WO2011007403A1 - Electromagnetic converter - Google Patents
Electromagnetic converter Download PDFInfo
- Publication number
- WO2011007403A1 WO2011007403A1 PCT/JP2009/005701 JP2009005701W WO2011007403A1 WO 2011007403 A1 WO2011007403 A1 WO 2011007403A1 JP 2009005701 W JP2009005701 W JP 2009005701W WO 2011007403 A1 WO2011007403 A1 WO 2011007403A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diaphragm
- top surface
- frame
- permanent magnet
- joined
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/02—Details
- H04R9/04—Construction, mounting, or centering of coil
- H04R9/046—Construction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/02—Details
- H04R9/04—Construction, mounting, or centering of coil
- H04R9/041—Centering
- H04R9/043—Inner suspension or damper, e.g. spider
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2209/00—Details of transducers of the moving-coil, moving-strip, or moving-wire type covered by H04R9/00 but not provided for in any of its subgroups
- H04R2209/024—Manufacturing aspects of the magnetic circuit of loudspeaker or microphone transducers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2209/00—Details of transducers of the moving-coil, moving-strip, or moving-wire type covered by H04R9/00 but not provided for in any of its subgroups
- H04R2209/027—Electrical or mechanical reduction of yoke vibration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/16—Mounting or tensioning of diaphragms or cones
- H04R7/18—Mounting or tensioning of diaphragms or cones at the periphery
Definitions
- the present invention relates to an electromagnetic transducer that reproduces sound from an audio signal by combining a permanent magnet and a diaphragm.
- a spiral voice coil pattern is formed on a sheet of a thermosetting resin polyimide, a thermoplastic resin polyethylene terephthalate (PET), or a liquid crystal polymer, and both ends are bent.
- the diaphragm has a U-shaped cross section. The top surface of the diaphragm and the frame are joined by elastic edges, and the voice coil patterns on both ends of the diaphragm are held so as to come to the magnetic flux generating portion of the magnetic circuit. For this reason, even if the amplitude of the diaphragm increases, the vertical displacement width of the voice coil pattern can be accommodated in the magnetic flux generating portion.
- this diaphragm has a problem that it is low in rigidity because both ends in the longitudinal direction are bent and both ends in the short direction are not bent, and abnormal noise is likely to occur due to unnecessary resonance caused by vibration. It was. Furthermore, since a support system such as an edge for fixing the diaphragm to the frame can be joined only to the top surface of the diaphragm, piston vibration is disturbed at a large amplitude, and a magnetic gap defect due to rolling is likely to occur.
- the speaker of Patent Document 2 is formed by forming a voice coil pattern in advance on a thermosetting resin sheet such as a polyimide sheet or a prepreg of a laminated sheet made of a glass resin and an epoxy resin, and then heat-molding the sheet U. It has a letter-shaped dome-shaped diaphragm. The entire periphery of the diaphragm and the frame are joined together with an edge, and a support plate is fixed inside the diaphragm, and the support plate is joined to a damper on the frame side. For this reason, rigidity can be improved by making a diaphragm into a dome shape, and the support structure of a diaphragm can be made partially but double.
- a thermosetting resin sheet such as a polyimide sheet or a prepreg of a laminated sheet made of a glass resin and an epoxy resin
- the magnetic circuit has to be divided in order to fix the damper to the frame, resulting in an increase in the number of parts. Further, when the magnetic circuit is divided and arranged, the magnetic flux density is uneven or the magnetic flux density is lowered.
- thermosetting resin sheet on which the voice coil pattern is formed is molded into a three-dimensional structure and then cured by heat treatment.
- thermoplastic resin sheet it is necessary to stretch the thermoplastic resin sheet on which the voice coil pattern is formed by drawing by hot pressing to obtain a three-dimensional shape.
- the elongation rate of the thermoplastic resin sheet and the elongation rate of the voice coil pattern formed on the sheet are different, there is a problem that the coil and the sheet are broken when the drawing is performed.
- the cost of the thermosetting resin is higher than that of the thermoplastic resin.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an electromagnetic transducer having excellent performance by causing a diaphragm to vibrate with a double support structure having a small number of parts.
