Nothing Special   »   [go: up one dir, main page]

WO2011145358A1 - Phosphor substrate, light-emitting element, and display device using same - Google Patents

Phosphor substrate, light-emitting element, and display device using same Download PDF

Info

Publication number
WO2011145358A1
WO2011145358A1 PCT/JP2011/051211 JP2011051211W WO2011145358A1 WO 2011145358 A1 WO2011145358 A1 WO 2011145358A1 JP 2011051211 W JP2011051211 W JP 2011051211W WO 2011145358 A1 WO2011145358 A1 WO 2011145358A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
pair
color conversion
conversion layer
Prior art date
Application number
PCT/JP2011/051211
Other languages
French (fr)
Japanese (ja)
Inventor
秀謙 尾方
勇毅 小林
健 岡本
誠 山田
悦昌 藤田
克己 近藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011145358A1 publication Critical patent/WO2011145358A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • the present invention relates to a phosphor substrate, a light emitting element, and a display device using the same.
  • Non-self-luminous liquid crystal displays LCD
  • self-luminous plasma displays PDP
  • inorganic electroluminescent (inorganic EL) displays organic electroluminescent (organic EL) displays, etc.
  • flat panel displays It has been.
  • the organic EL display has attracted particular attention in terms of self-luminescence.
  • the above-described conventional methods have problems such as mask processing accuracy, mask alignment accuracy, and mask enlargement, and in particular, mask enlargement is a major issue. That is, in the field of large displays typified by TVs, the substrate sizes are increasing from G6 to G8, G10, and in order to perform the above method, the substrate size is increased to be equal to or larger than such a substrate size. It is necessary to prepare and process a mask. However, since the mask is made of a very thin metal (general film thickness: 50 to 100 nm), it is very difficult to manufacture and process a large-sized mask.
  • an evaporation source is arranged on the lower side of the substrate, and an organic layer is formed by evaporating an organic material from the bottom upward.
  • an organic layer is formed by evaporating an organic material from the bottom upward.
  • the mask becomes unusable due to deterioration after a specific number of times of use. Therefore, when the mask becomes large, it leads to a problem of cost increase when manufacturing the display.
  • the cost problem is regarded as the biggest problem.
  • an organic EL element having a microcavity (optical microresonator) structure has been proposed (see, for example, Patent Documents 2, 3, and 4).
  • an organic EL element to which a microresonance structure is applied light generated from the light emitting layer is repeatedly reflected between the reflective electrode and the semi-reflective electrode, so that only light having the same wavelength is emitted from the semi-reflective electrode side.
  • strength of a specific wavelength can be strengthened and directivity can be given to emitted light (refer FIG. 5).
  • Patent Documents 2 to 4 disclose a technique in which an organic EL element having a microresonator structure and the above-described color conversion layer are combined.
  • this technology from the viewpoint of luminous efficiency, element lifetime, and the like, blue pixels emit blue light from organic EL elements having a microresonator structure, and green and red pixels emit from the organic EL elements. The blue light emission is converted into fluorescence in each color conversion layer, and the resulting converted light is emitted.
  • Patent Document 5 As a method for solving this problem, a technique disclosed in Patent Document 5 has been proposed.
  • the pair of light reflection layers adjust the microresonator structure in accordance with the wavelength of the converted light of the color conversion layer. For this reason, in each pixel, the microresonator structure can be adjusted according to the wavelength of each color, and the color purity according to the viewing angle can be adjusted between the colors.
  • Patent Document 5 no consideration is given to enhancing excitation light for exciting the color conversion layer, and the efficiency of fluorescence conversion in the color conversion layer is described in Patent Documents 2 to Compared to 4, it is decreasing. That is, according to the technique disclosed in Patent Document 5, the object of improving the light emission efficiency of the organic EL element cannot be sufficiently achieved.
  • the color conversion layer is patterned due to its structure.
  • a wet process such as photolithography cannot be used. That is, the patterning of the color conversion layer requires separate deposition using a shadow mask, so that the simplicity of the manufacturing process by the fluorescence conversion method is lost, and the cost advantage is lost.
  • the present invention has been made to solve the above-described problems, and has as its object to provide a phosphor substrate capable of easily producing a light emitting device with improved luminous efficiency, and a light emitting device with improved luminous efficiency and It is to provide a display device.
  • the phosphor substrate according to the present invention is sandwiched between a pair of light reflecting layers, a pair of light reflecting layers formed on the substrate, and the pair of light reflecting layers.
  • a color conversion layer that absorbs excitation light emitted from an external light source on the side opposite to the substrate with respect to the other light reflection layer and emits converted light of a color different from the color of the excitation light;
  • the optical distance between the pair of light reflecting layers is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer.
  • the phosphor substrate according to the present invention can be used for manufacturing a light emitting device.
  • a light-emitting element can be easily produced by combining the phosphor substrate according to the present invention with an external light source such as an electroluminescence (EL) element.
  • the color conversion layer absorbs light emitted from an external light source such as an EL portion as excitation light and emits converted light.
  • the converted light has improved light extraction efficiency by a microresonator structure formed by a pair of reflective films.
  • the phosphor substrate according to the present invention can be easily combined with an EL element constituting a microresonator structure.
  • a light emitting device with improved luminous efficiency can be easily produced.
  • a display device using the phosphor substrate according to the present invention even in the case of manufacturing a top emission type display device, in order to pattern the color conversion layer, wet such as photolithography is used. A process can be used. Therefore, a display device can be easily manufactured by using the phosphor substrate according to the present invention. It is also possible to reduce the manufacturing cost.
  • a light-emitting element includes a pair of electrodes, an EL layer that is sandwiched between the pair of electrodes and emits light, and the EL layer with respect to one of the pair of electrodes. Is sandwiched between a pair of light reflecting layers disposed on the opposite side and the pair of light reflecting layers, absorbs light emitted from the EL layer, and emits converted light having a color different from that of the light.
  • An optical distance between the pair of light reflection layers is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer. It is a feature.
  • the pair of reflective films constitute a microresonator without sandwiching the EL layer therebetween.
  • a pair of electrodes can constitute a microresonator structure for the EL layer.
  • the light extraction efficiency of the converted light emitted from the color conversion layer is improved by the microresonator structure formed by the pair of reflective films.
  • a display device when a display device is manufactured using a light emitting element having the above-described structure, a wet process such as photolithography is used to pattern the color conversion layer even when a top emission type device is manufactured. It is possible to use. Therefore, a display device can be easily manufactured by using the light emitting element according to the present invention. It is also possible to reduce the manufacturing cost.
  • a display device is a display device in which a plurality of light emitting elements including light emitting elements of different colors are arranged in an array, and each of the plurality of light emitting elements includes: It is characterized by comprising any one of the light-emitting elements described above.
  • each pixel in which the light emitting element is arranged light whose light extraction efficiency is improved by the microresonator structure is used. For this reason, according to the display device according to the present invention, it is possible to improve the light emission efficiency in a balanced manner in viewability and light emission intensity of each pixel.
  • the phosphor substrate according to the present invention includes a substrate, a pair of light reflecting layers formed on one of the substrates, and the other light reflecting layer sandwiched between the pair of light reflecting layers and different from the one.
  • a color conversion layer that absorbs excitation light emitted from an external light source on the side opposite to the substrate and emits converted light of a color different from the color of the excitation light.
  • the optical distance between them is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer. Therefore, by using the phosphor substrate according to the present invention, it is possible to easily manufacture a light emitting element with improved luminous efficiency.
  • the light-emitting element includes a pair of light-reflective electrodes, an EL layer that is sandwiched between the pair of light-reflective electrodes and emits light, and the EL for one of the pair of reflective electrodes.
  • a pair of light reflecting layers arranged on the opposite side of the layer and the pair of light reflecting layers, and absorbs light emitted from the EL layer to generate converted light of a color different from the color of the light.
  • an optical distance between the pair of light reflecting layers is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer. . For this reason, it is possible to provide a light emitting element with improved luminous efficiency.
  • Embodiment 1 The first embodiment of the present invention will be described with reference to FIGS. 1 and 2 as follows.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of the light emitting element 100
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of the phosphor substrate 50.
  • the light emitting element 100 has a configuration in which an EL element substrate 40 and a phosphor substrate 50 are bonded together with a resin layer 6 therebetween.
  • the EL element substrate 40 includes a substrate 1, a first light reflective electrode 2, an EL layer 3, a second light reflective electrode 4, and an inorganic sealing film 5.
  • the phosphor substrate 50 includes a first light reflection layer 7, a color conversion layer 8, a second light reflection layer 9, and a substrate 10.
  • the structure which consists of the 1st light reflective electrode 2, the EL layer 3, and the 2nd light reflective electrode 4 is called the EL part 11.
  • the light emitted from the EL layer 3 of the EL element substrate 40 is extracted to the phosphor substrate 50 side, and the light converted by the color conversion layer 8 of the phosphor substrate 50 is extracted to the side opposite to the EL element substrate 40 side. That is, in the EL element substrate 40, the EL layer 3 emits light, and in the phosphor substrate 50, the color conversion layer 8 absorbs the light emitted from the EL layer 3, and emits converted light having a wavelength different from that of the light. .
  • Substrate 1, 10 examples include an inorganic material substrate made of glass or quartz, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, or the like, but the present invention is limited to these substrates. It is not a thing.
  • the plastic substrate as the substrates 1 and 10.
  • the substrate 1 has transparency for taking out the converted light from the color conversion layer 8 to the outside.
  • the substrate 10 it is preferable to use a substrate obtained by coating a plastic substrate with an inorganic material from the viewpoint of improving gas barrier properties. It is known that the organic EL deteriorates even with a low amount of moisture, and when the plastic substrate is used as the organic EL substrate, the deterioration of the organic EL due to the permeation of moisture becomes the biggest problem. . If the substrate 10 with improved gas barrier properties is used as described above, this problem can be solved.
  • the first light-reflecting electrode 2 and the second light-reflecting electrode 4 are electrically conductive films that sandwich the EL layer 3, and are reflections for configuring a microresonator that enhances light emitted from the EL layer 3. Have a rate.
  • the reflectance of the first light reflective electrode 2 is preferably 50% or more, more preferably 70% or more, with respect to the light emitted from the EL layer 3.
  • the second light-reflecting electrode 4 is preferably semi-transmissive to the light emitted from the EL layer 3 and has a reflectance of 25% or more.
  • Examples of the configuration of the first light reflective electrode 2 and the second light reflective electrode 4 include the following (1) to (4).
  • Metal electrode A material made of a metal that reflects light such as Au, Ag, Al, Pt, Cu, Mn, Mg, Ca, Li, Yb, Eu, Sr, Ba, Na, etc., and among these metals
  • the alloy formed by selecting two or more types from the above specifically, Mg: Ag, Al: Li, Al: Ca, and Mg: Li.
  • the EL layer 3 is composed of an organic material, among these metals or alloys, those having a work function of 4.0 eV or less are preferable as the cathode, while those having a work function of 4.5 eV or more are preferable as the anode.
  • the transparent electrode itself has a low reflectance, the reflectance can be increased by laminating with the metal film.
  • a conductive oxide film is preferable, and ZnO: Al, ITO, SnO 2 : Sb, or InZnO is particularly preferable.
  • the metal film include films made of the metal or alloy described in (1) above. In this laminated reflective electrode, either a transparent electrode or a metal film may be provided at a portion in contact with the EL layer 3.
  • Dielectric film / transparent electrode or laminated light reflective electrode comprising transparent electrode / dielectric film Since the transparent electrode itself has a low reflectance as described above, a dielectric film having a high refractive index or a low refractive index is used. By laminating, the reflectance can be increased.
  • the high refractive index dielectric film a transparent oxide film or a transparent nitride film having a refractive index of 1.9 or more is preferable, and a sulfide film or a selenide compound is also transparent.
  • a high refractive index dielectric film examples include ZnO, ZrO 2 , HfO 2 , TiO 2 , Si 3 N 4 , BN, GaN, GaInN, AlN, Al 2 O 3 , ZnS, ZnSe, or ZnSSe.
  • a film made of is preferably mentioned.
  • a film formed by dispersing these in a polymer may be used.
  • a film made of a transparent oxide or fluoride having a refractive index of 1.5 or less, or a film formed by dispersing the oxide or fluoride in powder form in a polymer Or a fluorinated polymer film a film made of MgF 2 , CaF 2 , BaF 2 , NaAlF, or SiOF, a film formed by dispersing these compounds in a polymer, or a fluorinated polyolefin or fluorinated polymethacrylate
  • a film made of fluorinated polyimide or the like is preferable.
  • the dielectric multilayer film in the multilayer reflective electrode is a high refractive index dielectric film described in (3) above. And a low-refractive-index dielectric film are preferably laminated alternately and multiple times so that the optical film thickness is ⁇ / 4 ( ⁇ is the wavelength of the emitted light). 50% or more can be suitably realized. Moreover, what was demonstrated by said (2) can be mentioned as a transparent electrode.
  • the first light reflection layer 7 and the second light reflection layer 9 are light reflection layers that sandwich the color conversion layer 8 and constitute a microresonator that enhances the converted light emitted from the color conversion layer 8. Has reflectivity.
  • the reflectance of the first light reflecting layer 7 is preferably 50% or more, more preferably 70% or more, with respect to the converted light emitted from the color conversion layer 8.
  • the second light reflection layer 9 is preferably semi-transmissive to the converted light emitted from the color conversion layer 8 and has a reflectance of 25% or more.
  • the transmittance of the first light reflecting layer 7 is 25% or more and 100% or less with respect to the light emitted from the EL layer 3 which is excitation light.
  • the microcavity structure doubles the amount of emitted light at maximum.
  • each of the EL layer 3 and the color conversion layer 8 is doubled. Therefore, if the transmittance of the first light reflecting layer 7 is 25% or more, it is the same as or more than the configuration without the microcavity structure. The amount of light can be emitted.
  • Examples of the material constituting the first light reflecting layer 7 and the second light reflecting layer 9 include the following (5) to (8).
  • Metal film (6) Laminated light reflecting layer comprising metal film / transparent conductive film or transparent conductive film / metal film (7) Laminated light reflecting layer comprising dielectric film / transparent conductive film or transparent conductive film / dielectric film (8) Dielectric Multilayer Film
  • the above (5) to (7) are the same as the above (1) to (3), respectively. Since the first light reflecting layer 7 and the second light reflecting layer 9 do not need a conductive function, the transparent electrode in the above (4) is not necessary with respect to the above (8).
  • the above (6) and (7) have sufficient reflectivity as a light reflecting film, and therefore need to have a laminated structure of thin films having different refractive indexes, ie, a metal film and a dielectric film, respectively.
  • a transparent conductive film since a light reflecting layer having a sufficient reflectance can be formed only with dielectric films having different refractive indexes, a transparent conductive film may be provided but is not necessary.
  • the configuration of the dielectric multilayer film is the same as that described in the above (4), and the optical film thickness of the high refractive index dielectric film and the low refractive index dielectric film is ⁇ / 4 ( ⁇ is emitted). It is preferable that the layer is formed by alternately laminating a large number of times so that the wavelength of light becomes. According to such a dielectric multilayer film, it becomes easy to set the reflectance with respect to light of a target wavelength to a suitable value.
  • the EL layer 3 in the present embodiment is configured as an organic EL layer including at least an organic light emitting layer that emits blue light or ultraviolet light.
  • the EL layer 3 may have a single-layer structure of an organic light-emitting layer or a multilayer structure of an organic light-emitting layer and a charge transport layer. Specific examples include the following configurations. However, the present invention is not limited to these.
  • organic light emission layer, hole injection layer, hole transport layer, hole prevention layer, electron prevention layer, electron injection layer may have a single layer structure or a multilayer structure.
  • the organic light emitting layer may be composed only of the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally a hole transport material, an electron transport material, and Additives (donor, acceptor, etc.) may be included. Moreover, the structure by which the above-mentioned material was disperse
  • the organic light emitting material a known light emitting material for organic EL can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present invention is not limited to these materials.
  • the light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like, and it is preferable to use a phosphorescent material with high emission efficiency from the viewpoint of reducing power consumption.
  • low-molecular organic light-emitting material examples include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi), 5-methyl-2- [2- [4- ( Oxadiazole compounds such as 5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole, 3- (4-biphenylyl) -4-phenyl-5-t-butylphenyl-1,2,4- Examples thereof include triazole derivatives such as triazole (TAZ), styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene, and fluorescent organic materials such as fluorenone derivatives.
  • aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi), 5-methyl-2- [2- [4- ( Oxadiazole compounds such as 5-methyl-2-benzoxazolyl) phen
  • polymer light emitting material examples include polyphenylene vinylene derivatives such as poly (2-decyloxy-1,4-phenylene) (DO-PPP), and polyspiro such as poly (9,9-dioctylfluorene) (PDAF). Derivatives.
  • a known dopant material for organic EL can be used as the light-emitting dopant optionally contained in the organic light-emitting layer.
  • dopant materials include the following. First, fluorescent light emission such as p-quaterphenyl, 3,5,3,5 tetra-t-butylsecphenyl and 3,5,3,5 tetra-t-butyl-p-quinkphenyl as ultraviolet light emitting materials Materials and the like.
  • a fluorescent light emitting material such as a styryl derivative, bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate, iridium (III) (FIrpic), and bis (4 ′, 6 Examples include phosphorescent organic metal complexes such as' -difluorophenylpolydinato) tetrakis (1-pyrazoyl) borate, iridium (III) (FIr6), and the like.
  • a known host material for organic EL can be used as a host material when using a dopant.
  • host materials include the low-molecular light-emitting materials, the polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), 3 , 6-bis (triphenylsilyl) carbazole (mCP), carbazole derivatives such as (PCF), aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3- And fluorene derivatives such as bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB) and 1,4-bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB) .
  • the charge injection / transport layer is used to efficiently inject charges (holes, electrons) from the electrode and transport (injection) to the light-emitting layer with the charge injection layer (hole injection layer, electron injection layer) and charge. It is classified as a transport layer (hole transport layer, electron transport layer).
  • a transport layer hole transport layer, electron transport layer.
  • Each of these layers may be composed only of the charge injecting and transporting material exemplified below, and may optionally contain additives (donor, acceptor, etc.), and these materials are polymer materials (binding). Resin) or dispersed in an inorganic material.
  • charge injection / transport material a known charge transport material for organic EL or organic photoconductor can be used. Such charge injection / transport materials are classified into hole injection / hole transport materials and electron injection / electron transport materials. Specific examples of these compounds are given below, but the present invention is limited to these materials. It is not something.
  • hole injection / hole transport materials include oxides such as vanadium oxide (V 2 O 5) and molybdenum oxide (MoO 2), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3-methylphenyl) Aromatic tertiary amine compounds such as -N, N'-bis (phenyl) -benzidine (TPD), N, N'-di (naphthalen-1-yl) -N, N'-diphenyl-benzidine (NPD) , Hydrazone compounds, quinacridone compounds, and styrylamine compounds, and polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfonate (PEDOT) / PSS), poly (triphenylamine) derivative (Poly-TPD), polyvinyl Carbazole (PVCz), poly (p- phenylene
  • the material used as the hole injection layer is the highest occupied molecular orbital (HOMO) than the hole injection transport material used for the hole transport layer. It is preferable to use a material having a low energy level. As the hole transport layer, it is preferable to use a material having a higher hole mobility than the hole injection transport material used for the hole injection layer.
  • HOMO occupied molecular orbital
  • the hole injection / hole transport material In order to improve the hole injection / transport property, it is preferable to dope the hole injection / hole transport material with an acceptor.
  • an acceptor a known acceptor material for organic EL can be used. Although these specific compounds are illustrated below, this invention is not limited to these materials.
  • Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and other inorganic materials, TCNQ (7, 7,8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), and cyano such as DDQ (dicyclodicyanobenzoquinone) Examples thereof include compounds having a group, compounds having a nitro group such as TNF (trinitrofluorenone) and DNF (dinitrofluorenone), and organic materials such as fluoranyl, chloranil and bromanyl. Among these, compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, and DDQ are more preferable because the
  • an electron injection / electron transport material for example, an inorganic material which is an n-type semiconductor, an oxadiazole derivative, a triazole derivative, a thiopyrazine dioxide derivative, a benzoquinone derivative, a naphthoquinone derivative, an anthraquinone derivative, a diphenoquinone derivative, a fluorenone derivative, And low molecular weight materials such as benzodifuran derivatives, and high molecular weight materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS).
  • the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  • the material used for the electron injection layer is the lowest unoccupied molecular orbital (LUMO) energy level than the electron injection transport material used for the electron transport layer. It is preferable to use a material having a high value. In addition, as a material used for the electron transport layer, it is preferable to use a material having higher electron mobility than the electron injection transport material used for the electron injection layer.
  • LUMO unoccupied molecular orbital
  • the electron injection / transport material it is preferable to dope the electron injection / transport material with a donor.
  • a donor a known donor material for organic EL can be used. Specific examples of the donor material are shown below, but the present invention is not limited to these materials.
  • Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, and In, anilines, phenylenediamines, and benzidines (N, N, N ′, N′-tetra Phenylbenzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl -Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ′′ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N-3 -Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4'4 ''-tris (N- (1-naphthyl)
  • the organic EL layer 3 composed of the light emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, and the electron injection layer described above can be formed by the following method.
  • an organic EL layer forming coating solution in which the above materials are dissolved and dispersed in a solvent
  • a spin coating method a dipping method, a doctor blade method, a discharge coating method, a coating method such as a spray coating method, an inkjet method
  • a known wet process such as a relief printing method, an intaglio printing method, a screen printing method, or a printing method such as a micro gravure coating method can be used.
  • known dry processes such as resistance heating vapor deposition, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), sputtering, or organic vapor deposition (OVPD) are used for the above materials, or laser transfer. The law etc. can be used.
  • the coating liquid for organic EL layer formation may contain an additive for adjusting the physical properties of the coating liquid, such as a leveling agent or a viscosity modifier.
  • the EL layer 3 is made of an organic EL material
  • the present invention is not limited to this.
  • the EL layer 3 may be realized as a layer including other functional layers.
  • the inorganic EL layer may be composed of an inorganic EL material.
  • the color conversion layer 8 includes a blue conversion layer, a red conversion layer, a green conversion layer, or the like that absorbs ultraviolet or blue excitation light from the EL layer 3 and emits blue, green, or red light. If necessary, the color conversion layer 8 may be a color conversion layer that emits light of cyan or yellow.
  • the color purity of each pixel emitting light of cyan or yellow emits light of red, green, or blue on the chromaticity diagram. It is preferable to be outside the triangle connected by the point of color purity of the pixel. According to such a display device, it is possible to further expand the color reproduction range as compared with a display device that uses pixels that respectively emit the three primary colors of red, green, and blue.
  • the color conversion layer 8 may be composed of only the phosphor material exemplified below, or may be optionally composed of an additive or the like, and these materials are polymer materials (binding resin). Or the structure disperse
  • a known color conversion material can be used as the color conversion material.
  • Such color conversion materials are classified into organic phosphor materials and inorganic phosphor materials. Specific examples of these compounds are given below, but the present invention is not limited to these materials.
  • Organic phosphor materials include, as fluorescent dyes that convert ultraviolet excitation light into blue light emission, stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, and trans-4,4′-diphenyl Examples thereof include stilbenzene and coumarin dyes: 7-hydroxy-4-methylcoumarin.
  • coumarin dyes 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) ) Coumarin (coumarin 153), 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), and 3- (2′-benzoimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), and And naphthalimide dyes: basic yellow 51, solvent yellow 11, solvent yellow 116, and the like.
  • cyanine dye 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran
  • pyridine dye 1 -Ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate
  • rhodamine dyes rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11 and sulforhodamine 101 and the like.
  • the inorganic phosphor material as a phosphor that converts ultraviolet excitation light into blue emission, Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Ce 3+ , (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, Ca, Ba 2 , Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , BaAl 2 SiO 8 : Eu 2+ , Sr 2 P 2 O 7 : Eu 2+ , Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu 2+, BaMg 2 Al 16 O 27: Eu 2+, (Ba, Ca) 5 (PO 4) 3 Cl: Eu 2+, Ba 3 Mg
  • Y 2 O 2 S Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+ , LiY 9 ( SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+ , CaS: Eu 3+ , Gd 2 O 3 : Eu 3+ , Gd 2 O 2 S: Eu 3+ , Y (P, V) O 4 : Eu 3+ , Mg 4 GeO 5.5 F: Mn 4+ , Mg 4 GeO 6 : Mn 4+ , K 5 Eu 2.5 (WO 4 ) 6.25 , Na 5 Eu 2.5 (WO 4 ) 6.25 , K 5 Eu 2.5 (MoO 4 ) 6.25 , Na 5 Eu 2.5 (MoO 4 ) 6.25, and the like.
  • the inorganic phosphor may be subjected to a surface modification treatment as necessary.
  • a surface modification treatment As a method thereof, physical treatment by chemical treatment such as a silane coupling agent or addition of fine particles of submicron order, etc. And the like due to the combined treatment thereof.
  • an inorganic phosphor rather than an organic phosphor material.
  • the method for producing the color conversion layer 8 is not particularly limited, and various methods can be used.
  • the film forming method includes a casting method, a spin coating method, a relief printing method, an intaglio printing method, a screen printing method, a printing method such as a micro gravure coating method, a bar coating method, an extrusion molding method, a roll molding method, and a pressing method.
  • organic vapor deposition A dry process, a laser transfer method, or the like can be used.
  • organic solvent examples include dichloromethane, 1,2-dichloroethane, chloroform, acetone, cyclohexanone, toluene, benzene, xylene, N, N-dimethylformamide, dimethyl sulfoxide. 1,2-dimethoxyethane, diethylene glycol dimethyl ether, or the like can be used. These solvents may be used alone or in combination of two or more.
  • the color conversion layer 8 when the color conversion layer 8 is formed, by using a photosensitive resin as the polymer resin, patterning can be performed by a photolithography method.
  • a photosensitive resin a photosensitive resin having a reactive vinyl group such as acrylic acid resin, methacrylic acid resin, polyvinyl cinnamate resin, or hard rubber resin (photo-curable resist material). It is possible to use one kind or a mixture of several kinds.
  • the patterning of the color conversion layer 8 includes a wet process such as an inkjet method, a relief printing method, an intaglio printing method, or a screen printing method, a resistance heating vapor deposition method using a shadow mask, an electron beam (EB) vapor deposition method, It is also possible to directly pattern the phosphor material by a known dry process such as a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor deposition (OVPD) method, or a laser transfer method.
  • MBE molecular beam epitaxy
  • OVPD organic vapor deposition
  • the inorganic sealing film 5 is formed on the second light reflective electrode 4. By providing the inorganic sealing film 5, it is possible to prevent oxygen and moisture from being mixed into the EL portion 11 from the outside, and the life of the light emitting element 100 can be improved.
  • the resin layer 6 is a resin for bonding the EL element substrate 40 and the phosphor substrate 50 together.
  • a thermosetting resin can be used.
  • the inorganic sealing film 5 and the resin layer 6 can be formed by a well-known material and method, in this embodiment, it is necessary to use a light transmissive material.
  • a pair of light reflective electrodes (first light reflective electrode 2 and second light reflective electrode 4) and a pair of light reflective layers (first light reflective layer 7 and second light reflective layer 9). ) are each configured to form a microresonator structure.
  • the optical film thickness (optical distance) between each reflective interface is made into the specific wavelength among the lights emitted from the EL layer 3.
  • the intensity of light (excitation light) is set to be increased.
  • the optical film thickness (optical distance) between the respective reflective interfaces is set to a light having a specific wavelength among the light emitted from the color conversion layer 8 ( The intensity of light having a desired color tone is set to be increased.
  • the optical film thickness (nd) between the reflective interfaces is expressed by the following formula (1).
  • (Nd) ⁇ 4 ⁇ / ⁇ + ⁇ 2m ⁇ (1) Is set to satisfy the relationship.
  • represents the wavelength of light to be enhanced.
  • represents the sum of phase changes given by reflections occurring at the two reflective interfaces. For example, it is known that when a reflective interface is provided by a metal, it contributes to ⁇ by ⁇ .
  • m is an integer of 1 to 10.
  • the microresonator structure By configuring the microresonator structure with each of the EL element substrate 40 and the phosphor substrate 50 as described above, the loss of light propagation from the EL layer 3 serving as the excitation light source to the color conversion layer 8 is minimized, In addition, the extraction efficiency of light emission from the color conversion layer 8 can be improved. As a result, the light emission efficiency of the light emitting element 100 can be improved (the luminance in the front direction can be improved).
  • the EL unit 11 has been described as an organic EL, but the present invention is not limited to this and may be an inorganic EL. A configuration example in this case will be described below.
  • the EL unit 11 which is an inorganic EL is configured as an ultraviolet light emitting inorganic EL or a blue light emitting inorganic EL.
  • the 1st light reflective electrode 2 and the 2nd light reflective electrode 4 can use the structure containing a dielectric film among the structures illustrated in the above-mentioned embodiment.
  • a known dielectric material for inorganic EL can be used as the dielectric film.
  • a dielectric material include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( Examples include AlTiO 3 ) barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ), but the present invention is not limited thereto.
  • the dielectric film may be composed of one type selected from the above dielectric materials, or may be a configuration in which two or more types of materials are laminated.
  • the EL layer 3 can use the well-known luminescent material for inorganic EL as a light emitting layer of inorganic EL.
  • a light emitting material for example, ZnF 2 : Gd as an ultraviolet light emitting material, and BaAl 2 S 4 : Eu, CaAl 2 S 4 : Eu, ZnAl 2 S 4 : Eu, Ba 2 as a blue light emitting material.
  • Examples include SiS 4 : Ce, ZnS: Tm, SrS: Ce, SrS: Cu, CaS: Pb, (Ba, Mg) Al 2 S 4 : Eu, but the present invention is not limited thereto.
  • the light emitting element 100 may have a configuration in which the light scattering layer 12 is provided. This modification will be described below with reference to FIG. FIG. 3 is a cross-sectional view showing the light emitting element 110 provided with the light scattering layer 12.
  • the light scattering layer 12 is for scattering light with high directivity emitted from the color conversion layer 8 in the same direction.
  • the light scattering layer 12 is preferably provided on one side of the substrate 10.
  • the present invention is not limited to this, and the light scattering layer 12 may be formed outside the light extraction surface side of the converted light of the color conversion layer 8 so as to be parallel to the light emitting surface of the light emitting element 100. For example, it may be arranged in a state separated from the substrate 10.
  • the light scattering layer 12 include the following (1) to (8).
  • a lens sheet is light that travels straight by a plurality of lenses, prisms, V-grooves, or the like arranged or formed concentrically, in a plurality of parallel lines, or in a lattice pattern. It means a thin plate-like transparent material that changes the direction of the.
  • this lens sheet include a lenticular lens sheet, a Fresnel lens sheet, a fly-eye lens sheet, a cat-eye lens sheet, a double fly-eye lens sheet, a double lenticular lens sheet, and a radial lenticular lens sheet.
  • the lens sheet may be made of glass or resin.
  • the resin include polyethylene terephthalate, polycarbonate, polyethersulfone, polyarylate, polymethacrylate, polyacrylate, and polystyrene.
  • the light scattering layer 12 may be provided on one side of the substrate 10, but the light scattering layer 12 itself also serves as the substrate 10. May be.
  • the thickness is preferably about 0.05 to 5 mm.
  • a light scattering layer 12 on one side of the substrate 10 for example, an epoxy adhesive, an acrylic adhesive, a photocurable resin, a thermosetting resin, a thermoplastic adhesive (vinyl resin adhesive, etc.)
  • a glass plate or a polymer plate to be the light scattering layer 12 is fixed on a desired surface of the substrate 10 using a binder such as an isocyanate ester resin.
  • a transparent substrate or opaque particles having a refractive index different from that of the transparent substrate is dispersed inside the transparent substrate.
  • the light scattering layer 12 itself also serves as the substrate 10.
  • the material of the transparent substrate may be glass or polymer.
  • the transparent substance include bubbles, glass fibers, SiO2 particles, glass beads, and transparent plastic particles.
  • Specific examples of the opaque particles include particles made of carbon, tin oxide, barium sulfate, titanium carbide, titanium nitride, titanium oxide, or opaque plastic, and powders used as antistatic materials (such as zinc oxide and zinc sulfide). A powder coated with tin oxide).
  • These transparent materials and opaque particles preferably have a particle size of 0.1 ⁇ m to several tens of ⁇ m, excluding glass fibers.
  • the glass fiber preferably has a fiber diameter of about 0.1 to 1000 ⁇ m and a fiber length of about 0.1 to 10 mm. These transparent substances and opaque particles may be used alone or in combination.
  • a dye powder such as dioxazine, anthraquinone, or phthalocyanine
  • a fluorescent dye powder such as stilbene, benzimidazole, or benzidine are used alone or You may use together with a transparent substance and / or an opaque particle.
  • the desired amount of transparent substance or the desired amount of opaque particles is fixed on the desired surface of the substrate 10 using the binder exemplified in the above (2).
  • the metal as the light-scattering layer 12 may adhere to the single side
  • Formation of the metal adhering in the form of dots is performed by a vacuum deposition method using a predetermined metal as an evaporation source, a sputtering method using a predetermined metal as a target, a printing method, a coating method, or a spraying method. be able to.
  • the film thickness of the dot-like metal is preferably about 0.01 to 500 ⁇ m.
  • the size (area in plan view) of the metal adhering to the spot shape is preferably 1 to 10000 ⁇ m 2 , but a metal having a size of 1 mm 2 or more may be included.
  • the coverage with the metal adhering in the form of dots on the surface on which the light scattering layer 12 is provided is preferably 5 to 90%.
  • metal examples include gold, platinum, nickel, chromium and aluminum.
  • Non-metallic fiber woven fabric, knitted fabric or non-woven fabric or an array of the non-metallic fibers Specific examples of the non-metallic fibers include natural fibers such as silk, hemp and cotton, and Examples thereof include chemical fibers such as human silk, nylon fibers, polyester fibers, polypropylene fibers, and glass fibers, and the thickness is preferably 0.1 ⁇ m to 1 mm.
  • the array of non-metallic fibers means that the non-metallic fibers are radial, striped, zigzag, twisted, latticed, mesh-like, spiral, concentric, geometric pattern Or an irregularly arranged fiber, and the number of fibers used may be one or more.
  • the pattern as the light scattering layer 12 is drawn on a plane of the substrate 10 or the like. Can be done.
  • non-metallic thin wire examples include printing ink, copying ink, carbon ink, paint, oil and fat, transparent synthetic resin, and the like, and pigments such as white, black, red, blue, or green. Examples include those having a line width of 10 to 2000 ⁇ m (including fluorescent dyes) or pigments added.
  • the color of the thin line is not particularly limited, and a desired color such as transparent, achromatic color (including translucent), or chromatic color (including translucent) is appropriately selected.
  • Specific examples of the pattern drawn by the fine lines include radial, striped, zigzag, distorted, lattice, mesh, spiral, concentric, geometric pattern, and indefinite shape. . When using a pattern drawn with a non-metallic transparent fine line as the light scattering layer 12, the refractive index of the transparent fine line is preferably different from the refractive index of the substrate 10.
  • the above-mentioned narrow groove is a groove having a depth of about 0.1 to 100 ⁇ m whose vertical cross section is V-shaped or U-shaped, and has a width (at the widest portion in the depth direction). Value) of about 0.1 to 500 ⁇ m.
  • the translucent material layer means a layer made of a solid, liquid, or solid solution having a visible light transmittance of 10 to 99%. Specific examples include paraffin (wax), starch paste, grease, silicone grease, dye solution, pigment dispersion, gold colloid solution, soapy water and the like.
  • the thickness of the translucent substance layer varies depending on the material, but is generally 5 to 1000 ⁇ m.
  • the translucent film means a layer having a visible light transmittance of 10 to 90%.
  • the material include paraffin paper, parafilm (paraffin film), embossed transparent Multiple polymer films (transparent polymer film materials are polyethylene terephthalate, polycarbonate, polyethersulfone, polyarylate, polymethacrylate, polyacrylate, etc.), crystalline polymers (crystalline polypropylene, nylon, polystyrene, cellulose, polyvinyl) Alcohol film), Japanese paper, western paper, cellophane, rubber film, and the like.
  • the light-scattering layer 12 having any one of the above configurations in the light-emitting element 100, it becomes possible to emit light with strong directivity emitted from the color conversion layer 8 in the same direction.
  • FIG. 4 is a cross-sectional view schematically showing the display device 200 according to the present embodiment.
  • red pixels 21, green pixels 22, and blue pixels 23 are arranged in an array.
  • Each of the red pixel 21 and the green pixel 22 has the configuration of the light emitting element 100 described above.
  • the first light reflective electrode 2 and the second light reflective electrode 4 constitute a microresonator structure that sandwiches the red color conversion layer 8a and enhances the wavelength of red light.
  • the first light reflective electrode 2 and the second light reflective electrode 4 constitute a microresonator structure that sandwiches the green color conversion layer 8b and enhances the wavelength of green light. .
  • the blue pixel 23 has a configuration similar to the configuration of the light emitting element 100 described above with respect to the EL unit 11, but does not include the color conversion layer 8 and the microresonator structure for the color conversion layer 8.
  • the EL unit 11 is an organic EL and emits light having directivity in the blue region.
  • the loss of light propagation from the EL layer 3 serving as the excitation light source to the color conversion layer 8 is minimized, and the converted light from the color conversion layer 8 layer
  • the taking-out efficiency can be improved.
  • the extraction efficiency of the blue light emitted from the EL layer 3 can be improved. Therefore, the display device 200 can improve the balance of visibility and light emission intensity in each pixel, and further improve the light emission efficiency.
  • the display device 200 is realized as an active drive type display device.
  • the EL unit 11 may be driven by being directly connected to an external circuit.
  • a switching circuit active element
  • an external driving circuit scanning line electrode circuit (source driver), data signal
  • An electrode circuit gate driver and a power supply circuit
  • TFT active layer materials include amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-gallium oxide- An oxide semiconductor material such as zinc oxide, or an organic semiconductor material such as a polythiophene derivative, a thiophene oligomer, a poly (p-ferylene vinylene) derivative, naphthacene, or pentacene can be given.
  • TFT structure include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.
  • a glass substrate more preferably a metal substrate, a plastic substrate, more preferably a metal substrate, or a plastic substrate can be used.
  • a plurality of scanning signal lines, data signal lines, and TFTs are arranged at intersections of the scanning signal lines and the data signal lines.
  • a metal-insulator-metal (MIM) diode can be used instead of the TFT.
  • the EL unit 11 may be driven by a voltage-driven digital gradation method.
  • two switching and driving TFTs are arranged for each of the pixels 21 to 23, and the driving TFT and the first electrode of the EL element are electrically connected via a contact hole formed in the planarization layer. Connected.
  • a capacitor for setting the gate potential of the driving TFT to a constant potential is disposed so as to be connected to the gate portion of the driving TFT. Further, a planarization layer is formed on the TFT.
  • the driving method of the EL unit 11 in the display device 200 is not limited to the voltage-driven digital gradation method described above, and may be, for example, a current-driven analog gradation method.
  • the number of TFTs is not particularly limited, and a compensation circuit is built in each of the pixels 21 to 23 for the purpose of preventing variations in TFT characteristics (mobility, threshold voltage), so that two or more TFTs are provided.
  • the EL unit 11 may be driven by using it.
  • the light emitting element 100 can be manufactured as follows, for example.
  • the EL portion 11 is formed on the substrate 1 and sealed with the inorganic sealing film 5, thereby manufacturing the EL element substrate 40.
  • the phosphor substrate 50 is manufactured by manufacturing the pair of first light reflection layers 7 and 9 and the red and green color conversion layers 8 corresponding to the respective pixels 21 and 22 on another substrate 10. To do.
  • the EL element substrate 40 and the phosphor substrate 50 are bonded together with a bonding resin (resin layer 6) interposed therebetween.
  • the color conversion layer corresponding to each of the pixels 21 and 22 can be formed by a normal wet process such as photolithography, so that an increase in cost can be suppressed.
  • the display device 200 may have a configuration in which a liquid crystal element is provided between the color conversion layer 8 and the EL unit 11.
  • the liquid crystal element has a function as an optical shutter that selectively transmits light emitted from the EL unit 11 and the like.
  • the liquid crystal element As the liquid crystal element, a known liquid crystal element can be used.
  • the liquid crystal element includes a liquid crystal cell and a pair of deflecting plates that sandwich the liquid crystal cell.
  • the liquid crystal cell has two electrode substrates and a liquid crystal supported between the two electrode substrates.
  • one optically anisotropic layer may be disposed between the liquid crystal cell and one polarizing plate, or the optical anisotropy is provided between the liquid crystal cell and both polarizing plates.
  • the layers may be arranged one by one.
  • the liquid crystal element may be passively driven or may be active driven using a switching element such as a TFT.
  • a switching element such as a TFT.
  • Example 1 As Example 1, the light-emitting element 100 described in Embodiment 1 was manufactured as follows.
  • the phosphor substrate 50 was produced by the following steps.
  • the substrate 10 As the substrate 10, 0.7 mm glass was used, and after washing with water, pure water ultrasonic cleaning 10 minutes, acetone ultrasonic cleaning 10 minutes, isopropyl alcohol vapor cleaning 5 minutes were performed, and dried at 100 ° C. for 1 hour. .
  • silver (Ag) was formed on the substrate 10 by a sputtering method so as to have a film thickness of 10 nm, whereby the semi-transmissive second light reflecting layer 9 was formed.
  • a green color conversion layer 8 having a thickness of 150 nm was formed by vacuum deposition.
  • the optical characteristics of the first light reflection layer 7 include a transmittance of 90% of blue light used as excitation light at a peak wavelength of 450 nm, and reflection at 547 nm, which is the peak wavelength of light emission of the green color conversion layer 8. The rate was 90%.
  • the EL element substrate 40 was produced by the following steps.
  • a 0.7 mm glass was used as the substrate 1 and washed with water, followed by pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, followed by drying at 100 ° C. for 1 hour.
  • silver (Ag) is formed on the substrate 1 by a sputtering method so as to have a film thickness of 100 nm, and indium-tin oxide (ITO) is formed thereon by a sputtering method so that the film thickness is 20 nm. did.
  • ITO indium-tin oxide
  • the first light reflective electrode 2 as an anode was formed.
  • the first light-reflecting electrode 2 was further patterned into 90 stripes with a width of 160 ⁇ m and a pitch of 200 ⁇ m by a conventional photolithography method.
  • SiO 2 was laminated on the first light-reflecting electrode 2 by a sputtering method, and patterned to cover only the edge portion of the first light-reflecting electrode 2 by a conventional photolithography method.
  • a short side of 10 ⁇ m from the end of the first light reflective electrode 2 is covered with SiO 2 .
  • the substrate 1 is fixed to a substrate holder in a resistance heating vapor deposition apparatus, the pressure is reduced to a vacuum of 1 ⁇ 10 ⁇ 4 Pa or less, and the following organic layers in the EL layer 3 are formed by resistance heating vapor deposition. It was.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • N, N′-di-l-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) was used to form a hole transport layer with a thickness of 40 nm.
  • This blue organic light emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III ) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 ⁇ / sec and 0.2 ⁇ / sec.
  • a hole blocking layer (thickness: 10 nm) was formed on the blue organic light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • a semitransparent second light reflective electrode 4 was formed as a cathode as follows.
  • the substrate 1 was fixed to a metal deposition chamber.
  • the shadow mask for forming the second light reflective electrode 4 and the substrate 1 were aligned.
  • the shadow mask has an opening for forming the second light-reflecting electrode 4 having a stripe shape of 500 ⁇ m width and 600 ⁇ m in a direction facing the stripe of the first light-reflecting electrode 2. used.
  • magnesium and silver are co-deposited at a deposition rate of 0.1 ⁇ / sec and 0.9 ⁇ / sec using a vacuum deposition method to form a desired pattern ( (Thickness: 1 nm). Furthermore, in order to emphasize the interference effect and to prevent a voltage drop due to wiring resistance in the second light reflective electrode 4, silver is formed in a desired pattern at a deposition rate of 1 mm / sec (thickness). : 19 nm). The second light reflective electrode 4 was formed by the above process.
  • a microresonator effect (interference effect) is developed between the first light-reflecting electrode 2 and the second light-reflecting electrode 4, and the front luminance can be increased. For this reason, it becomes possible to propagate the light emission energy from the EL section 11 to the color conversion layer 8 more efficiently.
  • the emission peak was adjusted to 460 nm and the half-value width was adjusted to 50 nm by the microresonator effect.
  • the inorganic sealing film 5 made of SiO 2 having a film thickness of 3 ⁇ m was formed by patterning by plasma CVD. At this time, a shadow mask was used so that the inorganic sealing film 5 covered the inside of the sealing area of 2 mm from the end of the EL part 11 on the upper side and the left and right sides of the EL part 11.
  • the EL element substrate 40 is completed through the above steps.
  • the light emitting element 100 was produced using the phosphor substrate 50 and the EL element substrate 40 produced as described above.
  • thermosetting resin is applied to the phosphor substrate 50, the phosphor substrate 50 and the EL element substrate 40 are brought into close contact via the thermosetting resin, and cured by heating at 80 ° C. for 2 hours. Went.
  • This bonding step was performed in a dry air environment (water content: ⁇ 80 ° C.) for the purpose of preventing deterioration of the organic EL due to water.
  • Comparative Example 1 As Comparative Example 1, a light emitting device having the same configuration as Example 1 was prepared except that the first and second light reflecting layers 7 and 9 were not provided. About the preparation method, the process similar to the process demonstrated in Example 1 was performed except not forming the 1st and 2nd light reflection layers 7 and 9. FIG.
  • Example 1 As a result of comparing the luminous efficiencies of the light emitting devices according to Comparative Example 1 and Example 1, the luminous efficiency of Example 1 was improved by about 2 times compared with Comparative Example 1.
  • Example 2 As Example 2, the light-emitting element 110 according to the modification described in Embodiment 1 was manufactured.
  • the light emitting element 110 has the same configuration as the light emitting element 100 according to Example 1 except that the light scattering layer 12 is provided.
  • a prism lens film in which lenses are formed in a plurality of lines parallel to each other was prepared as the light scattering layer 12. Further, a light emitting element was produced by performing the same process as in Example 1, and the prepared prism lens film was fixed to the light extraction surface of the substrate 10 of the produced light emitting element with an epoxy adhesive. Thus, a green light emitting element 110 having a cross-sectional structure as shown in FIG. 3 was completed.
  • Example 2 As a result of measuring the luminous efficiency and the viewing angle characteristics of the light emitting device according to Example 2, the luminous efficiency of Example 2 is high as in Example 1, and further, the viewing angle characteristic better than that of Example 1 is realized. I was able to.
  • the phosphor substrate according to the present invention includes a substrate, a pair of light reflecting layers formed on one of the substrates, and the other light reflecting layer sandwiched between the pair of light reflecting layers and different from the one.
  • a color conversion layer that absorbs excitation light emitted from an external light source on the side opposite to the substrate and emits converted light of a color different from the color of the excitation light.
  • the optical distance between them is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer.
  • the phosphor substrate according to the present invention can be used for manufacturing a light emitting device.
  • a light-emitting element can be easily produced by combining the phosphor substrate according to the present invention with an external light source such as an electroluminescence (EL) element.
  • the color conversion layer absorbs light emitted from an external light source such as an EL portion as excitation light and emits converted light.
  • the converted light has improved light extraction efficiency by a microresonator structure formed by a pair of reflective films.
  • the phosphor substrate according to the present invention can be easily combined with an EL element constituting a microresonator structure.
  • a light emitting device with improved luminous efficiency can be easily produced.
  • a display device using the phosphor substrate according to the present invention even in the case of manufacturing a top emission type display device, in order to pattern the color conversion layer, wet such as photolithography is used. A process can be used. Therefore, a display device can be easily manufactured by using the phosphor substrate according to the present invention. It is also possible to reduce the manufacturing cost.
  • At least one of the pair of light reflecting layers is a metal film that is semi-transmissive with respect to light.
  • the reflectance of the light reflecting layer can be adjusted so that the buffer effect by the microresonator structure is suitably realized.
  • the other light reflecting layer of the pair of light reflecting layers is composed of a dielectric multilayer film.
  • the dielectric multilayer film preferably has a transmittance of 25% to 100% for the excitation light.
  • a microresonator structure can be comprised suitably, taking in excitation light to an optical conversion layer efficiently.
  • the amount of emitted light is doubled at maximum.
  • the amount of emitted light is doubled by each of the external light source and the color conversion layer.
  • the transmittance of the dielectric multilayer film is 25% or more, it is possible to emit a light amount equal to or higher than that when the microcavity structure is not used.
  • the phosphor substrate according to the present invention is disposed on the opposite side to the color conversion layer with respect to the substrate, and the converted light incident from the color conversion layer side is opposite to the color conversion layer side. It is preferable to further include a scattering layer that scatters toward the side.
  • the converted light emitted with directivity by the microresonator structure is scattered in the light extraction direction by the light scattering layer.
  • the phosphor substrate according to the present invention it is possible to manufacture a light emitting device with improved viewing angle characteristics.
  • the light-emitting element includes a pair of electrodes, an electroluminescence (EL) layer that is sandwiched between the pair of electrodes and emits light, and the opposite side of the EL layer with respect to one of the pair of electrodes. And a color conversion layer that is sandwiched between the pair of light reflection layers and that absorbs light emitted from the EL layer and emits converted light of a color different from the color of the light.
  • the optical distance between the pair of light reflecting layers is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer. .
  • the pair of reflective films constitute a microresonator without sandwiching the EL layer therebetween.
  • a pair of electrodes can constitute a microresonator structure for the EL layer.
  • the light extraction efficiency of the converted light emitted from the color conversion layer is improved by the microresonator structure formed by the pair of reflective films.
  • a display device when a display device is manufactured using a light emitting element having the above-described structure, a wet process such as photolithography is used to pattern the color conversion layer even when a top emission type device is manufactured. It is possible to use. Therefore, a display device can be easily manufactured by using the light emitting element according to the present invention. It is also possible to reduce the manufacturing cost.
  • the pair of electrodes is a pair of light-reflective electrodes, and the optical distance between the pair of light-reflective electrodes enhances the intensity of light emitted from the EL layer. It is preferable that the optical distance constituting the microresonator is set.
  • the light extraction efficiency of the light emitted from the EL layer is improved by the microresonator structure formed by the pair of light reflecting electrodes. For this reason, the light emitted from the EL layer can be efficiently incident on the color conversion layer. That is, according to the above-described configuration, it is possible to achieve both efficient incidence of excitation light to the color conversion layer and efficient extraction of converted light. Therefore, the light emission efficiency of the light emitting device according to the present invention can be further improved.
  • At least one of the pair of light reflecting layers is a metal film that is semi-transmissive with respect to light.
  • the reflectance of the light reflecting layer can be adjusted so that the buffer effect by the microresonator structure is suitably realized.
  • the light reflecting layer disposed on the EL layer side of the pair of light reflecting layers is composed of a dielectric multilayer film.
  • the dielectric multilayer film has a transmittance of light emitted from the EL layer of 25% or more and 100% or less.
  • a microresonator structure can be comprised suitably, taking in excitation light to an optical conversion layer efficiently.
  • the amount of emitted light is doubled in each of the EL layer and the color conversion layer. For this reason, when the transmittance of the dielectric multilayer film is 25% or more, it is possible to emit a light amount equal to or higher than that when the microcavity structure is not used.
  • the light-emitting element is disposed on the opposite side of the color conversion layer and the EL layer with one of the pair of light reflection layers interposed therebetween, and is incident from the color conversion layer side. It is preferable to further include a scattering layer that scatters the converted light to the side opposite to the color conversion layer scattering.
  • the converted light emitted with directivity by the microresonator structure of the pair of light reflecting layers is scattered in the light extraction direction by the light scattering layer. For this reason, the viewing angle characteristics of the light emitting device according to the present invention can be improved.
  • the EL layer can be composed of an organic EL material or an inorganic EL material.
  • a display device is a display device in which a plurality of light emitting elements including light emitting elements of different colors are arranged in an array, and each of the plurality of light emitting elements includes any one of the above-described light emitting elements. It is characterized by being composed.
  • each pixel in which the light emitting element is arranged light whose light extraction efficiency is improved by the microresonator structure is used. For this reason, according to the display device according to the present invention, it is possible to improve the light emission efficiency in a balanced manner in viewability and light emission intensity of each pixel.
  • the display device preferably further includes an active element connected to the pair of light reflective electrodes.
  • the above configuration can provide an active drive type display device with excellent display quality.
  • the light emission time can be extended as compared with a passive drive display device, and thus a drive voltage for obtaining desired luminance can be reduced, so that power consumption can be reduced.
  • the active element is disposed on the opposite side of the color conversion layer with the pair of light-reflecting electrodes interposed therebetween.
  • a display device with a high aperture ratio can be realized without being affected by TFTs or wirings provided as active elements. As a result, more effective low power consumption can be achieved.
  • the display device according to the present invention further includes a liquid crystal element that is disposed between the EL layer and the color conversion layer and performs switching by voltage.
  • a display device with excellent display quality can be provided by switching the liquid crystal element.
  • the present invention can be suitably used for flat panel displays such as inorganic EL displays and organic EL displays.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The disclosed light-emitting element (100) is provided with: a pair of light-reflective electrodes (2, 4); an EL layer (3) that emits light; a pair of light-reflection layers (7, 9); and a color conversion layer (8) that absorbs light emitted from the EL layer (3) and releases converted light of a different color from said absorbed light. The pair of light-reflective electrodes (2, 4) configures a microresonator structure that augments the strength of the light released from the EL layer (3). Also, the pair of light-reflection layers (7, 8) configures a microresonator that augments the strength of the converted light released from the color conversion layer (8).

Description

蛍光体基板、発光素子、およびそれを用いた表示装置Phosphor substrate, light emitting element, and display device using the same
 本発明は、蛍光体基板、発光素子、およびそれを用いた表示装置に関するものである。 The present invention relates to a phosphor substrate, a light emitting element, and a display device using the same.
 近年、高度情報化に伴い、フラットパネルディスプレイのニーズが高まっている。フラットパネルディスプレイとしては、非自発光型の液晶ディスプレイ(LCD)、自発光型のプラズマディスプレイ(PDP)、無機エレクトロルミネセンス(無機EL)ディスプレイ、および有機エレクトロルミネセンス(有機EL)ディスプレイ等が知られている。これらのフラットパネルディスプレイの中でも、有機ELディスプレイは、自発光の点で特に注目されている。 In recent years, the need for flat panel displays has increased with the advancement of information technology. Non-self-luminous liquid crystal displays (LCD), self-luminous plasma displays (PDP), inorganic electroluminescent (inorganic EL) displays, organic electroluminescent (organic EL) displays, etc. are known as flat panel displays. It has been. Among these flat panel displays, the organic EL display has attracted particular attention in terms of self-luminescence.
 有機ELディスプレイにおいては、従来、シャドーマスクを用いたマスク蒸着法により有機発光層を塗り分けることによって、赤色、緑色、および青色に対応した発光層をそれぞれの色の画素に用いるカラー化方法が用いられている。 In the organic EL display, conventionally, a colorization method in which light emitting layers corresponding to red, green, and blue are used for pixels of respective colors by separately coating the organic light emitting layer by a mask vapor deposition method using a shadow mask. It has been.
 しかしながら、上記従来の方法には、マスクの加工精度、マスクのアライメント精度、およびマスクの大型化という課題が存在しており、特にマスクの大型化は大きな課題である。すなわち、TVに代表される大型ディスプレイの分野において、基板サイズがG6からG8、G10と大型化が進んでおり、上記の方法を行うためには、このような基板サイズと同等以上に大型化されたマスクの作製および加工が必要となる。ところが、マスクは非常に薄い金属(一般的な膜厚:50~100nm)から構成されるため、大型化されたマスクの作製および加工が非常に困難である。 However, the above-described conventional methods have problems such as mask processing accuracy, mask alignment accuracy, and mask enlargement, and in particular, mask enlargement is a major issue. That is, in the field of large displays typified by TVs, the substrate sizes are increasing from G6 to G8, G10, and in order to perform the above method, the substrate size is increased to be equal to or larger than such a substrate size. It is necessary to prepare and process a mask. However, since the mask is made of a very thin metal (general film thickness: 50 to 100 nm), it is very difficult to manufacture and process a large-sized mask.
 また、マスクの加工精度とマスクのアライメント精度が低くなると、発光層の混じりによる混色が生じる恐れがある。この混色を防止するためには、通常、画素間に設ける絶縁層の幅を広く取る必要があるが、画素の面積が決まっている場合、発光部の面積が少なくなる、すなわち画素の開口率の低下に繋がり、輝度の低下、消費電力の上昇、および寿命の低下に繋がる。 Also, when the mask processing accuracy and the mask alignment accuracy are lowered, there is a risk of color mixing due to mixing of the light emitting layers. In order to prevent this color mixture, it is usually necessary to increase the width of the insulating layer provided between the pixels. However, when the area of the pixel is determined, the area of the light emitting portion is reduced, that is, the aperture ratio of the pixel. Leading to a decrease in brightness, an increase in power consumption, and a decrease in lifespan.
 また、上記従来の方法では、基板の下側に蒸着ソースを配置し、有機材料を下から上方向に蒸着することによって有機層を成膜するため、基板の大型化(マスクの大型化)に伴い、中央部にマスクの撓みが生じる危険性が高くなる。このような撓みが生じると、上記の混色の原因ともなり、極端な場合には、有機層が形成されない部分が出来てしまい、上下の電極のリークによる欠陥となる。 Moreover, in the above conventional method, an evaporation source is arranged on the lower side of the substrate, and an organic layer is formed by evaporating an organic material from the bottom upward. As a result, there is a high risk that the mask will bend in the center. When such bending occurs, it causes the above-mentioned color mixture, and in an extreme case, a portion where the organic layer is not formed is formed, resulting in a defect due to leakage of the upper and lower electrodes.
 また、上記従来の方法では、特定の使用回数を経るとマスクが劣化によって使用不可能になるため、マスクが大型化すると、ディスプレイ製造時のコストアップの問題に繋がる。有機ELディスプレイでは、特にコスト問題が最大の問題とされている。 In the conventional method, the mask becomes unusable due to deterioration after a specific number of times of use. Therefore, when the mask becomes large, it leads to a problem of cost increase when manufacturing the display. In the organic EL display, the cost problem is regarded as the biggest problem.
 そこで、上記の課題を解決するカラー化方法として、有機ELから放射される光を吸収して異なる波長の光を放出する色変換層を用いる蛍光変換法が提案されている(特許文献1参照)。この方法は、従来の塗り分け方式に比べて、有機層のパターン化を行う必要がなく、製造工程を簡略化でき、かつコスト的に優れている。 Therefore, as a colorization method for solving the above-described problem, a fluorescence conversion method using a color conversion layer that absorbs light emitted from an organic EL and emits light of different wavelengths has been proposed (see Patent Document 1). . This method does not require patterning of the organic layer as compared with the conventional coating method, can simplify the manufacturing process, and is superior in cost.
 ところで、有機ELに関して、発光効率の向上に焦点をあてた研究がこれまで多くなされている。その方法の1つとして、マイクロキャビティ(光学的微小共振器)構造を有する有機EL素子が提案されている(例えば、特許文献2、3、および4参照)。微小共振構造を適用した有機EL素子では、発光層から発生した光が反射電極と半反射電極との間で反射を繰り返すことによって、半反射電極の側から波長の一致した光のみが出射する。これにより、特定波長の強度を強め、かつ出射光に指向性をもたせることができる(図5参照)。 By the way, with regard to organic EL, many studies have been made so far with a focus on improving luminous efficiency. As one of the methods, an organic EL element having a microcavity (optical microresonator) structure has been proposed (see, for example, Patent Documents 2, 3, and 4). In an organic EL element to which a microresonance structure is applied, light generated from the light emitting layer is repeatedly reflected between the reflective electrode and the semi-reflective electrode, so that only light having the same wavelength is emitted from the semi-reflective electrode side. Thereby, the intensity | strength of a specific wavelength can be strengthened and directivity can be given to emitted light (refer FIG. 5).
 また、上述の特許文献2~4では、微小共振器構造を有する有機EL素子と、上述した色変換層とを組み合わせた技術を開示している。この技術では、発光効率や素子寿命等の観点から、青色画素においては、微小共振器構造を有する有機EL素子からの青色の発光を放射し、緑色画素および赤色画素においては、この有機EL素子からの青色の発光をそれぞれの色変換層において蛍光変換し、得られた変換光を放射している。 In addition, the above-mentioned Patent Documents 2 to 4 disclose a technique in which an organic EL element having a microresonator structure and the above-described color conversion layer are combined. In this technology, from the viewpoint of luminous efficiency, element lifetime, and the like, blue pixels emit blue light from organic EL elements having a microresonator structure, and green and red pixels emit from the organic EL elements. The blue light emission is converted into fluorescence in each color conversion layer, and the resulting converted light is emitted.
 しかしながら、微小共振器構造を有する有機EL素子から放射される発光(青色光)は比較的強い指向性を有している。一方、色変換層から放射される変換光(赤色光および緑色光)の放射方向は等方的である。このため、青色画素と赤色画素および緑色画素との間では発光の視野角依存性が異なる。例えば、視野角の角度が大きくなるに伴い青色の輝度が赤色および緑色の輝度と比較して急激に減少するため、正面から見た場合と斜めから見た場合では色純度が異なるといった問題が生じる(図6参照)。これはフラットパネルディスプレイとして致命的な問題となる。 However, light emission (blue light) emitted from the organic EL element having a microresonator structure has a relatively strong directivity. On the other hand, the radiation direction of the converted light (red light and green light) emitted from the color conversion layer is isotropic. For this reason, the viewing angle dependency of light emission differs between the blue pixel, the red pixel, and the green pixel. For example, as the viewing angle increases, the luminance of blue drastically decreases compared to the luminance of red and green, so that there is a problem that the color purity differs when viewed from the front and obliquely. (See FIG. 6). This is a fatal problem for a flat panel display.
 この問題を解決するための方法として、特許文献5に開示の技術が提案されている。特許文献5に開示された技術では、有機EL素子において、一対の光反射層が色変換層の変換光の波長に合わせて微小共振器構造を調整している。このため、各画素において、各色の波長に合わせた微小共振器構造を調整することができ、視野角による色純度を各色間で調整することが可能となる。 As a method for solving this problem, a technique disclosed in Patent Document 5 has been proposed. In the technique disclosed in Patent Document 5, in the organic EL element, the pair of light reflection layers adjust the microresonator structure in accordance with the wavelength of the converted light of the color conversion layer. For this reason, in each pixel, the microresonator structure can be adjusted according to the wavelength of each color, and the color purity according to the viewing angle can be adjusted between the colors.
日本国公開特許公報「特開平3-152897号公報(1991年6月28日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 3-152897 (published on June 28, 1991)” 日本国公開特許公報「特開平9-92466号公報(1997年4月4日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 9-92466 (published April 4, 1997)” 日本国公開特許公報「特開2002-359076号公報(2002年12月13日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2002-359076 (Released on December 13, 2002)” 日本国公開特許公報「特開2004-14335号公報(2004年1月15日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2004-14335 (published on January 15, 2004)” 日本国公開特許公報「特開2009-205928号公報(2009年9月10日公開)」Japanese Patent Publication “JP 2009-205928 A” (published on September 10, 2009)
 しなしながら、特許文献5に開示された技術では、色変換層を励起するための励起光を増強することに関しては考慮されておらず、色変換層において蛍光変換される効率は特許文献2~4に比して減少している。すなわち、特許文献5に開示された技術によっては、有機EL素子の発光効率を向上させる目的を十分に達成することができない。 However, in the technique disclosed in Patent Document 5, no consideration is given to enhancing excitation light for exciting the color conversion layer, and the efficiency of fluorescence conversion in the color conversion layer is described in Patent Documents 2 to Compared to 4, it is decreasing. That is, according to the technique disclosed in Patent Document 5, the object of improving the light emission efficiency of the organic EL element cannot be sufficiently achieved.
 さらに、特許文献5に開示された技術を用いて、ボトムエミッション型よりも開口率が高く消費電力的に優位なトップエミッション型のデバイスを製造しようとする場合、その構造上、色変換層のパターニングにフォトリソグラフティ等のウエットプロセスを用いることができない。すなわち、色変換層のパターニングにはシャドーマスクを用いた塗り分け蒸着が必要となるため、蛍光変換法による製造工程の簡易性は失われ、ひいてはコストの優位性が失われてしまう。 Furthermore, when a top emission type device having a higher aperture ratio and superior power consumption than the bottom emission type is to be manufactured using the technique disclosed in Patent Document 5, the color conversion layer is patterned due to its structure. In addition, a wet process such as photolithography cannot be used. That is, the patterning of the color conversion layer requires separate deposition using a shadow mask, so that the simplicity of the manufacturing process by the fluorescence conversion method is lost, and the cost advantage is lost.
 本発明は、上記課題を解決するためになされたものであって、その目的は、発光効率を向上させた発光素子を簡便に製造できる蛍光体基板、ならびに、発光効率を向上させた発光素子および表示装置を提供することにある。 The present invention has been made to solve the above-described problems, and has as its object to provide a phosphor substrate capable of easily producing a light emitting device with improved luminous efficiency, and a light emitting device with improved luminous efficiency and It is to provide a display device.
 本発明に係る蛍光体基板は、上記課題を解決するために基板と、上記基板上に一方が形成された一対の光反射層と、上記一対の光反射層に挟持され、上記一方とは異なる他方の光反射層に対して上記基板とは反対側にある外部光源から発光された励起光を吸収して当該励起光の色とは異なる色の変換光を放出する色変換層とを備え、上記一対の光反射層の間における光学距離は、上記色変換層から放出された変換光の強度を増強する微小共振器を構成する光学距離に設定されていることを特徴としている。 In order to solve the above problems, the phosphor substrate according to the present invention is sandwiched between a pair of light reflecting layers, a pair of light reflecting layers formed on the substrate, and the pair of light reflecting layers. A color conversion layer that absorbs excitation light emitted from an external light source on the side opposite to the substrate with respect to the other light reflection layer and emits converted light of a color different from the color of the excitation light; The optical distance between the pair of light reflecting layers is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer.
 ここで、本発明に係る蛍光体基板は発光素子を製造するために用いることができる。具体的には、本発明に係る蛍光体基板を、エレクトロルミネセンス(EL)素子などの外部光源とを組み合わせることによって、発光素子を簡便に製造することができる。このように製造された発光素子では、色変換層が、EL部などの外部光源から発光された光を励起光として吸収して変換光を放出する。この変換光は、一対の反射膜が構成する微小共振器構造によって光取り出し効率が向上されている。 Here, the phosphor substrate according to the present invention can be used for manufacturing a light emitting device. Specifically, a light-emitting element can be easily produced by combining the phosphor substrate according to the present invention with an external light source such as an electroluminescence (EL) element. In the light emitting device manufactured in this way, the color conversion layer absorbs light emitted from an external light source such as an EL portion as excitation light and emits converted light. The converted light has improved light extraction efficiency by a microresonator structure formed by a pair of reflective films.
 また、本発明に係る蛍光体基板は、微小共振器構造を構成しているEL素子と組み合わせることも容易にできる。 Also, the phosphor substrate according to the present invention can be easily combined with an EL element constituting a microresonator structure.
 したがって、本発明に係る蛍光体基板によれば、発光効率を向上させた発光素子を簡便に製造することができる。 Therefore, according to the phosphor substrate according to the present invention, a light emitting device with improved luminous efficiency can be easily produced.
 また、本発明に係る蛍光体基板を用いて表示装置を製造する場合には、トップエミッション型の表示装置を製造する場合であっても、色変換層をパターニングするために、フォトリソグラフティ等のウエットプロセスを用いることが可能である。したがって、本発明に係る蛍光体基板を用いることによって表示装置を簡便に製造することができる。また、製造時のコストを抑えることも可能である。 In the case of manufacturing a display device using the phosphor substrate according to the present invention, even in the case of manufacturing a top emission type display device, in order to pattern the color conversion layer, wet such as photolithography is used. A process can be used. Therefore, a display device can be easily manufactured by using the phosphor substrate according to the present invention. It is also possible to reduce the manufacturing cost.
 本発明に係る発光素子は、上記課題を解決するために、一対の電極と、上記一対の電極に挟持され、光を発光するEL層と、上記一対の電極の一方に対して上記EL層とは反対側に配置された一対の光反射層と、上記一対の光反射層に挟持され、上記EL層から発光された光を吸収して当該光の色とは異なる色の変換光を放出する色変換層とを備え、上記一対の光反射層の間における光学距離は、上記色変換層から放出された変換光の強度を増強する微小共振器を構成する光学距離に設定されていることを特徴としている。 In order to solve the above problems, a light-emitting element according to the present invention includes a pair of electrodes, an EL layer that is sandwiched between the pair of electrodes and emits light, and the EL layer with respect to one of the pair of electrodes. Is sandwiched between a pair of light reflecting layers disposed on the opposite side and the pair of light reflecting layers, absorbs light emitted from the EL layer, and emits converted light having a color different from that of the light. An optical distance between the pair of light reflection layers is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer. It is a feature.
 上記構成において、一対の反射膜は、EL層を間に挟むことなく、微小共振器を構成している。このため、一対の電極がEL層に対する微小共振器構造を構成することも可能である。また、色変換層が放出する変換光は、一対の反射膜が構成する微小共振器構造によって光取り出し効率が向上される。 In the above configuration, the pair of reflective films constitute a microresonator without sandwiching the EL layer therebetween. For this reason, a pair of electrodes can constitute a microresonator structure for the EL layer. Moreover, the light extraction efficiency of the converted light emitted from the color conversion layer is improved by the microresonator structure formed by the pair of reflective films.
 したがって、上記構成によれば、発光効率を向上させた発光素子を提供することができる。 Therefore, according to the above configuration, it is possible to provide a light emitting element with improved luminous efficiency.
 また、上記構成を備える発光素子を用いて表示装置を製造する場合には、トップエミッション型の装置を製造する場合であっても、色変換層をパターニングするために、フォトリソグラフティ等のウエットプロセスを用いることが可能である。したがって、本発明に係る発光素子を用いることによって表示装置を簡便に製造することができる。また、製造時のコストを抑えることも可能である。 Further, when a display device is manufactured using a light emitting element having the above-described structure, a wet process such as photolithography is used to pattern the color conversion layer even when a top emission type device is manufactured. It is possible to use. Therefore, a display device can be easily manufactured by using the light emitting element according to the present invention. It is also possible to reduce the manufacturing cost.
 本発明に係る表示装置は、上記課題を解決するために、互いに異なる色の発光素子を含む複数の発光素子がアレイ状に配列された表示装置であって、上記複数の発光素子の各々は、上述したいすれかの発光素子から構成されていることを特徴としている。 In order to solve the above problems, a display device according to the present invention is a display device in which a plurality of light emitting elements including light emitting elements of different colors are arranged in an array, and each of the plurality of light emitting elements includes: It is characterized by comprising any one of the light-emitting elements described above.
 上記構成によれば、発光素子が配置される各画素では、微小共振器構造により光取り出し効率が向上された光が用いられる。このため、本発明に係る表示装置によれば、各画素の視野性および発光強度においてバランスよく、かつ、その発光効率を向上させることができる。 According to the above configuration, in each pixel in which the light emitting element is arranged, light whose light extraction efficiency is improved by the microresonator structure is used. For this reason, according to the display device according to the present invention, it is possible to improve the light emission efficiency in a balanced manner in viewability and light emission intensity of each pixel.
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。 Other objects, features, and superior points of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
 本発明に係る蛍光体基板は、基板と、上記基板上に一方が形成された一対の光反射層と、上記一対の光反射層に挟持され、上記一方とは異なる他方の光反射層に対して上記基板とは反対側にある外部光源から発光された励起光を吸収して当該励起光の色とは異なる色の変換光を放出する色変換層とを備え、上記一対の光反射層の間における光学距離は、上記色変換層から放出された変換光の強度を増強する微小共振器を構成する光学距離に設定されている。このため、本発明に係る蛍光体基板を用いることによって、発光効率を向上させた発光素子を簡便に製造することができるという効果を奏する。 The phosphor substrate according to the present invention includes a substrate, a pair of light reflecting layers formed on one of the substrates, and the other light reflecting layer sandwiched between the pair of light reflecting layers and different from the one. A color conversion layer that absorbs excitation light emitted from an external light source on the side opposite to the substrate and emits converted light of a color different from the color of the excitation light. The optical distance between them is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer. Therefore, by using the phosphor substrate according to the present invention, it is possible to easily manufacture a light emitting element with improved luminous efficiency.
 また、本発明に係る発光素子は、一対の光反射性電極と、上記一対の光反射性電極に挟持され、光を発光するEL層と、上記一対の反射性電極の一方に対して上記EL層とは反対側に配置された一対の光反射層と、上記一対の光反射層に挟持され、上記EL層から発光された光を吸収して当該光の色とは異なる色の変換光を放出する色変換層とを備え、上記一対の光反射層の間における光学距離は、上記色変換層から放出された変換光の強度を増強する微小共振器を構成する光学距離に設定されている。このため、発光効率を向上させた発光素子を提供することができるという効果を奏する。 The light-emitting element according to the present invention includes a pair of light-reflective electrodes, an EL layer that is sandwiched between the pair of light-reflective electrodes and emits light, and the EL for one of the pair of reflective electrodes. A pair of light reflecting layers arranged on the opposite side of the layer and the pair of light reflecting layers, and absorbs light emitted from the EL layer to generate converted light of a color different from the color of the light. And an optical distance between the pair of light reflecting layers is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer. . For this reason, it is possible to provide a light emitting element with improved luminous efficiency.
本発明の一実施形態に係る発光素子を示す概略断面図である。It is a schematic sectional drawing which shows the light emitting element which concerns on one Embodiment of this invention. 図1に示す発光素子における蛍光体基板を示す概略断面図である。It is a schematic sectional drawing which shows the fluorescent substance board | substrate in the light emitting element shown in FIG. 図1に示す発光素子の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the light emitting element shown in FIG. 本発明の他の実施形態に係る表示装置を示す概略断面図である。It is a schematic sectional drawing which shows the display apparatus which concerns on other embodiment of this invention. マイクロキャビティ構造または非マイクロキャビティ構造の有機EL素子における光の波長と発光強度との関係を示すグラフである。It is a graph which shows the relationship between the wavelength of light and light emission intensity in the organic EL element of a microcavity structure or a non-microcavity structure. 従来の有機EL表示装置における配光特性を示すグラフである。It is a graph which shows the light distribution characteristic in the conventional organic electroluminescence display.
 〔実施形態1〕
 本発明の第1の実施形態について図1および図2に基づいて説明すると以下の通りである。
Embodiment 1
The first embodiment of the present invention will be described with reference to FIGS. 1 and 2 as follows.
 まず、図1に基づいて、本実施形態に係る発光素子100の概略構成について説明する。図1は、発光素子100の概略の構成を示す断面図であり、図2は、蛍光体基板50の概略の構成を示す断面図である。 First, a schematic configuration of the light emitting device 100 according to the present embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view illustrating a schematic configuration of the light emitting element 100, and FIG. 2 is a cross-sectional view illustrating a schematic configuration of the phosphor substrate 50.
 本実施形態に係る発光素子100は、EL素子基板40と蛍光体基板50とが、樹脂層6を間にして張り合わせられた構成を備えている。 The light emitting element 100 according to the present embodiment has a configuration in which an EL element substrate 40 and a phosphor substrate 50 are bonded together with a resin layer 6 therebetween.
 EL素子基板40は、基板1、第1光反射性電極2、EL層3、第2光反射性電極4、および無機封止膜5を備えている。一方、蛍光体基板50は、第1光反射層7、色変換層8、第2光反射層9、および基板10を備えている。 The EL element substrate 40 includes a substrate 1, a first light reflective electrode 2, an EL layer 3, a second light reflective electrode 4, and an inorganic sealing film 5. On the other hand, the phosphor substrate 50 includes a first light reflection layer 7, a color conversion layer 8, a second light reflection layer 9, and a substrate 10.
 なお、第1光反射性電極2、EL層3、および第2光反射性電極4からなる構成をEL部11と称する。本実施形態においてEL部11は有機ELであるとする。 In addition, the structure which consists of the 1st light reflective electrode 2, the EL layer 3, and the 2nd light reflective electrode 4 is called the EL part 11. FIG. In the present embodiment, it is assumed that the EL unit 11 is an organic EL.
 EL素子基板40のEL層3が発する光は蛍光体基板50側に取り出され、蛍光体基板50の色変換層8が変換する光は、EL素子基板40側とは反対側に取り出される。すなわち、EL素子基板40ではEL層3が光を放出し、蛍光体基板50では色変換層8がEL層3から放出された光を吸収して当該光とは異なる波長の変換光を放出する。 The light emitted from the EL layer 3 of the EL element substrate 40 is extracted to the phosphor substrate 50 side, and the light converted by the color conversion layer 8 of the phosphor substrate 50 is extracted to the side opposite to the EL element substrate 40 side. That is, in the EL element substrate 40, the EL layer 3 emits light, and in the phosphor substrate 50, the color conversion layer 8 absorbs the light emitted from the EL layer 3, and emits converted light having a wavelength different from that of the light. .
 以下、本実施形態に係る発光素子100の各部材について、より具体的に説明するが、本発明は後述する説明に限定されるものではない。 Hereinafter, although each member of the light emitting element 100 according to the present embodiment will be described more specifically, the present invention is not limited to the description to be described later.
 <基板1、10>
 基板1、10としては、例えば、ガラスまたは石英等からなる無機材料基板、および、ポリエチレンテレフタレート、ポリカルバゾール、またはポリイミド等からなるプラスティック基板等が挙げられるが、本発明はこれらの基板に限定されるものではない。
< Substrate 1, 10>
Examples of the substrates 1 and 10 include an inorganic material substrate made of glass or quartz, a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, or the like, but the present invention is limited to these substrates. It is not a thing.
 ここで、発光素子100を用いた表示装置の湾曲や折り曲げをストレス無く可能にするためには、基板1、10として上記プラスティック基板を用いる事が好ましい。 Here, in order to allow the display device using the light emitting element 100 to bend and bend without stress, it is preferable to use the plastic substrate as the substrates 1 and 10.
 また、基板1としては、色変換層8からの変換光を外部に取り出すための透過性を有することが望ましい。 Further, it is desirable that the substrate 1 has transparency for taking out the converted light from the color conversion layer 8 to the outside.
 また、基板10としては、ガスバリア性を向上させる観点から、プラスティック基板に無機材料をコートした基板を用いることが好ましい。有機ELは、特に低量の水分に対しても劣化が起こることが知られており、プラスティック基板を有機ELの基板として用いる場合には、水分の透過による有機ELの劣化が最大の問題となる。上記のようにガスバリア性を向上させた基板10を用いれば、当該問題は解消可能である。 Further, as the substrate 10, it is preferable to use a substrate obtained by coating a plastic substrate with an inorganic material from the viewpoint of improving gas barrier properties. It is known that the organic EL deteriorates even with a low amount of moisture, and when the plastic substrate is used as the organic EL substrate, the deterioration of the organic EL due to the permeation of moisture becomes the biggest problem. . If the substrate 10 with improved gas barrier properties is used as described above, this problem can be solved.
 <第1光反射性電極2および第2光反射性電極4>
 第1光反射性電極2および第2光反射性電極4は、EL層3を挟持する電気伝導性膜であって、EL層3から発光する光を増強する微小共振器を構成するための反射率を有している。第1光反射性電極2の反射率は、EL層3が発光する光に対して、50%以上であることが好ましく、70%以上であることがより好ましい。一方、第2光反射性電極4は、EL層3が発光する光に対して半透過性であって、その反射率は25%以上であることが好ましい。
<First Light Reflective Electrode 2 and Second Light Reflective Electrode 4>
The first light-reflecting electrode 2 and the second light-reflecting electrode 4 are electrically conductive films that sandwich the EL layer 3, and are reflections for configuring a microresonator that enhances light emitted from the EL layer 3. Have a rate. The reflectance of the first light reflective electrode 2 is preferably 50% or more, more preferably 70% or more, with respect to the light emitted from the EL layer 3. On the other hand, the second light-reflecting electrode 4 is preferably semi-transmissive to the light emitted from the EL layer 3 and has a reflectance of 25% or more.
 第1光反射性電極2および第2光反射性電極4の構成としては、次の(1)~(4)に示すものを挙げることができる。 Examples of the configuration of the first light reflective electrode 2 and the second light reflective electrode 4 include the following (1) to (4).
 (1)金属電極
 光を反射する金属からなるもの、例えばAu、Ag、Al、Pt、Cu、Mn、Mg、Ca、Li、Yb、Eu、Sr、Ba、Naなど、およびこれらの金属の中から適宜2種以上選び形成された合金、具体的にMg:Ag、Al:Li、Al:Ca、およびMg:Liなどからなるものを挙げることができる。EL層3が有機材料で構成されている場合は、これらの金属または合金の中で、仕事関数4.0eV以下のものが陰極として好ましく、一方4.5eV以上のものが陽極として好適である。
(1) Metal electrode A material made of a metal that reflects light, such as Au, Ag, Al, Pt, Cu, Mn, Mg, Ca, Li, Yb, Eu, Sr, Ba, Na, etc., and among these metals Examples of the alloy formed by selecting two or more types from the above, specifically, Mg: Ag, Al: Li, Al: Ca, and Mg: Li. When the EL layer 3 is composed of an organic material, among these metals or alloys, those having a work function of 4.0 eV or less are preferable as the cathode, while those having a work function of 4.5 eV or more are preferable as the anode.
 (2)金属膜/透明電極または透明電極/金属膜からなる積層光反射性電極
 透明電極自体は反射率が低いため、金属膜と積層することにより、反射率を高めることができる。透明電極としては、導電性酸化膜が好ましく、特にZnO:Al、ITO、SnO:Sb、またはInZnOなどが好ましい。一方、金属膜としては、上記(1)で述べた金属または合金からなる膜を挙げることができる。この積層反射性電極においては、EL層3と接する部分に透明電極または金属膜のいずれを設けてもよい。
(2) Laminated Light Reflective Electrode Consisting of Metal Film / Transparent Electrode or Transparent Electrode / Metal Film Since the transparent electrode itself has a low reflectance, the reflectance can be increased by laminating with the metal film. As the transparent electrode, a conductive oxide film is preferable, and ZnO: Al, ITO, SnO 2 : Sb, or InZnO is particularly preferable. On the other hand, examples of the metal film include films made of the metal or alloy described in (1) above. In this laminated reflective electrode, either a transparent electrode or a metal film may be provided at a portion in contact with the EL layer 3.
 (3)誘電体膜/透明電極または透明電極/誘電体膜からなる積層光反射性電極
 透明電極自体は、上述したように反射率が低いため、高屈折率または低屈折率の誘電体膜を積層することにより、反射率を高めることができる。
(3) Dielectric film / transparent electrode or laminated light reflective electrode comprising transparent electrode / dielectric film Since the transparent electrode itself has a low reflectance as described above, a dielectric film having a high refractive index or a low refractive index is used. By laminating, the reflectance can be increased.
 ここで、高屈折率誘電体膜としては、屈折率1.9以上の透明性酸化物膜や透明性窒化物膜が好ましく、また、硫化物膜またはセレン化化合物も透明性のものであれば好ましい。このような高屈折率誘電体膜の例としては、ZnO、ZrO、HfO、TiO、Si、BN、GaN、GaInN、AlN、Al、ZnS、ZnSe、またはZnSSeなどからなる膜が好ましく挙げられる。また、これらを粉体にしてポリマー中に分散させて形成した膜を用いてもよい。 Here, as the high refractive index dielectric film, a transparent oxide film or a transparent nitride film having a refractive index of 1.9 or more is preferable, and a sulfide film or a selenide compound is also transparent. preferable. Examples of such a high refractive index dielectric film include ZnO, ZrO 2 , HfO 2 , TiO 2 , Si 3 N 4 , BN, GaN, GaInN, AlN, Al 2 O 3 , ZnS, ZnSe, or ZnSSe. A film made of is preferably mentioned. Alternatively, a film formed by dispersing these in a polymer may be used.
 一方、低屈折率誘電体膜としては、屈折率1.5以下の透明性の酸化物やフッ化物からなる膜、該酸化物やフッ化物を粉体にしてポリマー中に分散させて形成した膜、またはフッ素化ポリマー膜などを好ましく挙げることができる。具体的にはMgF、CaF、BaF、NaAlF、もしくはSiOFなどからなる膜、これらの化合物を粉体にしてポリマー中に分散させて形成した膜、または、フッ素化ポリオレフィン、フッ素化ポリメタクリレート、もしくはフッ素化ポリイミドなどからなる膜が好適である。 On the other hand, as a low refractive index dielectric film, a film made of a transparent oxide or fluoride having a refractive index of 1.5 or less, or a film formed by dispersing the oxide or fluoride in powder form in a polymer Or a fluorinated polymer film. Specifically, a film made of MgF 2 , CaF 2 , BaF 2 , NaAlF, or SiOF, a film formed by dispersing these compounds in a polymer, or a fluorinated polyolefin or fluorinated polymethacrylate Alternatively, a film made of fluorinated polyimide or the like is preferable.
 (4)誘電体多層膜/透明電極または透明電極/誘電体多層膜からなる積層光反射性電極
 積層反射性電極における誘電体多層膜は、上記(3)で説明した高屈折率の誘電体膜と低屈折率の誘電体膜とを、光学膜厚がλ/4(λは放出する光の波長)になるように、交互に多数回積層して形成されたものが好ましく、これによって反射率50%以上を好適に実現することができる。また、透明電極としては、上記(2)で説明したものを挙げることができる。
(4) Multilayer Light Reflective Electrode Consisting of Dielectric Multilayer Film / Transparent Electrode or Transparent Electrode / Dielectric Multilayer Film The dielectric multilayer film in the multilayer reflective electrode is a high refractive index dielectric film described in (3) above. And a low-refractive-index dielectric film are preferably laminated alternately and multiple times so that the optical film thickness is λ / 4 (λ is the wavelength of the emitted light). 50% or more can be suitably realized. Moreover, what was demonstrated by said (2) can be mentioned as a transparent electrode.
 <第1光反射層7および第2光反射層9>
 第1光反射層7および第2光反射層9は、色変換層8を挟持する光反射層であって、色変換層8から放出される変換光を増強する微小共振器を構成するための反射率を有している。第1光反射層7の反射率は、色変換層8が発光する変換光に対して50%以上であることが好ましく、70%以上であることがより好ましい。一方、第2光反射層9は、色変換層8が発光する変換光に対して半透過性であって、その反射率は25%以上であることが好ましい。
<First Light Reflecting Layer 7 and Second Light Reflecting Layer 9>
The first light reflection layer 7 and the second light reflection layer 9 are light reflection layers that sandwich the color conversion layer 8 and constitute a microresonator that enhances the converted light emitted from the color conversion layer 8. Has reflectivity. The reflectance of the first light reflecting layer 7 is preferably 50% or more, more preferably 70% or more, with respect to the converted light emitted from the color conversion layer 8. On the other hand, the second light reflection layer 9 is preferably semi-transmissive to the converted light emitted from the color conversion layer 8 and has a reflectance of 25% or more.
 また、第1光反射層7は、励起光であるEL層3より放出された光に対して、その透過率が25%以上100%以下であることが好ましい。なお、マイクロキャビティ構造は、出射光量を最大で2倍にする。本実施形態では、EL層3と色変換層8のそれぞれで2倍になるため、第1光反射層7の透過率が25%以上であれば、マイクロキャビティ構造を取らない構成と同程度以上の光量を出すことができる。 Further, it is preferable that the transmittance of the first light reflecting layer 7 is 25% or more and 100% or less with respect to the light emitted from the EL layer 3 which is excitation light. The microcavity structure doubles the amount of emitted light at maximum. In the present embodiment, each of the EL layer 3 and the color conversion layer 8 is doubled. Therefore, if the transmittance of the first light reflecting layer 7 is 25% or more, it is the same as or more than the configuration without the microcavity structure. The amount of light can be emitted.
 第1光反射層7および第2光反射層9を構成する材料としては、次の(5)~(8)に示すものを挙げることができる。
(5)金属膜
(6)金属膜/透明導電性膜または透明導電性膜/金属膜からなる積層光反射層
(7)誘電体膜/透明導電性膜または透明導電性膜/誘電体膜からなる積層光反射層
(8)誘電体多層膜
 上記(5)~(7)に関しては、それぞれ上記(1)~(3)と同様である。第1光反射層7および第2光反射層9に導電機能は必要ないため、上記(8)に関しては、上記(4)における透明電極を必要としない。なお、上記(6)および(7)は、光反射膜として十分な反射率を有するために、それぞれ金属膜および誘電体膜という屈折率の異なる薄膜との積層構造になっている必要がある。上記(8)は互いに屈折率の異なる誘電体膜のみで十分な反射率の光反射層を形成できるので、透明導電性膜はあってもいいが必要はない。
Examples of the material constituting the first light reflecting layer 7 and the second light reflecting layer 9 include the following (5) to (8).
(5) Metal film
(6) Laminated light reflecting layer comprising metal film / transparent conductive film or transparent conductive film / metal film
(7) Laminated light reflecting layer comprising dielectric film / transparent conductive film or transparent conductive film / dielectric film
(8) Dielectric Multilayer Film The above (5) to (7) are the same as the above (1) to (3), respectively. Since the first light reflecting layer 7 and the second light reflecting layer 9 do not need a conductive function, the transparent electrode in the above (4) is not necessary with respect to the above (8). Note that the above (6) and (7) have sufficient reflectivity as a light reflecting film, and therefore need to have a laminated structure of thin films having different refractive indexes, ie, a metal film and a dielectric film, respectively. In the above (8), since a light reflecting layer having a sufficient reflectance can be formed only with dielectric films having different refractive indexes, a transparent conductive film may be provided but is not necessary.
 誘電体多層膜の構成に関しては、上記(4)における説明と同様であり、高屈折率の誘電体膜と低屈折率の誘電体膜とを、光学膜厚がλ/4(λは放出する光の波長)になるように、交互に多数回積層し形成したものが好ましい。このような誘電体多層膜によれば、目的の波長の光に対する反射率を好適な値に設定することが容易になる。 The configuration of the dielectric multilayer film is the same as that described in the above (4), and the optical film thickness of the high refractive index dielectric film and the low refractive index dielectric film is λ / 4 (λ is emitted). It is preferable that the layer is formed by alternately laminating a large number of times so that the wavelength of light becomes. According to such a dielectric multilayer film, it becomes easy to set the reflectance with respect to light of a target wavelength to a suitable value.
 <EL層3>
 本実施形態におけるEL層3は、青色光または紫外光を発光する有機発光層を少なくとも含む有機EL層として構成されている。EL層3は、有機発光層の単層構造でも、有機発光層と電荷輸送層の多層構造でもよく、具体的には下記の構成が挙げられる。ただし、本発明はこれらにより限定されるものではない。
(1)有機発光層
(2)正孔輸送層/有機発光層
(3)有機発光層/電子輸送層
(4)正孔輸送層/有機発光層/電子輸送層
(5)正孔注入層/正孔輸送層/有機発光層/電子輸送層
(6)正孔注入層/正孔輸送層/有機発光層/電子輸送層/電子注入層
(7)正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層
(8)正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層/電子注入層
(9)正孔注入層/正孔輸送層/電子防止層/有機発光層/正孔防止層/電子輸送層/電子注入層
 ここで、有機発光層、正孔注入層、正孔輸送層、正孔防止層、電子防止層、電子輸送層及び電子注入層の各層は、単層構造でも多層構造でもよい。
<EL layer 3>
The EL layer 3 in the present embodiment is configured as an organic EL layer including at least an organic light emitting layer that emits blue light or ultraviolet light. The EL layer 3 may have a single-layer structure of an organic light-emitting layer or a multilayer structure of an organic light-emitting layer and a charge transport layer. Specific examples include the following configurations. However, the present invention is not limited to these.
(1) Organic light emitting layer (2) Hole transport layer / organic light emitting layer (3) Organic light emitting layer / electron transport layer (4) Hole transport layer / organic light emitting layer / electron transport layer (5) Hole injection layer / Hole transport layer / organic light emitting layer / electron transport layer (6) hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / electron injection layer (7) hole injection layer / hole transport layer / organic Light emitting layer / Hole prevention layer / Electron transport layer (8) Hole injection layer / Hole transport layer / Organic light emitting layer / Hole prevention layer / Electron transport layer / Electron injection layer (9) Hole injection layer / Hole Transport layer / electron prevention layer / organic light emitting layer / hole prevention layer / electron transport layer / electron injection layer Here, organic light emission layer, hole injection layer, hole transport layer, hole prevention layer, electron prevention layer, electron Each of the transport layer and the electron injection layer may have a single layer structure or a multilayer structure.
 有機発光層は、以下に例示する有機発光材料のみから構成されていてもよく、発光性のドーパントとホスト材料の組み合わせから構成されていてもよく、任意に正孔輸送材料、電子輸送材料、および添加剤(ドナー、アクセプター等)等を含んでいてもよい。また、上述の材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。なお、発光効率および寿命の観点からは、ホスト材料中に発光性のドーパントが分散されたものであることが好ましい。 The organic light emitting layer may be composed only of the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally a hole transport material, an electron transport material, and Additives (donor, acceptor, etc.) may be included. Moreover, the structure by which the above-mentioned material was disperse | distributed in the polymeric material (binding resin) or the inorganic material may be sufficient. From the viewpoint of luminous efficiency and lifetime, it is preferable that a luminescent dopant is dispersed in the host material.
 有機発光材料としては、有機EL用の公知の発光材料を用いることができる。このような発光材料は、低分子発光材料、高分子発光材料等に分類され、これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。また、上記発光材料は、蛍光材料、燐光材料等に分類されるものでもよく、低消費電力化の観点で、発光効率の高い燐光材料を用いる事が好ましい。 As the organic light emitting material, a known light emitting material for organic EL can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present invention is not limited to these materials. The light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like, and it is preferable to use a phosphorescent material with high emission efficiency from the viewpoint of reducing power consumption.
 低分子有機発光材料としては、例えば、4,4’-ビス(2,2’-ジフェニルビニル)-ビフェニル(DPVBi)等の芳香族ジメチリデン化合物、5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル]ベンゾオキサゾール等のオキサジアゾール化合物、3-(4-ビフェニルイル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体、1,4-ビス(2-メチルスチリル)ベンゼン等のスチリルベンゼン化合物、及び、フルオレノン誘導体等の蛍光性有機材料等が挙げられる。 Examples of the low-molecular organic light-emitting material include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi), 5-methyl-2- [2- [4- ( Oxadiazole compounds such as 5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole, 3- (4-biphenylyl) -4-phenyl-5-t-butylphenyl-1,2,4- Examples thereof include triazole derivatives such as triazole (TAZ), styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene, and fluorescent organic materials such as fluorenone derivatives.
 高分子発光材料としては、例えば、ポリ(2-デシルオキシ-1,4-フェニレン)(DO-PPP)、等のポリフェニレンビニレン誘導体、及び、ポリ(9,9-ジオクチルフルオレン)(PDAF)等のポリスピロ誘導体が挙げられる。 Examples of the polymer light emitting material include polyphenylene vinylene derivatives such as poly (2-decyloxy-1,4-phenylene) (DO-PPP), and polyspiro such as poly (9,9-dioctylfluorene) (PDAF). Derivatives.
 有機発光層に任意に含まれる発光性のドーパントとしては、有機EL用の公知のドーパント材料を用いることができる。このようなドーパント材料としては例えば以下のものが挙げられる。まず、紫外発光材料として、p-クォーターフェニル、3,5,3,5テトラ-t-ブチルセクシフェニル、および3,5,3,5テトラ-t-ブチル-p-クィンクフェニル等の蛍光発光材料等が挙げられる。また、青色発光材料として、スチリル誘導体等の蛍光発光材料、ビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート イリジウム(III)(FIrpic)、および、ビス(4’,6’-ジフルオロフェニルポリジナト)テトラキス(1-ピラゾイル)ボレート イリジウム(III)(FIr6)等の燐光発光有機金属錯体等が挙げられる。 As the light-emitting dopant optionally contained in the organic light-emitting layer, a known dopant material for organic EL can be used. Examples of such dopant materials include the following. First, fluorescent light emission such as p-quaterphenyl, 3,5,3,5 tetra-t-butylsecphenyl and 3,5,3,5 tetra-t-butyl-p-quinkphenyl as ultraviolet light emitting materials Materials and the like. Further, as a blue light emitting material, a fluorescent light emitting material such as a styryl derivative, bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate, iridium (III) (FIrpic), and bis (4 ′, 6 Examples include phosphorescent organic metal complexes such as' -difluorophenylpolydinato) tetrakis (1-pyrazoyl) borate, iridium (III) (FIr6), and the like.
 ドーパントを用いる時のホスト材料としては、有機EL用の公知のホスト材料を用いることができる。このようなホスト材料としては、上述した低分子発光材料、高分子発光材料、4,4’-ビス(カルバゾール)ビフェニル、9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(CPF)、3,6-ビス(トリフェニルシリル)カルバゾール(mCP)、(PCF)等のカルバゾール誘導体、4-(ジフェニルフォスフォイル)-N,N-ジフェニルアニリン(HM-A1)等のアニリン誘導体、1,3-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(mDPFB)、および1,4-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(pDPFB)等のフルオレン誘導体等が挙げられる。 As a host material when using a dopant, a known host material for organic EL can be used. Examples of such host materials include the low-molecular light-emitting materials, the polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), 3 , 6-bis (triphenylsilyl) carbazole (mCP), carbazole derivatives such as (PCF), aniline derivatives such as 4- (diphenylphosphoyl) -N, N-diphenylaniline (HM-A1), 1,3- And fluorene derivatives such as bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB) and 1,4-bis (9-phenyl-9H-fluoren-9-yl) benzene (pDPFB) .
 電荷注入輸送層は、電荷(正孔、電子)の電極からの注入と発光層への輸送(注入)をより効率よく行う目的で、電荷注入層(正孔注入層、電子注入層)と電荷輸送層(正孔輸送層、電子輸送層)に分類される。これらの各層は、以下に例示する電荷注入輸送材料のみから構成されていてもよく、任意に添加剤(ドナー、アクセプター等)等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。 The charge injection / transport layer is used to efficiently inject charges (holes, electrons) from the electrode and transport (injection) to the light-emitting layer with the charge injection layer (hole injection layer, electron injection layer) and charge. It is classified as a transport layer (hole transport layer, electron transport layer). Each of these layers may be composed only of the charge injecting and transporting material exemplified below, and may optionally contain additives (donor, acceptor, etc.), and these materials are polymer materials (binding). Resin) or dispersed in an inorganic material.
 電荷注入輸送材料としては、有機EL用または有機光導電体用の公知の電荷輸送材料を用いることができる。このような電荷注入輸送材料は、正孔注入・正孔輸送材料及び電子注入・電子輸送材料に分類され、これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。 As the charge injection / transport material, a known charge transport material for organic EL or organic photoconductor can be used. Such charge injection / transport materials are classified into hole injection / hole transport materials and electron injection / electron transport materials. Specific examples of these compounds are given below, but the present invention is limited to these materials. It is not something.
 正孔注入・正孔輸送材料としては、例えば、酸化バナジウム(V2O5)、酸化モリブデン(MoO2)等の酸化物、無機p型半導体材料、ポルフィリン化合物、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(TPD)、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(NPD)等の芳香族第三級アミン化合物、ヒドラゾン化合物、キナクリドン化合物、およびスチリルアミン化合物等の低分子材料、ならびに、ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)、およびポリ(p-ナフタレンビニレン)(PNV)等の高分子材料等が挙げられる。 Examples of hole injection / hole transport materials include oxides such as vanadium oxide (V 2 O 5) and molybdenum oxide (MoO 2), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3-methylphenyl) Aromatic tertiary amine compounds such as -N, N'-bis (phenyl) -benzidine (TPD), N, N'-di (naphthalen-1-yl) -N, N'-diphenyl-benzidine (NPD) , Hydrazone compounds, quinacridone compounds, and styrylamine compounds, and polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfonate (PEDOT) / PSS), poly (triphenylamine) derivative (Poly-TPD), polyvinyl Carbazole (PVCz), poly (p- phenylene vinylene) (PPV), and poly (p- naphthalene vinylene) (PNV) polymeric materials such as are exemplified.
 なお、陽極からの正孔の注入・輸送をより効率よく行う観点から、正孔注入層として用いる材料としては、正孔輸送層に使用する正孔注入輸送材料より最高被占分子軌道(HOMO)のエネルギー準位が低い材料を用いることが好ましい。また、正孔輸送層としては、正孔注入層に使用する正孔注入輸送材料より正孔の移動度が高い材料を用いることが好ましい。 From the viewpoint of more efficient injection and transport of holes from the anode, the material used as the hole injection layer is the highest occupied molecular orbital (HOMO) than the hole injection transport material used for the hole transport layer. It is preferable to use a material having a low energy level. As the hole transport layer, it is preferable to use a material having a higher hole mobility than the hole injection transport material used for the hole injection layer.
 また、より正孔の注入・輸送性を向上させるため、上記正孔注入・正孔輸送材料にアクセプターをドープする事が好ましい。アクセプターとしては、有機EL用の公知のアクセプター材料を用いることができる。これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。 In order to improve the hole injection / transport property, it is preferable to dope the hole injection / hole transport material with an acceptor. As the acceptor, a known acceptor material for organic EL can be used. Although these specific compounds are illustrated below, this invention is not limited to these materials.
 アクセプター材料としては、Au、Pt、W,Ir、POCl、AsF、Cl、Br、I、酸化バナジウム(V)、および酸化モリブデン(MoO)等の無機材料、TCNQ(7,7,8,8,-テトラシアノキノジメタン)、TCNQF(テトラフルオロテトラシアノキノジメタン)、TCNE(テトラシアノエチレン)、HCNB(ヘキサシアノブタジエン)、およびDDQ(ジシクロジシアノベンゾキノン)等のシアノ基を有する化合物、TNF(トリニトロフルオレノン)、およびDNF(ジニトロフルオレノン)等のニトロ基を有する化合物、ならびに、フルオラニル、クロラニル、およびブロマニル等の有機材料が挙げられる。この内、TCNQ、TCNQF、TCNE、HCNB、およびDDQ等のシアノ基を有する化合物が、キャリア濃度をより効果的に増加させることが可能であるためより好ましい。 Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ), and other inorganic materials, TCNQ (7, 7,8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), and cyano such as DDQ (dicyclodicyanobenzoquinone) Examples thereof include compounds having a group, compounds having a nitro group such as TNF (trinitrofluorenone) and DNF (dinitrofluorenone), and organic materials such as fluoranyl, chloranil and bromanyl. Among these, compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, and DDQ are more preferable because the carrier concentration can be increased more effectively.
 一方、電子注入・電子輸送材料としては、例えば、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、及びベンゾジフラン誘導体等の低分子材料、ならびに、ポリ(オキサジアゾール)(Poly-OXZ)、及びポリスチレン誘導体(PSS)等の高分子材料が挙げられる。特に、電子注入材料としては、フッ化リチウム(LiF)、及びフッ化バリウム(BaF)等のフッ化物、ならびに、酸化リチウム(LiO)等の酸化物等が挙げられる。 On the other hand, as an electron injection / electron transport material, for example, an inorganic material which is an n-type semiconductor, an oxadiazole derivative, a triazole derivative, a thiopyrazine dioxide derivative, a benzoquinone derivative, a naphthoquinone derivative, an anthraquinone derivative, a diphenoquinone derivative, a fluorenone derivative, And low molecular weight materials such as benzodifuran derivatives, and high molecular weight materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS). In particular, examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
 また、陰極からの電子の注入・輸送をより効率よく行う観点から、電子注入層に使用する材料としては、電子輸送層に使用する電子注入輸送材料より最低空分子軌道(LUMO)のエネルギー準位が高い材料を用いることが好ましい。また、電子輸送層に使用する材料としては、電子注入層に使用する電子注入輸送材料より電子の移動度が高い材料を用いることが好ましい。 From the viewpoint of more efficient electron injection and transport from the cathode, the material used for the electron injection layer is the lowest unoccupied molecular orbital (LUMO) energy level than the electron injection transport material used for the electron transport layer. It is preferable to use a material having a high value. In addition, as a material used for the electron transport layer, it is preferable to use a material having higher electron mobility than the electron injection transport material used for the electron injection layer.
 また、電子の注入・輸送性をより向上させるため、上記の電子注入・輸送材料にドナーをドープすることが好ましい。ドナーとしては、有機EL用の公知のドナー材料を用いることができる。ドナー材料について、具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。 Also, in order to further improve the electron injection / transport property, it is preferable to dope the electron injection / transport material with a donor. As the donor, a known donor material for organic EL can be used. Specific examples of the donor material are shown below, but the present invention is not limited to these materials.
 ドナー材料としては、アルカリ金属、アルカリ土類金属、希土類元素、Al、Ag、Cu、及びIn等の無機材料、アニリン類、フェニレンジアミン類、ベンジジン類(N,N,N’,N’-テトラフェニルベンジジン、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン等)、トリフェニルアミン類(トリフェニルアミン、4,4’4''-トリス(N,N-ジフェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-3-メチルフェニル-N-フェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-(1-ナフチル)-N-フェニル-アミノ)-トリフェニルアミン等)、及びトリフェニルジアミン類(N,N’-ジ-(4-メチル-フェニル)-N,N’-ジフェニル-1,4-フェニレンジアミン)等の芳香族3級アミンを骨格にもつ化合物、フェナントレン、ピレン、ペリレン、アントラセン、テトラセン、及びペンタセン等の縮合多環化合物(ただし、縮合多環化合物は置換基を有してもよい)、ならびに、TTF(テトラチアフルバレン)類、ジベンゾフラン、フェノチアジン、及びカルバゾール等の有機材料が挙げられる。よりキャリア濃度を効果的に増加させるためには、上述の化合物のうち、芳香族3級アミンを骨格にもつ化合物、縮合多環化合物、またはアルカリ金属を用いることが好ましい。 Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, and In, anilines, phenylenediamines, and benzidines (N, N, N ′, N′-tetra Phenylbenzidine, N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine, N, N'-di (naphthalen-1-yl) -N, N'-diphenyl -Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ″ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ″ -tris (N-3 -Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4'4 ''-tris (N- (1-naphthyl) -N-phenyl-amino) -triphenylamine, etc.), and triphenyl Compounds having aromatic tertiary amine skeleton such as diamines (N, N'-di- (4-methyl-phenyl) -N, N'-diphenyl-1,4-phenylenediamine), phenanthrene, pyrene, perylene , Anthracene, tetracene, pentacene, and other condensed polycyclic compounds (wherein the condensed polycyclic compound may have a substituent), and organic compounds such as TTF (tetrathiafulvalene) s, dibenzofuran, phenothiazine, and carbazole Materials. In order to increase the carrier concentration more effectively, among the above-mentioned compounds, it is preferable to use a compound having an aromatic tertiary amine as a skeleton, a condensed polycyclic compound, or an alkali metal.
 上述した発光層、正孔輸送層、電子輸送層、正孔注入層及び電子注入層からなる有機EL層3は、以下の方法によって形成することができる。 The organic EL layer 3 composed of the light emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, and the electron injection layer described above can be formed by the following method.
 すなわち、上記の材料を溶剤に溶解、分散させた有機EL層形成用塗液を用いて、スピンコーティング法、ディッピング法、ドクターブレード法、吐出コート法、スプレーコート法等の塗布法、インクジェット法、凸版印刷法、凹版印刷法、スクリーン印刷法、またはマイクログラビアコート法等の印刷法等による公知のウエットプロセスを用いることができる。また、上記の材料を抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、もしくは有機気相蒸着(OVPD)法等の公知のドライプロセス、または、レーザー転写法等を用いることができる。 That is, using an organic EL layer forming coating solution in which the above materials are dissolved and dispersed in a solvent, a spin coating method, a dipping method, a doctor blade method, a discharge coating method, a coating method such as a spray coating method, an inkjet method, A known wet process such as a relief printing method, an intaglio printing method, a screen printing method, or a printing method such as a micro gravure coating method can be used. In addition, known dry processes such as resistance heating vapor deposition, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), sputtering, or organic vapor deposition (OVPD) are used for the above materials, or laser transfer. The law etc. can be used.
 なお、ウエットプロセスによりEL層3を形成する場合には、有機EL層形成用塗液は、レベリング剤又は粘度調整剤等の塗液の物性を調整するための添加剤を含んでいてもよい。 In addition, when forming the EL layer 3 by a wet process, the coating liquid for organic EL layer formation may contain an additive for adjusting the physical properties of the coating liquid, such as a leveling agent or a viscosity modifier.
 ここでは、EL層3が有機EL層であるとして、有機EL材料から構成される場合について説明しているが、本発明はこれに限られない。例えば、EL層3は、他の機能層を含む層として実現されてもよい。また、有機EL層ではなく、無機EL層として無機EL材料から構成されていてもよい。 Here, although the case where the EL layer 3 is made of an organic EL material is described as being an organic EL layer, the present invention is not limited to this. For example, the EL layer 3 may be realized as a layer including other functional layers. Further, instead of the organic EL layer, the inorganic EL layer may be composed of an inorganic EL material.
 <色変換層8>
 色変換層8は、EL層3からの紫外または青色の励起光を吸収し、青色、緑色、または赤色に発光する、青色変換層、赤色変換層、または緑色変換層等から構成されている。また、必要に応じて、色変換層8は、シアンまたはイエローに発光する色変換層であってもよい。
<Color conversion layer 8>
The color conversion layer 8 includes a blue conversion layer, a red conversion layer, a green conversion layer, or the like that absorbs ultraviolet or blue excitation light from the EL layer 3 and emits blue, green, or red light. If necessary, the color conversion layer 8 may be a color conversion layer that emits light of cyan or yellow.
 ここで、各色に対応する複数の発光素子100が画素として表示装置に設けられる場合、シアンまたはイエローに発光する画素のそれぞれの色純度は、色度図上の赤色、緑色、または青色に発光する画素の色純度の点で結ばれる三角形より外側にすることが好ましい。このような表示装置によれば、赤色、緑色、または青色の3原色をそれぞれ発光する画素を使用する表示装置よりも、色再現範囲を更に広げる事が可能となる。 Here, when a plurality of light emitting elements 100 corresponding to the respective colors are provided in the display device as pixels, the color purity of each pixel emitting light of cyan or yellow emits light of red, green, or blue on the chromaticity diagram. It is preferable to be outside the triangle connected by the point of color purity of the pixel. According to such a display device, it is possible to further expand the color reproduction range as compared with a display device that uses pixels that respectively emit the three primary colors of red, green, and blue.
 色変換層8は、以下に例示する蛍光体材料のみから構成されていてもよく、任意に添加剤等を含むように構成されていてもよく、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。 The color conversion layer 8 may be composed of only the phosphor material exemplified below, or may be optionally composed of an additive or the like, and these materials are polymer materials (binding resin). Or the structure disperse | distributed in the inorganic material may be sufficient.
 上記色変換材料としては、公知の色変換材料を用いることができる。このような色変換材料は、有機系蛍光体材料と無機系蛍光体材料に分類され、これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。 A known color conversion material can be used as the color conversion material. Such color conversion materials are classified into organic phosphor materials and inorganic phosphor materials. Specific examples of these compounds are given below, but the present invention is not limited to these materials.
 有機系蛍光体材料としては、紫外の励起光を青色の発光に変換する蛍光色素として、スチルベンゼン系色素:1,4-ビス(2-メチルスチリル)ベンゼン、およびトランス-4,4’-ジフェニルスチルベンゼン、ならびにクマリン系色素:7-ヒドロキシ-4-メチルクマリン等が挙げられる。紫外または青色の励起光を緑色の発光に変換する蛍光色素として、クマリン系色素:2,3,5,6-1H、4H-テトラヒドロ-8-トリフロメチルキノリジン(9,9a、1-gh)クマリン(クマリン153)、3-(2’-ベンゾチアゾリル)―7-ジエチルアミノクマリン(クマリン6)、および、3-(2’-ベンゾイミダゾリル)―7-N,N-ジエチルアミノクマリン(クマリン7)、ならびに、ナフタルイミド系色素:ベーシックイエロー51、ソルベントイエロー11、およびソルベントイエロー116等が挙げられる。紫外または青色の励起光を赤色の発光に変換する蛍光色素として、シアニン系色素:4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチルリル)-4H-ピラン、ピリジン系色素:1-エチル-2-[4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル]-ピリジニウム-パークロレート、ならびにローダミン系色素:ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、ベーシックバイオレット11、およびスルホローダミン101等が挙げられる。 Organic phosphor materials include, as fluorescent dyes that convert ultraviolet excitation light into blue light emission, stilbenzene dyes: 1,4-bis (2-methylstyryl) benzene, and trans-4,4′-diphenyl Examples thereof include stilbenzene and coumarin dyes: 7-hydroxy-4-methylcoumarin. As fluorescent dyes that convert ultraviolet or blue excitation light into green light emission, coumarin dyes: 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) ) Coumarin (coumarin 153), 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), and 3- (2′-benzoimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), and And naphthalimide dyes: basic yellow 51, solvent yellow 11, solvent yellow 116, and the like. As a fluorescent dye that converts ultraviolet or blue excitation light into red light, cyanine dye: 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, pyridine dye: 1 -Ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate and rhodamine dyes: rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11 and sulforhodamine 101 and the like.
 また、無機系蛍光体材料としては、紫外の励起光を青色の発光に変換する蛍光体として、Sr:Sn4+、SrAl1425:Eu2+、BaMgAl1017:Eu2+、SrGa:Ce3+、CaGa:Ce3+、(Ba、Sr)(Mg、Mn)Al1017:Eu2+、(Sr、Ca、Ba2、Mg)10(POCl:Eu2+、BaAlSiO:Eu2+、Sr:Eu2+、Sr(POCl:Eu2+、(Sr、Ca、Ba)(POCl:Eu2+、BaMgAl1627:Eu2+、(Ba,Ca)(POCl:Eu2+、BaMgSi:Eu2+、およびSrMgSi:Eu2+等が挙げられる。紫外または青色の励起光を緑色の発光に変換する蛍光体として、(BaMg)Al1627:Eu2+,Mn2+、SrAl1425:Eu2+、(SrBa)Al12Si:Eu2+、(BaMg)SiO:Eu2+、YSiO:Ce3+,Tb3+、Sr7-Sr:Eu2+、(BaCaMg)(POCl:Eu2+、SrSi-2SrCl:Eu2+、ZrSiO、MgAl1119:Ce3+,Tb3+、BaSiO:Eu2+、SrSiO:Eu2+、および(BaSr)SiO:Eu2+等が挙げられる。紫外または青色の励起光を、赤色の発光に変換する蛍光体としては、YS:Eu3+、YAlO:Eu3+、Ca(SiO:Eu3+、LiY(SiO:Eu3+、YVO:Eu3+、CaS:Eu3+、Gd:Eu3+、GdS:Eu3+、Y(P,V)O:Eu3+、MgGeO5.5F:Mn4+、MgGeO:Mn4+、KEu2.5(WO6.25、NaEu2.5(WO6.25、KEu2.5(MoO6.25、およびNaEu2.5(MoO6.25等が挙げられる。また、上記無機系蛍光体は、必要に応じて表面改質処理を施してもよく、その方法としてはシランカップリング剤等の化学的処理によるものや、サブミクロンオーダーの微粒子等の添加による物理的処理によるもの、更にそれらの併用によるもの等が挙げられる。 In addition, as the inorganic phosphor material, as a phosphor that converts ultraviolet excitation light into blue emission, Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Ce 3+ , (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, Ca, Ba 2 , Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , BaAl 2 SiO 8 : Eu 2+ , Sr 2 P 2 O 7 : Eu 2+ , Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu 2+, BaMg 2 Al 16 O 27: Eu 2+, (Ba, Ca) 5 (PO 4) 3 Cl: Eu 2+, Ba 3 MgSi 2 O 8: Eu 2+, Oyo Sr 3 MgSi 2 O 8: Eu 2+ and the like. As phosphors that convert ultraviolet or blue excitation light into green light emission, (BaMg) Al 16 O 27 : Eu 2+ , Mn 2+ , Sr 4 Al 14 O 25 : Eu 2+ , (SrBa) Al 12 Si 2 O 8 : Eu 2+ , (BaMg) 2 SiO 4 : Eu 2+ , Y 2 SiO 5 : Ce 3+ , Tb 3+ , Sr 2 P 2 O 7 —Sr 2 B 2 O 5 : Eu 2+ , (BaCaMg) 5 (PO 4 ) 3 Cl: Eu 2+ , Sr 2 Si 3 O 8 -2 SrCl 2 : Eu 2+ , Zr 2 SiO 4 , MgAl 11 O 19 : Ce 3+ , Tb 3+ , Ba 2 SiO 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , And (BaSr) SiO 4 : Eu 2+ . As phosphors that convert ultraviolet or blue excitation light into red light emission, Y 2 O 2 S: Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+ , LiY 9 ( SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+ , CaS: Eu 3+ , Gd 2 O 3 : Eu 3+ , Gd 2 O 2 S: Eu 3+ , Y (P, V) O 4 : Eu 3+ , Mg 4 GeO 5.5 F: Mn 4+ , Mg 4 GeO 6 : Mn 4+ , K 5 Eu 2.5 (WO 4 ) 6.25 , Na 5 Eu 2.5 (WO 4 ) 6.25 , K 5 Eu 2.5 (MoO 4 ) 6.25 , Na 5 Eu 2.5 (MoO 4 ) 6.25, and the like. In addition, the inorganic phosphor may be subjected to a surface modification treatment as necessary. As a method thereof, physical treatment by chemical treatment such as a silane coupling agent or addition of fine particles of submicron order, etc. And the like due to the combined treatment thereof.
 なお、励起光による劣化、発光による劣化等の安定性を考慮すると、有機系蛍光体材料よりも無機系蛍光体を使用する方が好ましい。 In consideration of stability such as deterioration due to excitation light and light emission, it is preferable to use an inorganic phosphor rather than an organic phosphor material.
 色変換層8の作製方法については、特に制限はなく、様々な方法を用いることができる。 The method for producing the color conversion layer 8 is not particularly limited, and various methods can be used.
 例えば、ポリマーバインダー中に有機蛍光物質を分散させたのち、この材料を、光学膜厚(nd)が上記式(1)を満たす膜厚になるように製膜することによって、色変換層8が得られる。なお、製膜方法としては、キャスティング法、スピンコート法、凸版印刷法、凹版印刷法、スクリーン印刷法、マイクログラビアコート法等の印刷法、バーコート法、押出し成形法、ロール成形法、プレス法、スプレー法、もしくはロールコート法などのウエットプロセス、抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、もしくは有機気相蒸着(OVPD)法等の公知のドライプロセス、または、レーザー転写法等を用いることができる。また、これらの製膜方法において有機溶媒を用いる場合、該有機溶媒としては、例えばジクロロメタン、1,2-ジクロロエタン、クロロホルム、アセトン、シクロヘキサノン、トルエン、ベンゼン、キシレン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、1,2-ジメトキシエタン、またはジエチレングリコールジメチルエーテルなどを用いることができる。これらの溶媒は、それぞれ単独で用いてもよく、二種以上を混合して用いてもよい。 For example, after the organic fluorescent substance is dispersed in the polymer binder, the material is formed so that the optical film thickness (nd) satisfies the above formula (1), whereby the color conversion layer 8 is formed. can get. The film forming method includes a casting method, a spin coating method, a relief printing method, an intaglio printing method, a screen printing method, a printing method such as a micro gravure coating method, a bar coating method, an extrusion molding method, a roll molding method, and a pressing method. Well-known processes such as wet processes such as spraying or roll coating, resistance heating vapor deposition, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), sputtering, or organic vapor deposition (OVPD) A dry process, a laser transfer method, or the like can be used. When an organic solvent is used in these film forming methods, examples of the organic solvent include dichloromethane, 1,2-dichloroethane, chloroform, acetone, cyclohexanone, toluene, benzene, xylene, N, N-dimethylformamide, dimethyl sulfoxide. 1,2-dimethoxyethane, diethylene glycol dimethyl ether, or the like can be used. These solvents may be used alone or in combination of two or more.
 また、色変換層8の製膜に際し、上記高分子樹脂として感光性の樹脂を用いることにより、フォトリソグラフィー法によってパターン化することが可能となる。ここで、上記感光性樹脂としては、アクリル酸系樹脂、メタクリル酸系樹脂、ポリ桂皮酸ビニル系樹脂、もしくは硬ゴム系樹脂等の反応性ビニル基を有する感光性樹脂(光硬化型レジスト材料)の一種類または複数種類の混合物を用いる事が可能である。 Further, when the color conversion layer 8 is formed, by using a photosensitive resin as the polymer resin, patterning can be performed by a photolithography method. Here, as the photosensitive resin, a photosensitive resin having a reactive vinyl group such as acrylic acid resin, methacrylic acid resin, polyvinyl cinnamate resin, or hard rubber resin (photo-curable resist material). It is possible to use one kind or a mixture of several kinds.
 なお、色変換層8のパターン化については、インクジェット法、凸版印刷法、凹版印刷法、もしくはスクリーン印刷法等のウエットプロセス、シャドーマスクを用いた抵抗加熱蒸着法、電子線(EB)蒸着法、分子線エピタキシー(MBE)法、スパッタリング法、もしくは有機気相蒸着(OVPD)法等の公知のドライプロセス、または、レーザー転写法等によって蛍光体材料をダイレクトにパターニングすることも可能である。 The patterning of the color conversion layer 8 includes a wet process such as an inkjet method, a relief printing method, an intaglio printing method, or a screen printing method, a resistance heating vapor deposition method using a shadow mask, an electron beam (EB) vapor deposition method, It is also possible to directly pattern the phosphor material by a known dry process such as a molecular beam epitaxy (MBE) method, a sputtering method, an organic vapor deposition (OVPD) method, or a laser transfer method.
 <その他部材>
 無機封止膜5は、第2光反射性電極4上に形成される。無機封止膜5を設けることによって、外部からEL部11内へ酸素や水分が混入することを防止することができ、発光素子100の寿命を向上することができる。
<Other parts>
The inorganic sealing film 5 is formed on the second light reflective electrode 4. By providing the inorganic sealing film 5, it is possible to prevent oxygen and moisture from being mixed into the EL portion 11 from the outside, and the life of the light emitting element 100 can be improved.
 樹脂層6は、EL素子基板40と蛍光体基板50とを張り合わせるために樹脂であり、例えば熱硬化樹脂を用いることができる。 The resin layer 6 is a resin for bonding the EL element substrate 40 and the phosphor substrate 50 together. For example, a thermosetting resin can be used.
 なお、無機封止膜5および樹脂層6は、公知の材料及び方法により形成することができるが、本実施形態では光透過性の材料を使用する必要がある。 In addition, although the inorganic sealing film 5 and the resin layer 6 can be formed by a well-known material and method, in this embodiment, it is necessary to use a light transmissive material.
 (微小共振器構造)
 本発明においては、一対の光反射性電極(第1光反射性電極2および第2光反射性電極4)、ならびに、一対の光反射層(第1光反射層7および第2光反射層9)が、それぞれ微小共振器構造を成すように構成される。
(Microresonator structure)
In the present invention, a pair of light reflective electrodes (first light reflective electrode 2 and second light reflective electrode 4) and a pair of light reflective layers (first light reflective layer 7 and second light reflective layer 9). ) Are each configured to form a microresonator structure.
 このため、第1光反射性電極2および第2光反射性電極4では、それぞれの反射性界面の間における光学膜厚(光学距離)を、EL層3より放出された光のうち特定波長の光(励起光)の強度が増強するように設定される。一方、第1光反射層7および第2光反射層9では、それぞれの反射性界面の間における光学膜厚(光学距離)を、色変換層8より放出された光のうち特定波長の光(所望の色調の光)の強度が増強するように設定される。 For this reason, in the 1st light reflective electrode 2 and the 2nd light reflective electrode 4, the optical film thickness (optical distance) between each reflective interface is made into the specific wavelength among the lights emitted from the EL layer 3. The intensity of light (excitation light) is set to be increased. On the other hand, in the first light reflecting layer 7 and the second light reflecting layer 9, the optical film thickness (optical distance) between the respective reflective interfaces is set to a light having a specific wavelength among the light emitted from the color conversion layer 8 ( The intensity of light having a desired color tone is set to be increased.
 すなわち、上記反射性界面間の光学膜厚(nd)は、以下の式(1)
(nd)×4π/λ+φ=2mπ ・・・式(1)
の関係を満たすように設定される。上記式(1)において、λは増強したい光の波長を示す。φは二つの反射性界面で生じる反射によって与えられる位相変化の和を示す。例えば一つの反射性界面が金属によって与えられるときは、φにはπだけ寄与することが知られている。mは1~10の整数である。
That is, the optical film thickness (nd) between the reflective interfaces is expressed by the following formula (1).
(Nd) × 4π / λ + φ = 2mπ (1)
Is set to satisfy the relationship. In the above formula (1), λ represents the wavelength of light to be enhanced. φ represents the sum of phase changes given by reflections occurring at the two reflective interfaces. For example, it is known that when a reflective interface is provided by a metal, it contributes to π by π. m is an integer of 1 to 10.
 上記のようにEL素子基板40と蛍光体基板50の各々で微小共振器構造を構成することによって、励起光源となるEL層3から色変換層8への光の伝搬のロスを最小限にし、かつ、色変換層8からの発光の取り出し効率を向上させることができる。これによって、発光素子100の発光効率を向上(正面方向への輝度を向上)させることが可能となる。 By configuring the microresonator structure with each of the EL element substrate 40 and the phosphor substrate 50 as described above, the loss of light propagation from the EL layer 3 serving as the excitation light source to the color conversion layer 8 is minimized, In addition, the extraction efficiency of light emission from the color conversion layer 8 can be improved. As a result, the light emission efficiency of the light emitting element 100 can be improved (the luminance in the front direction can be improved).
 (EL部11の他の構成例)
 なお、上述の実施形態では、EL部11が有機ELであるとして説明したが、本発明はこれに限定されず、無機ELであってもよい。この場合の構成例について以下に説明する。
(Other configuration examples of the EL unit 11)
In the above-described embodiment, the EL unit 11 has been described as an organic EL, but the present invention is not limited to this and may be an inorganic EL. A configuration example in this case will be described below.
 無機ELであるEL部11は、紫外発光無機ELまたは青色発光無機ELとして構成される。この場合、第1光反射性電極2および第2光反射性電極4は、上述の実施形態にて例示した構成のうち、誘電体膜を含む構成を用いることができる。 The EL unit 11 which is an inorganic EL is configured as an ultraviolet light emitting inorganic EL or a blue light emitting inorganic EL. In this case, the 1st light reflective electrode 2 and the 2nd light reflective electrode 4 can use the structure containing a dielectric film among the structures illustrated in the above-mentioned embodiment.
 ここで、誘電体膜としては、無機EL用の公知の誘電体材料を用いることができる。このような誘電体材料としては、例えば、五酸化タンタル(Ta)、酸化珪素(SiO)、窒化珪素(Si)、酸化アルミニウム(Al)、チタン酸アルミニウム(AlTiO)チタン酸バリウム(BaTiO)およびチタン酸ストロンチウム(SrTiO)等が挙げられるが、本発明はこれらに限定されるものではない。また、誘電体膜は、上記の誘電体材料のうちから選んだ1種類から構成されてもよいし、2種類以上の材料を積層した構成でもあってもよい。 Here, a known dielectric material for inorganic EL can be used as the dielectric film. Examples of such a dielectric material include tantalum pentoxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), aluminum titanate ( Examples include AlTiO 3 ) barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ), but the present invention is not limited thereto. The dielectric film may be composed of one type selected from the above dielectric materials, or may be a configuration in which two or more types of materials are laminated.
 また、EL層3は、無機ELの発光層として、無機EL用の公知の発光材料を用いることができる。このような発光材料としては、例えば、紫外発光材料としては、ZnF:Gd、青色発光材料としては、BaAl:Eu、CaAl:Eu、ZnAl:Eu、BaSiS:Ce、ZnS:Tm、SrS:Ce、SrS:Cu、CaS:Pb、(Ba、Mg)Al:Eu等が挙げられるが、本発明はこれらに限定されるものではない。 Moreover, the EL layer 3 can use the well-known luminescent material for inorganic EL as a light emitting layer of inorganic EL. As such a light emitting material, for example, ZnF 2 : Gd as an ultraviolet light emitting material, and BaAl 2 S 4 : Eu, CaAl 2 S 4 : Eu, ZnAl 2 S 4 : Eu, Ba 2 as a blue light emitting material. Examples include SiS 4 : Ce, ZnS: Tm, SrS: Ce, SrS: Cu, CaS: Pb, (Ba, Mg) Al 2 S 4 : Eu, but the present invention is not limited thereto.
 (発光素子100の変形例)
 本実施形態に係る発光素子100は、光散乱層12が設けられた構成であってもよい。本変形例について図3を参照して以下に説明する。図3は、光散乱層12が設けられた発光素子110を示す断面図である。
(Modification of Light-Emitting Element 100)
The light emitting element 100 according to the present embodiment may have a configuration in which the light scattering layer 12 is provided. This modification will be described below with reference to FIG. FIG. 3 is a cross-sectional view showing the light emitting element 110 provided with the light scattering layer 12.
 光散乱層12は、色変換層8から放出された指向性の高い光を等方向に散乱させるためのものである。光散乱層12は、基板10の片面上に設けられることが好ましい。ただし本発明はこれに限られず、光散乱層12は、発光素子100の発光面と平行するように、色変換層8の変換光の光取り出し面側よりも外側に形成されていればよく、例えば、基板10から離れた状態で配置されてもよい。 The light scattering layer 12 is for scattering light with high directivity emitted from the color conversion layer 8 in the same direction. The light scattering layer 12 is preferably provided on one side of the substrate 10. However, the present invention is not limited to this, and the light scattering layer 12 may be formed outside the light extraction surface side of the converted light of the color conversion layer 8 so as to be parallel to the light emitting surface of the light emitting element 100. For example, it may be arranged in a state separated from the substrate 10.
 光散乱層12の具体例としては、下記(1)~(8)のものが挙げられる。 Specific examples of the light scattering layer 12 include the following (1) to (8).
 (1)レンズシートからなるもの
 レンズシートとは同心円状、互いに平行な複数本の線状、または格子状等に配列または形成された複数のレンズ、プリズム、またはV字溝等によって、直進する光の方向を変化させる薄型板状透明物質を意味する。このレンズシートの具体例としては、レンティキュラーレンズシート、フレネルレンズシート、ハエの目レンズシート、猫の目レンズシート、二重ハエの目レンズシート、二重レンティキュラーレンズシート、放射状レンティキュラーレンズシート、プリズムレンズフィルム、およびマイクロプリズムレンズフィルム等や、これらのレンズシートの凸面を凹面に変えてなるレンズシート、ならびに透明球または半透明球を面状に並べたもの等が挙げられる。また、V字溝等の溝を彫ることによって光の方向を変化させたものでもよい。レンズシートの材質はガラスであってもよいし、樹脂であってもよい。上記樹脂の具体例としては、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリメタクリレート、ポリアクリレート、およびポリスチレン等が挙げられる。
(1) Consisting of a lens sheet A lens sheet is light that travels straight by a plurality of lenses, prisms, V-grooves, or the like arranged or formed concentrically, in a plurality of parallel lines, or in a lattice pattern. It means a thin plate-like transparent material that changes the direction of the. Specific examples of this lens sheet include a lenticular lens sheet, a Fresnel lens sheet, a fly-eye lens sheet, a cat-eye lens sheet, a double fly-eye lens sheet, a double lenticular lens sheet, and a radial lenticular lens sheet. And prism lens films, micro prism lens films, and the like, lens sheets obtained by changing the convex surfaces of these lens sheets to concave surfaces, and transparent spheres or semi-transparent spheres arranged in a planar shape. Alternatively, the direction of light may be changed by carving a groove such as a V-shaped groove. The lens sheet may be made of glass or resin. Specific examples of the resin include polyethylene terephthalate, polycarbonate, polyethersulfone, polyarylate, polymethacrylate, polyacrylate, and polystyrene.
 (2)片面が艶消し処理されたガラス板またはポリマー板からなるもの
 この場合、光散乱層12は、基板10の片面に設けられてもよいが、この光散乱層12自体が基板10を兼ねてもよい。光散乱層12自体を基板10として兼用する場合には、その厚さは0.05~5mm程度であることが好ましい。
(2) A glass plate or a polymer plate whose one side is matted In this case, the light scattering layer 12 may be provided on one side of the substrate 10, but the light scattering layer 12 itself also serves as the substrate 10. May be. When the light scattering layer 12 itself is also used as the substrate 10, the thickness is preferably about 0.05 to 5 mm.
 このような光散乱層12を基板10の片面に設けるにあたっては、例えばエポキシ系接着剤、アクリル系接着剤、光硬化性樹脂、熱硬化性樹脂、熱可塑性接着剤(ビニル樹脂系接着剤等)、またはイソシアン酸エステル系樹脂等のバインダーを用いて、光散乱層12となるガラス板またはポリマー板を基板10の所望面上に固着させる。 In providing such a light scattering layer 12 on one side of the substrate 10, for example, an epoxy adhesive, an acrylic adhesive, a photocurable resin, a thermosetting resin, a thermoplastic adhesive (vinyl resin adhesive, etc.) Alternatively, a glass plate or a polymer plate to be the light scattering layer 12 is fixed on a desired surface of the substrate 10 using a binder such as an isocyanate ester resin.
 (3)透明基板の内部に当該透明基板と屈折率が異なる透明物質または不透明粒子を分散させてなるもの
 この場合、光散乱層12自体が基板10を兼ねることが好ましい。
(3) A transparent substrate or opaque particles having a refractive index different from that of the transparent substrate is dispersed inside the transparent substrate. In this case, it is preferable that the light scattering layer 12 itself also serves as the substrate 10.
 上記透明基板の材質はガラスであってもよいし、ポリマーであってもよい。また、上記透明物質の具体例としては、気泡、ガラスファイバー、SiO2粒子、ガラスビーズ、および透明プラスティック粒子等が挙げられる。上記不透明粒子の具体例としては、カーボン、酸化スズ、硫酸バリウム、炭化チタン、窒化チタン、酸化チタン、または不透明プラスチック等からなる粒子や、帯電防止材料として使用される粉末(酸化亜鉛や硫化亜鉛を酸化スズで被覆した粉末等)が挙げられる。これらの透明物質および不透明粒子は、ガラスファイバーを除いて、粒径が0.1μm~数10μmのものであることが好ましい。ガラスファイバーは、繊維径が0.1~1000μm程度、繊維長が0.1~10mm程度のものであることが好ましい。これらの透明物質および不透明粒子はそれぞれ単独で使用されていてもよいし、併用されていてもよい。 The material of the transparent substrate may be glass or polymer. Specific examples of the transparent substance include bubbles, glass fibers, SiO2 particles, glass beads, and transparent plastic particles. Specific examples of the opaque particles include particles made of carbon, tin oxide, barium sulfate, titanium carbide, titanium nitride, titanium oxide, or opaque plastic, and powders used as antistatic materials (such as zinc oxide and zinc sulfide). A powder coated with tin oxide). These transparent materials and opaque particles preferably have a particle size of 0.1 μm to several tens of μm, excluding glass fibers. The glass fiber preferably has a fiber diameter of about 0.1 to 1000 μm and a fiber length of about 0.1 to 10 mm. These transparent substances and opaque particles may be used alone or in combination.
 さらに、上記透明基板の内部に分散させる物質として、ジオキサジン系、アントラキノン系、またはフタロシアニン系等の色素粉末や、スチルベン系、ベンゾイミダゾール系、またはベンジジン系等の蛍光色素粉末を単独で、または前記の透明物質および/または不透明粒子と併用して用いてもよい。 Furthermore, as a substance to be dispersed inside the transparent substrate, a dye powder such as dioxazine, anthraquinone, or phthalocyanine, and a fluorescent dye powder such as stilbene, benzimidazole, or benzidine are used alone or You may use together with a transparent substance and / or an opaque particle.
 (4)一平面上に分散または凝集した状態で配置された透明物質または不透明粒子からなるもの
 ここで用いる透明物質および不透明粒子の具体例としては、気泡を除いて上記(3)で例示したものと同じものが挙げられる。なお、透明物質を用いる場合、当該透明物質としては、基板10の屈折率と異なる屈折率を有するものを選択することが好ましい。
(4) Consisting of transparent substance or opaque particles arranged in a dispersed or aggregated state on one plane Specific examples of the transparent substance and opaque particles used here are those exemplified in the above (3) except for bubbles. The same thing is mentioned. When a transparent material is used, it is preferable to select a material having a refractive index different from that of the substrate 10 as the transparent material.
 このような光散乱層12を基板10の片面に設けるにあたっては、例えば前記(2)で例示したバインダーを用いて、透明物質の所望量または不透明粒子の所望量を基板10の所望面上に固着させる。 When such a light scattering layer 12 is provided on one side of the substrate 10, for example, the desired amount of transparent substance or the desired amount of opaque particles is fixed on the desired surface of the substrate 10 using the binder exemplified in the above (2). Let
 (5)一平面上に班点状に付着した金属からなるもの
 この場合、光散乱層12としての金属は、基板10の片面(内側面または外側面)に付着してもよい。
(5) What consists of a metal adhering to a flat surface on one plane In this case, the metal as the light-scattering layer 12 may adhere to the single side | surface (inner side surface or outer surface) of the board | substrate 10. FIG.
 班点状に付着した金属の形成は、所定の金属を蒸発源として使用した真空蒸着法、もしくは所定の金属をターゲットとして用いたスパッタリング法、または、印刷法、塗布法、もしくは散布法等により行うことができる。このとき、班点状の金属の膜厚は、概ね0.01~500μmであることが好ましい。斑点状に付着した金属の1つの大きさ(平面視上の面積)は1~10000μmであることが好ましが、1mm以上のものが含まれていてもよい。また、光散乱層12が設けられる面に対して、班点状に付着した金属による被覆率は5~90%であることが好ましい。 Formation of the metal adhering in the form of dots is performed by a vacuum deposition method using a predetermined metal as an evaporation source, a sputtering method using a predetermined metal as a target, a printing method, a coating method, or a spraying method. be able to. At this time, the film thickness of the dot-like metal is preferably about 0.01 to 500 μm. The size (area in plan view) of the metal adhering to the spot shape is preferably 1 to 10000 μm 2 , but a metal having a size of 1 mm 2 or more may be included. Further, the coverage with the metal adhering in the form of dots on the surface on which the light scattering layer 12 is provided is preferably 5 to 90%.
 上記金属の具体例としては金、白金、ニッケル、クロムおよびアルミニウムが挙げられる。 Specific examples of the metal include gold, platinum, nickel, chromium and aluminum.
 (6)非金属性繊維製の織物、編み物もしくは不織布または当該非金属性繊維の配列物からなるもの
 上記非金属性繊維の具体例としては、絹、麻、および木綿等の天然繊維、ならびに、人絹、ナイロン繊維、ポリエステル繊維、ポリプロピレン繊維、およびガラスファイバー等の化学繊維が挙げられ、その太さは0.1μm~1mmであることが好ましい。また、非金属性繊維からなる配列物とは、前記の非金属性繊維を放射状、縞状、ジグザグ状、葛折状、格子状、網の目状、螺旋状、同心円状、幾何学模様状、または不定形に配置したものを意味し、使用されている繊維の本数は1本でも複数本でもよい。
(6) Non-metallic fiber woven fabric, knitted fabric or non-woven fabric or an array of the non-metallic fibers Specific examples of the non-metallic fibers include natural fibers such as silk, hemp and cotton, and Examples thereof include chemical fibers such as human silk, nylon fibers, polyester fibers, polypropylene fibers, and glass fibers, and the thickness is preferably 0.1 μm to 1 mm. Further, the array of non-metallic fibers means that the non-metallic fibers are radial, striped, zigzag, twisted, latticed, mesh-like, spiral, concentric, geometric pattern Or an irregularly arranged fiber, and the number of fibers used may be one or more.
 (7)一平面上に非金属製の細線によって描画されるか、または細い溝によって描画された模様からなもの
 この場合、光散乱層12としての上記模様は、基板10等の平面上に描画されることができる。
(7) A pattern drawn by a non-metallic thin line on one plane or a pattern drawn by a thin groove. In this case, the pattern as the light scattering layer 12 is drawn on a plane of the substrate 10 or the like. Can be done.
 上記非金属製の細線の具体例としては、印刷インキ、複写インキ、カーボンインキ、絵具、油脂、および透明合成樹脂等、ならびに、これらのものに白、黒、赤、青、または緑等の色素(蛍光色素を含む)または顔料を添加したもの等からなる線幅10~2000μmのものが挙げられる。細線の色は特に限定されるものではなく、透明、無彩色(半透明を含む)、または有彩色(半透明を含む)等、所望の色を適宜選択する。この細線によって描画された模様の具体例としては、放射状、縞状、ジグザグ状、葛折状、格子状、網の目状、螺旋状、同心円状、幾何学模様状、および不定形が挙げられる。光散乱層12として非金属製の透明な細線によって描画された模様を用いる場合、当該透明な細線の屈折率は基板10の屈折率と異なっていることが好ましい。 Specific examples of the non-metallic thin wire include printing ink, copying ink, carbon ink, paint, oil and fat, transparent synthetic resin, and the like, and pigments such as white, black, red, blue, or green. Examples include those having a line width of 10 to 2000 μm (including fluorescent dyes) or pigments added. The color of the thin line is not particularly limited, and a desired color such as transparent, achromatic color (including translucent), or chromatic color (including translucent) is appropriately selected. Specific examples of the pattern drawn by the fine lines include radial, striped, zigzag, distorted, lattice, mesh, spiral, concentric, geometric pattern, and indefinite shape. . When using a pattern drawn with a non-metallic transparent fine line as the light scattering layer 12, the refractive index of the transparent fine line is preferably different from the refractive index of the substrate 10.
 また、上記の細い溝の具体例としては、垂直断面がV字状またはU字状等を呈する深さ0.1~100μm程度の溝であり、幅(深さ方向で最も幅広の部分での値)が0.1~500μm程度のものが挙げられる。 Further, as a specific example of the above-mentioned narrow groove, it is a groove having a depth of about 0.1 to 100 μm whose vertical cross section is V-shaped or U-shaped, and has a width (at the widest portion in the depth direction). Value) of about 0.1 to 500 μm.
 (8)半透明物質層または半透明フィルムからなるもの
 上記半透明物質層とは、可視光の透過率が10~99%である固体、液体、または固溶体からなる層を意味し、その材質の具体例としては、パラフィン(蝋)、デンプン糊、グリース、シリコーングリース、染料溶液、顔料分散液、金コロイド溶液、およびセッケン水等が挙げられる。半透明物質層の厚さはその材料によって異なるが、概ね5~1000μmである。
(8) Consisting of a translucent material layer or a translucent film The translucent material layer means a layer made of a solid, liquid, or solid solution having a visible light transmittance of 10 to 99%. Specific examples include paraffin (wax), starch paste, grease, silicone grease, dye solution, pigment dispersion, gold colloid solution, soapy water and the like. The thickness of the translucent substance layer varies depending on the material, but is generally 5 to 1000 μm.
 また、上記の半透明フィルムとは可視光の透過率が10~90%である層を意味し、その材質の具体例としては、パラフィン紙、パラフィルム(パラフィンフィルム)、エンボス加工を施した透明ポリマーフィルムを複数枚重ねたもの(透明ポリマーフィルムの材質はポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリメタクリレート、ポリアクリレート等)、結晶性ポリマー(結晶性ポリプロピレン、ナイロン、ポリスチレン、セルロース、ポリビニルアルコール等)のフィルム、和紙、洋紙、セロファン、およびゴム膜等が挙げられる。 The translucent film means a layer having a visible light transmittance of 10 to 90%. Specific examples of the material include paraffin paper, parafilm (paraffin film), embossed transparent Multiple polymer films (transparent polymer film materials are polyethylene terephthalate, polycarbonate, polyethersulfone, polyarylate, polymethacrylate, polyacrylate, etc.), crystalline polymers (crystalline polypropylene, nylon, polystyrene, cellulose, polyvinyl) Alcohol film), Japanese paper, western paper, cellophane, rubber film, and the like.
 以上のいずれかの構成の光散乱層12を発光素子100に設けることによって、色変換層8から放射される指向性の強い光を、等方向に放射することが可能になる。 By providing the light-scattering layer 12 having any one of the above configurations in the light-emitting element 100, it becomes possible to emit light with strong directivity emitted from the color conversion layer 8 in the same direction.
 〔実施形態2〕
 本実施形態では、上述した発光素子100を用いた表示装置200について、図4を参照して以下に説明する。図4は、本実施形態に係る表示装置200を概略的に示す断面図である。
[Embodiment 2]
In the present embodiment, a display device 200 using the above-described light emitting element 100 will be described below with reference to FIG. FIG. 4 is a cross-sectional view schematically showing the display device 200 according to the present embodiment.
 なお、実施形態1における構成要素と対応する機能を有する構成要素には、同一符号を用いることとする。 In addition, the same code | symbol shall be used for the component which has a function corresponding to the component in Embodiment 1. FIG.
 本実施形態に係る表示装置200には、赤色画素21、緑色画素22、および青色画素23がアレイ状に配列されている。赤色画素21および緑色画素22は、それぞれ上述した発光素子100の構成を備えている。 In the display device 200 according to this embodiment, red pixels 21, green pixels 22, and blue pixels 23 are arranged in an array. Each of the red pixel 21 and the green pixel 22 has the configuration of the light emitting element 100 described above.
 例えば、赤色画素21では、第1光反射性電極2および第2光反射性電極4が、赤色の色変換層8aを挟持し、赤色光の波長を増強する微小共振器構造を構成している。また、緑色画素22では、第1光反射性電極2および第2光反射性電極4が、緑色の色変換層8bを挟持し、緑色光の波長を増強する微小共振器構造を構成している。 For example, in the red pixel 21, the first light reflective electrode 2 and the second light reflective electrode 4 constitute a microresonator structure that sandwiches the red color conversion layer 8a and enhances the wavelength of red light. . In the green pixel 22, the first light reflective electrode 2 and the second light reflective electrode 4 constitute a microresonator structure that sandwiches the green color conversion layer 8b and enhances the wavelength of green light. .
 一方、青色画素23は、EL部11に関しては上述した発光素子100の構成と同様の構成を備えるが、色変換層8と色変換層8に対する微小共振器構造とを備えていない。なお、EL部11は有機ELであり、青色領域で指向性を有する発光を行う。 On the other hand, the blue pixel 23 has a configuration similar to the configuration of the light emitting element 100 described above with respect to the EL unit 11, but does not include the color conversion layer 8 and the microresonator structure for the color conversion layer 8. The EL unit 11 is an organic EL and emits light having directivity in the blue region.
 上記構成によれば、赤色画素21および緑色画素22において、励起光源となるEL層3から色変換層8への光の伝搬のロスを最小限にし、かつ、色変換層8層からの変換光の取り出し効率を向上させることができる。また、青色画素23では、EL層3から発光した青色光について、取り出し効率を向上させることができる。したがって、表示装置200について、各画素における視認性や発光強度のバランスを向上し、さらに、その発光効率を向上させる事が可能となる。 According to the above configuration, in the red pixel 21 and the green pixel 22, the loss of light propagation from the EL layer 3 serving as the excitation light source to the color conversion layer 8 is minimized, and the converted light from the color conversion layer 8 layer The taking-out efficiency can be improved. In the blue pixel 23, the extraction efficiency of the blue light emitted from the EL layer 3 can be improved. Therefore, the display device 200 can improve the balance of visibility and light emission intensity in each pixel, and further improve the light emission efficiency.
 また、本実施形態に係る表示装置200は、アクティブ駆動型の表示装置として実現される。このため、EL部11を直接外部回路に接続して駆動してもよい。あるいは、TFT等のスイッチング回路(アクティブ素子)を各画素21~23内に配置し、TFT等が接続される配線に、駆動のための外部駆動回路(走査線電極回路(ソースドライバ)、データ信号電極回路(ゲートドライバ)、電源回路)を電気的に接続してもよい。 The display device 200 according to the present embodiment is realized as an active drive type display device. For this reason, the EL unit 11 may be driven by being directly connected to an external circuit. Alternatively, a switching circuit (active element) such as a TFT is arranged in each of the pixels 21 to 23, and an external driving circuit (scanning line electrode circuit (source driver), data signal) is connected to a wiring to which the TFT or the like is connected. An electrode circuit (gate driver) and a power supply circuit) may be electrically connected.
 本実施形態にて用いられるTFTは、公知の材料、構造、及び形成方法を用いて形成することができる。例えば、TFTの活性層の材料としては、非晶質シリコン(アモルファスシリコン)、多結晶シリコン(ポリシリコン)、微結晶シリコン、セレン化カドミウム等の無機半導体材料、酸化亜鉛、酸化インジウム-酸化ガリウム-酸化亜鉛等の酸化物半導体材料又は、ポリチオフェン誘導体、チオフエンオリゴマー、ポリ(p-フェリレンビニレン)誘導体、ナフタセン、ペンタセン等の有機半導体材料が挙げられる。TFTの構造としては、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型が挙げられる。また、TFTを形成する基板1としては、ガラス基板、より好ましくは、金属基板、プラスティック基板、更に好ましくは、金属基板、またはプラスティック基板を用いることができる。絶縁材料がコートされた基板1上において、複数の走査信号線、データ信号線、及び、走査信号線と、データ信号線との交差部にTFTが配置される。 The TFT used in this embodiment can be formed using a known material, structure, and formation method. For example, TFT active layer materials include amorphous silicon (amorphous silicon), polycrystalline silicon (polysilicon), microcrystalline silicon, inorganic semiconductor materials such as cadmium selenide, zinc oxide, indium oxide-gallium oxide- An oxide semiconductor material such as zinc oxide, or an organic semiconductor material such as a polythiophene derivative, a thiophene oligomer, a poly (p-ferylene vinylene) derivative, naphthacene, or pentacene can be given. Examples of the TFT structure include a staggered type, an inverted staggered type, a top gate type, and a coplanar type. Further, as the substrate 1 on which the TFT is formed, a glass substrate, more preferably a metal substrate, a plastic substrate, more preferably a metal substrate, or a plastic substrate can be used. On the substrate 1 coated with an insulating material, a plurality of scanning signal lines, data signal lines, and TFTs are arranged at intersections of the scanning signal lines and the data signal lines.
 なお、本発明では、TFTの代わりに金属-絶縁体-金属(MIM)ダイオードを用いることもできる。 In the present invention, a metal-insulator-metal (MIM) diode can be used instead of the TFT.
 また、本実施形態に係る表示装置200では、EL部11が電圧駆動デジタル階調方式により駆動されてもよい。 Further, in the display device 200 according to the present embodiment, the EL unit 11 may be driven by a voltage-driven digital gradation method.
 この場合、画素21~23毎にスイッチング用及び駆動用の2つのTFTが配置され、駆動用のTFTとEL素子の第一電極とが平坦化層に形成されるコンタクトホールを介して電気的に接続される。また、各画素21~23には駆動用のTFTのゲート電位を定電位にするためのコンデンサーが、駆動用のTFTのゲート部分に接続されるように配置される。また、TFT上には、平坦化層が形成される。 In this case, two switching and driving TFTs are arranged for each of the pixels 21 to 23, and the driving TFT and the first electrode of the EL element are electrically connected via a contact hole formed in the planarization layer. Connected. In each of the pixels 21 to 23, a capacitor for setting the gate potential of the driving TFT to a constant potential is disposed so as to be connected to the gate portion of the driving TFT. Further, a planarization layer is formed on the TFT.
 なお、表示装置200におけるEL部11の駆動方式は、上述の電圧駆動デジタル階調方式に限定されず、例えば電流駆動アナログ階調方式であってもよい。また、TFTの数も、特に限定されるものではなく、TFTの特性(移動度、閾値電圧)バラツキを防止する目的で各画素21~23内に補償回路を内蔵し、2個以上のTFTを用いてEL部11を駆動してもよい。 Note that the driving method of the EL unit 11 in the display device 200 is not limited to the voltage-driven digital gradation method described above, and may be, for example, a current-driven analog gradation method. Further, the number of TFTs is not particularly limited, and a compensation circuit is built in each of the pixels 21 to 23 for the purpose of preventing variations in TFT characteristics (mobility, threshold voltage), so that two or more TFTs are provided. The EL unit 11 may be driven by using it.
 (表示装置200の製造方法)
 発光素子100は例えば以下のように製造することができる。
(Method for manufacturing display device 200)
The light emitting element 100 can be manufactured as follows, for example.
 まず、基板1上にEL部11を形成し、無機封止膜5によって封止することによって、EL素子基板40を作製する。また、別の基板10上に、一対の第1光反射層7、9と、各画素21、22に対応する赤色および緑色の色変換層8とを作製することによって、蛍光体基板50を作製する。最後に、EL素子基板40と蛍光体基板50とを、貼り合わせ用の樹脂(樹脂層6)を間に挟んで貼り合わせる。 First, the EL portion 11 is formed on the substrate 1 and sealed with the inorganic sealing film 5, thereby manufacturing the EL element substrate 40. Further, the phosphor substrate 50 is manufactured by manufacturing the pair of first light reflection layers 7 and 9 and the red and green color conversion layers 8 corresponding to the respective pixels 21 and 22 on another substrate 10. To do. Finally, the EL element substrate 40 and the phosphor substrate 50 are bonded together with a bonding resin (resin layer 6) interposed therebetween.
 上記製造方法によれば、各画素21、22に対応する色変換層を通常のフォトリソグラフティ等のウエットプロセスで形成することが可能となるため、コストの上昇を抑制することが可能になる。 According to the above manufacturing method, the color conversion layer corresponding to each of the pixels 21 and 22 can be formed by a normal wet process such as photolithography, so that an increase in cost can be suppressed.
 (表示装置200の変形例)
 本実施形態に係る表示装置200は、色変換層8とEL部11との間に液晶素子が設けられた構成であってもよい。
(Modification of display device 200)
The display device 200 according to the present embodiment may have a configuration in which a liquid crystal element is provided between the color conversion layer 8 and the EL unit 11.
 上記液晶素子は、EL部11らの発光を選択的に透過させる光シャッターとしての機能を有する。 The liquid crystal element has a function as an optical shutter that selectively transmits light emitted from the EL unit 11 and the like.
 上記液晶素子は、公知の液晶素子を用いることが可能であり、例えば、液晶セルおよび当該液晶セルを挟持する一対の偏向板により構成される。上記液晶セルは、2枚の電極基板と、当該2枚の電極基板の間に担持された液晶とを有している。また、上記液晶素子において、液晶セルと一方の偏光板との間に光学異方性層が1枚配置されてもよいし、あるいは、液晶セルと双方の偏光板との間に光学異方性層が1枚ずつ配置されてもよい。上記液晶セルの種類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、TNモード、VAモード、OCBモード、IPSモード、およびECBモードなどが挙げられる。 As the liquid crystal element, a known liquid crystal element can be used. For example, the liquid crystal element includes a liquid crystal cell and a pair of deflecting plates that sandwich the liquid crystal cell. The liquid crystal cell has two electrode substrates and a liquid crystal supported between the two electrode substrates. In the liquid crystal element, one optically anisotropic layer may be disposed between the liquid crystal cell and one polarizing plate, or the optical anisotropy is provided between the liquid crystal cell and both polarizing plates. The layers may be arranged one by one. There is no restriction | limiting in particular as a kind of said liquid crystal cell, According to the objective, it can select suitably, For example, TN mode, VA mode, OCB mode, IPS mode, ECB mode etc. are mentioned.
 また、上記液晶素子は、パッシブ駆動でも良いし、TFT等のスイッチング素子用いたアクティブ駆動でもよい。ここで、液晶素子のスイッチングとEL部11のスイッチングとを組み合わせることが好ましく、これにより消費電力を低減することができる。 The liquid crystal element may be passively driven or may be active driven using a switching element such as a TFT. Here, it is preferable to combine the switching of the liquid crystal element and the switching of the EL portion 11, thereby reducing power consumption.
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.
 (実施例1)
 実施例1として、上述の実施形態1にて説明した発光素子100を以下のように作製した。
Example 1
As Example 1, the light-emitting element 100 described in Embodiment 1 was manufactured as follows.
 <蛍光体基板50の作製>
 まず、蛍光体基板50を以下の工程で作製した。
<Preparation of phosphor substrate 50>
First, the phosphor substrate 50 was produced by the following steps.
 基板10として、0.7mmのガラスを用い、これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、100℃にて1時間乾燥させた。 As the substrate 10, 0.7 mm glass was used, and after washing with water, pure water ultrasonic cleaning 10 minutes, acetone ultrasonic cleaning 10 minutes, isopropyl alcohol vapor cleaning 5 minutes were performed, and dried at 100 ° C. for 1 hour. .
 次に、基板10上に、銀(Ag)を膜厚10nmとなるようにスパッタ法により成膜し、これによって半透過性の第2光反射層9が形成された。 Next, silver (Ag) was formed on the substrate 10 by a sputtering method so as to have a film thickness of 10 nm, whereby the semi-transmissive second light reflecting layer 9 was formed.
 次いて、膜厚150nmの緑色色変換層8を真空蒸着により形成した。 Next, a green color conversion layer 8 having a thickness of 150 nm was formed by vacuum deposition.
 その上に、波長の中心λ=547nmとして光学膜厚がλ/4の周期になるように、TiO/SiOからなる膜厚12840nmの誘電体多層膜鏡〔TiOの屈折率2.95、SiOの屈折率1.46〕をスパッタにより堆積した。これによって第1光反射層7が形成された。この第1光反射層7の光学的な特性は、励起光として用いる青色光のピーク波長450nmでの透過率が90%であり、緑色色変換層8の発光のピーク波長である547nmでの反射率が90%であった。 In addition, a dielectric multilayer mirror made of TiO 2 / SiO 2 with a thickness of 12840 nm [refractive index of TiO 2 of 2.95 so that the center of wavelength λ = 547 nm and the optical film thickness becomes a period of λ / 4. , SiO 2 refractive index 1.46] was deposited by sputtering. Thereby, the first light reflecting layer 7 was formed. The optical characteristics of the first light reflection layer 7 include a transmittance of 90% of blue light used as excitation light at a peak wavelength of 450 nm, and reflection at 547 nm, which is the peak wavelength of light emission of the green color conversion layer 8. The rate was 90%.
 以上の工程により、図2に示すような断面構造を有する、緑色発光の蛍光体基板50が完成した。 Through the above steps, a green-emitting phosphor substrate 50 having a cross-sectional structure as shown in FIG. 2 was completed.
 <EL素子基板40の作製>
 一方、EL素子基板40を以下の工程で作製した。
<Preparation of EL element substrate 40>
On the other hand, the EL element substrate 40 was produced by the following steps.
 基板1として0.7mmのガラスを用い、これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、100℃にて1時間乾燥させた。 A 0.7 mm glass was used as the substrate 1 and washed with water, followed by pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, followed by drying at 100 ° C. for 1 hour.
 次に、基板1上に、銀(Ag)を膜厚100nmとなるようスパッタ法により成膜し、その上に、インジウム-スズ酸化物(ITO)を膜厚20nmとなるようスパッタ法により成膜した。これによって陽極としての第1光反射性電極2が形成された。第1光反射性電極2について、さらに従来のフォトリソグラフィー法によって、160μm幅、200μmピッチで90本のストライプにパターニングした。 Next, silver (Ag) is formed on the substrate 1 by a sputtering method so as to have a film thickness of 100 nm, and indium-tin oxide (ITO) is formed thereon by a sputtering method so that the film thickness is 20 nm. did. As a result, the first light reflective electrode 2 as an anode was formed. The first light-reflecting electrode 2 was further patterned into 90 stripes with a width of 160 μm and a pitch of 200 μm by a conventional photolithography method.
 次に、第1光反射性電極2上に、SiOをスパッタ法により200nm積層し、従来のフォトリソグラフィー法によって、第1光反射性電極2のエッジ部のみを覆うようにパターン化した。ここでは、第1光反射性電極2の端から10μm分だけ短辺をSiOで覆う構造とした。これを水洗後、純水超音波洗浄10分、アセトン超音波洗浄10分、イソプロピルアルコール蒸気洗浄5分を行い、120℃にて1時間乾燥させた。 Next, 200 nm of SiO 2 was laminated on the first light-reflecting electrode 2 by a sputtering method, and patterned to cover only the edge portion of the first light-reflecting electrode 2 by a conventional photolithography method. Here, a short side of 10 μm from the end of the first light reflective electrode 2 is covered with SiO 2 . This was washed with water, then subjected to pure water ultrasonic cleaning for 10 minutes, acetone ultrasonic cleaning for 10 minutes, and isopropyl alcohol vapor cleaning for 5 minutes, and dried at 120 ° C. for 1 hour.
 次に、基板1を抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の真空まで減圧し、抵抗加熱蒸着法によってEL層3における以下の各有機層の成膜を行った。 Next, the substrate 1 is fixed to a substrate holder in a resistance heating vapor deposition apparatus, the pressure is reduced to a vacuum of 1 × 10 −4 Pa or less, and the following organic layers in the EL layer 3 are formed by resistance heating vapor deposition. It was.
 まず、正孔注入材料として、1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い、膜厚100nmの正孔注入層を形成した。 First, 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used as a hole injection material, and a hole injection layer having a thickness of 100 nm was formed.
 次に、正孔輸送材料として、N,N’-di-l-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用い、膜厚40nmの正孔輸送層を形成した。 Next, as a hole transport material, N, N′-di-l-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) Was used to form a hole transport layer with a thickness of 40 nm.
 次いで、正孔輸送層上における所望の青色発光画素上に、青色有機発光層(厚さ:30nm)を形成した。この青色有機発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)とビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート イリジウム(III)(FIrpic)(青色燐光発光ドーパント)とを、それぞれの蒸着速度を1.5Å/sec、0.2Å/secにして共蒸着することによって作成した。 Next, a blue organic light emitting layer (thickness: 30 nm) was formed on a desired blue light emitting pixel on the hole transport layer. This blue organic light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III ) (FIrpic) (blue phosphorescent light emitting dopant) was prepared by co-evaporation at a deposition rate of 1.5 Å / sec and 0.2 Å / sec.
 次いで、青色有機発光層の上に、2,9-ジメチルー4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて、正孔防止層(厚さ:10nm)を形成した。 Subsequently, a hole blocking layer (thickness: 10 nm) was formed on the blue organic light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
 次いで、正孔防止層の上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて電子輸送層(厚さ:30nm)を形成した。 Next, an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
 次いで、電子輸送層の上に、フッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。 Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
 以上のようにEL層3の各有機層を形成した後、陰極として半透明の第2光反射性電極4を以下のように形成した。 After forming each organic layer of the EL layer 3 as described above, a semitransparent second light reflective electrode 4 was formed as a cathode as follows.
 まず、基板1を金属蒸着用チャンバーに固定した。次に、第2光反射性電極4形成用のシャドーマスクと基板1をアライメントした。当該シャドーマスクには、第1光反射性電極2のストライプと対向する方向に、500μm幅、600μmピッチのストライプ状の第2光反射性電極4を形成するための開口部が空いているものを使用した。 First, the substrate 1 was fixed to a metal deposition chamber. Next, the shadow mask for forming the second light reflective electrode 4 and the substrate 1 were aligned. The shadow mask has an opening for forming the second light-reflecting electrode 4 having a stripe shape of 500 μm width and 600 μm in a direction facing the stripe of the first light-reflecting electrode 2. used.
 次に、電子注入層の表面に、真空蒸着法を用いてマグネシウムと銀とを、それぞれの蒸着速度を0.1Å/sec、0.9Å/secにして共蒸着し、所望のパターンに形成(厚さ:1nm)した。さらにその上に、干渉効果を強調する目的、及び、第2光反射性電極4における配線抵抗による電圧降下を防止する目的で、銀を1Å/secの蒸着速度で所望のパターンに形成(厚さ:19nm)した。以上の工程により、第2光反射性電極4が形成された。 Next, on the surface of the electron injection layer, magnesium and silver are co-deposited at a deposition rate of 0.1 Å / sec and 0.9 Å / sec using a vacuum deposition method to form a desired pattern ( (Thickness: 1 nm). Furthermore, in order to emphasize the interference effect and to prevent a voltage drop due to wiring resistance in the second light reflective electrode 4, silver is formed in a desired pattern at a deposition rate of 1 mm / sec (thickness). : 19 nm). The second light reflective electrode 4 was formed by the above process.
 ここで、EL部11としては、第1光反射性電極2と第2光反射性電極4との間で微小共振器効果(干渉効果)が発現し、正面輝度を高める事が可能となる。このため、EL部11からの発光エネルギーをより効率良く、色変換層8に伝搬させることが可能となる。なお、EL部11では、微小共振器効果により発光ピークが460nm、半値幅が50nmに調整された。 Here, as the EL portion 11, a microresonator effect (interference effect) is developed between the first light-reflecting electrode 2 and the second light-reflecting electrode 4, and the front luminance can be increased. For this reason, it becomes possible to propagate the light emission energy from the EL section 11 to the color conversion layer 8 more efficiently. In the EL section 11, the emission peak was adjusted to 460 nm and the half-value width was adjusted to 50 nm by the microresonator effect.
 次に、プラズマCVD法により、膜厚3μmのSiOからなる無機封止膜5をパターニング形成した。このとき、シャドーマスクを用いて、無機封止膜5がEL部11の上側および左右において当該EL部11の端から2mmの封止エリア内を覆うようにした。 Next, the inorganic sealing film 5 made of SiO 2 having a film thickness of 3 μm was formed by patterning by plasma CVD. At this time, a shadow mask was used so that the inorganic sealing film 5 covered the inside of the sealing area of 2 mm from the end of the EL part 11 on the upper side and the left and right sides of the EL part 11.
 以上の工程により、EL素子基板40が完成した。 The EL element substrate 40 is completed through the above steps.
 <発光素子100の作成>
 以上のようにして作製した蛍光体基板50とEL素子基板40とを用いて、発光素子100を作成した。
<Creation of Light Emitting Element 100>
The light emitting element 100 was produced using the phosphor substrate 50 and the EL element substrate 40 produced as described above.
 具体的には、まず、蛍光体基板50に熱硬化樹脂を塗布し、この熱硬化樹脂を介して蛍光体基板50とEL素子基板40とを密着させ、80℃、2時間加熱することによって硬化を行った。なお、この貼り合わせ工程は、有機ELの水分による劣化を防止する目的でドライエアー環境(水分量:-80℃)の下で行った。 Specifically, first, a thermosetting resin is applied to the phosphor substrate 50, the phosphor substrate 50 and the EL element substrate 40 are brought into close contact via the thermosetting resin, and cured by heating at 80 ° C. for 2 hours. Went. This bonding step was performed in a dry air environment (water content: −80 ° C.) for the purpose of preventing deterioration of the organic EL due to water.
 次に、蛍光体基板50およびEL素子基板40の周辺に形成された端子を外部電源に接続した。これによって、図1に示すような断面構造を有する、緑色発光の発光素子100が完成した。 Next, terminals formed around the phosphor substrate 50 and the EL element substrate 40 were connected to an external power source. Thus, a green light emitting element 100 having a cross-sectional structure as shown in FIG. 1 was completed.
 (比較例1)
 比較例1として、第1及び第2光反射層7、9を備えない以外は、実施例1と同様の構成を有する発光素子を作成した。作成方法については、第1及び第2光反射層7、9を形成しないことを除いて、実施例1にて説明した工程と同様の工程を行った。
(Comparative Example 1)
As Comparative Example 1, a light emitting device having the same configuration as Example 1 was prepared except that the first and second light reflecting layers 7 and 9 were not provided. About the preparation method, the process similar to the process demonstrated in Example 1 was performed except not forming the 1st and 2nd light reflection layers 7 and 9. FIG.
 比較例1および実施例1の各々に係る発光素子について、その発光効率を比較した結果、実施例1の発光効率が、比較例1に比べて~2倍に向上した。 As a result of comparing the luminous efficiencies of the light emitting devices according to Comparative Example 1 and Example 1, the luminous efficiency of Example 1 was improved by about 2 times compared with Comparative Example 1.
 (実施例2)
 実施例2として、上述の実施形態1にて説明した変形例に係る発光素子110を作製した。なお、発光素子110は、光散乱層12を備えること以外は、実施例1に係る発光素子100と同様の構成を有する。
(Example 2)
As Example 2, the light-emitting element 110 according to the modification described in Embodiment 1 was manufactured. The light emitting element 110 has the same configuration as the light emitting element 100 according to Example 1 except that the light scattering layer 12 is provided.
 実施例2に係る発光素子の作成方法については、まず、光散乱層12として、レンズが互いに平行な複数本の線状に形成されているプリズムレンズフィルムを用意した。また、実施例1と同様の工程を行って発光素子を作成し、この作成した発光素子の基板10の光取り出し面に、用意したプリズムレンズフィルムをエポキシ系接着剤により固着させた。これによって、図3に示すような断面構造を有する緑色発光の発光素子110が完成した。 Regarding the method for producing a light emitting element according to Example 2, first, as the light scattering layer 12, a prism lens film in which lenses are formed in a plurality of lines parallel to each other was prepared. Further, a light emitting element was produced by performing the same process as in Example 1, and the prepared prism lens film was fixed to the light extraction surface of the substrate 10 of the produced light emitting element with an epoxy adhesive. Thus, a green light emitting element 110 having a cross-sectional structure as shown in FIG. 3 was completed.
 実施例2に係る発光素子について発光効率および視野角特性を測定した結果、実施例2は、実施例1と同様に発光効率が高く、さらに、実施例1よりも良好な視野角特性を実現することができた。 As a result of measuring the luminous efficiency and the viewing angle characteristics of the light emitting device according to Example 2, the luminous efficiency of Example 2 is high as in Example 1, and further, the viewing angle characteristic better than that of Example 1 is realized. I was able to.
 なお、本発明は上述した各実施形態に限定されるものではない。当業者は、請求項に示した範囲内において、本発明をいろいろと変更できる。すなわち、請求項に示した範囲内において、適宜変更された技術的手段を組み合わせれば、新たな実施形態が得られる。すなわち、発明の詳細な説明の項においてなされた具体的な実施形態は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。 In addition, this invention is not limited to each embodiment mentioned above. Those skilled in the art can make various modifications to the present invention within the scope of the claims. That is, a new embodiment can be obtained by combining appropriately changed technical means within the scope of the claims. That is, the specific embodiments made in the section of the detailed description of the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples and are interpreted narrowly. It should be understood that the invention can be practiced with various modifications within the spirit of the invention and within the scope of the following claims.
 (本発明の総括)
 本発明に係る蛍光体基板は、基板と、上記基板上に一方が形成された一対の光反射層と、上記一対の光反射層に挟持され、上記一方とは異なる他方の光反射層に対して上記基板とは反対側にある外部光源から発光された励起光を吸収して当該励起光の色とは異なる色の変換光を放出する色変換層とを備え、上記一対の光反射層の間における光学距離は、上記色変換層から放出された変換光の強度を増強する微小共振器を構成する光学距離に設定されていることを特徴としている。
(Summary of the present invention)
The phosphor substrate according to the present invention includes a substrate, a pair of light reflecting layers formed on one of the substrates, and the other light reflecting layer sandwiched between the pair of light reflecting layers and different from the one. A color conversion layer that absorbs excitation light emitted from an external light source on the side opposite to the substrate and emits converted light of a color different from the color of the excitation light. The optical distance between them is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer.
 ここで、本発明に係る蛍光体基板は発光素子を製造するために用いることができる。具体的には、本発明に係る蛍光体基板を、エレクトロルミネセンス(EL)素子などの外部光源とを組み合わせることによって、発光素子を簡便に製造することができる。このように製造された発光素子では、色変換層が、EL部などの外部光源から発光された光を励起光として吸収して変換光を放出する。この変換光は、一対の反射膜が構成する微小共振器構造によって光取り出し効率が向上されている。 Here, the phosphor substrate according to the present invention can be used for manufacturing a light emitting device. Specifically, a light-emitting element can be easily produced by combining the phosphor substrate according to the present invention with an external light source such as an electroluminescence (EL) element. In the light emitting device manufactured in this way, the color conversion layer absorbs light emitted from an external light source such as an EL portion as excitation light and emits converted light. The converted light has improved light extraction efficiency by a microresonator structure formed by a pair of reflective films.
 また、本発明に係る蛍光体基板は、微小共振器構造を構成しているEL素子と組み合わせることも容易にできる。 Also, the phosphor substrate according to the present invention can be easily combined with an EL element constituting a microresonator structure.
 したがって、本発明に係る蛍光体基板によれば、発光効率を向上させた発光素子を簡便に製造することができる。 Therefore, according to the phosphor substrate according to the present invention, a light emitting device with improved luminous efficiency can be easily produced.
 また、本発明に係る蛍光体基板を用いて表示装置を製造する場合には、トップエミッション型の表示装置を製造する場合であっても、色変換層をパターニングするために、フォトリソグラフティ等のウエットプロセスを用いることが可能である。したがって、本発明に係る蛍光体基板を用いることによって表示装置を簡便に製造することができる。また、製造時のコストを抑えることも可能である。 In the case of manufacturing a display device using the phosphor substrate according to the present invention, even in the case of manufacturing a top emission type display device, in order to pattern the color conversion layer, wet such as photolithography is used. A process can be used. Therefore, a display device can be easily manufactured by using the phosphor substrate according to the present invention. It is also possible to reduce the manufacturing cost.
 また、本発明に係る蛍光体基板において、上記一対の光反射層のうち、少なくとも一方の光反射層は、光に関して半透過性である金属膜であることが好ましい。 In the phosphor substrate according to the present invention, it is preferable that at least one of the pair of light reflecting layers is a metal film that is semi-transmissive with respect to light.
 上記構成によれば、微小共振器構造による緩衝効果が好適に実現するように、光反射層の反射率を調節することができる。 According to the above configuration, the reflectance of the light reflecting layer can be adjusted so that the buffer effect by the microresonator structure is suitably realized.
 また、本発明に係る蛍光体基板において、上記一対の光反射層のうち、上記他方の光反射層は、誘電体多層膜から構成されていることが好ましい。 In the phosphor substrate according to the present invention, it is preferable that the other light reflecting layer of the pair of light reflecting layers is composed of a dielectric multilayer film.
 さらに、上記誘電体多層膜は、上記励起光に対する透過率が25%以上100%以下であることが好ましい。 Furthermore, the dielectric multilayer film preferably has a transmittance of 25% to 100% for the excitation light.
 誘電体多層膜は、その反射率および透過率を調節することが容易である。このため、上記構成によれば、励起光を光変換層へ効率的に取り込みつつ、微小共振器構造を好適に構成することができる。 It is easy to adjust the reflectance and transmittance of the dielectric multilayer film. For this reason, according to the said structure, a microresonator structure can be comprised suitably, taking in excitation light to an optical conversion layer efficiently.
 また、マイクロキャビティ構造は、出射光量は最大で2倍にする。例えば外部光源がマイクロキャビティ構造を取っている場合、外部光源と色変換層のそれぞれで出射光量は2倍になる。このため、誘電体多層膜の透過率が25%以上であれば、マイクロキャビティ構造を取らない場合と同程度以上の光量を出すことができる。 In the microcavity structure, the amount of emitted light is doubled at maximum. For example, when the external light source has a microcavity structure, the amount of emitted light is doubled by each of the external light source and the color conversion layer. For this reason, when the transmittance of the dielectric multilayer film is 25% or more, it is possible to emit a light amount equal to or higher than that when the microcavity structure is not used.
 また、本発明に係る蛍光体基板は、上記基板に対して上記色変換層とは反対側に配置され、かつ、上記色変換層側から入射した上記変換光を当該色変換層側とは反対側に向かって散乱する散乱層をさらに備えることが好ましい。 The phosphor substrate according to the present invention is disposed on the opposite side to the color conversion layer with respect to the substrate, and the converted light incident from the color conversion layer side is opposite to the color conversion layer side. It is preferable to further include a scattering layer that scatters toward the side.
 上記構成によれば、微小共振器構造により指向性を有して放出された変換光が、光散乱層によって光取り出し方向に散乱される。このため、本発明に係る蛍光体基板によれば、視野角特性を向上させた発光素子を製造することができる。 According to the above configuration, the converted light emitted with directivity by the microresonator structure is scattered in the light extraction direction by the light scattering layer. For this reason, according to the phosphor substrate according to the present invention, it is possible to manufacture a light emitting device with improved viewing angle characteristics.
 本発明に係る発光素子は、一対の電極と、上記一対の電極に挟持され、光を発光するエレクトロルミネセンス(EL)層と、上記一対の電極の一方に対して上記EL層とは反対側に配置された一対の光反射層と、上記一対の光反射層に挟持され、上記EL層から発光された光を吸収して当該光の色とは異なる色の変換光を放出する色変換層とを備え、上記一対の光反射層の間における光学距離は、上記色変換層から放出された変換光の強度を増強する微小共振器を構成する光学距離に設定されていることを特徴としている。 The light-emitting element according to the present invention includes a pair of electrodes, an electroluminescence (EL) layer that is sandwiched between the pair of electrodes and emits light, and the opposite side of the EL layer with respect to one of the pair of electrodes. And a color conversion layer that is sandwiched between the pair of light reflection layers and that absorbs light emitted from the EL layer and emits converted light of a color different from the color of the light The optical distance between the pair of light reflecting layers is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer. .
 上記構成において、一対の反射膜は、EL層を間に挟むことなく、微小共振器を構成している。このため、一対の電極がEL層に対する微小共振器構造を構成することも可能である。また、色変換層が放出する変換光は、一対の反射膜が構成する微小共振器構造によって光取り出し効率が向上される。 In the above configuration, the pair of reflective films constitute a microresonator without sandwiching the EL layer therebetween. For this reason, a pair of electrodes can constitute a microresonator structure for the EL layer. Moreover, the light extraction efficiency of the converted light emitted from the color conversion layer is improved by the microresonator structure formed by the pair of reflective films.
 したがって、上記構成によれば、発光効率を向上させた発光素子を提供することができる。 Therefore, according to the above configuration, it is possible to provide a light emitting element with improved luminous efficiency.
 また、上記構成を備える発光素子を用いて表示装置を製造する場合には、トップエミッション型の装置を製造する場合であっても、色変換層をパターニングするために、フォトリソグラフティ等のウエットプロセスを用いることが可能である。したがって、本発明に係る発光素子を用いることによって表示装置を簡便に製造することができる。また、製造時のコストを抑えることも可能である。 Further, when a display device is manufactured using a light emitting element having the above-described structure, a wet process such as photolithography is used to pattern the color conversion layer even when a top emission type device is manufactured. It is possible to use. Therefore, a display device can be easily manufactured by using the light emitting element according to the present invention. It is also possible to reduce the manufacturing cost.
 また、本発明に係る発光素子において、上記一対の電極は一対の光反射性電極であり、上記一対の光反射性電極の間における光学距離は、上記EL層から発光された光の強度を増強する微小共振器を構成する光学距離に設定されていることが好ましい。 In the light-emitting element according to the present invention, the pair of electrodes is a pair of light-reflective electrodes, and the optical distance between the pair of light-reflective electrodes enhances the intensity of light emitted from the EL layer. It is preferable that the optical distance constituting the microresonator is set.
 上記構成によれば、EL層から発光された光は、一対の光反射電極が構成する微小共振器構造によって光取り出し効率が向上される。このため、EL層から発光された光を色変換層へ効率よく入射することができる。すなわち、上記構成によれば、色変換層への励起光の効率よい入射と変換光の効率よい光取り出しとを両立することができる。したがって、本発明に係る発光素子の発光効率をより向上させることができる。 According to the above configuration, light extraction efficiency of the light emitted from the EL layer is improved by the microresonator structure formed by the pair of light reflecting electrodes. For this reason, the light emitted from the EL layer can be efficiently incident on the color conversion layer. That is, according to the above-described configuration, it is possible to achieve both efficient incidence of excitation light to the color conversion layer and efficient extraction of converted light. Therefore, the light emission efficiency of the light emitting device according to the present invention can be further improved.
 また、本発明に係る発光素子において、上記一対の光反射層のうち、少なくとも一方の光反射層は、光に関して半透過性である金属膜であることが好ましい。 In the light emitting device according to the present invention, it is preferable that at least one of the pair of light reflecting layers is a metal film that is semi-transmissive with respect to light.
 上記構成によれば、微小共振器構造による緩衝効果が好適に実現するように、光反射層の反射率を調節することができる。 According to the above configuration, the reflectance of the light reflecting layer can be adjusted so that the buffer effect by the microresonator structure is suitably realized.
 また、本発明に係る発光素子において、上記一対の光反射層のうち、上記EL層側に配置される光反射層は、誘電体多層膜から構成されていることが好ましい。 In the light emitting device according to the present invention, it is preferable that the light reflecting layer disposed on the EL layer side of the pair of light reflecting layers is composed of a dielectric multilayer film.
 さらに、上記誘電体多層膜は、上記EL層から発光される光の透過率が25%以上100%以下であることが好ましい。 Furthermore, it is preferable that the dielectric multilayer film has a transmittance of light emitted from the EL layer of 25% or more and 100% or less.
 誘電体多層膜は、その反射率および透過率を調節することが容易である。このため、上記構成によれば、励起光を光変換層へ効率的に取り込みつつ、微小共振器構造を好適に構成することができる。 It is easy to adjust the reflectance and transmittance of the dielectric multilayer film. For this reason, according to the said structure, a microresonator structure can be comprised suitably, taking in excitation light to an optical conversion layer efficiently.
 例えばEL層を挟持する一対の光反射性電極がマイクロキャビティ構造を取っている場合、EL層と色変換層のそれぞれで出射光量は2倍になる。このため、誘電体多層膜の透過率が25%以上であれば、マイクロキャビティ構造を取らない場合と同程度以上の光量を出すことができる。 For example, when a pair of light reflective electrodes sandwiching the EL layer has a microcavity structure, the amount of emitted light is doubled in each of the EL layer and the color conversion layer. For this reason, when the transmittance of the dielectric multilayer film is 25% or more, it is possible to emit a light amount equal to or higher than that when the microcavity structure is not used.
 また、本発明に係る発光素子において、上記色変換層および上記EL層に対して上記一対の光反射層の一方を挟んだ反対側に配置され、かつ、上記色変換層側から入射された上記変換光を当該色変換層散乱とは反対側に散乱する散乱層をさらに備えることが好ましい。 In the light-emitting element according to the present invention, the light-emitting element is disposed on the opposite side of the color conversion layer and the EL layer with one of the pair of light reflection layers interposed therebetween, and is incident from the color conversion layer side. It is preferable to further include a scattering layer that scatters the converted light to the side opposite to the color conversion layer scattering.
 上記構成によれば、一対の光反射層による微小共振器構造により指向性を有して放出された変換光が、光散乱層によって光取り出し方向に散乱される。このため、本発明に係る発光素子の視野角特性を向上させることができる。 According to the above configuration, the converted light emitted with directivity by the microresonator structure of the pair of light reflecting layers is scattered in the light extraction direction by the light scattering layer. For this reason, the viewing angle characteristics of the light emitting device according to the present invention can be improved.
 また、本発明に係る発光素子において、上記EL層は、有機EL材料または無機EL材料から構成することができる。 In the light emitting device according to the present invention, the EL layer can be composed of an organic EL material or an inorganic EL material.
 上記構成によれば、発光素子の使用目的に合わせて好適な構成を選択することが可能である。 According to the above configuration, it is possible to select a suitable configuration according to the purpose of use of the light emitting element.
 本発明に係る表示装置は、互いに異なる色の発光素子を含む複数の発光素子がアレイ状に配列された表示装置であって、上記複数の発光素子の各々は、上述したいすれかの発光素子から構成されていることを特徴としている。 A display device according to the present invention is a display device in which a plurality of light emitting elements including light emitting elements of different colors are arranged in an array, and each of the plurality of light emitting elements includes any one of the above-described light emitting elements. It is characterized by being composed.
 上記構成によれば、発光素子が配置される各画素では、微小共振器構造により光取り出し効率が向上された光が用いられる。このため、本発明に係る表示装置によれば、各画素の視野性および発光強度においてバランスよく、かつ、その発光効率を向上させることができる。 According to the above configuration, in each pixel in which the light emitting element is arranged, light whose light extraction efficiency is improved by the microresonator structure is used. For this reason, according to the display device according to the present invention, it is possible to improve the light emission efficiency in a balanced manner in viewability and light emission intensity of each pixel.
 また、本発明に係る表示装置において、上記一対の光反射性電極に接続されたアクティブ素子をさらに備えることが好ましい。 The display device according to the present invention preferably further includes an active element connected to the pair of light reflective electrodes.
 上記構成によれば、表示品位の優れたアクティブ駆動型表示装置を提供することができる。すなわち、パッシブ駆動型の表示装置に比べて、発光時間を長くすることができ、これによって所望の輝度を得る駆動電圧を低減することが可能になるため、低消費電力化が可能になる。 The above configuration can provide an active drive type display device with excellent display quality. In other words, the light emission time can be extended as compared with a passive drive display device, and thus a drive voltage for obtaining desired luminance can be reduced, so that power consumption can be reduced.
 また、本発明に係る表示装置において、上記アクティブ素子は、上記色変換層に対して上記一対の光反射性電極を挟んだ反対側に配置されていることが好ましい。 In the display device according to the present invention, it is preferable that the active element is disposed on the opposite side of the color conversion layer with the pair of light-reflecting electrodes interposed therebetween.
 上記構成によれば、アクティブ素子として設けられるTFTや配線などの影響を受けず、高開口率な表示装置を実現することができる。この結果、より効果的な低消費電力化が可能になる。 According to the above configuration, a display device with a high aperture ratio can be realized without being affected by TFTs or wirings provided as active elements. As a result, more effective low power consumption can be achieved.
 また、本発明に係る表示装置は、上記EL層と上記色変換層との間に配置され、電圧によりスイッチングを行う液晶素子をさらに備えることが好ましい。 In addition, it is preferable that the display device according to the present invention further includes a liquid crystal element that is disposed between the EL layer and the color conversion layer and performs switching by voltage.
 上記構成によれば、液晶素子をスイッチング素子することによって、表示品位に優れた表示装置を提供することができる。 According to the above configuration, a display device with excellent display quality can be provided by switching the liquid crystal element.
 本発明は、例えば無機ELディスプレイおよび有機ELディスプレイ等のフラットパネルディスプレイに好適に利用することができる。 The present invention can be suitably used for flat panel displays such as inorganic EL displays and organic EL displays.
 1 基板
 2 第1光反射性電極
 3 EL層
 4 第2光反射性電極
 5 無機封止膜
 6 樹脂層
 7 第1光反射層
 8 色変換層
 9 第2光反射層
 10 基板
 11 EL部
 12 光散乱層
 21~23 画素
 40 EL素子基板
 50 蛍光体基板
 100 発光素子
 110 発光素子
 200 表示装置
DESCRIPTION OF SYMBOLS 1 Substrate 2 1st light reflective electrode 3 EL layer 4 2nd light reflective electrode 5 Inorganic sealing film 6 Resin layer 7 1st light reflective layer 8 Color conversion layer 9 2nd light reflective layer 10 Substrate 11 EL part 12 Light Scattering layer 21 to 23 pixels 40 EL element substrate 50 phosphor substrate 100 light emitting element 110 light emitting element 200 display device

Claims (16)

  1.  基板と、
     上記基板上に一方が形成された一対の光反射層と、
     上記一対の光反射層に挟持され、上記一方とは異なる他方の光反射層に対して上記基板とは反対側にある外部光源から発光された励起光を吸収して当該励起光の色とは異なる色の変換光を放出する色変換層とを備え、
     上記一対の光反射層の間における光学距離は、上記色変換層から放出された変換光の強度を増強する微小共振器を構成する光学距離に設定されていることを特徴とする蛍光体基板。
    A substrate,
    A pair of light reflecting layers, one of which is formed on the substrate;
    What is the color of the excitation light by absorbing excitation light emitted from an external light source sandwiched between the pair of light reflection layers and opposite to the substrate with respect to the other light reflection layer different from the one? A color conversion layer that emits converted light of different colors,
    The phosphor substrate, wherein an optical distance between the pair of light reflecting layers is set to an optical distance constituting a microresonator that enhances the intensity of the converted light emitted from the color conversion layer.
  2.  上記一対の光反射層のうち、少なくとも一方の光反射層は、光に関して半透過性である金属膜であることを特徴とする請求項1に記載の蛍光体基板。 2. The phosphor substrate according to claim 1, wherein at least one of the pair of light reflecting layers is a metal film that is semi-transmissive with respect to light.
  3.  上記一対の光反射層のうち、上記他方の光反射層は、誘電体多層膜から構成されていることを特徴とする請求項1または2に記載の蛍光体基板。 The phosphor substrate according to claim 1 or 2, wherein, of the pair of light reflecting layers, the other light reflecting layer is formed of a dielectric multilayer film.
  4.  上記誘電体多層膜は、上記励起光に対する透過率が25%以上100%以下であることを特徴とする請求項3に記載の蛍光体基板。 4. The phosphor substrate according to claim 3, wherein the dielectric multilayer film has a transmittance with respect to the excitation light of 25% or more and 100% or less.
  5.  上記基板に対して上記色変換層とは反対側に配置され、かつ、上記色変換層側から入射した上記変換光を当該色変換層側とは反対側に向かって散乱する散乱層をさらに備えることを特徴とする請求項1から4のいずれか1項に記載の蛍光体基板。 A scattering layer is further provided that is disposed on the opposite side to the color conversion layer with respect to the substrate and that scatters the converted light incident from the color conversion layer side toward the side opposite to the color conversion layer side. The phosphor substrate according to any one of claims 1 to 4, wherein:
  6.  一対の電極と、
     上記一対の電極に挟持され、光を発光するEL層と、
     上記一対の電極の一方に対して上記EL層とは反対側に配置された一対の光反射層と、
     上記一対の光反射層に挟持され、上記EL層から発光された光を吸収して当該光の色とは異なる色の変換光を放出する色変換層とを備え、
     上記一対の光反射層の間における光学距離は、上記色変換層から放出された変換光の強度を増強する微小共振器を構成する光学距離に設定されていることを特徴とする発光素子。
    A pair of electrodes;
    An EL layer sandwiched between the pair of electrodes and emitting light;
    A pair of light reflecting layers disposed on the opposite side of the EL layer with respect to one of the pair of electrodes;
    A color conversion layer that is sandwiched between the pair of light reflection layers and absorbs light emitted from the EL layer and emits converted light of a color different from the color of the light;
    An optical distance between the pair of light reflecting layers is set to an optical distance constituting a microresonator that enhances the intensity of converted light emitted from the color conversion layer.
  7.  上記一対の電極は一対の光反射性電極であり、
     上記一対の光反射性電極の間における光学距離は、上記EL層から発光された光の強度を増強する微小共振器を構成する光学距離に設定されている
    ことを特徴とする請求項6に記載の発光素子。
    The pair of electrodes is a pair of light reflective electrodes,
    The optical distance between the pair of light reflective electrodes is set to an optical distance constituting a microresonator that enhances the intensity of light emitted from the EL layer. Light emitting element.
  8.  上記一対の光反射層のうち、少なくとも一方の光反射層は、光に関して半透過性である金属膜であることを特徴とする請求項7に記載の発光素子。 The light emitting element according to claim 7, wherein at least one of the pair of light reflecting layers is a metal film that is semi-transmissive to light.
  9.  上記一対の光反射層のうち、上記EL層側に配置される光反射層は、誘電体多層膜から構成されていることを特徴とする請求項7または8に記載の発光素子。 The light-emitting element according to claim 7 or 8, wherein, of the pair of light reflecting layers, the light reflecting layer disposed on the EL layer side is composed of a dielectric multilayer film.
  10.  上記誘電体多層膜は、上記EL層から発光される光の透過率が25%以上100%以下であることを特徴とする請求項9に記載の発光素子。 10. The light emitting device according to claim 9, wherein the dielectric multilayer film has a transmittance of light emitted from the EL layer of 25% or more and 100% or less.
  11.  上記一対の光反射層に対して上記色変換層とは反対側に配置され、かつ、上記色変換層側から入射した上記変換光を当該色変換層とは反対側に散乱する散乱層をさらに備えることを特徴とする請求項6から10のいずれか1項に記載の発光素子。 A scattering layer that is disposed on the opposite side to the color conversion layer with respect to the pair of light reflection layers and that scatters the converted light incident from the color conversion layer side to the opposite side of the color conversion layer; The light-emitting element according to claim 6, comprising the light-emitting element.
  12.  上記EL層は、有機EL材料または無機EL材料から構成されていることを特徴とする請求項6から11のいずれか1項に記載の発光素子。 The light emitting device according to any one of claims 6 to 11, wherein the EL layer is composed of an organic EL material or an inorganic EL material.
  13.  互いに異なる色の発光素子を含む複数の発光素子がアレイ状に配列された表示装置であって、
     上記複数の発光素子の各々は、請求項6から12のいずれか1項に記載の発光素子から構成されていることを特徴とする表示装置。
    A display device in which a plurality of light emitting elements including light emitting elements of different colors are arranged in an array,
    Each of the said several light emitting element is comprised from the light emitting element of any one of Claim 6 to 12, The display apparatus characterized by the above-mentioned.
  14.  上記一対の光反射性電極に接続されたアクティブ素子をさらに備えることを特徴とする請求項13に記載の表示装置。 14. The display device according to claim 13, further comprising an active element connected to the pair of light reflective electrodes.
  15.  上記アクティブ素子は、上記色変換層に対して上記一対の光反射性電極を挟んだ反対側に配置されていることを特徴とする請求項14に記載の表示装置。 15. The display device according to claim 14, wherein the active element is disposed on an opposite side of the color conversion layer with the pair of light reflective electrodes interposed therebetween.
  16.  上記EL層と上記色変換層との間に配置され、電圧によりスイッチングを行う液晶素子をさらに備えることを特徴とする請求項13から15のいずれか1項に記載の表示装置。 The display device according to claim 13, further comprising a liquid crystal element that is disposed between the EL layer and the color conversion layer and performs switching according to voltage.
PCT/JP2011/051211 2010-05-21 2011-01-24 Phosphor substrate, light-emitting element, and display device using same WO2011145358A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010117803 2010-05-21
JP2010-117803 2010-05-21

Publications (1)

Publication Number Publication Date
WO2011145358A1 true WO2011145358A1 (en) 2011-11-24

Family

ID=44991476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051211 WO2011145358A1 (en) 2010-05-21 2011-01-24 Phosphor substrate, light-emitting element, and display device using same

Country Status (1)

Country Link
WO (1) WO2011145358A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181678A1 (en) * 2014-05-30 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device
JP2017037121A (en) * 2015-08-07 2017-02-16 シャープ株式会社 Color conversion substrate and display device
WO2017051298A1 (en) * 2015-09-21 2017-03-30 Sabic Global Technologies B.V. Distributed bragg reflector on color conversion layer with micro cavity for blue oled lighting application
CN110346859A (en) * 2018-04-08 2019-10-18 京东方科技集团股份有限公司 Optical resonator, display panel
WO2019234562A1 (en) * 2018-06-06 2019-12-12 株式会社半導体エネルギー研究所 Light emitting device, display device and electronic device
CN111009617A (en) * 2018-10-05 2020-04-14 乐金显示有限公司 Self-luminous display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359076A (en) * 2001-03-27 2002-12-13 Konica Corp Organic electroluminescence element, display device, light emitting method, display method and transparent substrate
WO2006008987A1 (en) * 2004-07-15 2006-01-26 Idemitsu Kosan Co., Ltd. Organic el display
JP2010015785A (en) * 2008-07-02 2010-01-21 Fujifilm Corp Light-emitting element, multicolor display device, and light-emitting element manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359076A (en) * 2001-03-27 2002-12-13 Konica Corp Organic electroluminescence element, display device, light emitting method, display method and transparent substrate
WO2006008987A1 (en) * 2004-07-15 2006-01-26 Idemitsu Kosan Co., Ltd. Organic el display
JP2010015785A (en) * 2008-07-02 2010-01-21 Fujifilm Corp Light-emitting element, multicolor display device, and light-emitting element manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10777762B2 (en) 2014-05-30 2020-09-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device with color conversion layers
CN106465507A (en) * 2014-05-30 2017-02-22 株式会社半导体能源研究所 Light-emitting device, display device, and electronic device
US12127418B2 (en) 2014-05-30 2024-10-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with color conversion layers
US11545642B2 (en) 2014-05-30 2023-01-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device with color conversion layers
WO2015181678A1 (en) * 2014-05-30 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device
TWI719935B (en) * 2014-05-30 2021-03-01 日商半導體能源研究所股份有限公司 Light-emitting device, display device, and electronic device
US10790462B2 (en) 2014-05-30 2020-09-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device with color conversion layers
JP2017037121A (en) * 2015-08-07 2017-02-16 シャープ株式会社 Color conversion substrate and display device
US20180241005A1 (en) * 2015-09-21 2018-08-23 Sabic Global Technologies B.V. Distributed bragg reflector on color conversion layer with micro cavity for blue oled lighting application
CN108140745A (en) * 2015-09-21 2018-06-08 沙特基础工业全球技术公司 For the distributed Bragg reflector on the color conversion layer with microcavity of Blue OLED illumination application
WO2017051298A1 (en) * 2015-09-21 2017-03-30 Sabic Global Technologies B.V. Distributed bragg reflector on color conversion layer with micro cavity for blue oled lighting application
CN110346859A (en) * 2018-04-08 2019-10-18 京东方科技集团股份有限公司 Optical resonator, display panel
JP2021517263A (en) * 2018-04-08 2021-07-15 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Optical resonator, display panel
CN110346859B (en) * 2018-04-08 2023-05-16 京东方科技集团股份有限公司 Optical resonant cavity and display panel
JP7315557B2 (en) 2018-04-08 2023-07-26 京東方科技集團股▲ふん▼有限公司 optical resonator, display panel
WO2019234562A1 (en) * 2018-06-06 2019-12-12 株式会社半導体エネルギー研究所 Light emitting device, display device and electronic device
JPWO2019234562A1 (en) * 2018-06-06 2021-07-15 株式会社半導体エネルギー研究所 Light emitting device, display device and electronic device
US12075642B2 (en) 2018-06-06 2024-08-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device
CN111009617A (en) * 2018-10-05 2020-04-14 乐金显示有限公司 Self-luminous display device
CN111009617B (en) * 2018-10-05 2024-05-24 乐金显示有限公司 Self-luminous display device

Similar Documents

Publication Publication Date Title
US9182631B2 (en) Phosphor substrate, display device, and electronic apparatus
US8796914B2 (en) Organic electroluminescence element, organic electroluminescence display, and organic electroluminescence display apparatus
JP5538519B2 (en) Light emitting element, display and display device
JP2017037121A (en) Color conversion substrate and display device
US8908125B2 (en) Fluorescent substrate and method for producing the same, and display device
WO2012108384A1 (en) Fluorescent substrate, and display device and lighting device using same
WO2014084012A1 (en) Scatterer substrate
WO2012090786A1 (en) Light-emitting device, display device, and illumination device
WO2013154133A1 (en) Light-scattering body, light-scattering body film, light-scattering body substrate, light-scattering body device, light-emitting device, display device, and illumination device
WO2013039072A1 (en) Light-emitting device, display apparatus, illumination apparatus, and electricity-generating apparatus
WO2013183751A1 (en) Fluorescent substrate, light-emitting device, display device, and lighting device
WO2013111696A1 (en) Fluorescent material substrate, display apparatus, and electronic apparatus
WO2012081568A1 (en) Fluorescent substrate, display device, and lighting device
JP2014052606A (en) Phosphor substrate, light-emitting device, display device and luminaire
JP2016218151A (en) Wavelength conversion substrate, light-emitting device and display device comprising the same, lighting device, and electronic apparatus
WO2011145418A1 (en) Phosphor display device, and phosphor layer
WO2012121372A1 (en) Display element and electronic device
JP2016143658A (en) Light emitting element and display device
WO2011145358A1 (en) Phosphor substrate, light-emitting element, and display device using same
WO2013039027A1 (en) Display apparatus, electronic device, and illumination apparatus
WO2012081536A1 (en) Light-emitting device, display device, electronic apparatus, and illumination device
JP6552100B2 (en) Organic electroluminescent device
WO2011102024A1 (en) Display device
JP2017004639A (en) Organic electroluminescent device
WO2012043172A1 (en) Phosphor substrate, and display device and lighting device each equipped with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP