Nothing Special   »   [go: up one dir, main page]

WO2011161775A1 - Electron beam excited light-emitting device - Google Patents

Electron beam excited light-emitting device Download PDF

Info

Publication number
WO2011161775A1
WO2011161775A1 PCT/JP2010/060601 JP2010060601W WO2011161775A1 WO 2011161775 A1 WO2011161775 A1 WO 2011161775A1 JP 2010060601 W JP2010060601 W JP 2010060601W WO 2011161775 A1 WO2011161775 A1 WO 2011161775A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
layer
emitting device
semiconductor
beam excitation
Prior art date
Application number
PCT/JP2010/060601
Other languages
French (fr)
Japanese (ja)
Inventor
宏治 中原
朋信 土屋
慎 榊原
滋久 田中
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2012521209A priority Critical patent/JP5383912B2/en
Priority to PCT/JP2010/060601 priority patent/WO2011161775A1/en
Publication of WO2011161775A1 publication Critical patent/WO2011161775A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3013AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Definitions

  • the present invention relates to an electron beam excitation type semiconductor light emitting device.
  • One cause of low luminous efficiency in the ultraviolet region of nitride semiconductors is a decrease in the p-type activation rate in AlGaN and AlN semiconductors with high Al compositions.
  • the AlGaN p-type activation rate is about several percent to several tens percent.
  • the activation rate when the Al composition is about 50% or more is 0.1% or less. This is because the acceptor level increases as the Al composition increases.
  • Patent Document 1 discloses a light source device including an electron beam excitation type semiconductor layer.
  • FIG. 6 of Patent Document 1 discloses a stripe semiconductor laser excited by an electron beam.
  • 11 is a semiconductor substrate
  • 12 and 13 are semiconductor layers forming a cladding layer
  • 14 is a semiconductor layer forming an active layer
  • 15 is a semiconductor layer forming a cap layer
  • 16 is a part of the cap layer 15.
  • a stripe-shaped ridge formed on the substrate, 17 is an insulator
  • 18 is a thin-film metal layer forming a thin-film electrode.
  • the semiconductor layers 12 to 15 are sequentially stacked on the semiconductor substrate 11 in an epitaxial manner.
  • Patent Document 1 a metal film is formed only on the upper surface of the ridge portion, and no metal film is formed on the insulating film on the side surface of the ridge and the bottom surface of the ridge groove (the lower surface beside the ridge).
  • the present inventors made a prototype of the electron beam excitation light emitting device of Patent Document 1, but the electron injection efficiency was extremely low. As a result of analysis, it was found that when an insulating film is used on the ridge side surface and the ridge groove bottom surface, a charge-up phenomenon occurs in the insulating film, resulting in a decrease in electron injection efficiency.
  • An object of the present invention is to improve the electron injection efficiency of an electron beam excitation light emitting device.
  • the present inventor has devised a structure in which an insulating film is disposed on the side surface of the mesa groove and the bottom surface of the mesa groove, and further, a metal film is formed over the entire surface.
  • this structure was prototyped and evaluated, the electron injection efficiency did not improve as expected. This is because the metal film is also on the mesa upper surface and the mesa side surface, so that the electron beam level irradiated from the electron beam source is weakened before reaching the active layer in the semiconductor layer. It is done.
  • the present inventors do not provide a metal film on the entire surface of the semiconductor layer on the electron beam source side, but provide an insulating film on the semiconductor layer without providing a metal film in a region where an electron beam without an insulating film is injected.
  • a metal film was partially provided only in the region.
  • the electron source was arrange
  • the planar pattern is in a stripe shape (so-called ridge type, semiconductor resonant structure called mesa type). It is efficient to have a structure in which the metal film is formed through an insulating film.
  • FIG. 1 is a cross-sectional view of an electron beam excitation laser device of Example 1.
  • FIG. 1 is a bird's-eye schematic view of a laser emission unit of an electron beam excitation laser device according to Embodiment 1.
  • FIG. FIG. 6 is a cross-sectional view of a modification of the electron beam excitation laser device according to the second embodiment. 6 is a cross-sectional view of an electron beam excitation laser device according to Example 3.
  • FIG. 6 is a bird's-eye schematic view of a laser emission unit of an electron beam excitation laser device according to Example 4.
  • FIG. FIG. 6 is a cross-sectional view of an electron beam excitation laser device according to a fifth embodiment.
  • FIG. 6 is a cross-sectional view of an electron beam excitation laser device according to a sixth embodiment.
  • FIG. 12 is a schematic bird's-eye view of an electron beam excitation laser apparatus according to Example 7.
  • FIG. 10 is a schematic cross-sectional view of a photonic crystal hole region in an electron beam excitation laser device of Example 7.
  • FIG. It is sectional drawing of the electron beam excitation light-emitting device stored in the vacuum container with a window.
  • Example 1 is an electron beam excitation laser device that emits light in the deep ultraviolet region. This is an example of an electron beam excitation type light emitting device having a resonance structure.
  • FIG. 1 is a cross-sectional view (cross-section in the stripe direction of the ridge stripe structure 5) of the electron beam excitation laser apparatus of Example 1.
  • FIG. FIG. 2 is a bird's-eye schematic view of a laser light emitting unit of the electron beam excitation laser device according to the first embodiment.
  • Reference numeral 1 denotes a sapphire substrate
  • 2 denotes a lower n-type AlGaN cladding layer having an impurity concentration of 1 ⁇ 10 18 cm ⁇ 3 including an AlN buffer layer as a dopant
  • 3 denotes an undoped structure including an n-type Al (Ga) N guide layer
  • An AlGaN-quantum well active layer 4 is an upper n-type AlGaN cladding layer using Si with an impurity concentration of 1 ⁇ 10 18 cm ⁇ 3 as a dopant
  • 5 has a ridge stripe structure (Low Mesa structure).
  • the lower n-type AlGaN cladding layer 2, the undoped AlGaN-quantum well active layer 3, the upper n-type AlGaN cladding layer 4 and the ridge stripe structure (Low Mesa structure) 5 are formed on the sapphire substrate 1 by MOCVD (Metal-Organic Chemical Vapor Deposition). ) Method to form a semiconductor stacked body, and dry etching is performed using a striped mask.
  • the cross-section of the ridge stripe structure 5 is a rectangle with the width of the top surface of the ridge of 3 ⁇ m and the ridge height of 300 nm.
  • these semiconductor layers have a structure sandwiched between DBR mirrors or cleavage planes.
  • the insulating film 6 is an insulating film is composed of silicon dioxide SiO 2, is placed aside ridge stripe, in contact with the ridge stripe side.
  • the thickness of the insulating film 6 is 100 nm, which is half or less of the ridge height.
  • the insulating film 6 may have the same height as the ridge stripe structure 5.
  • a metal film 7 is an electrode in which a three-layer metal film made of Ti / Pt / Au is laminated on the insulating film 6. Instead of providing a metal film on the entire surface of the semiconductor layer, a metal film is not provided in a region without an insulating film for injecting an electron beam, and a metal film is provided only in a region having an insulating film on the semiconductor layer. Then, the electrons charged in the insulating film 6 flow through the electrode 7 to prevent the insulating film 6 from being charged up.
  • an electrode composed of a four-layer metal film made of Ti / Al / Ti / Au for making ohmic contact with the four upper n-type AlGaN cladding layers.
  • Electrode 9 is an electrode composed of a four-layer metal film made of Ti / Al / Ti / Au or Ti / Al / Mo / Au for making ohmic contact with the lower n-type AlGaN clad layer 5.
  • Example 1 0V is supplied to the electrodes 8 and 9. That is, the electrodes 8 and 9 are grounded.
  • the electrodes 8 and 9 are in ohmic contact with the semiconductor layer and grounded. As a result, electrons are injected into the ridge stripe without delay. Although wide band gap semiconductors such as nitride semiconductors have a large band gap, there is a concern that even semiconductors may be charged up. However, in our trial results, the semiconductor is doped and the above electrodes are formed by ohmic contact. The structure with the electrode grounded did not charge up.
  • the electron beam source 10 is an electron beam source.
  • the electron beam source 10 is made of barium oxide that emits thermoelectrons, and is arranged at a position where the electron beam is irradiated from the upper surface of the semiconductor layer exposed from the insulating film 6 and the electrode 7.
  • a vacuum vessel which is composed of a glass tube on which a gettering material for keeping the degree of vacuum is deposited.
  • the voltage Vd from the voltage source 12 was set in the range of -10V to -20kV.
  • Vg voltage Vg
  • the voltage was set in a range larger than Vd and lower than a ground voltage (0V). Even if the voltage Vg is not applied, the charge-up of the insulating film 6 is suppressed, but by applying the voltage Vg, the charge-up of the insulating film 6 is efficiently and stably suppressed.
  • Electrons e from the electron beam source 10 are generally emitted radially. Therefore, the electrons e are injected not only into the ridge stripe as the thick film portion but also into the side of the ridge stripe (the bottom surface of the ridge groove) as the thin film portion. Further, since the electrons e injected into the ridge stripe structure 5 emit secondary electrons, the electrons e are scattered around the electrons. In the absence of the metal film 7, electrons e are emitted to the insulating film 6 around the ridge stripe structure 5, so that the insulating film 6 is charged up.
  • APC Auto Power Control
  • FIG. 3 is a cross-sectional view (a cross section in the stripe direction of the ridge stripe structure 5) of a laser light emitting portion of an electron beam excitation laser device which is a modification of the first embodiment.
  • the difference from the first embodiment is that the insulating film 6 is formed higher than the ridge stripe structure 5.
  • the electrode 7 has a planar layout with no gap between the side surface of the ridge stripe 5 like the insulating film 6 in contact with the side surface of the ridge stripe. This is because the insulating film 6 is formed higher than the ridge stripe structure 5, so that the electrode 7 does not contact the side surface of the ridge stripe, and a leak current is generated due to the voltage difference between the electrode 7 and the semiconductor 1-5. Because there is no.
  • Example 3 is an electron beam excitation laser that emits light in the deep ultraviolet region. This is an example of an electron beam excitation type light emitting device having a resonance structure.
  • FIG. 4 is a cross-sectional view of the electron beam excitation laser device of Example 3 (cross-section in the stripe direction of the ridge stripe structure 5). The difference from FIG. 1 is that the insulating film 6 and the metal film 7 are arranged away from the ridge stripe structure 5.
  • the penetration length at which accelerated electrons enter the semiconductor is formulated based on empirical rules. Kanaya and S. Made by Okayama, Journal of Physics D: Applied Physics Vol. 5, 43 (1972).
  • the scattering center depth in the material of electrons in GaN and AlN was about 0.2 ⁇ m, and the maximum penetration depth was about 0.6 ⁇ m.
  • Electrons reach the vicinity of the maximum penetration depth, but most electron-hole pairs are formed at the scattering center.
  • the height of the ridge is limited in order to reduce the height in order to guide light. Therefore, as shown in FIG. 4, the insulating film 6 and the metal film 7 are arranged apart from the ridge stripe structure 5 and electrons are injected from the side of the ridge, so that electron-hole pairs can be efficiently generated in the active layer.
  • the electrode 7 was further away from the ridge stripe structure 5 than the insulating film 6 to increase the gap. This has the merit that the leakage current when the voltage difference between the electrode 7 and the semiconductor 1-5 is high can be reduced, and the process margin at the time of manufacturing is increased.
  • a stable operation was obtained for 800 hours in an APC (Auto Power Control) test.
  • the insulating film 6 is lower than the height of the ridge stripe structure 5 as shown in FIG.
  • FIG. 5 is a cross-sectional view (a cross section in the stripe direction of the ridge stripe structure 5) of a laser light emitting portion of an electron beam excitation laser device which is a modification of the third embodiment.
  • the difference from Example 3 is that the insulating film 6 is formed higher than the ridge stripe structure 5 and that the electrode 7 protrudes from the insulating film 6 to the ridge stripe 5 side. This protrusion is stopped at the gap between the ridge stripe structure 5 and the insulating film 6.
  • the insulating film 6 is formed higher than the ridge stripe structure 5, there is an advantage that electrons are drawn by applying an appropriate Vg and highly efficient electron injection is performed. Further, since the electrode 7 protrudes into the gap between the ridge stripe structure 5 and the insulating film 6, the advantage that the electron injection to the side of the ridge stripe, which is the effect in the embodiment 3, can be controlled by the protrusion length is obtained. Yes.
  • Vg was set to an appropriate value between Vd and the ground voltage of 0V. As a result, electrons can be satisfactorily drawn into the ridge stripe structure 5.
  • Example 1 to Example 4 are an example, and their alternatives are shown below.
  • the sapphire substrate 1 is used as a substrate on which a nitride semiconductor is crystal-grown, but the same effect can be obtained by using an AlN substrate.
  • the AlN substrate may be semi-insulating or conductive with a dopant introduced.
  • electrodes are also formed on the back side of the substrate.
  • the AlGaN cladding layers 2 and 4 are doped with Si as a dopant and become an n-type semiconductor layer, there is an advantage that the activation rate is hardly changed by the injection of electrons e.
  • the p-type semiconductor layer may be formed by doping Mg into a nitride semiconductor.
  • the impurity concentration of these p-type or n-type dopants is preferably in the range of 7 ⁇ 10 16 to 3 ⁇ 10 19 cm ⁇ 3 .
  • the material composition of the ridge stripe structure 5 is the same as that of the upper n-type AlGaN cladding, but an edge stop layer made of a material having a different etching rate is interposed from the viewpoint of mesa height reproducibility. You may let them.
  • the ridge stripe structure 5 has a rectangular cross section, but may have a trapezoidal shape or an inverted trapezoidal shape.
  • the optimum range of dimensions of the ridge stripe structure 5 is a ridge width of 1 to 30 ⁇ m and a height of 100 to 800 nm.
  • the insulating film 6 uses not only silicon dioxide as in the above-described embodiments, but also other Si oxides or nitrides, Al oxides or nitrides, ZrO 2 , WO 3 , TiSiN, and HfO 2 . be able to.
  • the electron beam source 10 is composed of barium oxide that emits thermoelectrons, but tungsten or carbon nanotubes can be used.
  • the vacuum vessel 11 is composed of a glass tube on which a gettering material that maintains the degree of vacuum is deposited, but may be composed of a metal vessel.
  • Example 5 is an electron beam excitation surface emitting laser that emits light in the deep ultraviolet region. This is an example of an electron beam excitation type light emitting device having a resonance structure.
  • FIG. 6 is a schematic cross-sectional view of only the light emitting portion, and the electron beam source 10, the vacuum vessel 11, and the power supplies 12 and 13 other than the light emitting portion have the same configuration as FIG.
  • 101 is an n-type AlN substrate, and 102 is an n-type semiconductor DBR layer.
  • n-type AlN layers 102a and n-type AlGaN layers 102b are alternately stacked with a layer thickness of ⁇ / 4n.
  • is the oscillation wavelength
  • n is the refractive index of the layer.
  • Reference numeral 103 denotes an n-InGaAlN spacer layer
  • 104 denotes an InGaAlN quantum well active layer
  • 105 denotes an n-InGaAlN spacer layer.
  • 103 to 105 form a resonator structure corresponding to a film thickness of ⁇ / n.
  • 106 is an n-type AlN layer
  • 109 is an n-type semiconductor DBR layer, and is composed of an n-type AlN layer and an n-type AlGaN layer as in the lower layer.
  • 107 is an insulating film
  • 108 is a metal film
  • the metal film 108 is connected to a voltage corresponding to Vg in FIG.
  • Reference numeral 110 denotes an n-type ohmic electrode layer, which is grounded to 0V.
  • the n-type AlN layer 106 is also in ohmic contact with the n-type electrode at a position away from the light emitting portion, and is grounded to 0V.
  • Example 5 as in Example 1, since electrons easily reach the active layer 104 by injecting electrons into the region where the n-type AlN layer 106 at the top of the substrate in FIG. 6 is exposed, surface emission is efficiently performed.
  • the laser can oscillate. Furthermore, since the current region is defined by the insulating film 106 and the charge-up of the insulating film can be suppressed by 108, the deterioration of the laser characteristics due to the charge-up can be suppressed.
  • Example 5 a surface emitting laser oscillated at a threshold current of 0.5 mA by injecting electrons accelerated at a voltage of ⁇ 5 kV.
  • the oscillation wavelength at this time was 290 nm.
  • Example 6 is an electron beam excitation embedded laser that emits light in the deep ultraviolet region. This is an example of an electron beam excitation type light emitting device having a resonance structure.
  • FIG. 7 is a schematic cross-sectional view of only the light emitting portion, and the electron beam source 10, the vacuum vessel 11, and the power sources 12 and 13 depicted in FIG.
  • 16 is an AlN substrate
  • 2 is a lower AlGaN cladding layer including an AlN buffer layer
  • 3 is an AlGaN-quantum well active layer including an Al (Ga) N guide layer
  • 4 is an upper AlGaN cladding layer.
  • the upper and lower AlGaN cladding layers are doped n-type.
  • Reference numerals 6 and 7 denote an insulating layer and a metal film layer having an AlGaN cladding layer as an opening, and the metal film layer is connected to a power source and kept at a voltage of Vg as in the first embodiment.
  • 14 is a semi-insulating AlN buried layer, and 15 is an n-type ohmic electrode. Electrons from above are irradiated onto the upper clad 4, but since the surrounding region is covered with the metal film layer 7 maintained at a voltage of Vg, electrons are stably applied to the upper clad 4 without being charged up. Is injected.
  • the semiconductor laser according to Example 6 was confirmed to oscillate with a low current of 20 mA at a voltage of ⁇ 20 kV to the electron source at room temperature.
  • the oscillation wavelength was 278 nm, and stable operation was obtained for 200 hours in a 3 mW APC (Auto Power Control) test.
  • Example 7 is an LED that emits light in the deep ultraviolet region. This is an example of an electron beam excitation type light emitting device having a resonance structure.
  • FIG. 8 is a schematic bird's-eye view
  • FIG. 9 is a cross-sectional view of the photonic crystal hole region therein.
  • FIGS. 8 and 9 are schematic views of only the light emitting section.
  • the electron beam source 10, the vacuum vessel 11, and the power supplies 12 and 13 depicted in FIG. 1 may be the same as those in the first embodiment.
  • 1 is a sapphire substrate
  • 2 is a lower n-type AlGaN cladding layer including an AlN buffer layer
  • 3 is an AlGaN-quantum well active layer including an Al (Ga) N guide layer
  • 4 is an upper n-type AlGaN cladding layer. It is.
  • 111 is an undoped semiconductor DBR layer comprising an undoped AlN layer and an undoped AlGaN layer.
  • 112 is a metal film layer in which photonic crystal holes are opened, and 113 is an opening portion of the photonic crystal structure.
  • the upper n-type cladding layer and the lower n-type cladding layer are grounded to 0 V using an ohmic contact electrode at a location away from the electron beam injection portion. Electrons come from above the substrate and are injected into the semiconductor layers 3 and 4 through the holes in the photonic crystal.
  • the photonic crystal portion and the DBR layer portion can be stably operated with high efficiency without being charged up.
  • the light from the active layer is reflected downward by the photonic crystal part and the DBR layer part and emitted to the sapphire substrate side.
  • the LED of this example emitted light with a central wavelength of 245 nm, and its maximum light output was 24 mW. In a reliability test at a constant light output of 12 mW, stable characteristics were obtained after 4000 hours.
  • the DBR layer 111 is undoped.
  • a similar effect can be obtained even in a structure in which a dielectric film equivalent to a thickness of ⁇ / 4n is inserted between the metal film layer using an n-type doped DBR layer. can get. The same effect can be obtained even when the DBR layer is formed of a dielectric film.
  • Examples 1 to 7 have described nitride semiconductors as semiconductors, other semiconductors such as InGaAsP and InGaAlAs that can be grown on an InP substrate, or InGaAlP and AlGaAs that can be grown on GaAs, can be similarly applied. Yes. The same applies to II-VI group semiconductors such as ZeSe and CdZnSe.
  • Examples 1, 2, and 4 describe an example of an edge emitting laser.
  • a highly reflective coating film is applied only to one side of the end face, and the opposite side of the stripe waveguide is bent to reflect the reflectance. It can be similarly applied to a super luminescence diode having a non-reflective coating film.
  • FIG. 10 is a cross-sectional view of an electron beam excitation light-emitting device stored in a vacuum container with a window.
  • FIG. 10 it is necessary to form 115 ultraviolet transmissive windows in a part of the vacuum vessel and to emit ultraviolet light out of the vacuum vessel 11.
  • reference numeral 114 denotes the semiconductor laser which is the light emitting portion described in the first to fourth and sixth embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

There has been a problem that if an insulating film or the like is disposed to improve the characteristics of a conventional electron beam excited semiconductor laser or LED device, the characteristics of the device are degraded because charge-up caused by an electron beam occurs. In a semiconductor laser comprising nitride semiconductor layers (2, 3, 4, 5) formed on a sapphire substrate, an insulating film (6) and a metal film (7) are stacked and provided beside a ridge stripe structure (5). The metal film (7) is connected to a power supply (13), the voltage of which is set to greater than an accelerating voltage of -Vd and less than or equal to the ground voltage of 0V. Upper and lower n-clad layers (2, 4) are connected through electrodes (8, 9) to the ground.

Description

電子線励起型発光装置Electron beam excitation light emitting device
 本発明は、電子線励起型半導体発光装置に関する。 The present invention relates to an electron beam excitation type semiconductor light emitting device.
 近年、紫外領域から青色まで発光するGaN系の窒化物半導体発光素子の研究開発が盛んに行われている。既に青紫色(波長410nm)から近紫外領域(波長375nm付近)までは実用化されている。窒化物半導体発光素子において、発光波長が360nm以下の領域では発光効率が急激に低くなり、特に深紫外線領域の200-300nm帯の波長では数%の発光効率しか得られておらず、実用化への課題となっていた。 In recent years, research and development of GaN-based nitride semiconductor light-emitting elements that emit light from the ultraviolet region to blue have been actively conducted. Already from blue-violet (wavelength 410 nm) to the near ultraviolet region (wavelength 375 nm vicinity) has been put into practical use. In a nitride semiconductor light emitting device, the light emission efficiency is drastically lowered in the region where the light emission wavelength is 360 nm or less, and only a few percent of light emission efficiency is obtained particularly in the 200-300 nm band wavelength in the deep ultraviolet region. It was an issue.
 窒化物半導体の紫外領域で発光効率が低い原因の1つにAl組成が高いAlGaNやAlN半導体におけるp型の活性化率の低下がある。Al組成が数%のときのAlGaNのp型の活性化率は数%から数10%程度である。しかし、Al組成が約50%以上の場合の活性化率は0.1%以下であるのが実情である。これはAl組成が高くなるとアクセプタ準位が大きくなることに起因する。 One cause of low luminous efficiency in the ultraviolet region of nitride semiconductors is a decrease in the p-type activation rate in AlGaN and AlN semiconductors with high Al compositions. When the Al composition is several percent, the AlGaN p-type activation rate is about several percent to several tens percent. However, in reality, the activation rate when the Al composition is about 50% or more is 0.1% or less. This is because the acceptor level increases as the Al composition increases.
 この課題を解決するものとして、電子線励起型半導体層を備えた光源装置が特許文献1に開示されている。特許文献1の図6には、電子線で励起するストライプ状半導体レーザが開示されている。特許文献1の図6において、11は半導体基板、12と13はクラッド層をなす半導体層、14は活性層をなす半導体層、15はキャップ層をなす半導体層、16はキャップ層15の一部に形成されたストライプ状のリッジ部、17は絶縁体、18は薄膜電極をなす薄膜金属層である。半導体層12~15は、半導体基板11上にエピタキシャルに順次、積層されたものである。 As a solution to this problem, Patent Document 1 discloses a light source device including an electron beam excitation type semiconductor layer. FIG. 6 of Patent Document 1 discloses a stripe semiconductor laser excited by an electron beam. In FIG. 6 of Patent Document 1, 11 is a semiconductor substrate, 12 and 13 are semiconductor layers forming a cladding layer, 14 is a semiconductor layer forming an active layer, 15 is a semiconductor layer forming a cap layer, and 16 is a part of the cap layer 15. A stripe-shaped ridge formed on the substrate, 17 is an insulator, and 18 is a thin-film metal layer forming a thin-film electrode. The semiconductor layers 12 to 15 are sequentially stacked on the semiconductor substrate 11 in an epitaxial manner.
特開平8-162720号公報JP-A-8-162720
 特許文献1の構造はリッジ部上面のみに金属膜を形成し、リッジ側面とリッジ溝底面(リッジ脇の低い面)の絶縁膜上に金属膜を形成していない。 In the structure of Patent Document 1, a metal film is formed only on the upper surface of the ridge portion, and no metal film is formed on the insulating film on the side surface of the ridge and the bottom surface of the ridge groove (the lower surface beside the ridge).
 本発明者らは、この特許文献1の電子線励起型発光装置を試作したが、電子注入効率が極めて低かった。そこで、解析した結果、リッジ側面とリッジ溝底面に絶縁膜を利用する場合には、絶縁膜にチャージアップ現象が起こり、その結果、電子注入効率が低下したものであることがわかった。 The present inventors made a prototype of the electron beam excitation light emitting device of Patent Document 1, but the electron injection efficiency was extremely low. As a result of analysis, it was found that when an insulating film is used on the ridge side surface and the ridge groove bottom surface, a charge-up phenomenon occurs in the insulating film, resulting in a decrease in electron injection efficiency.
 本発明の目的は、電子線励起型発光装置の電子注入効率を向上することにある。 An object of the present invention is to improve the electron injection efficiency of an electron beam excitation light emitting device.
 上記課題を解決するために、本発明者は、メサ溝側面とメサ溝底面に絶縁膜を配置し、さらに、全面に渡って金属膜を形成する構造を考え出した。しかし、この構造を試作し、評価したが、電子注入効率は思ったようには向上しなかった。これは、金属膜がメサ上面およびメサ側面にもあることで、電子線源から照射された電子線レベルが、半導体層中の活性層に到達するまでの間に弱まってしまうためであると考えられる。 In order to solve the above problems, the present inventor has devised a structure in which an insulating film is disposed on the side surface of the mesa groove and the bottom surface of the mesa groove, and further, a metal film is formed over the entire surface. However, although this structure was prototyped and evaluated, the electron injection efficiency did not improve as expected. This is because the metal film is also on the mesa upper surface and the mesa side surface, so that the electron beam level irradiated from the electron beam source is weakened before reaching the active layer in the semiconductor layer. It is done.
 そこで、本発明者らは、電子線源側にある半導体層全面に金属膜を設けるのでなく、絶縁膜のない電子線を注入する領域に金属膜を設けず、半導体層上の絶縁膜がある領域のみに部分的に金属膜を設けるようにした。そして、絶縁膜および金属膜から露出した半導体領域に対して電子線が照射される位置に電子源を配置した。このような構造を採用することにより、電子注入効率の高い電子線励起型発光装置を実現することができる。 Therefore, the present inventors do not provide a metal film on the entire surface of the semiconductor layer on the electron beam source side, but provide an insulating film on the semiconductor layer without providing a metal film in a region where an electron beam without an insulating film is injected. A metal film was partially provided only in the region. And the electron source was arrange | positioned in the position where an electron beam is irradiated with respect to the semiconductor region exposed from the insulating film and the metal film. By adopting such a structure, an electron beam excitation light emitting device with high electron injection efficiency can be realized.
 特に、DBRミラーまたはへき開面に挟み込まれた半導体層が他の領域より厚く、かつ平面パターンがストライプ状になっている構造(いわゆるリッジ型、メサ型と称される半導体共振構造)のストライプ脇に金属膜を、絶縁膜を介して形成した構造とすることが効率的である。 In particular, on the side of the stripe of the structure in which the semiconductor layer sandwiched between the DBR mirror or the cleavage plane is thicker than other regions and the planar pattern is in a stripe shape (so-called ridge type, semiconductor resonant structure called mesa type). It is efficient to have a structure in which the metal film is formed through an insulating film.
 本発明によれば、電子線による励起で半導体層が発光する電子線励起型発光装置の高効率発光を実現することができる。 According to the present invention, it is possible to realize high-efficiency light emission of an electron beam excitation type light emitting device in which a semiconductor layer emits light by excitation with an electron beam.
実施例1の電子線励起型レーザ装置の断面図である。1 is a cross-sectional view of an electron beam excitation laser device of Example 1. FIG. 実施例1の電子線励起型レーザ装置のレーザ発光部の鳥瞰概略図である。1 is a bird's-eye schematic view of a laser emission unit of an electron beam excitation laser device according to Embodiment 1. FIG. 実施例2の電子線励起型レーザ装置の変形例の断面図である。FIG. 6 is a cross-sectional view of a modification of the electron beam excitation laser device according to the second embodiment. 実施例3の電子線励起型レーザ装置の断面図である。6 is a cross-sectional view of an electron beam excitation laser device according to Example 3. FIG. 実施例4の電子線励起型レーザ装置のレーザ発光部の鳥瞰概略図である。6 is a bird's-eye schematic view of a laser emission unit of an electron beam excitation laser device according to Example 4. FIG. 実施例5の電子線励起型レーザ装置の断面図である。FIG. 6 is a cross-sectional view of an electron beam excitation laser device according to a fifth embodiment. 実施例6の電子線励起型レーザ装置の断面図である。FIG. 6 is a cross-sectional view of an electron beam excitation laser device according to a sixth embodiment. 実施例7の電子線励起型レーザ装置の鳥瞰概略図である。12 is a schematic bird's-eye view of an electron beam excitation laser apparatus according to Example 7. FIG. 実施例7の電子線励起型レーザ装置の中のフォトニック結晶孔領域の概略断面図である。10 is a schematic cross-sectional view of a photonic crystal hole region in an electron beam excitation laser device of Example 7. FIG. 窓付き真空容器に格納された電子線励起型発光装置の断面図である。It is sectional drawing of the electron beam excitation light-emitting device stored in the vacuum container with a window.
 実施例1は深紫外線領域で発光する電子線励起型レーザ装置である。これは、共振構造を備えた電子線励起型発光装置の一例である。図1は実施例1の電子線励起型レーザ装置の断面図(リッジストライプ構造5のストライプ方向における断面)である。図2は実施例1の電子線励起型レーザ装置のレーザ発光部の鳥瞰概略図である。 Example 1 is an electron beam excitation laser device that emits light in the deep ultraviolet region. This is an example of an electron beam excitation type light emitting device having a resonance structure. FIG. 1 is a cross-sectional view (cross-section in the stripe direction of the ridge stripe structure 5) of the electron beam excitation laser apparatus of Example 1. FIG. FIG. 2 is a bird's-eye schematic view of a laser light emitting unit of the electron beam excitation laser device according to the first embodiment.
 1はサファイア基板、2は下層にAlNバッファ層を含む不純物濃度1×1018cm-3のSiをドーパントとする下部n型AlGaNクラッド層、3はn型Al(Ga)Nガイド層を含むアンドープAlGaN-量子井戸活性層、4は不純物濃度1×1018cm-3のSiをドーパントとする上部n型AlGaNクラッド層、5はリッジストライプ構造(Low Mesa型構造)である。 Reference numeral 1 denotes a sapphire substrate, 2 denotes a lower n-type AlGaN cladding layer having an impurity concentration of 1 × 10 18 cm −3 including an AlN buffer layer as a dopant, and 3 denotes an undoped structure including an n-type Al (Ga) N guide layer An AlGaN-quantum well active layer, 4 is an upper n-type AlGaN cladding layer using Si with an impurity concentration of 1 × 10 18 cm −3 as a dopant, and 5 has a ridge stripe structure (Low Mesa structure).
 下部n型AlGaNクラッド層2、アンドープAlGaN-量子井戸活性層3、上部n型AlGaNクラッド層4およびリッジストライプ構造(Low Mesa型構造)5は、サファイア基板1上にMOCVD(Metal-Organic Chemical Vapor Deposition)法により結晶成長することで半導体積層体を生成し、ストライプ状のマスクを用いてドライエッチングを施すことで形成した。リッジストライプ構造5の断面は、リッジ上面の幅は3μm、リッジ高さ300nmの矩形である。これらの半導体層は図示しないが、DBRミラーまたはへき開面に挟み込まれた構造をしている。 The lower n-type AlGaN cladding layer 2, the undoped AlGaN-quantum well active layer 3, the upper n-type AlGaN cladding layer 4 and the ridge stripe structure (Low Mesa structure) 5 are formed on the sapphire substrate 1 by MOCVD (Metal-Organic Chemical Vapor Deposition). ) Method to form a semiconductor stacked body, and dry etching is performed using a striped mask. The cross-section of the ridge stripe structure 5 is a rectangle with the width of the top surface of the ridge of 3 μm and the ridge height of 300 nm. Although not shown, these semiconductor layers have a structure sandwiched between DBR mirrors or cleavage planes.
 6は二酸化シリコンSiOで構成されている絶縁膜で、リッジストライプ脇に配置され、リッジストライプ側面に接している。この絶縁膜6の膜厚は、リッジ高さの半分以下の100nmである。なお、絶縁膜6はリッジストライプ構造5と同一の高さでもよい。 6 is an insulating film is composed of silicon dioxide SiO 2, is placed aside ridge stripe, in contact with the ridge stripe side. The thickness of the insulating film 6 is 100 nm, which is half or less of the ridge height. The insulating film 6 may have the same height as the ridge stripe structure 5.
 7は絶縁膜6の上にTi/Pt/Auからなる3層の金属膜が積層された電極である。半導体層全面に金属膜を設けるのでなく、電子線を注入する絶縁膜のない領域に金属膜を設けず、半導体層上の絶縁膜がある領域のみに部分的に金属膜を設けるようにしたので、この電極7に絶縁膜6にチャージした電子が流れ、絶縁膜6のチャージアップが防止される。 7 is an electrode in which a three-layer metal film made of Ti / Pt / Au is laminated on the insulating film 6. Instead of providing a metal film on the entire surface of the semiconductor layer, a metal film is not provided in a region without an insulating film for injecting an electron beam, and a metal film is provided only in a region having an insulating film on the semiconductor layer. Then, the electrons charged in the insulating film 6 flow through the electrode 7 to prevent the insulating film 6 from being charged up.
 8は4の上部n型AlGaNクラッド層とオーミックコンタクトを取るためのTi/Al/Ti/Auからなる4層の金属膜で構成された電極である。 8 is an electrode composed of a four-layer metal film made of Ti / Al / Ti / Au for making ohmic contact with the four upper n-type AlGaN cladding layers.
 9は5の下部n型AlGaNクラッド層とオーミックコンタクトを取るためのTi/Al/Ti/AuまたはTi/Al/Mo/Auからなる4層の金属膜で構成された電極である。 9 is an electrode composed of a four-layer metal film made of Ti / Al / Ti / Au or Ti / Al / Mo / Au for making ohmic contact with the lower n-type AlGaN clad layer 5.
 実施例1では、電極8,9には0Vが供給される。すなわち、電極8,9は接地されている。 In Example 1, 0V is supplied to the electrodes 8 and 9. That is, the electrodes 8 and 9 are grounded.
 電極8,9はそれぞれ半導体層にオーミック接触され接地されている。これにより電子が滞りなくリッジストライプに注入されるようになっている。尚、窒化物半導体のようなワイドギャップ半導体ではバンドギャップが大きいので半導体といえどもチャージアップする懸念もあったが、我々の試作結果では半導体にドーピングし、オーミック接触で上記電極を形成し、上記電極を接地した構造ではチャージアップしなかった。 The electrodes 8 and 9 are in ohmic contact with the semiconductor layer and grounded. As a result, electrons are injected into the ridge stripe without delay. Although wide band gap semiconductors such as nitride semiconductors have a large band gap, there is a concern that even semiconductors may be charged up. However, in our trial results, the semiconductor is doped and the above electrodes are formed by ohmic contact. The structure with the electrode grounded did not charge up.
 10は電子線源である。電子線源10は熱電子を放出する酸化バリウムで構成されており、絶縁膜6および電極7から露出した半導体層上面から電子線が照射される位置に配置されている。 10 is an electron beam source. The electron beam source 10 is made of barium oxide that emits thermoelectrons, and is arranged at a position where the electron beam is irradiated from the upper surface of the semiconductor layer exposed from the insulating film 6 and the electrode 7.
 11は真空容器であり、真空度を保つゲッタリング材料が蒸着されたガラス管で構成した。 11 is a vacuum vessel, which is composed of a glass tube on which a gettering material for keeping the degree of vacuum is deposited.
 12は電子を加速するための電圧源である。なお、この電圧源12からの電圧Vdは-10Vから-20kVの範囲で設定した。 12 is a voltage source for accelerating electrons. The voltage Vd from the voltage source 12 was set in the range of -10V to -20kV.
 13は金属膜7に電圧Vgを印加する電源であり、電圧はVdより大きく接地電圧(0V)以下の範囲で設定した。電圧Vgを印加しなくても絶縁膜6のチャージアップは抑制されるが、電圧Vgを印加することで絶縁膜6のチャージアップが効率的かつ安定的に抑制される。 13 is a power source for applying a voltage Vg to the metal film 7, and the voltage was set in a range larger than Vd and lower than a ground voltage (0V). Even if the voltage Vg is not applied, the charge-up of the insulating film 6 is suppressed, but by applying the voltage Vg, the charge-up of the insulating film 6 is efficiently and stably suppressed.
 電子線源10からの電子eは、一般的に放射状に放出される。したがって、厚膜部であるリッジストライプだけでなく、薄膜部であるリッジストライプ脇(リッジ溝底面)にも電子eは注入される。また、リッジストライプ構造5に注入された電子eは2次電子を放出するためにその周りに電子eは散乱する。金属膜7がない場合は、リッジストライプ構造5の周りにある絶縁膜6に電子eが放射されるので絶縁膜6がチャージアップされてしまう。チャージアップした場合には絶縁膜6が正に帯電するため、リッジストライプ構造5に向かっていく電子eが曲げられてリッジストライプ構造5に正常に注入されなくなり、電子の注入効率が下がる。また、全面に金属膜7がある場合には、チャージアップの問題は発生しないが、リッジストライプ構造5自体に注入される電子の量が減少するので、結局電子注入効率が低下する。 Electrons e from the electron beam source 10 are generally emitted radially. Therefore, the electrons e are injected not only into the ridge stripe as the thick film portion but also into the side of the ridge stripe (the bottom surface of the ridge groove) as the thin film portion. Further, since the electrons e injected into the ridge stripe structure 5 emit secondary electrons, the electrons e are scattered around the electrons. In the absence of the metal film 7, electrons e are emitted to the insulating film 6 around the ridge stripe structure 5, so that the insulating film 6 is charged up. When charged up, since the insulating film 6 is positively charged, the electrons e traveling toward the ridge stripe structure 5 are bent and are not normally injected into the ridge stripe structure 5, and the electron injection efficiency is lowered. In addition, when the metal film 7 is present on the entire surface, the problem of charge-up does not occur, but the amount of electrons injected into the ridge stripe structure 5 itself decreases, so that the electron injection efficiency eventually decreases.
 この実施例1の半導体レーザは、室温、電子源への電圧Vd=-10kVの条件下で、発振波長260nm、出力5mW、駆動電流6mAという低電流レーザ発振が実現できた。また、APC(Auto Power Control)試験において500時間に渡り安定な動作を得た。 The semiconductor laser of Example 1 was able to realize low current laser oscillation with an oscillation wavelength of 260 nm, an output of 5 mW, and a drive current of 6 mA under conditions of room temperature and voltage Vd = −10 kV to the electron source. In addition, a stable operation was obtained for 500 hours in an APC (Auto Power Control) test.
 図3は、実施例1の変形例である電子線励起型レーザ装置のレーザ発光部の断面図(リッジストライプ構造5のストライプ方向における断面)である。実施例1との相違点としては、絶縁膜6がリッジストライプ構造5よりも高く形成されている点である。 FIG. 3 is a cross-sectional view (a cross section in the stripe direction of the ridge stripe structure 5) of a laser light emitting portion of an electron beam excitation laser device which is a modification of the first embodiment. The difference from the first embodiment is that the insulating film 6 is formed higher than the ridge stripe structure 5.
 また、実施例2では、電極7はリッジストライプの側面に接する絶縁膜6と同様に、リッジストライプ5の側面との間には隙間がない平面レイアウトとしている。これは、絶縁膜6をリッジストライプ構造5よりも高く形成されているので、電極7がリッジストライプ側面に接することがなく、電極7と半導体1-5間の電圧差に起因するリーク電流が生じないからである。 Further, in Example 2, the electrode 7 has a planar layout with no gap between the side surface of the ridge stripe 5 like the insulating film 6 in contact with the side surface of the ridge stripe. This is because the insulating film 6 is formed higher than the ridge stripe structure 5, so that the electrode 7 does not contact the side surface of the ridge stripe, and a leak current is generated due to the voltage difference between the electrode 7 and the semiconductor 1-5. Because there is no.
 この実施例2の場合、VgをVdと接地電圧である0Vの間の適切な値に設定することにより良好に電子をリッジストライプ構造5に引き込むことができた。 In the case of this Example 2, electrons could be successfully drawn into the ridge stripe structure 5 by setting Vg to an appropriate value between Vd and the ground voltage of 0V.
 実施例3は深紫外線領域で発光する電子線励起型レーザである。これは、共振構造を備えた電子線励起型発光装置の一例である。図4は実施例3の電子線励起型レーザ装置の断面図(リッジストライプ構造5のストライプ方向における断面)である。図1との違いは絶縁膜6と金属膜7がリッジストライプ構造5から離れて配置されていることである。 Example 3 is an electron beam excitation laser that emits light in the deep ultraviolet region. This is an example of an electron beam excitation type light emitting device having a resonance structure. FIG. 4 is a cross-sectional view of the electron beam excitation laser device of Example 3 (cross-section in the stripe direction of the ridge stripe structure 5). The difference from FIG. 1 is that the insulating film 6 and the metal film 7 are arranged away from the ridge stripe structure 5.
 ここで加速された電子が半導体内へ入る侵入長について議論する。物質の侵入長は経験則に基づいた定式化がK.Kanaya and S.Okayamaによりなされており、Journal of Physics D: Applied Physics Vol.5,43頁(1972年)に開示されている。平均原子量と密度から計算すると例えば-10kVの加速電圧のときGaNやAlNにおいて電子の物質内での散乱中心深さは約0.2μmであり、最大侵入深さは約0.6μmであった。電子は最大侵入深さ付近まで達するが、散乱中心で最も電子正孔対ができる。リッジの高さは光を導波するために低くするのに限界がある。そこで、図4のように絶縁膜6と金属膜7をリッジストライプ構造5から離して配置しリッジ脇からも電子を注入することにより効率良く活性層で電子正孔対を発生させることができる。 Here, we discuss the penetration length at which accelerated electrons enter the semiconductor. The intrusion length of materials is formulated based on empirical rules. Kanaya and S. Made by Okayama, Journal of Physics D: Applied Physics Vol. 5, 43 (1972). When calculated from the average atomic weight and density, for example, at an acceleration voltage of −10 kV, the scattering center depth in the material of electrons in GaN and AlN was about 0.2 μm, and the maximum penetration depth was about 0.6 μm. Electrons reach the vicinity of the maximum penetration depth, but most electron-hole pairs are formed at the scattering center. The height of the ridge is limited in order to reduce the height in order to guide light. Therefore, as shown in FIG. 4, the insulating film 6 and the metal film 7 are arranged apart from the ridge stripe structure 5 and electrons are injected from the side of the ridge, so that electron-hole pairs can be efficiently generated in the active layer.
 さらに、この実施例3の半導体レーザでは、電極7を絶縁膜6よりもリッジストライプ構造5からさらに離して、隙間を大きくした。このことにより、電極7と半導体1-5間の電圧差が高い場合のリーク電流を減らすことができ、また作製時のプロセス余裕度が大きくなるというメリットがある。 Furthermore, in the semiconductor laser of Example 3, the electrode 7 was further away from the ridge stripe structure 5 than the insulating film 6 to increase the gap. This has the merit that the leakage current when the voltage difference between the electrode 7 and the semiconductor 1-5 is high can be reduced, and the process margin at the time of manufacturing is increased.
 また、この実施例3の半導体レーザは、室温、電子源への電圧Vd=-10kVの条件下で、発振波長255nm、出力5mW、駆動電流3mAという低電流によるレーザ発振が実現できた。また、APC(Auto Power Control)試験において800時間に渡り安定な動作を得た。 In addition, the semiconductor laser of Example 3 was able to realize laser oscillation with a low current of an oscillation wavelength of 255 nm, an output of 5 mW, and a driving current of 3 mA under the conditions of room temperature and voltage Vd = −10 kV to the electron source. In addition, a stable operation was obtained for 800 hours in an APC (Auto Power Control) test.
 また、本実施例では図4のように絶縁膜6はリッジストライプ構造5の高さより低い。 In this embodiment, the insulating film 6 is lower than the height of the ridge stripe structure 5 as shown in FIG.
 図5は、実施例3の変形例である電子線励起型レーザ装置のレーザ発光部の断面図(リッジストライプ構造5のストライプ方向における断面)である。実施例3との相違点としては、絶縁膜6がリッジストライプ構造5よりも高く形成されている点と、電極7が絶縁膜6からリッジストライプ5側に突出している点である。この突出は、リッジストライプ構造5と絶縁膜6との隙間でとまっている。 FIG. 5 is a cross-sectional view (a cross section in the stripe direction of the ridge stripe structure 5) of a laser light emitting portion of an electron beam excitation laser device which is a modification of the third embodiment. The difference from Example 3 is that the insulating film 6 is formed higher than the ridge stripe structure 5 and that the electrode 7 protrudes from the insulating film 6 to the ridge stripe 5 side. This protrusion is stopped at the gap between the ridge stripe structure 5 and the insulating film 6.
 絶縁膜6がリッジストライプ構造5よりも高く形成されている点により、適切なVgを与えることにより電子を引き込み、高効率な電子注入することがというメリットがある。また、電極7がリッジストライプ構造5と絶縁膜6との隙間に突出していることにより、実施例3での効果であるリッジストライプ脇への電子注入を突出長さでコントロールできるというメリットを得ている。 Since the insulating film 6 is formed higher than the ridge stripe structure 5, there is an advantage that electrons are drawn by applying an appropriate Vg and highly efficient electron injection is performed. Further, since the electrode 7 protrudes into the gap between the ridge stripe structure 5 and the insulating film 6, the advantage that the electron injection to the side of the ridge stripe, which is the effect in the embodiment 3, can be controlled by the protrusion length is obtained. Yes.
 実施例4では、VgをVdと接地電圧である0Vの間の適切な値に設定した。このことにより、良好に電子をリッジストライプ構造5に引き込むことができている。 In Example 4, Vg was set to an appropriate value between Vd and the ground voltage of 0V. As a result, electrons can be satisfactorily drawn into the ridge stripe structure 5.
 <代替案>
 実施例1乃至実施例4の各層は一例であり、以下それらの代案を示す。
<Alternative>
Each layer of Example 1 to Example 4 is an example, and their alternatives are shown below.
 上述した各実施例では、窒化物半導体を結晶成長した基板として、サファイア基板1を用いたが、AlN基板を用いても同様の効果が得られる。なお、この場合、AlN基板は半絶縁性のものでも、ドーパントが導入された導電性のものでも良い。導電性基板の場合には基板の裏面側にも電極を形成する。 In each of the above-described embodiments, the sapphire substrate 1 is used as a substrate on which a nitride semiconductor is crystal-grown, but the same effect can be obtained by using an AlN substrate. In this case, the AlN substrate may be semi-insulating or conductive with a dopant introduced. In the case of a conductive substrate, electrodes are also formed on the back side of the substrate.
 上述した各実施例では、2及び4のAlGaNクラッド層はSiがドーパントとしてドーピングされ、n型半導体層になっているので、活性化率が電子eの注入により変化しにくいというメリットがあるが、必ずしも必須ではなく、窒化物半導体にMgをドーピングしてp型半導体層としてもよい。また、これらのp型またはn型のドーパントの不純物濃度は7×1016~3×1019cm-3の範囲が好ましい。 In each of the embodiments described above, since the AlGaN cladding layers 2 and 4 are doped with Si as a dopant and become an n-type semiconductor layer, there is an advantage that the activation rate is hardly changed by the injection of electrons e. The p-type semiconductor layer may be formed by doping Mg into a nitride semiconductor. The impurity concentration of these p-type or n-type dopants is preferably in the range of 7 × 10 16 to 3 × 10 19 cm −3 .
 上述した各実施例では、リッジストライプ構造5の材料組成は、上部n型AlGaNクラッドと同じとしたが、メサの高さ再現性の観点からエッチング速度の異なる材料で構成されたエッジストップ層を介在させてもよい。また、上述した例では、リッジストライプ構造5の断面を矩形としたが、台形や逆台形であってもかまわない。また、リッジストライプ構造5の寸法の最適範囲は、リッジの幅が1~30μm、高さが100~800nmである。 In each of the embodiments described above, the material composition of the ridge stripe structure 5 is the same as that of the upper n-type AlGaN cladding, but an edge stop layer made of a material having a different etching rate is interposed from the viewpoint of mesa height reproducibility. You may let them. In the example described above, the ridge stripe structure 5 has a rectangular cross section, but may have a trapezoidal shape or an inverted trapezoidal shape. The optimum range of dimensions of the ridge stripe structure 5 is a ridge width of 1 to 30 μm and a height of 100 to 800 nm.
 絶縁膜6は、上述した各実施例のような二酸化シリコンだけでなく、他のSiの酸化物または窒化物、Alの酸化物または窒化物、ZrO,WO,TiSiN,HfOを使用することができる。 The insulating film 6 uses not only silicon dioxide as in the above-described embodiments, but also other Si oxides or nitrides, Al oxides or nitrides, ZrO 2 , WO 3 , TiSiN, and HfO 2 . be able to.
 上述した各実施例では、電子線源10は、熱電子を放出する酸化バリウムで構成したが、タングステン、カーボンナノチューブを用いることができる。 In each of the above-described embodiments, the electron beam source 10 is composed of barium oxide that emits thermoelectrons, but tungsten or carbon nanotubes can be used.
 上述した各実施例では、真空容器11は、真空度を保つゲッタリング材料が蒸着されたガラス管で構成したが、金属容器で構成してもよい。 In each of the above-described embodiments, the vacuum vessel 11 is composed of a glass tube on which a gettering material that maintains the degree of vacuum is deposited, but may be composed of a metal vessel.
 実施例5は深紫外線領域で発光する電子線励起面発光レーザである。これは、共振構造を備えた電子線励起型発光装置の一例である。図6はその発光部のみの概略断面図であり、この発光部以外の電子線源10、真空容器11、電源12,13は図1と同じ構成を備えている。 Example 5 is an electron beam excitation surface emitting laser that emits light in the deep ultraviolet region. This is an example of an electron beam excitation type light emitting device having a resonance structure. FIG. 6 is a schematic cross-sectional view of only the light emitting portion, and the electron beam source 10, the vacuum vessel 11, and the power supplies 12 and 13 other than the light emitting portion have the same configuration as FIG.
 図6において101はn型AlN基板であり、102はn型半導体DBR層である。このDBR層は102aのn型AlN層と102bのn型AlGaN層がλ/4nの層厚で交互に積層されている。ここでλは発振波長であり、nはその層の屈折率である。103はn-InGaAlNスペーサ層、104はInGaAlN量子井戸活性層、105はn-InGaAlNスペーサ層であり、103~105でλ/nの膜厚に相当する共振器構造を形成している。106はn型AlN層であり、109はn型半導体DBR層であり、下層部と同様にn型AlN層とn型AlGaN層より構成される。107は絶縁膜、108は金属膜であり、金属膜108は図1のVgに相当する電圧に接続されている。110はn型オーミック電極層であり、0Vに接地されている。尚、図面では省略しているが、106のn型AlN層も発光部から離れた位置でn型電極によりオーミック接触されており、0Vに接地されている。 In FIG. 6, 101 is an n-type AlN substrate, and 102 is an n-type semiconductor DBR layer. In this DBR layer, n-type AlN layers 102a and n-type AlGaN layers 102b are alternately stacked with a layer thickness of λ / 4n. Here, λ is the oscillation wavelength, and n is the refractive index of the layer. Reference numeral 103 denotes an n-InGaAlN spacer layer, 104 denotes an InGaAlN quantum well active layer, and 105 denotes an n-InGaAlN spacer layer. 103 to 105 form a resonator structure corresponding to a film thickness of λ / n. 106 is an n-type AlN layer, 109 is an n-type semiconductor DBR layer, and is composed of an n-type AlN layer and an n-type AlGaN layer as in the lower layer. 107 is an insulating film, 108 is a metal film, and the metal film 108 is connected to a voltage corresponding to Vg in FIG. Reference numeral 110 denotes an n-type ohmic electrode layer, which is grounded to 0V. Although not shown in the drawing, the n-type AlN layer 106 is also in ohmic contact with the n-type electrode at a position away from the light emitting portion, and is grounded to 0V.
 実施例5でも実施例1と同様に図6の基板上部のn型AlN層106が露出している領域に電子を注入することにより活性層104に容易に電子が到達するため、効率良く面発光レーザは発振することができる。さらに、絶縁膜106により電流領域が規定され、108により絶縁膜のチャージアップが抑制できるため、チャージアップによるレーザ特性の劣化は抑制することができる。 In Example 5, as in Example 1, since electrons easily reach the active layer 104 by injecting electrons into the region where the n-type AlN layer 106 at the top of the substrate in FIG. 6 is exposed, surface emission is efficiently performed. The laser can oscillate. Furthermore, since the current region is defined by the insulating film 106 and the charge-up of the insulating film can be suppressed by 108, the deterioration of the laser characteristics due to the charge-up can be suppressed.
 実施例5では、-5kVの電圧で加速された電子を注入することにより、0.5mAのしきい電流にて面発光レーザは発振した。この時の発振波長は290nmであった。 In Example 5, a surface emitting laser oscillated at a threshold current of 0.5 mA by injecting electrons accelerated at a voltage of −5 kV. The oscillation wavelength at this time was 290 nm.
 尚、AlN基板101の下部のみ真空容器から出ており、n電極110の中央部は開いており、この開口部からレーザ光を取りだすことができる。 Note that only the lower part of the AlN substrate 101 comes out of the vacuum vessel, and the central part of the n-electrode 110 is open, and laser light can be taken out from this opening.
 実施例6は深紫外線領域で発光する電子線励起埋め込み型レーザである。これは、共振構造を備えた電子線励起型発光装置の一例である。図7はその発光部のみの概略断面図であり、図1で描かれている電子線源10、真空容器11、電源12,13は実施例1と同等のものを用いれば良い。図7において16はAlN基板であり、2はAlNバッファ層を含む下部AlGaNクラッド層、3はAl(Ga)Nガイド層を含むAlGaN-量子井戸活性層、4は上部AlGaNクラッド層である。実施例1と同様に上下のAlGaNクラッド層はn型にドーピングされている。6と7はAlGaNクラッド層を開口部とする絶縁層と金属膜層であり、実施例1と同様に金属膜層は電源に接続されVgの電圧に保たれている。14は半絶縁性のAlN埋め込み層であり、15はn型オーミック電極である。上部からの電子は上部クラッド4に照射されるが、その周りの領域はVgの電圧に保たれた金属膜層7で覆われているためにチャージアップせずに上部クラッド4に安定して電子が注入される。 Example 6 is an electron beam excitation embedded laser that emits light in the deep ultraviolet region. This is an example of an electron beam excitation type light emitting device having a resonance structure. FIG. 7 is a schematic cross-sectional view of only the light emitting portion, and the electron beam source 10, the vacuum vessel 11, and the power sources 12 and 13 depicted in FIG. In FIG. 7, 16 is an AlN substrate, 2 is a lower AlGaN cladding layer including an AlN buffer layer, 3 is an AlGaN-quantum well active layer including an Al (Ga) N guide layer, and 4 is an upper AlGaN cladding layer. As in Example 1, the upper and lower AlGaN cladding layers are doped n-type. Reference numerals 6 and 7 denote an insulating layer and a metal film layer having an AlGaN cladding layer as an opening, and the metal film layer is connected to a power source and kept at a voltage of Vg as in the first embodiment. 14 is a semi-insulating AlN buried layer, and 15 is an n-type ohmic electrode. Electrons from above are irradiated onto the upper clad 4, but since the surrounding region is covered with the metal film layer 7 maintained at a voltage of Vg, electrons are stably applied to the upper clad 4 without being charged up. Is injected.
 実施例6による半導体レーザは室温にて電子源への電圧-20kVにおいて20mAの低い電流にてレーザ発振を確認した。発振波長278nmであり、3mWのAPC(Auto Power Control)試験において200時間に渡り安定な動作を得た。 The semiconductor laser according to Example 6 was confirmed to oscillate with a low current of 20 mA at a voltage of −20 kV to the electron source at room temperature. The oscillation wavelength was 278 nm, and stable operation was obtained for 200 hours in a 3 mW APC (Auto Power Control) test.
 実施例7は深紫外領域で発光するLEDである。これは、共振構造を備えた電子線励起型発光装置の一例である。図8はその鳥瞰概略図であり、図9はその中のフォトニック結晶孔領域の断面図である。図8,9はその発光部のみの概略図であり、図1で描かれている電子線源10、真空容器11、電源12,13は実施例1と同等のものを用いれば良い。図8、9において1はサファイア基板で2はAlNバッファ層を含む下部n型AlGaNクラッド層、3はAl(Ga)Nガイド層を含むAlGaN-量子井戸活性層、4は上部n型AlGaNクラッド層である。 Example 7 is an LED that emits light in the deep ultraviolet region. This is an example of an electron beam excitation type light emitting device having a resonance structure. FIG. 8 is a schematic bird's-eye view, and FIG. 9 is a cross-sectional view of the photonic crystal hole region therein. FIGS. 8 and 9 are schematic views of only the light emitting section. The electron beam source 10, the vacuum vessel 11, and the power supplies 12 and 13 depicted in FIG. 1 may be the same as those in the first embodiment. 8 and 9, 1 is a sapphire substrate, 2 is a lower n-type AlGaN cladding layer including an AlN buffer layer, 3 is an AlGaN-quantum well active layer including an Al (Ga) N guide layer, and 4 is an upper n-type AlGaN cladding layer. It is.
 111はアンドープAlN層とアンドープAlGaN層からなるアンドープの半導体DBR層である。 111 is an undoped semiconductor DBR layer comprising an undoped AlN layer and an undoped AlGaN layer.
 112はフォトニック結晶孔が開口されている金属膜層であり、113はフォトニック結晶構造の開口部分である。 112 is a metal film layer in which photonic crystal holes are opened, and 113 is an opening portion of the photonic crystal structure.
 実施例1と同様に上部n型クラッド層と下部n型クラッド層は電子線注入部から離れた場所でオーミック接触電極を用いて0Vに接地されている。電子は基板の上方から来てフォトニック結晶の孔を通って半導体層3,4に注入される。 As in Example 1, the upper n-type cladding layer and the lower n-type cladding layer are grounded to 0 V using an ohmic contact electrode at a location away from the electron beam injection portion. Electrons come from above the substrate and are injected into the semiconductor layers 3 and 4 through the holes in the photonic crystal.
 ここで112は電源に接続されVgの電圧に保たれているのでフォトニック結晶部とDBR層部はチャージアップせず安定した高効率の動作をすることができる。 Here, since 112 is connected to a power source and is maintained at a voltage of Vg, the photonic crystal portion and the DBR layer portion can be stably operated with high efficiency without being charged up.
 活性層からの光はフォトニック結晶部とDBR層部で下方に反射され、サファイア基板側に放射される。 The light from the active layer is reflected downward by the photonic crystal part and the DBR layer part and emitted to the sapphire substrate side.
 本実施例のLEDは中心波長245nmで発光し、その最大光出力は24mWであった。12mWの一定光出力での信頼性試験では4000時間以上で安定した特性が得られた。本実施例ではDBR層111はアンドープとしたが、n型にドーピングしたDBR層を用いて金属膜層との間にλ/4nの膜厚相当の誘電体膜を挿入した構造でも同様の効果が得られる。また、DBR層を誘電体膜で形成しても同様の効果が得られる。 The LED of this example emitted light with a central wavelength of 245 nm, and its maximum light output was 24 mW. In a reliability test at a constant light output of 12 mW, stable characteristics were obtained after 4000 hours. In this embodiment, the DBR layer 111 is undoped. However, a similar effect can be obtained even in a structure in which a dielectric film equivalent to a thickness of λ / 4n is inserted between the metal film layer using an n-type doped DBR layer. can get. The same effect can be obtained even when the DBR layer is formed of a dielectric film.
 (共通事項)
 実施例1から7はすべて半導体として窒化物半導体について記述したが、他の半導体、例えばInP基板上に成長できるInGaAsPやInGaAlAs等、或いはGaAs上に成長できるInGaAlPやAlGaAs等でも同様に適用できることは言うまでもない。また、ZeSe系やCdZnSe等のII-VI族半導体でも同様に適用できる。
(Common subject matter)
Although all of Examples 1 to 7 have described nitride semiconductors as semiconductors, other semiconductors such as InGaAsP and InGaAlAs that can be grown on an InP substrate, or InGaAlP and AlGaAs that can be grown on GaAs, can be similarly applied. Yes. The same applies to II-VI group semiconductors such as ZeSe and CdZnSe.
 また、実施例1,2,4は端面発光のレーザの例について記述しているが、端面の片面のみに高反射コート膜を施し、反対側のストライプ導波路にカーブをつけて曲げ、反射率を低減し、さらに無反射コート膜を施したスーパールミネッセンスダイオードに同様に適用することができる。 Examples 1, 2, and 4 describe an example of an edge emitting laser. However, a highly reflective coating film is applied only to one side of the end face, and the opposite side of the stripe waveguide is bent to reflect the reflectance. It can be similarly applied to a super luminescence diode having a non-reflective coating film.
 図10は、窓付き真空容器に格納された電子線励起型発光装置の断面図である。実施例1乃至4、6の場合には図10に示すように真空容器の一部に115の紫外線透過窓を形成して紫外光を真空容器11外に出す必要がある。図10において114は実施例1乃至4、6で述べた発光部である半導体レーザを示している。 FIG. 10 is a cross-sectional view of an electron beam excitation light-emitting device stored in a vacuum container with a window. In the case of Examples 1 to 4 and 6, as shown in FIG. 10, it is necessary to form 115 ultraviolet transmissive windows in a part of the vacuum vessel and to emit ultraviolet light out of the vacuum vessel 11. In FIG. 10, reference numeral 114 denotes the semiconductor laser which is the light emitting portion described in the first to fourth and sixth embodiments.
1…サファイア基板
2…AlNバッファ層を含む下部AlGaNクラッド層
3…Al(Ga)Nガイド層を含むAlGaN-量子井戸活性層
4…上部AlGaNクラッド層
5…リッジ構造
6…絶縁層
7…金属膜層
8…上部クラッド層へのオーミック電極層
9…下部クラッド層へのオーミック電極層
10…電子線源
11…真空容器
12…電源
13…電源
14…半絶縁AlN埋め込み層
15…n型オーミック電極層
DESCRIPTION OF SYMBOLS 1 ... Sapphire substrate 2 ... Lower AlGaN cladding layer 3 including AlN buffer layer 3 ... AlGaN-quantum well active layer 4 including Al (Ga) N guide layer ... Upper AlGaN cladding layer 5 ... Ridge structure 6 ... Insulating layer 7 ... Metal film Layer 8 ... Ohmic electrode layer 9 for upper cladding layer ... Ohmic electrode layer 10 for lower cladding layer ... Electron beam source 11 ... Vacuum vessel 12 ... Power source 13 ... Power source 14 ... Semi-insulating AlN buried layer 15 ... n-type ohmic electrode layer

Claims (10)

  1.  活性層を含む半導体積層体と、
     前記半導体積層体上に開口部があるように部分的に設けられた絶縁膜と、
     前記絶縁膜上に設けられた金属膜と、
     前記金属膜から露出している半導体積層体に電子線を照射する電子線源とを有することを特徴とする電子線励起型発光装置。
    A semiconductor laminate including an active layer;
    An insulating film partially provided so as to have an opening on the semiconductor laminate;
    A metal film provided on the insulating film;
    An electron beam excitation type light emitting device comprising: an electron beam source that irradiates an electron beam to a semiconductor laminate exposed from the metal film.
  2.  請求項1において、
     前記半導体積層体は、前記活性層を挟み込むn型導電性半導体層を有することを特徴とする電子線励起型発光装置。
    In claim 1,
    The semiconductor stacked body includes an n-type conductive semiconductor layer sandwiching the active layer, and an electron beam excitation light emitting device.
  3.  請求項2において、
     前記n型導電性半導体層に接地されたオーミック電極が設けられていることを特徴とする電子線励起型発光装置。
    In claim 2,
    An electron beam excitation light-emitting device, wherein a grounded ohmic electrode is provided on the n-type conductive semiconductor layer.
  4.  請求項1において、
     前記半導体積層体は、断面が部分的に凸形状であるメサを備え、そのメサが前記絶縁膜の開口に位置し、
     前記メサ上面に電子が照射されることを特徴とする電子線励起型発光装置。
    In claim 1,
    The semiconductor laminate includes a mesa whose cross section is partially convex, and the mesa is located in the opening of the insulating film,
    An electron beam excitation light-emitting device, wherein electrons are irradiated on the upper surface of the mesa.
  5.  請求項4において、
     前記メサの脇に、間隔を空けて前記金属膜が形成されていることを特徴とする電子線励起型発光装置。
    In claim 4,
    An electron beam excitation light emitting device, wherein the metal film is formed on the side of the mesa with a space therebetween.
  6.  請求項4において、
     前記メサは、活性層よりも上層にある半導体積層体で構成されていることを特徴とする電子線励起型発光装置。
    In claim 4,
    The mesa is composed of a semiconductor stacked body in an upper layer than the active layer, and is an electron beam excitation light emitting device.
  7.  請求項4において、
     前記メサ構造は、第1の方向に長いストライプの平面パターンを備え、
     前記第1の方向に共振するように構成されていることを特徴とする電子線励起型発光装置。
    In claim 4,
    The mesa structure comprises a planar pattern of long stripes in a first direction;
    An electron beam excitation type light emitting device configured to resonate in the first direction.
  8.  請求項1において、
     前記半導体積層体の一部が窒化物半導体であることを特徴とする電子線励起型発光装置。
    In claim 1,
    An electron beam excitation light-emitting device, wherein a part of the semiconductor laminate is a nitride semiconductor.
  9.  請求項1において、
     前記半導体積層体は前記活性層が上下の反射鏡で挟まれた面発光レーザであることを特徴とする電子線励起型発光装置。
    In claim 1,
    The semiconductor stacked body is a surface-emitting laser in which the active layer is sandwiched between upper and lower reflecting mirrors.
  10.  請求項1において、
     活性層上部にDBR反射鏡と前記DBR反射鏡に形成されたフォトニック結晶構造を備えたことを特徴とする電子線励起型発光装置。
     
    In claim 1,
    An electron beam excited light emitting device comprising a DBR reflecting mirror and a photonic crystal structure formed on the DBR reflecting mirror on an active layer.
PCT/JP2010/060601 2010-06-23 2010-06-23 Electron beam excited light-emitting device WO2011161775A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012521209A JP5383912B2 (en) 2010-06-23 2010-06-23 Electron beam excitation light emitting device
PCT/JP2010/060601 WO2011161775A1 (en) 2010-06-23 2010-06-23 Electron beam excited light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060601 WO2011161775A1 (en) 2010-06-23 2010-06-23 Electron beam excited light-emitting device

Publications (1)

Publication Number Publication Date
WO2011161775A1 true WO2011161775A1 (en) 2011-12-29

Family

ID=45370988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060601 WO2011161775A1 (en) 2010-06-23 2010-06-23 Electron beam excited light-emitting device

Country Status (2)

Country Link
JP (1) JP5383912B2 (en)
WO (1) WO2011161775A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007098A1 (en) * 2012-07-02 2014-01-09 スタンレー電気株式会社 Deep ultraviolet laser light source by means of electron beam excitation
JP2015005743A (en) * 2013-06-18 2015-01-08 パロ・アルト・リサーチ・センター・インコーポレーテッドPalo Alto Research Center Incorporated Structure for electron-beam pumped edge-emitting device and methods for producing the same
EP2675024A3 (en) * 2012-06-14 2015-03-04 Palo Alto Research Center Incorporated Electron beam pumped vertical cavity surface emitting laser
US10056735B1 (en) 2016-05-23 2018-08-21 X Development Llc Scanning UV light source utilizing semiconductor heterostructures

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188980A (en) * 1989-01-17 1990-07-25 Matsushita Electric Ind Co Ltd Manufacture of light-emitting element
JPH05218589A (en) * 1992-02-07 1993-08-27 Sharp Corp Electron beam excited semiconductor light-emitting element
JPH0897500A (en) * 1994-09-28 1996-04-12 Sony Corp Light emitting device and laser crt employing the same
JPH08162720A (en) * 1994-11-30 1996-06-21 Canon Inc Semiconductor laser
JPH09214027A (en) * 1996-02-01 1997-08-15 Matsushita Electric Ind Co Ltd Electron-beam excited laser device
JPH10223976A (en) * 1997-02-13 1998-08-21 Matsushita Electric Ind Co Ltd Semiconductor laser
JPH10321955A (en) * 1997-05-15 1998-12-04 Matsushita Electric Ind Co Ltd Electron beam stimulated light-emitting element
JP2001251001A (en) * 2000-03-03 2001-09-14 Canon Inc Electron beam excited laser device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188980A (en) * 1989-01-17 1990-07-25 Matsushita Electric Ind Co Ltd Manufacture of light-emitting element
JPH05218589A (en) * 1992-02-07 1993-08-27 Sharp Corp Electron beam excited semiconductor light-emitting element
JPH0897500A (en) * 1994-09-28 1996-04-12 Sony Corp Light emitting device and laser crt employing the same
JPH08162720A (en) * 1994-11-30 1996-06-21 Canon Inc Semiconductor laser
JPH09214027A (en) * 1996-02-01 1997-08-15 Matsushita Electric Ind Co Ltd Electron-beam excited laser device
JPH10223976A (en) * 1997-02-13 1998-08-21 Matsushita Electric Ind Co Ltd Semiconductor laser
JPH10321955A (en) * 1997-05-15 1998-12-04 Matsushita Electric Ind Co Ltd Electron beam stimulated light-emitting element
JP2001251001A (en) * 2000-03-03 2001-09-14 Canon Inc Electron beam excited laser device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2675024A3 (en) * 2012-06-14 2015-03-04 Palo Alto Research Center Incorporated Electron beam pumped vertical cavity surface emitting laser
US9705288B2 (en) 2012-06-14 2017-07-11 Palo Alto Research Center Incorporated Electron beam pumped vertical cavity surface emitting laser
US10153616B2 (en) 2012-06-14 2018-12-11 Palo Alto Research Center Incorporated Electron beam pumped vertical cavity surface emitting laser
WO2014007098A1 (en) * 2012-07-02 2014-01-09 スタンレー電気株式会社 Deep ultraviolet laser light source by means of electron beam excitation
JP2014011377A (en) * 2012-07-02 2014-01-20 Stanley Electric Co Ltd Deep ultraviolet laser light source
JP2015005743A (en) * 2013-06-18 2015-01-08 パロ・アルト・リサーチ・センター・インコーポレーテッドPalo Alto Research Center Incorporated Structure for electron-beam pumped edge-emitting device and methods for producing the same
US10056735B1 (en) 2016-05-23 2018-08-21 X Development Llc Scanning UV light source utilizing semiconductor heterostructures

Also Published As

Publication number Publication date
JPWO2011161775A1 (en) 2013-08-19
JP5383912B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
US6515308B1 (en) Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection
US20140050244A1 (en) Superluminescent diode
US7830930B2 (en) Semiconductor laser device
JP2019012744A (en) Semiconductor light-emitting element and manufacturing method thereof
US20060192209A1 (en) Optical integrated semiconductor light emitting device
JP2009182145A (en) Semiconductor optical element
JP6754918B2 (en) Semiconductor light emitting device
JP5383912B2 (en) Electron beam excitation light emitting device
JP2008172188A (en) Multi-wavelength quantum dot laser device
JP2007511082A (en) Monolithic optical pumping VCSEL with laterally mounted edge emitters
US20110261854A1 (en) Semiconductor laser and manufacturing method thereof
JP2009158647A (en) Nitride semiconductor laser element and method of fabricating the same
JP2000349397A (en) Semiconductor light emitting element
EP4387017A1 (en) Vertical cavity light-emitting element
US6897484B2 (en) Nitride semiconductor light emitting element and manufacturing method thereof
US7957442B2 (en) Semiconductor optical device
WO2021206012A1 (en) Semiconductor laser device and method for manufacturing semiconductor laser device
US4759025A (en) Window structure semiconductor laser
US20230006426A1 (en) Group iii-n light emitter electrically injected by hot carriers from auger recombination
JP3805295B2 (en) Nitride semiconductor laser
JP2011205148A (en) Semiconductor device
JP5233987B2 (en) Nitride semiconductor laser
JP2723924B2 (en) Semiconductor laser device
JPH0945986A (en) Semiconductor laser element
WO2024084898A1 (en) Vertical cavity light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521209

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853635

Country of ref document: EP

Kind code of ref document: A1