- the electromagnetic transducer comprises a magnetic circuit comprising a permanent magnet, a frame in which one magnetic pole surface of the permanent magnet is fixed and the other magnetic pole side is open, and a plate fixed to the other magnetic pole surface, and a plate.
- a vibration plate having a top surface at a covering position and four side surfaces formed between the plate and the frame opening, and having a voice coil pattern formed on one or both surfaces.
- the diaphragm is joined to the top peripheral edge of the plate and the peripheral edge of the frame opening, and joined to the first support portion that holds the diaphragm in a displaceable manner, the peripheral edge of the side surface of the diaphragm, and the inner peripheral surface of the frame. And a second support part that holds the slidable member freely.
- the periphery of the top surface of the diaphragm is joined to the periphery of the frame opening, and the edge on the side surface side is joined to the inner periphery of the frame.
- the piston can be vibrated and an electromagnetic transducer with excellent performance can be obtained.
- FIG. 1 It is a disassembled perspective view which shows the structure of the electromagnetic transducer which concerns on Embodiment 1 of this invention.
- 2 is a cross-sectional view of the electromagnetic transducer according to Embodiment 1.
- FIG. 5 is a cross-sectional view for explaining an assembly method for the electromagnetic transducer according to the first embodiment.
- 3 is a perspective view showing a configuration of a reinforcing structure provided on a diaphragm of the electromagnetic transducer according to Embodiment 1.
- FIG. 1 is an exploded perspective view showing the configuration of an electromagnetic transducer 10 according to Embodiment 1 of the present invention, and a cross-sectional view thereof is shown in FIG.
- the electromagnetic transducer 10 shown in the figure includes a magnetic circuit composed of an upper frame 11, a lower frame 12, a permanent magnet 13 and a plate 14, a diaphragm 15, and an upper gasket for holding the diaphragm 15 on the upper side of the magnetic circuit. 16 and an edge 17 and a second support portion including a lower gasket 18 and a damper 19 for holding the diaphragm 15 inside the magnetic circuit.
- the upper and lower sides are distinguished for the sake of explanation, but in practice, any surface may be on the upper side.
- the lower frame 12 fixes one magnetic pole surface of the permanent magnet 13, and the upper frame 11 covers the lower frame 12 together with the permanent magnet 13, and is opened at substantially the same height as the other magnetic pole surface of the permanent magnet 13. 11a.
- a plate 14 is bonded on the other magnetic pole surface of the permanent magnet 13. Therefore, the plate 14 and the opening 11a are at substantially the same height, and the magnetic flux density between the plate 14 and the opening 11a is increased.
- a thermoplastic resin sheet such as PEI (polyetherimide), PEN (polyethylene naphthalate), PET, PEEK (polyetheretherketone) is used.
- the voice coil pattern 15g is formed by edging the conductor foil at positions corresponding to the top surface 15a and the side surfaces 15b, 15c in the longitudinal direction on one or both sides of the thermoplastic resin sheet before three-dimensional molding, To make a three-dimensional structure.
- the rigidity of the diaphragm 15 can be improved by forming the four sides of the diaphragm 15 into the four side surfaces 15b to 15e depending from the top surface 15a by hot press molding.
- the side surfaces 15b and 15c in the longitudinal direction are formed in a shape that hangs vertically from the top surface 15a, and the side surfaces 15d and 15e in the short direction are formed in a shape that hangs obliquely from the top surface 15a. Since the side surfaces 15b and 15c in the longitudinal direction on which the voice coil pattern 15g is formed can be formed without stretching the thermoplastic resin sheet at the time of hot press molding, there is no fear of breakage due to a difference in elongation rate. Further, a flange portion 15f is formed on the tip side of the side surfaces 15b to 15e. The flange portion 15 f serves as a fixing margin when the diaphragm 15 is bonded to the damper 19.
- the periphery of the opening 17 a of the edge 17 is joined to the periphery of the top surface 15 a of the diaphragm 15, and the outer periphery of the edge 17 is joined to the periphery of the opening 16 a of the upper gasket 16.
- the upper gasket 16 is fixed to the upper surface of the upper frame 11.
- the upper gasket 16 and the edge 17 serve as a first support portion, and support the diaphragm 15 so as to be vertically movable. Note that the outer peripheral edge of the edge 17 may be directly joined to the upper frame 11 without using the upper gasket 16.
- a part of the upper surface of the upper frame 11 May be projected upward to align the height, or the outer peripheral edge of the edge 17 may be extended to the upper surface of the upper frame 11.
- the peripheral edge of the opening 19a of the damper 19 is joined to the flange 15f at the peripheral edge of the side surface of the diaphragm 15, and the outer periphery of the damper 19 is joined to the peripheral edge of the opening 18a of the lower gasket 18.
- the lower gasket 18 is fixed to the upper back surface of the upper frame 11, that is, inside the magnetic circuit.
- the lower gasket 18 and the damper 19 serve as a second support portion, and support the diaphragm 15 so as to be vertically displaced. Note that the outer peripheral edge of the damper 19 may be directly joined to the inside of the upper frame 11 without using the lower gasket 18.
- the operation principle of the electromagnetic transducer 10 will be described.
- a current (audio signal) is supplied to the voice coil pattern 15g from the outside
- the current flowing through the voice coil pattern 15g and the magnetic flux generated between the opening 11a of the upper frame 11 and the plate 14 are electromagnetically coupled.
- a driving force is generated according to Fleming's law. Due to the generated driving force, the diaphragm 15 causes the piston to vibrate in the vertical direction, thereby generating sound waves. Since the entire circumference of the top surface 15a and the entire circumference of the flange portion 15f of the diaphragm 15 are supported by the first and second support portions so as to be vertically displaceable, piston vibration that moves in parallel up and down may be disturbed even at large amplitudes. Absent. Therefore, the magnetic gap defect due to rolling does not occur. Further, the diaphragm 15 does not collide with the permanent magnet 13 and the plate 14, and no hitting sound is generated.
- FIG. 3 is a cross-sectional view for explaining an assembling method of the electromagnetic transducer 10 according to the first embodiment.
- the diaphragm 15, the lower gasket 18, and the damper 19 are first joined to assemble the diaphragm ASSY.
- an adhesive 20 is applied to the upper back surface of the upper frame 11, and the diaphragm ASSY and the upper frame 11 are bonded using the outer periphery of the lower gasket 18 as a guide.
- the diaphragm ASSY to which the upper frame 11 is bonded is attached to the jig 21 and fixed in position as shown in FIG.
- the upper gasket 16 and the edge 17 are joined to assemble the edge ASSY.
- the adhesive 22 is applied to the periphery of the opening of the edge 17, and the adhesive 23 is applied to the upper surface of the upper frame 11 to bond the edge ASSY and the diaphragm ASSY.
- the lower frame 12, the permanent magnet 13 and the plate 14 are bonded to assemble the magnet ASSY, and the upper frame 11 and the lower frame 12 are connected with screws or an adhesive or the like. It joins and the assembly of the electromagnetic transducer 10 is completed.
- the electromagnetic transducer 10 includes the permanent magnet 13, the lower frame 12 that fixes one magnetic pole surface of the permanent magnet 13, and the upper frame in which the opening 11a is formed on the other magnetic pole side. 11 and the magnetic circuit composed of the plate 14 fixed to the other magnetic pole surface, the top surface 15a at a position covering the plate 14, and the plate 14 and the upper frame 11 formed from the top surface 15a toward the permanent magnet 13
- the diaphragm 15 having four side surfaces 15b to 15e positioned between the openings 11a and having the voice coil pattern 15g formed thereon, the upper gasket 16 adhered to the periphery of the opening 11a of the upper frame 11, and the top surface of the diaphragm 15
- An edge 17 that is joined to the peripheral edge of 15a and the peripheral edge of the opening 16a of the upper gasket 16 to hold the diaphragm 15 in a displaceable manner, and an inner peripheral surface of the upper frame 11
- a lower gasket 18 which adheres, joined to the opening 18a peripheral edge of the flange
- the vibration plate 15 can be supported by a double support structure having a small number of parts and can be caused to vibrate the piston, thereby preventing abnormal noise. Further, it is not necessary to divide the magnetic circuit as in the conventional case, and the number of parts is not increased and the cost is not increased. Further, since it is not necessary to divide and arrange the magnetic circuit, the magnetic flux density does not vary and the magnetic flux density does not decrease.
- the diaphragm 15 has four side surfaces 15b to 15e formed by hot press-molding both side ends in the longitudinal direction and both side ends in the short direction of the thermoplastic resin sheet.
- the coil pattern 15g is arranged on the side surfaces 15b and 15c and the top surface 15a in the longitudinal direction. For this reason, not a high-cost thermosetting resin but a low-cost thermoplastic resin can be used, and as a result, an inexpensive electromagnetic transducer 10 can be obtained.
- FIG. 4 is a perspective view showing a configuration of a reinforcing structure 15h provided on the diaphragm 15 according to the first embodiment.
- the reinforcing structure 15h may be realized by a rib structure or a concavo-convex structure, and the rib or concavo-convex direction may be the longitudinal direction or the short direction of the diaphragm 15 as shown in FIG.
- the method of forming the voice coil pattern 15g by edging before the diaphragm 15 is hot press-molded has been described.
- the present invention is not limited to this, and the diaphragm 15 before three-dimensional molding is used.
- the voice coil pattern 15g may be printed and formed, or the voice coil pattern 15g may be formed by attaching a coil to the diaphragm 15 after three-dimensional molding.
- the electromagnetic transducer according to the present invention can be used for an electromagnetic transducer that reproduces sound from an audio signal by combining a permanent magnet and a diaphragm because it can prevent generation of abnormal noise, increase in the number of parts, and decrease in magnetic flux density. Suitable for
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
Abstract
Description
特許文献1の平面型音響変換装置は、熱硬化性樹脂のポリイミド、又は熱可塑性樹脂のポリエチレンテレフタレート(PET)若しくは液晶ポリマーからなるシートに渦巻状のボイスコイルパターンを形成し、両端側を折り曲げて断面コ字状に成形した振動板を有する。振動板の天面とフレームとを弾性のエッジで接合して、振動板両端側のボイスコイルパターンが磁気回路の磁束発生部分にくるように保持される。このため、振動板の振幅が大きくなっても、ボイスコイルパターンの上下変位幅を磁束発生部分の中に収めることができる。 As a conventional speaker having a configuration in which a diaphragm and a voice coil pattern are integrated, for example, there is a flat acoustic transducer of Patent Document 1 and a speaker of Patent Document 2.
In the flat acoustic transducer of Patent Document 1, a spiral voice coil pattern is formed on a sheet of a thermosetting resin polyimide, a thermoplastic resin polyethylene terephthalate (PET), or a liquid crystal polymer, and both ends are bent. The diaphragm has a U-shaped cross section. The top surface of the diaphragm and the frame are joined by elastic edges, and the voice coil patterns on both ends of the diaphragm are held so as to come to the magnetic flux generating portion of the magnetic circuit. For this reason, even if the amplitude of the diaphragm increases, the vertical displacement width of the voice coil pattern can be accommodated in the magnetic flux generating portion.
これに対して、特許文献2の構成の場合には、振動板の剛性不足の問題は解決できるが、ダンパを部分的にしか設けることができないためにピストン振動が乱れる問題を解消することはできなかった。 Since the conventional electromagnetic transducer is configured as described above, in the case of the configuration of Patent Document 1, as described above, abnormal noise is generated due to low rigidity of the diaphragm, and magnetic gap failure is generated due to disturbance of piston vibration. There was a problem.
On the other hand, in the configuration of Patent Document 2, the problem of insufficient rigidity of the diaphragm can be solved, but the problem that the piston vibration is disturbed because the damper can be provided only partially can be solved. There wasn't.
実施の形態1.
図1は、この発明の実施の形態1に係る電磁変換器10の構成を示す分解斜視図であり、その断面図を図2に示す。図に示す電磁変換器10は、上側フレーム11、下側フレーム12、永久磁石13及びプレート14からなる磁気回路と、振動板15と、この振動板15を磁気回路上側で保持するための上側ガスケット16及びエッジ17からなる第1の支持部と、振動板15を磁気回路内部で保持するための下側ガスケット18及びダンパ19からなる第2の支持部とで構成される。なお、本実施の形態1では、説明のために上下を区別しているが、実際にはどの面が上でもよい。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is an exploded perspective view showing the configuration of an
さらに、側面15b~15eの先端側にはフランジ部15fを成形する。このフランジ部15fは、振動板15をダンパ19に接着するときの固定しろとなる。 For the
Further, a
外部からボイスコイルパターン15gに電流(オーディオ信号)が供給されると、ボイスコイルパターン15gを流れる電流と、上側フレーム11の開口11aとプレート14の間に発生している磁束とが電磁的に結合し、フレミングの法則に従って駆動力が発生する。発生した駆動力によって、振動板15が上下方向にピストン振動し、音波が発生する。振動板15の天面15a全周及びフランジ部15f全周は第1及び第2の支持部によってそれぞれ上下変位自在に支持されているため、大振幅時でも上下平行移動するピストン振動が乱れることがない。そのため、ローリングによる磁気ギャップ不良が発生しない。また、振動板15が永久磁石13及びプレート14に衝突せず、当り音も発生しない。 Next, the operation principle of the
When a current (audio signal) is supplied to the
図3(a)に示すように、先ず振動板15、下側ガスケット18及びダンパ19を接合させて、振動板ASSYを組み立てる。続いて、上側フレーム11の上側裏面に接着剤20を塗布し、下側ガスケット18の外周をガイドにして振動板ASSYと上側フレーム11とを接着する。上側フレーム11を接着した振動板ASSYは、図3(b)に示すように、治具21に装着して位置を固定させる。
続いて、図3(b)に示すように、上側ガスケット16及びエッジ17を接合させて、エッジASSYを組み立てる。エッジ17の開口周辺に接着剤22を塗布すると共に、上側フレーム11の上側表面に接着剤23を塗布し、エッジASSYと振動板ASSYとを接着する。
続いて、図3(c)に示すように、下側フレーム12、永久磁石13及びプレート14を接着して、マグネットASSYを組み立て、上側フレーム11と下側フレーム12とをネジ又は接着剤等により接合して、電磁変換器10の組み立て完了となる。 Next, a method for assembling the
As shown in FIG. 3A, the
Subsequently, as shown in FIG. 3B, the
Subsequently, as shown in FIG. 3 (c), the
このため、振動板15を少ない部品構成の二重支持構造で支持してピストン振動させることができ、異音の発生を防止できる。また、従来のように磁気回路を分割する必要がなくなり、部品点数が増加することもコストアップすることもない。さらに、磁気回路を分割配置する必要がないため、磁束密度のムラが発生することも磁束密度が低下することもない。 As described above, according to the first embodiment, the
For this reason, the
Claims (3)
- 永久磁石、当該永久磁石の一方の磁極面を固定して他方の磁極側は開口したフレーム、及び前記他方の磁極面に固定したプレートからなる磁気回路と、
前記プレートを覆う位置にある天面、及び当該天面から前記永久磁石の方向へ形成され前記プレートと前記フレーム開口の間に位置する4側面を有し、片面又は両面にボイスコイルパターンが形成された振動板と、
前記振動板の天面周縁と前記フレーム開口周縁とに接合して、前記振動板を変位自在に保持する第1の支持部と、
前記振動板の側面先端側周縁と前記フレーム内周面とに接合して、前記振動板を変位自在に保持する第2の支持部とを備える電磁変換器。 A magnetic circuit comprising a permanent magnet, a frame in which one magnetic pole surface of the permanent magnet is fixed and the other magnetic pole side is open, and a plate fixed to the other magnetic pole surface;
It has a top surface at a position covering the plate, and four side surfaces formed from the top surface toward the permanent magnet and positioned between the plate and the frame opening, and a voice coil pattern is formed on one surface or both surfaces. A diaphragm,
A first support portion that is joined to a peripheral edge of the top surface of the diaphragm and the peripheral edge of the frame opening, and holds the diaphragm movably;
An electromagnetic transducer comprising: a second support part that is joined to a peripheral edge of the side surface of the diaphragm and the inner peripheral surface of the frame, and that holds the diaphragm movably. - 振動板は、熱可塑性樹脂シートの長手方向の両側端及び短手方向の両側端を熱プレス成形して形成した4側面を有し、ボイスコイルパターンが前記長手方向の両側面及び天面に配置されたことを特徴とする請求項1記載の電磁変換器。 The diaphragm has four side surfaces formed by hot press molding both longitudinal ends and both lateral ends of the thermoplastic resin sheet, and the voice coil pattern is arranged on both longitudinal sides and the top surface. The electromagnetic transducer according to claim 1, wherein
- 振動板は、天面に補強用のリブ構造又は凹凸構造を有することを特徴とする請求項1記載の電磁変換器。 2. The electromagnetic transducer according to claim 1, wherein the diaphragm has a reinforcing rib structure or an uneven structure on the top surface.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980122480.6A CN102067630B (en) | 2009-07-13 | 2009-10-28 | Electromagnetic converter |
KR1020107028525A KR101064071B1 (en) | 2009-07-13 | 2009-10-28 | Electronic converter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009164795A JP4545222B1 (en) | 2009-07-13 | 2009-07-13 | Electromagnetic transducer |
JP2009-164795 | 2009-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011007403A1 true WO2011007403A1 (en) | 2011-01-20 |
Family
ID=42824813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005701 WO2011007403A1 (en) | 2009-07-13 | 2009-10-28 | Electromagnetic converter |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4545222B1 (en) |
KR (1) | KR101064071B1 (en) |
CN (1) | CN102067630B (en) |
WO (1) | WO2011007403A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016032703A1 (en) * | 2014-08-25 | 2016-03-03 | Apple Inc. | High aspect ratio microspeaker having a two-plane suspension |
CN108600932A (en) * | 2018-03-29 | 2018-09-28 | 山东共达电声股份有限公司 | Moving-coil structure and preparation method thereof and loud speaker |
US10291990B2 (en) | 2016-10-26 | 2019-05-14 | Apple Inc. | Unibody diaphragm and former for a speaker |
US10321235B2 (en) | 2016-09-23 | 2019-06-11 | Apple Inc. | Transducer having a conductive suspension member |
US10555085B2 (en) | 2017-06-16 | 2020-02-04 | Apple Inc. | High aspect ratio moving coil transducer |
US11381921B2 (en) | 2018-10-30 | 2022-07-05 | Sound Solutions International Co., Ltd. | Electrodynamic acoustic transducer with improved suspension system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5328691B2 (en) * | 2010-02-22 | 2013-10-30 | 三菱電機エンジニアリング株式会社 | Electromagnetic transducer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5797297A (en) * | 1980-12-09 | 1982-06-16 | Sanyo Electric Co Ltd | Thin type speaker |
JP2000032586A (en) * | 1998-07-07 | 2000-01-28 | Victor Co Of Japan Ltd | Electroacoustic transducer |
JP2002152881A (en) * | 2000-11-08 | 2002-05-24 | Matsushita Electric Ind Co Ltd | Speaker |
WO2009101813A1 (en) * | 2008-02-14 | 2009-08-20 | Panasonic Corporation | Speaker, and electronic device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4983424A (en) * | 1989-08-04 | 1991-01-08 | Nordson Corporation | Method for forming a permanent foam coating by atomization onto a substrate |
JP3846063B2 (en) | 1998-09-28 | 2006-11-15 | 松下電器産業株式会社 | Speaker |
DE19954880C1 (en) * | 1999-11-15 | 2001-01-25 | Siemens Audiologische Technik | Electro-magnetic converter for sound production in hearing aid |
JP2008113368A (en) | 2006-10-31 | 2008-05-15 | Fps:Kk | Planar acoustic transducer and method of manufacturing same |
-
2009
- 2009-07-13 JP JP2009164795A patent/JP4545222B1/en not_active Expired - Fee Related
- 2009-10-28 WO PCT/JP2009/005701 patent/WO2011007403A1/en active Application Filing
- 2009-10-28 CN CN200980122480.6A patent/CN102067630B/en not_active Expired - Fee Related
- 2009-10-28 KR KR1020107028525A patent/KR101064071B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5797297A (en) * | 1980-12-09 | 1982-06-16 | Sanyo Electric Co Ltd | Thin type speaker |
JP2000032586A (en) * | 1998-07-07 | 2000-01-28 | Victor Co Of Japan Ltd | Electroacoustic transducer |
JP2002152881A (en) * | 2000-11-08 | 2002-05-24 | Matsushita Electric Ind Co Ltd | Speaker |
WO2009101813A1 (en) * | 2008-02-14 | 2009-08-20 | Panasonic Corporation | Speaker, and electronic device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016032703A1 (en) * | 2014-08-25 | 2016-03-03 | Apple Inc. | High aspect ratio microspeaker having a two-plane suspension |
US9712921B2 (en) | 2014-08-25 | 2017-07-18 | Apple Inc. | High aspect ratio microspeaker having a two-plane suspension |
US10321235B2 (en) | 2016-09-23 | 2019-06-11 | Apple Inc. | Transducer having a conductive suspension member |
US10911874B2 (en) | 2016-09-23 | 2021-02-02 | Apple Inc. | Transducer having a conductive suspension member |
US10291990B2 (en) | 2016-10-26 | 2019-05-14 | Apple Inc. | Unibody diaphragm and former for a speaker |
US10555085B2 (en) | 2017-06-16 | 2020-02-04 | Apple Inc. | High aspect ratio moving coil transducer |
CN108600932A (en) * | 2018-03-29 | 2018-09-28 | 山东共达电声股份有限公司 | Moving-coil structure and preparation method thereof and loud speaker |
CN108600932B (en) * | 2018-03-29 | 2023-12-08 | 山东共达电声股份有限公司 | Moving coil, manufacturing method thereof and loudspeaker |
US11381921B2 (en) | 2018-10-30 | 2022-07-05 | Sound Solutions International Co., Ltd. | Electrodynamic acoustic transducer with improved suspension system |
Also Published As
Publication number | Publication date |
---|---|
JP2011023810A (en) | 2011-02-03 |
CN102067630B (en) | 2014-06-11 |
KR20110015015A (en) | 2011-02-14 |
CN102067630A (en) | 2011-05-18 |
KR101064071B1 (en) | 2011-09-08 |
JP4545222B1 (en) | 2010-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5328691B2 (en) | Electromagnetic transducer | |
JP4545222B1 (en) | Electromagnetic transducer | |
US20060162993A1 (en) | Suspension and electro-acoustic transducer using the suspension | |
WO2019010726A1 (en) | Sounding device | |
US20070223775A1 (en) | Voice coil bobbin and speaker system | |
CN101489169A (en) | Speaker unit | |
WO2013176053A1 (en) | Hybrid speaker | |
KR101258293B1 (en) | Speaker | |
JP6275793B1 (en) | Speaker | |
JP5082401B2 (en) | Speaker manufacturing method, speaker and speaker manufacturing jig | |
US20240284114A1 (en) | Loudspeaker assembly | |
CN108271106A (en) | Loud speaker | |
US11228841B2 (en) | Speaker | |
JP2001128289A (en) | Loudspeaker | |
JP6065819B2 (en) | Electroacoustic transducer | |
TWI491274B (en) | Multi-function micro-speaker (2) | |
CN112449290A (en) | Speaker, method of manufacturing the same, and sound producing method | |
JP2011135386A (en) | Frame for speaker, and speaker using the same | |
CN102348154B (en) | Miniature moving coil type energy transducer | |
US12143793B2 (en) | Diaphragm for high pressure waterproof microspeaker and high pressure waterproof microspeaker including the same | |
CN103813244A (en) | Multi-diaphragm loudspeaker | |
KR101024034B1 (en) | Speaker | |
KR101002920B1 (en) | Sound converter | |
KR101345335B1 (en) | Speaker | |
US20230156406A1 (en) | Diaphragm for high pressure waterproof microspeaker and high pressure waterproof microspeaker including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980122480.6 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20107028525 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09847301 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09847301 Country of ref document: EP Kind code of ref document: A1 |