WO2011013921A2 - Composition for forming a coating and coating applied with the composition - Google Patents
Composition for forming a coating and coating applied with the composition Download PDFInfo
- Publication number
- WO2011013921A2 WO2011013921A2 PCT/KR2010/004510 KR2010004510W WO2011013921A2 WO 2011013921 A2 WO2011013921 A2 WO 2011013921A2 KR 2010004510 W KR2010004510 W KR 2010004510W WO 2011013921 A2 WO2011013921 A2 WO 2011013921A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- composition
- film
- coating
- silane
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/10—Metal compounds
- C08K3/14—Carbides
Definitions
- the present invention relates to a composition for forming a film and a film to which the composition is applied, and more particularly, a trifunctional silane represented by the general formula R 1 SiX 3 and a trifunctional represented by the general formula R 2 SiX ' 3 .
- the hydrocarbon group containing the bond, X, X 'and X "are the same or different from each other, a hydrolyzable group); a radical initiator; and a solvent in which the oligomer and radical initiator are dissolved.
- Si- (C-) nSi (n is 2 or more) by producing up to four C-bonds of Si-C-Si bonds by heating during polymerization of the starting material siloxane oligomer.
- the natural hardness of 4 or less) provides a coating film having a coating composition and a composition for forming a coating which can greatly improve the hardness of the coating, and ultimately improve the durability of the coating material such as a substrate.
- Glass has physical properties characterized by reflection performance, transparency, and the like, and thus, it is applied to automobile glass, window glass, or the like, because the mirror is manufactured or translucent.
- the glass has a disadvantage in that the resistance to impact is so small that it is easily broken even though it is under pressure when instantaneously applied.
- plastics that is, plastics having excellent impact resistance than glass have been manufactured and used.
- Plastics are widely replacing glass applied areas of public transportation such as trains, buses, taxis, and passenger cars, and are expanding their application areas to beakers, flasks, laboratory equipment, glasses, telescopes, and cameras.
- such plastics have a smaller weight per unit volume than glass, and in particular, when the plastic is applied to a vehicle such as a vehicle, fuel consumption or battery consumption of the vehicle may be reduced.
- methods that can be taken include a method of improving the hardness and durability of the plastic itself, and a method of applying a release material having a hardness greater than that of plastic to the surface of the plastic.
- a method of improving the hardness and durability of the plastic itself in order to improve the hardness and durability of the plastic itself, investment in related technologies should be made. Due to the nature of new material development, it takes a long time to develop the technology, and in terms of processing technology such as shape processing technology of the developed high hardness and high durability plastic There is a problem that technology development is not simple, such as a new condition must be presented. Therefore, a method of applying a release material can be considered as a simpler method.
- the Republic of Korea Patent Publication No. 1997-42864 discloses a technique related to a non-metallic surface coating composition with respect to a technology of improving the overall durability of a plastic product by applying a release material to a plastic surface. More specifically, 5 to 40% by weight of the polysiloxane macromer inorganic resin compound, 0.5 to 8% by weight of the silane coupling agent, 20 to 80% by weight of the acrylic copolymer, 2 to 45% by weight of the crosslinking agent and 10 to 50% by weight of the solvent.
- a nonmetallic surface coating agent composition is disclosed.
- a silane coupling agent and an acrylic copolymer were used, and a CC-based bond was formed by a copolymerization reaction, from which a Si-O bond was formed through a thermosetting reaction.
- the surface strength is improved by generating.
- the Si-O bond forming the glass surface is weak in its hardness and still has a weak resistance to scratches and the like, and it is urgent to develop a surface coating material having a higher hardness.
- an object of the present invention is to polymerize a plurality of silanes, and then to add a radical initiator from the beginning in the polymerization of the film-forming composition
- a radical initiator from the beginning in the polymerization of the film-forming composition
- the number of carbon (C) to be bonded by up to four, by the inter-carbon bond is a surface coating agent with superior surface hardness than the conventional surface coating agent It is to make the ultimate effect to improve the mechanical properties, such as resistance to the scratch of the coating object.
- trifunctional silane represented by the general formula R 1 SiX 3 trifunctional silane represented by the general formula R 2 SiX ' 3 , general formula SiX'' 4 Oligomers obtained by polymerizing a tetrafunctional silane simultaneously or sequentially represented by (wherein R 1 is at least one selected from an alkyl group or a phenyl group, R 2 is a hydrocarbon group containing at least one unsaturated bond, X, X 'And X' are the same or different hydrolyzable groups), a radical initiator, and a solvent for dissolving the oligomer and the radical initiator; and provide a film-forming composition in which these components are formed by polymerization.
- the silane is a methyl group substituted trifunctional silane represented by the general formula CH 3 SiX 3 in the case of an alkyl group substituted trifunctional silane in the trifunctional silane represented by the general formula R 1 SiX 3 , and R 2 SiX "in the case of a trifunctional silane represented by the general formula 3 C 2 H 3 SiX 'is preferably a vinyl group substituted with a trifunctional silane represented by 3.
- the hydrolyzable group (X, X ', X' ') is preferably at least any one selected from a halogen element, hydrogen, or a carbon compound containing 1 to 4 carbons.
- the carbon compound containing 1 to 4 carbons includes a halogen group, an alkylamino group, an alkoxy group, an acyloxy group, and an oxime group, and preferably at least one of them.
- the halogen group is an isocyanate
- the alkoxy group is at least one selected from methoxy or ethoxy
- the acyloxy group is acetoxy
- the oxime group is methyl ethyl methoxy.
- the radical initiator is preferably 0.001 to 1% by weight when the total weight of all the silanes is 100.
- the polymerization reaction for obtaining the oligomer is carried out in the radical polymerization, hydrolysis polycondensation, sequential reaction of radical polymerization and hydrolysis polycondensation, sequential reaction of hydrolysis polycondensation and radical polymerization, and simultaneous reaction of radical polymerization and hydrolysis polycondensation. It is preferable to use any one selected.
- the radical initiator is at least one of ketone peroxides, peroxy ketals, hydroperoxides, dialkal peroxides, diacryl peroxides, peroxycarbonates, peroxyacid esters, and peroxyalkyl compounds. It is preferable that it is an organic peroxide containing.
- the present invention provides a composition for forming a film in which the structure of the main chain is a siloxane oligomer of the formula (1), the side chain is crosslinked by heating to generate the structure of the formula (2).
- Formula (1):-(Si-O-) n n is a natural number of 20 or more
- Si- (C-) nSi n is a natural number of 2 or more and 4 or less
- the said film forming composition is apply
- the present invention provides a film formed by applying the film-forming composition on a substrate in order to achieve the above object.
- the bond structure by carbon (C) of the film formed from the film-forming composition is strengthened, and the surface hardness and abrasion resistance of the film are remarkably increased, in particular, surface scratching is prevented.
- the effect is expected to be.
- the coating applied to the substrate or the like has a higher hardness and dielectric breakdown voltage characteristics than the coating prepared by the conventional method or composed of the conventional components so that the substrate can be strengthened as a whole.
- the coating composition according to the present invention is a trifunctional silane represented by the general formula R 1 SiX 3 , a trifunctional silane represented by the general formula R 2 SiX ' 3, and a tetrafunctional represented by the general formula SiX'' 4 .
- Oligomers obtained by polymerization of silanes simultaneously or sequentially (wherein R 1 is at least one selected from alkyl or phenyl groups, R 2 is a hydrocarbon group comprising one or more unsaturated bonds, X, X 'and X " Hydrolyzable groups identical or different from each other), a radical initiator, and a solvent for dissolving the oligomer and the radical initiator.
- R 1 is at least one selected from an alkyl group or a phenyl group
- R 2 is a hydrocarbon group including one or more unsaturated bonds, and specific examples thereof will be described later.
- halogen groups such as cyanide, cyanate, isocyanate and thiocyanate
- alkylamino groups such as amino, methylamino, ethylamino, propylamino, butylamino, anilino, phenylmethylamino, dimethylamino, diethylamino, dipropylamino, N-phenyl-N-methylamino and the like;
- (3-3) alkoxy groups such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, secbutoxy, t-butoxy, benzyl;
- acyloxy groups such as acetoxy, propioxy, pivaloxy, octyloxy and benzoxoxy;
- X, X ', X' ' may be the same as or different from each other.
- At least one of isocyanate in the halogen group, methoxy or ethoxy in the alkoxy group, acetoxy in the acyloxy group and methyl ethyl methoxy in the oxime group It is better to use the back. This is because in the case of the hydrolyzable group having a carbon number in the above range, the hydrolysis reaction rate is high and the degree of hydrolysis completeness is high.
- Si-H + H 2 O Si-OH + H 2 (reacts under conditions of high temperature or high pH)
- the reaction occurs under conditions of high temperature or high pH, and when hydrolyzed with a halogen element (here, chlorine) as a hydrolyzable group, the reaction rate is very fast. There is this.
- the silanes form a copolymer by a cross copolymerization reaction.
- the main chain is composed of a siloxane oligomer having a main chain structure of-(Si-O-) n (n is a natural number of 20 or more), and when such a siloxane oligomer is heated, side chains are crosslinked by heating to form Si-
- the present invention relates to a film-forming composition that generates (C-) nSi (n is a natural number of 2 or more and 4 or less).
- the Si-CC-Si, Si-CCC-Si and Si-CCCC-Si bond structures represented by Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) make the two siloxane chains very firm. Due to the bonding has a very high hardness compared to the Si-O bonding structure, this bonding structure plays a crucial role to improve the mechanical properties of the coating and the coated object. In particular, the greater the number of C included in the C-chain chain, the greater the hardness, and thus the present invention is characterized by the production of a C-chain chain including such a large number of C.
- the present invention introduces a thermal initiator into the initial composition and reacts with the copolymer at the same time during the thermal curing to draw Si- (C-) nSi bond (n is a natural number of 2 or more and 4 or less) to improve the density and hardness of the film It will be noted that there is a feature, and it should be noted that this makes a significant difference from the prior art.
- the reaction for generating a bond in the form of Si-O-Si and Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) is expressed as follows.
- n_Si-CH CH 2 ⁇ [-CH (-Si) -CH 2 -CH (Si-)-CH 2- ] n
- the Si-O-Si binder is reacted by the reaction of (1) during thermosetting, and Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) by the reaction of (2) to (4). It can be said that the surface hardness of the film formed therefrom by forming bonds and polymerizing them becomes very high.
- a more specific polymerization method is as follows, and the three types of silanes mentioned above form an oligomer by superposing
- silane monomers (three types) in the raw state After mixing each of the silane monomers (three types) in the raw state, water and a catalyst are added to hydrolyze to generate silanol groups (SiOH), and the silanol groups are reacted with each other to perform axial polymerization.
- the silane monomers in the raw state may be hydrolyzed independently of each other to produce silanol groups, and then mixed and induced to react and condensation polymerization.
- hydrolysis and axial polymerization are mutually different reactions, it is common to proceed sequentially. However, such hydrolysis and axial polymerization may be performed simultaneously.
- the catalyst of hydrolysis and the catalyst of axial polymerization may mutually be same or different.
- the silane monomer may be dissolved in any organic solvent such as alcohol, ketone, ester, ether, hydrocarbon, and the like before use.
- the solvent used for dilution of the silane monomer is preferably compatible with the silane monomer or water for the uniform progress of the reaction, but this compatibility is not essential and may be somewhat insufficient.
- the amount of water used for hydrolysis is added in an amount of 0.5 to 10 equivalents to 1 equivalent of the hydrolyzable group contained in the silane. If the equivalent of water is less than 0.5 equivalent, the molecular weight of the polymer does not increase sufficiently, and if it exceeds 10 equivalent, the concentration of the silane monomer relative to the relative reaction system decreases, or water phase separation is undesirable. More preferably, the water equivalent is in the range of 1.0 to 5.0 equivalents.
- Examples of the catalyst for hydrolysis include inorganic acids such as hydrochloric acid, hydrofluoric acid, nitric acid, sulfuric acid, phosphoric acid, perchloric acid, and silicic acid fluoride (H 2 SiF 6 ); Organic acids such as formic acid, acetic acid, lactic acid, oxalic acid, succinic acid, citric acid, toluenesulfonic acid, trifluoroacetic acid and trifluoromethanesulfonic acid; Solid acids such as weakly acidic ion exchange resin, strongly acidic ion exchange resin, and activated aluminum oxide; Ammonia, methylamine, dimethylamine, trimethylamine, triethylamine, isopropylamine, butylamine, tributylamine, cyclohexylamine, benzylamine, ethylenediamine, diethylenetriamine, piperazine, polyethylene imine, etc.
- inorganic acids such as hydrochloric acid, hydrofluoric acid
- Amines Organic alkalis such as tetramethylammonium hydroxide, tetrabutylammonium hydroxide, butyltrimethylammonium hydroxide and triphenylphosphonium hydroxide;
- Metal hydroxides such as sodium hydroxide, potassium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide;
- Alkali alkoxides such as sodium methoxide and sodium ethoxide; Lewis acids such as aluminum chloride, triphenylphosphine and boron trifluoric acid; Titanium chloride (IV), titanium sulfate, titanium nitrate, titanium tetraisofuroxide, titanium tetra-n-butoxide, titanium tetrastearate, bisacetylacetonite diisopuropoxytitanium, tetrakisacylacetonato Titanium compounds such as titanium;
- Aluminum compounds such as aluminum sulfate, aluminum nitrate, aluminum
- volatile acids such as nitric acid, hydrochloric acid, formic acid, acetic acid, trifluoroacetic acid, etc., in which the reaction proceeds relatively gently and do not take long separation, are very suitable as catalysts.
- the catalyst concentration is less than 0.0001 molar equivalent, the reaction rate is drastically lowered and is not suitable for practical application. If the catalyst concentration is higher than 1 molar equivalent, the reaction rate is greatly increased, making it difficult to control the catalyst separation process. It is not desirable to proceed separately.
- the temperature range of the hydrolysis and polycondensation step is a range of low temperature to reflux temperature of about 0 ° C., depending on the blending ratio of the monomer, the catalyst, the dilution solvent and the amount thereof, and the time range is 0.1 hour to 30 hours. It is preferable to set it as the range of work.
- the reflux temperature is more preferably between 35 and 180 ° C.
- the reflux temperature is determined by the type of solvent used, and in the case of 0 ° C. or lower, water used as a catalyst condenses, which is not preferable.
- an OH group, an isocyanate, an epoxy compound, or the like copolymerizable with silanol may be copolymerized with the silane monomer.
- silanes may be polymerized simultaneously or sequentially polymerized in various orders.
- silanes examples include alkyl group-substituted trifunctional silanes, and in particular, methyl group-substituted trifunctional silanes are preferably used.
- methyl group-substituted trifunctional silanes are preferably methyltrimethoxysilane.
- Methyltrichlorosilane, methylchlorodiethoxysilane, methyltriacetoxysilane, methylmethoxydiacetoxysilane, methyltriisocyanedosilane, methyltris (methylethylmethoxymethoxy) silane, etc. have.
- a phenyl group-substituted trifunctional silane may be used as the silane, and such a phenyl group-substituted trifunctional silane may be phenyltrimethoxysilane, phenyltriethoxysilane, phenyltrichlorosilane, or phenyltriacene. Methoxysilane, phenyltriisocyanatosilane, phenyltris (methylethylketoxymo) silane, and the like.
- silane a hydrocarbon group containing at least one unsaturated bond may be used, and in particular, a vinyl-substituted trifunctional silane is preferably used.
- a vinyl-substituted trifunctional silane vinyltriethoxysilane is used. Phosphorus, vinyl trichlorosilane, vinyl triacetoxy silane, vinyl ethoxy diacetoxy silane, vinyl tris (menylethyl methoxy moth) silane and the like.
- the tetrafunctional silane is tetramethoxysilane, tetrachlorosilane, dimethoxydichlorosilane, tetraethoxysilane, tetraacetoxysilane, tetraisocyanatosilane, tetrakis (methyl Ethyl ketoxy) silane and the like.
- Each of these silanes may be hydrolyzed and polymerized alone, or may be mixed and hydrolyzed.
- silanes may also be used, such as 3-mercaptopropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrialkoxysilane, 3-acryloxypropyltriethoxy Silane, 3-methacryloxytriethoxysilane, and the like.
- hydrolyzable compounds containing elements other than silicon such as boron, phosphorus, aluminum, titanium, zirconium, and the like.
- a radical initiator is added to polymerize the monomers.
- methyl silane and vinyl silane contribute to the radical polymerization, and each is polymerized by the same reaction as follows. This radical reaction forms silane-free oligomers.
- reaction (3) proceeds with a general radical initiator
- reaction of (1) and (2) may proceed by radically reacting with an organic peroxide (peroxide).
- the total weight of the silane is assumed to be 100, 0.001 to 1% by weight of a radical initiator is added thereto, and the polymerization is carried out by stirring during heating.
- the radical initiator is 1% by weight or more, the molecular weight tends to be very small, and if it is 0.001% by weight or less, the polymerization reaction does not occur, the radical initiator has a critical significance in the above range.
- any substance which generates free radicals by heating may be used, but preferably, an azo compound, an azo-amide compound, a peroxide, diphenylalkaine, a benzophenone derivative, or the like may be used.
- Organic peroxides which are characterized by solubility and high stability and are capable of high efficiency polymerization at low temperatures are preferred.
- Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bonds occur only when the reaction occurs at a lower temperature than at a high temperature.
- organic peroxide examples include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide and acetylacetone peroxide; 1,1-bis (t-hexyl peroxide-3, 3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butyperoxy)- 2-methylcyclohexane, 1,1-bis (t-butyperoxy) cyclohexane, 2,2-bis (t-butyperoxy) butane, 3,3-bis (t-butyperoxy) butylpentano Peroxy ketals such as 8, 2,2-bis (4,4-bis (t-butyperoxy) cyclohexyl) propane; p-mentane hydroperoxide, diisopropyl benzenehydroperoxide, 1,1, Hydroperoxides such as 3,3-tetramethylbut
- An arbitrary organic solvent is added for the purpose of dissolving and diluting the thermal initiator and the silane, and these solvents are mixed and used according to the drying rate or coating performance.
- the kind of solvent which can be selected is as follows.
- Methanol ethanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, sec-butane, 1-pentanol, 2-methylbutanol, 3-methylbutanol, 2-pentanol, 4-methyl-2- Alcohols such as pentanol, cyclohexanol, methylcyclohexanol, n-hexanol, perfuryl alcohol, perfuryl methanol, tetrahydrofurfuryl alcohol, benzyl alcohol; Acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl n-butyl ketone, methyl t-butyl ketone, methyl n-pentyl ketone, methyl n-hexyl ketone, diethyl ketone, diisopropyl ketone, diisobutyl ketone, cyclo Ketones such as pentan
- a solvent having a boiling point of 100 ° C. or lower is preferably mixed with a solvent having a boiling point of 120 ° C. to 160 ° C., for example, a group consisting of ethanol, 2-propanol, cetbutyl alcohol and propylene glycol monomethyl
- a group consisting of ether, propylene glycol monomethyl ether acetate, methyl isobutyl ketone and n-propyl acetate is mixed with each other.
- the overall reaction time takes about 1 to 12 hours.
- hydrolysis-condensation polymerization and radical polymerization can also be advanced simultaneously by adding water, a catalyst, and a radical initiator simultaneously.
- the order may be determined in the direction of hydrolysis condensation polymerization followed by radical polymerization or in the direction of hydrolysis condensation polymerization after radical polymerization.
- the said coating composition adhere
- reaction promotion catalysts such as a titanium and a tin compound, arbitrary surfactant, a defoaming agent, a silane coupling agent, etc.
- An accelerator or the like may also be added for a predetermined purpose.
- adhesion promoter and surfactant based on the alkoxy silane can also be copolymerized previously with a silane compound.
- Example 1 for producing a coating composition according to the present invention is as follows.
- the siloxane thus obtained was mixed with additives as in the composition of Table 1, aged at 0 ° C. for 12 hours, and filtered with a 0.1 ⁇ m PTFE filter to prepare a coating composition.
- Example 1 Example 2
- Example 3 Example 4
- Example 5 Example 6
- Oligomer threshold 100 100 100 100 100 100 100 100 Radical initiator #One #2 # 3 #One #2 - menstruum PGMEA PGMEA IPA IPA PGME PGMEA
- the coating solution prepared as described above was applied to alkali-free glass at a rotational speed of 1000 rpm to form a 500 nm transparent thin film.
- the coated object is made of glass, but the coated object can be used in various ways without being limited to the form of plastic or other materials thereof introduced in the background art.
- the thin film thus formed was prebaked at a temperature of 100 ° C. for 15 minutes, and then cured at a temperature of 250 ° C. for 15 minutes, followed by visible light transmittance, pencil hardness test, and dielectric breakdown voltage test.
- the composition prepared as described above generates Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bonds in addition to Si-O bonds, so that the bond strength is relatively high. It became high, which can be seen from the above chemical equation.
- the coating composition prepared according to the present invention can be seen that the hardness value measured more than four times higher than the coating composition prepared by excluding the conventional radical initiator, in the case of insulation breakdown voltage Edo was three times higher. However, no difference was observed between the two compositions as the light transmittance was not a factor that depends on the radical initiator.
- phenyltrimethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, and tetraethoxysilane were mixed in different compositions, and placed in a three-necked flask having a volume of about 2 liters, and a solvent.
- 1 liter (208.3 g) of butyl acetate was added to the flask, followed by vigorously stirring the contents of the flask, using a dropping funnel in which 2 ml of 1 mol / liter of nitric acid and 180 ml of pure water were added to the flask. It was dripped for a while.
- the siloxanes A-C thus obtained were mixed with additives as in the composition shown in Table 3 below, aged at 0 ° C. for 12 hours, and filtered through a 0.1 ⁇ m PTFE filter to prepare a coating composition.
- a transparent thin film having a thickness of 700 nm was applied at 600 rpm to form a transparent thin film having a thickness of 1 ⁇ m.
- the above crack limit film thicknesses expressed at 2 and 3 ⁇ m correspond to those applied at less than 600 rpm.
- the coated object is made of glass, but the coated object can be used in various ways without being limited to the form of plastic or other materials thereof introduced in the background art.
- the thin film thus formed was prebaked at a temperature of 100 ° C. for 15 minutes, and then cured at a temperature of 250 ° C. for 15 minutes, followed by visible light transmittance, pencil hardness test, and dielectric breakdown voltage test.
- the composition prepared as described above generates Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bonds in addition to Si-O bonds, so that the bond strength is relatively high. It became high, which can be seen from the above chemical equation.
- the coating composition prepared according to the present invention can be seen that the hardness value measured more than four times higher than the coating composition prepared by excluding the conventional radical initiator, in the case of dielectric breakdown voltage Edo was three times higher. However, no difference was observed between the two compositions as the light transmittance is not a factor that depends on the radical initiator.
- the coating compositions prepared by polymerizing the above-described coating compositions of Examples 1 and 2 and other oligomers other than the oligomers applied in the present invention together with the radical initiator were compared to demonstrate the superiority of the present invention.
- phenyltrimethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, and tetraethoxysilane were mixed in different compositions, and placed in a three-necked flask having a volume of about 2 liters, and a solvent.
- 1 liter (208.3 g) of butyl acetate was added to the flask, followed by vigorously stirring the contents of the flask, using a dropping funnel in which 2 ml of 1 mol / liter of nitric acid and 180 ml of pure water were added to the flask. It was dripped for a while.
- the present invention is at least one selected from phenyl trimethoxy silane and methyl trimethoxy silane, trifunctional silane having a vinyl trimethoxy silane, tetraethoxy silane as an embodiment, Since the tetrafunctional silane is an essential component of the polymer, C and D polymerized by removing vinyltrimethoxysilane as the vinyl-substituted trifunctional silane or tetraethoxysilane as the tetrafunctional silane. Becomes a comparative example.
- the siloxanes A to C thus obtained were mixed with additives as in the composition of Table 5 below, aged at 0 ° C. for 12 hours, and filtered through a 0.1 ⁇ m PTFE filter to prepare a coating composition.
- a transparent thin film having a thickness of 700 nm was applied at 600 rpm to form a transparent thin film having a thickness of 1 ⁇ m.
- the above crack limit film thicknesses expressed in 2, 1.5, and 1 ⁇ m correspond to those applied at less than 600 rpm.
- the coated object is made of glass, but the coated object can be used in various ways without being limited to the form of plastic or other materials thereof introduced in the background art.
- the thin film thus formed was prebaked at a temperature of 100 ° C. for 15 minutes, and then cured at a temperature of 250 ° C. for 15 minutes, followed by visible light transmittance, pencil hardness test, and dielectric breakdown voltage test.
- composition according to the present invention prepared as described above did not apply all of the vinyl-substituted trifunctional silane and tetrafunctional silane, it was found that the hardness value was measured 2 to 4 times higher than the composition of the comparative example selectively applied one by one Can.
- Triethoxysilanes were mixed in different compositions and placed in a three-necked flask having a volume of about 2 liters, followed by adding 1 liter (208.3 g) of butyl acetate as a solvent, and then stirring the contents of the flask vigorously, 1 mol / A solution of 2 ml of nitric acid and 180 ml of pure water was added dropwise for 30 minutes using a dropping funnel installed in the flask.
- At least one selected from phenyltrimethoxysilane and methyltrimethoxysilane, a trifunctional silane and a tetrafunctional silane each having tetraethoxysilane as an embodiment are polymers. It is an essential component of and replaces vinyltrimethoxysilane with other carbon-based materials (3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane) for equal efficacy. It was confirmed.
- the siloxanes A to E thus obtained were mixed with additives as in the composition shown in Table 7 below, aged at 0 ° C. for 12 hours, and filtered through a 0.1 ⁇ m PTFE filter to prepare a coating composition.
- crack limit film thicknesses expressed in 3, 4, and 5 ⁇ m correspond to those applied at less than 600 rpm.
- the coated object is made of glass, but the coated object can be used in various ways without being limited to the form of plastic or other materials thereof introduced in the background art.
- the thin film thus formed was prebaked at a temperature of 100 ° C. for 15 minutes, and then cured at a temperature of 250 ° C. for 15 minutes, followed by visible light transmittance, pencil hardness test, and dielectric breakdown voltage test.
- composition according to the present invention prepared as described above was prepared by applying a substance containing another hydrocarbon group instead of the vinyl-substituted trifunctional silane, and exhibited similar properties to those of the vinyl-substituted trifunctional silane when the radical initiator was used.
- the epoxy group (3-glycidoxypropyltrimethoxysilane) having a long carbon-to-carbon coupling distance and flexible characteristics
- the pencil hardness was relatively low in view of its physical properties. The difference was not significant.
- the use of a radical initiator produces a Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bonds in addition to the Si-O bond. As a result, the bond strength was relatively high.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Paints Or Removers (AREA)
Abstract
The present invention relates to a composition for forming a coating and to a coating applied with the composition, and more particularly, to a composition for forming a coating and to a coating applied with the composition, which significantly increase in coating hardness to ultimately enhance the durability of materials such as substrates on which the coating is applied, wherein the composition consists of: an oligomer obtained by simultaneously or sequentially polymerizing a 3-functional silane represented by the general formula R1SiX3, a 3-functional silane represented by the general formula R2SiX3, and a 4-functional silane represented by the general formula SiX4 (where R1 is either an alkyl group or a phenyl group, R2 is a hydrocarbon group which includes one or more unsaturated bonds, and X, X, and X are mutually identical or different hydrolyzable groups); a radical initiator; and a solvent which dissolves the oligomer and the radical initiator, to significantly improve the hardness of the coating by means of a Si-(C-)nSi structure (where n is a natural number from 2 to 4), particularly by enabling heating during the polymerization of a siloxane oligomer as a starting material to produce up to 4 C bonds in an Si-C-Si bond.
Description
본 발명은 피막 형성용 조성물 및 그 조성물이 도포되는 피막에 관한 것으로서, 보다 상세하게는, 일반식 R1SiX3로 표현되는 3관능성 실레인, 일반식 R2SiX'3로 표현되는 3관능성 실레인, 일반식 SiX''4로 표현되는 4관능성 실레인을 동시에 또는 순차적으로 중합하여 수득되는 올리고머(여기서, R1은 알킬기 또는 페닐기 중에서 선택되는 적어도 어느 하나, R2는 하나 이상의 불포화 결합을 포함하는 탄화수소기, X, X' 및 X"는 상호 동일하거나 상이한 가수분해성기)와; 라디칼 개시제; 및 상기 올리고머와 라디칼 개시제를 용해하는 용매;를 포함하여 구성되도록 함으로써 피막의 경도가 보다 향상되도록 하며, 특히 출발물질인 실록산 올리고머의 중합과정에서 가열에 의하여 Si-C-Si 결합의 C 결합이 최대 4개까지 생성되도록 함으로써 Si-(C-)nSi (n은 2 이상 4 이하의 자연수) 구조에 의하여 피막의 경도가 크게 향상되며, 따라서 궁극적으로 기판 등 피도포 재료의 내구성을 증진시킬 수 있는 피막 형성용 조성물 및 그 조성물이 도포되는 피막을 제공한다.The present invention relates to a composition for forming a film and a film to which the composition is applied, and more particularly, a trifunctional silane represented by the general formula R 1 SiX 3 and a trifunctional represented by the general formula R 2 SiX ' 3 . Oligomers obtained by simultaneous or sequential polymerization of silanes, tetrafunctional silanes represented by the general formula SiX '' 4 , wherein R 1 is at least one selected from alkyl groups or phenyl groups, R 2 is one or more unsaturated The hydrocarbon group containing the bond, X, X 'and X "are the same or different from each other, a hydrolyzable group); a radical initiator; and a solvent in which the oligomer and radical initiator are dissolved. In particular, Si- (C-) nSi (n is 2 or more) by producing up to four C-bonds of Si-C-Si bonds by heating during polymerization of the starting material siloxane oligomer. The natural hardness of 4 or less) provides a coating film having a coating composition and a composition for forming a coating which can greatly improve the hardness of the coating, and ultimately improve the durability of the coating material such as a substrate.
유리는 반사성능, 투명성 등을 특징으로 하는 물성을 지니고 있어, 이를 이용하여 거울을 제조하거나, 투광성을 가지므로 자동차 유리, 창문 유리 등으로 응용되고 있다. 그러나, 유리는 임팩트에 대한 저항성이 매우 작아 순간적으로 첨력이 가해지는 경우 비록 적은 압력이지만 쉽게 파손되는 단점이 있다. Glass has physical properties characterized by reflection performance, transparency, and the like, and thus, it is applied to automobile glass, window glass, or the like, because the mirror is manufactured or translucent. However, the glass has a disadvantage in that the resistance to impact is so small that it is easily broken even though it is under pressure when instantaneously applied.
따라서 최근에는 동 응용분야에 있어서, 유리보다 내충격성이 우수한 합성수지 즉, 플라스틱이 제조되어 사용되고 있는 추세이다. 플라스틱은 기차, 버스, 택시 및 승용차와 같은 공공운송 수단 중 유리가 적용된 분야를 폭넓게 대체하고 있으며, 비이커, 플라스크 등 실험용구, 안경, 망원경, 카메라 등 광학기구 등에도 그 적용영역을 넓혀가고 있다. Therefore, recently, in the application field, synthetic resins, that is, plastics having excellent impact resistance than glass have been manufactured and used. Plastics are widely replacing glass applied areas of public transportation such as trains, buses, taxis, and passenger cars, and are expanding their application areas to beakers, flasks, laboratory equipment, glasses, telescopes, and cameras.
특히, 이러한 플라스틱은 유리에 비하여 단위체적당 중량이 작아, 이를 특히 자동차 등 운송수단에 적용하는 경우에는 운송수단의 연료 사용량이나 배터리 소모량을 줄일 수 있는 장점을 갖는다.In particular, such plastics have a smaller weight per unit volume than glass, and in particular, when the plastic is applied to a vehicle such as a vehicle, fuel consumption or battery consumption of the vehicle may be reduced.
그러나, 플라스틱은 유리에 비하여 경도가 매우 낮으므로 스크래치가 발생하기 쉬우며, 그에 따라 플라스틱의 투명성이 저하되고, 그 결과 플라스틱을 적용한 제품 전체가 그 사용기간이 짧음에도 불구하고 오래되거나 낡아 보이며, 따라서 외관에 불만을 갖게된 사용자에 의한 제품의 대체 시기를 앞당겨 제품 수명을 불합리하게 단축시키는 문제점이 있었다. However, since plastics have a very low hardness compared to glass, it is easy to cause scratches, and thus, the transparency of the plastics is degraded, and as a result, the entire product to which the plastic is applied looks old or worn out despite its short lifespan. There was a problem of unreasonably shortening the life of the product by advancing the replacement time of the product by the user who is dissatisfied with the appearance.
그러므로, 플라스틱의 우수성을 인정함으로써 이를 계속적으로 적용하되, 이러한 플라스틱의 취약점을 보강할 수 있는 기술 개발이 절실하게 필요하다.Therefore, while continuously applying this by acknowledging the superiority of plastics, there is an urgent need to develop a technology that can reinforce the weaknesses of these plastics.
이를 위하여 강구될 수 있는 방안으로는 플라스틱 자체의 경도와 내구성을 향상시키는 방법, 플라스틱의 표면에 플라스틱 보다 경도가 강한 이형 물질을 도포하는 방법 등이 있다. 그러나, 플라스틱 자체의 경도와 내구성을 향상시키기 위해서는 관련기술에 대한 투자가 이루어져야 하며, 신물질 개발이라는 속성상 기술 개발에 장시간이 소요되고, 개발된 고경도 고내구성 플라스틱의 형상 가공 기술 등 가공기술면에서도 새로운 조건이 제시되어야 하는 등 기술 개발이 간단하지 않은 문제점이 있다. 따라서, 보다 간이한 방법으로서 이형물질을 도포하는 방안을 강구해볼 수 있다.To this end, methods that can be taken include a method of improving the hardness and durability of the plastic itself, and a method of applying a release material having a hardness greater than that of plastic to the surface of the plastic. However, in order to improve the hardness and durability of the plastic itself, investment in related technologies should be made. Due to the nature of new material development, it takes a long time to develop the technology, and in terms of processing technology such as shape processing technology of the developed high hardness and high durability plastic There is a problem that technology development is not simple, such as a new condition must be presented. Therefore, a method of applying a release material can be considered as a simpler method.
이와 같이 플라스틱 표면에 이형물질을 도포함으로써 플라스틱 제품의 전체적 내구성을 향상시키는 기술과 관련하여 대한민국 공개특허공보 특1997-42864호에서는 비금속 표면 코팅제 조성물에 관한 기술을 개시하고 있다. 보다 상세하게는 폴리실록산 매크로머 무기수지 화합물 5∼40 중량%, 실란계 커플링제 0.5∼8 중량%, 아크릴 공중합체 20∼80 중량%, 가교제 2∼45 중량% 및 용제 10∼50 중량%로 이루어진 비금속 표면코팅제 조성물을 개시하고 있다. As described above, the Republic of Korea Patent Publication No. 1997-42864 discloses a technique related to a non-metallic surface coating composition with respect to a technology of improving the overall durability of a plastic product by applying a release material to a plastic surface. More specifically, 5 to 40% by weight of the polysiloxane macromer inorganic resin compound, 0.5 to 8% by weight of the silane coupling agent, 20 to 80% by weight of the acrylic copolymer, 2 to 45% by weight of the crosslinking agent and 10 to 50% by weight of the solvent. A nonmetallic surface coating agent composition is disclosed.
특히, 유리표면에 상기 조성물이 보다 단단하게 결합되도록 하기 위하여 실란계 커플링제와 아크릴 공중합체를 사용하였으며, 공중합반응에 의해 C-C 계열의 결합을 생성하고, 이로부터 열경화 반응을 통하여 Si-O 결합을 생성함으로써 표면강도를 향상시키도록 하고 있다.In particular, in order to bond the composition to the glass surface more firmly, a silane coupling agent and an acrylic copolymer were used, and a CC-based bond was formed by a copolymerization reaction, from which a Si-O bond was formed through a thermosetting reaction. The surface strength is improved by generating.
그러나, 유리표면을 이루고 있는 Si-O 결합은 그 경도면에서 취약하여 여전히 스크래치 등에 대한 저항력이 약한 문제점이 있으며, 보다 더 높은 경도를 갖는 표면 코팅물질을 개발할 필요성이 절실하다 할 수 있다. However, the Si-O bond forming the glass surface is weak in its hardness and still has a weak resistance to scratches and the like, and it is urgent to develop a surface coating material having a higher hardness.
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 다종의 실레인을 중합하고, 이후 피막 형성용 조성물을 중합함에 있어서 처음부터 라디칼 개시제를 첨가하고 이를 열경화 하여 조성물로부터 Si-C-Si 결합을 형성하되, 결합되는 탄소(C)의 갯수가 최대 4개까지 되도록 함으로써, 이러한 탄소간 결합체인에 의해 종래의 표면코팅제보다 표면경도가 탁월한 표면코팅제를 제조하여 궁극적으로 피도포체의 스크래치에 대한 저항성 등 기계적 물성을 향상효과를 구현하도록 하는 것이다.Accordingly, the present invention has been made to solve the problems of the prior art as described above, an object of the present invention is to polymerize a plurality of silanes, and then to add a radical initiator from the beginning in the polymerization of the film-forming composition By thermal curing it to form a Si-C-Si bond from the composition, the number of carbon (C) to be bonded by up to four, by the inter-carbon bond is a surface coating agent with superior surface hardness than the conventional surface coating agent It is to make the ultimate effect to improve the mechanical properties, such as resistance to the scratch of the coating object.
본 발명은 전술한 바와 같은 목적을 달성하기 위하여, 일반식 R1SiX3로 표현되는 3관능성 실레인, 일반식 R2SiX'3로 표현되는 3관능성 실레인, 일반식 SiX''4로 표현되는 4관능성 실레인을 동시에 또는 순차적으로 중합하여 수득되는 올리고머(여기서, R1은 알킬기 또는 페닐기 중에서 선택되는 적어도 어느 하나, R2는 하나 이상의 불포화 결합을 포함하는 탄화수소기, X, X' 및 X"는 상호 동일하거나 상이한 가수분해성기)와; 라디칼 개시제; 및 상기 올리고머와 라디칼 개시제를 용해하는 용매;를 포함하여 구성되며, 이들 성분들이 중합하여 형성되는 피막 형성용 조성물을 제공한다.The present invention, in order to achieve the object as described above, trifunctional silane represented by the general formula R 1 SiX 3 , trifunctional silane represented by the general formula R 2 SiX ' 3 , general formula SiX'' 4 Oligomers obtained by polymerizing a tetrafunctional silane simultaneously or sequentially represented by (wherein R 1 is at least one selected from an alkyl group or a phenyl group, R 2 is a hydrocarbon group containing at least one unsaturated bond, X, X 'And X' are the same or different hydrolyzable groups), a radical initiator, and a solvent for dissolving the oligomer and the radical initiator; and provide a film-forming composition in which these components are formed by polymerization.
상기 실레인은, 일반식 R1SiX3로 표현되는 3관능성 실레인 중 알킬기 치환 3관능성 실레인의 경우 일반식 CH3SiX3로 표현되는 메틸기 치환 3관능성 실레인이며, R2SiX'3로 표현되는 3관능성 실레인의 경우 일반식 C2H3SiX'3로 표현되는 비닐기 치환 3관능성 실레인인 것이 바람직하다.The silane is a methyl group substituted trifunctional silane represented by the general formula CH 3 SiX 3 in the case of an alkyl group substituted trifunctional silane in the trifunctional silane represented by the general formula R 1 SiX 3 , and R 2 SiX "in the case of a trifunctional silane represented by the general formula 3 C 2 H 3 SiX 'is preferably a vinyl group substituted with a trifunctional silane represented by 3.
상기 가수분해성기(X, X', X'')는 할로겐 원소, 수소 또는 1 ~ 4개의 탄소를 포함하는 탄소화합물 중 선택되는 적어도 어느 하나인 것이 바람직하다.The hydrolyzable group (X, X ', X' ') is preferably at least any one selected from a halogen element, hydrogen, or a carbon compound containing 1 to 4 carbons.
상기 1 ~ 4개의 탄소를 포함하는 탄소화합물은, 의할로겐그룹, 알킬아미노그룹, 알콕시그룹, 아실옥시그룹, 옥심그룹을 포함하며, 이들 중 적어도 어느 하나인 것이 바람직하다.The carbon compound containing 1 to 4 carbons includes a halogen group, an alkylamino group, an alkoxy group, an acyloxy group, and an oxime group, and preferably at least one of them.
상기 의할로겐그룹은 이소시아네이트이며, 알콕시그룹은 메톡시 또는 에톡시 중에서 선택되는 적어도 어느 하나이고, 아실옥시그룹은 아세톡시이며, 옥심그룹은 메틸에틸케톡시인 것이 바람직하다.The halogen group is an isocyanate, the alkoxy group is at least one selected from methoxy or ethoxy, the acyloxy group is acetoxy, the oxime group is methyl ethyl methoxy.
상기 라디칼 개시제는 상기 모든 실레인의 총 중량을 100으로 하는 경우, 0.001 ~ 1중량% 인 것이 바람직하다.The radical initiator is preferably 0.001 to 1% by weight when the total weight of all the silanes is 100.
상기 올리고머를 수득하기 위한 중합반응은, 라디칼 중합, 가수 분해 중축합, 라디칼 중합과 가수 분해 중축합의 순차반응, 가수 분해 중축합과 라디칼 중합의 순차반응, 및 라디칼 중합과 가수분해 중축합의 동시반응 중에서 선택되는 어느 하나로 하는 것이 바람직하다.The polymerization reaction for obtaining the oligomer is carried out in the radical polymerization, hydrolysis polycondensation, sequential reaction of radical polymerization and hydrolysis polycondensation, sequential reaction of hydrolysis polycondensation and radical polymerization, and simultaneous reaction of radical polymerization and hydrolysis polycondensation. It is preferable to use any one selected.
상기 라디칼 개시제는 케톤퍼옥사이드류, 퍼옥시케탈류, 하이드로퍼옥사이드류, 디알칼퍼옥사이드류, 디아크릴퍼옥사이드류, 퍼옥시카보네이트류, 퍼옥시산에스테르류, 퍼옥시알킬화합물류 중 적어도 어느 하나를 포함하는 유기 퍼옥사이드인 것이 바람직하다.The radical initiator is at least one of ketone peroxides, peroxy ketals, hydroperoxides, dialkal peroxides, diacryl peroxides, peroxycarbonates, peroxyacid esters, and peroxyalkyl compounds. It is preferable that it is an organic peroxide containing.
또한, 본 발명은 전술한 목적을 달성하기 위하여, 주사슬의 구조가 화학식 1인 실록산 올리고머이며, 가열에 의해서 side chain이 가교하여 화학식 2의 구조를 생성하는 피막 형성용 조성물을 제공한다.In addition, the present invention provides a composition for forming a film in which the structure of the main chain is a siloxane oligomer of the formula (1), the side chain is crosslinked by heating to generate the structure of the formula (2).
화학식 1: -(Si-O-)n n은 20 이상의 자연수Formula (1):-(Si-O-) n n is a natural number of 20 or more
화학식 2: Si-(C-)nSi n 는 2 이상 4 이하의 자연수Formula 2: Si- (C-) nSi n is a natural number of 2 or more and 4 or less
상기 피막 형성용 조성물은 기판상에 도포되는 것이 바람직하다.It is preferable that the said film forming composition is apply | coated on a board | substrate.
또한, 본 발명은 전술한 목적을 달성하기 위하여, 상기 피막 형성용 조성물을 기판상에 도포하여 형성되는 피막을 제공한다.In addition, the present invention provides a film formed by applying the film-forming composition on a substrate in order to achieve the above object.
이상으로부터 알 수 있는 바와 같이, 본 발명에 의하면, 피막 형성용 조성물로부터 형성되는 피막의 탄소(C)에 의한 결합 구조를 강화하여 피막의 표면 경도와 내마모성이 현저하게 증가되고, 특히 표면 스크래칭이 방지되는 작용효과가 기대된다.As can be seen from the above, according to the present invention, the bond structure by carbon (C) of the film formed from the film-forming composition is strengthened, and the surface hardness and abrasion resistance of the film are remarkably increased, in particular, surface scratching is prevented. The effect is expected to be.
또한, 피도포체와의 밀착성이 증진되고, 피막의 박리 혹은 균열이 감소되는 작용효과가 기대된다.Moreover, the effect with which the adhesiveness with a to-be-coated object is improved and peeling or a crack of a film is reduced is anticipated.
또한, 특히 열개시제를 사용하는 경우, 피막의 전체적인 경화가 신속히 이루어질 수 있으므로, 공정시간의 단축이 가능한 효과가 기대된다.In addition, especially when the thermal initiator is used, since the entire curing of the film can be made quickly, an effect that can shorten the process time is expected.
또한, 특히 라디칼 개시제를 사용하는 경우에는 열원이 광원에 비해 장비에 소요되는 비용면에서 저렴하므로 공정에 소요되는 경비를 절감할 수 있는 작용효과가 기대된다.In addition, especially in the case of using a radical initiator, since the heat source is inexpensive in terms of the cost of the equipment compared to the light source, it is expected that the effect of reducing the cost of the process.
또한, 기판 등에 도포되는 피막이 종래의 방법에 의해 제조되거나 종래의 성분으로 구성되는 피막에 비하여 보다 높은 경도 및 절연내압특성을 가져 기판이 전체적으로 내구성이 강화될 수 있도록 하는 작용효과가 기대된다.In addition, it is expected that the coating applied to the substrate or the like has a higher hardness and dielectric breakdown voltage characteristics than the coating prepared by the conventional method or composed of the conventional components so that the substrate can be strengthened as a whole.
이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 피막 형성제의 바람직한 실시예를 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the preferable Example of the film forming agent which concerns on this invention which has a structure as mentioned above is demonstrated in detail.
본 발명에 의한 도포용 조성물은 일반식 R1SiX3로 표현되는 3관능성 실레인, 일반식 R2SiX'3로 표현되는 3관능성 실레인, 일반식 SiX''4로 표현되는 4관능성 실레인을 동시에 또는 순차적으로 중합하여 수득되는 올리고머(여기서, R1은 알킬기 또는 페닐기 중에서 선택되는 적어도 어느 하나, R2는 하나 이상의 불포화 결합을 포함하는 탄화수소기, X, X' 및 X"는 상호 동일하거나 상이한 가수분해성기)와; 라디칼 개시제; 및 상기 올리고머와 라디칼 개시제를 용해하는 용매;를 포함하여 구성된다.The coating composition according to the present invention is a trifunctional silane represented by the general formula R 1 SiX 3 , a trifunctional silane represented by the general formula R 2 SiX ' 3, and a tetrafunctional represented by the general formula SiX'' 4 . Oligomers obtained by polymerization of silanes simultaneously or sequentially (wherein R 1 is at least one selected from alkyl or phenyl groups, R 2 is a hydrocarbon group comprising one or more unsaturated bonds, X, X 'and X " Hydrolyzable groups identical or different from each other), a radical initiator, and a solvent for dissolving the oligomer and the radical initiator.
R1은 알킬기 또는 페닐기 중에서 선택되는 적어도 어느 하나이며, R2는 하나 이상의 불포화 결합을 포함하는 탄화수소기로서, 이에 대한 구체적인 예는 후술하기로 한다.R 1 is at least one selected from an alkyl group or a phenyl group, R 2 is a hydrocarbon group including one or more unsaturated bonds, and specific examples thereof will be described later.
또한, X, X', X''은 가수분해성기로서, In addition, X, X ', X' 'is a hydrolyzable group,
(1) 할로겐 원소(1) halogen elements
(2) 수소(2) hydrogen
(3) 1 ~ 4개의 탄소를 포함하는 탄소화합물(3) carbon compounds containing 1 to 4 carbons
중 적어도 어느 하나를 포함하는데, 특히 상기 탄소화합물은,At least any one of, in particular the carbon compound,
(3-1) 시아나이드, 시아네이트, 이소시아네이트, 티오시아네이트 등 의할로겐그룹; (3-1) halogen groups such as cyanide, cyanate, isocyanate and thiocyanate;
(3-2) 아미노, 메틸아미노, 에틸아미노, 프로필아미노, 부틸아미노, 아닐리노, 페닐메틸아미노, 디메틸아미노, 디에틸아미노, 디프로필아미노, N-페닐-N-메틸아미노 등 알킬아미노그룹; (3-2) alkylamino groups such as amino, methylamino, ethylamino, propylamino, butylamino, anilino, phenylmethylamino, dimethylamino, diethylamino, dipropylamino, N-phenyl-N-methylamino and the like;
(3-3) 메톡시, 에톡시, 프로폭시, 이소프로폭시, 부톡시, 이소부톡시, 세크부톡시, t-부톡시, 벤질 등 알콕시그룹; (3-3) alkoxy groups such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, secbutoxy, t-butoxy, benzyl;
(3-4) 아세톡시, 프로피옥시, 피발옥시, 옥틸록시, 벤족시 등 아실옥시그룹;(3-4) acyloxy groups such as acetoxy, propioxy, pivaloxy, octyloxy and benzoxoxy;
(3-5) 메틸에틸케톡시모, 아세토알독시모, 아세톡시모, 부틸알독시모, 헥사노네옥시모, 4-펜텐-2옥시모, 사이클로펜타옥시모, 사이틀로헥사옥시모, 2-메틸사이클로펜타옥심, 벤잘독심, 아세토페녹심, 벤조페녹심, 벤질에틸케톡시모 등 옥심그룹;(3-5) Methylethylketoxymo, acetoaldoximo, acetoxymo, butyl adoximo, hexanoneoxymo, 4-pentene-2oxymo, cyclopentaoxymo, cyclohexaoxymo, 2-methylcyclo Oxime groups such as pentaoxime, benzal doxime, acetophenoxime, benzophenoxime and benzyl ethyl methoxymox;
등을 들 수 있다.Etc. can be mentioned.
여기서, 상기 X, X', X''은 서로 같을 수도 있고, 서로 다를 수도 있다.Here, X, X ', X' 'may be the same as or different from each other.
또한, 위 1 ~ 4개의 탄소를 포함하는 탄소화합물 중 바람직하게는 의할로겐그룹 중 이소시아네이트, 알콕시그룹 중 메톡시 또는 에톡시 중 적어도 어느 하나, 아실옥시그룹 중 아세톡시, 옥심그룹 중 메틸에틸케톡시 등을 사용하는 것이 더 좋다. 이는 위와 같은 범위의 탄소수를 갖는 가수분해성기의 경우에 가수분해 반응속도가 크고 가수분해 완결도가 높기 때문이다.Also, among the carbon compounds containing 1 to 4 carbons above, at least one of isocyanate in the halogen group, methoxy or ethoxy in the alkoxy group, acetoxy in the acyloxy group and methyl ethyl methoxy in the oxime group It is better to use the back. This is because in the case of the hydrolyzable group having a carbon number in the above range, the hydrolysis reaction rate is high and the degree of hydrolysis completeness is high.
한편, 수소 및 할로겐 원소를 가수분해성기로 하는 가수분해 반응을 반응식으로 나타내면 다음과 같다. On the other hand, a hydrolysis reaction using hydrogen and a halogen element as a hydrolyzable group is as follows.
Si-H + H2O = Si-OH + H2 (고온 또는 높은 pH의 조건하에서 반응함)Si-H + H 2 O = Si-OH + H 2 (reacts under conditions of high temperature or high pH)
Si-Cl + H2O = Si-OH + HCl (매우 빠른 반응속도)Si-Cl + H 2 O = Si-OH + HCl (very fast reaction rate)
여기서, 상기 수소를 가수분해성기로 하여 가수분해 반응하는 경우는 고온 또는 높은 pH의 조건하에서 반응이 일어나고, 할로겐원소(여기서는 염소)를 가수분해성기로 하여 가수분해 반응하는 경우는 매우 빠른 반응속도를 나타내는 특징이 있다. Here, when the hydrogen is hydrolyzed as a hydrolyzable group, the reaction occurs under conditions of high temperature or high pH, and when hydrolyzed with a halogen element (here, chlorine) as a hydrolyzable group, the reaction rate is very fast. There is this.
상기 실레인들은 상호 공중합 반응에 의해 공중합체를 형성하고 있다. The silanes form a copolymer by a cross copolymerization reaction.
대표적으로 표현하면, 주사슬의 구조가 -(Si-O-)n (n은 20 이상의 자연수)인 실록산 올리고머를 주 성분으로 하며, 이러한 실록산 올리고머를 가열하면 가열에 의해서 side chain이 가교하여 Si-(C-)nSi(n은 2 이상 4 이하의 자연수)를 생성하는 피막 형성용 조성물에 관한 것이 본 발명인 것이다. Representatively, the main chain is composed of a siloxane oligomer having a main chain structure of-(Si-O-) n (n is a natural number of 20 or more), and when such a siloxane oligomer is heated, side chains are crosslinked by heating to form Si- The present invention relates to a film-forming composition that generates (C-) nSi (n is a natural number of 2 or more and 4 or less).
위 공중합체들은 기본적으로 Si-OH 결합과 Si-CH=CH2 결합이 혼재되어 있다. 상기 각 결합들은 라디칼 개시제의 참여에 따른 열경화에 의해 Si-O-Si 결합과 Si-C-C-Si, Si-C-C-C-Si, Si-C-C-C-C-Si 결합을 각각 생성하며, 이들 결합체들이 망상조직을 이루게 된다.The copolymers are basically a mixture of Si-OH bonds and Si-CH = CH 2 bonds. Each of the bonds forms Si-O-Si bonds, Si-CC-Si, Si-CCC-Si, and Si-CCCC-Si bonds by thermal curing with the participation of a radical initiator, and these bonds form a network. Is achieved.
이 중 Si-(C-)nSi(n은 2 이상 4 이하의 자연수)로 표현되는 Si-C-C-Si, Si-C-C-C-Si, Si-C-C-C-C-Si 결합구조는 두개의 실록산 사슬을 매우 견고하게 결합하기 때문에 Si-O 결합구조에 비하여 매우 높은 경도를 가지며, 이러한 결합구조가 피막 및 피도포체의 기계적 물성을 향상시키는 결정적인 역할을 하게 된다. 특히 C 결합체인이 포함하는 C의 갯수가 많을수록 경도가 크게 향상되므로, 본 발명은 이러한 다수의 C를 포함하는 C 결합체인의 생성에 그 특징을 두고 있다.Among them, the Si-CC-Si, Si-CCC-Si and Si-CCCC-Si bond structures represented by Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) make the two siloxane chains very firm. Due to the bonding has a very high hardness compared to the Si-O bonding structure, this bonding structure plays a crucial role to improve the mechanical properties of the coating and the coated object. In particular, the greater the number of C included in the C-chain chain, the greater the hardness, and thus the present invention is characterized by the production of a C-chain chain including such a large number of C.
본 발명은 열개시제를 초기 조성물에 도입하여 열경화과정에서 공중합체와 동시에 반응시킴으로써 Si-(C-)nSi 결합(n은 2 이상 4 이하의 자연수)을 이끌어내어 피막의 밀도와 경도를 향상시키는데 그 특징이 있다고 할 것이며, 이러한 점이 종래기술과 중대한 차이를 발생한다는 점에 대하여 주목하여야 할 것이다.The present invention introduces a thermal initiator into the initial composition and reacts with the copolymer at the same time during the thermal curing to draw Si- (C-) nSi bond (n is a natural number of 2 or more and 4 or less) to improve the density and hardness of the film It will be noted that there is a feature, and it should be noted that this makes a significant difference from the prior art.
Si-O-Si 및 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 형태의 결합을 생성하는 반응을 화학식으로 표현하면 다음과 같다. The reaction for generating a bond in the form of Si-O-Si and Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) is expressed as follows.
(1) 2Si-OH → Si-O-Si + H2O (모노머의 가수분해 축중합 반응)(1) 2Si-OH → Si-O-Si + H 2 O (hydrolysis polycondensation reaction of monomer)
(2) 2Si-CH3 + [O] → Si-CH2-CH2-Si + H2O(2) 2Si-CH 3 + [O] → Si-CH 2 -CH 2 -Si + H 2 O
(3) Si-CH3 + CH2=CH-Si- + [O] → Si-CH2-CH2-CH(OH)-Si(3) Si-CH 3 + CH 2 = CH-Si- + [O] → Si-CH 2 -CH 2 -CH (OH) -Si
(4) n_Si-CH=CH2 → [-CH(-Si)-CH2-CH(Si-)-CH2-]n(4) n_Si-CH = CH 2 → [-CH (-Si) -CH 2 -CH (Si-)-CH 2- ] n
즉, 열경화시 (1)의 반응에 의하여 Si-O-Si 결합체가, (2) ~ (4)의 반응에 의하여 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 형태의 결합을 생성하고, 이들이 중합함으로써 이로부터 생성되는 피막의 표면경도는 매우 높아진다고 할 수 있다.That is, the Si-O-Si binder is reacted by the reaction of (1) during thermosetting, and Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) by the reaction of (2) to (4). It can be said that the surface hardness of the film formed therefrom by forming bonds and polymerizing them becomes very high.
보다 구체적인 중합방법은 다음과 같으며, 전술한 바와 같은 3종의 실레인은, 후술하는 방법으로 중합시킴으로써 올리고머를 형성한다.A more specific polymerization method is as follows, and the three types of silanes mentioned above form an oligomer by superposing | polymerizing by the method mentioned later.
(1) 가수 분해 축 중합법(1) hydrolysis axial polymerization method
원료상태의 각 실란모노머(3종)를 혼합한 후 물과 촉매를 가해서 가수 분해하여 실란올기(SiOH)를 생성시키고, 실란올기가 서로 반응하도록 하여 축 중합시킨다. 이 때, 원료상태의 실란모노머를 상호 혼합하지 않고 각 종별로 독립적으로 가수 분해 하여 실란올기를 각각 생성시킨 후 이들을 혼합하고 반응을 유도하여 축중합시킬 수도 있다.After mixing each of the silane monomers (three types) in the raw state, water and a catalyst are added to hydrolyze to generate silanol groups (SiOH), and the silanol groups are reacted with each other to perform axial polymerization. In this case, the silane monomers in the raw state may be hydrolyzed independently of each other to produce silanol groups, and then mixed and induced to react and condensation polymerization.
가수 분해와 축 중합은 상호 다른 반응이므로 순차적으로 진행하는 것이 일반적이지만 이러한 가수 분해 공정과 축 중합 공정을 동시에 할 수도 있다. 또한, 가수 분해의 촉매와 축 중합의 촉매는 상호 동일하거나 또는 상이할 수도 있다.Since hydrolysis and axial polymerization are mutually different reactions, it is common to proceed sequentially. However, such hydrolysis and axial polymerization may be performed simultaneously. In addition, the catalyst of hydrolysis and the catalyst of axial polymerization may mutually be same or different.
또한, 실란모노머는 미리 알코올, 케톤, 에스테르, 에테르, 탄화수소 등 임의의 유기용매에 용해해서 희석하여 사용할 수도 있다. 이 때, 실란모노머의 희석에 사용되는 용매는 실란모노머 또는 물과 상용성이 있는 것이 반응의 균일한 진행을 위하여 바람직하나, 이러한 상용성이 필수적인 요소는 아니어서 다소 부족하여도 가능하다.In addition, the silane monomer may be dissolved in any organic solvent such as alcohol, ketone, ester, ether, hydrocarbon, and the like before use. At this time, the solvent used for dilution of the silane monomer is preferably compatible with the silane monomer or water for the uniform progress of the reaction, but this compatibility is not essential and may be somewhat insufficient.
가수 분해에 사용되는 물의 양은 실레인에 포함되는 1당량의 가수 분해성기에 대하여 0.5 ~ 10당량을 가한다. 물의 당량이 0.5당량 미만일 경우 중합체의 분자량이 충분히 커지지 않고, 또 10당량을 넘으면, 실란모노머의 상대적인 반응시스템상의 농도가 저하되거나, 물의 상 분리가 일어나기 때문에 바람직하지 않다. 더 바람직하게는 물의 당량은 1.0 ∼ 5.0당량의 범위로 하는 것이 좋다.The amount of water used for hydrolysis is added in an amount of 0.5 to 10 equivalents to 1 equivalent of the hydrolyzable group contained in the silane. If the equivalent of water is less than 0.5 equivalent, the molecular weight of the polymer does not increase sufficiently, and if it exceeds 10 equivalent, the concentration of the silane monomer relative to the relative reaction system decreases, or water phase separation is undesirable. More preferably, the water equivalent is in the range of 1.0 to 5.0 equivalents.
가수 분해의 촉매로서는, 염산, 불산, 질산, 황산, 인산, 과염소산, 불화실리식산(H2SiF6) 등의 무기산; 포름산, 아세트산, 젖산, 옥살산, 석신산, 구연산, 톨루엔술폰산, 트리플루오로아세트산, 트리플루오로메탄술폰산 등의 유기산; 약산성 이온교환 수지, 강산성 이온교환 수지, 활성 산화알미늄 등의 고체산; 암모니아, 메틸아민, 디메틸아민, 트리메틸아민, 트리에틸아민, 이소프로필아민, 부틸아민, 트리부틸아민, 시클로헥실아민, 벤질아민, 에틸렌디아민, 디에틸렌트리아민, 피페라진(Pepirazine), 폴리에틸렌 이민 등의 아민류; 수산화테트라메틸암모늄, 수산화테트라부틸암모늄, 수산화부틸트리메틸암모늄, 수산화트리 페닐포스포니움 등의 유기알칼리; 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화스트론튬, 수산화바륨 등의 금속수산화물; 나트륨메톡시드, 나트륨에톡시드 등의 알카리알콕시드; 염화알루미늄, 트리페닐포스핀, 3불화붕소산 등의 루이스산; 염화티탄(IV), 황산티타닐, 질산티타닐, 티탄테트라이소푸로폭시드, 티탄테트라-n-부톡시드, 티타늄테트라스테아레이트, 비스아세틸아세토나이트디이소푸로폭시티타늄, 테트라키스아세칠아세토나토티탄 등의 티탄화합물; 황산 알루미늄, 질산 알루미늄, 아세트산 알루미늄, 알미늄트리이소푸로폭시드, 알루미늄 제2부톡시드, 아세칠아세토나토디이소푸로폭시알미늄, 트리스아세칠아세토나토알미늄 등의 알루미늄 화합물; 등이 쓰인다. Examples of the catalyst for hydrolysis include inorganic acids such as hydrochloric acid, hydrofluoric acid, nitric acid, sulfuric acid, phosphoric acid, perchloric acid, and silicic acid fluoride (H 2 SiF 6 ); Organic acids such as formic acid, acetic acid, lactic acid, oxalic acid, succinic acid, citric acid, toluenesulfonic acid, trifluoroacetic acid and trifluoromethanesulfonic acid; Solid acids such as weakly acidic ion exchange resin, strongly acidic ion exchange resin, and activated aluminum oxide; Ammonia, methylamine, dimethylamine, trimethylamine, triethylamine, isopropylamine, butylamine, tributylamine, cyclohexylamine, benzylamine, ethylenediamine, diethylenetriamine, piperazine, polyethylene imine, etc. Amines; Organic alkalis such as tetramethylammonium hydroxide, tetrabutylammonium hydroxide, butyltrimethylammonium hydroxide and triphenylphosphonium hydroxide; Metal hydroxides such as sodium hydroxide, potassium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide; Alkali alkoxides such as sodium methoxide and sodium ethoxide; Lewis acids such as aluminum chloride, triphenylphosphine and boron trifluoric acid; Titanium chloride (IV), titanium sulfate, titanium nitrate, titanium tetraisofuroxide, titanium tetra-n-butoxide, titanium tetrastearate, bisacetylacetonite diisopuropoxytitanium, tetrakisacylacetonato Titanium compounds such as titanium; Aluminum compounds such as aluminum sulfate, aluminum nitrate, aluminum acetate, aluminum triisopuroxide, aluminum second butoxide, acetacetonatodiisopuroxy aluminum, trisacetacetonato aluminum, etc .; Back is used.
이 중에서도 반응이 비교적 온화하게 진행되고, 분리가 오래 걸리지 않는, 질산, 염산, 포름산, 아세트산, 트리플루오로아세트산 등의 휘발성 산이 촉매로서 매우 적합하다.Among them, volatile acids such as nitric acid, hydrochloric acid, formic acid, acetic acid, trifluoroacetic acid, etc., in which the reaction proceeds relatively gently and do not take long separation, are very suitable as catalysts.
가수 분해 촉매의 첨가량은, 촉매의 종류에 의해서 다르지만, 실레인에 대해서 0.0001 ~ 1몰 당량을 사용한다.Although the addition amount of a hydrolysis catalyst changes with kinds of catalyst, 0.0001-1 molar equivalent is used with respect to a silane.
촉매로서 산을 사용하는 경우는 비교적 고농도의 0.001 ~ 0.1몰 당량, 염기를 사용하는 경우는 0.0001 ~ 0.01몰 당량이 바람직하다.When an acid is used as a catalyst, a relatively high concentration of 0.001 to 0.1 molar equivalents, and when a base is used, 0.0001 to 0.01 molar equivalents are preferable.
촉매 농도가 0.0001몰 당량 이하면, 반응 속도가 대폭 저하되고, 실제적용하기에 적합하지 않으며, 촉매 농도가 1몰 당량을 넘으면, 반응 속도가 크게 상승되어 제어가 곤란해지며, 촉매의 분리 공정을 별도로 진행해야 하므로 바람직하지 아니하다.If the catalyst concentration is less than 0.0001 molar equivalent, the reaction rate is drastically lowered and is not suitable for practical application. If the catalyst concentration is higher than 1 molar equivalent, the reaction rate is greatly increased, making it difficult to control the catalyst separation process. It is not desirable to proceed separately.
가수 분해 및 축중합 공정의 온도 범위는, 단량체의 배합 비율이나 촉매, 희석 용매와 그 양에 의해서, 0℃ 정도의 저온 내지 환류(reflux) 온도의 범위로, 또한, 시간범위는 0.1시간 ~ 30일의 범위로 하는 것이 바람직하다. 여기서, 상기 환류온도는 35 ~ 180℃ 사이가 더 바람직하다. The temperature range of the hydrolysis and polycondensation step is a range of low temperature to reflux temperature of about 0 ° C., depending on the blending ratio of the monomer, the catalyst, the dilution solvent and the amount thereof, and the time range is 0.1 hour to 30 hours. It is preferable to set it as the range of work. Where The reflux temperature is more preferably between 35 and 180 ° C.
상기 환류온도는 사용하는 용매의 종류에 의해 결정되며, 0℃ 이하의 경우에는 촉매로 사용하는 물이 응결하므로 바람직하지 않다. The reflux temperature is determined by the type of solvent used, and in the case of 0 ° C. or lower, water used as a catalyst condenses, which is not preferable.
예를 들면, 촉매로서 0.01몰 당량의 유기산을 쓰고, 단량체를 에탄올과 1 : 1의 비율로 하여 희석한 경우, 환류 온도로 2 ~ 8시간 반응시킨다.For example, when 0.01 mol equivalent of an organic acid is used as a catalyst and the monomer is diluted with ethanol in a ratio of 1: 1, it is made to react at reflux for 2 to 8 hours.
이와 같은 공중합 반응을 수행함에 있어서, 상기 3종의 실레인에서 다른 임의의 관능성을 가지는 것, 실란올과 공중합 가능한 OH그룹, 이소시아네이트, 에폭시 화합물 등을 실란모노머와 공중합시켜도 좋다.In carrying out such a copolymerization reaction, an OH group, an isocyanate, an epoxy compound, or the like copolymerizable with silanol may be copolymerized with the silane monomer.
또한, 위 3종의 실레인들을 동시에 중합하거나 또는 다양한 순서로써 순차적으로 중합하는 것도 좋다.In addition, the above three kinds of silanes may be polymerized simultaneously or sequentially polymerized in various orders.
실레인의 예를 들면, 알킬기 치환 3관능성 실레인을 사용할 수 있는데, 특히 메틸기 치환 3관능성 실레인을 사용하는 것이 바람직하며, 이러한 메틸기 치환 3관능성 실레인으로는 메틸트리메톡시실레인, 메틸트리클로로실레인, 메틸클로로디에톡시실레인, 메틸트리아세톡시실레인, 메틸메톡시디아세톡시실레인, 메틸트리이소시아네도실레인, 메틸트리스(메틸에틸케톡시모)실레인 등이 있다.Examples of the silanes include alkyl group-substituted trifunctional silanes, and in particular, methyl group-substituted trifunctional silanes are preferably used. Such methyl group-substituted trifunctional silanes are preferably methyltrimethoxysilane. , Methyltrichlorosilane, methylchlorodiethoxysilane, methyltriacetoxysilane, methylmethoxydiacetoxysilane, methyltriisocyanedosilane, methyltris (methylethylmethoxymethoxy) silane, etc. have.
또한, 실레인으로서 페닐기 치환 3관능성 실레인을 사용할 수 있는데, 이러한 페닐기 치환 3관능성 실레인으로는 페닐트리메톡시실레인, 페닐트리에톡시실레인, 페닐트리클로로실레인, 페닐트리아세톡시실레인, 페닐트리이소시아네이토실레인, 페닐트리스(메틸에틸케톡시모)실레인 등이 있다.In addition, a phenyl group-substituted trifunctional silane may be used as the silane, and such a phenyl group-substituted trifunctional silane may be phenyltrimethoxysilane, phenyltriethoxysilane, phenyltrichlorosilane, or phenyltriacene. Methoxysilane, phenyltriisocyanatosilane, phenyltris (methylethylketoxymo) silane, and the like.
또한, 실레인으로서 하나 이상의 불포화 결합을 포함하는 탄화수소기를 사용할 수 있는데, 특히 비닐기 치환 3관능성 실레인을 사용하는 것이 바람직하며, 이러한 비닐기 치환 3관능성 실레인으로는 비닐트리에톡시실레인, 비닐트리클로로실레인, 비닐트리아세톡시실레인, 비닐에톡시디아세톡시실레인, 비닐트리스(메닐에틸케톡시모)실레인 등이 있다.In addition, as the silane, a hydrocarbon group containing at least one unsaturated bond may be used, and in particular, a vinyl-substituted trifunctional silane is preferably used. As such a vinyl-substituted trifunctional silane, vinyltriethoxysilane is used. Phosphorus, vinyl trichlorosilane, vinyl triacetoxy silane, vinyl ethoxy diacetoxy silane, vinyl tris (menylethyl methoxy moth) silane and the like.
또한, 실레인으로서 4관능성 실레인은 테트라메톡시실레인, 테트라클로로실레인, 디메톡시디클로로실레인, 테트라에톡시실레인, 테트라아세톡시실레인, 테트라이소시아네토실레인, 테트라키스(메틸에틸케톡시모)실레인 등이 있다. 이와 같은 실레인은 각각 단독으로 가수분해 중합될 수도 있고, 혼합하여 가수분해 중합될 수도 있다.As the silane, the tetrafunctional silane is tetramethoxysilane, tetrachlorosilane, dimethoxydichlorosilane, tetraethoxysilane, tetraacetoxysilane, tetraisocyanatosilane, tetrakis (methyl Ethyl ketoxy) silane and the like. Each of these silanes may be hydrolyzed and polymerized alone, or may be mixed and hydrolyzed.
다른 실레인도 사용될 수 있는데, 그 예로는 3-메르캡토프로필트리에톡시실레인, 3-아미노프로필트리에톡시실레인, 3-글리시독시프로필트리알콕시실레인, 3-아크릴록시프로필트리에톡시실레인, 3-메타크릴록시트리에톡시실레인 등이 있다.Other silanes may also be used, such as 3-mercaptopropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrialkoxysilane, 3-acryloxypropyltriethoxy Silane, 3-methacryloxytriethoxysilane, and the like.
또한, 붕소, 인, 알루미늄, 티탄, 지르코늄 등의 규소 이외의 원소를 포함하는 가수 분해성 화합물을 공중합시키는 것도 가능하다.It is also possible to copolymerize hydrolyzable compounds containing elements other than silicon, such as boron, phosphorus, aluminum, titanium, zirconium, and the like.
(2) 라디칼 중합법(2) radical polymerization method
원료상태의 각 실란모노머(3종)를 혼합한 후, 라디칼 개시제를 가해서 모노머를 중합시킨다. After mixing each of the silane monomers (three types) in the raw state, a radical initiator is added to polymerize the monomers.
이는 가수분해 후 열개시제를 사용해 경화시키는 방식과 다르며, 미리 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 결합을 형성하여 보다 높은 반응효율을 얻고, 피막의 경도를 크게 향상하고자 하는 것이다.This is different from the method of curing using a thermal initiator after hydrolysis, and in order to form a Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bond in advance to obtain higher reaction efficiency and to greatly improve the hardness of the film. It is.
전술한 바와 같이, 라디칼 중합에 기여하는 것은 바람직하게는 메틸 실레인과 비닐 실레인이며, 각각 이하 같은 반응으로 중합한다. 이 라디칼 반응에 의해서 실레인이 없는 올리고머가 형성된다.As mentioned above, it is preferable that methyl silane and vinyl silane contribute to the radical polymerization, and each is polymerized by the same reaction as follows. This radical reaction forms silane-free oligomers.
(1) Si-CH3 + CH3-Si → SiCH2-CH2Si (탈수반응)(1) Si-CH 3 + CH 3 -Si → SiCH 2 -CH 2 Si (dehydration reaction)
(2) Si-CH3 + CH2=CH-Si → Si-CH(OH)-CH2CH2-Si(2) Si-CH 3 + CH 2 = CH-Si → Si-CH (OH) -CH 2 CH 2 -Si
(3) Si-CH=CH2 + CH2=CH-Si → Si-CH=CH-CH2CH2-Si (3) Si-CH = CH 2 + CH 2 = CH-Si → Si-CH = CH-CH 2 CH 2 -Si
다만, 상기 (3)의 반응은 일반의 라디칼 개시제에 의해도 진행하지만 (1), (2)의 반응은 유기 과산화물(퍼옥사이드)과 급진적으로 반응함으로써 진행될 수 있다.However, although the reaction of (3) proceeds with a general radical initiator, the reaction of (1) and (2) may proceed by radically reacting with an organic peroxide (peroxide).
구체적으로는, 실레인 총 중량을 100으로 가정할 때 이에 대해서 0.001 ~ 1중량%의 라디칼 개시제를 가하고, 가열중에 교반하여 중합을 한다.Specifically, when the total weight of the silane is assumed to be 100, 0.001 to 1% by weight of a radical initiator is added thereto, and the polymerization is carried out by stirring during heating.
이와 같은 라디칼 개시제가 1중량% 이상인 경우 분자량이 매우 작아지는 경향이 있으며, 0.001 중량% 이하인 경우에는 중합반응이 일어나지 않으므로, 위 라디칼 개시제는 위와 같은 범위에서 임계적 의의를 갖는다.If the radical initiator is 1% by weight or more, the molecular weight tends to be very small, and if it is 0.001% by weight or less, the polymerization reaction does not occur, the radical initiator has a critical significance in the above range.
라디칼 개시제로서는, 가열에 의하여 자유라디칼을 발생시키는 어떤 물질도 가능하나, 바람직하게는 아조화합물, 아조-아미드화합물, 퍼옥사이드, 디페닐알케인, 벤조페논 유도체 등을 사용할 수 있는데, 다양한 용매에 대한 용해성, 높은 안정성으로 특징되며 저온에서 고효율의 중합반응이 가능한 유기 퍼옥사이드가 바람직하다. 고온에서보다 저온에서 반응이 일어나야 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 결합이 잘 일어난다.As the radical initiator, any substance which generates free radicals by heating may be used, but preferably, an azo compound, an azo-amide compound, a peroxide, diphenylalkaine, a benzophenone derivative, or the like may be used. Organic peroxides which are characterized by solubility and high stability and are capable of high efficiency polymerization at low temperatures are preferred. Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bonds occur only when the reaction occurs at a lower temperature than at a high temperature.
상기 유기 퍼옥사이드의 예로는, 메틸에틸케톤퍼옥사이드, 사이클로헥사논퍼옥사이드, 아세틸아세톤퍼옥사이드 등 케톤퍼옥사이드류; 1,1-bis(t-헥실퍼옥사이드-3, 3,5-트리메틸사이클로헥산, 1,1-bis(t-헥실퍼옥시)사이클로헥산, 1,1-bis(t-부틱퍼옥시)-2-메틸사이클로헥산, 1,1-bis(t-부틱퍼옥시)사이클로헥산, 2,2-bis(t-부틱퍼옥시)부탄, 3,3-bis(t-부틱퍼옥시)부틸펜타노에이트, 2,2-bis(4,4-bis(t-부틱퍼옥시)사이클로헥실)프로판 등 퍼옥시케탈류; p-멘탄하이드로퍼옥사이드, 디이소프록실벤젠하이드로퍼옥사이드, 1,1,3,3-테트라메틸부틸하이드로퍼옥사이드, 큐멘하이드로퍼옥사이드, t-부틸하이드로퍼옥사이드 등 하이드로퍼옥사이드류; bis(2-t-부틸퍼옥시이소프로필)벤젠, 디큐밀퍼옥사이드, 2,3-이메틸-2,5-bis(t-부틸퍼옥시)헥산, t-부틸큐밀퍼옥사이드, 디-t-헥실퍼옥사이드, 디-t-부틸퍼옥사이드, 2,5-디메틸-2,5-bis(t-부틸퍼옥시)헥산-3 등 디알킬퍼옥사이드류; 디-아이소부틸퍼옥사이드, bis(3,5,5-트리메틸헥사노일)퍼옥사이드, 디라우록실퍼옥사이드, 디석시닉산퍼옥사이드, bis(3-메틸벤조일)퍼옥사이드, 디벤조일퍼옥사이드, bis(4-메틸벤조일)퍼옥사이드 등 디아크릴퍼옥사이드류; 디-n-프로필퍼옥시디카보네이트, 디-이소프로필퍼옥시디카보네이트, bis(4-t-부틸사이클로헥실)퍼옥시디카보네이트, bis(2-에틸헥실)퍼옥시디카보네이트, 디-sec-부틸퍼옥시디카보네이트 등 퍼옥시카보네이트류; 큐밀퍼옥시네오디카노에이트, 1,1,3,3-테트라메틸부틸퍼옥시네오디가노에이트, t-헥실퍼옥시피발레이트, t-부틸퍼옥시파발레이트, 1,1,3,3-테트라메일부틸퍼옥시-2-에틸헥사노에이트, 2,5-디메틸-2,5-bis(2-에틸헥사노일퍼옥시)헬산, t-헥실퍼옥시-2-에틸헥사노에이트, t-부틸퍼옥시-2-에틸헥사노에이트, t-헥실퍼옥시이소프로필모노카보네이트, t-부틸퍼옥시말릭산, t-부틸퍼옥시-3,5,5-트리메틸헥사노에이트, t-부틸퍼옥시라우레이트, t-부틸퍼옥시이소프로필모노카보네이트, t-부틸퍼옥시-2-에틸헥실모노카보네이트, t-헥실퍼옥시벤조에이트, 2,5-디메틸-2,5-bis(벤조일퍼옥시)헥산, t-부틸퍼옥시아세테이트, t-부틸퍼옥시-3-메틸벤조에이트, t-부틸퍼옥시벤조에이트 등 퍼옥시산에스테르류; t-부틸퍼옥시알릴모노카보네이트, 3,3'4,4'-테트라키스(t-부틸퍼옥시카보닐)벤조페논 등 퍼옥시알킬화합물류 등이 있다.Examples of the organic peroxide include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide and acetylacetone peroxide; 1,1-bis (t-hexyl peroxide-3, 3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butyperoxy)- 2-methylcyclohexane, 1,1-bis (t-butyperoxy) cyclohexane, 2,2-bis (t-butyperoxy) butane, 3,3-bis (t-butyperoxy) butylpentano Peroxy ketals such as 8, 2,2-bis (4,4-bis (t-butyperoxy) cyclohexyl) propane; p-mentane hydroperoxide, diisopropyl benzenehydroperoxide, 1,1, Hydroperoxides such as 3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, bis (2-t-butylperoxyisopropyl) benzene, dicumylperoxide, 2,3- Imethyl-2,5-bis (t-butylperoxy) hexane, t-butyl cumyl peroxide, di-t-hexyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5- dialkyl peroxides such as bis (t-butylperoxy) hexane-3, di-isobutyl peroxide, bis (3,5,5-trimethylhex Diacryl peroxides such as noyl) peroxide, dilauroxyl peroxide, disuccinic acid peroxide, bis (3-methylbenzoyl) peroxide, dibenzoyl peroxide, bis (4-methylbenzoyl) peroxide; n-propyl peroxydicarbonate, di-isopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, bis (2-ethylhexyl) peroxydicarbonate, di-sec-butylperoxydicarbonate Oxycarbonates: cumyl peroxy neodicanoate, 1,1,3,3-tetramethylbutyl peroxy neodiganoate, t-hexyl peroxy pivalate, t-butyl peroxy pavalate, 1,1, 3,3-tetramailbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) helic acid, t-hexylperoxy-2-ethylhexano T-butylperoxy-2-ethylhexanoate, t-hexyl peroxy isopropyl monocarbonate, t-butyl peroxy malic acid, t-butyl perox -3,5,5-trimethylhexanoate, t-butylperoxylaurate, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate Peroxy acid esters such as 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, t-butylperoxy acetate, t-butylperoxy-3-methylbenzoate and t-butylperoxybenzoate Ryu; peroxyalkyl compounds such as t-butylperoxyallyl monocarbonate and 3,3'4,4'-tetrakis (t-butylperoxycarbonyl) benzophenone.
또한, 분자량을 제어하기 위해서, 멜캅토푸로피온산에스테르, 디부톡시하이드록시톨루엔, 멜캅토벤조티아졸 등 임의의 연쇄반응첨가제를 넣어도 좋다.Moreover, in order to control molecular weight, you may add arbitrary chain reaction additives, such as a melcaptopropionate ester, dibutoxyhydroxytoluene, and a melcaptobenzothiazole.
상기 열개시제와 실레인의 용해 및 희석의 목적으로 임의의 유기용매를 가하는데, 이러한 용매는 코팅시 건조속도나 코팅성능에 맞추어 혼합하여 사용한다. 선택할 수 있는 용매의 종류는 아래와 같다.An arbitrary organic solvent is added for the purpose of dissolving and diluting the thermal initiator and the silane, and these solvents are mixed and used according to the drying rate or coating performance. The kind of solvent which can be selected is as follows.
메탄올, 에탄올, 1-프로판올, 2-프로판올, 1-부탄올, 2-부탄올, sec-부탄, 1-펜타놀, 2-메틸부탄올, 3-메틸부탄올, 2-펜타놀, 4-메틸-2-펜타놀, 사이클로헥사놀, 메틸사이클로헥사놀, n-헥사놀, 퍼퓨릴알코올, 퍼퓨릴메탄올, 테트라하이드로퍼퓨릴알콜, 벤질알콜 등 알코올류; 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 메틸n-부틸케톤, 메틸t-부틸케톤, 메틸n-펜틸케톤, 메틸n-헥실케톤, 디에틸케톤, 디이소프로필케톤, 디이소부틸케톤, 시클로펜타논, 시클로헥사논, 메틸시클로헥사논, 시클로헵타논, 시클로옥타논, 2,4-펜타네디온, 2,5-헥사디온, 아세토페논 등 케톤류; n-펜탄, 이소펜탄, n-헥산, 이소헥산, n-헵탄, 이소헵탄, 옥탄, 이소옥탄, 2,2,4-트리에틸펜탄, 시클로헥산, 메틸시클로헥산, 벤젠, 톨루엔, 자일렌,트리에틸벤젠, 에틸벤젠, 메틸에틸벤젠, n-프로필벤젠, 이소프로필벤젠, 펜틸벤젠, 디에틸벤젠, 이소부틸벤젠, 트리에틸벤젠, 디이소프로필벤젠 등 하이드로카본류; 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 디에틸에테르, 디-n-프로필에테르, 디-이소프로필에테르, 디-n-부틸에테르, 디이소부틸에테르, 디-n-헥실에테르, 아니솔, 페네톨, 디페닐에테르, 에틸벤질에테르, bis(2-에틸헥실)에테르, 에필렌옥사이드, 1,2-프로필렌옥사이드, 1,4-디옥산, 4-메틸디옥솔레인, 디메틸디옥솔레인, 그레실메틸에테르, 디벤질에테르, 부틱페닐에테르 등 에테르류; 메틸아세테이트, 에틸아세테이트, n-프로필아세테이트, 이소프로필아세테이트, n-부틸아세테이트, 이소부틸아세테이트, sec-부틸아세테이트, n-펜틸아세테이트, sec-펜틸아세테이트, 메틸펜틸아세테이트, 2-에틸부틸아세테이트, 2-에틸헥실아세테이트, 벤질아세테이트, 시클로헥실아세테이트, 메틸시클로헥실아세테이트, n-노닐아세테이트, 메틸아세토아세테이트, 에틸아세토아세테이트, 에틸프로피오네이트, n-부틸프로피오네이트, 이소아밀프로피오네이트, 메틸피루베이트, 에틸피루베이트, 디에틸옥살레이트, 디-n-부틸옥살레이트, 메틸락테이트, 에틸락테이트, 부틸락테이트, n-펜틸락테이트, 메틸메톡시프로피오네이트, 에틸에톡시프로피오네이트, 디에틸말로네이트, 디메틸프탈레이트, 디에틸프탈레이트, 디에틸카보네이트, 프로필렌카보네이트 등 에스테르류; 감마-부티롤락톤, 감마-발레롤락톤, 델타-발레롤락톤 등 락톤류; 아세토니트릴, 프로피오노니트릴, 아크릴로니트릴 등 니트릴류, 에틸렌글리콜, 프로필렌글리콜, 1,2-부타네디올, 1,3-부타네디올, 1,2-펜탄세디올, 2,4-펜탄디올, 2-메틸펜탄-2,4-디올, 2,5-헥사네디올, 2,4-헵타네디올, 2-에틸헥산-1,3-디올, 디에틸렌글리콜, 디프로필렌글리콜, 트리에틸렌글리콜, 트리프로필렌글리콜 등 글리콜류; 하이드록시아세톤(아세톨), 3-하이드록시-3-메틸-2-부타논, 4-하이드록시-3-메틸-2-부타논, 5-하이드록시-2-펜타논, 4-하이드록시-4-메틸-2-펜타논 등 하이드록시케톤류; 글리콜에테르류로서, 에틸렌글로콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노프로필에테르, 에틸렌글리콜모노n-부틱에테르, 에틸렌글리콜모노n-펜틸에테르, 에틸렌글리콜모노n-헥실에테르, 에틸렌글리콜모노2-에틸부틸에테르, 에틸렌글리콜모노2-에틸헥실에테르, 에틸렌글리콜모노페닐에테르 등 에틸렌글리콜모노에테르류; 에틸렌글리콜디메틸에테르, 에틸렌글리콜디에틸에테르, 에틸렌글리콜메틸에틸에테르, 에틸렌글리콜디부틸에테르 등 에틸렌글리콜디에테르류; 에틸렌글리콜모노메틸에테르아세테이트, 에틸렌글리콜모노에틸에테르아세테이트, 에틸렌글리콜모노프로필에테르아세테이트, 에틸렌글리콜모토n-부틸에테르아세테이트, 에틸렌글리콜디아세테이트 등 에틸렌글리콜아세테이트류; 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 프로필렌글리콜모노n-프로필에테르, 프로필렌글리콜모노n-부틸에테르, 프로필렌글리콜모노t-부틸에테르 등 프로필렌글리콜모노에테르류, 프로필렌글리콜디메틸에테르, 프로필렌글리콜디에틸에테르, 프로필렌글리콜메틸에틸에테르 등 프로필렌글리콜디에테르류; 프로필렌글리콜모노메틸에테르아세테이트, 프로필렌글리콜모노에틸에테르아세테이트, 프로필렌글리콜모노n-프로필에테르아세테이트, 프로필렌글리콜모노n-부틸에테르아세테이트, 프로필렌글리콜디아세테이트 등 프로필렌글리콜아세테이트류; 3-메톡시-1-부탄올, 3-메톡시부틸아세테이트, 3-메틸-3-메톡시-1-부탄올, 3-메톡시-1-부틸아세테이트, 3-메틸-3-메톡시-1-부틸아세테이트 등 부틸렌글리콜유도체, 디에틸글리콜모노메틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노프로필에테르, 디에틸렌글리콜모노n-부틸에테르, 디에틸렌글리콜모노n-헥실에테르 등 디에틸글리콜모노에테르류; 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜메틸에틸에테르류, 디에틸렌글리콜디에틸에테르 등 디에틸렌글리콜디에테르류; 디에틸렌글리콜모노메틸에테르아세테이트, 디에틸렌글리콜모노에틸에테르아세테이트, 디에틸렌글리콜모노프로필에테르아세테이트, 디에틸렌글리콜모노n-부틸에테르아세테이트 등 디에틸렌글리콜아세테이트류; 디프로필렌글리콜모노메틸에테르, 디프로필렌글리콜모노에틸에테르, 디프로필렌글리콜모노프로필에테르 등 디프로필렌글리콜모노에테르류; 디프로필렌글리콜디메틸에테르 등 디프로필렌글리콜디에테르류; 디프로필렌글리콜모노메틸에테르, 트리에틸렌글리콜모노에틸에테르, 트리실렌글리콜모노메틸에테르아세테이트, 트리프로필렌글리콜모노메틸에테르, 트리프로필렌글리콜모노메틸에테르아세테이트, 테트라에틸렌글리콜디-n-부틸에테르 등 디프로필렌글리콜아세테이트류; 불균질화합물로서, N-메틸피롤리디논, N,N-디메틸이마이드아졸리디논, 포름이마이드, N-메틸포름아미드, N-에틸포름아미드, N,N-디메틸포름아미드, N,N-디에틸포름아미드, N-메틸아세타마이드, N,N-디메틸아세트아미드, N,N-디에틸아세트아미드, N-메틸프로피온아미드, N,N-디메틸술프옥사이드, 술포레인, 1,3-프로페인술톤 등이 있다.Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, sec-butane, 1-pentanol, 2-methylbutanol, 3-methylbutanol, 2-pentanol, 4-methyl-2- Alcohols such as pentanol, cyclohexanol, methylcyclohexanol, n-hexanol, perfuryl alcohol, perfuryl methanol, tetrahydrofurfuryl alcohol, benzyl alcohol; Acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl n-butyl ketone, methyl t-butyl ketone, methyl n-pentyl ketone, methyl n-hexyl ketone, diethyl ketone, diisopropyl ketone, diisobutyl ketone, cyclo Ketones such as pentanone, cyclohexanone, methylcyclohexanone, cycloheptanone, cyclooctanone, 2,4-pentanedione, 2,5-hexadione and acetophenone; n-pentane, isopentane, n-hexane, isohexane, n-heptane, isoheptane, octane, isooctane, 2,2,4-triethylpentane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, tri Hydrocarbons such as ethylbenzene, ethylbenzene, methylethylbenzene, n-propylbenzene, isopropylbenzene, pentylbenzene, diethylbenzene, isobutylbenzene, triethylbenzene and diisopropylbenzene; Tetrahydrofuran, 2-methyltetrahydrofuran, diethyl ether, di-n-propyl ether, di-isopropyl ether, di-n-butyl ether, diisobutyl ether, di-n-hexyl ether, anisole, Phentol, diphenyl ether, ethyl benzyl ether, bis (2-ethylhexyl) ether, propylene oxide, 1,2-propylene oxide, 1,4-dioxane, 4-methyldioxoleine, dimethyldioxoleine, Ethers such as gresyl methyl ether, dibenzyl ether, buty phenyl ether; Methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2 Ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-nonyl acetate, methyl acetoacetate, ethyl acetoacetate, ethyl propionate, n-butyl propionate, isoamyl propionate, methylpyru Bate, ethylpyruvate, diethyl oxalate, di-n-butyloxalate, methyl lactate, ethyl lactate, butyl lactate, n-pentyl lactate, methyl methoxy propionate, ethyl ethoxy propionate , Diethyl malonate, dimethyl phthalate, diethyl phthalate, diethyl carbonate, propylene carbonate Esters; Lactones such as gamma-butyrolactone, gamma-valerolactone and delta-valerolactone; Nitriles such as acetonitrile, propiononitrile, acrylonitrile, ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-pentanecediol, 2,4-pentanediol , 2-methylpentane-2,4-diol, 2,5-hexanediol, 2,4-heptanediol, 2-ethylhexane-1,3-diol, diethylene glycol, dipropylene glycol, triethylene glycol Glycols such as tripropylene glycol and the like; Hydroxyacetone (acetol), 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone, 4-hydroxy Hydroxy ketones such as -4-methyl-2-pentanone; As glycol ethers, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol mono n-butyric ether, ethylene glycol mono n-pentyl ether, ethylene glycol mono n-hexyl ether, ethylene Ethylene glycol monoethers such as glycol mono2-ethylbutyl ether, ethylene glycol mono2-ethylhexyl ether, and ethylene glycol monophenyl ether; Ethylene glycol diethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, and ethylene glycol dibutyl ether; Ethylene glycol acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethylene glycol moto n-butyl ether acetate, and ethylene glycol diacetate; Propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, propylene glycol mono t-butyl ether, such as propylene glycol monoether, propylene glycol dimethyl ether, propylene glycol di Propylene glycol diethers such as ethyl ether and propylene glycol methyl ethyl ether; Propylene glycol acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol mono n-propyl ether acetate, propylene glycol mono n-butyl ether acetate, and propylene glycol diacetate; 3-methoxy-1-butanol, 3-methoxybutylacetate, 3-methyl-3-methoxy-1-butanol, 3-methoxy-1-butylacetate, 3-methyl-3-methoxy-1- Dibutyl glycol such as butylene glycol derivatives such as butyl acetate, diethyl glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol mono n-butyl ether, diethylene glycol mono n-hexyl ether Monoethers; Diethylene glycol diethers such as diethylene glycol dimethyl ether, diethylene glycol methylethyl ether and diethylene glycol diethyl ether; Diethylene glycol acetates such as diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monopropyl ether acetate, diethylene glycol mono n-butyl ether acetate; Dipropylene glycol monoethers such as dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether and dipropylene glycol monopropyl ether; Dipropylene glycol diethers such as dipropylene glycol dimethyl ether; Dipropylene glycol such as dipropylene glycol monomethyl ether, triethylene glycol monoethyl ether, triylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether, tripropylene glycol monomethyl ether acetate, tetraethylene glycol di-n-butyl ether Acetates; As a heterogeneous compound, N-methylpyrrolidinone, N, N-dimethylimide azolidinone, formimide, N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N, N -Diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methylpropionamide, N, N-dimethylsulfoxide, sulfolane, 1, 3-propanesultone and the like.
바람직하게는 100℃ 이하의 끓는점을 갖는 용매를 120 ~ 160℃의 끓는점을 갖는 용매와 혼합하여 사용하는 것이 좋은데, 그 예로서, 에탄올, 2-프로판올, 세크부틸알콜로 이루어진 그룹과 프로필렌 글리콜 모노메틸에테르, 프로필렌 글리콜 모노메틸에테르 아세테이트, 메틸이소부틸 케톤, n-프로필 아세테이트로 이루어지는 그룹을 상호 혼합하는 것이다.Preferably, a solvent having a boiling point of 100 ° C. or lower is preferably mixed with a solvent having a boiling point of 120 ° C. to 160 ° C., for example, a group consisting of ethanol, 2-propanol, cetbutyl alcohol and propylene glycol monomethyl A group consisting of ether, propylene glycol monomethyl ether acetate, methyl isobutyl ketone and n-propyl acetate is mixed with each other.
전체적인 반응시간은, 1 ∼ 12시간 정도 소요된다.The overall reaction time takes about 1 to 12 hours.
또한 상기 가수분해 축중합과 라디칼 중합은, 물, 촉매 및 라디칼 개시제를 동시에 첨가함으로써 동시에 진행시킬 수도 있다.In addition, the said hydrolysis-condensation polymerization and radical polymerization can also be advanced simultaneously by adding water, a catalyst, and a radical initiator simultaneously.
또한, 가수분해 축 중합을 한 다음 라디칼 중합을 하거나, 또는 라디칼 중합 후에 가수분해 축중합을 하는 방향으로 순서를 정하여도 좋다.The order may be determined in the direction of hydrolysis condensation polymerization followed by radical polymerization or in the direction of hydrolysis condensation polymerization after radical polymerization.
상기 도포 조성물에는, 상기 필수 성분외에, 물, 임의의 유기용매, 유기 아미노 화합물이나 유기 암모늄 화합물, 티탄이나 주석 화합물 등의 반응 촉진 촉매, 임의의 계면 활성제, 거품제거제, 실레인 커플링제 등의 밀착 촉진제 등을 소정의 목적으로 가할 수도 있다.In addition to the said essential component, the said coating composition adhere | attaches water, arbitrary organic solvents, organic amino compound, organic ammonium compound, reaction promotion catalysts, such as a titanium and a tin compound, arbitrary surfactant, a defoaming agent, a silane coupling agent, etc. An accelerator or the like may also be added for a predetermined purpose.
또한 알콕시 실레인을 기지로 한 밀착 촉진제나 계면 활성제는, 실레인 화합물과 미리 공중합시켜 놓을 수도 있다.Moreover, the adhesion promoter and surfactant based on the alkoxy silane can also be copolymerized previously with a silane compound.
<실시예 1><Example 1>
본 발명에 의한 도포 조성물을 제조하기 위한 실시예 1은 다음과 같다. Example 1 for producing a coating composition according to the present invention is as follows.
(1) 실록산의 제조(1) Preparation of the siloxane
비닐트리에톡시실레인 190.3g, 메틸트리에톡시실레인 178.3g, 테트라에톡시실레인 208.3g, 부틸아세테이트 1리터를 약 2리터의 용량의 3구 플라스크에 넣고, 플라스크의 내용물을 격렬하게 교반하면서, 1몰/리터의 농도의 질산 2ml와 순수 180ml를 혼합한 용액을 플라스크에 설치한 적하 깔때기를 이용하여 30분 동안 적하했다.190.3 g of vinyltriethoxysilane, 178.3 g of methyltriethoxysilane, 208.3 g of tetraethoxysilane, and 1 liter of butyl acetate are placed in a three-necked flask having a capacity of about 2 liters, and the contents of the flask are vigorously stirred The solution which mixed 2 ml of nitric acid and 180 ml of pure waters of the density | concentration of 1 mol / liter, was dripped for 30 minutes using the dropping funnel installed in the flask.
그 결과, 플라스크 내용물에서는 발열반응이 일어났고, 초기에는 백색의 탁한 용액이었지만 교반을 지속한 결과 무색 투명한 용액이 되었다.As a result, an exothermic reaction occurred in the flask contents, and initially a white cloudy solution, but stirring continued to give a colorless transparent solution.
(2) 도포 조성물의 제조(2) Preparation of Coating Composition
이후, 내용물의 온도가 50℃ 이하가 된 뒤, 환류냉각기를 설치하고, 상압하에 가열하여 3시간 환류시켰다.Thereafter, after the temperature of the contents became 50 ° C. or less, a reflux condenser was installed, and the mixture was heated under normal pressure to reflux for 3 hours.
이와 같이 얻어진 실록산에 대하여, 표 1의 조성과 같이 첨가제를 혼합하고, 0℃에서 12시간 동안 숙성한 후, 0.1㎛의 PTFE 필터로 여과하여, 도포 조성물을 제조하였다. The siloxane thus obtained was mixed with additives as in the composition of Table 1, aged at 0 ° C. for 12 hours, and filtered with a 0.1 μm PTFE filter to prepare a coating composition.
표 1
Table 1
실시예1 | 실시예2 | 실시예3 | 실시예4 | 실시예5 | 실시예6 | |
올리고머기준량 | 100 | 100 | 100 | 100 | 100 | 100 |
라디칼개시제 | #1 | #2 | #3 | #1 | #2 | - |
용매 | PGMEA | PGMEA | IPA | IPA | PGME | PGMEA |
광선투과율 | >98% | >98% | >98% | >98% | >98% | >98% |
연필경도 | 9H | 9H | 9H | 9H | 9H | 6H |
절연내압 | >3.0MV/cm | >3.0MV/cm | >3.0MV/cm | >3.0MV/cm | >3.0MV/cm | 1.0MV/cm |
Example 1 | Example 2 | Example 3 | Example 4 | Example 5 | Example 6 | |
Oligomer threshold | 100 | 100 | 100 | 100 | 100 | 100 |
Radical initiator | #One | #2 | # 3 | #One | #2 | - |
menstruum | PGMEA | PGMEA | IPA | IPA | PGME | PGMEA |
Light transmittance | > 98% | > 98% | > 98% | > 98% | > 98% | > 98% |
Pencil hardness | 9H | 9H | 9H | 9H | 9H | 6H |
Insulation | > 3.0MV / cm | > 3.0MV / cm | > 3.0MV / cm | > 3.0MV / cm | > 3.0MV / cm | 1.0 MV / cm |
#1 : Bis(3-methylbenzoyl) peroxide# 1: Bis (3-methylbenzoyl) peroxide
#2 : Bis(2-t-butylperoxyisopropyl)benzene# 2: Bis (2-t-butylperoxyisopropyl) benzene
#3 : Bis(2-ethylhexyl) peroxydicarbonate# 3: Bis (2-ethylhexyl) peroxydicarbonate
PGMEA : Propylene Glycol Monomethyl Ether AcetatePGMEA: Propylene Glycol Monomethyl Ether Acetate
IPA : Isoprophyl AlcoholIPA: Isoprophyl Alcohol
PGME : Propylene Glycol Monomethyl Ether PGME: Propylene Glycol Monomethyl Ether
위와 같이 제조된 도포액을 무알칼리유리에 회전수 1000rpm에서 도포한 결과, 500 nm의 투명한 박막이 형성되었다.The coating solution prepared as described above was applied to alkali-free glass at a rotational speed of 1000 rpm to form a 500 nm transparent thin film.
본 실시예에서는 피도포체를 유리로 하였으나, 피도포체는 배경기술에서 소개했던 플라스틱 기타 그 재료의 형태에 한정됨 없이 다양하게 사용될 수 있다.In the present embodiment, the coated object is made of glass, but the coated object can be used in various ways without being limited to the form of plastic or other materials thereof introduced in the background art.
(3) 물성평가(3) Property evaluation
이와 같이 형성된 박막을 100℃의 온도로 15분간 프리베이킹하고, 뒤이어 250℃의 온도로 15분간 경화한 후, 가시광 투과율, 연필 경도 시험 및 절연 내압 시험을 실시하여 상기 표 1에 나타내었다. The thin film thus formed was prebaked at a temperature of 100 ° C. for 15 minutes, and then cured at a temperature of 250 ° C. for 15 minutes, followed by visible light transmittance, pencil hardness test, and dielectric breakdown voltage test.
이와 같이 제조된 조성물은 종래의 라디칼 개시제를 사용하지 아니한 도포 조성물과는 달리 Si-O 결합 이외에도 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 결합이 생성되어 결합강도가 상대적으로 높게 되었으며, 이는 전술한 화학반응식으로부터도 알 수 있었다.Unlike the coating composition which does not use a conventional radical initiator, the composition prepared as described above generates Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bonds in addition to Si-O bonds, so that the bond strength is relatively high. It became high, which can be seen from the above chemical equation.
따라서, 표 1로부터 알 수 있는 바와 같이, 본 발명에 의하여 제조된 도포조성물은 종래의 라디칼 개시제를 배제하여 제조된 도포 조성물에 비하여 경도값이 4배 이상 높게 측정되었음을 알 수 있으며, 절연내압의 경우에도 3배 이상 높음을 알 수 있었다. 다만, 광선 투과율을 라디칼 개시제에 의해 좌우되는 요소가 아닌 만큼 두 조성물간에 차이는 관찰되지 아니하였다.Therefore, as can be seen from Table 1, the coating composition prepared according to the present invention can be seen that the hardness value measured more than four times higher than the coating composition prepared by excluding the conventional radical initiator, in the case of insulation breakdown voltage Edo was three times higher. However, no difference was observed between the two compositions as the light transmittance was not a factor that depends on the radical initiator.
<실시예 2><Example 2>
(1) 실록산의 제조(1) Preparation of the siloxane
하기 표 2에 따라서 페닐트리메톡시실레인, 메틸트리메톡시실레인, 비닐트리메톡시실레인, 테트라에톡시실레인을 각각 조성을 달리하여 배합하여 약 2리터 용량의 3구 플라스크에 넣고, 용매로 부틸아세테이트 1리터(208.3g)를 더 가한 후, 플라스크의 내용물을 격렬하게 교반하면서, 1 몰/리터 농도의 질산 2ml와 순수 180ml를 혼합한 용액을 플라스크에 설치한 적하깔때기를 이용하여 30분 동안 적하하였다. According to Table 2, phenyltrimethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, and tetraethoxysilane were mixed in different compositions, and placed in a three-necked flask having a volume of about 2 liters, and a solvent. 1 liter (208.3 g) of butyl acetate was added to the flask, followed by vigorously stirring the contents of the flask, using a dropping funnel in which 2 ml of 1 mol / liter of nitric acid and 180 ml of pure water were added to the flask. It was dripped for a while.
그 결과, 플라스크 내용물에서는 발열반응이 일어났고, 초기에는 백색의 탁한 용액이었으나, 교반을 지속한 결과 무색 투명한 용액이 되었다. As a result, an exothermic reaction occurred in the flask contents and was initially a white cloudy solution, but stirring continued to give a colorless transparent solution.
표 2
TABLE 2
A | B | C | |
페닐트리메톡시실레인 | 193.8g | - | 99.1g |
메틸트리메톡시실레인 | - | 136.2g | 68.1g |
비닐트리메톡시실레인 | 149.2g | 149.2g | 149.2g |
테트라에톡시실레인 | 63.5g | 52.0g | 41.7g |
A | B | C | |
Phenyltrimethoxysilane | 193.8 g | - | 99.1 g |
Methyltrimethoxysilane | - | 136.2 g | 68.1 g |
Vinyltrimethoxysilane | 149.2 g | 149.2 g | 149.2 g |
Tetraethoxysilane | 63.5 g | 52.0 g | 41.7 g |
(2) 도포조성물의 제조(2) Preparation of coating composition
이후, 내용물의 온도가 50℃ 이하가 된 뒤, 환류냉각기를 설치하고, 상압하에 가열하여 3시간 환류시켰다.Thereafter, after the temperature of the contents became 50 ° C. or less, a reflux condenser was installed, and the mixture was heated under normal pressure to reflux for 3 hours.
이와 같이 얻어진 실록산 A~C에 대하여, 하기 표 3의 조성과 같이 첨가제를 혼합하고, 0℃에서 12시간 동안 숙성한 후, 0.1㎛의 PTFE 필터로 여과하여, 도포 조성물을 제조하였다. The siloxanes A-C thus obtained were mixed with additives as in the composition shown in Table 3 below, aged at 0 ° C. for 12 hours, and filtered through a 0.1 μm PTFE filter to prepare a coating composition.
표 3
TABLE 3
1 | 2 | 3 | 4 | 5 | 6 | |
올리고머기준량 | A(100) | A(100) | B(100) | B(100) | C(100) | C(100) |
라디칼개시제 | #1 | #2 | #3 | #1 | #2 | - |
용매 | PGMEA | PGMEA | IPA | IPA | PGME | PGMEA |
광선투과율 | >98% | >98% | >98% | >98% | >98% | >98% |
한계막두께 | >3㎛ | >3㎛ | >1㎛ | >1㎛ | >2㎛ | >2㎛ |
연필경도 | 9H | 9H | 9H | 9H | 9H | 6H |
절연내압 | >3.0MV/cm | >3.0MV/cm | >3.0MV/cm | >3.0MV/cm | >3.0MV/cm | 1.0MV/cm |
One | 2 | 3 | 4 | 5 | 6 | |
Oligomer threshold | A (100) | A (100) | B (100) | B (100) | C (100) | C (100) |
Radical initiator | #One | #2 | # 3 | #One | #2 | - |
menstruum | PGMEA | PGMEA | IPA | IPA | PGME | PGMEA |
Light transmittance | > 98% | > 98% | > 98% | > 98% | > 98% | > 98% |
Limit film thickness | > 3 μm | > 3 μm | > 1 μm | > 1 μm | > 2 μm | > 2 μm |
Pencil hardness | 9H | 9H | 9H | 9H | 9H | 6H |
Insulation | > 3.0MV / cm | > 3.0MV / cm | > 3.0MV / cm | > 3.0MV / cm | > 3.0MV / cm | 1.0 MV / cm |
#1 : Bis(3-methylbenzoyl) peroxide# 1: Bis (3-methylbenzoyl) peroxide
#2 : Bis(2-t-butylperoxyisopropyl)benzene# 2: Bis (2-t-butylperoxyisopropyl) benzene
#3 : Bis(2-ethylhexyl) peroxydicarbonate# 3: Bis (2-ethylhexyl) peroxydicarbonate
PGMEA : Propylene Glycol Monomethyl Ether AcetatePGMEA: Propylene Glycol Monomethyl Ether Acetate
IPA : Isoprophyl AlcoholIPA: Isoprophyl Alcohol
PGME : Propylene Glycol Monomethyl Ether PGME: Propylene Glycol Monomethyl Ether
위와 같이 합성된 도포 조성물을 무알칼리유리에 회전수 1000 rpm로 도포한 결과, 두께 700nm의 투명 박막이, 600 rpm으로 도포한 결과 두께 1㎛의 투명 박막이 형성되었다.As a result of applying the coating composition synthesized as described above to an alkali-free glass at a rotational speed of 1000 rpm, a transparent thin film having a thickness of 700 nm was applied at 600 rpm to form a transparent thin film having a thickness of 1 μm.
위 크랙 한계 막두께가 2, 3㎛로 표현된 것은 600 rpm 미만으로 도포한 것에 해당된다. The above crack limit film thicknesses expressed at 2 and 3 μm correspond to those applied at less than 600 rpm.
본 실시예에서는 피도포체를 유리로 하였으나, 피도포체는 배경기술에서 소개했던 플라스틱 기타 그 재료의 형태에 한정됨 없이 다양하게 사용될 수 있다.In the present embodiment, the coated object is made of glass, but the coated object can be used in various ways without being limited to the form of plastic or other materials thereof introduced in the background art.
(3) 물성평가(3) Property evaluation
이와 같이 형성된 박막을 100℃의 온도로 15분간 프리베이킹하고, 뒤이어 250℃의 온도로 15분간 경화한 후, 가시광 투과율, 연필 경도 시험 및 절연 내압 시험을 실시하여 상기 표 3에 나타내었다. The thin film thus formed was prebaked at a temperature of 100 ° C. for 15 minutes, and then cured at a temperature of 250 ° C. for 15 minutes, followed by visible light transmittance, pencil hardness test, and dielectric breakdown voltage test.
크랙 한계 막두께의 측정에는, 도포시 회전수를 저하시켜 막을 두껍게 하여, 경화 후 크랙의 유무를 육안으로 관찰하였다.In the measurement of the crack limit film thickness, the number of rotations during application was reduced to make the film thicker, and the presence or absence of cracks after curing was visually observed.
이와 같이 제조된 조성물은 종래의 라디칼 개시제를 사용하지 아니한 도포 조성물과는 달리 Si-O 결합 이외에도 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 결합이 생성되어 결합강도가 상대적으로 높게 되었으며, 이는 전술한 화학반응식으로부터도 알 수 있었다.Unlike the coating composition which does not use a conventional radical initiator, the composition prepared as described above generates Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bonds in addition to Si-O bonds, so that the bond strength is relatively high. It became high, which can be seen from the above chemical equation.
따라서, 표 3으로부터 알 수 있는 바와 같이, 본 발명에 의하여 제조된 도포조성물은 종래의 라디칼 개시제를 배제하여 제조된 도포 조성물에 비하여 경도값이 4배 이상 높게 측정되었음을 알 수 있으며, 절연내압의 경우에도 3배 이상 높음을 알 수 있었다. 다만, 광선 투과율은 라디칼 개시제에 의해 좌우되는 요소가 아닌 만큼 두 조성물간에 차이는 관찰되지 아니하였다.Therefore, as can be seen from Table 3, the coating composition prepared according to the present invention can be seen that the hardness value measured more than four times higher than the coating composition prepared by excluding the conventional radical initiator, in the case of dielectric breakdown voltage Edo was three times higher. However, no difference was observed between the two compositions as the light transmittance is not a factor that depends on the radical initiator.
<실시예 3><Example 3>
본 실시예에서는 전술한 실시예 1, 2의 도포 조성물과 본 발명에서 적용한 올리고머 이외의 다른 올리고머를 라디컬 개시제와 함께 중합하여 제조한 도포 조성물을 각 비교하여 본 발명의 우수성을 입증하고자 하였다.In this example, the coating compositions prepared by polymerizing the above-described coating compositions of Examples 1 and 2 and other oligomers other than the oligomers applied in the present invention together with the radical initiator were compared to demonstrate the superiority of the present invention.
(1) 실록산의 제조(1) Preparation of the siloxane
하기 표 4에 따라서 페닐트리메톡시실레인, 메틸트리메톡시실레인, 비닐트리메톡시실레인, 테트라에톡시실레인을 각각 조성을 달리하여 배합하여 약 2리터 용량의 3구 플라스크에 넣고, 용매로 부틸아세테이트 1리터(208.3g)를 더 가한 후, 플라스크의 내용물을 격렬하게 교반하면서, 1 몰/리터 농도의 질산 2ml와 순수 180ml를 혼합한 용액을 플라스크에 설치한 적하깔때기를 이용하여 30분 동안 적하하였다. According to Table 4, phenyltrimethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, and tetraethoxysilane were mixed in different compositions, and placed in a three-necked flask having a volume of about 2 liters, and a solvent. 1 liter (208.3 g) of butyl acetate was added to the flask, followed by vigorously stirring the contents of the flask, using a dropping funnel in which 2 ml of 1 mol / liter of nitric acid and 180 ml of pure water were added to the flask. It was dripped for a while.
그 결과, 플라스크 내용물에서는 발열반응이 일어났고, 초기에는 백색의 탁한 용액이었으나, 교반을 지속한 결과 무색 투명한 용액이 되었다. As a result, an exothermic reaction occurred in the flask contents and was initially a white cloudy solution, but stirring continued to give a colorless transparent solution.
표 4
Table 4
A | B | C(비교예) | D(비교예) | |
페닐트리메톡시실레인 | 147.7g | 147.7g | 105.5g | 105.5g |
메틸트리메톡시실레인 | 54.0g | 45.0g | 144.1g | |
비닐트리메톡시실레인 | 149.2g | 149.2g | - | 149.2g |
테트라에톡시실레인 | 63.5g | 63.5g | 52.0g | - |
A | B | C (comparative example) | D (Comparative Example) | |
Phenyltrimethoxysilane | 147.7 g | 147.7 g | 105.5 g | 105.5 g |
Methyltrimethoxysilane | 54.0 g | 45.0 g | 144.1 g | |
Vinyltrimethoxysilane | 149.2 g | 149.2 g | - | 149.2 g |
Tetraethoxysilane | 63.5 g | 63.5 g | 52.0 g | - |
여기서, 본 발명은 페닐트리메톡시실레인과 메틸트리메톡시실레인 중에서 선택되는 적어도 어느 하나, 비닐트리메톡시실레인, 테트라에톡시실레인을 각각 일 실시예로 하는 3관능성 실레인, 4관능성 실레인을 중합체의 필수 구성요소로 하고 있으므로, 비닐기 치환 3관능성 실레인으로서 비닐트리메톡시실레인 또는 4관능성 실레인으로서 테트라에톡시실레인이 제외되어 중합된 C, D는 비교예가 된다. Here, the present invention is at least one selected from phenyl trimethoxy silane and methyl trimethoxy silane, trifunctional silane having a vinyl trimethoxy silane, tetraethoxy silane as an embodiment, Since the tetrafunctional silane is an essential component of the polymer, C and D polymerized by removing vinyltrimethoxysilane as the vinyl-substituted trifunctional silane or tetraethoxysilane as the tetrafunctional silane. Becomes a comparative example.
(2) 도포조성물의 제조(2) Preparation of coating composition
이후, 내용물의 온도가 50℃ 이하가 된 뒤, 환류냉각기를 설치하고, 상압하에 가열하여 3시간 환류시켰다.Thereafter, after the temperature of the contents became 50 ° C. or less, a reflux condenser was installed, and the mixture was heated under normal pressure to reflux for 3 hours.
이와 같이 얻어진 실록산 A~C에 대하여, 하기 표 5의 조성과 같이 첨가제를 혼합하고, 0℃에서 12시간 동안 숙성한 후, 0.1㎛의 PTFE 필터로 여과하여, 도포 조성물을 제조하였다. The siloxanes A to C thus obtained were mixed with additives as in the composition of Table 5 below, aged at 0 ° C. for 12 hours, and filtered through a 0.1 μm PTFE filter to prepare a coating composition.
표 5
Table 5
1 | 2 | 3 | 4 | |
올리고머기준량 | A(100) | B(100) | C(100) | D(100) |
라디칼개시제 | - | - | - | - |
용매 | PGMEA | PGMEA | PGMEA | PGMEA |
광선투과율 | >98% | >98% | >98% | >98% |
한계막두께 | >2㎛ | >2㎛ | >1.5㎛ | >1㎛ |
연필경도 | 6H | 4H | H | H |
절연내압 | >3.0MV/cm | >3.0MV/cm | >3.0MV/cm | >3.0MV/cm |
One | 2 | 3 | 4 | |
Oligomer threshold | A (100) | B (100) | C (100) | D (100) |
Radical initiator | - | - | - | - |
menstruum | PGMEA | PGMEA | PGMEA | PGMEA |
Light transmittance | > 98% | > 98% | > 98% | > 98% |
Limit film thickness | > 2 μm | > 2 μm | > 1.5 μm | > 1 μm |
Pencil hardness | 6H | 4H | H | H |
Insulation | > 3.0MV / cm | > 3.0MV / cm | > 3.0MV / cm | > 3.0MV / cm |
PGMEA : Propylene Glycol Monomethyl Ether AcetatePGMEA: Propylene Glycol Monomethyl Ether Acetate
위와 같이 합성된 도포 조성물을 무알칼리유리에 회전수 1000 rpm로 도포한 결과, 두께 700nm의 투명 박막이, 600 rpm으로 도포한 결과 두께 1㎛의 투명 박막이 형성되었다.As a result of applying the coating composition synthesized as described above to an alkali-free glass at a rotational speed of 1000 rpm, a transparent thin film having a thickness of 700 nm was applied at 600 rpm to form a transparent thin film having a thickness of 1 μm.
위 크랙 한계 막두께가 2, 1.5, 1㎛로 표현된 것은 600 rpm 미만으로 도포한 것에 해당된다. The above crack limit film thicknesses expressed in 2, 1.5, and 1 μm correspond to those applied at less than 600 rpm.
본 실시예에서는 피도포체를 유리로 하였으나, 피도포체는 배경기술에서 소개했던 플라스틱 기타 그 재료의 형태에 한정됨 없이 다양하게 사용될 수 있다.In the present embodiment, the coated object is made of glass, but the coated object can be used in various ways without being limited to the form of plastic or other materials thereof introduced in the background art.
(3) 물성평가(3) Property evaluation
이와 같이 형성된 박막을 100℃의 온도로 15분간 프리베이킹하고, 뒤이어 250℃의 온도로 15분간 경화한 후, 가시광 투과율, 연필 경도 시험 및 절연 내압 시험을 실시하여 상기 표 5에 나타내었다. The thin film thus formed was prebaked at a temperature of 100 ° C. for 15 minutes, and then cured at a temperature of 250 ° C. for 15 minutes, followed by visible light transmittance, pencil hardness test, and dielectric breakdown voltage test.
크랙 한계 막두께의 측정에는, 도포시 회전수를 저하시켜 막을 두껍게 하여, 경화 후 크랙의 유무를 육안으로 관찰하였다.In the measurement of the crack limit film thickness, the number of rotations during application was reduced to make the film thicker, and the presence or absence of cracks after curing was visually observed.
이와 같이 제조된 본 발명에 의한 조성물은 비닐기 치환 3관능성 실레인, 4관능성 실레인을 모두 적용하지 아니하고 선택적으로 하나씩 적용한 비교예의 조성물에 비하여 경도값이 2~ 4배 이상 높게 측정되었음을 알 수 있었다. The composition according to the present invention prepared as described above did not apply all of the vinyl-substituted trifunctional silane and tetrafunctional silane, it was found that the hardness value was measured 2 to 4 times higher than the composition of the comparative example selectively applied one by one Could.
이는 비닐기 치환 3관능성 실레인 및 4관능성 실레인을 포함하는 중합체를 사용하는 경우에 2 이상 4 이하의 탄소수를 갖는 올리고머가 보다 많이 생성되기 때문인 것으로 생각된다. This is considered to be because more oligomers having 2 or more and 4 or less carbon atoms are produced when a polymer containing a vinyl group-substituted trifunctional silane and a tetrafunctional silane is used.
<실시예 4><Example 4>
본 실시예에서는 본 발명에서 적용한 실레인 중 R2에 해당하는 비닐기 치환 3관능성 실레인을 본 발명의 범위내에서 다른 탄화수소기로 대체하고, 라디컬 개시제를 사용한 것과 사용하지 아니한 것에 따라서 비교함으로써 라디컬 개시제를 사용하는 본 발명의 우수성을 입증하고자 하였다.In this example, by replacing the vinyl-substituted trifunctional silane corresponding to R 2 among the silanes applied in the present invention to another hydrocarbon group within the scope of the present invention, comparing the radical initiator with or without using the radical initiator An attempt was made to demonstrate the superiority of the present invention using radical initiators.
(1) 실록산의 제조(1) Preparation of the siloxane
하기 표 6에 따라서 페닐트리메톡시실레인, 메틸트리메톡시실레인, 비닐트리메톡시실레인, 테트라에톡시실레인, 3-메타아크릴록시프로필트리에톡시실레인, 3-글리시독시프로필트리에톡시실레인을 각각 조성을 달리하여 배합하여 약 2리터 용량의 3구 플라스크에 넣고, 용매로 부틸아세테이트 1리터(208.3g)를 더 가한 후, 플라스크의 내용물을 격렬하게 교반하면서, 1몰/리터 농도의 질산 2ml와 순수 180ml를 혼합한 용액을 플라스크에 설치한 적하깔때기를 이용하여 30분 동안 적하하였다. Phenyltrimethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, tetraethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-glycidoxypropyl, according to the following Table 6 Triethoxysilanes were mixed in different compositions and placed in a three-necked flask having a volume of about 2 liters, followed by adding 1 liter (208.3 g) of butyl acetate as a solvent, and then stirring the contents of the flask vigorously, 1 mol / A solution of 2 ml of nitric acid and 180 ml of pure water was added dropwise for 30 minutes using a dropping funnel installed in the flask.
그 결과, 플라스크 내용물에서는 발열반응이 일어났고, 초기에는 백색의 탁한 용액이었으나, 교반을 지속한 결과 무색 투명한 용액이 되었다. As a result, an exothermic reaction occurred in the flask contents and was initially a white cloudy solution, but stirring continued to give a colorless transparent solution.
표 6
Table 6
A | B | E | |
페닐트리메톡시실레인 | 105.5g | - | - |
메틸트리메톡시실레인 | - | 90.1g | 90.1g |
테트라에톡시실레인 | 105.2g | 105.2g | 105.2g |
3-메타아크릴록시프로필트리메톡시실레인 | 124.2g | 124.2g | 62.7g |
3-글리시독시프로필트리메톡시실레인 | - | - | 59.7g |
A | B | E | |
Phenyltrimethoxysilane | 105.5 g | - | - |
Methyltrimethoxysilane | - | 90.1 g | 90.1 g |
Tetraethoxysilane | 105.2 g | 105.2 g | 105.2 g |
3-methacryloxypropyltrimethoxysilane | 124.2 g | 124.2 g | 62.7 g |
3-glycidoxypropyltrimethoxysilane | - | - | 59.7 g |
여기서, 본 발명은 페닐트리메톡시실레인과 메틸트리메톡시실레인 중에서 선택되는 적어도 어느 하나, 테트라에톡시실레인을 각각 일 실시예로 하는 3관능성 실레인, 4관능성 실레인을 중합체의 필수 구성요소로 하고 비닐트리메톡시실레인 대신 다른 탄소기를 지니는 물질(3-메타아크릴록시프로필트리메톡시실레인, 3-글리시독시프로필트리메톡시실레인)로 대체하여 같은 효능이 있는지를 확인하였다. In the present invention, at least one selected from phenyltrimethoxysilane and methyltrimethoxysilane, a trifunctional silane and a tetrafunctional silane each having tetraethoxysilane as an embodiment are polymers. It is an essential component of and replaces vinyltrimethoxysilane with other carbon-based materials (3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane) for equal efficacy. It was confirmed.
(2) 도포조성물의 제조(2) Preparation of coating composition
이후, 내용물의 온도가 50℃ 이하가 된 뒤, 환류냉각기를 설치하고, 상압하에 가열하여 3시간 환류시켰다.Thereafter, after the temperature of the contents became 50 ° C. or less, a reflux condenser was installed, and the mixture was heated under normal pressure to reflux for 3 hours.
이와 같이 얻어진 실록산 A~E에 대하여, 하기 표 7의 조성과 같이 첨가제를 혼합하고, 0℃에서 12시간 동안 숙성한 후, 0.1㎛의 PTFE 필터로 여과하여, 도포 조성물을 제조하였다. The siloxanes A to E thus obtained were mixed with additives as in the composition shown in Table 7 below, aged at 0 ° C. for 12 hours, and filtered through a 0.1 μm PTFE filter to prepare a coating composition.
표 7
TABLE 7
실시예 | 실시예 | 실시예 | 비교예 | |
올리고머기준량 | A | B | E | E |
100 | 100 | 100 | 100 | |
라디칼개시제 | #2 | #2 | #2 | - |
용매 | PGME | PGME | PGME | PGME |
광선투과율 | >98% | >98% | >95% | >98% |
한계막두께 | >5㎛ | >3㎛ | >4㎛ | >4㎛ |
연필경도 | 9H | 9H | 8H | 6H |
절연내압 | >3.0MV/cm | >3.0MV/cm | >3.0MV/cm | >2.0MV/cm |
EXAMPLE | EXAMPLE | EXAMPLE | Comparative example | |
Oligomer threshold | A | B | E | E |
100 | 100 | 100 | 100 | |
Radical initiator | #2 | #2 | #2 | - |
menstruum | PGME | PGME | PGME | PGME |
Light transmittance | > 98% | > 98% | > 95% | > 98% |
Limit film thickness | > 5 μm | > 3 μm | > 4 μm | > 4 μm |
Pencil hardness | 9H | 9H | 8H | 6H |
Insulation | > 3.0MV / cm | > 3.0MV / cm | > 3.0MV / cm | > 2.0MV / cm |
#2 :Bis(2-t-butylperoxyisopropyl)benzene# 2: Bis (2-t-butylperoxyisopropyl) benzene
PGME : Propylene Glycol Monomethyl EtherPGME: Propylene Glycol Monomethyl Ether
위와 같이 합성된 도포 조성물을 무알칼리유리에 회전수 1000 rpm로 도포한 결과, 두께 1㎛의 투명 박막이 형성되었다.As a result of applying the coating composition synthesized as above to an alkali-free glass at a rotation speed of 1000 rpm, a transparent thin film having a thickness of 1 μm was formed.
위 크랙 한계 막두께가 3, 4, 5㎛로 표현된 것은 600 rpm 미만으로 도포한 것에 해당된다. The above crack limit film thicknesses expressed in 3, 4, and 5 μm correspond to those applied at less than 600 rpm.
본 실시예에서는 피도포체를 유리로 하였으나, 피도포체는 배경기술에서 소개했던 플라스틱 기타 그 재료의 형태에 한정됨 없이 다양하게 사용될 수 있다.In the present embodiment, the coated object is made of glass, but the coated object can be used in various ways without being limited to the form of plastic or other materials thereof introduced in the background art.
(3) 물성평가(3) Property evaluation
이와 같이 형성된 박막을 100℃의 온도로 15분간 프리베이킹하고, 뒤이어 250℃의 온도로 15분간 경화한 후, 가시광 투과율, 연필 경도 시험 및 절연 내압 시험을 실시하여 상기 표 7에 나타내었다. The thin film thus formed was prebaked at a temperature of 100 ° C. for 15 minutes, and then cured at a temperature of 250 ° C. for 15 minutes, followed by visible light transmittance, pencil hardness test, and dielectric breakdown voltage test.
크랙 한계 막두께의 측정에는, 도포시 회전수를 저하시켜 막을 두껍게 하여, 경화 후 크랙의 유무를 육안으로 관찰하였다.In the measurement of the crack limit film thickness, the number of rotations during application was reduced to make the film thicker, and the presence or absence of cracks after curing was visually observed.
이와 같이 제조된 본 발명에 의한 조성물은 비닐기 치환 3관능성 실레인 대신 다른 탄화수소기를 포함하는 지닌 물질을 적용하여 제조한 결과 라디칼 개시제를 사용한 경우 비닐기 치환 3관능성 실레인과 유사한 물성을 나타내었음을 알 수 있었고, 다만, 탄소간 결합거리가 길고 flexible한 특성을 지니는 에폭시기 (3-글리시독시프로필트리메톡시실레인)의 경우는 그 물성에 비추어 연필경도가 상대적으로 낮음을 알 수 있었으나, 큰 차이를 나타낸 것은 아니었다.The composition according to the present invention prepared as described above was prepared by applying a substance containing another hydrocarbon group instead of the vinyl-substituted trifunctional silane, and exhibited similar properties to those of the vinyl-substituted trifunctional silane when the radical initiator was used. However, in the case of the epoxy group (3-glycidoxypropyltrimethoxysilane) having a long carbon-to-carbon coupling distance and flexible characteristics, the pencil hardness was relatively low in view of its physical properties. The difference was not significant.
또한, 라디칼 개시제를 사용한 것과 사용하지 않은 것에 의한 차이로부터, 전술한 바와 같이, 라디칼 개시제를 사용한 것은 Si-O 결합 이외에도 Si-(C-)nSi(n은 2 이상 4 이하의 자연수) 결합이 생성되어 결합강도가 상대적으로 높게 측정되었음을 알 수 있었다.In addition, from the difference between using and not using a radical initiator, as described above, the use of a radical initiator produces a Si- (C-) nSi (n is a natural number of 2 or more and 4 or less) bonds in addition to the Si-O bond. As a result, the bond strength was relatively high.
Claims (11)
- 일반식 R1SiX3로 표현되는 3관능성 실레인, 일반식 R2SiX'3로 표현되는 3관능성 실레인, 일반식 SiX''4로 표현되는 4관능성 실레인을 동시에 또는 순차적으로 중합하여 수득되는 올리고머(여기서, R1은 알킬기 또는 페닐기 중에서 선택되는 적어도 어느 하나, R2는 하나 이상의 불포화 결합을 포함하는 탄화수소기, X, X' 및 X"는 상호 동일하거나 상이한 가수분해성기)와;The trifunctional silane represented by general formula R 1 SiX 3 , the trifunctional silane represented by general formula R 2 SiX ' 3, and the tetrafunctional silane represented by general formula SiX'' 4 , simultaneously or sequentially Oligomers obtained by polymerization (wherein R 1 is at least one selected from an alkyl group or a phenyl group, R 2 is a hydrocarbon group comprising one or more unsaturated bonds, X, X ′ and X ″ are the same or different hydrolysable groups from each other) Wow;라디칼 개시제; 및Radical initiators; And상기 올리고머와 라디칼 개시제를 용해하는 용매;A solvent for dissolving the oligomer and radical initiator;를 포함하여 구성되며, 이들 성분들이 중합하여 형성되는 것을 특징으로 하는 피막 형성용 조성물.A composition for forming a film comprising a, wherein these components are formed by polymerization.
- 제 1 항에 있어서,The method of claim 1,상기 실레인은, 일반식 R1SiX3로 표현되는 3관능성 실레인 중 알킬기 치환 3관능성 실레인의 경우 일반식 CH3SiX3로 표현되는 메틸기 치환 3관능성 실레인이며, R2SiX'3로 표현되는 3관능성 실레인의 경우 일반식 C2H3SiX'3로 표현되는 비닐기 치환 3관능성 실레인인 것을 특징으로 하는 피막 형성용 조성물.The silane is a methyl group substituted trifunctional silane represented by the general formula CH 3 SiX 3 in the case of an alkyl group substituted trifunctional silane in the trifunctional silane represented by the general formula R 1 SiX 3 , and R 2 SiX "in the case of a trifunctional silane represented by formula 3 H 2 C 3 SiX, a vinyl group represented by the 3-substituted trifunctional silane of the composition for film formation as claimed.
- 제 1 항에 있어서,The method of claim 1,상기 가수분해성기(X, X', X'')는 할로겐 원소, 수소 또는 1 ~ 4개의 탄소를 포함하는 탄소화합물 중 선택되는 적어도 어느 하나임을 특징으로 하는 피막 형성용 조성물.The hydrolyzable group (X, X ', X' ') is a film-forming composition, characterized in that at least any one selected from halogen elements, hydrogen or a carbon compound containing 1 to 4 carbons.
- 제 3 항에 있어서,The method of claim 3, wherein상기 1 ~ 4개의 탄소를 포함하는 탄소화합물은, 의할로겐그룹, 알킬아미노그룹, 알콕시그룹, 아실옥시그룹, 옥심그룹을 포함하며, 이들 중 적어도 어느 하나인 것을 특징으로 하는 피막 형성용 조성물. The carbon compound containing 1 to 4 carbons includes a halogen group, an alkylamino group, an alkoxy group, an acyloxy group, an oxime group, and at least any one of them.
- 제 4 항에 있어서,The method of claim 4, wherein상기 의할로겐그룹은 이소시아네이트이며, 알콕시그룹은 메톡시 또는 에톡시 중에서 선택되는 적어도 어느 하나이고, 아실옥시그룹은 아세톡시이며, 옥심그룹은 메틸에틸케톡시인 것을 특징으로 하는 피막 형성용 조성물. The halogen group is an isocyanate, the alkoxy group is at least one selected from methoxy or ethoxy, the acyloxy group is acetoxy, the oxime group is methyl ethyl ketoxy.
- 제 1 항에 있어서,The method of claim 1,상기 라디칼 개시제는 상기 모든 실레인의 총 중량을 100으로 하는 경우, 0.001 ~ 1중량% 인 것을 특징으로 하는 피막 형성용 조성물. The radical initiator is a composition for forming a film, characterized in that when the total weight of all the silane is 100, 0.001 to 1% by weight.
- 제 1 항에 있어서, The method of claim 1,상기 올리고머를 수득하기 위한 중합반응은 The polymerization reaction to obtain the oligomer라디칼 중합, 가수 분해 중축합, 라디칼 중합과 가수 분해 중축합의 순차반응, 가수 분해 중축합과 라디칼 중합의 순차반응, 및 라디칼 중합과 가수분해 중축합의 동시반응 중에서 선택되는 어느 하나인 것을 특징으로 하는 피막 형성용 조성물.The film is any one selected from radical polymerization, hydrolysis polycondensation, sequential reaction of radical polymerization and hydrolysis polycondensation, sequential reaction of hydrolysis polycondensation and radical polymerization, and simultaneous reaction of radical polymerization and hydrolysis polycondensation. Formation composition.
- 제 1 항에 있어서, The method of claim 1,상기 라디칼 개시제는 케톤퍼옥사이드류, 퍼옥시케탈류, 하이드로퍼옥사이드류, 디알킬퍼옥사이드류, 디아크릴퍼옥사이드류, 퍼옥시카보네이트류, 퍼옥시산에스테르류, 퍼옥시알킬화합물류 중 적어도 어느 하나를 포함하는 유기 퍼옥사이드인 것을 특징으로 하는 피막 형성용 조성물. The radical initiator is at least any one of ketone peroxides, peroxy ketals, hydroperoxides, dialkyl peroxides, diacryl peroxides, peroxycarbonates, peroxyacid esters, and peroxyalkyl compounds. Composition for forming a film, characterized in that the organic peroxide containing one.
- 주사슬의 구조가 화학식 1인 실록산 올리고머이며, 가열에 의해서 side chain이 가교하여 화학식 2의 구조를 생성하는 것을 특징으로 하는 피막 형성용 조성물.A structure for forming a film, wherein the main chain is a siloxane oligomer having the formula (1), wherein the side chain is crosslinked by heating to generate the structure of the formula (2).화학식 1: -(Si-O-)n n은 20 이상의 자연수Formula (1):-(Si-O-) n n is a natural number of 20 or more화학식 2: Si-(C-)nSi n 는 2 이상 4 이하의 자연수Formula 2: Si- (C-) nSi n is a natural number of 2 or more and 4 or less
- 제 1 항 내지 제 9 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 9,상기 피막 형성용 조성물은 기판상에 도포되는 것을 특징으로 하는 피막 형성용 조성물.The film-forming composition is a film-forming composition, characterized in that the coating on the substrate.
- 제 1 항 내지 제 9항 중 어느 한 항의 피막 형성용 조성물을 기판상에 도포하여 형성되는 것을 특징으로 하는 피막.The film | membrane formed by apply | coating the film forming composition of any one of Claims 1-9 on a board | substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012520533A JP2012532981A (en) | 2009-07-31 | 2010-07-12 | Film-forming composition and film to which the composition is applied |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090070859 | 2009-07-31 | ||
KR10-2009-0070859 | 2009-07-31 | ||
KR10-2009-0109244 | 2009-11-12 | ||
KR1020090109244A KR20110013148A (en) | 2009-07-31 | 2009-11-12 | Coating composition for forming film on the surface and film |
KR10-2010-0041559 | 2010-05-03 | ||
KR1020100041559A KR101264904B1 (en) | 2009-07-31 | 2010-05-03 | Coating composition for forming film on the surface and film formed from the composition |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011013921A2 true WO2011013921A2 (en) | 2011-02-03 |
WO2011013921A3 WO2011013921A3 (en) | 2011-06-16 |
Family
ID=43529810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2010/004510 WO2011013921A2 (en) | 2009-07-31 | 2010-07-12 | Composition for forming a coating and coating applied with the composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011013921A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160020477A (en) * | 2013-06-17 | 2016-02-23 | 아크조노벨코팅스인터내셔널비.브이. | High-solids coating composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970042864A (en) * | 1995-12-29 | 1997-07-26 | 김충세 | Non-Metal Surface Coating Agent Composition |
KR100715429B1 (en) * | 2004-02-10 | 2007-05-09 | 주식회사 티오즈 | The Photocatalysis Binder Composition for Plastics and Coating Agent |
KR20090025922A (en) * | 2007-09-07 | 2009-03-11 | 주식회사 에이피엠 | Film compositions |
KR20090042669A (en) * | 2007-10-26 | 2009-04-30 | 주식회사 에이피엠 | Film for anti-abrasive property |
-
2010
- 2010-07-12 WO PCT/KR2010/004510 patent/WO2011013921A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970042864A (en) * | 1995-12-29 | 1997-07-26 | 김충세 | Non-Metal Surface Coating Agent Composition |
KR100715429B1 (en) * | 2004-02-10 | 2007-05-09 | 주식회사 티오즈 | The Photocatalysis Binder Composition for Plastics and Coating Agent |
KR20090025922A (en) * | 2007-09-07 | 2009-03-11 | 주식회사 에이피엠 | Film compositions |
KR20090042669A (en) * | 2007-10-26 | 2009-04-30 | 주식회사 에이피엠 | Film for anti-abrasive property |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160020477A (en) * | 2013-06-17 | 2016-02-23 | 아크조노벨코팅스인터내셔널비.브이. | High-solids coating composition |
KR102305318B1 (en) | 2013-06-17 | 2021-09-27 | 아크조노벨코팅스인터내셔널비.브이. | High-solids coating composition |
Also Published As
Publication number | Publication date |
---|---|
WO2011013921A3 (en) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101203225B1 (en) | Composition For Forming Film, Process For Preparing the Same, Material For Forming Insulating Film, Process For Forming Film and Silica Film | |
TWI802631B (en) | Silicone adhesive composition, cured product, adhesive film and adhesive tape | |
KR101264904B1 (en) | Coating composition for forming film on the surface and film formed from the composition | |
US20060134336A1 (en) | Novel polycarbosilane and method of producing the same, film-forming composition, and film and method of forming the same | |
TWI709595B (en) | Manufacturing method of polysiloxane polymer | |
CN114729225A (en) | Thickening composition, method for producing laminate, film-forming composition, and method for producing film | |
WO2022196878A1 (en) | Silicone-based composition and cured product thereof | |
KR101790493B1 (en) | Method of forming a cured coating film of siloxane resin composition | |
WO2022097872A1 (en) | Release film and preparation method therefor | |
WO2011013921A2 (en) | Composition for forming a coating and coating applied with the composition | |
CN101479664A (en) | Photosensitive materials and uses thereof | |
KR101855558B1 (en) | Curing composition for siloxane polymer and composition for transparent film comprising same | |
JP2004161876A (en) | Composition for forming porous film, porous film, method for producing the same, interlayer insulating film and semiconductor apparatus | |
CN112996849B (en) | Polysiloxane composition | |
WO2014017886A1 (en) | Hardening composition | |
KR101293735B1 (en) | Composition for preparing transparent film being capable of controlling curing temperature | |
WO2019039881A1 (en) | Coating resin composition and coating film comprising cured article thereof as coating layer | |
WO2014017884A1 (en) | Hardening composition | |
JP7504087B2 (en) | Resin composition, its manufacturing method, and multi-component curable resin composition | |
WO2022186427A1 (en) | Release film | |
CN113677744B (en) | Composition comprising block copolymer and method for producing siliceous film using the same | |
JP2004099888A (en) | Heat-resistant resin composition and insulating heat-resistant resin material | |
WO2015130143A1 (en) | Silsesquioxane complex polymer and method for preparing same | |
WO2013147336A1 (en) | Organic siloxane resin composition, membrane structure prepared from same, method for preparing membrane structure and electronic device comprising membrane structure | |
WO2024143872A1 (en) | Coating composition containing silsesquioxane polymer, and flexible display film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10804634 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012520533 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10804634 Country of ref document: EP Kind code of ref document: A2 |