Nothing Special   »   [go: up one dir, main page]

WO2011013706A1 - Super-micro bubble generation device - Google Patents

Super-micro bubble generation device Download PDF

Info

Publication number
WO2011013706A1
WO2011013706A1 PCT/JP2010/062705 JP2010062705W WO2011013706A1 WO 2011013706 A1 WO2011013706 A1 WO 2011013706A1 JP 2010062705 W JP2010062705 W JP 2010062705W WO 2011013706 A1 WO2011013706 A1 WO 2011013706A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
ultrafine
bubble generating
bubble
bubbles
Prior art date
Application number
PCT/JP2010/062705
Other languages
French (fr)
Japanese (ja)
Inventor
聡 安斎
進 西
Original Assignee
株式会社西研デバイズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009177693A external-priority patent/JP5885376B2/en
Application filed by 株式会社西研デバイズ filed Critical 株式会社西研デバイズ
Priority to US13/387,403 priority Critical patent/US8919747B2/en
Priority to PL10804452T priority patent/PL2460582T3/en
Priority to EP10804452.0A priority patent/EP2460582B1/en
Priority to DK10804452.0T priority patent/DK2460582T3/en
Priority to ES10804452T priority patent/ES2807880T3/en
Publication of WO2011013706A1 publication Critical patent/WO2011013706A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23124Diffusers consisting of flexible porous or perforated material, e.g. fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231265Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers

Definitions

  • the present invention relates to a technology of an ultrafine bubble generator that generates ultrafine bubbles in a liquid.
  • ultrafine bubbles with a bubble size (diameter) of several hundred nm to several tens of ⁇ m in liquids such as tap water, lakes, rivers, and seawater has attracted attention.
  • the ultrafine bubbles have characteristics such as a very large surface area and physicochemical characteristics such as a self-pressurizing effect, and by utilizing the characteristics, drainage purification, washing, body care in a bathtub, etc.
  • a motor is rotated in liquid, the flow rate is increased by pump pressure, air is sucked, and the bubbles that are agitated are further removed with a rotary blade or blade.
  • Methods for subdividing are known. Also known is a method in which a liquid jet nozzle is disposed around an air nozzle, and bubbles are ejected from the air nozzle by the force of the jet of the liquid jet nozzle to be refined.
  • a method of subdividing the bubbles while applying the aerated bubbles to the mesh member is also known (see, for example, Patent Document 1).
  • the conventional method of rotating a motor in liquid, increasing the flow rate with pump pressure, inhaling air, and further subdividing the bubbles produced by agitation with a rotary blade or blade is a large amount of ultrafine bubbles.
  • the rotor blades and blades are rotated at a high speed, damage due to corrosion due to cavitation, wear of the device, etc. becomes significant, and durability becomes a problem.
  • deterioration proceeds by direct contact of the liquid with the apparatus.
  • the mesh member is an organic substance, the method of subdividing the bubble while passing the aerated bubble through the mesh member may deteriorate in the long term.
  • the present invention can generate ultrafine bubbles by a simple method, improve the degree of freedom of the installation method of the ultrafine bubble generator, and design that meets the installation location and functional requirements.
  • an ultrafine bubble generating apparatus that can be used.
  • an ultrafine bubble generation comprising a compressor for pumping gas and a bubble generating medium for discharging the pumped gas into the liquid as ultrafine bubbles.
  • the bubble generation medium is formed of a high-density composite, and the high-density composite is a conductor, and with respect to a discharge direction of the ultrafine bubbles released by the bubble generation medium,
  • a liquid ejecting apparatus that ejects a liquid of the same type as the liquid from which the ultrafine bubbles are discharged is provided in a direction substantially orthogonal to the above.
  • the bubble generating medium is configured in a conical shape, and the gas from the compressor is allowed to pass from the bottom surface of the bubble generating medium toward the apex, and the liquid ejecting apparatus The liquid of the same type as the liquid from which the ultrafine bubbles are discharged is jetted onto the conical apex of the bubble generating medium.
  • the outer peripheral surface of the bubble generating medium is covered with a coating material, and the coating material has a characteristic that the contact angle between the surface and the liquid is reduced.
  • the high-density composite forming the bubble generating medium is a solid that does not have flexibility, so there is no deterioration due to expansion and contraction, and since it is an inorganic material, it does not corrode due to changes over time. Therefore, damage and deterioration of the ultrafine bubble generating device can be prevented. Also, by separating from the bubble generating medium by the liquid flow at the moment when the generated ultrafine bubbles are generated, it is possible to prevent coalescence and large bubbles, so that ultrafine bubbles can be generated by a simple method. Can do. Moreover, the freedom degree of the installation method of an ultrafine bubble generator can be improved, and the design according to an installation place and a function requirement can be enabled.
  • the high-density composite is a conductor
  • negative charges are likely to be distributed on the surface of the high-density composite, and bubbles generated from the bubble generation medium are negatively distributed on the surface of the high-density composite.
  • the electric charge is received and charged. This negative charge can prevent bubbles from repelling each other and coalescing into large bubbles.
  • the ultrafine bubble generating device of the present invention since the liquid flows along the curved surface of the cone by injecting the liquid onto the apex of the cone, it becomes possible to reduce the area of the injection hole of the liquid ejecting apparatus and to reduce the amount
  • the liquid can be ejected by pressure. Also, by separating from the bubble generating medium by the liquid flow at the moment when the generated ultrafine bubbles are generated, it can be prevented from coalescing into large bubbles, and the ultrafine bubbles can be generated by a simple method. it can. Moreover, the freedom degree of the installation method of an ultrafine bubble generator can be improved, and the design according to an installation place and a function requirement can be enabled. Further, since the high-density composite is a conductor, the bubbles generated from the bubble generating medium are charged with a negative charge. This negative charge can prevent bubbles from repelling each other and coalescing into large bubbles.
  • the coating material has a characteristic that the contact angle between the surface and the liquid becomes small, so that the surrounding liquid is attracted and thin between the ultrafine bubble and the coating material. A liquid film is created.
  • the ultrafine bubbles can be easily separated from the bubble generating medium, and can be prevented from being combined into large bubbles.
  • spraying the liquid from the liquid ejecting device to the bubble generating medium covered with the covering material the effect of separating the ultrafine bubbles by the liquid flow and the contact between the surface of the covering material and the liquid Combined with the effect of separating the ultrafine bubbles due to the property of reducing the corners, the ultrafine bubbles can be easily separated.
  • FIG. 1 Schematic which showed the whole structure of the ultrafine bubble generator which concerns on one Embodiment of this invention, (b) The cross-sectional enlarged view of a bubble generation medium.
  • A At the time of bubble generation (b) At the time of bubble separation (c) The cross-sectional enlarged view of the bubble generation medium at the time of the next bubble generation. The cross-sectional enlarged view of the bubble generation medium covered with the coating material.
  • A At the time of bubble generation (b) At the time of bubble separation (c) The cross-sectional enlarged view of the bubble generation medium at the time of the next bubble generation.
  • A The perspective view which showed the whole structure of the ultrafine bubble generator concerning another embodiment
  • (b) The perspective view which showed the whole structure of the ultrafine bubble generator concerning another embodiment.
  • the ultrafine bubble generator 1 releases a compressor 2 as a compressor for pumping gas and the pumped gas into the liquid as ultrafine bubbles.
  • a liquid ejecting device 4 that ejects the same kind of liquid as the liquid from which the ultrafine bubbles are discharged.
  • the compressor 2 is a device that pumps gas to the internal space 3 a of the bubble generating medium 3 through the gas supply path 11.
  • the gas pumped by the compressor 2 is not limited to air, For example, ozone, nitrogen, etc. may be sufficient.
  • the liquid is water, industrial waste water, fresh water such as rivers and lakes, sea water, and the like.
  • the liquid may be composed of a solvent such as a chemical, and the ultrafine bubbles can be used to stir or mix the chemical.
  • the gas pumped from the compressor 2 passes through the gas supply path 11 and is pumped to the internal space 3 a of the bubble generating medium 3.
  • the bubble generating medium 3 is formed of a high-density composite in which the solid tissue has a molecular structure based on ionic bonds.
  • the high-density composite is a conductor, and the bubbles generated from the bubble generating medium 3 are charged with a negative charge.
  • a negative charge is charged by adding free electrons to the ultrafine bubbles when passing through the bubble generating medium 3 which is a conductor. This negative charge can prevent bubbles from repelling each other and coalescing into large bubbles.
  • the conductor is made of a carbon-based material.
  • the bubble generating medium 3 has a large number of fine holes 3b having a diameter of several ⁇ m to several tens of ⁇ m, and the gas pumped from the compressor 2 passes through the holes 3b. It has a structure to do. That is, the ultrafine bubbles are discharged from the holes 3b into the liquid with the gas pressure of the gas fed from the compressor 2.
  • the high-density composite forming the bubble generating medium 3 is a solid that does not have flexibility, so that it does not deteriorate due to expansion and contraction, and since it is an inorganic material, it does not corrode due to changes over time. Therefore, damage and deterioration of the ultrafine bubble generating device 1 can be prevented.
  • the high-density composite forming the bubble generating medium 3 has activity, it is prevented from being worn by the liquid flow ejected by the liquid ejecting device 4 and is improved in durability. Yes.
  • the liquid ejecting device 4 is a device for separating the ultrafine bubbles generated on the surface portion 3c of the bubble generating medium 3 by a liquid flow.
  • the liquid ejecting apparatus 4 ejects the same kind of liquid as the liquid from which the ultrafine bubbles are released. By comprising in this way, another kind of liquid is not mixed, and an ultrafine bubble can be spaced apart by a liquid flow, without affecting the component of a liquid.
  • the ultrafine bubbles are generated from the holes 3b as shown in FIG. 2 (a), and at the moment, the ultrafine bubbles are released as shown in FIG. 2 (b). It is separated from the surface portion 3c of the bubble generating medium 3 by passing through the surface portion 3c formed at a high speed.
  • the ultrafine bubble of the surface part 3c goes into a liquid independently, without uniting with the ultrafine bubble which generate
  • the freedom degree of the installation method of the ultrafine bubble generating apparatus 1 can be improved, and the design according to an installation place and a function request
  • the coating material 5 is a material that is inorganic and has a characteristic that the contact angle between the surface of the coating material 5 and the liquid is small (for example, when the liquid is water, it is superhydrophilic). Consists of glass.
  • the contact angle is a value representing the wettability of a substance. The smaller the contact angle, the higher the wettability.
  • the coating material 5 is not limited to what comprises silica glass.
  • the coating material 5 is applied so as to cover the surface portion 3 c of the bubble generating medium 3.
  • the silica glass constituting the coating material 5 is a material having a characteristic that the contact angle between the surface of the coating material 5 and the liquid becomes small, and draws the surrounding liquid without repelling. In other words, on the surface of the coating material 5, the liquid does not become a droplet but spreads in a thin film shape.
  • the coating material 5 is provided with a large number of fine holes 5 a having a diameter of several ⁇ m to several tens of ⁇ m and communicates with the holes 3 b of the bubble generating medium 3.
  • the ultrafine bubbles pass through the holes 3b of the bubble generating medium 3 and are discharged from the holes 5a of the coating material 5 into the liquid.
  • the coating material 5 has a characteristic that the contact angle between the surface and the liquid is reduced. Since the coating material 5 has a small contact angle and high wettability, the surrounding liquid is attracted to the coating material 5, and a thin liquid film is formed between the ultrafine bubbles and the coating material 5. As a result, the ultrafine bubbles can be easily separated from the bubble generating medium 3, and can be prevented from being combined into large bubbles.
  • the ultrafine bubbles can be easily separated.
  • the ultrafine bubbles are generated from the holes 5a through the holes 3b. Since a thin liquid film is formed on the surface of the coating material 5 where the ultrafine bubbles are generated, the ultrafine bubbles are easily separated from the surface of the coating material 5. That is, since a liquid film enters between the ultrafine bubbles and the surface of the coating material 5, it becomes easy to separate.
  • the liquid pumped by the liquid ejecting device 4 generates bubbles by passing through the surface of the coating material 5 at a high speed at the moment when the ultrafine bubbles are generated from the holes 5a.
  • the medium 3 is separated from the surface portion 3c.
  • the ultrafine bubbles on the surface of the coating material 5 are alone in the liquid without being combined with the ultrafine bubbles generated later and the ultrafine bubbles generated from the peripheral holes 5a. Will be moved to.
  • this configuration it is possible to generate ultrafine bubbles by a simple method.
  • the freedom degree of the installation method of the ultrafine bubble generating apparatus 1 can be improved, and the design according to an installation place and a function request
  • the bubble generating medium 3 is formed in a flat plate shape. Ultrafine bubbles are generated from the surface portion 3c of the plate surface having the largest area among the surfaces of the bubble generating medium 3 by the gas pressure. By configuring the bubble generating medium 3 in a plate shape having a large surface area, it is possible to efficiently generate ultrafine bubbles. Further, by separating from the bubble generation medium 3 by the liquid flow at the moment when the ultrafine bubbles are generated, it is possible to prevent the bubbles from being combined to become large bubbles.
  • the liquid ejecting apparatus 4 is arranged in a direction substantially orthogonal to the discharge direction of the ultrafine bubbles discharged by the bubble generating medium 3 along the surface portion 3c of the plate surface having the largest area in the bubble generating medium 3.
  • the liquid flow is jetted toward the head.
  • the surface portion 3c of the plate surface is an upper and lower surface.
  • the direction of the liquid flow may be substantially orthogonal to the discharge direction of the ultrafine bubbles, and the liquid is ejected from any one of the four directions of the arrow a direction, the arrow b direction, the arrow c direction, and the arrow d direction in FIG. You may do it.
  • the liquid ejecting apparatus 4 has an ejection hole 4 a for ejecting a liquid flow to the surface portion 3 c of the plate surface of the bubble generating medium 3, and the plate surface with respect to the surface portion 3 c of the plate surface of the bubble generating medium 3. And a liquid flow having the same width as that in the direction parallel to the plate surface.
  • the bubble generating medium 3 is formed in a hollow polygonal column shape as shown in FIG.
  • the bubble generating medium 3 is formed in a hollow quadrangular prism shape.
  • the liquid is ejected in the same direction (arrow A and arrow B directions) onto the surfaces of the two opposing faces of the bubble generating medium 3 formed in the quadrangular column. Further, the remaining two surfaces are ejected in the direction opposite to the direction in which the previous two surfaces are ejected (arrow C and arrow D directions).
  • the freedom degree of the installation method of the ultrafine bubble generator 1 can be improved, and the design according to an installation place and a function request
  • the liquid ejecting direction is not limited to the present embodiment.
  • the same direction may be applied to all the surfaces, or the three surfaces may be in the same direction and only one surface may be ejected in the opposite direction. It does not matter.
  • the bubble generating medium 3 is formed in a hollow cylindrical shape as shown in FIG.
  • the gas sent under pressure passes through the gas supply path 11 and is sent under pressure to an internal space 3a provided at the center of the bubble generating medium 3 formed in a cylindrical shape.
  • the liquid ejecting apparatus 4 is provided on the outer peripheral portion of the gas supply path 11.
  • the ejection holes 4 a of the liquid ejection device 4 are provided in a circular shape having a diameter slightly larger than the diameter of the outer peripheral portion of the bubble generating medium 3, and with respect to the surface portion 3 c that is the side surface in the longitudinal direction of the bubble generating medium 3.
  • the belt-like liquid flow is ejected from the same direction as the gas supply direction.
  • the degree of freedom of the installation method 1 can be improved, and a design that meets the installation location and functional requirements can be made possible.
  • the injection direction of the liquid is not limited to the embodiment, and for example, the liquid can be injected from a direction opposite to the gas supply direction.
  • the bubble generating medium 3 is configured in a conical shape as shown in FIG.
  • An internal space 3 a is provided near the center of the cross section of the cone, and the gas sent from the compressor 2 passes through the gas supply path 11 and is sent to the internal space 3 a of the bubble generating medium 3.
  • the liquid ejecting apparatus 4 is provided at a position facing the bubble generating medium 3. That is, as shown in FIG. 6B, the ejection hole 4a of the liquid ejecting apparatus 4 is provided on an extension line of the conical vertex 3d of the bubble generating medium 3, and the liquid ejecting apparatus 4 is directed toward the conical apex 3d.
  • the liquid is ejected. With such a configuration, the liquid flows radially along the surface portion 3c which is the side surface portion of the bubble generating medium 3 by ejecting the liquid onto the conical vertex 3d. In other words, the liquid is ejected in a direction substantially orthogonal to the discharge direction of the ultrafine bubbles discharged by the bubble generating medium 3.
  • the area of the injection hole 4a of the liquid injection device 4 can be reduced, and the liquid can be injected with a small pressure.
  • the ultrafine bubbles By separating from the bubble generating medium 3 at the instant when the ultrafine bubbles are generated, they can be prevented from being combined to become large bubbles, and the ultrafine bubbles can be generated by a simple method.
  • the freedom degree of the installation method of the ultrafine bubble generating apparatus 1 can be improved, and the design according to an installation place and a function request
  • the gas supply inlet of the gas supply path 11 may be provided in a direction orthogonal to the cone height direction of the bubble generating medium 3. By configuring in this way, the space on the downstream side of the liquid flow can be effectively utilized.
  • the gas supply inlet of the gas supply path 11 is provided above the bubble generating medium 3, but the present invention is not limited to this, and for example, it can be provided in the left-right direction.
  • a bubble guide groove 55 is provided around the bubble generating medium 3 on the downstream side of the flow of the liquid ejected by the liquid ejecting device 4.
  • the bubble guide groove 55 is formed in a substantially circular arc shape in cross section on the downstream side of the liquid flow, and from the surface portion 3 c of the bubble generating medium 3 by the liquid ejected by the liquid ejecting device 4. This guides the moving direction of the moving ultrafine bubbles.
  • the bubble generating medium 3 and the liquid ejecting device 4 constituting the ultrafine bubble generating device 1 are also possible to provide as a unit.
  • the positional relationship between the bubble generating medium 3 and the ejection holes 4a of the liquid ejecting apparatus 4 is always constant, so that it is possible to save time and effort for position adjustment and the like.
  • the bubble generating medium 3 in a flat plate shape and provide a plurality of gas supply paths 11 in parallel inside the bubble generating medium 3.
  • the gas passes through the gas supply path 11 and is pumped to the internal space 3 a of the bubble generating medium 3.
  • the gas supply path 11 is branched inside the bubble generating medium 3, and a plurality of branched gas supply paths 11 are arranged in parallel.
  • Ultrafine bubbles are generated from the surface portion 3 c of the bubble generating medium 3 by the gas pressure from the gas supply path 11. By comprising in this way, it can make it difficult for a superfine bubble to unite
  • the number and shape of the liquid ejecting apparatuses are not limited to the present embodiment, and for example, three or more liquid ejecting apparatuses may be provided.
  • the shape and material of the gas supply path 11 are not limited to this embodiment, For example, a metal pipe, a plastic pipe, etc. can be comprised.
  • the ultrafine bubble generation device of the present invention can generate ultrafine bubbles by a simple method, improves the flexibility of the installation method of the ultrafine bubble generation device, and is designed to meet the installation location and functional requirements. This is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Nozzles (AREA)

Abstract

A super-micro bubble generation device which can generate super-micro bubbles using a simple method and can be installed by a method which provides a higher degree of freedom of installation to enable the device to be designed so as to be suitable for a place where the device is to be installed and to meet functional requirements. A super-micro bubble generation device is provided with a compressor (2) for delivering gas under pressure, and also with a bubble generation medium (3) for discharging the gas, which has been delivered under pressure, as super-micro bubbles into liquid. The bubble generation medium (3) consists of a high-density compound which is an electrically conductive substance. The super-micro bubble generating device is also provided with a liquid jetting device (4) for jetting liquid in the direction substantially perpendicular to the direction in which the bubble generation medium (3) discharges the super-micro bubbles, said liquid being the same kind of liquid as the liquid into which the super-micro bubbles are discharged.

Description

超微細気泡発生装置Ultra-fine bubble generator
 本発明は、液中において超微細気泡を発生させる超微細気泡発生装置の技術に関する。 The present invention relates to a technology of an ultrafine bubble generator that generates ultrafine bubbles in a liquid.
 近年、水道水や湖沼・河川、海水等の液中において気泡のサイズ(直径)が数百nm~数十μmの超微細気泡を使用する技術が注目されている。前記超微細気泡は、表面積が非常に大きい特性及び自己加圧効果などの物理化学的な特性を有しており、その特性を生かして、排水浄化、洗浄、及び、浴槽内での身体ケア等に使用する技術が開発されている。 In recent years, a technology that uses ultrafine bubbles with a bubble size (diameter) of several hundred nm to several tens of μm in liquids such as tap water, lakes, rivers, and seawater has attracted attention. The ultrafine bubbles have characteristics such as a very large surface area and physicochemical characteristics such as a self-pressurizing effect, and by utilizing the characteristics, drainage purification, washing, body care in a bathtub, etc. The technology used for
 前記特性を持った超微細気泡の発生方法として、従来から、液中でモータを回転させ、ポンプ圧で流速を上げ、空気を吸入し、攪拌してできた気泡をさらに回転翼や刃具などで細分化する方法が公知となっている。また、空気ノズルの周囲に液体ジェットノズルを配置し、液体ジェットノズルの噴流の力で空気ノズルから噴出する気泡を引きちぎって微細化する方法も公知となっている。また、攪拌してできた気泡をメッシュ部材に当てて通しながら気泡を細分化する方法も公知となっている(例えば、特許文献1参照)。 As a method of generating ultrafine bubbles having the above-mentioned characteristics, conventionally, a motor is rotated in liquid, the flow rate is increased by pump pressure, air is sucked, and the bubbles that are agitated are further removed with a rotary blade or blade. Methods for subdividing are known. Also known is a method in which a liquid jet nozzle is disposed around an air nozzle, and bubbles are ejected from the air nozzle by the force of the jet of the liquid jet nozzle to be refined. In addition, a method of subdividing the bubbles while applying the aerated bubbles to the mesh member is also known (see, for example, Patent Document 1).
特開2009-101250号公報JP 2009-101250 A
 しかし、従来の液中でモータを回転させ、ポンプ圧で流速を上げ、空気を吸入し、攪拌してできた気泡をさらに回転翼や刃具などで細分化する方法は、超微細気泡を大量に作り出すことができるが、回転翼や刃具を高速回転させると、キャビテーションによる腐蝕や装置の摩耗などによって損傷が著しく、耐久性が問題となる。処理液や排水、または湖沼・河川・海水等の劣悪な環境においては、液が装置と直接触れることによって、劣化が進行する。
 また、攪拌してできた気泡をメッシュ部材に当てて通しながら気泡を細分化する方法は、メッシュ部材が有機物であるため長期的には劣化するおそれがある。また、液面に対して垂直に設置した場合には、超微細気泡が発生した後、他の超微細気泡と重なることにより合体して大きな気泡となってしまうため、液面に対して平行に設置しなければならず、設置方法が限定されていた。
 また、空気ノズルの周囲に液体ジェットノズルを配置し、液体ジェットノズルの噴流の力で空気ノズルから噴出する気泡を引きちぎって微細化する方法は、ノズルの孔径に限界があり粒径を安定させることは困難である。
However, the conventional method of rotating a motor in liquid, increasing the flow rate with pump pressure, inhaling air, and further subdividing the bubbles produced by agitation with a rotary blade or blade is a large amount of ultrafine bubbles. Although it can be produced, if the rotor blades and blades are rotated at a high speed, damage due to corrosion due to cavitation, wear of the device, etc. becomes significant, and durability becomes a problem. In a poor environment such as treatment liquid, drainage, lakes, rivers, seawater, etc., deterioration proceeds by direct contact of the liquid with the apparatus.
Moreover, since the mesh member is an organic substance, the method of subdividing the bubble while passing the aerated bubble through the mesh member may deteriorate in the long term. In addition, when installed perpendicular to the liquid level, superfine bubbles are generated and then combined with other superfine bubbles to form large bubbles. It had to be installed and the installation method was limited.
In addition, the method of disposing the liquid jet nozzle around the air nozzle and tearing down the bubbles ejected from the air nozzle by the force of the jet of the liquid jet nozzle has a limit in the hole diameter of the nozzle and stabilizes the particle diameter. It is difficult.
 そこで、本発明はかかる課題に鑑み、簡易な方法で超微細気泡を発生させることができ、超微細気泡発生装置の設置方法の自由度を向上させて、設置場所や機能要求に合った設計を可能とする超微細気泡発生装置を提供する。 Therefore, in view of such problems, the present invention can generate ultrafine bubbles by a simple method, improve the degree of freedom of the installation method of the ultrafine bubble generator, and design that meets the installation location and functional requirements. Provided is an ultrafine bubble generating apparatus that can be used.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 即ち、本発明の超微細気泡発生装置においては、気体を圧送するための圧縮機と、圧送された気体を超微細気泡として液体内へ放出するための気泡発生媒体とを具備する超微細気泡発生装置であって、前記気泡発生媒体は、高密度複合体で形成されており、前記高密度複合体は導電体であり、前記気泡発生媒体によって放出される超微細気泡の放出方向に対して、略直交する方向に向けて、前記超微細気泡が放出される液体と同種の液体を噴射する液体噴射装置を設けたものである。 That is, in the ultrafine bubble generating device of the present invention, an ultrafine bubble generation comprising a compressor for pumping gas and a bubble generating medium for discharging the pumped gas into the liquid as ultrafine bubbles. In the apparatus, the bubble generation medium is formed of a high-density composite, and the high-density composite is a conductor, and with respect to a discharge direction of the ultrafine bubbles released by the bubble generation medium, A liquid ejecting apparatus that ejects a liquid of the same type as the liquid from which the ultrafine bubbles are discharged is provided in a direction substantially orthogonal to the above.
 本発明の超微細気泡発生装置においては、前記気泡発生媒体を円錐状に構成して、前記圧縮機からの気体を前記気泡発生媒体の円錐底面から頂点へ向けて通過させ、前記液体噴射装置によって、前記超微細気泡が放出される液体と同種の液体を、前記気泡発生媒体の円錐頂点に対して噴射するようにしたものである。 In the ultrafine bubble generating device of the present invention, the bubble generating medium is configured in a conical shape, and the gas from the compressor is allowed to pass from the bottom surface of the bubble generating medium toward the apex, and the liquid ejecting apparatus The liquid of the same type as the liquid from which the ultrafine bubbles are discharged is jetted onto the conical apex of the bubble generating medium.
 本発明の超微細気泡発生装置においては、前記気泡発生媒体の外周面を被覆材で覆い、該被覆材は、その表面と液体との接触角が小さくなる特性を有するものである。 In the ultrafine bubble generating device of the present invention, the outer peripheral surface of the bubble generating medium is covered with a coating material, and the coating material has a characteristic that the contact angle between the surface and the liquid is reduced.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 本発明の超微細気泡発生装置においては、気泡発生媒体を形成する高密度複合体が軟性を持たない固体であるため、膨張及び収縮による劣化がなく、無機質の素材であるため経時変化による腐蝕がないことから、超微細気泡発生装置の損傷や劣化を防ぐことができる。また、発生する超微細気泡が発生した瞬間に液流によって気泡発生媒体から離間することにより、合体して大きな気泡になることを防ぐことができるため、簡易な方法で超微細気泡を発生させることができる。また、超微細気泡発生装置の設置方法の自由度を向上させて、設置場所や機能要求に合った設計を可能とすることができる。また、前記高密度複合体は導電体であることから、高密度複合体の表面には負の電荷が分布しやすく、前記気泡発生媒体から発生する気泡は高密度複合体の表面に分布した負の電荷を受け取って帯電する。この負の電荷により、気泡同士が互いに反発し、合体して大きな気泡になることを防ぐことができる。 In the ultrafine bubble generating device of the present invention, the high-density composite forming the bubble generating medium is a solid that does not have flexibility, so there is no deterioration due to expansion and contraction, and since it is an inorganic material, it does not corrode due to changes over time. Therefore, damage and deterioration of the ultrafine bubble generating device can be prevented. Also, by separating from the bubble generating medium by the liquid flow at the moment when the generated ultrafine bubbles are generated, it is possible to prevent coalescence and large bubbles, so that ultrafine bubbles can be generated by a simple method. Can do. Moreover, the freedom degree of the installation method of an ultrafine bubble generator can be improved, and the design according to an installation place and a function requirement can be enabled. Further, since the high-density composite is a conductor, negative charges are likely to be distributed on the surface of the high-density composite, and bubbles generated from the bubble generation medium are negatively distributed on the surface of the high-density composite. The electric charge is received and charged. This negative charge can prevent bubbles from repelling each other and coalescing into large bubbles.
 本発明の超微細気泡発生装置においては、液体を円錐頂点に対して噴射することにより、液体が円錐の曲面に沿って流れるので、液体噴射装置の噴射孔面積を小さくすることが可能となり、少ない圧力で液体を噴射させることが可能となる。また、発生する超微細気泡が発生した瞬間に液流によって気泡発生媒体から離間することにより、合体して大きな気泡になることを防ぐことができ、簡易な方法で超微細気泡を発生させることができる。また、超微細気泡発生装置の設置方法の自由度を向上させて、設置場所や機能要求に合った設計を可能とすることができる。また、前記高密度複合体は導電体であることから、前記気泡発生媒体から発生する気泡は負の電荷を帯電する。この負の電荷により、気泡同士が互いに反発し、合体して大きな気泡になることを防ぐことができる。 In the ultrafine bubble generating device of the present invention, since the liquid flows along the curved surface of the cone by injecting the liquid onto the apex of the cone, it becomes possible to reduce the area of the injection hole of the liquid ejecting apparatus and to reduce the amount The liquid can be ejected by pressure. Also, by separating from the bubble generating medium by the liquid flow at the moment when the generated ultrafine bubbles are generated, it can be prevented from coalescing into large bubbles, and the ultrafine bubbles can be generated by a simple method. it can. Moreover, the freedom degree of the installation method of an ultrafine bubble generator can be improved, and the design according to an installation place and a function requirement can be enabled. Further, since the high-density composite is a conductor, the bubbles generated from the bubble generating medium are charged with a negative charge. This negative charge can prevent bubbles from repelling each other and coalescing into large bubbles.
 本発明の超微細気泡発生装置においては、被覆材がその表面と液体との接触角が小さくなる特性を有することにより、周りの液体が引き寄せられて、超微細気泡と被覆材との間に薄い液体の膜が作られる。これにより、超微細気泡が前記気泡発生媒体から離間しやすくなり、合体して大きな気泡になることを防ぐことができる。また、前記被覆材で覆った前記気泡発生媒体に対して、前記液体噴射装置から液体を噴射することにより、超微細気泡を液流によって離間させる効果と、被覆材のその表面と液体との接触角が小さくなる特性によって超微細気泡を離間させる効果とが組み合わさって、超微細気泡を容易に離間させることが可能となる。 In the ultrafine bubble generating device of the present invention, the coating material has a characteristic that the contact angle between the surface and the liquid becomes small, so that the surrounding liquid is attracted and thin between the ultrafine bubble and the coating material. A liquid film is created. As a result, the ultrafine bubbles can be easily separated from the bubble generating medium, and can be prevented from being combined into large bubbles. In addition, by spraying the liquid from the liquid ejecting device to the bubble generating medium covered with the covering material, the effect of separating the ultrafine bubbles by the liquid flow and the contact between the surface of the covering material and the liquid Combined with the effect of separating the ultrafine bubbles due to the property of reducing the corners, the ultrafine bubbles can be easily separated.
(a)本発明の一実施形態に係る超微細気泡発生装置の全体的な構成を示した概略図(b)気泡発生媒体の断面拡大図。(A) Schematic which showed the whole structure of the ultrafine bubble generator which concerns on one Embodiment of this invention, (b) The cross-sectional enlarged view of a bubble generation medium. (a)気泡発生時(b)気泡離間時(c)次の気泡発生時における気泡発生媒体の断面拡大図。(A) At the time of bubble generation (b) At the time of bubble separation (c) The cross-sectional enlarged view of the bubble generation medium at the time of the next bubble generation. コーティング材で覆った気泡発生媒体の断面拡大図。The cross-sectional enlarged view of the bubble generation medium covered with the coating material. (a)気泡発生時(b)気泡離間時(c)次の気泡発生時における気泡発生媒体の断面拡大図。(A) At the time of bubble generation (b) At the time of bubble separation (c) The cross-sectional enlarged view of the bubble generation medium at the time of the next bubble generation. (a)別実施形態にかかる超微細気泡発生装置の全体的な構成を示した斜視図(b)別実施形態にかかる超微細気泡発生装置の全体的な構成を示した斜視図。(A) The perspective view which showed the whole structure of the ultrafine bubble generator concerning another embodiment (b) The perspective view which showed the whole structure of the ultrafine bubble generator concerning another embodiment. (a)別実施形態にかかる超微細気泡発生装置の全体的な構成を示した斜視図(b)別実施形態にかかる超微細気泡発生装置の全体的な構成を示した斜視図(c)別実施形態にかかる超微細気泡発生装置の全体的な構成を示した斜視図。(A) The perspective view which showed the whole structure of the ultrafine bubble generator concerning another embodiment (b) The perspective view which showed the whole structure of the ultrafine bubble generator concerning another embodiment The perspective view showing the whole composition of the ultrafine bubble generating device concerning an embodiment. 別実施形態にかかる超微細気泡発生装置の断面図。Sectional drawing of the ultrafine-bubble generator concerning another embodiment.
 次に、発明の実施の形態を説明する。 Next, an embodiment of the invention will be described.
 超微細気泡発生装置1は、図1(a)及び(b)に示すように、気体を圧送するための圧縮機としてのコンプレッサ2と、圧送された気体を超微細気泡として液体内へ放出するための気泡発生媒体3と、前記超微細気泡が放出される液体と同種の液体を噴射する液体噴射装置4とを具備する。
 コンプレッサ2は、気体を気体供給路11を介して気泡発生媒体3の内部空間3aへと圧送する装置である。なお、コンプレッサ2によって圧送される気体は、空気に限定するものではなく、例えば、オゾンや窒素などでもよい。また、前記液体は、水や工業用廃水、河川や湖沼等の淡水や海水などである。また、前記液体は、化学薬品などの溶剤で構成されることもでき、前記超微細気泡を使用して化学薬品の攪拌や混合などをすることができる。
As shown in FIGS. 1A and 1B, the ultrafine bubble generator 1 releases a compressor 2 as a compressor for pumping gas and the pumped gas into the liquid as ultrafine bubbles. And a liquid ejecting device 4 that ejects the same kind of liquid as the liquid from which the ultrafine bubbles are discharged.
The compressor 2 is a device that pumps gas to the internal space 3 a of the bubble generating medium 3 through the gas supply path 11. In addition, the gas pumped by the compressor 2 is not limited to air, For example, ozone, nitrogen, etc. may be sufficient. The liquid is water, industrial waste water, fresh water such as rivers and lakes, sea water, and the like. The liquid may be composed of a solvent such as a chemical, and the ultrafine bubbles can be used to stir or mix the chemical.
 コンプレッサ2から圧送された気体は気体供給路11を通り、気泡発生媒体3の内部空間3aへと圧送される。気泡発生媒体3は固体組織がイオン結合による分子構造である高密度複合体で形成されている。また、前記高密度複合体は導電体であり、気泡発生媒体3から発生する気泡は負の電荷を帯電する。言い換えれば、導電体である前記気泡発生媒体3を通過する際に超微細気泡に自由電子が付加されることにより、負の電荷を帯電するものである。この負の電荷により、気泡同士が互いに反発し、合体して大きな気泡になることを防ぐことができる。例えば、前記導電体は炭素系の素材で構成している。 The gas pumped from the compressor 2 passes through the gas supply path 11 and is pumped to the internal space 3 a of the bubble generating medium 3. The bubble generating medium 3 is formed of a high-density composite in which the solid tissue has a molecular structure based on ionic bonds. The high-density composite is a conductor, and the bubbles generated from the bubble generating medium 3 are charged with a negative charge. In other words, a negative charge is charged by adding free electrons to the ultrafine bubbles when passing through the bubble generating medium 3 which is a conductor. This negative charge can prevent bubbles from repelling each other and coalescing into large bubbles. For example, the conductor is made of a carbon-based material.
 また、図1(b)に示すように、前記気泡発生媒体3は直径数μm~数十μmの細かな孔3bを多数有しており、コンプレッサ2から圧送された気体が前記孔3bを通過する構造となっている。すなわち、コンプレッサ2から圧送した気体のガス圧で、超微細気泡を孔3bから液中へ放出するものである。このように構成することにより、気泡発生媒体3を形成する高密度複合体は、軟性を持たない固体であるため膨張及び収縮による劣化がなく、無機質の素材であるため経時変化による腐蝕がないことから、超微細気泡発生装置1の損傷や劣化を防ぐことができる。 Further, as shown in FIG. 1B, the bubble generating medium 3 has a large number of fine holes 3b having a diameter of several μm to several tens of μm, and the gas pumped from the compressor 2 passes through the holes 3b. It has a structure to do. That is, the ultrafine bubbles are discharged from the holes 3b into the liquid with the gas pressure of the gas fed from the compressor 2. With this configuration, the high-density composite forming the bubble generating medium 3 is a solid that does not have flexibility, so that it does not deteriorate due to expansion and contraction, and since it is an inorganic material, it does not corrode due to changes over time. Therefore, damage and deterioration of the ultrafine bubble generating device 1 can be prevented.
 また、気泡発生媒体3を形成する高密度複合体は活性を持たせていることにより、液体噴射装置4によって噴射された液流が当たることにより摩耗することを防止し、耐久性を向上させている。 Further, since the high-density composite forming the bubble generating medium 3 has activity, it is prevented from being worn by the liquid flow ejected by the liquid ejecting device 4 and is improved in durability. Yes.
 また、液体噴射装置4は気泡発生媒体3の表面部3cに発生した超微細気泡を液流によって離間させるための装置である。液体噴射装置4では、前記超微細気泡が放出される液体と同種の液体を噴射するものである。このように構成することにより、別種の液体が混入されることも無く、液体の成分に影響を及ぼさずに、超微細気泡を液流によって離間させることができる。 The liquid ejecting device 4 is a device for separating the ultrafine bubbles generated on the surface portion 3c of the bubble generating medium 3 by a liquid flow. The liquid ejecting apparatus 4 ejects the same kind of liquid as the liquid from which the ultrafine bubbles are released. By comprising in this way, another kind of liquid is not mixed, and an ultrafine bubble can be spaced apart by a liquid flow, without affecting the component of a liquid.
 液体噴射装置4によって圧送された液体は、図2(a)に示すように前記超微細気泡が孔3bから発生し、その瞬間に、図2(b)に示すように、超微細気泡が放出されている表面部3cを高速で通過することによって気泡発生媒体3の表面部3cから離間させるものである。 In the liquid pumped by the liquid ejecting device 4, the ultrafine bubbles are generated from the holes 3b as shown in FIG. 2 (a), and at the moment, the ultrafine bubbles are released as shown in FIG. 2 (b). It is separated from the surface portion 3c of the bubble generating medium 3 by passing through the surface portion 3c formed at a high speed.
 これにより、図2(c)に示すように、表面部3cの超微細気泡は、後から発生する超微細気泡や周辺の孔3bから発生する超微細気泡と合体することなく単独で液中へ移動することとなる。このように構成することにより、簡易な方法で超微細気泡を発生させることができる。また、超微細気泡発生装置1の設置方法の自由度を向上させて、設置場所や機能要求に合った設計を可能とすることができる。 Thereby, as shown in FIG.2 (c), the ultrafine bubble of the surface part 3c goes into a liquid independently, without uniting with the ultrafine bubble which generate | occur | produces later and the ultrafine bubble which generate | occur | produces from the peripheral hole 3b. Will move. With this configuration, it is possible to generate ultrafine bubbles by a simple method. Moreover, the freedom degree of the installation method of the ultrafine bubble generating apparatus 1 can be improved, and the design according to an installation place and a function request | requirement can be enabled.
 また、気泡発生媒体3を、被覆材であるコーティング材5で覆うことも可能である。コーティング材5は、無機質でコーティング材5の表面と液体との接触角が小さい特性(例えば、液体が水である場合には、超親水性)を有する素材であり、本実施形態においては、シリカガラスで構成されている。接触角とは、物質の濡れ性を表す値であり、接触角が小さいほど、濡れ性が高い。ただし、コーティング材5はシリカガラスで構成するものに限定するものではない。 It is also possible to cover the bubble generating medium 3 with a coating material 5 which is a coating material. The coating material 5 is a material that is inorganic and has a characteristic that the contact angle between the surface of the coating material 5 and the liquid is small (for example, when the liquid is water, it is superhydrophilic). Consists of glass. The contact angle is a value representing the wettability of a substance. The smaller the contact angle, the higher the wettability. However, the coating material 5 is not limited to what comprises silica glass.
 コーティング材5は気泡発生媒体3の表面部3cを覆うように塗布されている。コーティング材5を構成するシリカガラスは、コーティング材5の表面と液体との接触角が小さくなる特性を有する素材であり、周りの液体をはじかず引き寄せる。言い換えれば、コーティング材5の表面において液体は液滴とならず薄く膜状に広がる。また、コーティング材5には、直径数μm~数十μmの細かな孔5aが多数設けられて、気泡発生媒体3の孔3bと連通される。 The coating material 5 is applied so as to cover the surface portion 3 c of the bubble generating medium 3. The silica glass constituting the coating material 5 is a material having a characteristic that the contact angle between the surface of the coating material 5 and the liquid becomes small, and draws the surrounding liquid without repelling. In other words, on the surface of the coating material 5, the liquid does not become a droplet but spreads in a thin film shape. The coating material 5 is provided with a large number of fine holes 5 a having a diameter of several μm to several tens of μm and communicates with the holes 3 b of the bubble generating medium 3.
 その結果、図3に示すように、前記超微細気泡が、気泡発生媒体3の孔3bを通過して、コーティング材5の孔5aから液中へ放出されることとなる。ここで、コーティング材5がその表面と液体との接触角が小さくなる特性を有する。コーティング材5は接触角が小さく濡れ性が高いため、コーティング材5に周りの液体が引き寄せられて、超微細気泡とコーティング材5との間に薄い液体の膜が作られる。これにより、超微細気泡が気泡発生媒体3から離間しやすくなり、合体して大きな気泡になることを防ぐことができる。 As a result, as shown in FIG. 3, the ultrafine bubbles pass through the holes 3b of the bubble generating medium 3 and are discharged from the holes 5a of the coating material 5 into the liquid. Here, the coating material 5 has a characteristic that the contact angle between the surface and the liquid is reduced. Since the coating material 5 has a small contact angle and high wettability, the surrounding liquid is attracted to the coating material 5, and a thin liquid film is formed between the ultrafine bubbles and the coating material 5. As a result, the ultrafine bubbles can be easily separated from the bubble generating medium 3, and can be prevented from being combined into large bubbles.
 また、コーティング材5で覆った気泡発生媒体3に対して、液体噴射装置4から液体を噴射することにより、超微細気泡を液流によって離間させる効果と、超微細気泡をコーティング材5のその表面と液体との接触角が小さくなる特性によって離間させる効果とが組み合わさって、超微細気泡を容易に離間させることが可能となる。 In addition, by ejecting liquid from the liquid ejecting device 4 to the bubble generating medium 3 covered with the coating material 5, the effect of separating the ultrafine bubbles by the liquid flow, and the surface of the coating material 5 with the ultrafine bubbles Combined with the effect of separating by the characteristic that the contact angle between the liquid and the liquid becomes small, the ultrafine bubbles can be easily separated.
 図4(a)に示すように、超微細気泡は孔3bを通過して孔5aから発生する。超微細気泡が発生したコーティング材5の表面には薄い液体の膜ができているので、超微細気泡はコーティング材5の表面から離間しやすい。すなわち、超微細気泡とコーティング材5表面との間に液体の膜が入り込むため離間しやすくなる。 As shown in FIG. 4A, the ultrafine bubbles are generated from the holes 5a through the holes 3b. Since a thin liquid film is formed on the surface of the coating material 5 where the ultrafine bubbles are generated, the ultrafine bubbles are easily separated from the surface of the coating material 5. That is, since a liquid film enters between the ultrafine bubbles and the surface of the coating material 5, it becomes easy to separate.
 また、液体噴射装置4によって圧送された液体は、図4(b)に示すように、超微細気泡が孔5aから発生した瞬間に、コーティング材5の表面を高速で通過することによって、気泡発生媒体3の表面部3cから離間させる。 Further, as shown in FIG. 4B, the liquid pumped by the liquid ejecting device 4 generates bubbles by passing through the surface of the coating material 5 at a high speed at the moment when the ultrafine bubbles are generated from the holes 5a. The medium 3 is separated from the surface portion 3c.
 そのため、図4(c)に示すように、コーティング材5の表面の超微細気泡は、後から発生する超微細気泡や周辺の孔5aから発生する超微細気泡と合体することなく単独で液中へ移動することとなる。このように構成することにより、簡易な方法で超微細気泡を発生させることができる。また、超微細気泡発生装置1の設置方法の自由度を向上させて、設置場所や機能要求に合った設計を可能とすることができる。 Therefore, as shown in FIG. 4C, the ultrafine bubbles on the surface of the coating material 5 are alone in the liquid without being combined with the ultrafine bubbles generated later and the ultrafine bubbles generated from the peripheral holes 5a. Will be moved to. With this configuration, it is possible to generate ultrafine bubbles by a simple method. Moreover, the freedom degree of the installation method of the ultrafine bubble generating apparatus 1 can be improved, and the design according to an installation place and a function request | requirement can be enabled.
 次に、気泡発生媒体3の形状について説明する。
 図5(a)に示すように、気泡発生媒体3は平板状に形成している。ガス圧によって気泡発生媒体3の面の中で最大の面積を有する板面の表面部3cから超微細気泡が発生するものである。気泡発生媒体3を表面積の大きい平板状に構成することにより、効率的に超微細気泡を発生させることができる。また、超微細気泡が発生した瞬間に液流によって気泡発生媒体3から離間することにより、合体して大きな気泡になることを防ぐことができる。
Next, the shape of the bubble generating medium 3 will be described.
As shown in FIG. 5A, the bubble generating medium 3 is formed in a flat plate shape. Ultrafine bubbles are generated from the surface portion 3c of the plate surface having the largest area among the surfaces of the bubble generating medium 3 by the gas pressure. By configuring the bubble generating medium 3 in a plate shape having a large surface area, it is possible to efficiently generate ultrafine bubbles. Further, by separating from the bubble generation medium 3 by the liquid flow at the moment when the ultrafine bubbles are generated, it is possible to prevent the bubbles from being combined to become large bubbles.
 また、液体噴射装置4は気泡発生媒体3の中で最大面積を有する板面の表面部3cに沿って、気泡発生媒体3によって放出される超微細気泡の放出方向に対して略直交する方向に向けて液流を噴射するものである。本実施形態においては、板面の表面部3cは上下の面である。液流の方向は、前記超微細気泡の放出方向に対して略直交であればよく、図5(a)の矢印a方向、矢印b方向、矢印c方向、矢印d方向の四方どの方向から噴射しても良い。例えば、液体噴射装置4は、気泡発生媒体3の板面の表面部3cへ液流を噴射するための噴射孔4aを有し、気泡発生媒体3の板面の表面部3cに対して板面と同じ幅の液流を板面と平行方向に噴射するものである。 Further, the liquid ejecting apparatus 4 is arranged in a direction substantially orthogonal to the discharge direction of the ultrafine bubbles discharged by the bubble generating medium 3 along the surface portion 3c of the plate surface having the largest area in the bubble generating medium 3. The liquid flow is jetted toward the head. In the present embodiment, the surface portion 3c of the plate surface is an upper and lower surface. The direction of the liquid flow may be substantially orthogonal to the discharge direction of the ultrafine bubbles, and the liquid is ejected from any one of the four directions of the arrow a direction, the arrow b direction, the arrow c direction, and the arrow d direction in FIG. You may do it. For example, the liquid ejecting apparatus 4 has an ejection hole 4 a for ejecting a liquid flow to the surface portion 3 c of the plate surface of the bubble generating medium 3, and the plate surface with respect to the surface portion 3 c of the plate surface of the bubble generating medium 3. And a liquid flow having the same width as that in the direction parallel to the plate surface.
 このように構成することにより、図2に示すように、発生する超微細気泡が発生した瞬間に液流によって気泡発生媒体3から離間することにより、合体して大きな気泡になることを防ぐことができ、簡易な方法で超微細気泡を発生させることができる。また、超微細気泡発生装置1の設置方法の自由度を向上させて、設置場所や機能要求に合った設計を可能とすることができる。 By configuring in this way, as shown in FIG. 2, by separating from the bubble generating medium 3 by the liquid flow at the moment when the generated ultrafine bubbles are generated, it is possible to prevent coalescence and large bubbles. It is possible to generate ultrafine bubbles by a simple method. Moreover, the freedom degree of the installation method of the ultrafine bubble generating apparatus 1 can be improved, and the design according to an installation place and a function request | requirement can be enabled.
 また、別実施形態にかかる超微細気泡発生装置1では、図5(b)に示すように、気泡発生媒体3は中空の多角柱状に形成している。本実施形態では、気泡発生媒体3は中空の四角柱状に形成している。このように構成することにより、気体が四角柱の長手方向側面部である表面部3cから均等に放出されるため、効率的に超微細気泡を発生させることができる。 In the ultrafine bubble generating device 1 according to another embodiment, the bubble generating medium 3 is formed in a hollow polygonal column shape as shown in FIG. In the present embodiment, the bubble generating medium 3 is formed in a hollow quadrangular prism shape. By comprising in this way, since gas is discharged | emitted equally from the surface part 3c which is a longitudinal direction side part of a square pole, an ultrafine bubble can be generated efficiently.
 また、図5(b)に示すように、四角柱に形成した気泡発生媒体3の対向する二面の表面に対し同一方向(矢印A、矢印B方向)へと液体を噴射する。また、残りの二面に対しては、先の二面に対して噴射する方向と反対方向(矢印C、矢印D方向)へと液体を噴射する。これにより、発生する超微細気泡が発生した瞬間に液流によって気泡発生媒体3から離間することで、合体して大きな気泡になることを防ぐことができ、簡易な方法で超微細気泡を発生させることができる。また、超微細気泡発生装置1の設置方法の自由度を向上させて、設置場所や機能要求に合った設計を可能とすることができる。
 なお、液体の噴射方向は本実施形態に限定されるものではなく、例えば、全ての面に対して同一方向であっても良いし、三面が同一方向で、一面のみが反対方向に噴射する構成としても構わない。
Further, as shown in FIG. 5B, the liquid is ejected in the same direction (arrow A and arrow B directions) onto the surfaces of the two opposing faces of the bubble generating medium 3 formed in the quadrangular column. Further, the remaining two surfaces are ejected in the direction opposite to the direction in which the previous two surfaces are ejected (arrow C and arrow D directions). As a result, by separating from the bubble generating medium 3 by the liquid flow at the moment when the generated ultrafine bubbles are generated, it is possible to prevent them from being combined and forming large bubbles, and to generate ultrafine bubbles by a simple method. be able to. Moreover, the freedom degree of the installation method of the ultrafine bubble generator 1 can be improved, and the design according to an installation place and a function request | requirement can be enabled.
The liquid ejecting direction is not limited to the present embodiment. For example, the same direction may be applied to all the surfaces, or the three surfaces may be in the same direction and only one surface may be ejected in the opposite direction. It does not matter.
 また、別実施形態にかかる超微細気泡発生装置1では、図6(a)に示すように、気泡発生媒体3は中空の円柱状に形成している。圧送された気体は気体供給路11を通り、円柱に形成された気泡発生媒体3の中央部に設けられた内部空間3aへと圧送される。このように構成することにより、気体が円柱の長手方向側面部である表面部3cから均等に放出されるため、効率的に超微細気泡を発生させることができる。 In the ultrafine bubble generating device 1 according to another embodiment, the bubble generating medium 3 is formed in a hollow cylindrical shape as shown in FIG. The gas sent under pressure passes through the gas supply path 11 and is sent under pressure to an internal space 3a provided at the center of the bubble generating medium 3 formed in a cylindrical shape. By comprising in this way, since gas is discharge | released equally from the surface part 3c which is a longitudinal direction side part of a cylinder, an ultrafine bubble can be generated efficiently.
 また、図6(a)に示すように、液体噴射装置4は気体供給路11の外周部に設けられている。液体噴射装置4の噴射孔4aは、気泡発生媒体3の外周部の直径より少し大きい直径を有する円形状に設けられており、気泡発生媒体3の長手方向側面部である表面部3cに対して、気体供給方向と同一方向から、帯状の液流を噴射するものである。このように構成することにより、発生する超微細気泡が発生した瞬間に液流によって気泡発生媒体3から離間することにより、合体して大きな気泡になることを防ぐことができ、超微細気泡発生装置1の設置方法の自由度を向上させて、設置場所や機能要求に合った設計を可能とすることができる。
 なお、液体の噴射方向は、実施形態に限定されるものではなく、例えば、気体供給方向と反対方向から噴射することも可能である。
In addition, as shown in FIG. 6A, the liquid ejecting apparatus 4 is provided on the outer peripheral portion of the gas supply path 11. The ejection holes 4 a of the liquid ejection device 4 are provided in a circular shape having a diameter slightly larger than the diameter of the outer peripheral portion of the bubble generating medium 3, and with respect to the surface portion 3 c that is the side surface in the longitudinal direction of the bubble generating medium 3. The belt-like liquid flow is ejected from the same direction as the gas supply direction. By configuring in this way, it is possible to prevent the bubbles from being combined and becoming large bubbles by separating from the bubble generating medium 3 by the liquid flow at the moment when the generated ultrafine bubbles are generated. The degree of freedom of the installation method 1 can be improved, and a design that meets the installation location and functional requirements can be made possible.
In addition, the injection direction of the liquid is not limited to the embodiment, and for example, the liquid can be injected from a direction opposite to the gas supply direction.
 また、別の実施形態にかかる超微細気泡発生装置1では、図6(b)に示すように、気泡発生媒体3は円錐状に構成している。前記円錐の断面中心部付近には内部空間3aが設けられており、コンプレッサ2から圧送された気体は気体供給路11を通り、気泡発生媒体3の内部空間3aへと圧送される。このように構成することにより、気体が円錐の側面部である表面部3cから均等に放出されるため、効率的に超微細気泡を発生させることができる。 Further, in the ultrafine bubble generating apparatus 1 according to another embodiment, the bubble generating medium 3 is configured in a conical shape as shown in FIG. An internal space 3 a is provided near the center of the cross section of the cone, and the gas sent from the compressor 2 passes through the gas supply path 11 and is sent to the internal space 3 a of the bubble generating medium 3. By comprising in this way, since gas is discharged | emitted equally from the surface part 3c which is a side part of a cone, an ultrafine bubble can be generated efficiently.
 また、液体噴射装置4は気泡発生媒体3と対向する位置に設けられている。すなわち、液体噴射装置4の噴射孔4aは、図6(b)に示すように、気泡発生媒体3の円錘頂点3dの延長線上に設けられており、液体噴射装置4は円錐頂点3dに向けて液体を噴射するものである。このように構成することにより、液体を円錐頂点3dに噴射することにより、液体が気泡発生媒体3の側面部である表面部3cに沿って放射状に流れる。言い換えれば、気泡発生媒体3によって放出される超微細気泡の放出方向に対して略直交する方向に向けて液体を噴射する。 Further, the liquid ejecting apparatus 4 is provided at a position facing the bubble generating medium 3. That is, as shown in FIG. 6B, the ejection hole 4a of the liquid ejecting apparatus 4 is provided on an extension line of the conical vertex 3d of the bubble generating medium 3, and the liquid ejecting apparatus 4 is directed toward the conical apex 3d. The liquid is ejected. With such a configuration, the liquid flows radially along the surface portion 3c which is the side surface portion of the bubble generating medium 3 by ejecting the liquid onto the conical vertex 3d. In other words, the liquid is ejected in a direction substantially orthogonal to the discharge direction of the ultrafine bubbles discharged by the bubble generating medium 3.
 これにより、液体噴射装置4の噴射孔4aの面積を小さくすることが可能となり、少ない圧力で液体を噴射させることが可能となる。超微細気泡が発生した瞬間に気泡発生媒体3から離間することにより、合体して大きな気泡になることを防ぐことができ、簡易な方法で超微細気泡を発生させることができる。また、超微細気泡発生装置1の設置方法の自由度を向上させて、設置場所や機能要求に合った設計を可能とすることができる。 Thereby, the area of the injection hole 4a of the liquid injection device 4 can be reduced, and the liquid can be injected with a small pressure. By separating from the bubble generating medium 3 at the instant when the ultrafine bubbles are generated, they can be prevented from being combined to become large bubbles, and the ultrafine bubbles can be generated by a simple method. Moreover, the freedom degree of the installation method of the ultrafine bubble generating apparatus 1 can be improved, and the design according to an installation place and a function request | requirement can be enabled.
 また、図6(c)に示すように、気泡発生媒体3の円錐高さ方向に直交する方向に気体供給路11の気体供給入口を設ける構成とすることも可能である。このように構成することにより、液体の流れの下流側のスペースを有効に活用することができる。なお、本実施形態では気体供給路11の気体供給入口を気泡発生媒体3の上方に設けているが、これに限定するものではなく、例えば左右方向に設けることも可能である。 Further, as shown in FIG. 6C, the gas supply inlet of the gas supply path 11 may be provided in a direction orthogonal to the cone height direction of the bubble generating medium 3. By configuring in this way, the space on the downstream side of the liquid flow can be effectively utilized. In the present embodiment, the gas supply inlet of the gas supply path 11 is provided above the bubble generating medium 3, but the present invention is not limited to this, and for example, it can be provided in the left-right direction.
 また、気泡発生媒体3の周囲で、液体噴射装置4によって噴射する液体の流れの下流側に気泡案内溝55を設けている。気泡案内溝55は、図7に示すように、液体の流れの下流側に断面視略円弧状に構成されており、液体噴射装置4によって噴射される液体によって気泡発生媒体3の表面部3cから移動する超微細気泡が移動する方向を案内するものである。気泡案内溝55を設けることで、気泡発生媒体3から離間した超微細気泡が一旦気泡案内溝55に当たったあと、気泡案内溝55に沿って移動することにより、超微細気泡間の距離を調整しやすく合体して大きな気泡になることを防ぐことができる。 Further, a bubble guide groove 55 is provided around the bubble generating medium 3 on the downstream side of the flow of the liquid ejected by the liquid ejecting device 4. As shown in FIG. 7, the bubble guide groove 55 is formed in a substantially circular arc shape in cross section on the downstream side of the liquid flow, and from the surface portion 3 c of the bubble generating medium 3 by the liquid ejected by the liquid ejecting device 4. This guides the moving direction of the moving ultrafine bubbles. By providing the bubble guide groove 55, after the ultrafine bubbles separated from the bubble generating medium 3 once hit the bubble guide groove 55, the distance between the ultrafine bubbles is adjusted by moving along the bubble guide groove 55. Can be easily combined to prevent large bubbles.
 また、超微細気泡発生装置1を構成する気泡発生媒体3及び液体噴射装置4を一体として設けることも可能である。このように構成することにより、気泡発生媒体3と液体噴射装置4の噴射孔4aとの位置関係が常に一定となるため、位置調節等を行う手間を省くことが可能となる。また、液体噴射装置4と対向する側の壁面を側面視円弧状に傾斜させることも可能である。このように構成することにより、液体噴射装置4によって噴射される液体によって気泡発生媒体3の側面部である表面部3cから移動する超微細気泡が移動する方向を案内することができる。このため、超微細気泡間の距離を調整しやすく合体して大きな気泡になることを防ぐことができる。 It is also possible to provide the bubble generating medium 3 and the liquid ejecting device 4 constituting the ultrafine bubble generating device 1 as a unit. With this configuration, the positional relationship between the bubble generating medium 3 and the ejection holes 4a of the liquid ejecting apparatus 4 is always constant, so that it is possible to save time and effort for position adjustment and the like. It is also possible to incline the wall surface on the side facing the liquid ejecting apparatus 4 in an arc shape in a side view. With this configuration, it is possible to guide the direction in which the ultrafine bubbles moving from the surface portion 3c, which is the side surface portion of the bubble generating medium 3, are moved by the liquid ejected by the liquid ejecting apparatus 4. For this reason, it is easy to adjust the distance between the ultrafine bubbles, and it is possible to prevent large bubbles from being formed.
 また、気泡発生媒体3を平板状に形成し、気泡発生媒体3の内部に複数の気体供給路11を平行に設けることも可能である。この場合、気体は気体供給路11を通り、気泡発生媒体3の内部空間3aへと圧送される。気体供給路11は気泡発生媒体3の内部で枝分かれしており、複数の枝分かれした気体供給路11が平行に並んでいる。気体供給路11からのガス圧によって気泡発生媒体3の表面部3cから超微細気泡が発生するものである。このように構成することにより、平行に並んだ気体供給路11同士の間隔を広げることで、超微細気泡が合体するのを困難にすることができる。 It is also possible to form the bubble generating medium 3 in a flat plate shape and provide a plurality of gas supply paths 11 in parallel inside the bubble generating medium 3. In this case, the gas passes through the gas supply path 11 and is pumped to the internal space 3 a of the bubble generating medium 3. The gas supply path 11 is branched inside the bubble generating medium 3, and a plurality of branched gas supply paths 11 are arranged in parallel. Ultrafine bubbles are generated from the surface portion 3 c of the bubble generating medium 3 by the gas pressure from the gas supply path 11. By comprising in this way, it can make it difficult for a superfine bubble to unite | combine by widening the space | interval of the gas supply paths 11 arranged in parallel.
 なお、液体噴射装置の数や形状は、本実施形態に限定するものでなく、例えば、3個以上設けることも可能である。また、気体供給路11の形状や材質は、本実施形態に限定するものではなく、例えば、金属管やプラスチックパイプ等で構成することも可能である。 Note that the number and shape of the liquid ejecting apparatuses are not limited to the present embodiment, and for example, three or more liquid ejecting apparatuses may be provided. Moreover, the shape and material of the gas supply path 11 are not limited to this embodiment, For example, a metal pipe, a plastic pipe, etc. can be comprised.
 本発明の超微細気泡発生装置は、簡易な方法で超微細気泡を発生させることができ、超微細気泡発生装置の設置方法の自由度を向上させて、設置場所や機能要求に合った設計を可能とするので、産業上有用である。 The ultrafine bubble generation device of the present invention can generate ultrafine bubbles by a simple method, improves the flexibility of the installation method of the ultrafine bubble generation device, and is designed to meet the installation location and functional requirements. This is industrially useful.
 1  超微細気泡発生装置
 2  コンプレッサ
 3  気泡発生媒体
 4  液体噴射装置
 5  コーティング材
DESCRIPTION OF SYMBOLS 1 Superfine bubble generator 2 Compressor 3 Bubble generation medium 4 Liquid injection apparatus 5 Coating material

Claims (3)

  1.  気体を圧送するための圧縮機と、圧送された気体を超微細気泡として液体内へ放出するための気泡発生媒体とを具備する超微細気泡発生装置であって、
     前記気泡発生媒体は、高密度複合体で形成されており、前記高密度複合体は導電体であり、前記気泡発生媒体によって放出される超微細気泡の放出方向に対して、略直交する方向に向けて、前記超微細気泡が放出される液体と同種の液体を噴射する液体噴射装置を設けた、
     ことを特徴とする超微細気泡発生装置。
    An ultrafine bubble generator comprising a compressor for pumping gas and a bubble generating medium for discharging the pumped gas into the liquid as ultrafine bubbles,
    The bubble generation medium is formed of a high-density composite, and the high-density composite is a conductor, and is in a direction substantially orthogonal to the discharge direction of the ultrafine bubbles released by the bubble generation medium. A liquid ejecting apparatus that ejects the same kind of liquid as the liquid from which the ultrafine bubbles are discharged is provided.
    An ultrafine bubble generator characterized by the above.
  2.  前記気泡発生媒体を円錐状に構成して、前記圧縮機からの気体を前記気泡発生媒体の円錐底面から頂点へ向けて通過させ、前記液体噴射装置によって、前記超微細気泡が放出される液体と同種の液体を、前記気泡発生媒体の円錐頂点に対して噴射するようにした、
     ことを特徴とする請求項1に記載の超微細気泡発生装置。
    The bubble generating medium is configured in a conical shape, a gas from the compressor is passed from the bottom surface of the bubble generating medium toward the apex, and the liquid ejecting device releases the ultrafine bubbles. The same kind of liquid was sprayed onto the conical vertex of the bubble generating medium.
    The ultrafine bubble generating device according to claim 1.
  3.  前記気泡発生媒体の外周面を被覆材で覆い、該被覆材は、その表面と液体との接触角が小さくなる特性を有する、
     ことを特徴とする請求項1または請求項2に記載の超微細気泡発生装置。
    The outer peripheral surface of the bubble generating medium is covered with a coating material, and the coating material has a characteristic that the contact angle between the surface and the liquid is reduced.
    The ultrafine bubble generating apparatus according to claim 1 or 2, characterized in that
PCT/JP2010/062705 2008-07-30 2010-07-28 Super-micro bubble generation device WO2011013706A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/387,403 US8919747B2 (en) 2008-07-30 2010-07-28 Super-micro bubble generation device
PL10804452T PL2460582T3 (en) 2009-07-30 2010-07-28 Super-micro bubble generation device
EP10804452.0A EP2460582B1 (en) 2009-07-30 2010-07-28 Super-micro bubble generation device
DK10804452.0T DK2460582T3 (en) 2009-07-30 2010-07-28 Device for generating super microbubbles
ES10804452T ES2807880T3 (en) 2009-07-30 2010-07-28 Super microbubble generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-177693 2009-07-30
JP2009177693A JP5885376B2 (en) 2008-07-30 2009-07-30 Ultra-fine bubble generator

Publications (1)

Publication Number Publication Date
WO2011013706A1 true WO2011013706A1 (en) 2011-02-03

Family

ID=43530013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062705 WO2011013706A1 (en) 2008-07-30 2010-07-28 Super-micro bubble generation device

Country Status (5)

Country Link
EP (1) EP2460582B1 (en)
DK (1) DK2460582T3 (en)
ES (1) ES2807880T3 (en)
PL (1) PL2460582T3 (en)
WO (1) WO2011013706A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110575764A (en) * 2018-06-07 2019-12-17 埃尔微尘科技(北京)有限公司 Heat and mass transfer device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202018966D0 (en) 2020-12-01 2021-01-13 Epigenetica Ltd Method and system to improve plant characteristics
GB202103986D0 (en) 2021-03-22 2021-05-05 Epigenetica Ltd Plant propagation
WO2023214041A1 (en) 2022-05-05 2023-11-09 Epigenetica Limited Processes, systems and media for delivering a substance to a plant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647726U (en) * 1979-09-19 1981-04-28
JP2003245533A (en) * 2002-02-22 2003-09-02 Mori Kikai Seisakusho:Kk Ultrafine air bubble generator
JP2005334869A (en) * 2004-04-28 2005-12-08 Japan Science & Technology Agency Method and apparatus for micro bubble generation
JP2006061817A (en) * 2004-08-26 2006-03-09 Jfe Engineering Kk Aeration device
JP2009101250A (en) 2006-07-11 2009-05-14 Makoto Minamidate Fine bubble generating apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1362789A (en) * 1970-09-24 1974-08-07 British Oxygen Co Ltd Treatment of liquids
US4522151A (en) * 1983-03-14 1985-06-11 Arbisi Dominic S Aerator
ZA919256B (en) * 1990-11-23 1992-11-25 Atomaer Pty Ltd Gas particle formation
JP2007260529A (en) * 2006-03-28 2007-10-11 Kenji Ijuin Air diffusion nozzle and air diffusion tank
JP2008132437A (en) * 2006-11-29 2008-06-12 Kubota Corp Microbubble generation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647726U (en) * 1979-09-19 1981-04-28
JP2003245533A (en) * 2002-02-22 2003-09-02 Mori Kikai Seisakusho:Kk Ultrafine air bubble generator
JP2005334869A (en) * 2004-04-28 2005-12-08 Japan Science & Technology Agency Method and apparatus for micro bubble generation
JP2006061817A (en) * 2004-08-26 2006-03-09 Jfe Engineering Kk Aeration device
JP2009101250A (en) 2006-07-11 2009-05-14 Makoto Minamidate Fine bubble generating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110575764A (en) * 2018-06-07 2019-12-17 埃尔微尘科技(北京)有限公司 Heat and mass transfer device

Also Published As

Publication number Publication date
ES2807880T3 (en) 2021-02-24
PL2460582T3 (en) 2020-11-16
EP2460582A1 (en) 2012-06-06
EP2460582B1 (en) 2020-06-24
DK2460582T3 (en) 2020-08-17
EP2460582A4 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5885376B2 (en) Ultra-fine bubble generator
JP4759553B2 (en) Gas-liquid dissolution tank in microbubble generator
WO2011013706A1 (en) Super-micro bubble generation device
JP4449391B2 (en) Two-fluid nozzle
JPWO2019026195A1 (en) Fine bubble generator, fine bubble generation method, shower device and oil / water separator having the fine bubble generator
KR20150019299A (en) Module for generating micro bubbles
JP6449531B2 (en) Microbubble generator
JP2005334869A (en) Method and apparatus for micro bubble generation
JP2012223706A (en) Rotary atomizing method and atomizer
JP4338139B2 (en) Droplet injection nozzle
JP4239879B2 (en) Micro-mist generation method and apparatus
KR100582267B1 (en) A way and a device to manufacture micro bubble using by micro-filter
KR100967831B1 (en) Micro bubble generator
JP4715335B2 (en) Microbubble generator
JP2011062582A (en) Instrument for accelerating micronization and gas-liquid mixing nozzle device
JP2012045537A (en) Jet nozzle
JP7362045B2 (en) bubble generator
JPH0747392A (en) Water stream type water quality improving and purifying device
JP2005246272A (en) Sand pumping apparatus and sand pumping method using sand pumping apparatus
KR101610651B1 (en) Apparatus for manufacturing micro-bubble
JP7193365B2 (en) Electrolyzed hydrogen water generator
RU110001U1 (en) PNEUMO-ACOUSTIC SPRAY
KR101610652B1 (en) Apparatus for manufacturing micro-bubble
KR101929755B1 (en) water-bloom removal system
JP6593610B2 (en) Air-mixing nozzle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804452

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010804452

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13387403

Country of ref document: US