected.
  • output signal selection unit 153 receives the pupil received this time from characteristic calculation unit 152. Based on the detection reliability and the history of the pupil detection reliability stored in the evaluation value storage unit 106, the fluctuation tendency characteristic of the pupil detection reliability is calculated. Then, the output signal selection unit 153 selects one of the pupil detection result of the pupil detection unit 103 and the pupil detection result of the pupil detection unit 104 based on the calculated fluctuation tendency characteristic, and selects the selected pupil detection result in the subsequent stage. Output to processing unit.
  • the fluctuation tendency characteristic of the pupil detection reliability will be described in detail later.
  • the evaluation value storage unit 106 stores the pupil detection reliability received from the switching determination unit 105 in association with the imaging time of the target image used to specify the pupil detection reliability.
  • FIG. 8 is a flowchart for explaining the operation of pupil detection apparatus 100.
  • the flow chart of FIG. 8 also includes the process flow in the above-described alarm device. That is, FIG. 8 shows a process flow when the pupil detection device 100 is applied to an alarm device.
  • the processing flow shown in FIG. 8 starts with the start of the photographing operation.
  • the photographing operation may be started by the user's operation or may be started by using some external signal as a trigger.
  • step S201 the image input units 101 and 102 emit light to illuminate an imaging target (that is, a person here) and capture an image of the imaging target. Thereby, a target image is acquired.
  • an imaging target that is, a person here
  • the irradiation unit 112 of the image input unit 101 irradiates the target with invisible near infrared light (for example, light of wavelength 850 nm).
  • the imaging unit 111 captures an image of the target.
  • the separation distance d1 between the imaging unit 111 and the irradiation unit 112 is sufficiently short (for example, 10 mm). Therefore, when the peripheral illumination decreases, the pupil diameter increases, and a red-eye phenomenon occurs in the target image captured by the imaging unit 111.
  • the irradiation unit 122 of the image input unit 102 also irradiates the target with invisible near infrared light (for example, light with a wavelength of 850 nm) at a timing different from that of the irradiation unit 112.
  • the imaging unit 121 captures an image of the target at a timing at which the irradiation unit 122 irradiates the target.
  • a separation distance d2 between the imaging unit 121 and the irradiation unit 122 is larger than d1.
  • the occurrence probability of the red eye phenomenon is lower than that of the target image imaged by the imaging unit 111, and even if the red eye phenomenon occurs, the red eye occurrence intensity is low.
  • the red-eye occurrence intensity is sufficiently large, the brightness of the lighted portion of the pupil reaches the brightness upper limit of the image, so the target image captured by the imaging unit 111 and the target image captured by the imaging unit 121 are equivalent.
  • the imaging unit 111 and the imaging unit 121 for example, a digital camera provided with a CMOS image sensor and a lens is assumed. Therefore, an image storage unit (for example, a memory of a PC, not shown) is included in the image input unit 101 or 102 and an image etc. in PPM (Portable Pix Map file format) format captured by the imaging unit 111 and the imaging unit 121 is included. After being temporarily stored in the space), the PPM format is output to the pupil detection units 103 and 104 as it is.
  • PPM Portable Pix Map file format
  • FIG. 9 is a view showing a face image which is a target image.
  • FIG. 9A is a view showing an image captured by the imaging unit 111 at the time of occurrence of the red-eye phenomenon
  • FIG. 9B is a view showing an image captured by the imaging unit 121 when the red-eye phenomenon does not occur.
  • the horizontal direction of the image is the X axis
  • the vertical direction of the image is the Y axis
  • one pixel is one coordinate point.
  • a candidate of an image serving as a feature (that is, a feature image candidate) is extracted from an input image, and the extracted feature image candidate is compared with a feature image representing a face area prepared in advance.
  • feature image candidates having high similarity are detected.
  • the similarity is obtained, for example, by collating the Gabor feature amount of the average face acquired in advance with the Gabor feature amount extracted by scanning the input image, and is obtained as the reciprocal of the absolute value of the difference between the two.
  • the face detection unit 131 specifies an area having the highest correlation in the image of FIG. 9A as the face image 301 as compared to the template prepared in advance.
  • the face image 311 is specified also in the image of FIG. 9B.
  • the face area detection process may be performed by detecting a skin color area in the image (that is, skin color area detection), or may be performed by detecting an elliptical portion (that is, ellipse detection). And may be performed by using a statistical pattern identification method. In addition to the above, any method may be adopted as long as it can perform the face detection.
  • the face part detection unit 132, 142 detects a face part group (that is, a corner, corner, eyes, etc.) from the face image received from the face detection unit 131, 141, and calculates position information of each face part as pupil information Output to the units 133 and 143.
  • the search area of the face part group is the face areas 301 and 311 specified in step S202. Face parts 302 and 312 are shown in FIGS. 9A and 9B, respectively.
  • the face part detection units 132 and 142 receive the face images 301 and 311 when they are input. The place with the highest likelihood regarding the correspondence may be detected as a face part.
  • the face part detection units 132 and 142 may search for face parts from within the face images 301 and 311 using a standard face part template.
  • step S204 the pupil information calculation units 133 and 143 receive the central position of the pupil image and the size of the pupil image (that is, the pupil diameter based on the position coordinates of each facial component received from the facial component detection units 132 and 142). Calculate).
  • a circular separability filter is applied to the eye regions 304 and 314 including the corners of the eyes and the corners obtained in step S203. That is, when the application position of the circular separability filter is moved in the eye regions 304 and 314, the average luminance of the inside of the filter circle is the highest among the positions where the average luminance of the filter circle is higher than the average luminance of the outside of the filter circle.
  • a region corresponding to the filter circle at a position where the degree of separation is high is detected as a pupil region (corresponding to the regions 303 and 313 in FIGS. 9A and 9B).
  • the coordinates and the diameter of the center of the circle of the separation degree filter corresponding to the detected pupil are acquired as the central position of the pupil image and the size of the pupil image.
  • the switching determination unit 105 calculates the red-eye occurrence intensity from the target image data received from the image input unit 101, and calculates the calculated red-eye occurrence intensity and the correlation characteristic between the red-eye occurrence intensity and the pupil detection accuracy rate. Based on this, either the pupil detection result of the pupil detection unit 103 or the pupil detection result of the pupil detection unit 104 is selected as a signal to be output to the processing unit (for example, the gaze direction calculation unit) in the subsequent stage.
  • the red eye occurrence intensity calculation unit 151 calculates the red eye occurrence intensity based on the input image and the pupil image detection result (that is, the central position of the pupil image and the size of the pupil image). .
  • the red-eye occurrence intensity V is calculated by the following equation (1). That is, the red-eye occurrence intensity indicates how high the luminance in the pupil is with respect to the luminance around the pupil.
  • P1 is the area 401 in the eye area image 304 (314) shown in FIG. 10, that is, the inner area of the pupil area 401.
  • P2 is a region 402 in the eye region image 304 (314) shown in FIG. 10, that is, a region outside the pupil region 401.
  • b is the luminance of each pixel.
  • N1 is the number of pixels present in P1.
  • N2 is the number of pixels present in P2.
  • the red-eye occurrence intensity is calculated for the target image received from the pupil detection unit 103 and the pupil image detection result.
  • step S206 the characteristic calculation unit 152 calculates the pupil detection accuracy rate corresponding to the red-eye occurrence intensity received from the red-eye occurrence intensity calculation unit 151 using the correlation characteristic data.
  • the correlation characteristic data is prepared in advance by experimental data or a characteristic model. Further, this correlation characteristic data represents the correlation characteristic between the red eye occurrence intensity and the pupil detection accuracy rate, and for example, as shown in FIG. 11, the horizontal axis is the red eye occurrence intensity and the vertical axis is the pupil detection accuracy rate, It may be a graph plotting experimental data.
  • a curve 501 represents correlation characteristic data when the red-eye effect actually occurs. That is, the curve 501 is a curve obtained from the red-eye occurrence intensity obtained from the target image obtained by the image input unit 101.
  • Curve 502 represents correlation characteristic data when no red-eye effect occurs. That is, the curve 502 is based on the target image obtained by the image input unit 102 in the same shooting environment as the red-eye occurrence intensity obtained from the target image obtained by the image input unit 101 in a certain shooting environment. It is a curve obtained by plotting the correct rate of pupil detection performed.
  • the curve 501 and the curve 502 intersect at the intersection point 503, and the pupil detection accuracy rate corresponding to the intersection point 503 is used as the switching determination reference value 504.
  • the switching judgment reference value 504 it is optimal for the switching judgment reference value to be the intersection of the two curves, the pupil detection accuracy rate at the intersection is higher than the predetermined allowable accuracy rate even if it is not necessarily the intersection.
  • the allowable accuracy rate may be used as the switching determination reference value.
  • the pupil detection accuracy rate obtained by adding or subtracting a predetermined value to or from the pupil detection accuracy rate at the intersection of two curves may be used as the switching determination reference value.
  • the characteristic calculation unit 152 causes the evaluation value storage unit 106 to store the pupil detection reliability.
  • the evaluation value storage unit 106 stores the pupil detection reliability received from the switching determination unit 105 in association with the imaging time of the target image used to specify the pupil detection reliability. However, if the imaging time and the pupil detection reliability are sufficiently large for the amount necessary for the process of step S208 described later, the evaluation value storage unit 106 erases the imaging time from the oldest one, and becomes vacant by erasure. The newly acquired time and pupil detection reliability may be overwritten in the second region.
  • step S208 the output signal selection unit 153 detects a pupil as a signal to be output to a processing unit (for example, a gaze direction calculation unit) in the subsequent stage based on the "fluctuation tendency characteristic" of the pupil detection reliability received from the characteristic calculation unit 152.
  • a processing unit for example, a gaze direction calculation unit
  • One of the pupil detection result of the unit 103 and the pupil detection result of the pupil detection unit 104 is selected.
  • the output signal selection unit 153 determines the pupil detection reliability. Calculate the fluctuation tendency characteristic of degree.
  • FIG. 12 is a diagram showing a graph formed from the pupil detection reliability received from the characteristic calculation unit 152 this time and the history of pupil detection reliability stored in the evaluation value storage unit 106.
  • the horizontal axis is imaging time
  • the vertical axis is pupil detection reliability.
  • the value itself of the pupil detection reliability stored in the evaluation value storage unit 106 is used, for example, a value obtained by taking a time average may be used, or an outlier is removed. You may use the value which took the time average.
  • the fluctuation tendency characteristic of the pupil detection reliability is calculated as follows.
  • the output signal selection unit 153 calculates the gradient of the time change of the pupil detection reliability at each imaging time.
  • the gradient D1 of the time change of the pupil detection reliability can be calculated by the following equation (2). Where E is pupil detection reliability and t is imaging time.
  • the output signal selection unit 153 selects one of the pupil detection result of the pupil detection unit 103 and the pupil detection result of the pupil detection unit 104 based on the calculated fluctuation tendency characteristic, and selects the selected pupil detection result in the subsequent stage. Output to processing unit.
  • the selection criteria are as follows. That is, (in FIG. 12, a period 602) a predetermined time period at the pupil detection reliability is smaller than the switching determination reference value 504, and the negative (i.e. the slope D 1 are continuously, pupil detection reliability continuously Is reduced, the pupil detection result of the pupil detection unit 104 is selected. That is, when the pupil detection reliability curve 603 included in the predetermined period is below the switching determination reference value 504 and in a decreasing tendency, the pupil detection result of the pupil detection unit 104 is selected. Be done.
  • a predetermined time period at the pupil detection reliability is larger than the switching determination reference value 504, and the positive and the slope D 1 are continuous (i.e., the pupil detection reliability continuously Is increased, the pupil detection result of the pupil detection unit 103 is selected.
  • the previously selected one of the pupil detection result of the pupil detection unit 103 and the pupil detection result of the pupil detection unit 104 is also selected this time.
  • the pupil detection reliability curve 601 which is out of the predetermined period is a portion which is not necessary for the processing of the output signal selection unit 153. Therefore, the evaluation value storage unit 106 may delete data corresponding to the curve 601.
  • the red-eye occurrence intensity becomes stronger, the brightness of the pupil becomes higher than the brightness of the iris, so detection of the pupil on the image becomes easy. Therefore, when the red eye phenomenon occurs, detecting the pupil using the image obtained by the image input unit 101 has better detection performance than using the image obtained by the image input unit 102. However, when the red-eye occurrence intensity is weak, the difference between the brightness of the pupil and the brightness of the iris becomes small. Therefore, in a situation where the red-eye phenomenon starts to occur, in the image obtained by the image input unit 101, the difference between the luminance of the pupil and the luminance of the iris is almost zero, and detection of the pupil becomes difficult.
  • the occurrence of the red eye phenomenon is weaker than the image obtained by the image input unit 101, so the pupil does not shine and the pupil brightness is sufficient for iris brightness. It gets lower. Therefore, in the image obtained by the image input unit 102, the difference between the brightness of the pupil and the brightness of the iris is larger than the image obtained by the image input unit 101, and the detection performance is relatively improved. As described above, since the accuracy of the pupil detection result of the pupil detection unit 103 and the pupil detection result of the pupil detection unit 104 is reversed depending on the red-eye occurrence intensity, the accuracy of the subsequent processing can be obtained by appropriately selecting the higher accuracy. It can be improved.
  • step S209 the gaze direction calculation unit (not shown) calculates the gaze direction from the coordinates of the face part group obtained in step S203 and the central coordinates of the pupil image obtained in step S204.
  • the gaze direction is, for example, a face direction vector representing the direction of the front direction of the face calculated from the coordinates of the face part group, and a gaze direction vector to the front direction of the face calculated from the coordinates of the corner of the eye , Is calculated.
  • the face direction vector is calculated, for example, by the following procedure.
  • the gaze direction calculation unit converts the three-dimensional coordinates of the driver's face parts group acquired in advance by rotating and translating the three-dimensional coordinates. Then, the gaze direction calculation unit projects the converted three-dimensional coordinates on the target image used to obtain the pupil detection result selected in step S208. Then, the gaze direction calculation unit calculates a rotation / translation parameter that most closely matches the face part group detected in step S203.
  • a combination of a vector representing the direction in which the driver's face is facing and a vector rotated by the determined rotation parameter is the face direction It is a vector.
  • the gaze direction vector is calculated, for example, by the following procedure.
  • the gaze direction calculation unit stores in advance the driver's face part group and the three-dimensional coordinates of the pupil center when looking in the same direction as the face direction.
  • a position moved by a predetermined distance in the opposite direction to the sight line direction is calculated as the eyeball center position.
  • the predetermined distance is suitably about 12 mm which is the radius of a general adult eye, but not limited to the above value, any value may be used.
  • three-dimensional coordinates of the eyeball center at the time of detection are obtained using the face rotation and translation parameters acquired at the time of face direction vector calculation.
  • the pupil is on the sphere whose center is the eyeball center and whose radius is the predetermined distance, it is searched where on the sphere the detected pupil center is. Finally, a vector connecting the eyeball center and the searched point on the sphere is calculated as the gaze direction.
  • step S210 the alarm device (not shown) determines whether the driver is facing the front from the direction of the line of sight obtained in step S209, and executes alarm processing based on the determination result. That is, an alarm is issued when the sight line direction faces outside the predetermined angle range for a predetermined time or more.
  • This warning is a display including a warning message, a voice message by a voice synthesis LSI, LED light emission, sound emission by a speaker or the like, or a combination of these.
  • the alarm count W is increased by one. Then, when the alarm count W exceeds a predetermined threshold value, the alarm device considers that the driver has not looked at the front for a long time, and issues an alarm. If it is determined that the user is facing the front, the alarm device sets the alarm count W to zero. The alarm count W is zero in the initial state.
  • step S211 the end determination is performed, and when the end condition is satisfied, a series of processing ends. On the other hand, when the end condition is not satisfied, the processing flow returns to step S201.
  • the end determination may be performed by manual input of the end instruction, or may be performed using some external signal as a trigger.
  • switching determination section 105 is the periphery outside the first pupil image of the luminance in the first pupil image detected by pupil detection section 103.
  • the detection result of the first pupil image or the pupil detection unit 104 based on the calculated value of the red eye generation intensity which is relative luminance to the image luminance and the correlation characteristic between the red eye generation intensity and the pupil detection accuracy value
  • the detection result of the second pupil image is selectively output.
  • the pupil detection unit 103 uses the first person image captured by the image input unit 101 including the imaging unit 111 and the irradiation unit 112, which are separated from each other by d1.
  • the pupil detection unit 104 uses the second person image captured by the image input unit 102 including the imaging unit 121 and the irradiation unit 122, which are separated from each other by d2.
  • the separation distance d1 is smaller than the separation distance d2.
  • the detection result of the first pupil image or the detection result of the second pupil image based on the estimated accuracy value of the pupil detection using the first pupil image relatively prone to the red eye phenomenon
  • the redeye occurrence intensity which is the relative brightness of the brightness in the first pupil image and the brightness of the peripheral image outside the first pupil image
  • the near infrared rays are used. Even when a gray scale image is used, it is possible to select and output highly accurate detection results.
  • the pupil detection result is selected based on the illuminance coefficient, in addition to the calculated red-eye occurrence intensity and the correlation characteristic between the red-eye occurrence intensity and the pupil detection accuracy rate.
  • FIG. 13 is a block diagram showing a configuration of pupil detection apparatus 700 according to Embodiment 2 of the present invention.
  • the pupil detection device 700 includes an illuminance measurement instrument 701, a switching determination unit 702, and an evaluation value storage unit 703.
  • the illuminance measuring instrument 701 measures the illuminance at the time of imaging by the image input units 101 and 102, and outputs the measured illuminance to the evaluation value storage unit 703.
  • the illuminance measuring instrument 701 is installed near the face of the driver or at a position where the illuminance in the gaze direction of the driver can be measured.
  • the switching determination unit 702 calculates “red-eye occurrence intensity” from each of the target image data received from the image input unit 101 and the target image data received from the image input unit 102, and the calculated red-eye occurrence intensity, red-eye occurrence intensity and pupil
  • the pupil detection result of pupil detection unit 103 and pupil detection unit 104 as a signal to be output to a processing unit (for example, line-of-sight direction calculation unit) in a later stage based on correlation characteristics with the detection accuracy rate and measured illuminance. Select one of the pupil detection results.
  • the switching determination unit 702 has an output signal selection unit 711 as shown in FIG.
  • the output signal selection unit 711 corrects the pupil detection reliability received from the characteristic calculation unit 152 based on the illuminance, and based on the “variation tendency characteristic” of the pupil detection reliability after the correction, the processing unit in the subsequent stage (for example, As a signal to be output to the direction calculation unit, either the pupil detection result of the pupil detection unit 103 or the pupil detection result of the pupil detection unit 104 is selected.
  • the correction based on the illumination with respect to the pupil detection reliability will be described in detail later.
  • the evaluation value storage unit 703 stores the pupil detection reliability received from the switching determination unit 702 and the illuminance received from the illuminance measurement instrument 701 in association with the imaging time of the target image used to specify the pupil detection reliability.
  • FIG. 15 is a flowchart for explaining the operation of pupil detection apparatus 700.
  • step S801 the illuminance measuring instrument 701 measures the illuminance at the time of imaging by the image input units 101 and 102.
  • the target position of the illuminance measurement is optimal for the driver's face area or the driver's gaze direction, it is not limited to this, and for example, the illuminance outside the car equipped with the pupil detection device 700 Also good.
  • step S802 the switching determination unit 702 calculates “red eye occurrence intensity” from each of the target image data received from the image input unit 101 and the target image data received from the image input unit 102, and the red eye occurrence intensity calculated and red eye occurrence.
  • the pupil detection result of the pupil detection unit 103 and the pupil detection as a signal to be output to the processing unit (for example, the gaze direction calculation unit) of the subsequent stage based on the correlation characteristic between the intensity and the pupil detection accuracy rate and the measured illuminance.
  • One of the pupil detection results of the unit 104 is selected.
  • the output signal selection unit 711 corrects the pupil detection reliability currently received from the characteristic calculation unit 152 and the pupil detection reliability stored in the evaluation value storage unit 703 based on the illuminance. This correction is performed by the following equation (3). That is, by multiplying the pupil detection reliability E by the illuminance coefficient L, the illuminance reflection pupil detection reliability F is calculated.
  • FIG. 16 shows the correspondence between the illuminance and the illuminance coefficient.
  • the illumination coefficient L is set to be smaller as the illumination becomes higher.
  • FIGS. 16A and 16B the available correspondence relationship between the illuminance and the illuminance coefficient is not limited to this. Any correspondence relationship may be used as long as the gradient of the illuminance coefficient with respect to the illuminance does not become positive.
  • the output signal selection unit 711 outputs the corrected pupil detection reliability (that is, the illuminance reflection pupil detection reliability F) to the processing unit (for example, gaze direction calculation unit) at the subsequent stage based on the fluctuation tendency characteristic.
  • the processing unit for example, gaze direction calculation unit
  • illuminance reflected pupil detection reliability gradient D 2 of the time variation of F obtained in the calculation of the variation trend characteristics are determined by the following equation (4).
  • the output signal selection unit 711 selects either the pupil detection result of the pupil detection unit 103 or the pupil detection result of the pupil detection unit 104 based on the calculated fluctuation tendency characteristic and the illuminance, and the selected pupil detection result Is output to the subsequent processing unit.
  • the output signal selection unit 711 selects the pupil detection result of the pupil detection unit 103 when the illuminance is equal to or more than a predetermined value in the predetermined period 602 described above.
  • the output signal selection unit 711 determines the pupil detection result of the pupil detection unit 103 and the calculated fluctuation tendency characteristic. One of the pupil detection results of the pupil detection unit 104 is selected, and the selected pupil detection result is output to the processing unit of the subsequent stage.
  • the selection criteria are as follows. That is, (in FIG. 12, a period 602) a predetermined time period at the pupil detection reliability is smaller than the switching determination reference value 504, and the negative (i.e. the gradient D 2 are continuously, pupil detection reliability continuously Is reduced, the pupil detection result of the pupil detection unit 104 is selected. That is, when the pupil detection reliability curve 603 included in the predetermined period is below the switching determination reference value 504 and in a decreasing tendency, the pupil detection result of the pupil detection unit 104 is selected. Be done.
  • a predetermined time period at the pupil detection reliability is larger than the switching determination reference value 504, and the positive and the gradient D 2 are continuous (i.e., the pupil detection reliability continuously Is increased, the pupil detection result of the pupil detection unit 103 is selected.
  • the previously selected one of the pupil detection result of the pupil detection unit 103 and the pupil detection result of the pupil detection unit 104 is also selected this time.
  • output signal selection unit 711 corrects the fluctuation tendency characteristic based on the illuminance at the time of imaging, and based on the corrected fluctuation tendency characteristic, A detection result of one pupil image or a detection result of a second pupil image is selected.
  • FIG. 17 is a block diagram showing a configuration of pupil detection apparatus 900 according to Embodiment 3 of the present invention.
  • pupil detection apparatus 900 has mode selection section 901 and switching determination section 902.
  • the mode selection unit 901 selects one of a plurality of prepared modes.
  • the plurality of modes include, for example, a first mode in which a person who is the target is wearing sunglasses and a second mode in which the person is not wearing sunglasses.
  • Information on the selected mode is output to the switching determination unit 902.
  • the switching determination unit 902 calculates “red-eye occurrence intensity” from each of the target image data received from the image input unit 101 and the target image data received from the image input unit 102, and the calculated red-eye occurrence intensity, red-eye occurrence intensity and pupil Either the pupil detection result of the pupil detection unit 103 or the pupil detection result of the pupil detection unit 104 as a signal to be output to the processing unit (for example, the gaze direction calculation unit) of the subsequent stage based on the correlation characteristic with the detection accuracy rate.
  • the processing unit for example, the gaze direction calculation unit
  • the switching determination unit 902 switches the correlation characteristic used to select the pupil detection result according to the mode information received from the mode selection unit 901.
  • the switching determination unit 902 has a characteristic calculation unit 911.
  • the characteristic calculation unit 911 has correlation characteristic data corresponding to each of a plurality of modes selectable by the mode selection unit 901. Then, the correlation characteristic data corresponding to the mode information received from the mode selection unit 901 is selected, and the pupil detection accuracy rate corresponding to the red eye generation intensity received from the red eye generation intensity calculation unit 151 is calculated using the correlation characteristic data.
  • the pupil detection result is selected using the correlation characteristic optimum for each mode, the pupil detection result with high accuracy can be selected with high accuracy.
  • the pupil detection device 100 may be configured to include an imaging unit configured of two imaging units and one irradiation unit (see FIG. 19A).
  • pupil detection apparatus 100 may be configured to include an imaging unit configured of one imaging unit and two irradiation units (see FIG. 19B). The point is that two pairs of the imaging unit and the irradiation unit and different in the separation distance between the imaging unit and the irradiation unit may be present.
  • each function block employed in the description of each of the aforementioned embodiments may typically be implemented as an LSI constituted by an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include some or all. Although an LSI is used here, it may be called an IC, a system LSI, a super LSI, or an ultra LSI depending on the degree of integration. Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • a programmable field programmable gate array may be used, or a reconfigurable processor may be used which can reconfigure connection and setting of circuit cells in the LSI.
  • FPGA field programmable gate array
  • a reconfigurable processor may be used which can reconfigure connection and setting of circuit cells in the LSI.
  • the pupil detection device and the pupil detection method of the present invention are useful as a device capable of selecting and outputting a detection result with high accuracy even when a grayscale image using near-infrared light is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Eye Examination Apparatus (AREA)
  • Image Processing (AREA)

Abstract

 近赤外線を用いたグレースケール画像が用いられる場合でも、精度の高い検出結果を選択し出力することができる瞳孔検出装置、及び瞳孔検出方法。瞳孔検出装置(100)にて、切替判定部(105)が、瞳孔検出部(103)で検出された第1瞳孔画像内の輝度の、第1瞳孔画像外の周辺画像の輝度に対する相対輝度である赤目発生強度の算出値と、赤目発生強度と瞳孔検出精度値との相関特性とに基づいて、第1瞳孔画像の検出結果又は瞳孔検出部(104)で検出された第2瞳孔画像の検出結果を選択的に出力する。瞳孔検出装置(100)は、離間距離d1だけ離れた撮像部(111)と照射部(112)とからなる第1撮像ペアと、離間距離d2が第1撮像ペアよりも大きい第2撮像ペアとを有する。瞳孔検出部(103)は、第1の撮像ペアで撮像された画像を用いる一方、瞳孔検出部(104)は、第2の撮像ペアで撮像された画像を用いる。

Description

瞳孔検出装置及び瞳孔検出方法
 本発明は、瞳孔検出装置及び瞳孔検出方法に関する。
 視線検出又は表情検出などでは、瞳孔検出が行われる。この瞳孔検出が照度の低い場合に行われると、「赤目現象」が起きることがある。この赤目現象は、特に、暗所などで瞳孔が大きく開いた状態でフラッシュ撮影した場合に、網膜の血管が撮像されることにより生じる。赤目現象が発生している瞳孔画像の瞳孔周辺画像に対する輝度は、赤目現象が発生していない通常の瞳孔画像の瞳孔周辺画像に対する輝度よりも大きくなる。従って、赤目現象が発生する条件下において、赤目現象の発生していない通常の瞳孔を対象にした瞳孔検出手法を適用しても、安定した瞳孔検出を行うことは困難である。
 このような課題に対して、従来、赤目現象が発生した際の瞳孔検出手法が提案されている(例えば、特許文献1参照)。この瞳孔検出方法では、目領域の彩度及び輝度に基づいて、赤目現象が発生している瞳孔画像が検出される。
特開2009-171318号公報
 しかしながら、上記した従来の瞳孔検出方法では、赤目検出の評価値として、彩度が用いられている。従って、近赤外線を用いたグレースケールの画像に対して、その瞳孔検出を適用すると検出精度が低下してしまうか、又は、そもそも適用することが困難である。また、瞳孔検出結果は、上述の通り、視線検出に用いられることがある。従って、瞳孔検出精度が低下すると、瞳孔検出結果が用いられる処理(例えば、視線検出処理)の精度も低下してしまう。
 本発明の目的は、近赤外線を用いたグレースケール画像が用いられる場合でも、精度の高い検出結果を選択し出力することができる瞳孔検出装置、及び瞳孔検出方法を提供することである。
 本発明の瞳孔検出装置は、所定の離間距離だけ離れた撮像手段と撮像時に発光する発光手段とからなる第1の撮像ペアと、前記所定の離間距離が第1の撮像ペアよりも大きい第2撮像ペアと、前記第1の撮像ペアによって人物が撮像された第1の人物画像から第1の瞳孔画像を検出し、前記第2の撮像ペアによって前記人物が撮像された第2の人物画像から、第2の瞳孔画像を検出する検出手段と、前記第1の瞳孔画像内の輝度の、前記第1の瞳孔画像外の周辺画像の輝度に対する相対輝度である赤目発生強度の算出値と、赤目発生強度と瞳孔検出精度値との相関特性とに基づいて、前記第1の瞳孔画像の検出結果又は前記第2の瞳孔画像の検出結果を選択的に出力する出力切替手段と、を具備する。
 本発明の瞳孔検出方法は、所定の離間距離だけ離れた撮像手段と撮像時に発光する発光手段とからなる第1の撮像ペアと、前記所定の離間距離が第1の撮像ペアよりも大きい第2撮像ペアと、を具備する瞳孔検出装置における、瞳孔検出方法であって、前記第1の撮像ペアによって人物が撮像された第1の人物画像から第1の瞳孔画像を検出し、前記第2の撮像ペアによって前記人物が撮像された第2の人物画像から、第2の瞳孔画像を検出するステップと、前記第1の瞳孔画像内の輝度の、前記第1の瞳孔画像外の周辺画像の輝度に対する相対輝度である赤目発生強度の算出値と、赤目発生強度と瞳孔検出精度値との相関特性とに基づいて、前記第1の瞳孔画像の検出結果又は前記第2の瞳孔画像の検出結果を選択的に出力するステップと、を具備する。
 本発明によれば、近赤外線を用いたグレースケール画像が用いられる場合でも、精度の高い検出結果を選択し出力することができる瞳孔検出装置、及び瞳孔検出方法を提供することができる。
本発明の実施の形態1に係る瞳孔検出装置の構成を示すブロック図 画像入力部の構成を示すブロック図 画像入力部の構成を示すブロック図 撮像ユニットの構成を示す図 瞳孔検出部の構成を示すブロック図 瞳孔検出部の構成を示すブロック図 切替判定部の構成を示すブロック図 瞳孔検出装置の動作説明に供するフロー図 ターゲット画像である顔画像を示す図 赤目発生強度の説明に供する図 赤目発生強度と瞳孔検出正解率との相関特性の説明に供する図 変動傾向特性の説明に供する図 本発明の実施の形態2に係る瞳孔検出装置の構成を示すブロック図 切替判定部の構成を示すブロック図 瞳孔検出装置の動作説明に供するフロー図 照度と照度係数との対応関係を示す図 本発明の実施の形態3に係る瞳孔検出装置の構成を示すブロック図 切替判定部の構成を示すブロック図 画像入力部の構成バリエーションを示す図
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
 [実施の形態1]
 [瞳孔検出装置の構成]
 図1は、本発明の実施の形態1に係る瞳孔検出装置100の構成を示すブロック図である。瞳孔検出装置100は、例えば、自動車の車室内に設けられ、警報装置と接続されて使用される。この警報装置は、瞳孔検出装置100の検出結果に基づいて、ドライバーの視線方向を検出し、ドライバーが正面を長時間向かなかった場合には、ドライバーに対して警告を行って注意を喚起する。以下では、特に、瞳孔検出装置100が自動車の車室内に設定された場合を例にとって説明する。
 図1において、瞳孔検出装置100は、画像入力部101,102と、瞳孔検出部103,104と、切替判定部105と、評価値記憶部106とを有する。
 画像入力部101,102は、発光して撮像ターゲット(つまり、ここでは、人物)を照射すると共に、その撮像ターゲットを撮像する。このターゲット画像データは、瞳孔検出部103,104へそれぞれ出力される。
 具体的には、画像入力部101は、図2に示すように、撮像部111、照射部112、及び同期部113を有する。
 撮像部111は、同期部113から受け取る同期信号に応じたタイミングで撮像ターゲットを撮像し、ターゲット画像信号を瞳孔検出部103へ出力する。撮像部111は、CCD(Charge Coupled Devices)又はCMOS(Complementary Metal Oxide Semiconductor)などのイメージセンサを備えている。
 照射部112は、同期部113から受け取る同期信号に応じたタイミングで発光する。照射部112は、赤外線LEDを備えている。この赤外線LEDから照射される赤外線は不可視であるが、撮像部111では感知される。すなわち、撮像部111は、赤外線感度を有している。なお、撮像に十分な光量が得られる場合には、照射部112は、同期パルス駆動ではなく、常時点灯していても良い。
 同期部113は、撮像部111及び照射部112へ同期信号を出力することにより、照射部112の発光タイミングと、撮像部111の露光タイミングとを制御する。これにより、撮像ターゲットが照射されたタイミングで、撮像ターゲットを撮像することができる。
 また、画像入力部102は、図3に示すように、撮像部121、照射部122、及び同期部123を有する。撮像部121、照射部122、及び同期部123は、撮像部111、照射部112、及び同期部113と同じ機能を有している。ただし、撮像部111と照射部112との離間距離d1(つまり、撮像部111の光軸から照射部112までの距離)は、撮像部121と照射部122との離間処理d2よりも短い。すなわち、撮像部111で撮像された画像では、撮像部121で撮像された画像よりも、赤目現象が発生し易くなっている。
 以上の構成を有する画像入力部101,102は、例えば、図4に示すような撮像ユニット200を構成する。撮像ユニット200は、例えば、車のハンドルの上、又は、ダッシュボード上など、運転席の正面に設置される。これにより、照射部112,122によって運転者の顔が照射されると共に、画像入力部101,102によって運転者の顔が撮影される。
 図1に戻り、瞳孔検出部103,104は、画像入力部101から受け取るターゲット画像及び画像入力部102から受け取るターゲット画像から、瞳孔画像を検出する。
 具体的には、瞳孔検出部103は、図5に示すように、顔検出部131と、顔部品検出部132と、瞳孔情報算出部133とを有する。
 顔検出部131は、画像入力部101から受け取るターゲット画像から顔画像を検出し、顔画像データを顔部品検出部132へ出力する。
 顔部品検出部132は、顔検出部131から受け取る顔画像から顔部品群(つまり、目尻、目頭など)を検出し、各顔部品の位置座標を瞳孔情報算出部133へ出力する。
 瞳孔情報算出部133は、顔部品検出部132から受け取る、各顔部品の位置座標に基づいて、瞳孔画像の中心位置、及び、瞳孔画像の大きさ(つまり、瞳孔径)を算出する。この瞳孔画像の中心位置、及び、瞳孔画像の大きさは、瞳孔画像検出結果として、画像入力部101から出力されたターゲット画像と共に切替判定部105へ出力される。なお、瞳孔画像の中心位置及び瞳孔画像の大きさは、右目及び左目のそれぞれについて算出される。
 また、瞳孔検出部104は、図6に示すように、顔検出部141と、顔部品検出部142と、瞳孔情報算出部143とを有する。顔検出部141と、顔部品検出部142と、瞳孔情報算出部143とは、顔検出部131と、顔部品検出部132と、瞳孔情報算出部133と同様の機能を有している。ただし、処理対象データが画像入力部102から受け取るターゲット画像である点で異なっている。
 図1に戻り、切替判定部105は、画像入力部101から受け取るターゲット画像データから「赤目発生強度」を算出し、算出された赤目発生強度と、赤目発生強度と瞳孔検出正解率との相関特性とに基づいて、後段の処理部(例えば、視線方向算出部)へ出力する信号として、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択する。
 具体的には、切替判定部105は、図7に示すように、赤目発生強度算出部151と、特性算出部152と、出力信号選択部153とを有する。
 赤目発生強度算出部151は、入力画像及び瞳孔画像検出結果に基づいて、赤目発生強度を算出する。この赤目発生強度は、瞳孔検出部103から受け取るターゲット画像及び瞳孔画像検出結果について算出される。この赤目発生強度は、瞳孔画像領域内の輝度の瞳孔画像領域の外側に位置する瞳孔画像周辺領域の輝度に対する「相対輝度」を意味する。この赤目発生強度については、後に詳しく説明する。
 特性算出部152は、赤目発生強度と瞳孔検出正解率(つまり、瞳孔検出精度値)との相関特性に関するデータ(以下では、単に「相関特性データ」と呼ばれることがある)を有している。特性算出部152は、赤目発生強度算出部151から受け取る赤目発生強度に対応する瞳孔検出正解率を、相関特性データを用いて算出する。この算出された瞳孔検出正解率は、出力信号選択部153及び評価値記憶部106へ出力される。なお、以下では、この算出された瞳孔検出正解率は、相関特性データにおける瞳孔検出正解率と明確に区別するために、「瞳孔検出信頼度」と呼ばれることがある。
 出力信号選択部153は、特性算出部152から受け取る瞳孔検出信頼度の「変動傾向特性」に基づいて、後段の処理部(例えば、視線方向算出部)へ出力する信号として、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択する。
 具体的には、特性算出部152から過去に出力された瞳孔検出信頼度の履歴が評価値記憶部106に記憶されているので、出力信号選択部153は、特性算出部152から今回受け取った瞳孔検出信頼度と、評価値記憶部106に記憶されている瞳孔検出信頼度の履歴とに基づいて、瞳孔検出信頼度の変動傾向特性を算出する。そして、出力信号選択部153は、算出した変動傾向特性に基づいて、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択し、選択した瞳孔検出結果を後段の処理部に出力する。この瞳孔検出信頼度の変動傾向特性については、後に詳しく説明する。
 評価値記憶部106は、切替判定部105から受け取る瞳孔検出信頼度を、当該瞳孔検出信頼度の特定に用いられたターゲット画像の撮像時刻と対応付けて記憶する。
 [瞳孔検出装置100の動作]
 以上の構成を有する瞳孔検出装置100の動作について説明する。図8は、瞳孔検出装置100の動作説明に供するフロー図である。図8のフロー図には、上記した警報装置における処理フローも含まれている。すなわち、図8には、瞳孔検出装置100が警報装置に適用された場合の処理フローが示されている。
 図8に示す処理フローは、撮影作業の開始と共にスタートする。撮影作業は、ユーザの操作によって開始されても良いし、外的な何らかの信号をトリガとして開始されても良い。
 〈画像取得処理〉
 ステップS201で画像入力部101,102は、発光して撮像ターゲット(つまり、ここでは、人物)を照射すると共に、その撮像ターゲットを撮像する。これにより、ターゲット画像が取得される。
 具体的には、画像入力部101の照射部112は、不可視の近赤外線光(例えば、波長850nmの光)でターゲットを照射する。ターゲットが照射されているタイミングで、撮像部111は、そのターゲットを撮像する。撮像部111と照射部112との離間距離d1は、十分短い(例えば、10mm)。従って、周辺の照度が低下してくると瞳孔径が大きくなり、撮像部111で撮像されたターゲット画像では、赤目現象が発生する。
 一方、画像入力部102の照射部122も、照射部112とは別のタイミングで、不可視の近赤外線光(例えば、波長850nmの光)でターゲットを照射する。照射部122によってターゲットが照射されているタイミングで、撮像部121は、そのターゲットを撮像する。撮像部121と照射部122との離間距離d2は、d1よりも大きい。従って、撮像部121で撮像されたターゲット画像では、撮像部111で撮像されたターゲット画像よりも、赤目現象の発生確率が低く、仮に赤目現象が発生する場合でも、赤目発生強度が低くなる。ただし、赤目発生強度が十分大きい場合には、瞳孔の光る箇所の輝度が画像の輝度上限に達するため、撮像部111で撮像されたターゲット画像と撮像部121で撮像されたターゲット画像とでは、同等の赤目現象発生強度が観測されることもある。
 撮像部111及び撮像部121としては、例えば、CMOSイメージセンサとレンズを備えたデジタルカメラが想定される。従って、撮像部111及び撮像部121で撮像されたPPM(Portable Pix Map file format)形式の画像等が、画像入力部101,102に含まれる、図示されていない画像記憶部(例えば、PCのメモリ空間)に一時記憶された後、PPM形式のまま瞳孔検出部103,104へ出力される。
 〈瞳孔検出処理〉
 ステップS202で顔検出部131,141は、画像入力部101,102から受け取るターゲット画像から顔画像を検出する。図9は、ターゲット画像である顔画像を示す図である。図9Aは、撮像部111で撮像した、赤目現象発生時の画像を示す図であり、図9Bは、撮像部121で撮像した、赤目現象が発生していない時の画像を示す図である。なお、撮像した顔画像では、例えば、画像横方向をX軸、画像縦方向をY軸とし、1画素が1座標点である。
 顔領域検出処理では、例えば、入力画像から、特徴となる画像の候補(つまり、特徴画像候補)を抽出し、抽出された特徴画像候補と、あらかじめ用意した顔領域を表す特徴画像とを比較することにより、類似度の高い特徴画像候補を検出する。類似度は、例えば、あらかじめ取得した平均顔のガボール特徴量と、入力画像をスキャンすることにより抽出されるガボール特徴量とを照合し、両者の差分の絶対値の逆数として求められる。
 この場合、顔検出部131は、あらかじめ用意したテンプレートと比べて、図9Aの画像の中で最も相関の高い領域を、顔画像301として特定する。図9Bの画像中でも同様に、顔画像311が特定される。なお、顔領域検出処理は、画像中から肌色領域を検出すること(つまり、肌色領域検出)によって行われても良いし、楕円部分を検出すること(つまり、楕円検出)により行われても良いし、統計的パターン識別手法を用いることにより行われても良い。その他、上記顔検出を行うことができる技術であれば、どのような方法が採用されても良い。
 ステップS203で顔部品検出部132,142は、顔検出部131,141から受け取る顔画像から顔部品群(つまり、口角、目尻、目頭など)を検出し、各顔部品の位置座標を瞳孔情報算出部133,143へ出力する。顔部品群の探索領域は、ステップS202で特定された顔領域301,311である。図9A,Bには、それぞれ顔部品群302,312が示されている。
 顔部品群検出処理では、例えば、分離度フィルタを用いて、口角、目尻、目頭などの顔部品の端点又は鼻の穴などの2次元座標が検出される。また、あらかじめ複数の顔画像と顔画像に対応する顔部品の位置との対応関係を学習器に学習させておき、顔部品検出部132,142は、顔画像301,311が入力された際に、その対応関係に関して最も尤度が高い場所を顔部品として検出しても良い。又は、顔部品検出部132,142は、標準的な顔部品のテンプレートを用いて、顔画像301,311内から顔部品を探索しても良い。
 ステップS204で瞳孔情報算出部133,143は、顔部品検出部132,142から受け取る、各顔部品の位置座標に基づいて、瞳孔画像の中心位置、及び、瞳孔画像の大きさ(つまり、瞳孔径)を算出する。
 瞳孔検出処理では、例えば、ステップS203で得られた目尻、目頭を含む目領域304,314に対して円形分離度フィルタが適用される。すなわち、目領域304,314内で円形分離度フィルタの適用位置を移動させた時に、フィルタの円の内側の平均輝度がフィルタの円の外側の平均輝度よりも高くなる位置の内、最も輝度の分離度が高くなる位置でのフィルタ円に対応する領域を瞳孔領域(図9A,Bでは、領域303,313に対応する)として検出する。このとき、検出した瞳孔に相当する分離度フィルタの円の中心の座標及び直径を、瞳孔画像の中心位置及び瞳孔画像の大きさとして取得する。
 〈切替判定処理〉
 ステップS205-S208で切替判定部105は、画像入力部101から受け取るターゲット画像データから赤目発生強度を算出し、算出された赤目発生強度と、赤目発生強度と瞳孔検出正解率との相関特性とに基づいて、後段の処理部(例えば、視線方向算出部)へ出力する信号として、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択する。
 具体的には、ステップS205で赤目発生強度算出部151は、入力画像及び瞳孔画像検出結果(つまり、瞳孔画像の中心位置、及び、瞳孔画像の大きさ)に基づいて、赤目発生強度を算出する。
 赤目発生強度Vは、次の式(1)によって算出される。すなわち、赤目発生強度は、瞳孔周辺の輝度に対して、瞳孔内の輝度がどの程度高いかを表す。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、P1は、図10に示される目領域画像304(314)の内の領域401、つまり、瞳孔領域401の内部領域である。P2は、図10に示される目領域画像304(314)の内の領域402、つまり、瞳孔領域401の外部領域である。bは、各画素の輝度である。N1は、P1内に存在する画素の数である。N2は、P2内に存在する画素の数である。
 この赤目発生強度は、瞳孔検出部103から受け取るターゲット画像及び瞳孔画像検出結果について算出される。
 ステップS206で特性算出部152は、赤目発生強度算出部151から受け取る赤目発生強度に対応する瞳孔検出正解率を、相関特性データを用いて算出する。
 この相関特性データは、あらかじめ実験データ又は特性モデルなどによって用意される。また、この相関特性データは、赤目発生強度と瞳孔検出正解率との相関特性を表しており、例えば、図11に示すように、横軸を赤目発生強度、縦軸を瞳孔検出正解率とし、実験データをプロットしたグラフであっても良い。
 図11において、曲線501は、赤目現象が実際に起きたときの、相関特性データを表す。すなわち、曲線501は、画像入力部101によって得られたターゲット画像から求められる赤目発生強度から得られる曲線である。また、曲線502は、赤目現象が起きていないときの、相関特性データを表す。すなわち、曲線502は、或る撮影環境で、画像入力部101によって得られたターゲット画像から求められる赤目発生強度に対して、同じ撮影環境で、画像入力部102によって得られたターゲット画像に基づいて行われる瞳孔検出の正解率をプロットすることにより得られる曲線である。
 また、曲線501と曲線502とは、交点503で交わり、交点503に対応する瞳孔検出正解率は、切替判断基準値504として用いられる。赤目発生強度が切替判断基準値504よりも大きいと、瞳孔検出部103の瞳孔検出結果の信頼性の方が瞳孔検出部104の瞳孔検出結果よりも高くなる。ただし、切替判断基準値は、2つの曲線の交点とするのが最適であるが、必ずしも交点でなくても、例えば、交点の瞳孔検出正解率があらかじめ定められた許容される正解率よりも高い場合には、この許容される正解率を切替判断基準値としても良い。又は、2つの曲線の交点での瞳孔検出正解率に対して、所定値を加算又は減算することにより得られる瞳孔検出正解率を切替判断基準値としても良い。
 ステップS207で特性算出部152は、瞳孔検出信頼度を評価値記憶部106に記憶させる。評価値記憶部106は、切替判定部105から受け取る瞳孔検出信頼度を、当該瞳孔検出信頼度の特定に用いられたターゲット画像の撮像時刻と対応付けて記憶する。ただし、撮像時刻と瞳孔検出信頼度とが、後述のステップS208の処理に必要な量に対して十分多い場合には、評価値記憶部106は、撮影時刻が古いものから消去し、消去によって空いた領域に、新たに取得した時刻と瞳孔検出信頼度とを上書きしても良い。
 ステップS208で出力信号選択部153は、特性算出部152から受け取る瞳孔検出信頼度の「変動傾向特性」に基づいて、後段の処理部(例えば、視線方向算出部)へ出力する信号として、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択する。
 具体的には、出力信号選択部153は、特性算出部152から今回受け取った瞳孔検出信頼度と、評価値記憶部106に記憶されている瞳孔検出信頼度の履歴とに基づいて、瞳孔検出信頼度の変動傾向特性を算出する。
 図12は、特性算出部152から今回受け取った瞳孔検出信頼度と、評価値記憶部106に記憶されている瞳孔検出信頼度の履歴とから形成されるグラフを示す図である。このグラフでは、横軸が撮像時刻、縦軸が瞳孔検出信頼度である。なお、ここでは、評価値記憶部106に記憶されている瞳孔検出信頼度の値そのものを用いているが、例えば、時間平均をとった値を用いても良いし、又は、はずれ値を除いた時間平均をとった値を用いても良い。
 瞳孔検出信頼度の変動傾向特性は、具体的には、次のように算出される。先ず、出力信号選択部153は、各撮像時刻における瞳孔検出信頼度の時間変化の勾配を算出する。この瞳孔検出信頼度の時間変化の勾配D1は、次の式(2)によって算出できる。
Figure JPOXMLDOC01-appb-M000002
 ただし、Eは、瞳孔検出信頼度であり、tは、撮像時刻である。
 そして、出力信号選択部153は、算出した変動傾向特性に基づいて、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択し、選択した瞳孔検出結果を後段の処理部に出力する。
 この選択基準は、次の通りである。すなわち、所定の期間(図12では、期間602)において、瞳孔検出信頼度が切替判断基準値504よりも小さく、かつ、上記勾配Dが連続して負(つまり、連続して瞳孔検出信頼度が減少)であれば、瞳孔検出部104の瞳孔検出結果が選択される。つまり、所定の期間内に含まれる、瞳孔検出信頼度の曲線603が、切替判断基準値504よりも下にあり、かつ、減少傾向にある場合には、瞳孔検出部104の瞳孔検出結果が選択される。
 また、所定の期間(図12では、期間602)において、瞳孔検出信頼度が切替判断基準値504よりも大きく、かつ、上記勾配Dが連続して正(つまり、連続して瞳孔検出信頼度が増加)であれば、瞳孔検出部103の瞳孔検出結果が選択される。
 また、上記2つの基準のいずれも満たされない場合には、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果の内、前回選択された方が、今回も選択される。なお、所定の期間から外れた瞳孔検出信頼度の曲線601は出力信号選択部153の処理に必要ない部分である。従って、評価値記憶部106は、この曲線601に相当するデータを削除しても良い。
 ここで、一般的に、赤目発生強度が強くなるほど、瞳孔の輝度が虹彩の輝度に対して高くなるので、画像上で瞳孔の検出が容易になる。従って、赤目現象が発生する場合、画像入力部101で得られた画像を用いて瞳孔を検出する方が、画像入力部102で得られた画像を用いるよりも、検出性能が良くなる。しかし、赤目発生強度が弱い場合、瞳孔の輝度と虹彩の輝度との差が小さくなってしまう。そのため、赤目現象が発生し始めるような状況では、画像入力部101で得られた画像では瞳孔の輝度と虹彩の輝度との差がほとんどなくなり、瞳孔の検出が困難となる。一方、画像入力部102で得られた画像では、赤目現象の発生が画像入力部101で得られた画像よりもさらに弱くなるため、瞳孔が光らず、虹彩の輝度に対して瞳孔の輝度が十分低くなる。そのため、画像入力部102で得られた画像では、瞳孔の輝度と虹彩の輝度との差が画像入力部101で得られた画像よりも大きくなり、検出性能が、相対的に良くなる。このように、赤目発生強度によって、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果の精度が逆転するので、精度の良い方を適宜選択することにより、後段の処理の精度を向上することができる。
 〈視線方向算出処理〉
 ステップS209で視線方向算出部(図示せず)は、ステップS203で得られた顔部品群の座標と、ステップS204で得られた瞳孔画像の中心座標とから、視線方向を算出する。
 視線方向は、例えば、顔部品群の座標から算出される顔の正面方向の向きを表す顔向きベクトルと、目尻、目頭、瞳孔中心の座標から算出される顔の正面方向に対する視線方向ベクトルとから、算出される。
 顔向きベクトルは、例えば、以下の手順で算出される。まず、視線方向算出部は、あらかじめ取得した運転者の顔部品群の三次元座標を回転及び並進させることにより変換する。そして、視線方向算出部は、変換した三次元座標を、ステップS208で選択された瞳孔検出結果を得るために使用されたターゲット画像に投影する。そして、視線方向算出部は、ステップS203で検出した顔部品群と最も一致する回転・並進パラメータを算出する。このとき、あらかじめ運転者の顔部品群の三次元座標を取得した際に、運転者の顔が向いている方向を表すベクトルと、決定された回転パラメータによって回転したベクトルとの組みが、顔向きベクトルである。
 視線方向ベクトルは、例えば、以下の手順で算出される。まず、視線方向算出部は、所定の方向を顔が向いている場合に、顔向きと同じ方向を見ている時の運転者の顔部品群と瞳孔中心の三次元座標とをあらかじめ記憶する。次に、検出した瞳孔の三次元座標から、視線方向と反対側に所定の距離だけ移動した位置を眼球中心位置として算出する。このとき、上記所定の距離は、一般的な成人眼球の半径である12mm程度が適当であるが、上記値に限らず、任意の値を用いても良い。次に、顔向きベクトル算出時に取得した顔の回転・並進パラメータを用いて、検出時の眼球中心の三次元座標を求める。次に、眼球中心を中心とし、半径が上記所定の距離である球上に瞳孔があると想定し、検出された瞳孔中心が上記球上のどこにあるか探索する。最後に、眼球中心と探索された球上の点を結ぶベクトルを視線方向として算出する。
 〈警報判定処理〉
 ステップS210で警報装置(図示せず)は、ステップS209で得られた視線方向から運転者が正面を向いているか否かを判定し、判定結果に基づいて、警報処理を実行する。すなわち、視線方向が所定の時間以上、所定の角度範囲外を向いている場合には、警報が発せられる。この警報は、警告メッセージ含む表示、音声合成LSIによる音声メッセージ、LED発光、スピーカ等による放音、またはこれらの組み合わせである。
 具体的には、警報装置は、正面を向いていないと判定した場合には、警報カウントWを1つ増加する。そして、警報カウントWが所定の閾値を超えた場合には、警報装置は、運転者が長時間正面を見ていないと見なして、警報を発する。また、正面を向いていると判定した場合には、警報装置は、警報カウントWをゼロにする。なお、警報カウントWは、初期状態ではゼロである。
 なお、ステップS211では終了判定が行われ、終了条件が満たされている場合には、一連の処理が終了する。一方、終了条件が満たされていない場合には、処理フローが、ステップS201へ戻る。ここで、終了判定は、人手による終了命令の入力によって行われても良いし、外的な何らかの信号をトリガとして行われても良い。
 以上のように本実施の形態によれば、瞳孔検出装置100において、切替判定部105が、瞳孔検出部103で検出された第1の瞳孔画像内の輝度の、第1の瞳孔画像外の周辺画像の輝度に対する相対輝度である赤目発生強度の算出値と、赤目発生強度と瞳孔検出精度値との相関特性とに基づいて、第1の瞳孔画像の検出結果又は瞳孔検出部104で検出された第2の瞳孔画像の検出結果を選択的に出力する。
 瞳孔検出部103では、互いの離間距離がd1である撮像部111及び照射部112を具備する画像入力部101によって撮像された第1の人物画像が用いられる。一方、瞳孔検出部104では、互いの離間距離がd2である撮像部121及び照射部122を具備する画像入力部102によって撮像された第2の人物画像が用いられる。そして、離間距離d1は、離間距離d2よりも小さい。
 こうすることで、相対的に赤目現象が発生し易い第1の瞳孔画像を用いた瞳孔検出の精度推定値に基づいて、第1の瞳孔画像の検出結果又は前記第2の瞳孔画像の検出結果の内から、撮影状況に応じて最適な瞳孔画像の検出結果を選択的に出力することができる。また、選択パラメータとして、彩度と無関係な、第1の瞳孔画像内の輝度の、第1の瞳孔画像外の周辺画像の輝度に対する相対輝度である赤目発生強度が用いられるので、近赤外線を用いたグレースケール画像が用いられる場合でも、精度の高い検出結果を選択し出力することができる。
 [実施の形態2]
 実施の形態2では、算出された赤目発生強度と、赤目発生強度と瞳孔検出正解率との相関特性とに加えて、照度係数に基づいて、瞳孔検出結果を選択する。
 図13は、本発明の実施の形態2に係る瞳孔検出装置700の構成を示すブロック図である。図13において、瞳孔検出装置700は、照度計測器701と、切替判定部702と、評価値記憶部703とを有する。
 照度計測器701は、画像入力部101,102による撮像時の照度を計測し、計測された照度を評価値記憶部703へ出力する。照度計測器701は、運転者の顔付近、または、運転者の注視方向の照度を計測できる位置に設置される。
 切替判定部702は、画像入力部101から受け取るターゲット画像データ及び画像入力部102から受け取るターゲット画像データのそれぞれから「赤目発生強度」を算出し、算出された赤目発生強度と、赤目発生強度と瞳孔検出正解率との相関特性と、計測された照度とに基づいて、後段の処理部(例えば、視線方向算出部)へ出力する信号として、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択する。
 具体的には、切替判定部702は、図14に示すように出力信号選択部711を有する。出力信号選択部711は、特性算出部152から受け取る瞳孔検出信頼度を照度に基づいて補正し、補正後の瞳孔検出信頼度の「変動傾向特性」に基づいて、後段の処理部(例えば、視線方向算出部)へ出力する信号として、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択する。この瞳孔検出信頼度に対する照度による補正については、後に詳しく説明する。
 評価値記憶部703は、切替判定部702から受け取る瞳孔検出信頼度及び照度計測器701から受け取る照度を、当該瞳孔検出信頼度の特定に用いられたターゲット画像の撮像時刻と対応付けて記憶する。
 以上の構成を有する瞳孔検出装置700の動作について説明する。図15は、瞳孔検出装置700の動作説明に供するフロー図である。
 ステップS801で照度計測器701は、画像入力部101,102による撮像時の照度を計測する。照度計測の対象位置は、運転者の顔周辺又は運転者の注視方向が最適であるが、これに限定するものではなく、例えば、瞳孔検出装置700が備え付けられた車の外の照度であっても良い。
 ステップS802で切替判定部702は、画像入力部101から受け取るターゲット画像データ及び画像入力部102から受け取るターゲット画像データのそれぞれから「赤目発生強度」を算出し、算出された赤目発生強度と、赤目発生強度と瞳孔検出正解率との相関特性と、計測された照度とに基づいて、後段の処理部(例えば、視線方向算出部)へ出力する信号として、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択する。
 具体的には、出力信号選択部711は、特性算出部152から今回受け取った瞳孔検出信頼度及び評価値記憶部703に記憶されている瞳孔検出信頼度を、照度に基づいて補正する。この補正は、下記の式(3)によって行われる。すなわち、瞳孔検出信頼度Eに対して、照度係数Lを乗算することにより、照度反映瞳孔検出信頼度Fが算出される。
Figure JPOXMLDOC01-appb-M000003
 図16には、照度と照度係数との対応関係が示されている。図16に示されているように、照度係数Lは、照度が高くなるほど小さくなるように設定さている。図16A,Bに2つの例を示したが、利用可能な、照度と照度係数との対応関係は、これに限定されない。照度に対する照度係数の勾配が正にならない対応関係であれば、どのようなものでも良い。
 そして、出力信号選択部711は、補正後の瞳孔検出信頼度(つまり、照度反映瞳孔検出信頼度F)の変動傾向特性に基づいて、後段の処理部(例えば、視線方向算出部)へ出力する信号として、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択する。
 このとき、変動傾向特性の算出において求められる照度反映瞳孔検出信頼度Fの時間変化の勾配Dは、下記式(4)によって求められる。
Figure JPOXMLDOC01-appb-M000004
 そして、出力信号選択部711は、算出した変動傾向特性、及び照度に基づいて、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択し、選択した瞳孔検出結果を後段の処理部に出力する。
 具体的には、出力信号選択部711は、上記した所定の期間602内において、照度が予め定められた値以上である場合には、瞳孔検出部103の瞳孔検出結果を選択する。
 また、出力信号選択部711は、上記した所定の期間602内において、照度が予め定められた値以下である場合には、算出した変動傾向特性に基づいて、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択し、選択した瞳孔検出結果を後段の処理部に出力する。
 この選択基準は、次の通りである。すなわち、所定の期間(図12では、期間602)において、瞳孔検出信頼度が切替判断基準値504よりも小さく、かつ、上記勾配Dが連続して負(つまり、連続して瞳孔検出信頼度が減少)であれば、瞳孔検出部104の瞳孔検出結果が選択される。つまり、所定の期間内に含まれる、瞳孔検出信頼度の曲線603が、切替判断基準値504よりも下にあり、かつ、減少傾向にある場合には、瞳孔検出部104の瞳孔検出結果が選択される。
 また、所定の期間(図12では、期間602)において、瞳孔検出信頼度が切替判断基準値504よりも大きく、かつ、上記勾配Dが連続して正(つまり、連続して瞳孔検出信頼度が増加)であれば、瞳孔検出部103の瞳孔検出結果が選択される。
 また、上記2つの基準のいずれも満たされない場合には、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果の内、前回選択された方が、今回も選択される。
 以上のように本実施の形態によれば、瞳孔検出装置700において、出力信号選択部711が、撮像時の照度に基づいて変動傾向特性を補正し、補正後の変動傾向特性に基づいて、第1の瞳孔画像の検出結果又は第2の瞳孔画像の検出結果を選択する。
 こうすることで、撮影状況をさらに正確に反映した選択基準に基づいて、第1の瞳孔画像の検出結果又は第2の瞳孔画像の検出結果を選択することができる。
 [実施の形態3]
 実施の形態3では、複数のモードのそれぞれに対応する相関特性が用意され、選択されたモードに応じた相関特性を用いて、瞳孔検出信頼度を算出する。
 図17は、本発明の実施の形態3に係る瞳孔検出装置900の構成を示すブロック図である。図17において、瞳孔検出装置900は、モード選択部901と、切替判定部902とを有する。
 モード選択部901は、用意されている複数のモードの中から1つのモードを選択する。この複数のモードには、例えば、ターゲットである人物がサングラスを掛けている第1のモードと、サングラスを掛けていない第2のモードとが含まれる。選択されたモードに関する情報は、切替判定部902へ出力される。
 切替判定部902は、画像入力部101から受け取るターゲット画像データ及び画像入力部102から受け取るターゲット画像データのそれぞれから「赤目発生強度」を算出し、算出された赤目発生強度と、赤目発生強度と瞳孔検出正解率との相関特性とに基づいて、後段の処理部(例えば、視線方向算出部)へ出力する信号として、瞳孔検出部103の瞳孔検出結果及び瞳孔検出部104の瞳孔検出結果のいずれかを選択する。ここで、モードに応じて、最適な、赤目発生強度と瞳孔検出正解率との相関特性は、変化する。従って、切替判定部902は、モード選択部901から受け取るモード情報応じて、瞳孔検出結果の選択に用いる相関特性を切り換える。
 具体的には、切替判定部902は、図18に示すように、特性算出部911を有する。特性算出部911は、モード選択部901で選択可能な複数のモードのそれぞれに対応する相関特性データを有している。そして、モード選択部901から受け取るモード情報に対応する相関特性データを選択し、当該相関特性データを用いて、赤目発生強度算出部151から受け取る赤目発生強度に対応する瞳孔検出正解率を算出する。
 こうして各モードに最適な相関特性を用いて瞳孔検出結果を選択するので、精度の高い瞳孔検出結果を精度良く選択することができる。
 [他の実施の形態]
 (1)上記各実施の形態では、画像入力部101及び画像入力部102のそれぞれに、撮像部と照射部とが1つずつ設けられる場合について説明した。しかしながら、本発明は、これに限定されるものではない。例えば、瞳孔検出装置100は、2つの撮像部及び1つの照射部から構成される撮像ユニットを具備する構成であっても良い(図19A参照)。逆に、瞳孔検出装置100は、1つの撮像部及び2つの照射部から構成される撮像ユニットを具備する構成であっても良い(図19B参照)。要は、撮像部と照射部とのペアであって撮像部と照射部との離間距離が異なるペアが2つ存在していれば良い。
 (2)上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2010年2月26日出願の特願2010-042455の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明の瞳孔検出装置、及び瞳孔検出方法は、近赤外線を用いたグレースケール画像が用いられる場合でも、精度の高い検出結果を選択し出力することができるものとして有用である。
 100,700,900 瞳孔検出装置
 101,102 画像入力部
 103,104 瞳孔検出部
 105,702,902 切替判定部
 106,703 評価値記憶部
 111,121 撮像部
 112,122 照射部
 113,123 同期部
 131,141 顔検出部
 132,142 顔部品検出部
 133,143 瞳孔情報算出部
 151 赤目発生強度算出部
 152,911 特性算出部
 153,711 出力信号選択部
 200 撮像ユニット
 701 照度計測器
 901 モード選択部

Claims (6)

  1.  所定の離間距離だけ離れた撮像手段と撮像時に発光する発光手段とからなる第1の撮像ペアと、
     前記所定の離間距離が第1の撮像ペアよりも大きい第2撮像ペアと、
     前記第1の撮像ペアによって人物が撮像された第1の人物画像から第1の瞳孔画像を検出し、前記第2の撮像ペアによって前記人物が撮像された第2の人物画像から、第2の瞳孔画像を検出する検出手段と、
     前記第1の瞳孔画像内の輝度の、前記第1の瞳孔画像外の周辺画像の輝度に対する相対輝度である赤目発生強度の算出値と、赤目発生強度と瞳孔検出精度値との相関特性とに基づいて、前記第1の瞳孔画像の検出結果又は前記第2の瞳孔画像の検出結果を選択的に出力する出力切替手段と、
     を具備する瞳孔検出装置。
  2.  前記出力切替手段は、
     前記第1の人物画像に基づいて、前記赤目発生強度を算出する発生強度算出手段と、
     前記算出された赤目発生強度の算出値と、赤目発生強度と瞳孔検出精度値との相関特性とに基づいて、前記赤目発生強度の算出値に対応する瞳孔検出精度値を算出する精度値算出手段と、
     前記算出された瞳孔検出精度値の変動傾向特性に基づいて、前記第1の瞳孔画像の検出結果又は前記第2の瞳孔画像の検出結果を選択する選択手段と、
     を具備する請求項1に記載の瞳孔検出装置。
  3.  前記選択手段は、
     所定の期間における前記算出された瞳孔検出精度値のすべてが所定の閾値未満であり、かつ、前記算出された瞳孔検出精度値の時間変動傾向が単調減少する変動傾向特性である場合に、前記第1の瞳孔画像の検出結果を選択する、
     請求項2に記載の瞳孔検出装置。
  4.  前記所定の閾値は、赤目発生強度と前記第1の瞳孔画像の瞳孔検出精度値との第1の相関特性と、赤目発生強度と前記第2の瞳孔画像の瞳孔検出精度値との第2の相関特性とが交わる点に対応する瞳孔検出精度値である、
     請求項3に記載の瞳孔検出装置。
  5.  前記出力切替手段は、前記撮像時の照度に基づいて、前記変動傾向特性を補正する補正手段、をさらに具備し、
     前記選択手段は、前記補正後の変動傾向特性に基づいて、前記第1の瞳孔画像の検出結果又は前記第2の瞳孔画像の検出結果を選択する、
     請求項2に記載の瞳孔検出装置。
  6.  所定の離間距離だけ離れた撮像手段と撮像時に発光する発光手段とからなる第1の撮像ペアと、前記所定の離間距離が第1の撮像ペアよりも大きい第2撮像ペアと、を具備する瞳孔検出装置における、瞳孔検出方法であって、
     前記第1の撮像ペアによって人物が撮像された第1の人物画像から第1の瞳孔画像を検出し、前記第2の撮像ペアによって前記人物が撮像された第2の人物画像から、第2の瞳孔画像を検出するステップと、
     前記第1の瞳孔画像内の輝度の、前記第1の瞳孔画像外の周辺画像の輝度に対する相対輝度である赤目発生強度の算出値と、赤目発生強度と瞳孔検出精度値との相関特性とに基づいて、前記第1の瞳孔画像の検出結果又は前記第2の瞳孔画像の検出結果を選択的に出力するステップと、
     を具備する瞳孔検出方法。
PCT/JP2011/000359 2010-02-26 2011-01-24 瞳孔検出装置及び瞳孔検出方法 WO2011105004A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180001860.1A CN102439627B (zh) 2010-02-26 2011-01-24 瞳孔检测装置和瞳孔检测方法
EP11746977.5A EP2541493B1 (en) 2010-02-26 2011-01-24 Pupil detection device and pupil detection method
JP2011521790A JP5694161B2 (ja) 2010-02-26 2011-01-24 瞳孔検出装置及び瞳孔検出方法
US13/318,431 US8810642B2 (en) 2010-02-26 2011-01-24 Pupil detection device and pupil detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010042455 2010-02-26
JP2010-042455 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105004A1 true WO2011105004A1 (ja) 2011-09-01

Family

ID=44506439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000359 WO2011105004A1 (ja) 2010-02-26 2011-01-24 瞳孔検出装置及び瞳孔検出方法

Country Status (5)

Country Link
US (1) US8810642B2 (ja)
EP (1) EP2541493B1 (ja)
JP (1) JP5694161B2 (ja)
CN (1) CN102439627B (ja)
WO (1) WO2011105004A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016514974A (ja) * 2013-02-19 2016-05-26 オプトス ピーエルシー 画像処理における改良または画像処理に関する改良
JP2017068615A (ja) * 2015-09-30 2017-04-06 富士通株式会社 視線検出システム、視線検出方法および視線検出プログラム
US10147022B2 (en) 2015-06-23 2018-12-04 Fujitsu Limited Detection method and system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9916005B2 (en) * 2012-02-06 2018-03-13 Sony Corporation Gaze tracking with projector
JP5999013B2 (ja) * 2013-04-12 2016-09-28 株式会社デンソー 開眼状態判定装置
WO2015015717A1 (ja) * 2013-07-30 2015-02-05 パナソニックIpマネジメント株式会社 撮像装置、並びにそれを用いた撮像システム、電子ミラーシステムおよび測距装置
CA2936507C (en) * 2014-01-10 2022-03-15 Carleton Life Support Systems, Inc. Reduced cognitive function detection and alleviation system for a pilot
DE102014013165A1 (de) * 2014-09-04 2016-03-10 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Kraftfahrzeug sowie Verfahren zum Betrieb eines Kraftfahrzeugs
EP3232901A4 (en) * 2014-12-16 2018-08-29 Singapore Health Services Pte Ltd A method and system for monitoring and/or assessing pupillary responses
DE102017202659A1 (de) * 2017-02-20 2018-08-23 Bayerische Motoren Werke Aktiengesellschaft System und Verfahren zur Erkennung der Müdigkeit eines Fahrzeugführers
EP3415078A1 (en) * 2017-06-16 2018-12-19 Essilor International Method and system for determining a pupillary distance of an individual
US10956737B1 (en) * 2017-10-24 2021-03-23 Wells Fargo Bank, N.A. System and apparatus for improved eye tracking using a mobile device
US10402644B1 (en) * 2017-10-24 2019-09-03 Wells Fargo Bank, N.A. System and apparatus for improved eye tracking using a mobile device
CN108053444B (zh) * 2018-01-02 2021-03-12 京东方科技集团股份有限公司 瞳孔定位方法及装置、设备和存储介质
CN110393504B (zh) * 2018-04-24 2022-02-15 高金铎 一种智能鉴毒的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694980A (ja) * 1992-09-14 1994-04-08 Nikon Corp 視線検出装置付きカメラ
JPH07319037A (ja) * 1994-05-19 1995-12-08 Olympus Optical Co Ltd 視線検出カメラ及びプリンタ装置
JP2008158922A (ja) * 2006-12-26 2008-07-10 Aisin Seiki Co Ltd 瞼検出装置、瞼検出方法及びプログラム
JP2010042455A (ja) 2008-08-08 2010-02-25 Hitachi Koki Co Ltd 電動工具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7280678B2 (en) * 2003-02-28 2007-10-09 Avago Technologies General Ip Pte Ltd Apparatus and method for detecting pupils
CN100571233C (zh) * 2003-05-27 2009-12-16 日本电气株式会社 在自适应调制中用适当阈值选择调制方法的数据通信装置
WO2005002441A1 (ja) * 2003-07-04 2005-01-13 Matsushita Electric Industrial Co., Ltd. 生体眼判定方法および生体眼判定装置
JP2006338236A (ja) 2005-06-01 2006-12-14 Matsushita Electric Ind Co Ltd 眼画像撮影装置およびそれを用いた認証装置
JP5089405B2 (ja) 2008-01-17 2012-12-05 キヤノン株式会社 画像処理装置及び画像処理方法並びに撮像装置
US8081254B2 (en) * 2008-08-14 2011-12-20 DigitalOptics Corporation Europe Limited In-camera based method of detecting defect eye with high accuracy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694980A (ja) * 1992-09-14 1994-04-08 Nikon Corp 視線検出装置付きカメラ
JPH07319037A (ja) * 1994-05-19 1995-12-08 Olympus Optical Co Ltd 視線検出カメラ及びプリンタ装置
JP2008158922A (ja) * 2006-12-26 2008-07-10 Aisin Seiki Co Ltd 瞼検出装置、瞼検出方法及びプログラム
JP2010042455A (ja) 2008-08-08 2010-02-25 Hitachi Koki Co Ltd 電動工具

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016514974A (ja) * 2013-02-19 2016-05-26 オプトス ピーエルシー 画像処理における改良または画像処理に関する改良
US10147022B2 (en) 2015-06-23 2018-12-04 Fujitsu Limited Detection method and system
JP2017068615A (ja) * 2015-09-30 2017-04-06 富士通株式会社 視線検出システム、視線検出方法および視線検出プログラム

Also Published As

Publication number Publication date
US8810642B2 (en) 2014-08-19
EP2541493A1 (en) 2013-01-02
JP5694161B2 (ja) 2015-04-01
CN102439627B (zh) 2014-10-08
CN102439627A (zh) 2012-05-02
EP2541493B1 (en) 2019-10-23
US20120050516A1 (en) 2012-03-01
JPWO2011105004A1 (ja) 2013-06-17
EP2541493A4 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2011105004A1 (ja) 瞳孔検出装置及び瞳孔検出方法
JP5661043B2 (ja) 外光映り込み判定装置、視線検出装置及び外光映り込み判定方法
US8649583B2 (en) Pupil detection device and pupil detection method
US8066375B2 (en) Eye tracker having an extended span of operating distances
JP4078334B2 (ja) 画像処理装置および画像処理方法
JP5538160B2 (ja) 瞳孔検出装置及び瞳孔検出方法
JP5466610B2 (ja) 視線推定装置
JP2004320287A (ja) デジタルカメラ
JP6601351B2 (ja) 視線計測装置
US10722112B2 (en) Measuring device and measuring method
US11163994B2 (en) Method and device for determining iris recognition image, terminal apparatus, and storage medium
JP2010244156A (ja) 画像特徴量検出装置及びこれを用いた視線方向検出装置
CN112153363B (zh) 用于3d角膜位置估计的方法和系统
US8090253B2 (en) Photographing control method and apparatus using strobe
CN111522431B (zh) 使用眼睛跟踪系统对闪光进行分类
CN112041783B (zh) 曝光时间控制的方法、系统和计算机存储介质
JP2017162233A (ja) 視線検出装置および視線検出方法
JPH0761256A (ja) 車両用前方不注意検知装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001860.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011521790

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11746977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13318431

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011746977

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE