Nothing Special   »   [go: up one dir, main page]

WO2011021477A1 - 光センサ、半導体装置、及び液晶パネル - Google Patents

光センサ、半導体装置、及び液晶パネル Download PDF

Info

Publication number
WO2011021477A1
WO2011021477A1 PCT/JP2010/062552 JP2010062552W WO2011021477A1 WO 2011021477 A1 WO2011021477 A1 WO 2011021477A1 JP 2010062552 W JP2010062552 W JP 2010062552W WO 2011021477 A1 WO2011021477 A1 WO 2011021477A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
thin film
layer
metal oxide
substrate
Prior art date
Application number
PCT/JP2010/062552
Other languages
English (en)
French (fr)
Inventor
明博 織田
誠二 金子
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/391,211 priority Critical patent/US20120146028A1/en
Priority to CN2010800369410A priority patent/CN102473716A/zh
Publication of WO2011021477A1 publication Critical patent/WO2011021477A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof

Definitions

  • the present invention relates to an optical sensor provided with a thin film diode (TFD) having a semiconductor layer including at least an n-type region and a p-type region.
  • the present invention also relates to a semiconductor device including a thin film diode and a thin film transistor (TFT). Furthermore, the present invention relates to a liquid crystal panel provided with this semiconductor device.
  • a touch sensor function can be realized by incorporating an optical sensor including a thin film diode into a display device.
  • an input of information is performed by detecting a change in light incident from the display surface side by touching the observer side surface (that is, the display surface) of the display device with a finger or a touch pen, using an optical sensor. Is possible.
  • Japanese Unexamined Patent Application Publication No. 2008-287061 discloses a technique for improving the light detection sensitivity of a photosensor in a semiconductor device used for a liquid crystal display device. This will be described with reference to FIG.
  • This semiconductor device includes insulating layers 941, 942, 943, 944, a thin film diode 920, and a thin film transistor 930, which are sequentially formed on a substrate (active matrix substrate) 910.
  • the thin film diode 920 is a PIN diode having a semiconductor layer 921 including an n-type region 921n, a p-type region 921p, and a low-resistance region 921i. Electrodes 923a and 923b penetrating the insulating layers 943 and 944 are connected to the n-type region 921n and the p-type region 921p, respectively.
  • the thin film transistor 930 includes a semiconductor layer 931 including a channel region 931c, an n-type region 931a as a source region, and an n-type region 931b as a drain region.
  • a gate electrode 932 is provided at a position facing the channel region 931c with the insulating layer 943 interposed therebetween.
  • Electrodes 933a and 933b penetrating the insulating layers 943 and 944 are connected to the source region 931a and the drain region 931b, respectively.
  • the drain region 931b is connected to a pixel electrode (not shown) through the electrode 933b.
  • the thin film diode 920 receives light incident from the display surface side (upper side of the drawing in FIG. 7).
  • the thin film diode 920 and the substrate are arranged so that light from a backlight (not shown) arranged on the opposite side of the display surface (the lower side of the paper in FIG. 7) with respect to the substrate 910 does not enter the thin film diode 920.
  • a light shielding layer 990 is provided between the light shielding layer 910 and the light shielding layer 910.
  • the light shielding layer 990 is formed to extend along the surface of a recess 992 formed by partially removing the insulating layer 941.
  • the light shielding layer 990 is formed with an inclined surface 991 extending along the inclined surface of the concave portion 992 by forming the concave portion 992 in a tapered shape that becomes wider upward.
  • the light shielding layer 990 also has a function as a reflective layer. Therefore, the light incident between the thin film diode 920 and the light shielding layer 990 is incident on the thin film diode 920 without being incident on the thin film diode 920 but incident on the light shielding layer 990.
  • the inclined surface 991 formed on the light shielding layer 990 reflects light incident on the inclined surface 991 toward the thin film diode 920.
  • the light shielding layer 990 as described above, more light incident from the display surface side can be incident on the thin film diode 920. Therefore, the light detection sensitivity can be improved.
  • the semiconductor device shown in FIG. 7 has the following problems.
  • the thin film diode 920 cannot provide sufficient photodetection sensitivity. The reason is as follows.
  • the semiconductor layer 921 of the thin film diode 920 is formed at the same time as the semiconductor layer 931 of the thin film transistor 930. Therefore, the thickness of the semiconductor layer 921 is extremely thin. For this reason, part of the light incident on the semiconductor layer 921 passes through the semiconductor layer 921 without being absorbed. Therefore, when the light incident between the thin film diode 920 and the light shielding layer 990 is reflected toward the semiconductor layer 921 by the inclined surface 991, part of the light reflected toward the semiconductor layer 921 is part of the semiconductor layer 921. There is a possibility that the semiconductor layer 921 is not absorbed.
  • the inclined surface 991 is formed only in the vicinity of the edge portion of the light shielding layer 990. Therefore, most of the light reflected by the inclined surface 991 enters the peripheral portion of the thin film diode 920. As a result, little light is incident on the low resistance region 921i, which is the light receiving region.
  • the electrode 923a and the electrode 923b of the thin film diode 920 may be short-circuited. The reason is as follows.
  • the electrodes 923a and 923b are formed by forming contact holes in the insulating layers 944 and 943 and then depositing a metal material in the contact holes.
  • the contact hole is formed from the surface of the insulating layer 944 to reach the insulating layer 943 by dry etching (for example, reactive ion etching (RIE) method), and then wet etching (for example, It is formed by performing Buffer Hydrogen Fluoride (BHF).
  • dry etching for example, reactive ion etching (RIE) method
  • wet etching for example, It is formed by performing Buffer Hydrogen Fluoride (BHF).
  • wet etching is performed because silicon dioxide constituting the insulating layer 943 is etched by either dry etching or wet etching, whereas silicon constituting the semiconductor layer 921 is dry etched, but almost wet etching is performed. It is because it is not etched.
  • a hole penetrating the semiconductor layer 921 may be formed by dry etching.
  • the insulating layer 942 is etched by the subsequent wet etching, and as a result, a contact hole that reaches the light shielding layer 990 is formed. Thereafter, when a metal material is deposited in the contact hole, the electrodes 923a and 923b are short-circuited through the light shielding layer 990 as shown in FIG.
  • the optical sensor of the present invention includes a substrate, a thin film diode provided on one side of the substrate, the first semiconductor layer including at least an n-type region and a p-type region, the substrate, and the first semiconductor layer. And a light shielding layer provided between the two.
  • a metal oxide layer is formed on the surface of the light shielding layer on the side facing the first semiconductor layer. Irregularities are formed on the surface of the metal oxide layer facing the first semiconductor layer.
  • the first semiconductor layer has an uneven shape along the unevenness of the metal oxide layer.
  • irregularities are formed in the metal oxide layer.
  • the light incident on the metal oxide layer is irregularly reflected by the unevenness of the metal oxide layer and is incident on the first semiconductor layer.
  • the first semiconductor layer has an uneven shape along the unevenness of the metal oxide layer. As a result, the distance that the irregularly reflected light travels in the first semiconductor layer becomes longer. As a result, the light absorbed by the first semiconductor layer increases. Therefore, even if the thickness of the first semiconductor layer is thin, the light use efficiency is improved and the light detection sensitivity is improved.
  • a metal oxide layer is provided to face the first semiconductor layer.
  • the metal oxide layer functions as an etching stopper when a contact hole is formed by etching to form an electrode of a thin film diode.
  • formation of a deep contact hole reaching the light shielding layer is prevented.
  • the metal oxide layer has an insulating property. Therefore, even if a contact hole reaching the metal oxide layer is formed and the electrode and the metal oxide layer come into contact with each other, the pair of electrodes are not short-circuited through the metal oxide layer.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of part II of FIG. 1, and is a diagram for explaining the reason why the light detection sensitivity of the thin film diode is improved in the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3A is a cross-sectional view showing one manufacturing process of the semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 3B is a cross-sectional view showing one manufacturing process of the semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 3C is a cross-sectional view showing one manufacturing process of the semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of part II of FIG. 1, and is a
  • FIG. 3D is a cross-sectional view showing one manufacturing process of the semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 3E is a cross-sectional view showing one manufacturing process of the semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 3F is a cross-sectional view showing one manufacturing process of the semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 3G is a cross-sectional view showing one manufacturing process of the semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 3H is a cross-sectional view showing one manufacturing process of the semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 3I is a cross-sectional view showing one manufacturing process of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3J is a cross-sectional view showing one manufacturing process of the semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a liquid crystal display device including a liquid crystal panel according to Embodiment 2 of the present invention.
  • FIG. 5 is an equivalent circuit diagram of one pixel of the liquid crystal panel according to Embodiment 2 of the present invention.
  • FIG. 6 is a perspective view showing the main part of another liquid crystal display device according to Embodiment 2 of the present invention.
  • FIG. 7 is a cross-sectional view showing a conventional semiconductor device including a thin film diode and a thin film transistor.
  • FIG. 8 is a cross-sectional view for explaining the reason why a pair of electrodes of a thin film diode is short-circuited in a conventional semiconductor device including a thin film diode and a thin film transistor.
  • An optical sensor includes a substrate, a thin film diode provided on one side of the substrate, the first semiconductor layer including at least an n-type region and a p-type region, the substrate, and the substrate
  • a light-shielding layer provided between the first semiconductor layer, a metal oxide layer is formed on a surface of the light-shielding layer facing the first semiconductor layer, and the first metal oxide layer includes the first oxide layer. Irregularities are formed on the surface facing the semiconductor layer, and the first semiconductor layer has an irregular shape along the irregularities of the metal oxide layer (first configuration) ).
  • irregularities are formed on the surface of the metal oxide layer facing the first semiconductor layer.
  • the irregularities are preferably random irregularities having no regularity. This is because the reflected light can be reflected in various directions, so that the incident angle dependency of the light detection sensitivity of the thin film diode can be reduced.
  • the first semiconductor layer has a concavo-convex shape along the concavo-convex formed in the metal oxide layer. Whether or not the first semiconductor layer has an uneven shape along the unevenness of the metal oxide layer is easily determined by, for example, observing a cross section in the thickness direction with an SEM (hereinafter referred to as “cross-sectional SEM observation”). can do.
  • the fact that the first semiconductor layer has an uneven shape along the unevenness of the metal oxide layer means that, for example, in cross-sectional SEM observation, on the surface of the metal oxide layer facing the first semiconductor layer, the convex portion is upward.
  • the first semiconductor layer is displaced upward in the formed portion, and the first semiconductor layer is displaced downward in the portion where the concave portion is formed downward.
  • the side of the metal oxide layer facing the first semiconductor layer on the lower surface (surface facing the metal oxide layer) and upper surface (surface opposite to the metal oxide layer) of the first semiconductor layer having a substantially constant thickness. Concavities and convexities are formed along the concavities and convexities formed on the surface.
  • the distance that the reflected light irregularly reflected by the metal oxide layer travels in the first semiconductor layer can be increased.
  • the thickness of the first semiconductor layer is thinner than a difference in height between the top and bottom of the unevenness formed on the surface of the first semiconductor layer facing the metal oxide layer. (Second configuration). Moreover, it is preferable that the thickness of the first semiconductor layer is smaller than the difference in height between the top and bottom of the unevenness formed on the surface of the metal oxide layer on the side facing the first semiconductor layer.
  • the thickness of the first semiconductor layer and the height difference between the top and bottom of the irregularities of the first semiconductor layer and the metal oxide layer can all be measured by cross-sectional SEM observation.
  • the lower limit of the thickness of the first semiconductor layer is not particularly limited.
  • the height difference of the unevenness formed on the surface of the first semiconductor layer facing the metal oxide layer and the first thickness of the metal oxide layer are not limited. It is preferable that it is more than half of the height difference of the unevenness
  • the height difference between the top and bottom of the unevenness formed on the surface of the metal oxide layer facing the first semiconductor layer is preferably 50 to 100 nm (first 3 configuration). If the height difference of the unevenness of the metal oxide layer is smaller than this numerical range, the light incident on the metal oxide layer is difficult to be irregularly reflected. Further, when the height difference of the unevenness of the metal oxide layer is smaller than this numerical range, the unevenness of the upper surface and the lower surface of the first semiconductor layer becomes small, and the first semiconductor layer approaches flat. Therefore, the distance that the reflected light reflected by the metal oxide layer travels in the first semiconductor layer is shortened. As a result, it becomes difficult to improve the light detection sensitivity. On the contrary, if the level difference of the unevenness of the metal oxide layer is larger than the above numerical range, it is difficult to form the thin first semiconductor layer as a continuous film without pinholes.
  • the unevenness is formed on the entire surface of the metal oxide layer on the side facing the first semiconductor layer (fourth configuration). Thereby, the incident light to the metal oxide layer is irregularly reflected regardless of the incident position. As a result, the photodetection sensitivity of the photosensor (thin film diode) is further improved. Further, the unevenness forming process can be simplified as compared with the case where unevenness is formed only in a limited region.
  • a pair of connected electrodes may be provided.
  • at least one of the pair of electrodes may reach the metal oxide layer (fifth configuration).
  • the contact hole for forming the electrode can be formed deeper as the electrode reaches the metal oxide layer. As a result, it becomes unnecessary to strictly manage the etching depth for forming the contact hole.
  • a semiconductor device includes the above-described optical sensor according to an embodiment of the present invention, and a thin film transistor provided on the same side of the substrate as the thin film diode, and the thin film transistor includes a channel region.
  • a second semiconductor layer including a source region and a drain region, a gate electrode for controlling conductivity of the channel region, and a gate insulating film provided between the second semiconductor layer and the gate electrode. (Sixth configuration). Since the thin film diode and the thin film transistor are provided over a common substrate, the semiconductor device according to an embodiment of the present invention can be used for a wide range of applications that require a light detection function.
  • the first semiconductor layer and the second semiconductor layer are formed on the same insulating layer (seventh configuration). Thereby, the first semiconductor layer and the second semiconductor layer can be formed in parallel in the same process. As a result, the manufacturing process can be simplified.
  • the surface of the second semiconductor layer facing the substrate is preferably flat (eighth configuration).
  • the photodetection sensitivity of the thin film diode can be improved without adversely affecting the gate breakdown voltage characteristics of the thin film transistor.
  • the surface of the second semiconductor layer facing the substrate does not need to be completely flat, and may be substantially flat.
  • the thickness of the first semiconductor layer and the thickness of the second semiconductor layer are the same (9th configuration). Thereby, the first semiconductor layer and the second semiconductor layer can be formed in parallel in the same process. As a result, the manufacturing process can be simplified. Note that the thickness of the first semiconductor layer and the thickness of the second semiconductor layer do not have to be completely the same, and may be substantially the same.
  • a liquid crystal panel includes the semiconductor device, a counter substrate disposed to face a surface of the substrate on which the thin film diode and the thin film transistor are provided, the substrate, and the counter substrate. And a liquid crystal layer sealed between them (tenth configuration). As a result, a liquid crystal panel having a touch sensor function and an ambient sensor function for detecting ambient brightness can be realized.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a semiconductor device 100 according to the first embodiment of the present invention.
  • the semiconductor device 100 includes a substrate 101, a thin film diode 130 formed on the substrate 101 via a base layer 103 as an insulating layer, and a light shielding layer 160 provided between the substrate 101 and the thin film diode 130.
  • An optical sensor 132 and a thin film transistor 150 are provided.
  • the substrate 101 preferably has translucency.
  • FIG. 1 only a single photosensor 132 and a single thin film transistor 150 are shown for simplicity of illustration, but a plurality of photosensors 132 and a plurality of thin film transistors 150 are formed on a common substrate 101. May be.
  • FIG. 1 for easy understanding, a cross-sectional view of the optical sensor 132 and a cross-sectional view of the thin film transistor 150 are shown in the same drawing. It need not be a cross-sectional view along.
  • the thin film diode 130 has a semiconductor layer (first semiconductor layer) 131 including at least an n-type region 131n and a p-type region 131p.
  • intrinsic region 131 i is provided between n-type region 131 n and p-type region 131 p in semiconductor layer 131.
  • Electrodes 133a and 133b are connected to the n-type region 131n and the p-type region 131p, respectively.
  • the thin film transistor 150 includes a semiconductor layer (second semiconductor layer) 151 including a channel region 151c, a source region 151a, and a drain region 151b, a gate electrode 152 that controls conductivity of the channel region 151c, a semiconductor layer 151, and a gate electrode 152. And a gate insulating film 105 provided between the two. Electrodes 153a and 153b are connected to the source region 151a and the drain region 151b, respectively. The gate insulating film 105 extends over the semiconductor layer 131.
  • the crystallinity of the semiconductor layer 131 of the thin film diode 130 and the semiconductor layer 151 of the thin film transistor 150 may be different from each other or the same. If the crystallinity of both is the same, there is no need to control the crystal states of the semiconductor layers 131 and 151 separately. As a result, the semiconductor device 100 with high reliability and high performance can be obtained without complicating the manufacturing process.
  • An interlayer insulating film 107 is formed on the thin film diode 130 and the thin film transistor 150.
  • a light shielding layer 160 is provided between the substrate 101 and the thin film diode 130 at a position facing the thin film diode 130. This prevents light from entering the semiconductor layer 131 through the substrate 101 from the side opposite to the side where the thin film diode 130 is provided with respect to the substrate 101. More specifically, the light shielding layer 160 is formed at a position including a region facing the semiconductor layer 131 on the substrate 101.
  • a metal oxide layer 180 is provided on the surface of the light shielding layer 160 facing the semiconductor layer 131. Fine and random irregularities are formed on the surface (upper surface) of the metal oxide layer 180 facing the thin film diode 130.
  • the semiconductor layer 131 of the thin film diode 130 has an uneven shape that follows the unevenness of the metal oxide layer 180. That is, in the cross section along the thickness direction as shown in FIG. 1, the first semiconductor layer 131 having a substantially constant thickness has a substantially constant interval with respect to the irregularities on the upper surface of the metal oxide layer 180. Is displaced (bent).
  • FIG. 2 is an enlarged cross-sectional view of a portion II of FIG. 1 including the light shielding layer 160, the metal oxide layer 180, and the semiconductor layer 131.
  • Incident light L ⁇ b> 1 directed from above to the thin film diode 130 enters the semiconductor layer 131 of the thin film diode 130 and is absorbed by the semiconductor layer 131.
  • the semiconductor layer 131 is thin, a part of the incident light L1 passes through the semiconductor layer 131.
  • Incident light L 1 that has passed through the semiconductor layer 131 passes through the base layer 103 and enters the upper surface of the metal oxide layer 180.
  • Incident light L ⁇ b> 1 cannot pass through the metal oxide layer 180.
  • random irregularities are formed on the upper surface of the metal oxide layer 180. Therefore, the metal oxide layer 180 irregularly reflects the incident light L1.
  • the reflected light L2 irregularly reflected on the upper surface of the metal oxide layer 180 travels in various directions, passes through the base layer 103, and enters the semiconductor layer 131.
  • the reflected light reflected at a relatively large reflection angle generally enters the semiconductor layer 131 at a large incident angle.
  • the semiconductor layer 131 is formed substantially along the unevenness of the metal oxide layer 180.
  • the distance traveled in the semiconductor layer 131 is longer than in the case where the semiconductor layer 131 is flat.
  • Cheap the distance that the incident light L1 and the reflected light L2 travel through the semiconductor layer 131 can be increased.
  • the light absorbed by the semiconductor layer 131 increases.
  • the light utilization efficiency is improved, and the light detection sensitivity of the thin film diode 130 is improved.
  • the unevenness on the upper surface of the metal oxide layer 180 and the shape of the semiconductor layer 131 are random, the incident angle dependency is less and a stable light detection sensitivity improvement effect is obtained.
  • Random irregularities on the upper surface of the metal oxide layer 180 are preferably formed on the entire upper surface of the metal oxide layer 180. Thereby, the light detection sensitivity of the thin film diode 130 can be improved regardless of the incident position of the incident light L1 with respect to the metal oxide layer 180. Moreover, since it is not necessary to limit the area
  • the semiconductor layer 131 of the thin film diode 130 only needs to have a concavo-convex shape along the concavo-convex shape of the upper surface of the metal oxide layer 180 in at least the intrinsic region 131i, but in the entire region including the n-type region 131n and the p-type region 131p. It is preferable to have. This is because the manufacturing process can be simplified.
  • the present invention can improve the photodetection sensitivity even when the semiconductor layer 131 is thin such that much of the incident light L1 passes through the semiconductor layer 131.
  • the semiconductor layer 131 is thinner than the height difference between the top and bottom of the unevenness formed on the lower surface of the semiconductor layer 131, the distance that the reflected light L2 travels in the semiconductor layer 131 as shown in FIG. Can be lengthened.
  • the light detection sensitivity of the thin film diode 130 is improved. Therefore, it is not necessary to increase the thickness of the semiconductor layer 131 in order to reduce light that passes through the semiconductor layer 131.
  • the semiconductor layer 131 can be formed by the same process as the semiconductor layer 151 of the thin film transistor 150 as described later.
  • a first thin film 161 that later becomes a light shielding layer 160 and a second thin film 181 that later becomes a metal oxide layer 180 are sequentially formed on the substrate 101.
  • the substrate 101 is not particularly limited and may be appropriately selected in consideration of the application of the semiconductor device 100.
  • a light-transmitting glass substrate for example, a low alkali glass substrate
  • a quartz substrate is used. it can.
  • the substrate 101 may be heat-treated in advance at a temperature lower by about 10 to 20 ° C. than the glass strain point.
  • the material of the first thin film 161 for example, a metal material can be used.
  • a metal material can be used.
  • tantalum (Ta), tungsten (W), molybdenum (Mo), and the like, which are high melting point metals, are preferable in consideration of heat treatment in a later manufacturing process.
  • This metal material is formed over the entire surface of the substrate 101 by sputtering.
  • the thickness of the first thin film 161 is preferably about 100 to 200 nm.
  • the second thin film 181 is preferably made of metal oxide and has high electrical resistance.
  • the tantalum (Ta), tungsten (W), molybdenum (Mo), or the like exemplified as the material of the first thin film 161 can be used as a target by sputtering in an oxygen atmosphere.
  • tantalum oxide (Ta 2 O 5 ) is particularly preferable.
  • the second thin film 181 is formed on the entire surface of the substrate 101.
  • the thickness of the second thin film 181 is preferably about 50 to 200 nm.
  • the formed second thin film 181 are formed in the formed second thin film 181.
  • random irregularities are formed on the surface of the second thin film 181.
  • anisotropic etching such as reactive ion etching may be performed on the surface of the second thin film 181 in the thickness direction.
  • the etching depth is preferably about 20 to 100 nm. Since columnar crystals are formed in the second thin film 181, the surface of the second thin film 181 is selectively etched, and the unevenness of the surface of the second thin film 181 becomes larger.
  • the degree of unevenness on the surface of the second thin film 181 is preferably about 50 to 100 nm in terms of the difference in height (that is, the distance in the thickness direction) between the top and bottom of the unevenness.
  • a desired light shielding layer 160 pattern is formed on the upper surface of the second thin film 181 using a resist. Then, the first thin film 161 and the second thin film 181 in the unnecessary region are removed by a wet etching method. The first thin film 161 and the second thin film 181 in the region where the thin film diode 130 will be formed later are left. The first thin film 161 and the second thin film 181 outside the formation region of the thin film diode 130 including the region where the thin film transistor 150 is to be formed later are removed. As a result, as shown in FIG. 3B, a patterned light shielding layer 160 and metal oxide layer 180 are obtained.
  • a base layer 103 is formed so as to cover the substrate 101, the light shielding layer 160, and the metal oxide layer 180, and an amorphous semiconductor film 110 is further formed.
  • the underlayer 103 is provided to prevent impurity diffusion from the substrate 101.
  • the underlayer 103 may be, for example, a single layer made of a silicon oxide film, a multiple layer made of a silicon nitride film and a silicon oxide film from the substrate 101 side, or a known structure other than these.
  • Such an underlayer 103 can be formed using, for example, a plasma CVD method.
  • the thickness of the underlayer 103 is preferably 100 to 600 nm, more preferably 150 to 450 nm.
  • the semiconductor constituting the amorphous semiconductor film 110 silicon can be preferably used, but other semiconductors such as Ge, SiGe, compound semiconductors, and chalcogenides can also be used. The case where silicon is used will be described below.
  • the amorphous silicon film 110 is formed by a known method such as a plasma CVD method or a sputtering method.
  • the thickness of the amorphous silicon film 110 is preferably 25 to 100 nm as a film thickness from which high-quality polycrystalline silicon can be obtained by crystallization by subsequent laser irradiation.
  • the amorphous silicon film 110 having a thickness of 50 nm can be formed by a plasma CVD method.
  • the base layer 103 and the amorphous silicon film 110 may be formed continuously. After the base layer 103 is formed, contamination of the surface of the base layer 103 can be prevented by not exposing the base layer 103 to the air atmosphere. As a result, variation in characteristics and variation in threshold voltage of the thin film transistor 150 and the thin film diode 130 to be manufactured can be reduced.
  • the unevenness along the unevenness formed on the upper surface of the metal oxide layer 180 is formed on the upper surface of the base layer 103 and the amorphous silicon film 110. Formed on the upper surface of the substrate.
  • the amorphous silicon film 110 is crystallized by irradiating the amorphous silicon film 110 with laser light 121 from above.
  • a XeCl excimer laser (wavelength 308 nm, pulse width 10 to 150 nsec, for example 40 nsec) or a KrF excimer laser (wavelength 248 nm, pulse width 10 to 150 nsec) can be applied.
  • the laser beam 121 is adjusted so that the irradiation range on the surface of the substrate 101 has a long shape.
  • the entire surface of the amorphous silicon film 110 is crystallized by sequentially scanning the laser beam 121 in a direction perpendicular to the longitudinal direction of the irradiation range of the laser beam 121 on the surface of the substrate 101. At this time, it is preferable to scan the laser beam 121 so that a part of the irradiation range overlaps. Thereby, laser irradiation is performed a plurality of times at an arbitrary point on the amorphous silicon film 110. As a result, the uniformity of the crystalline state of the polycrystalline silicon film 111 can be improved.
  • the amorphous silicon film 110 is crystallized in the process of instantaneously melting and solidifying to become the polycrystalline silicon film 111.
  • an unnecessary region of the polycrystalline silicon film 111 is removed and element isolation is performed.
  • the element isolation can be performed by photolithography, that is, by forming a resist having a predetermined pattern and then removing the polycrystalline silicon film 111 in an unnecessary region by dry etching.
  • the semiconductor layer 131 that becomes the active region (n + type region, p + type region, intrinsic region) of the subsequent thin film diode 130 and the active region (source region, drain region, channel region) of the subsequent thin film transistor 150 are obtained.
  • the semiconductor layer 151 is formed so as to be separated from each other. That is, these semiconductor layers 131 and 151 are formed in an island shape.
  • the gate electrode 152 of the thin film transistor 150 is formed on the gate insulating film 105.
  • the gate insulating film 105 a silicon oxide film is preferable.
  • the thickness of the gate insulating film 105 is preferably 20 to 150 nm (for example, 100 nm).
  • unevenness along the unevenness formed on the upper surface of the metal oxide layer 180 is formed on the upper surface of the gate insulating film 105.
  • the gate electrode 152 is formed by depositing a conductive film on the entire surface of the gate insulating film 105 using a sputtering method or a CVD method and patterning the conductive film.
  • a sputtering method or a CVD method As a material for the conductive film, any of refractory metals W, Ta, Ti, Mo or alloy materials thereof is desirable.
  • the thickness of the conductive film is preferably 300 to 600 nm.
  • a mask 122 made of resist is formed on the gate insulating film 105 so as to cover a part of the semiconductor layer 131 that will later become an active region of the thin film diode 130.
  • an n-type impurity (for example, phosphorus) 123 is ion-doped on the entire surface of the substrate 101 from above the substrate 101.
  • the n-type impurity 123 is implanted into the semiconductor layers 151 and 131 through the gate insulating film 105.
  • the n-type impurity 123 is implanted into a region not covered with the mask 122 in the semiconductor layer 131 of the thin film diode 130 and a region not covered with the gate electrode 152 in the semiconductor layer 151 of the thin film transistor 150.
  • the region covered with the mask 122 and the gate electrode 152 is not doped with the n-type impurity 123.
  • the region into which the n-type impurity 123 is implanted in the semiconductor layer 151 of the thin film transistor 150 later becomes a source region 151a and a drain region 151b of the thin film transistor.
  • a region of the semiconductor layer 151 that is masked by the gate electrode 152 and is not implanted with the n-type impurity 123 later becomes a channel region 151c of the thin film transistor 150.
  • a part of the semiconductor layer 131 that will later become an active region of the thin film diode 130 and the entire semiconductor layer 151 that later becomes an active region of the thin film transistor 150 are covered.
  • a resist mask 124 is formed on the gate insulating film 105.
  • a p-type impurity (for example, boron) 125 is ion-doped on the entire surface of the substrate 101 from above the substrate 101.
  • the p-type impurity 125 passes through the gate insulating film 105 and is injected into the semiconductor layer 131.
  • the p-type impurity 125 is implanted into a region not covered with the mask 124 in the semiconductor layer 131 of the thin film diode 130.
  • the region covered with the mask 124 is not doped with the p-type impurity 125.
  • the region where the p-type impurity 125 is implanted in the semiconductor layer 131 of the thin film diode 130 later becomes the p-type region 131 p of the thin film diode 130.
  • a region of the semiconductor layer 131 in which neither the p-type impurity nor the n-type impurity is implanted becomes an intrinsic region 131i later.
  • heat treatment is performed in an inert atmosphere, for example, in a nitrogen atmosphere.
  • an inert atmosphere for example, in a nitrogen atmosphere.
  • the doping damage such as crystal defects generated at the time of doping is recovered.
  • boron are activated.
  • This heat treatment may be performed using a general heating furnace, but is preferably performed using RTA (Rapid Thermal Annealing).
  • RTA Rapid Thermal Annealing
  • an interlayer insulating film 107 is formed.
  • the structure of the interlayer insulating film 107 is not particularly limited, and a known one can be used. For example, a two-layer structure in which a silicon nitride film and a silicon oxide film are formed in this order can be used. If necessary, a heat treatment for hydrogenating the semiconductor layers 151 and 131, for example, annealing at 350 to 450 ° C. in a nitrogen atmosphere or a hydrogen mixed atmosphere at 1 atm may be performed.
  • a contact hole is formed in the interlayer insulating film 107.
  • a film made of a metal material for example, a two-layer film of titanium nitride and aluminum
  • this film is patterned.
  • the electrodes 133a and 133b of the thin film diode 130 and the electrodes 153a and 153b of the thin film transistor 150 are formed.
  • the method of forming the contact hole is not particularly limited, and can be performed as follows, for example, as in the conventional case.
  • a contact hole pattern is formed on the surface of the interlayer insulating film 107 using a resist.
  • a hole is formed to the extent that it reaches the gate insulating film 105 by dry etching (for example, reactive ion etching).
  • a contact hole reaching the semiconductor layer 131 is formed by wet etching using BHF or the like.
  • the base layer 103 is etched by wet etching performed after dry etching.
  • the metal oxide layer 180 exists under the base layer 103, and this metal oxide layer 180 functions as an etching stopper to prevent further etching.
  • the metal material and the metal oxide layer 180 come into contact if the contact hole reaches the metal oxide layer 180.
  • the metal oxide layer 180 has an insulating property, the electrode 133a and the electrode 133b are not short-circuited.
  • the metal oxide layer 180 on the surface of the light shielding layer 160 on the semiconductor layer 131 side, the conventional problem that the electrode 133a and the electrode 133b are short-circuited can be solved. Furthermore, it becomes unnecessary to strictly control the etching depth for forming the contact hole.
  • the metal oxide layer 180 functions as an etching stopper.
  • a deep contact hole reaching at least the semiconductor layer 131 can be formed only by dry etching, and wet etching can be omitted.
  • dry etching damages the semiconductor layer 131 and increases the contact resistance with the electrode. Therefore, dry etching is performed up to the vicinity of the semiconductor layer 131 (for example, to the middle of the gate insulating film 105), and then etching is performed by switching to wet etching to suppress an increase in contact resistance and obtain good ohmic characteristics. This is preferable.
  • the thin film diode 130 connected to the electrodes 133a and 133b and the thin film transistor 150 connected to the electrodes 153a and 153b are obtained.
  • a protective film (not shown) made of a silicon nitride film or the like is formed on the interlayer insulating film 107. It may be provided.
  • the semiconductor layer 131 of the thin film diode 130 and the semiconductor layer 151 of the thin film transistor 150 can be formed in parallel. As a result, the thin film diode 130 and the thin film transistor 150 can be efficiently manufactured on the common substrate 101.
  • the thickness of the semiconductor layer 131 of the thin film diode 130 inevitably becomes the same as the thickness of the semiconductor layer 151 of the thin film transistor 150. Therefore, in order to improve the photodetection sensitivity, it is impossible to take a method of increasing the thickness of the semiconductor layer 131 of the thin film diode 130.
  • the light detection sensitivity of the thin film diode 130 can be improved even when the semiconductor layer 131 cannot be thickened.
  • the semiconductor layer 131 of the thin film diode 130 to be laminated thereafter is formed on the upper surface of the metal oxide layer 180. It is formed in the uneven
  • the semiconductor device can be manufactured easily and at low cost without significantly changing the manufacturing process of the conventional semiconductor device.
  • the first thin film 161 and the second thin film 181 in the region where the thin film transistor 150 is formed are removed. Therefore, the upper and lower surfaces of the semiconductor layer 151 constituting the thin film transistor 150 are substantially flat. Therefore, the light detection sensitivity of the thin film diode 130 can be improved without adversely affecting the characteristics of the thin film transistor 150 (for example, lowering of the gate breakdown voltage characteristic).
  • the structure of the thin film transistor is not limited to the above.
  • any of a thin film transistor having a dual gate structure, a thin film transistor having an LDD structure or a GOLD structure, a p-channel thin film transistor, or the like may be used.
  • a plurality of types of thin film transistors having different structures may be formed.
  • the semiconductor device 100 including the optical sensor 132 and the thin film transistor 150 is illustrated.
  • the present invention is not limited to this.
  • only the optical sensor 132 may be used.
  • the semiconductor layers 131 and 151 may be formed of amorphous silicon.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a liquid crystal display device 500 including the liquid crystal panel 501 according to the second embodiment.
  • the liquid crystal display device 500 includes a liquid crystal panel 501, an illumination device 502 that illuminates the back surface of the liquid crystal panel 501, and a translucent protective panel 504 that is disposed with respect to the liquid crystal panel 501 through an air gap 503.
  • the liquid crystal panel 501 includes a TFT array substrate 510 and a counter substrate 520, both of which are translucent plates, and a liquid crystal layer 519 sealed between the TFT array substrate 510 and the counter substrate 520.
  • the formation material of the TFT array substrate 510 and the counter substrate 520 is not particularly limited.
  • the same material as used for a conventional liquid crystal panel, such as glass and acrylic resin, can be used.
  • a deflection plate 511 that transmits or absorbs a specific polarization component is provided on the surface of the TFT array substrate 510 on the side of the illumination device 502.
  • An insulating layer 512 and an alignment film 513 are sequentially stacked on the surface of the TFT array substrate 510 opposite to the deflecting plate 511.
  • the alignment film 513 is a layer for aligning liquid crystals, and is formed of an organic thin film such as polyimide.
  • a pixel electrode 515 made of a transparent conductive thin film made of ITO or the like, a thin film transistor (TFT) 550 as a switching element for driving a liquid crystal connected to the pixel electrode 515, and a light detection function are provided in the insulating layer 512.
  • a pixel electrode 515 made of a transparent conductive thin film made of ITO or the like a thin film transistor (TFT) 550 as a switching element for driving a liquid crystal connected to the pixel electrode 515, and a light detection function are provided.
  • a polarizing plate 521 that transmits or absorbs a specific polarization component is provided on the surface of the counter substrate 520 opposite to the liquid crystal layer 519.
  • an alignment film 523, a common electrode 524, and a color filter layer 525 are formed in this order from the liquid crystal layer 519 side.
  • the alignment film 523 is a layer for aligning liquid crystals, and is formed of an organic thin film such as polyimide.
  • the common electrode 524 is made of a transparent conductive thin film made of ITO or the like.
  • the color filter layer 525 includes three types of resin films (color filters) that selectively transmit light in the wavelength bands of the primary colors of red (R), green (G), and blue (B), and adjacent color filters. And a black matrix serving as a light shielding film. It is preferable that a color filter and a black matrix are not provided in a region corresponding to the thin film diode 530.
  • one pixel electrode 515 and one thin film transistor 550 are arranged for any one of the primary color filters of red, green, and blue, and these are the primary color pixels ( Picture element).
  • the three picture elements of red, green, and blue constitute a color pixel (pixel).
  • Such color pixels are regularly arranged in the vertical and horizontal directions.
  • the translucent protective panel 504 is made of a flat plate such as glass or acrylic resin.
  • the surface of the translucent protective panel 504 opposite to the liquid crystal panel 501 is a touch sensor surface 504 a that can be touched with a human finger 509.
  • the lighting device 502 is not particularly limited, and a known lighting device can be used as a lighting device for a liquid crystal panel.
  • a direct illumination type or an edge light type illumination device can be used.
  • An edge light type illumination device is preferable because it is advantageous in reducing the thickness of the liquid crystal display device.
  • the type of the light source is not limited, and may be, for example, a cold / hot cathode tube or an LED.
  • a color image can be displayed by allowing light from the lighting device 502 to pass through the liquid crystal panel 501 and the light-transmitting protective panel 504.
  • the thin film diode 130, the thin film transistor 150, the light shielding layer 160, and the substrate 101 described in Embodiment 1 can be applied as the thin film diode 530, the thin film transistor 550, the light shielding layer 560, and the TFT array substrate 510.
  • the insulating layer 512 includes the base layer 103, the gate insulating film 105, the interlayer insulating film 107, and the planarization film described in Embodiment 1.
  • FIG. 4 shows a transmissive liquid crystal display device as the liquid crystal display device
  • the present invention is not limited to this, and can be applied to a transflective or reflective liquid crystal display device.
  • the illumination device 502 is not necessary.
  • FIG. 5 is an equivalent circuit diagram of one pixel of the liquid crystal panel 501 shown in FIG.
  • the pixel 570 of the liquid crystal panel 501 includes a display unit 570a and a photosensor unit 570b that form color pixels.
  • a large number of pixels 570 are arranged in a matrix in the vertical and horizontal directions within the pixel region of the liquid crystal panel 501.
  • the display unit 570a includes thin film transistors 550R, 550G, and 550B, liquid crystal elements 551R, 551G, and 551B, and capacitances 552R, 552G, and 552B (here, the subscripts R, G, and B are red, green, and It means to correspond to each blue picture element.
  • the source regions of the thin film transistors 550R, 550G, and 550B are connected to source electrode lines (signal lines) SLR, SLG, and SLB.
  • the gate electrode is connected to a gate electrode line (scanning line) GL.
  • the drain region is connected to the pixel electrodes of the liquid crystal elements 551R, 551G, and 551B (see the pixel electrode 515 in FIG. 4) and one of the capacitances 552R, 552G, and 552B.
  • the other electrodes of the capacitances 552R, 552G, and 552B are connected to the common electrode line TCOM.
  • the thin film transistors 550R, 550G, and 550B are turned on. Accordingly, the signal voltage applied to the source electrode lines SLR, SLG, and SLB is sent from the source electrode of the thin film transistors 550R, 550G, and 550B to the liquid crystal elements 551R, 551G, and 551B and the capacitances 552R, 552G and 552B. It is done. As a result, a voltage is applied to the liquid crystal layer 519 (see FIG. 4) by the pixel electrode 515 (see FIG. 4) and the common electrode 524 (see FIG. 4) of the liquid crystal elements 551R, 551G, and 551B. A desired color display is performed by changing the molecular orientation.
  • the optical sensor unit 570 b includes a thin film diode 530, a storage capacitor 531, and a thin film transistor 532.
  • the p + type region of the thin film diode 530 is connected to the reset signal line RST.
  • the n + type region of the thin film diode 530 is connected to one electrode of the storage capacitor 531 and the gate electrode of the thin film transistor 532.
  • the other electrode of the storage capacitor 531 is connected to the read signal line RWS.
  • the drain electrode of the thin film transistor 532 is connected to the source electrode line SLG.
  • the source electrode of the thin film transistor 532 is connected to the source electrode line SLB.
  • a rated voltage VDD is connected to the source electrode line SLG.
  • the drain electrode of the bias transistor 533 is connected to the source electrode line SLB.
  • the rated voltage VSS is connected to the source electrode of the bias transistor 533.
  • an output voltage VPIX corresponding to the amount of light received by the thin film diode 530 is obtained as follows.
  • a high level reset signal is supplied to the reset signal line RST. Thereby, the forward bias is applied to the thin film diode 530. At this time, since the potential of the gate electrode of the thin film transistor 532 is lower than the threshold voltage of the thin film transistor 532, the thin film transistor 532 is non-conductive.
  • the potential of the reset signal line RST is set to a low level. This starts the photocurrent integration period.
  • a photocurrent proportional to the amount of light incident on the thin film diode 530 flows out of the storage capacitor 531 and the storage capacitor 531 is discharged.
  • the thin film transistor 532 remains non-conductive.
  • a high level read signal is supplied to the read signal line RWS.
  • the integration period ends and the readout period starts.
  • Charge is injected into the storage capacitor 531 by the supply of the read signal, so that the potential of the gate electrode of the thin film transistor 532 becomes higher than the threshold voltage of the thin film transistor 532.
  • the thin film transistor 532 becomes conductive, and functions as a source follower amplifier together with the bias transistor 533.
  • the output voltage VPIX obtained from the thin film transistor 532 is proportional to the integral value of the photocurrent of the thin film diode 530 during the integration period.
  • the potential of the read signal line RWS is lowered to a low level, and the read period ends.
  • the touch sensor function in the pixel area of the liquid crystal panel 501 can be realized by sequentially repeating the above operation in all the pixels 570 arranged in the pixel area of the liquid crystal panel 501.
  • the liquid crystal display device 500 having a touch sensor function with excellent light detection sensitivity can be realized.
  • one optical sensor unit 570b is provided for one display unit 570a constituting a color pixel, but the present invention is not limited to this.
  • one optical sensor unit 570b may be provided for the plurality of display units 570a.
  • one optical sensor unit 570b may be provided for each of the red, blue, and green picture elements in one display unit 570a.
  • FIG. 5 shows an example in which the present invention is applied to a liquid crystal panel that performs color display.
  • the present invention can also be applied to a liquid crystal panel that performs monochrome display.
  • the thin film transistor 150 of Embodiment 1 is the thin film transistor 550 (550R, 550G, 550B) provided in each pixel has been described, but the present invention is not limited to this.
  • the thin film transistor shown in FIG. 5 other than the thin film transistor 550 (550R, 550G, 550B) provided in each picture element may be used.
  • a thin film transistor for a driver circuit (a gate driver 510g and a source driver 510s described later) may be used.
  • the optical sensor of the present invention having a light detection function is provided in a pixel area of a TFT array substrate 510 where a large number of thin film transistors 550 for driving liquid crystals are arranged in a matrix.
  • the optical sensor may be provided outside the pixel region of the TFT array substrate 510. An example of this will be described with reference to FIG. FIG. 6 illustrates only the TFT array substrate 510 and the illumination device 502 that illuminates the back surface of the TFT array substrate 510 among the members constituting the liquid crystal display device.
  • the TFT array substrate 510 includes a pixel region 510a in which a large number of thin film transistors for driving liquid crystal are arranged in a matrix.
  • a gate driver 510g, a source driver 510s, and a light detection unit are provided in a frame region around the pixel region 510a.
  • 510b is provided.
  • the light sensor 132 the thin film diode 130, the light shielding layer 160, and the metal oxide layer 180 described in Embodiment 1 is formed.
  • the thin film diode 130 of the light detection unit 510b generates an illuminance signal corresponding to the ambient brightness.
  • This illuminance signal is input to a control circuit (not shown) of the lighting device 502 via a wiring 509 such as a flexible substrate.
  • the control circuit controls the illuminance of the lighting device 502 according to the illuminance signal.
  • the optical sensor 132 (the thin film diode 130, the light shielding layer 160, and the metal oxide layer 180) of the present invention is arranged in the frame region of the TFT array substrate 510 and used as an ambient sensor for detecting ambient brightness. You can also. Since the thin film diode 130 constituting the optical sensor 132 according to an embodiment of the present invention has excellent light detection sensitivity, a liquid crystal display device in which the brightness of the display screen is optimally set according to the ambient brightness is realized. Can do. Furthermore, the thin film diode 130 can be made larger than when the thin film diode 130 is formed in the pixel region. Therefore, it is easy to further increase the light detection sensitivity by expanding the light receiving area.
  • the semiconductor device of the present invention described in the first embodiment is used for a liquid crystal panel
  • the application of the semiconductor device of the present invention is not limited to this. It can also be used for display elements such as EL panels and plasma panels. Further, it can be used for various devices having a light detection function other than the display element.
  • the field of use of the present invention is not particularly limited, but can be widely used for various devices that require a photosensor with improved photodetection sensitivity.
  • it can be preferably used for various display elements as a touch sensor or an ambient sensor for detecting ambient brightness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

 薄膜ダイオードの半導体層の厚みが薄くても、光利用効率を向上させて薄膜ダイオードの光検出感度を向上させる。また、遮光層を介して薄膜ダイオードの電極が短絡するのを防止する。基板(101)の一方の側に、少なくともn型領域(131n)及びp型領域(131p)を含む第1半導体層(131)を有する薄膜ダイオード(130)が設けられ、基板と第1半導体層との間に遮光層(160)が設けられている。遮光層の第1半導体層に対向する側の面に酸化金属層(180)が形成されている。酸化金属層の第1半導体層に対向する側の面に凹凸が形成されており、第1半導体層は酸化金属層の凹凸に沿った凹凸形状を有している。

Description

光センサ、半導体装置、及び液晶パネル
 本発明は、少なくともn型領域及びp型領域を含む半導体層を有する薄膜ダイオード(Thin Film Diode:TFD)を備えた光センサに関する。また、本発明は、薄膜ダイオードと薄膜トランジスタ(Thin Film Transistor:TFT)とを備えた半導体装置に関する。更に、本発明はこの半導体装置を備えた液晶パネルに関する。
 薄膜ダイオードを備えた光センサを表示装置に組み込むことで、タッチセンサ機能を実現することができる。このような表示装置では、表示装置の観察者側表面(即ち、表示面)に指やタッチペンで触れることによる、表示面側から入射する光の変化を光センサで検出することで、情報の入力が可能となる。
 このような表示装置では、周囲の明るさ等の環境によっては、表示面に対する指等の接触による光の変化が少ない。それ故、当該光の変化を光センサで検出できないという問題がある。
 特開2008-287061号公報には、液晶表示装置に使用される半導体装置において、光センサの光検出感度を向上させる技術が開示されている。これを図7を用いて説明する。
 この半導体装置は、基板(アクティブマトリックス基板)910上に、順次形成された絶縁層941,942,943,944と、薄膜ダイオード920と、薄膜トランジスタ930とを備えている。薄膜ダイオード920は、n型領域921n、p型領域921p、低抵抗領域921iからなる半導体層921を有するPIN型ダイオードである。n型領域921n、p型領域921pには、絶縁層943,944を貫通する電極923a,923bがそれぞれ接続されている。薄膜トランジスタ930は、チャネル領域931c、ソース領域としてのn型領域931a、ドレイン領域としてのn型領域931bからなる半導体層931を有する。チャネル領域931cに対して絶縁層943を介して対向する位置にゲート電極932が設けられている。ソース領域931a、ドレイン領域931bには、絶縁層943,944を貫通する電極933a,933bがそれぞれ接続されている。ドレイン領域931bは、電極933bを介して画素電極(図示せず)に接続されている。
 薄膜ダイオード920は、表示面側(図7の紙面上側)から入射した光を受光する。一方、基板910に対して表示面とは反対側(図7の紙面下側)に配されるバックライト(図示せず)からの光が薄膜ダイオード920に入射しないように、薄膜ダイオード920と基板910との間に遮光層990が設けられている。遮光層990は、絶縁層941を部分的に除去して形成された凹部992の表面に沿って延びるように形成されている。凹部992を上方に向かって幅広となるテーパ状に形成することにより、遮光層990には凹部992の傾斜面に沿って延びる傾斜面991が形成されている。
 遮光層990は反射層としての機能も有している。従って、表示面側から入射し薄膜ダイオード920に入射せずに、薄膜ダイオード920と遮光層990との間に入射した光は遮光層990で反射されて薄膜ダイオード920に入射する。遮光層990に形成された傾斜面991は、傾斜面991に入射した光を薄膜ダイオード920に向かって反射する。
 図7に示した半導体装置では、上記のような遮光層990を設けることにより、表示面側から入射した光をより多く薄膜ダイオード920に入射させることができる。それ故、光検出感度を向上させることができる。
 しかしながら、図7に示した半導体装置は以下の問題を有している。
 第1に、薄膜ダイオード920では十分な光検出感度は得られない。その理由は以下の通りである。
 薄膜ダイオード920の半導体層921は、薄膜トランジスタ930の半導体層931と同時に形成される。それ故、半導体層921の膜厚は極めて薄い。このため、半導体層921に入射した光の一部は半導体層921に吸収されずに通過してしまう。従って、傾斜面991により、薄膜ダイオード920と遮光層990との間に入射した光を半導体層921に向かって反射させたところで、半導体層921に向けて反射させた光の一部は半導体層921に吸収されず、半導体層921を通過してしまう可能性がある。しかも、傾斜面991は、遮光層990の端縁部付近のみに形成されている。それ故、傾斜面991で反射した光の多くは薄膜ダイオード920の周辺部分に入射する。その結果、受光領域である低抵抗領域921iに入射する光は僅かである。
 第2に、薄膜ダイオード920の電極923aと電極923bとが短絡してしまうことがある。その理由は以下の通りである。
 一般に、電極923a,923bは、絶縁層944,943にコンタクトホールを形成し、次いで、このコンタクトホール内に金属材料を堆積することにより形成される。ここで、コンタクトホールは、絶縁層944の表面から、ドライエッチング(例えば反応性イオンエッチング(Reactive Ion Etching:RIE)法)により絶縁層943に達する程度まで孔を形成し、その後、ウエットエッチング(例えばBuffer Hydrogen Fluoride:BHF)を行うことで形成される。最後にウエットエッチングを行うのは、絶縁層943を構成する二酸化シリコンはドライエッチング及びウエットエッチングのいずれでもエッチングされるのに対して、半導体層921を構成するシリコンはドライエッチングされるが、ほとんどウエットエッチングされないからである。ところが、ドライエッチングのエッチング深さの制御が難しく、ドライエッチングによって半導体層921を貫通する孔が形成されてしまうことがある。このような場合、これに続くウエットエッチングによって絶縁層942がエッチングされてしまい、結局、遮光層990にまで達するコンタクトホールが形成されてしまう。その後、コンタクトホール内に金属材料を堆積すると、図8に示すように遮光層990を介して電極923aと電極923bとが短絡してしまうのである。
 本発明は、上記の従来の問題を解決し、薄膜ダイオードの半導体層の厚みが薄くても、光利用効率を向上させて薄膜ダイオードの光検出感度を向上させることを目的とする。また、本発明は、遮光層を介して薄膜ダイオードの一対の電極が短絡するのを防止することを目的とする。
 本発明の光センサは、基板と、前記基板の一方の側に設けられた、少なくともn型領域及びp型領域を含む第1半導体層を有する薄膜ダイオードと、前記基板と前記第1半導体層との間に設けられた遮光層とを備える。前記遮光層の前記第1半導体層に対向する側の面に酸化金属層が形成されている。前記酸化金属層の前記第1半導体層に対向する側の面に凹凸が形成されている。前記第1半導体層は前記酸化金属層の前記凹凸に沿った凹凸形状を有している。
 本発明によれば、酸化金属層に凹凸が形成されている。これにより、酸化金属層に入射した光は、酸化金属層の凹凸で乱反射され、第1半導体層に入射する。第1半導体層は、酸化金属層の凹凸に沿った凹凸形状を有している。これにより、乱反射された反射光が第1半導体層内を進む距離は長くなる。その結果、第1半導体層で吸収される光が増える。従って、第1半導体層の厚みが薄くても、光利用効率が向上し、光検出感度が向上する。
 また、第1半導体層に対向して酸化金属層が設けられている。これにより、薄膜ダイオードの電極を形成するためにエッチングでコンタクトホールを形成する際に、酸化金属層はエッチングストッパとして機能する。その結果、遮光層に達する深いコンタクトホールが形成されるのを防止する。また、酸化金属層は絶縁性を有する。それ故、仮に酸化金属層に達するコンタクトホールが形成されて、電極と酸化金属層とが接触してしまったとしても、酸化金属層を介して一対の電極が短絡することはない。
図1は、本発明の実施の形態1に係る半導体装置の概略構成を示した断面図である。 図2は、図1の部分IIの拡大断面図であり、本発明の実施の形態1に係る半導体装置において薄膜ダイオードの光検出感度が向上する理由を説明するための図である。 図3Aは、本発明の実施の形態1に係る半導体装置の一製造工程を示した断面図である。 図3Bは、本発明の実施の形態1に係る半導体装置の一製造工程を示した断面図である。 図3Cは、本発明の実施の形態1に係る半導体装置の一製造工程を示した断面図である。 図3Dは、本発明の実施の形態1に係る半導体装置の一製造工程を示した断面図である。 図3Eは、本発明の実施の形態1に係る半導体装置の一製造工程を示した断面図である。 図3Fは、本発明の実施の形態1に係る半導体装置の一製造工程を示した断面図である。 図3Gは、本発明の実施の形態1に係る半導体装置の一製造工程を示した断面図である。 図3Hは、本発明の実施の形態1に係る半導体装置の一製造工程を示した断面図である。 図3Iは、本発明の実施の形態1に係る半導体装置の一製造工程を示した断面図である。 図3Jは、本発明の実施の形態1に係る半導体装置の一製造工程を示した断面図である。 図4は、本発明の実施の形態2に係る液晶パネルを含む液晶表示装置の概略構成を示した断面図である。 図5は、本発明の実施の形態2に係る液晶パネルの一画素の等価回路図である。 図6は、本発明の実施の形態2に係る別の液晶表示装置の主要部を示した斜視図である。 図7は、薄膜ダイオード及び薄膜トランジスタを備えた従来の半導体装置を示した断面図である。 図8は、薄膜ダイオード及び薄膜トランジスタを備えた従来の半導体装置において、薄膜ダイオードの一対の電極が短絡する理由を説明する断面図である。
 本発明の一実施形態に係る光センサは、基板と、前記基板の一方の側に設けられた、少なくともn型領域及びp型領域を含む第1半導体層を有する薄膜ダイオードと、前記基板と前記第1半導体層との間に設けられた遮光層とを備え、前記遮光層の前記第1半導体層に対向する側の面に酸化金属層が形成されており、前記酸化金属層の前記第1半導体層に対向する側の面に凹凸が形成されており、前記第1半導体層は前記酸化金属層の前記凹凸に沿った凹凸形状を有していることを、特徴とする(第1の構成)。
 第1の構成においては、酸化金属層の第1半導体層に対向する側の面に凹凸が形成されている。これにより、酸化金属層の第1半導体層に対向する側の面に入射する光を乱反射させることができる。凹凸は、規則性を有しないランダムな凹凸であることが好ましい。反射光を様々な方向に反射させることができるので、薄膜ダイオードの光検出感度の入射角依存性を低減することができるからである。
 第1半導体層は、酸化金属層に形成された上記凹凸に沿った凹凸形状を有している。第1半導体層が酸化金属層の凹凸に沿った凹凸形状を有しているか否かは、例えば厚さ方向の断面をSEMで観察する(以下、「断面SEM観察」という)ことにより容易に判断することができる。第1半導体層が酸化金属層の凹凸に沿った凹凸形状を有しているとは、例えば断面SEM観察において、酸化金属層の第1半導体層に対向する側の面において、上向きに凸部が形成された箇所では、第1半導体層は上向きに変位し、下向きに凹部が形成された箇所では、第1半導体層は下向きに変位していることをいう。この結果、ほぼ一定厚さの第1半導体層の下面(酸化金属層に対向する面)及び上面(酸化金属層とは反対側の面)に、酸化金属層の第1半導体層に対向する側の面に形成された凹凸に沿った凹凸が形成されることとなる。
 第1半導体層が酸化金属層の凹凸に沿った凹凸形状を有していることにより、酸化金属層で乱反射された反射光が第1半導体層内を進む距離を長くすることができる。
 第1の構成において、前記第1半導体層の厚さが、前記第1半導体層の前記酸化金属層に対向する側の面に形成された凹凸の頂部と底部との高低差より薄いことが好ましい(第2の構成)。また、第1半導体層の厚さが、酸化金属層の第1半導体層に対向する側の面に形成された凹凸の頂部と底部との高低差より薄いことが好ましい。第1半導体層をこのように薄くすることにより、薄膜トランジスタを構成する第2半導体層と同一プロセスで第1半導体層を形成することが可能となる。その結果、製造プロセスを簡単にすることができる。なお、第1半導体層の厚さ、第1半導体層及び酸化金属層の凹凸の頂部と底部との高低差は、いずれも断面SEM観察により測定することができる。なお、第1半導体層の厚さの下限は、特に制限はないが、例えば第1半導体層の酸化金属層に対向する側の面に形成された凹凸の高低差、及び、酸化金属層の第1半導体層に対向する側の面に形成された凹凸の高低差の半分以上であることが好ましい。第1半導体層が薄すぎると、薄い第1半導体層をピンホールのない連続膜として形成することが困難となる。
 第1又は第2の構成において、前記酸化金属層の前記第1半導体層に対向する側の面に形成された前記凹凸の頂部と底部との高低差が50~100nmであることが好ましい(第3の構成)。酸化金属層の凹凸の高低差がこの数値範囲よりも小さいと、酸化金属層に入射した光が乱反射されにくくなる。また、酸化金属層の凹凸の高低差がこの数値範囲よりも小さいと、第1半導体層の上面及び下面の凹凸が小さくなり、第1半導体層が平坦に近づく。従って、酸化金属層で反射された反射光が第1半導体層内を進む距離が短くなる。その結果、光検出感度を向上させることが困難となる。逆に、酸化金属層の凹凸の高低差が上記の数値範囲よりも大きいと、薄い第1半導体層をピンホールのない連続膜として形成することが困難となる。
 第1~第3の構成の何れか一つにおいて、前記酸化金属層の前記第1半導体層に対向する側の面の全面に前記凹凸が形成されていることが好ましい(第4の構成)。これにより、酸化金属層への入射光は、その入射位置にかかわらず、乱反射される。その結果、光センサ(薄膜ダイオード)の光検出感度が更に向上する。また、限られた領域のみに凹凸を形成する場合に比べて、凹凸の形成プロセスを簡単にすることができる。
 第1~第4の構成の何れか一つにおいて、更に、前記第1半導体層を覆う層間絶縁膜と、前記層間絶縁膜を貫通して前記n型領域及び前記p型領域にそれぞれ電気的に接続された一対の電極とを備えていてもよい。この場合、前記一対の電極の少なくとも一方は、前記酸化金属層に達していてもよい(第5の構成)。このように、本発明の一実施形態に係る光センサでは、電極が酸化金属層にまで達するほどに電極形成のためのコンタクトホールを深く形成することができる。その結果、コンタクトホールを形成するためのエッチング深さを厳密に管理する必要がなくなる。
 本発明の一実施形態に係る半導体装置は、上記の本発明の一実施形態に係る光センサと、前記基板の前記薄膜ダイオードと同じ側に設けられた薄膜トランジスタとを備え、前記薄膜トランジスタは、チャネル領域、ソース領域、及びドレイン領域を含む第2半導体層と、前記チャネル領域の導電性を制御するゲート電極と、前記第2半導体層と前記ゲート電極との間に設けられたゲート絶縁膜とを有している(第6の構成)。共通する基板上に薄膜ダイオードと薄膜トランジスタとが設けられているので、本発明の一実施形態に係る半導体装置は、光検出機能が要求される広範囲の用途に利用することができる。
 第6の構成において、前記第1半導体層と前記第2半導体層とは同一の絶縁層上に形成されていることが好ましい(第7の構成)。これにより、第1半導体層と第2半導体層とを同一プロセスで並行して形成することができる。その結果、製造プロセスを簡単にすることができる。
 第6又は第7の構成において、前記第2半導体層の前記基板に対向する側の面は平坦であることが好ましい(第8の構成)。これにより、薄膜トランジスタのゲート耐圧特性等に悪影響を及ぼすことなく、薄膜ダイオードの光検出感度を向上させることができる。なお、第2半導体層の基板に対向する側の面は完全に平坦である必要はなく、実質的に平坦であれば良い。
 第6~第8の構成の何れか一つにおいて、前記第1半導体層の厚さと前記第2半導体層の厚さとは同一であることが好ましい(第9の構成)。これにより、第1半導体層と第2半導体層とを同一プロセスで並行して形成することができる。その結果、製造プロセスを簡単にすることができる。なお、第1半導体層の厚さと第2半導体層の厚さは完全に同一である必要はなく、実質的に同一であればよい。
 本発明の一実施形態に係る液晶パネルは、前記半導体装置と、前記基板の前記薄膜ダイオード及び前記薄膜トランジスタが設けられた側の面と対向して配置された対向基板と、前記基板と前記対向基板との間に封入された液晶層とを備える(第10の構成)。これにより、タッチセンサ機能や周囲の明るさを検知するアンビエントセンサ機能を備えた液晶パネルを実現することができる。
 以下、本発明を好適な実施形態を示しながら詳細に説明する。但し、本発明は以下の実施の形態に限定されないことはいうまでもない。以下の説明において参照する各図は、説明の便宜上、本発明の実施形態の構成部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。従って、本発明は以下の各図に示されていない任意の構成部材を備え得る。また、以下の各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率等を忠実に表したものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る半導体装置100の概略構成を示した断面図である。この半導体装置100は、基板101と、基板101上に、絶縁層としての下地層103を介して形成された薄膜ダイオード130と、基板101と薄膜ダイオード130の間に設けられた遮光層160を有する光センサ132及び薄膜トランジスタ150とを備えている。基板101は、好ましくは透光性を有している。図1では、図面を簡単にするために単一の光センサ132及び単一の薄膜トランジスタ150のみが図示されているが、共通する基板101上に複数の光センサ132及び複数の薄膜トランジスタ150が形成されていても良い。また、図1では、理解を容易にするために、同じ図面内に光センサ132の断面図と薄膜トランジスタ150の断面図とを図示しているが、これらの断面図が共通する単一の平面に沿った断面図である必要はない。
 薄膜ダイオード130は、少なくともn型領域131nとp型領域131pとを含む半導体層(第1半導体層)131を有する。本実施の形態では、半導体層131におけるn型領域131nとp型領域131pとの間に真性領域131iが設けられている。n型領域131n及びp型領域131pにはそれぞれ電極133a,133bが接続されている。
 薄膜トランジスタ150は、チャネル領域151c、ソース領域151a、及びドレイン領域151bを含む半導体層(第2半導体層)151と、チャネル領域151cの導電性を制御するゲート電極152と、半導体層151とゲート電極152との間に設けられたゲート絶縁膜105とを有する。ソース領域151a及びドレイン領域151bにはそれぞれ電極153a,153bが接続されている。ゲート絶縁膜105は、半導体層131の上にまで広がっている。
 薄膜ダイオード130の半導体層131と薄膜トランジスタ150の半導体層151との結晶性は互いに異なっていてもよいし、同じであってもよい。両者の結晶性が同じであれば、半導体層131,151の結晶状態を別個に制御する必要がない。その結果、製造工程を複雑にしなくても、信頼性が高くて高性能の半導体装置100が得られる。
 薄膜ダイオード130及び薄膜トランジスタ150の上には、層間絶縁膜107が形成されている。
 基板101と薄膜ダイオード130との間には薄膜ダイオード130と対向する位置に遮光層160が設けられている。これにより、基板101に対して薄膜ダイオード130の設けられた側とは反対側から、基板101を通過して、半導体層131に光が入射するのを防止している。より詳細には、遮光層160は、基板101上の半導体層131と対向する領域を含む位置に形成されている。
 遮光層160の半導体層131に対向する側の面には酸化金属層180が設けられている。酸化金属層180の薄膜ダイオード130に対向する面(上面)には微細であって且つランダムな凹凸が形成されている。薄膜ダイオード130の半導体層131は、酸化金属層180の凹凸に沿った凹凸形状を有している。即ち、図1に示すような厚さ方向に沿った断面において、ほぼ一定の厚さを有する第1半導体層131は、酸化金属層180の上面の凹凸に対してほぼ一定間隔を保って上下方向に変位(屈曲)している。
 酸化金属層180の上面の凹凸及び薄膜ダイオード130を構成する半導体層131の凹凸形状の作用を説明する。図2は、遮光層160、酸化金属層180及び半導体層131を含む図1の部分IIの拡大断面図である。上方から薄膜ダイオード130に向かう入射光L1は、薄膜ダイオード130の半導体層131に入射し半導体層131に吸収される。しかし、半導体層131は薄いので、入射光L1のうちの一部は半導体層131を通過してしまう。半導体層131を通過した入射光L1は下地層103を通過し、酸化金属層180の上面に入射する。入射光L1は酸化金属層180を通過することはできない。また、酸化金属層180の上面にはランダムな凹凸が形成されている。それ故、酸化金属層180は入射光L1を乱反射する。酸化金属層180の上面で乱反射された反射光L2は様々な方向に向かい、下地層103を通過し、半導体層131に入射する。反射光L2のうち、比較的大きな反射角度で反射された反射光は、概して半導体層131に大きな入射角度で入射する。その結果、比較的大きな反射角度で反射された反射光が半導体層131内を進む距離は長くなりやすい。また、半導体層131は、酸化金属層180の凹凸にほぼ沿って形成されている。それ故、基板101の法線に対して比較的小さな角度をなす入射光L1及び反射光L2であっても、半導体層131が平坦である場合に比べて半導体層131内を進む距離は長くなりやすい。このように、本発明では入射光L1及び反射光L2が半導体層131内を進む距離を長くすることができる。これにより、半導体層131で吸収される光が増える。その結果、光利用効率が向上し、薄膜ダイオード130の光検出感度が向上するのである。また、酸化金属層180の上面の凹凸及び半導体層131の形状がランダムであるほど、入射角依存性が少なく、安定した光検出感度向上効果が得られる。
 酸化金属層180の上面のランダムな凹凸は、酸化金属層180の上面の全面に形成されていることが好ましい。これにより、入射光L1の酸化金属層180に対する入射位置にかかわらず、薄膜ダイオード130の光検出感度を向上させることができる。また、凹凸を形成する領域を限定する必要がないので、凹凸の形成工程を簡単にすることができる。
 薄膜ダイオード130の半導体層131は、少なくとも真性領域131iにおいて酸化金属層180の上面の凹凸に沿った凹凸形状を有していればよいが、n型領域131n及びp型領域131pを含む全領域において有していることが好ましい。製造プロセスを簡単にできるからである。
 本発明は、入射光L1の多くが半導体層131を通過してしまうような、半導体層131が薄い場合にも、光検出感度を向上させることができる。例えば、半導体層131が、半導体層131の下面に形成された凹凸の頂部と底部との高低差より薄い場合でも、図2に示されているように反射光L2が半導体層131内を進む距離を長くすることができる。その結果、薄膜ダイオード130の光検出感度が向上する。従って、半導体層131を通過してしまう光を少なくするために半導体層131を厚くする必要がなくなる。その結果、後述するように薄膜トランジスタ150の半導体層151と同一プロセスで半導体層131を形成することができる。
 以上のように構成された本実施の形態に係る半導体装置100の製造方法の一例を説明する。但し、半導体装置100の製造方法は以下の例に限定されない。
 まず、図3Aに示すように、基板101上に、後に遮光層160となる第1薄膜161、後に酸化金属層180となる第2薄膜181を順に形成する。
 基板101としては、特に限定はなく、半導体装置100の用途などを考慮して適宜選択することができるが、例えば透光性を有するガラス基板(例えば低アルカリガラス基板)や石英基板を用いることができる。基板101として低アルカリガラス基板を用いる場合、基板101をガラス歪み点よりも10~20℃程度低い温度であらかじめ熱処理しておいても良い。
 第1薄膜161の材料としては、例えば金属材料を用いることができる。中でも、後の製造工程における熱処理を考慮し、高融点金属であるタンタル(Ta)、タングステン(W)、モリブデン(Mo)等が好ましい。この金属材料をスパッタリング法により基板101の全面に成膜する。第1薄膜161の厚さは100~200nm程度が好ましい。
 第2薄膜181は、酸化金属からなり、高電気抵抗であることが好ましい。例えば、第1薄膜161の材料として例示した上記のタンタル(Ta)、タングステン(W)、モリブデン(Mo)等をターゲットとして酸素雰囲気下でスパッタリング法により形成することができる。第2薄膜181の材料としては、中でも酸化タンタル(Ta25)が好ましい。第2薄膜181は、基板101の全面に成膜される。第2薄膜181の厚さは50~200nm程度が好ましい。スパッタリング法で成膜することにより、形成された第2薄膜181内に、厚さ方向(図3Aの紙面上下方向)に延びた金属材料の柱状結晶が形成される。その結果、第2薄膜181の表面にランダムな凹凸が形成される。更に、第2薄膜181の表面に、厚さ方向に、反応性イオンエッチングなどの異方性エッチングを施しても良い。エッチング深さは20~100nm程度が好ましい。第2薄膜181中に柱状結晶が形成されているために第2薄膜181の表面は選択的にエッチングされ、第2薄膜181の表面の凹凸がより大きくなる。第2薄膜181の表面の凹凸の程度は、凹凸の頂部と底部との高低差(即ち、厚さ方向の距離)で50~100nm程度が好ましい。
 次いで、第2薄膜181の上面に、所望する遮光層160のパターンを、レジストを用いて形成する。そして、ウエットエッチング法により、不要領域の第1薄膜161及び第2薄膜181を除去する。後に薄膜ダイオード130が形成される領域内の第1薄膜161及び第2薄膜181は残される。後に薄膜トランジスタ150が形成される領域を含む、薄膜ダイオード130の形成領域外の第1薄膜161及び第2薄膜181は除去される。その結果、図3Bに示すように、パターニングされた遮光層160及び酸化金属層180を得る。
 次いで、図3Cに示すように、基板101、遮光層160及び酸化金属層180を覆うように下地層103を形成し、更に非晶質半導体膜110を形成する。
 下地層103は、基板101からの不純物拡散を防ぐために設けられる。下地層103としては、例えば酸化シリコン膜からなる単層、基板101側から窒化シリコン膜及び酸化シリコン膜からなる複層、あるいはこれら以外の公知の構成であってもよい。このような下地層103は、例えばプラズマCVD法を用いて形成することができる。下地層103の厚さは100~600nm、更には150~450nmであることが好ましい。
 非晶質半導体膜110を構成する半導体としては、好ましくはシリコンを用いることができるが、シリコン以外の例えばGe、SiGe、化合物半導体、カルコゲナイドなどの半導体を用いることもできる。シリコンを用いる場合を以下に説明する。非晶質シリコン膜110は、プラズマCVD法やスパッタ法などの公知の方法で形成される。非晶質シリコン膜110の厚さは、次のレーザー照射による結晶化によって高品質な多結晶シリコンが得られる膜厚として、25~100nmが好ましい。例えば、プラズマCVD法で厚さが50nmの非晶質シリコン膜110を形成することができる。下地層103と非晶質シリコン膜110とを同じ成膜法で形成する場合には、これら下地層103と非晶質シリコン膜110を連続して形成しても良い。下地層103を形成した後、一旦大気雰囲気に晒さないことで下地層103の表面の汚染を防ぐことが可能となる。その結果、作製する薄膜トランジスタ150及び薄膜ダイオード130の特性バラツキやしきい値電圧の変動を低減させることができる。
 図3Cに示されているように、酸化金属層180が形成された領域では、酸化金属層180の上面に形成された凹凸に沿った凹凸が、下地層103の上面及び非晶質シリコン膜110の上面に形成される。
 次いで、図3Dに示すように、上方から非晶質シリコン膜110にレーザー光121を照射することにより、非晶質シリコン膜110を結晶化させる。このときのレーザー光121としては、XeClエキシマレーザー(波長308nm、パルス幅10~150nsec、例えば40nsec)やKrFエキシマレーザー(波長248nm、パルス幅10~150nsec)を適用できる。レーザー光121は、基板101表面での照射範囲が長尺形状となるように調整されている。そして、レーザー光121の基板101表面での照射範囲の長尺方向に対して垂直な方向にレーザー光121を順次走査することで、非晶質シリコン膜110全面の結晶化を行う。このとき、照射範囲の一部が重なるようにして、レーザー光121を走査することが好ましい。これにより、非晶質シリコン膜110の任意の一点において、複数回のレーザー照射が行われる。その結果、多結晶シリコン膜111の結晶状態の均一性を向上できる。レーザー光121の照射により、非晶質シリコン膜110は瞬間的に溶融し固化する過程で結晶化されて多結晶シリコン膜111となる。
 次いで、図3Eに示すように、多結晶シリコン膜111の不要な領域を除去して素子間分離を行う。素子間分離は、フォトリソグラフィ法によって、即ち、所定パターンのレジストを形成した後、ドライエッチング法により不要領域の多結晶シリコン膜111を除去することで行うことができる。これにより、後の薄膜ダイオード130の活性領域(n+型領域、p+型領域、真性領域)となる半導体層131と、後の薄膜トランジスタ150の活性領域(ソース領域、ドレイン領域、チャネル領域)となる半導体層151とを相互に離隔して形成する。即ち、これら半導体層131,151は、島状に形成される。
 次いで、図3Fに示すように、これらの島状半導体層131,151を覆うゲート絶縁膜105を形成した後、ゲート絶縁膜105の上に薄膜トランジスタ150のゲート電極152を形成する。
 ゲート絶縁膜105としては、酸化シリコン膜が好ましい。ゲート絶縁膜105の厚さは20~150nm(例えば100nm)が好ましい。図3Fに示されているように、酸化金属層180が形成された領域では、酸化金属層180の上面に形成された凹凸に沿った凹凸が、ゲート絶縁膜105の上面に形成される。
 ゲート電極152は、スパッタ法またはCVD法などを用いてゲート絶縁膜105の全面に導電膜を堆積し、この導電膜をパターニングすることによって形成される。導電膜の材料としては、高融点金属のW、Ta、Ti、Moまたはその合金材料のいずれかが望ましい。また、導電膜の厚さは300~600nmであることが好ましい。
 次いで、図3Gに示すように、後に薄膜ダイオード130の活性領域となる半導体層131の一部を覆うように、ゲート絶縁膜105上にレジストからなるマスク122を形成する。そして、この状態で、基板101上方よりn型不純物(例えばリン)123を基板101の全面にイオンドーピングする。n型不純物123は、ゲート絶縁膜105を通過して、半導体層151,131に注入される。この工程により、薄膜ダイオード130の半導体層131においてマスク122で覆われていない領域、及び薄膜トランジスタ150の半導体層151においてゲート電極152で覆われていない領域にn型不純物123が注入される。マスク122及びゲート電極152によって覆われている領域には、n型不純物123はドーピングされない。これにより、薄膜ダイオード130の半導体層131のうちn型不純物123が注入された領域は、後に薄膜ダイオード130のn型領域131nとなる。また、薄膜トランジスタ150の半導体層151のうちn型不純物123が注入された領域は、後に薄膜トランジスタのソース領域151a及びドレイン領域151bとなる。半導体層151のうちゲート電極152にマスクされてn型不純物123が注入されない領域は、後に薄膜トランジスタ150のチャネル領域151cとなる。
 次いで、マスク122を除去した後、図3Hに示すように、後に薄膜ダイオード130の活性領域となる半導体層131の一部と、後に薄膜トランジスタ150の活性領域となる半導体層151の全体とを覆うように、ゲート絶縁膜105上にレジストからなるマスク124を形成する。この状態で、基板101上方よりp型不純物(例えばボロン)125を基板101の全面にイオンドーピングする。p型不純物125は、ゲート絶縁膜105を通過し、半導体層131に注入される。この工程により、薄膜ダイオード130の半導体層131において、マスク124で覆われていない領域にp型不純物125が注入される。マスク124によって覆われている領域には、p型不純物125はドーピングされない。これにより、薄膜ダイオード130の半導体層131のうちp型不純物125が注入された領域は、後に薄膜ダイオード130のp型領域131pとなる。また、半導体層131のうちp型不純物もn型不純物も注入されなかった領域は、後に真性領域131iとなる。
 次いで、図3Iに示すように、マスク124を除去した後、不活性雰囲気下、例えば窒素雰囲気にて熱処理を行う。この熱処理により、薄膜ダイオード130のn型領域131n及びp型領域131pや薄膜トランジスタ150のソース領域151a及びドレイン領域151bでは、ドーピング時に生じた結晶欠陥等のドーピングダメージが回復し、それぞれにドーピングされたリン及びボロンが活性化される。この熱処理は、一般的な加熱炉を用いてもよいが、RTA(Rapid Thermal Annealing)を用いて行うことが好ましい。特に、基板101の表面に高温の不活性ガスを吹き付け、瞬時に昇降温を行う方式のものが適している。
 次いで、図3Jに示すように、層間絶縁膜107を形成する。層間絶縁膜107の構成は特に限定されず、公知のものを用いることができる。例えば窒化シリコン膜及び酸化シリコン膜をこの順で形成した2層構造を用いることができる。必要に応じて、半導体層151,131を水素化するための熱処理、例えば1気圧の窒素雰囲気あるいは水素混合雰囲気で350~450℃のアニールを行ってもよい。
 この後、層間絶縁膜107にコンタクトホールを形成する。次いで、層間絶縁膜107上およびコンタクトホール内部に金属材料からなる膜(例えば窒化チタンとアルミニウムとの二層膜)を形成し、この膜をパターニングする。これにより、薄膜ダイオード130の電極133a,133bと薄膜トランジスタ150の電極153a,153bとを形成する。
 コンタクトホールの形成方法は特に限定はなく、例えば従来と同様に以下のように行うことができる。
 最初に、層間絶縁膜107の表面に、レジストを用いてコンタクトホールのパターンを形成する。次いで、ドライエッチング(例えば反応性イオンエッチング)によりゲート絶縁膜105に達する程度まで孔を形成する。そして、最後に、BHF等を用いたウエットエッチングにより半導体層131にまで達するコンタクトホールを形成する。
 上述したように、一般にドライエッチングのエッチング深さを制御することは難しく、ドライエッチングにより半導体層131を貫通する孔が形成されてしまう可能性がある。この場合、ドライエッチングの後に行われるウエットエッチングでは下地層103がエッチングされてしまう。ところが、下地層103の下には酸化金属層180が存在し、この酸化金属層180がエッチングストッパとして機能して、更なるエッチングを防止する。
 その後、コンタクトホール内部に電極133a,133bの材料である金属材料からなる膜を形成したとき、コンタクトホールが酸化金属層180にまで達していれば、金属材料と酸化金属層180とが接触する。しかしながら、酸化金属層180は絶縁性を有するので、電極133aと電極133bとが短絡することはない。
 以上のように、遮光層160の半導体層131側の面に酸化金属層180を設けておくことにより、電極133aと電極133bとが短絡するという従来の問題を解決することができる。更に、コンタクトホールを形成するためのエッチング深さを厳密に管理する必要がなくなる。
 なお、本発明では、酸化金属層180がエッチングストッパとして機能する。その結果、例えば、ドライエッチングのみによって少なくとも半導体層131にまで達する深いコンタクトホールを形成し、ウエットエッチングを省略することができる。
 しかしながら、ドライエッチングは半導体層131にダメージを与え、電極とのコンタクト抵抗が大きくなることが懸念される。従って、半導体層131の近傍まで(例えばゲート絶縁膜105の中程まで)はドライエッチングを行い、その後、ウエットエッチングに切り替えてエッチングすることが、コンタクト抵抗の上昇を抑え、良好なオーミック特性が得られるので好ましい。
 このようにして電極133a,133b,153a,153bを形成することにより、図3Jに示すように、電極133a,133bに接続された薄膜ダイオード130及び電極153a,153bに接続された薄膜トランジスタ150が得られる。なお、薄膜ダイオード130に接続された電極133a,133b及び薄膜トランジスタ150に接続された電極153a,153bを保護する目的で、層間絶縁膜107上に窒化シリコン膜などからなる保護膜(図示せず)を設けてもよい。
 上記の製造方法によれば、薄膜ダイオード130の半導体層131と薄膜トランジスタ150の半導体層151とを並行して形成することができる。その結果、共通する基板101上に薄膜ダイオード130及び薄膜トランジスタ150を効率良く製造することができる。
 このような製造方法では、薄膜ダイオード130の半導体層131の厚さは、必然的に薄膜トランジスタ150の半導体層151の厚さと同じになってしまう。従って、光検出感度を向上させるために、薄膜ダイオード130の半導体層131を厚くするという手法をとることができない。しかしながら、上述したように、本発明の一実施形態に係る半導体装置100では、半導体層131を厚くすることができない場合であっても、薄膜ダイオード130の光検出感度を向上させることができる。
 また、上記の製造方法によれば、酸化金属層180の上面に凹凸を形成しておけば、その後に積層される薄膜ダイオード130の半導体層131は、酸化金属層180の上面に形成された凹凸に沿った凹凸形状に形成される。
 従って、上記の製造方法によれば、従来の半導体装置の製造工程を大幅に変更することなく、簡便且つ低コストに半導体装置を製造することができる。
 一方、図3Bに示したように、薄膜トランジスタ150が形成される領域の第1薄膜161及び第2薄膜181は除去される。それ故、薄膜トランジスタ150を構成する半導体層151の上面及び下面は実質的に平坦である。従って、薄膜トランジスタ150の特性に悪影響(例えばゲート耐圧特性の低下)を及ぼすことなく、薄膜ダイオード130の光検出感度を向上させることができる。
 薄膜トランジスタの構造は上記に限定されない。例えば、デュアルゲート構造の薄膜トランジスタや、LDD構造またはGOLD構造を有する薄膜トランジスタ、pチャネル型薄膜トランジスタなどのいずれであってもよい。更に、構造が異なる複数種類の薄膜トランジスタが形成されていてもよい。
 上記の実施の形態では、光センサ132と薄膜トランジスタ150を備えた半導体装置100を例示した。しかしながら、本発明はこれに限定されない。例えば、光センサ132だけであっても良い。また、半導体層131,151は非晶質シリコンによって形成されていても良い。
 (実施の形態2)
 本実施の形態2では、実施の形態1で説明した光検出機能を有する半導体装置を備えた液晶パネルを説明する。
 図4は、本実施の形態2に係る液晶パネル501を含む液晶表示装置500の概略構成を示した断面図である。
 液晶表示装置500は、液晶パネル501と、液晶パネル501の背面を照明する照明装置502と、液晶パネル501に対して、エアギャップ503を介して配された透光性保護パネル504とを備える。
 液晶パネル501は、いずれも透光性を有する板状部材であるTFTアレイ基板510及び対向基板520と、これらTFTアレイ基板510と対向基板520の間に封入された液晶層519を備える。TFTアレイ基板510及び対向基板520の形成材料は、特に制限はない。例えばガラス、アクリル樹脂など、従来の液晶パネルに用いられているのと同じ材料を用いることができる。
 TFTアレイ基板510の照明装置502側の面には、特定の偏光成分を透過又は吸収する偏向板511が設けられている。TFTアレイ基板510の偏向板511とは反対側の面には、絶縁層512及び配向膜513が順に積層されている。配向膜513は液晶を配向させるための層であって例えばポリイミドなどの有機薄膜で構成される。絶縁層512内には、ITOなどからなる透明導電性薄膜によって構成された画素電極515、画素電極515に接続された、液晶駆動用のスイッチング素子としての薄膜トランジスタ(TFT)550、光検出機能を有する薄膜ダイオード530が形成されている。薄膜ダイオード530に対して照明装置502側には遮光層560が形成されている。
 対向基板520の液晶層519とは反対側の面には、特定の偏光成分を透過又は吸収する偏光板521が設けられている。対向基板520の液晶層519側の面には、液晶層519側から順に、配向膜523、共通電極524、カラーフィルタ層525が形成されている。配向膜523は、TFTアレイ基板510に設けられた配向膜513と同様に、液晶を配向させるための層であって例えばポリイミドなどの有機薄膜で構成される。共通電極524は、ITOなどからなる透明導電性薄膜からなる。カラーフィルタ層525は、赤(R)、緑(G)、青(B)の各原色の波長帯域の光を選択的に透過させる3種類の樹脂膜(カラーフィルタ)と、隣り合うカラーフィルタ間に配置された遮光膜としてのブラックマトリックスとを備えている。薄膜ダイオード530に対応する領域には、カラーフィルタ及びブラックマトリックスは設けられていないことが好ましい。
 本実施の形態の液晶パネル501では、赤、緑、青のうちのいずれか1つの原色のカラーフィルタに対して、1つの画素電極515及び1つの薄膜トランジスタ550が配置され、これらが原色の画素(絵素)を構成する。そして、赤、緑、青の3つの絵素がカラー画素(画素)を構成する。このようなカラー画素が、縦横方向に規則正しく配置されている。
 透光性保護パネル504は、例えばガラスやアクリル樹脂などの平板からなる。透光性保護パネル504の液晶パネル501とは反対側の面は、人の指509で触れることが可能なタッチセンサ面504aである。透光性保護パネル504を液晶パネル501に対してエアギャップ503を介して設けることにより、透光性保護パネル504に対する人の指509による押力が液晶パネル501に伝達されるのを防止している。これにより、指509の押力によって表示画面に波打ち状の、所望しない模様が発生するのを防いでいる。
 照明装置502は、特に制限はなく、液晶パネルの照明装置として公知の照明装置を用いることができる。例えば、直下型やエッジライト型の照明装置を用いることができる。エッジライト型の照明装置は液晶表示装置の薄型化に有利であるため好ましい。また、光源の種類も問わず、例えば冷/熱陰極管やLEDなどであってもよい。
 本実施の形態の液晶表示装置500では、照明装置502からの光を液晶パネル501及び透光性保護パネル504を通過させることでカラー画像を表示することができる。
 一方、薄膜ダイオード530には、タッチセンサ面504aに入射した外光Lが入射する。指509がタッチセンサ面505aに接触すると外光Lが遮られる。各薄膜ダイオード530に入射する外光Lの変化を検出することで、タッチセンサ面504aに対する指509の接触の有無や接触位置を検出することができる。遮光層560は、照明装置502からの光が薄膜ダイオード530に入射するのを遮る。
 上記の構成において、薄膜ダイオード530、薄膜トランジスタ550、遮光層560、TFTアレイ基板510として、実施の形態1で説明した薄膜ダイオード130、薄膜トランジスタ150、遮光層160、基板101を適用することができる。絶縁層512は、実施の形態1で説明した下地層103、ゲート絶縁膜105、層間絶縁膜107、平坦化膜を含んで構成されている。
 図4では液晶表示装置として透過型液晶表示装置を示したが、本発明はこれに限定されず、半透過型または反射型の液晶表示装置に適用することができる。反射型液晶表示装置では照明装置502は不要である。
 図5は、図4に示した液晶パネル501の一画素の等価回路図である。この液晶パネル501の画素570はカラー画素を構成する表示部570aと光センサ部570bとを含む。この画素570が、液晶パネル501の画素領域内に縦横方向にマトリクス状に多数配置されている。
 表示部570aは、薄膜トランジスタ550R,550G,550B、液晶素子551R,551G,551B、静電容量552R,552G,552Bを備える(ここで、添字R,G,Bは、画素を構成する赤、緑、青の各絵素に対応することを意味する。以下、同様。)。薄膜トランジスタ550R,550G,550Bのソース領域はソース電極線(信号線)SLR,SLG,SLBに接続されている。ゲート電極はゲート電極線(走査線)GLに接続されている。ドレイン領域は液晶素子551R,551G,551Bの画素電極(図4の画素電極515を参照)及び静電容量552R,552G,552Bの一方の電極に接続されている。静電容量552R,552G,552Bの他方の電極は、共通電極線TCOMに接続されている。
 ゲート電極線GLに正のパルスが印加されると、薄膜トランジスタ550R,550G,550Bがオン状態となる。これにより、ソース電極線SLR,SLG,SLBに印加された信号電圧が薄膜トランジスタ550R,550G,550Bのソース電極からドレイン電極を経て液晶素子551R,551G,551B及び静電容量552R,552G,552Bへ送られる。その結果、液晶素子551R,551G,551Bの画素電極515(図4参照)と共通電極524(図4参照)とによって液晶層519(図4参照)に電圧を印加して、液晶層519の液晶分子の配向状態を変化させることで所望のカラー表示を行う。
 一方、光センサ部570bは、薄膜ダイオード530、蓄積容量531、薄膜トランジスタ532を備える。薄膜ダイオード530のp+型領域はリセット信号線RSTに接続されている。薄膜ダイオード530のn+型領域は蓄積容量531の一方の電極及び薄膜トランジスタ532のゲート電極に接続されている。蓄積容量531の他方の電極は、読み出し信号線RWSに接続されている。薄膜トランジスタ532のドレイン電極はソース電極線SLGに接続されている。薄膜トランジスタ532のソース電極はソース電極線SLBに接続されている。ソース電極線SLGには定格電圧VDDが接続されている。ソース電極線SLBにはバイアストランジスタ533のドレイン電極が接続されている。バイアストランジスタ533のソース電極には定格電圧VSSが接続されている。
 このように構成された光センサ部570bでは、以下のようにして、薄膜ダイオード530が受光した光の量に応じた出力電圧VPIXを得る。
 まず、リセット信号線RSTにハイレベルのリセット信号を供給する。これにより、薄膜ダイオード530には順方向のバイアスがかかる。このときに薄膜トランジスタ532のゲート電極の電位は薄膜トランジスタ532の閾値電圧より低いので、薄膜トランジスタ532は非導通状態である。
 次いで、リセット信号線RSTの電位をローレベルにする。これにより,光電流の積分期間が開始する。この積分期間では、薄膜ダイオード530への入射光量に比例した光電流が蓄積容量531から流れ出し、蓄積容量531が放電される。この積分期間においても、薄膜トランジスタ532のゲート電極の電位は薄膜トランジスタ532の閾値電圧より低いので、薄膜トランジスタ532は非導通状態のままである。
 次いで、読み出し信号線RWSにハイレベルの読み出し信号を供給する。これにより、積分期間が終了し、読み出し期間が開始する。読み出し信号の供給により蓄積容量531に電荷が注入され、薄膜トランジスタ532のゲート電極の電位が薄膜トランジスタ532の閾値電圧よりも高くなる。その結果、薄膜トランジスタ532は導通状態となり、バイアストランジスタ533とともにソースフォロアアンプとして機能する。薄膜トランジスタ532から得られる出力電圧VPIXは、積分期間における薄膜ダイオード530の光電流の積分値に比例する。
 次いで、読み出し信号線RWSの電位をローレベルに低下させて読み出し期間が終了する。
 上記の動作を、液晶パネル501の画素領域内に配置された全ての画素570において順次繰り返し行うことにより、液晶パネル501の画素領域内でのタッチセンサ機能を実現できる。
 薄膜ダイオード530として実施の形態1で説明した薄膜ダイオード130を用いることにより、光検出感度に優れたタッチセンサ機能を有する液晶表示装置500を実現することができる。
 図5では、カラー画素を構成する1つの表示部570aに対して1つの光センサ部570bが設けられていたが、本発明はこれに限定されない。例えば、複数の表示部570aに対して1つの光センサ部570bを設けても良い。あるいは、1つの表示部570a内の赤、青、緑の各絵素に対して1つの光センサ部570bを設けても良い。また、図5ではカラー表示を行う液晶パネルに本発明を適用した例を示したが、モノクロ表示を行う液晶パネルに本発明を適用することもできる。
 図4、図5では、実施の形態1の薄膜トランジスタ150が、各絵素に設けられた薄膜トランジスタ550(550R,550G,550B)である場合を説明したが、本発明はこれに限定されない。各絵素に設けられた薄膜トランジスタ550(550R,550G,550B)以外の図5に示された薄膜トランジスタであっても良い。あるいは、例えばドライバ回路(後述するゲートドライバ510g、ソースドライバ510s)用の薄膜トランジスタであってもよい。
 図4、図5では、光検出機能を有する本発明の光センサが、TFTアレイ基板510の、液晶駆動用の多数の薄膜トランジスタ550がマトリクス状に配置された画素領域内に設けられていた。しかしながら、本発明はこれに限定されない。例えば光センサをTFTアレイ基板510の画素領域外に設けても良い。その一例を図6を用いて説明する。図6では、液晶表示装置を構成する部材のうち、TFTアレイ基板510と、TFTアレイ基板510の背面を照明する照明装置502のみを図示している。TFTアレイ基板510は、液晶を駆動するための多数の薄膜トランジスタがマトリクス状に配置された画素領域510aを備え、画素領域510aの周囲の額縁領域内に、ゲートドライバ510g、ソースドライバ510s、光検出部510bが設けられている。光検出部510bには、実施の形態1で説明した光センサ132(薄膜ダイオード130、遮光層160及び酸化金属層180)が形成されている。光検出部510bの薄膜ダイオード130は、周囲の明るさに応じた照度信号を生成する。この照度信号は、フレキシブル基板等の配線509を介して照明装置502の制御回路(図示せず)に入力される。制御回路は、照度信号に応じて照明装置502の照度を制御する。その結果、表示画面の明るさが周囲の明るさに応じて自動的に適切に設定される液晶表示装置を実現できる。このように、本発明の光センサ132(薄膜ダイオード130、遮光層160及び酸化金属層180)をTFTアレイ基板510の額縁領域内に配置して、周囲の明るさを検出するアンビエントセンサとして利用することもできる。本発明の一実施形態に係る光センサ132を構成する薄膜ダイオード130は光検出感度に優れるので、周囲の明るさに応じて表示画面の明るさが最適に設定される液晶表示装置を実現することができる。更に、薄膜ダイオード130を画素領域内に形成した場合に比べて、薄膜ダイオード130を大きくすることができる。それ故、受光領域を拡大して光検出感度を更に向上させることが容易に行える。
 本実施の形態2では、実施の形態1で説明した本発明の半導体装置を液晶パネルに利用する例を示したが、本発明の半導体装置の用途はこれに限定されない。ELパネル、プラズマパネル等の表示素子に利用することもできる。また、表示素子以外の、光検出機能を備えた各種機器に利用することも可能である。
 本発明の利用分野は、特に制限はないが、光検出感度が向上した光センサが必要とされる各種機器に広範囲に利用することができる。特に、タッチセンサや、周囲の明るさを検出するアンビエントセンサとして、各種表示素子に好ましく利用することができる。

Claims (10)

  1.  基板と、
     前記基板の一方の側に設けられた、少なくともn型領域及びp型領域を含む第1半導体層を有する薄膜ダイオードと、
     前記基板と前記第1半導体層との間に設けられた遮光層とを備え、
     前記遮光層の前記第1半導体層に対向する側の面に酸化金属層が形成されており、
     前記酸化金属層の前記第1半導体層に対向する側の面に凹凸が形成されており、
     前記第1半導体層は前記酸化金属層の前記凹凸に沿った凹凸形状を有していることを特徴とする光センサ。
  2.  前記第1半導体層の厚さが、前記第1半導体層の前記酸化金属層に対向する側の面に形成された凹凸の頂部と底部との高低差より薄い請求項1に記載の光センサ。
  3.  前記酸化金属層の前記第1半導体層に対向する側の面に形成された前記凹凸の頂部と底部との高低差が50~100nmである請求項1又は2に記載の光センサ。
  4.  前記酸化金属層の前記第1半導体層に対向する側の面の全面に前記凹凸が形成されている請求項1~3のいずれかに記載の光センサ。
  5.  更に、前記第1半導体層を覆う層間絶縁膜と、前記層間絶縁膜を貫通して前記n型領域及び前記p型領域にそれぞれ電気的に接続された一対の電極とを備え、
     前記一対の電極の少なくとも一方は、前記酸化金属層に達している請求項1~4のいずれかに記載の光センサ。
  6.  請求項1~5のいずれかに記載の光センサと、
     前記基板の前記薄膜ダイオードと同じ側に設けられた薄膜トランジスタとを備え、
     前記薄膜トランジスタは、チャネル領域、ソース領域、及びドレイン領域を含む第2半導体層と、前記チャネル領域の導電性を制御するゲート電極と、前記第2半導体層と前記ゲート電極との間に設けられたゲート絶縁膜とを有している半導体装置。
  7.  前記第1半導体層と前記第2半導体層とは同一の絶縁層上に形成されている請求項6に記載の半導体装置。
  8.  前記第2半導体層の前記基板に対向する側の面は平坦である請求項6又は7に記載の半導体装置。
  9.  前記第1半導体層の厚さと前記第2半導体層の厚さとは同一である請求項6~8のいずれかに記載の半導体装置。
  10.  請求項6~9のいずれかに記載の半導体装置と、前記基板の前記薄膜ダイオード及び前記薄膜トランジスタが設けられた側の面と対向して配置された対向基板と、前記基板と前記対向基板との間に封入された液晶層とを備えた液晶パネル。
PCT/JP2010/062552 2009-08-20 2010-07-26 光センサ、半導体装置、及び液晶パネル WO2011021477A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/391,211 US20120146028A1 (en) 2009-08-20 2010-07-26 Photosensor, semiconductor device, and liquid crystal panel
CN2010800369410A CN102473716A (zh) 2009-08-20 2010-07-26 光传感器、半导体器件和液晶面板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009190982 2009-08-20
JP2009-190982 2009-08-20

Publications (1)

Publication Number Publication Date
WO2011021477A1 true WO2011021477A1 (ja) 2011-02-24

Family

ID=43606932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062552 WO2011021477A1 (ja) 2009-08-20 2010-07-26 光センサ、半導体装置、及び液晶パネル

Country Status (3)

Country Link
US (1) US20120146028A1 (ja)
CN (1) CN102473716A (ja)
WO (1) WO2011021477A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129228A1 (ja) * 2010-04-16 2011-10-20 シャープ株式会社 表示装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575614B2 (en) * 2007-04-25 2013-11-05 Sharp Kabushiki Kaisha Display device
KR101761580B1 (ko) 2010-09-08 2017-07-27 엘지디스플레이 주식회사 터치 센서를 갖는 표시 장치
JP6364891B2 (ja) * 2014-04-01 2018-08-01 セイコーエプソン株式会社 電気光学装置、電子機器および半導体装置
KR102205856B1 (ko) * 2014-06-11 2021-01-21 삼성디스플레이 주식회사 센서를 포함하는 유기 발광 표시 장치
WO2016005893A1 (en) 2014-07-08 2016-01-14 Basf Se Detector for determining a position of at least one object
EP3230841B1 (en) 2014-12-09 2019-07-03 Basf Se Optical detector
KR102591364B1 (ko) * 2015-09-23 2023-10-19 삼성디스플레이 주식회사 광 센서 및 이를 포함하는 표시 장치
KR102492134B1 (ko) 2016-07-29 2023-01-27 트리나미엑스 게엠베하 광학 센서 및 광학적 검출용 검출기
WO2018077870A1 (en) 2016-10-25 2018-05-03 Trinamix Gmbh Nfrared optical detector with integrated filter
EP3532864B1 (en) 2016-10-25 2024-08-28 trinamiX GmbH Detector for an optical detection of at least one object
JP7204667B2 (ja) * 2017-04-20 2023-01-16 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング 光検出器
CN107425074B (zh) * 2017-05-15 2021-10-29 京东方科技集团股份有限公司 一种薄膜晶体管及其制作方法、阵列基板、显示面板
WO2019002199A1 (en) 2017-06-26 2019-01-03 Trinamix Gmbh DETECTOR FOR DETERMINING A POSITION OF AT LEAST ONE OBJECT
CN107894671B (zh) * 2017-11-03 2021-01-08 惠科股份有限公司 一种阵列基板和阵列基板的制造方法
KR102428557B1 (ko) * 2017-11-20 2022-08-02 엘지디스플레이 주식회사 가시광 흡수율이 향상된 산화물 반도체 포토 트랜지스터 및 그 제조 방법
CN109308470B (zh) * 2018-09-28 2021-01-01 武汉华星光电技术有限公司 指纹感测装置及其制造方法
CN113396320A (zh) 2019-01-29 2021-09-14 特里纳米克斯股份有限公司 光学检测器
CN110010698B (zh) * 2019-04-09 2022-07-29 合肥鑫晟光电科技有限公司 薄膜晶体管及其制备方法、显示基板、显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134781A (en) * 1980-03-25 1981-10-21 Mitsubishi Electric Corp Photoelectric converter
JP2004071817A (ja) * 2002-08-06 2004-03-04 Canon Inc 撮像センサ
JP2008287061A (ja) * 2007-05-18 2008-11-27 Seiko Epson Corp 液晶装置及び電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3675886B2 (ja) * 1995-03-17 2005-07-27 株式会社半導体エネルギー研究所 薄膜半導体デバイスの作製方法
DE69708463T2 (de) * 1996-02-27 2002-05-16 Canon K.K., Tokio/Tokyo Photovoltaische Vorrichtung, die ein undurchsichtiges Substrat mit einer spezifischen unregelmässigen Oberflächenstruktur aufweist
WO2006016505A1 (en) * 2004-08-10 2006-02-16 Canon Kabushiki Kaisha Radiation detecting apparatus, scintillator panel, their manufacturing method and radiation detecting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134781A (en) * 1980-03-25 1981-10-21 Mitsubishi Electric Corp Photoelectric converter
JP2004071817A (ja) * 2002-08-06 2004-03-04 Canon Inc 撮像センサ
JP2008287061A (ja) * 2007-05-18 2008-11-27 Seiko Epson Corp 液晶装置及び電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129228A1 (ja) * 2010-04-16 2011-10-20 シャープ株式会社 表示装置

Also Published As

Publication number Publication date
US20120146028A1 (en) 2012-06-14
CN102473716A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2011021477A1 (ja) 光センサ、半導体装置、及び液晶パネル
WO2011021472A1 (ja) 光センサ、半導体装置、及び液晶パネル
JP5351282B2 (ja) 半導体装置およびその製造方法
KR101471221B1 (ko) 표시 장치 및 표시 장치의 제조 방법
WO2011024577A1 (ja) 光センサ、半導体装置、及び液晶パネル
US7682883B2 (en) Manufacturing method of thin film transistor array substrate and liquid crystal display panel
JP5154365B2 (ja) 表示装置
KR101309174B1 (ko) 표시 장치와 그 제조 방법
WO2010084725A1 (ja) 半導体装置およびその製造方法ならびに表示装置
KR101790161B1 (ko) 광 센서, 광 센서의 제조 방법, 및 광 센서를 포함하는 액정 표시 장치
WO2008044368A1 (fr) Affichage à cristaux liquides
JP2006003857A (ja) 表示装置および光電変換素子
WO2010035544A1 (ja) フォトダイオードおよびその製造方法ならびにフォトダイオードを備えた表示装置
WO2011052271A1 (ja) 光センサ、半導体装置、及び液晶パネル
WO2011102250A1 (ja) 表示装置
WO2010146736A1 (ja) 表示パネル用基板および表示装置
WO2011152307A1 (ja) タッチセンサ付き表示装置
WO2010146737A1 (ja) 表示パネル用基板および表示装置
JP2009237286A (ja) 液晶表示素子および液晶表示装置
JP5856826B2 (ja) 表示装置
JP4251622B2 (ja) 液晶表示装置
US20110267562A1 (en) Liquid crystal panel
JP5183173B2 (ja) 光センサーおよび表示装置
JP2005107383A (ja) 液晶表示装置
JP5136112B2 (ja) 光電変換装置及び電気光学装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036941.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809822

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13391211

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP