Nothing Special   »   [go: up one dir, main page]

WO2011017839A1 - 大极型方波三相无刷永磁直流电动机及其装配方法 - Google Patents

大极型方波三相无刷永磁直流电动机及其装配方法 Download PDF

Info

Publication number
WO2011017839A1
WO2011017839A1 PCT/CN2009/073213 CN2009073213W WO2011017839A1 WO 2011017839 A1 WO2011017839 A1 WO 2011017839A1 CN 2009073213 W CN2009073213 W CN 2009073213W WO 2011017839 A1 WO2011017839 A1 WO 2011017839A1
Authority
WO
WIPO (PCT)
Prior art keywords
tooth
core
teeth
phase
small
Prior art date
Application number
PCT/CN2009/073213
Other languages
English (en)
French (fr)
Inventor
漆亚梅
李铁才
周兆勇
蓝维隆
廖志辉
李诗念
Original Assignee
深圳航天科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳航天科技创新研究院 filed Critical 深圳航天科技创新研究院
Priority to US13/805,341 priority Critical patent/US8975799B2/en
Priority to PCT/CN2009/073213 priority patent/WO2011017839A1/zh
Priority to CN2009801046368A priority patent/CN102047528B/zh
Publication of WO2011017839A1 publication Critical patent/WO2011017839A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a permanent magnet DC motor, and more particularly to a large-pole square wave three-phase brushless permanent magnet DC motor and an assembly method thereof, which are suitable for direct drive and position, rate servo control applications .
  • Permanent magnet motors can be divided into two major categories: sine wave and square wave according to the drive current and back potential waveform.
  • a sine wave permanent magnet motor is called a permanent magnet synchronous motor (PMSM), or a sine wave AC servo motor.
  • PMSM permanent magnet synchronous motor
  • BLDCM square wave brushless DC motor
  • the technical proposal of the present invention is to provide a large-pole square wave three-phase brushless permanent magnet DC motor, the electric
  • the motive rotor core is provided with a plurality of pairs of permanent magnets
  • the 6 teeth include three large teeth and three small teeth;
  • the three-phase windings are concentrated windings, respectively wound around three large teeth, and only one winding per phase; the winding
  • the arrangement order of the teeth is: A-phase winding on the large tooth ⁇ small tooth ⁇ B-phase winding on the large tooth ⁇ small tooth ⁇ C-phase winding on the large tooth ⁇ small tooth;
  • A represents a concentrated winding of the A-phase winding
  • B represents A concentrated winding of the B-phase winding
  • C represents a concentrated winding of the C-phase winding.
  • the stator core includes a large tooth core and three small tooth cores; three large teeth are disposed on the large tooth core, and yoke portions between adjacent two large teeth are respectively provided
  • One intrusion slot has three intrusion slots; each of the small tooth cores is inserted through its tail into one of the indentation slots of the large tooth core.
  • the large tooth iron core may be an integral integral large tooth iron core, or may be composed of three single large tooth iron cores, and the two adjacent large single tooth iron cores are between the two The center lines of the stator slots of the large teeth are spliced to each other.
  • the large-toothed iron core and each of the small-toothed iron cores may be composed of a multi-layered toothed silicon steel sheet. Specifically, it can be crimped into a unitary structure by blind holes.
  • the large tooth core and each small tooth core preferably have the same number of layers of silicon steel; the intrusion groove may be a dovetail structure.
  • the permanent magnets N and S of the rotor core are arranged in phase, and the permanent magnet is a radially magnetized tile-shaped magnetic steel or a parallel magnetized tile-shaped magnetic steel;
  • the physical air gap between the rotors is 0.2 to 3 mm;
  • the pole pitch of the permanent magnets on the rotor core is (1 to 0.8) > ot D / 4, where D is the outer diameter of the rotor.
  • the pole pitch of the permanent magnet is (1 ⁇ 0.8) times of the motor pole pitch JtD/4.
  • the Hall position sensor is used as the rotor position sensor, and the magnetic sensitive direction of the Hall position sensor is consistent with the normal direction of the rotor, and is mounted on the stator bracket and maintained with the permanent magnet outer circumference of the rotor. 3mm air gap.
  • the present invention also provides an assembly method for the aforementioned large-pole square wave three-phase brushless permanent magnet DC motor, wherein after the large tooth core is made, the large teeth are first insulated, and then Winding three, A, B, and C three-phase windings on three large teeth, and then inserting the three small tooth cores into the three indentation slots of the large tooth core, respectively Stator core of three-phase windings.
  • the large tooth core is composed of three single large tooth cores
  • the individual large tooth cores are separately insulated, and then the winding machine is respectively used.
  • the three single-toothed iron cores are wound with eight, B, and C three-phase windings, and then a stator core having three-phase windings is formed.
  • the motor has only one concentrated winding per phase, which is simple in structure and low in production cost. Since the small teeth are embedded, the small teeth are not installed first, leaving space to make the winding of the concentrated winding very convenient, even if the machine is automatically wound, it can guarantee the tank full rate of more than 85%.
  • the output of the motor is 33% larger than that of the conventional sine wave permanent magnet servo motor, and the winding end is more than three times smaller than the sinusoidal permanent magnet servo motor of the conventional distributed winding, so the copper consumption is greatly reduced.
  • the square wave three-phase brushless permanent magnet DC motor is driven by a three-phase square wave current, and can generate a smooth torque.
  • the torque fluctuation index is equivalent to a sine wave permanent magnet servo motor.
  • FIG. 1 is a schematic cross-sectional view showing a stator and a rotor of a motor in a preferred embodiment of the present invention
  • FIG. 2 is a schematic view showing the assembly structure of a motor in a preferred embodiment of the present invention
  • FIG. 3 is a schematic view showing the angular distribution of the stator slots in the embodiment shown in FIG.
  • FIG. 4 is a schematic structural view of a single large-tooth silicon steel sheet of FIG. 1;
  • FIG. 5 is a schematic structural view of a single small-teeth silicon steel sheet of FIG. 1;
  • FIG. 6 is a schematic perspective view showing a small-tooth iron core composed of a plurality of small-tooth silicon steel sheets shown in FIG. 5;
  • Figure 7 is a schematic view of a large iron core and three small tooth cores forming a stator core
  • Figure 8 is a schematic diagram of a stator core composed of three large tooth cores and three small tooth cores.
  • 1 is the rotor core
  • 2 is the permanent magnet
  • 3 is the yoke
  • 4 is the stator slot
  • 5 is the slot
  • 6 is the large tooth
  • 7 is the single large tooth core
  • 8 is the small tooth 9 is the overall large tooth core
  • 10 is the small tooth silicon steel sheet
  • 11 is the intrusion slot
  • 12 is the positioning blind hole
  • 13 is the tail of the small tooth silicon steel sheet
  • 201 is the rotating shaft
  • 202 is the rotor
  • 203 is the stator.
  • 204 is a physical air gap
  • 205 is a stator bracket.
  • FIG. 2 A preferred embodiment of the invention is illustrated in Figures 1-7.
  • the general structure of the three-phase brushless permanent magnet DC motor can be seen from FIG. 2, and the main components thereof include the rotating shaft 201, the rotor 202, the stator 203, etc., and the physical air gap 204 between the rotor 202 and the stator 203 is 0.2 ⁇ 3mm.
  • the Hall position sensor is used as the rotor position sensor, and the magnetic sensitive direction of the Hall position sensor is consistent with the normal direction of the rotor, and is mounted on the stator bracket 205 and maintained between the outer circumference of the rotor magnet (ie, the permanent magnet). l ⁇ 3mm air gap.
  • the permanent magnet 2 may be a radially magnetized tile-shaped magnetic steel or a parallel magnetized tile-shaped magnetic steel.
  • the pole pitch of the permanent magnet on the rotor core is (1 to 0.8) ⁇ ⁇ ⁇ / 4, where D is the outer diameter of the rotor.
  • the number of slots of the stator core ⁇ 6, corresponding to 6 slots and 6 teeth; the width of the slot 5 of the stator slot 4 is 0.l ⁇ 3mm; the six teeth include three large The teeth, three small teeth, and arranged in the order of large teeth ⁇ small teeth ⁇ large teeth ⁇ small teeth in the circumference.
  • the three-phase windings are concentrated windings, which are respectively wound on the large teeth after the insulation treatment by a winding machine (winding machine in the stator winding), and the arrangement order of the windings and the teeth is: Phase winding ⁇ small tooth ⁇ B-phase winding on large tooth ⁇ small tooth ⁇ C-phase winding on large tooth ⁇ small tooth; A represents a concentrated winding of the A-phase winding, B represents a concentrated winding of the B-phase winding, C represents C A concentrated winding of the phase winding.
  • the motor has only three concentrated windings, and the total number of windings of the motor is very small, which greatly simplifies the structure of the motor and reduces the cost, and the end of the winding is reduced by more than three times to the conventional motor, which is minimized, and the copper consumption is greatly reduced. decline.
  • the circumferential mechanical angle of each of the teeth includes the width of the slot.
  • stator core includes a large-tooth iron core 9 and three small-tooth iron cores 8 of a unitary structure; three large teeth 6 are provided on the large-tooth iron core, The yoke portions 3 between the adjacent two large teeth are respectively provided with a plunging groove 11 having a total of three squeezing grooves; each of the small tooth cores 8 is inserted into one of the large dentate irons 9 through its tail portion. One breaks into the slot 11.
  • the large tooth core 9 is composed of a plurality of large-tooth silicon steel sheets, and the yoke portion and the tooth portion of each large-tooth silicon steel sheet are provided with positioning blind holes 12, and the multi-layer large-tooth silicon steel sheets pass through these blinds.
  • the hole is riveted into a unitary structure.
  • each of the small tooth cores 8 is composed of a plurality of small-tooth silicon steel sheets; each of the small-tooth silicon steel sheets 10 is also provided with a positioning blind hole 12 through which the multi-layer small-tooth silicon steel sheets are riveted into a unitary structure.
  • the large-toothed iron core 9 and the respective small-toothed iron cores 8 have the same number of layers of silicon steel sheets.
  • the intrusion groove 11 is a dovetail structure having a large inner portion and a small mouth portion; accordingly, the tail portion 13 of each of the small-tooth silicon steel sheets 10 is also a dovetail structure.
  • the tail portion of the finally formed small-toothed iron core can just bite into the intrusion groove 11.
  • the concrete assembly ⁇ after making the large tooth core, first insulate the large teeth, then use the winding machine to wind the A, B, C three-phase windings on the three large teeth, and then The three small tooth cores 8 are respectively embedded in the three intrusion grooves 11 of the large tooth core 9, that is, the stator cores having the three-phase windings are formed.
  • the integral large tooth core 9 having three large teeth, with the stator groove between two adjacent large teeth
  • the center line is divided into three parts for the reference, and becomes three single large-tooth iron cores 7, which are respectively insulated for the three large-toothed iron cores, and then three winding large-toothed irons are respectively used by the winding machine.
  • the core is wound with A, B, C three-phase windings, then three large tooth cores and three small tooth cores, according to A phase single large tooth core ⁇ small tooth core - B phase single large teeth Iron core ⁇ small tooth core – C phase single large tooth core ⁇ small tooth core, forming a stator core with three-phase winding.
  • the structure of three single large tooth cores is exactly the same, which is convenient for processing and production. Then, three single large tooth cores can be buckled to form a complete large tooth by setting bosses and recessed holes.
  • the iron core for example, the snap structure shown in Fig. 6 of the aforementioned patent number CN101371425A.
  • the flat top area above the angle; the non-uniform cogging and the magnetic balance small teeth are used to minimize the positioning torque.
  • the motor has only one concentrated winding per phase, which is simple in structure and low in production cost.
  • the output of this motor is 33% larger than that of a conventional sine wave permanent magnet servo motor.
  • the winding end is longer than the traditional sine wave.
  • Magnetic servo motors are more than three times smaller, so copper consumption is greatly reduced.
  • the square wave three-phase brushless permanent magnet DC motor is driven by a three-phase square wave current, and can generate a smooth torque.
  • the torque fluctuation index is equivalent to a sine wave permanent magnet servo motor.
  • the control system and method disclosed in the invention patent of the PCT/C N2007/000178, entitled “Brushless DC Motor Control System and Control Method" thereof can be specifically used for driving control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Brushless Motors (AREA)

Description

说明书 大极型方波三相无刷永磁直流电动机及其装配方法 技术领域
[1] 本发明涉及永磁直流电动机, 更具体地说, 涉及一种大极型方波三相无刷永磁 直流电动机及其装配方法, 该电动机适用于直接驱动和位置、 速率伺服控制应 用。
背景技术
[2] 永磁电动机根据驱动电流及反电势波形可分为正弦波和方波两大类。 一般将正 弦波永磁电动机称为永磁同步电动机 (PMSM), 或称为正弦波交流伺服电动机。 另一类方波永磁电动机则称为方波无刷直流电动机 (BLDCM)。
[3] 80年代期间, 方波永磁电动机获得了普遍应用, 方波永磁电动机的外特性和有 刷直流电动机基本相同, 控制比较简单, 但其最大的缺点是存在较大的原理性 换向力矩波动, 对此, 研究人员提出了多种补偿措施, 但实际应用效果不理想
[4] 由于正弦波永磁电动机的力矩波动则远小于方波永磁电动机, 90年代期间, 在 精密伺服驱动应用场合, 方波永磁电动机逐渐被正弦波永磁电动机所替代, 目 前已经成为现今工业应用的主流。 然而, 正弦波永磁电动机会导致控制系统复 杂性大幅增高和成本大幅增加, 更重要的是电动机的力能指标大幅下降。
[5] 另一方面, 传统方波无刷直流电动机及其控制技术被公认已经成熟, 由于前述 缺陷, 导致其被限定在要求不高的场合应用, 国内外对其研究已经很少。
[6] 为解决上述技术问题, 本专利的发明人此前申请了一项'方波三相无刷永磁直 流电动机'专利, 公告号 CN101371425A, 其中公开了一种极数 2P=8的电机, 但 该电机高速应用吋仍有铁损偏大的问题。
发明内容
[7] 本发明要解决现有方波永磁电动机和正弦波永磁电动机所存在的问题, 提出一 种新原理、 新结构、 高性能、 低成本的 2P=4的大极方波永磁电动机。
[8] 本发明的技术方案是, 提供一种大极型方波三相无刷永磁直流电动机, 所述电 动机的转子铁芯上装有多对永磁体, 定子槽中装有三相绕组, 其特征在于, 所 述转子铁芯上的磁极数 2P=4; 所述定子铁芯的槽数 Z=6, 相应有 6个齿, 所述 6个 齿中包括三个大齿、 三个小齿; 所述三相绕组为集中绕组, 分别绕在三个大齿 上, 每相仅有一个绕组; 所述绕组和齿的排列次序是: 大齿上 A相绕组→小齿→ 大齿上 B相绕组→小齿→大齿上 C相绕组→小齿; 其 A表示 A相绕组的一个集中绕 组, B表示 B相绕组的一个集中绕组, C表示 C相绕组的一个集中绕组。
本发明中, 所述定子铁芯包括大齿铁芯和三个小齿铁芯; 在所述大齿铁芯上设 有三个大齿, 相邻两个大齿之间的轭部各设有一个锲入槽, 共有三个锲入槽; 每个所述小齿铁芯通过其尾部锲入在所述大齿铁芯的其中一个锲入槽中。
本发明中, 所述大齿铁芯可以是一体式的整体大齿铁芯, 或者由三个单体大齿 铁芯组成, 此吋相邻两个单体大齿铁芯之间在该两个大齿的定子槽中心线处相 互拼接。
本发明中, 所述大齿铁芯和每一个小齿铁芯均可由多层齿硅钢片组成。 具体可 通过盲孔铆压成整体结构。 其中, 所述大齿铁芯与各个小齿铁芯最好具有相同 的硅钢片层数; 所述锲入槽可为燕尾形结构。
本发明中, 所述定子铁芯上相邻大齿与小齿之间的槽的槽口 (5)宽度最好为 0.1 〜3.0mm; 每个大齿占圆周 75°〜117°机械角度, 即 150°〜234°电角度; 每个小齿 占圆周 45°〜3°机械角度, 即 90°〜6°电角度; 且一个大齿与一个小齿的机械角度 之和等于 120°, 电角度为 Pxl20°=240°。
本发明中, 所述转子铁芯上各个永磁体 N、 S磁极相间排列, 所述永磁体是径 向充磁的瓦形磁钢、 或者是平行充磁的瓦形磁钢; 所述定子与转子之间的物理 气隙为 0.2〜3mm; 所述转子铁芯上的永磁体的极距为 (l〜0.8)>otD/4, 其中 D是 转子外径。 永磁体的极距是电机极距 JtD/4的 (1〜0.8)倍, 随着此倍数的减小电机 的气隙磁场将向正弦波变化, 当此倍数的减小为 (0.8〜0.6)倍吋, 气隙磁场将更 近似正弦波。
本发明中釆用霍尔位置传感器作为转子位置传感器, 所述霍尔位置传感器的磁 敏感方向与转子法线方向相一致, 安装于定子支架上, 并与转子永磁体外圆之 间保持 l〜3mm的气隙。 [15] 本发明还提供一种针对前述大极型方波三相无刷永磁直流电动机的装配方法, 其中, 在制成所述大齿铁芯后, 先对大齿做绝缘处理, 再用绕线机在三个大齿 上绕制 A、 B、 C三相绕组, 然后将三个所述小齿铁芯分别嵌入所述大齿铁芯的 三个锲入槽中, 即构成具三相绕组的定子铁芯。
[16] 本发明的装配方法中, 当所述大齿铁芯由三个单体大齿铁芯组成吋, 先分别对 各个单体大齿铁芯做绝缘处理, 再用绕线机分别在三个单体大齿铁芯上绕制八、 B、 C三相绕组, 然后再构成具有三相绕组的定子铁芯。
[17] 由上述技术方案可知, 本发明的大极方波三相无刷永磁直流电动机的磁极数为 2P=4, 其中釆用磁极覆盖技术, 使其气隙磁场具有 120°电角度以上的平顶区; 釆用非均匀齿槽和磁平衡小齿, 使定位力矩减至最小。 该电动机每相仅有一个 集中绕组, 结构简单, 生产成本很低。 由于小齿是嵌入式的, 先不装小齿, 留 出空间使集中绕组的绕制非常方便, 即使机器自动绕线也能保证 85%以上的槽满 率。 该电动机的出力比传统正弦波永磁伺服电机大 33% , 绕组端部比传统分布式 绕组的正弦波永磁伺服电机小 3倍以上, 所以铜耗大幅度减少。 该方波三相无刷 永磁直流电动机釆用三相方波电流驱动吋, 能产生平稳的力矩, 其力矩波动指 标与正弦波永磁伺服电机相当。
附图说明
[18] 图 1是本发明一个优选实施例中电动机的定、 转子剖面结构示意图;
[19] 图 2是本发明一个优选实施例中电动机总装结构示意图;
[20] 图 3是图 1所示实施例中的定子齿槽角度分布示意图;
[21] 图 4是图 1中的单个大齿硅钢片的结构示意图;
[22] 图 5是图 1中的单个小齿硅钢片的结构示意图;
[23] 图 6是由图 5所示多个小齿硅钢片组成一个小齿铁芯的立体结构示意图;
[24] 图 7是一个大齿铁芯与三个小齿铁芯组成定子铁芯的示意图;
[25] 图 8是由三个大齿铁芯与三个小齿铁芯组成定子铁芯的示意图。
[26] 图中, 1是转子铁芯, 2是永磁体, 3是轭部, 4是定子槽, 5是槽口, 6是大齿, 7是单体大齿铁芯, 8是小齿, 9是整体大齿铁芯, 10是小齿硅钢片, 11是锲入槽 , 12是定位盲孔, 13是小齿硅钢片的尾部, 201是转轴, 202是转子, 203是定子 , 204是物理气隙, 205是定子支架。
具体实施方式
[27] 本发明的一个优选实施例如图 1至图 7所示。 从图 2中可以看出这种三相无刷永 磁直流电动机的大致结构, 其主要部件包括转轴 201、 转子 202、 定子 203等, 转 子 202与定子 203之间的物理气隙 204为 0.2〜3mm。 其中釆用霍尔位置传感器作为 转子位置传感器, 霍尔位置传感器的磁敏感方向与转子法线方向相一致, 安装 在定子支架 205上, 并与转子磁钢 (即永磁体)外圆之间保持 l〜3mm的气隙。
[28] 从图 1中可以看出, 在转子铁芯 1上装有 2对 4个永磁体, 4个磁极 N、 S相间排列 , 也就是说, 转子的磁极数 2P=4, 这些永磁体产生气隙磁场。 具体实施吋, 永 磁体 2可以是径向充磁的瓦形磁钢、 或者是平行充磁的瓦形磁钢。 转子铁芯上的 永磁体的极距为(1〜0.8)χπϋ/4, 其中 D是转子外径。
[29] 同吋, 定子铁芯的槽数 Ζ=6, 对应有 6个槽、 6个齿; 定子槽 4的槽口 5的宽度为 0 .l〜3mm; 6个齿中包括三个大齿、 三个小齿, 并在圆周内按大齿→小齿→大齿 →小齿的次序循环排布。
[30] 本实施例中, 三相绕组为集中绕组, 分别用绕线机 (定子绕组内绕机)直接绕在 绝缘处理后的大齿上, 绕组和齿的排列次序是: 大齿上 A相绕组→小齿→大齿上 B相绕组→小齿→大齿上 C相绕组→小齿; 其 A表示 A相绕组的一个集中绕组, B 表示 B相绕组的一个集中绕组, C表示 C相绕组的一个集中绕组。 可见, 该电动 机仅有三个集中绕组, 电动机的绕组总数非常少, 大大简化了电动机结构, 降 低了成本, 同吋绕组端部减少到传统电动机小 3倍以上, 达到了最小化, 于是铜 耗大幅下降。
[31] 从图 3可以看出, 每个大齿占圆周 75°〜117°机械角度, 即 150°〜234°电角度; 每个小齿占圆周 45°〜3°机械角度, 即 90°〜6°电角度; 且一个大齿与一个小齿的 机械角度之和等于 120°, 电角度为 Pxl20°=240°。 其中每个齿所占圆周机械角度 包含槽口宽度。
[32] 如图 4至图 7所示, 其中的定子铁芯包括一个整体结构的大齿铁芯 9和三个小齿 铁芯 8; 在大齿铁芯上设有三个大齿 6, 相邻两个大齿之间的轭部 3各设有一个锲 入槽 11, 共有三个锲入槽; 每个小齿铁芯 8通过其尾部锲入在大齿铁 9的其中一 个锲入槽 11中。
[33] 具体实施吋, 大齿铁芯 9由多层大齿硅钢片组成, 每一层大齿硅钢片的轭部和 齿部设有定位盲孔 12, 多层大齿硅钢片通过这些盲孔铆压成整体结构。 同样, 每一个小齿铁芯 8由多层小齿硅钢片组成; 每一层小齿硅钢片 10上也设有定位盲 孔 12, 多层小齿硅钢片通过这些盲孔铆压成整体结构。 本实施例中, 大齿铁芯 9 与各个小齿铁芯 8具有相同的硅钢片层数。
[34] 从图 4、 图 7中可以看出, 其中的锲入槽 11为内部大、 口部小的燕尾形结构; 相 应地, 每个小齿硅钢片 10的尾部 13也为燕尾形结构, 最终组成的小齿铁芯的尾 部可正好与锲入槽 11咬合。
[35] 具体装配吋, 在制成所述大齿铁芯后, 先对大齿做绝缘处理, 再用绕线机在三 个大齿上绕制 A、 B、 C三相绕组, 然后将三个小齿铁芯 8分别嵌入大齿铁芯 9的 三个锲入槽 11中, 即构成具三相绕组的定子铁芯。
[36] 为了使三相绕组的绕线更加方便, 在图 8所示的实施例中, 将具有三个大齿的 整体大齿铁芯 9, 以相邻两个大齿之间的定子槽中心线为基准切分成三个部分, 成为三个单体大齿铁芯 7, 分别对这三个单体大齿铁芯做绝缘处理, 再用绕线机 分别在三个单体大齿铁芯上绕制 A、 B、 C三相绕组, 然后将三个大齿铁芯与三 个小齿铁芯, 按 A相单体大齿铁芯→小齿铁芯—B相单体大齿铁芯→小齿铁芯—C 相单体大齿铁芯小齿铁芯, 构成具有三相绕组的定子铁芯。
[37] 其中, 三个单体大齿铁芯的结构完全相同, 便于加工生产, 然后可任选三个单 体大齿铁芯通过设置凸台、 凹孔的方式扣合成一个完整的大齿铁芯, 例如釆用 前述公告号为 CN101371425A的专利中图 6所示的卡扣结构。
[38] 由上述实施例可以看出, 本发明的大极方波三相无刷永磁直流电动机的磁极数 为 2P=4, 其中釆用磁极覆盖技术, 使其气隙磁场具有 120°电角度以上的平顶区 ; 釆用非均匀齿槽和磁平衡小齿, 使定位力矩减至最小。 该电动机每相仅有一 个集中绕组, 结构简单, 生产成本很低。
[39] 重要的是, 由于其中的小齿铁芯是锲入式的, 绕线之前可先不装小齿, 留出空 间使集中绕组的绕制非常方便, 即使机器自动绕线也能保证 85%以上的槽满率。
[40] 该电动机的出力比传统正弦波永磁伺服电机大 33% , 绕组端部比传统正弦波永 磁伺服电机小 3倍以上, 所以铜耗大幅度减少。
该方波三相无刷永磁直流电动机釆用三相方波电流驱动吋, 能产生平稳的力矩 , 其力矩波动指标与正弦波永磁伺服电机相当。 具体可釆用国际申请号为 PCT/C N2007/000178、 名称为 "无刷直流电动机控制系统及其控制方法 "的发明专利中所 公开的控制系统及方法进行驱动控制。

Claims

权利要求书
[1] 一种大极型方波三相无刷永磁直流电动机, 所述电动机的转子铁芯 (1)上装 有多对永磁体 (2), 定子槽 (4)中装有三相绕组, 其特征在于, 所述转子铁芯 上的磁极数 2P=4; 所述定子铁芯的槽数 Z=6, 相应有 6个齿, 所述 6个齿中 包括三个大齿 (6)、 三个小齿 (8); 所述三相绕组为集中绕组, 分别绕在三个 大齿上, 每相仅有一个绕组; 所述绕组和齿的排列次序是: 大齿上 A相绕 组→小齿→大齿上 B相绕组→小齿→大齿上 C相绕组→小齿; 其 A表示 A相绕 组的一个集中绕组, B表示 B相绕组的一个集中绕组, C表示 C相绕组的一 个集中绕组。
[2] 据权利要求 1所述的大极型方波三相无刷永磁直流电动机, 其特征在于, 所 述定子铁芯包括大齿铁芯 (9)和三个小齿铁芯 (8); 在所述大齿铁芯上设有三 个大齿, 相邻两个大齿之间的轭部各设有一个锲入槽 (11), 共有三个锲入 槽; 每个所述小齿铁芯通过其尾部锲入在所述大齿铁芯的其中一个锲入槽 中。
[3] 据权利要求 2所述的大极型方波三相无刷永磁直流电动机, 其特征在于, 所 述大齿铁芯是一体式的整体大齿铁芯; 或者, 所述大齿铁芯由三个单体大 齿铁芯组成, 相邻两个单体大齿铁芯之间在该两个大齿的定子槽中心线处 相互拼接。
[4] 据权利要求 3所述的大极型方波三相无刷永磁直流电动机, 其特征在于, 所 述整体大齿铁芯或单体大齿铁芯由多层大齿硅钢片组成, 所述多层大齿硅 钢片通过设于每一层大齿硅钢片之轭部和齿部的定位盲孔 (12)铆压成整体 结构; 每一个所述小齿铁芯由多层小齿硅钢片组成, 所述小齿硅钢片通过 设于每一层小齿硅钢片的定位盲孔铆压成整体结构。
[5] 据权利要求 4所述的大极型方波三相无刷永磁直流电动机, 其特征在于, 所 述大齿铁芯与各个小齿铁芯具有相同的硅钢片层数; 所述锲入槽为燕尾形 结构。
[6] 据权利要求 2-5中任一项所述的大极型方波三相无刷永磁直流电动机, 其特 征在于, 所述定子铁芯上相邻大齿与小齿之间的槽的槽口 (5)宽度为 0.1〜3. 0mm; 每个大齿占圆周 75°〜117°机械角度, 即 150°〜234°电角度; 每个小 齿占圆周 45°〜3°机械角度, 即 90°〜6°电角度; 且一个大齿与一个小齿的机 械角度之和等于 120°, 电角度为 Pxl20°=240°。
[7] 据权利要求 6所述大极型方波三相无刷永磁直流电动机, 其特征在于, 所述 转子铁芯上各个永磁 N、 S磁极相间排列, 所述永磁体是径向充磁的瓦形 磁钢、 或者是平行充磁的瓦形磁钢; 所述定子与转子之间的物理气隙为 0.2 〜3mm; 所述转子铁芯上的永磁体的极距为 (l〜0.8)>otD/4, 其中 D是转子 外径。
[8] 据权利要求 7所述的大极型方波三相无刷永磁直流电动机, 其特征在于, 其 中釆用霍尔位置传感器作为转子位置传感器, 所述霍尔位置传感器的磁敏 感方向与转子法线方向相一致, 安装于定子支架上, 并与转子永磁体外圆 之间保持 l〜3mm的气隙。
[9] 种针对权利要求 2-8中任一项所述的大极型三相无刷永磁直流电动机的装配 方法, 其特征在于, 在制成所述大齿铁芯后, 先对大齿做绝缘处理, 再用 绕线机在三个大齿上绕制 A、 B、 C三相绕组, 然后将三个所述小齿铁芯分 别嵌入所述大齿铁芯的三个锲入槽中, 即构成具有三相绕组的定子铁芯。
[10] 据权利要求 9所述的装配方法, 其特征在于, 当所述大齿铁芯由三个单体大 齿铁芯组成吋, 先分别对各个单体大齿铁芯铁芯做绝缘处理, 再用绕线机 分别在三个单体大齿铁芯上绕制 A、 B、 C三相绕组, 然后再将三个单体大 齿铁芯与三个小齿铁芯按 A相单体大齿铁芯→小齿铁芯→8相单体大齿铁芯 →小齿铁芯—C相单体大齿铁芯→小齿铁芯的顺序, 构成具有三相绕组的定 子铁芯。
PCT/CN2009/073213 2009-08-12 2009-08-12 大极型方波三相无刷永磁直流电动机及其装配方法 WO2011017839A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/805,341 US8975799B2 (en) 2009-08-12 2009-08-12 Broad-pole type square-wave three-phase brushless permanent magnet direct current motor and assembling method thereof
PCT/CN2009/073213 WO2011017839A1 (zh) 2009-08-12 2009-08-12 大极型方波三相无刷永磁直流电动机及其装配方法
CN2009801046368A CN102047528B (zh) 2009-08-12 2009-08-12 大极型方波三相无刷永磁直流电动机及其装配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/073213 WO2011017839A1 (zh) 2009-08-12 2009-08-12 大极型方波三相无刷永磁直流电动机及其装配方法

Publications (1)

Publication Number Publication Date
WO2011017839A1 true WO2011017839A1 (zh) 2011-02-17

Family

ID=43585846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073213 WO2011017839A1 (zh) 2009-08-12 2009-08-12 大极型方波三相无刷永磁直流电动机及其装配方法

Country Status (3)

Country Link
US (1) US8975799B2 (zh)
CN (1) CN102047528B (zh)
WO (1) WO2011017839A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140125189A1 (en) * 2012-11-06 2014-05-08 Nidec Motor Corporation 3-phase permanent magnet motor or generator having variable stator teeth
CN104426315A (zh) * 2013-09-04 2015-03-18 山洋电气株式会社 三相电磁电机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014241685A (ja) * 2013-06-12 2014-12-25 日本電産サンキョー株式会社 モータ
JP6230927B2 (ja) * 2014-02-06 2017-11-15 株式会社デンソー モータ
EP3021468A1 (en) * 2014-11-14 2016-05-18 Areva Wind GmbH A stator for a generator and a flux switching machine for a wind turbine
CN106130299A (zh) * 2016-08-31 2016-11-16 安徽远东船舶有限公司 一种充电船开关磁阻电机和开关磁阻驱动装置
FR3058845B1 (fr) * 2016-11-16 2020-11-13 Moving Magnet Tech Stator pour machine electrique haute vitesse
WO2019003372A1 (ja) * 2017-06-29 2019-01-03 三菱電機株式会社 センサマグネット、モータ、及び空気調和機
GB2624364A (en) * 2022-09-22 2024-05-22 Wilson Benesch Ltd A motor for a turntable and associated methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261513A (ja) * 1993-03-10 1994-09-16 Matsushita Electric Ind Co Ltd ブラシレスモータ
JPH08256461A (ja) * 1995-03-16 1996-10-01 Toshiba Corp 永久磁石形モータ
JPH11234990A (ja) * 1998-02-12 1999-08-27 Okuma Corp 永久磁石モータ
CN2389440Y (zh) * 1999-09-09 2000-07-26 机械工业部广州电器科学研究所 多极分数槽绕组无刷直流电动机
CN201118414Y (zh) * 2007-10-29 2008-09-17 深圳航天科技创新研究院 方波三相无刷永磁直流电动机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2149226B (en) * 1983-09-05 1987-09-09 Papst Motoren Gmbh & Co Kg Collectorless d c motor
DE10124415A1 (de) * 2001-05-18 2002-11-28 Siemens Ag Elektrische Maschine
WO2009055956A1 (fr) 2007-10-29 2009-05-07 Shenzhen Academy Of Aerospace Technology Moteur à courant continu à aimant permanent sans balai triphasé à onde carrée

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261513A (ja) * 1993-03-10 1994-09-16 Matsushita Electric Ind Co Ltd ブラシレスモータ
JPH08256461A (ja) * 1995-03-16 1996-10-01 Toshiba Corp 永久磁石形モータ
JPH11234990A (ja) * 1998-02-12 1999-08-27 Okuma Corp 永久磁石モータ
CN2389440Y (zh) * 1999-09-09 2000-07-26 机械工业部广州电器科学研究所 多极分数槽绕组无刷直流电动机
CN201118414Y (zh) * 2007-10-29 2008-09-17 深圳航天科技创新研究院 方波三相无刷永磁直流电动机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140125189A1 (en) * 2012-11-06 2014-05-08 Nidec Motor Corporation 3-phase permanent magnet motor or generator having variable stator teeth
CN103812240A (zh) * 2012-11-06 2014-05-21 尼得科电机有限公司 具有变化的定子齿的三相永磁电动机或发电机
CN104426315A (zh) * 2013-09-04 2015-03-18 山洋电气株式会社 三相电磁电机

Also Published As

Publication number Publication date
US8975799B2 (en) 2015-03-10
CN102047528B (zh) 2013-07-10
US20130106254A1 (en) 2013-05-02
CN102047528A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
WO2011017839A1 (zh) 大极型方波三相无刷永磁直流电动机及其装配方法
US8089192B2 (en) Three-phase square-wave permanent magnet brushless DC motor
CN101371425B (zh) 方波三相无刷永磁直流电动机
CN103222165B (zh) 三相永磁伺服电动机
CN204258453U (zh) 一种定子及其相应的无刷直流电机和三相开关磁阻电机
WO2012119301A1 (zh) 一种铁氧体三相永磁电机
CN201018373Y (zh) 混合励磁同步电动机
CN201509142U (zh) 大极型方波三相无刷永磁直流电动机
WO2009065256A1 (fr) Machines à aimant permanent de type disque monophasées, triphasées et polyphasées haute puissance
CN209402384U (zh) 电动车及18槽10极三相永磁无刷电机
CN112968539A (zh) 一种48槽三相集中绕组式永磁电机
CN103222166B (zh) 一种三相永磁伺服电动机
WO2022199144A1 (zh) 用于伺服系统的五相电机
CN104917309A (zh) 一种定子及其相应的无刷直流、三相开关磁阻和罩极电机
CN214626540U (zh) 一种48槽三相集中绕组式永磁电机
CN209462233U (zh) 一种双定子复合转子直流电机
WO2011029230A1 (zh) 大小齿结构的方波无刷永磁直流电机及其装配方法
CN218733792U (zh) 一种双转子同步磁阻电机
WO2011029235A1 (zh) 大直径型方波三相无刷直流电机及其装配方法
WO2011029231A1 (zh) 大小齿结构的方波三相永磁直流电机及其装配方法
WO2011029228A1 (zh) 大小齿结构的方波三相无刷永磁直流电机及其装配方法
WO2011029229A1 (zh) 大小齿结构的三相无刷永磁直流电机及其装配方法
CN105245072B (zh) 一种具有双层永磁体励磁的永磁电机
WO2011029232A1 (zh) 大直径型三相无刷永磁直流电机及其装配方法
WO2009052646A1 (fr) Dispositif de machine électrique, son stator et enroulement d'induit, et procédé de fabrication dudit dispositif

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104636.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13805341

Country of ref document: US