Nothing Special   »   [go: up one dir, main page]

WO2011001571A1 - Wavelength-variable laser light source and method for driving same - Google Patents

Wavelength-variable laser light source and method for driving same Download PDF

Info

Publication number
WO2011001571A1
WO2011001571A1 PCT/JP2010/002043 JP2010002043W WO2011001571A1 WO 2011001571 A1 WO2011001571 A1 WO 2011001571A1 JP 2010002043 W JP2010002043 W JP 2010002043W WO 2011001571 A1 WO2011001571 A1 WO 2011001571A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
optical
optical waveguide
wavelength
optical amplifier
Prior art date
Application number
PCT/JP2010/002043
Other languages
French (fr)
Japanese (ja)
Inventor
石坂政茂
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009153700A external-priority patent/JP5240095B2/en
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2011001571A1 publication Critical patent/WO2011001571A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator

Definitions

  • the present invention relates to a light source used for optical communication, optical information processing, optical interconnection, and the like, and more particularly to a wavelength tunable laser light source having a wavelength tunable function and a driving method thereof.
  • Wavelength division multiplex communication increases the capacity by increasing the number of wavelengths.
  • WDM Wavelength Division Multiplexing
  • expansion of communication capacity with more flexibility is being actively studied, coupled with progress in ROADM (Reconfigurable Optical Add / Drop Multiplexing), optical cross-connect by wavelength routing, and the like.
  • ROADM Reconfigurable Optical Add / Drop Multiplexing
  • wavelength resources are not only used for capacity expansion, but are also actively used for improving network functions.
  • the expansion of the communication capacity and the enhancement of the functions of the communication system enable the provision of a low-cost and highly secure communication service in relation to each other.
  • a tunable laser is one of the key devices important in constructing such a communication system.
  • a plurality of fixed wavelength light sources having a fixed wavelength interval are arranged side by side, and the cost of maintenance management backup light sources (for the number of wavelengths) is particularly large, which hinders cost reduction of the system. It was a factor.
  • the types of the light sources can be integrated into one, so that the reduction of the system cost is greatly advanced.
  • a wavelength tunable light source having a high switching speed is an indispensable element for realizing a new network function even in wavelength routing.
  • Non-Patent Document 1 As a wavelength tunable light source that can cover the C (Conventional) band or the L (Long) band, a movable MEMS mirror (Micro Electro Mechanical Systems Mirror) is used.
  • Non-Patent Document 1 is published by Berger et al. Although the wavelength tunable light source of Non-Patent Document 1 shows relatively good light output characteristics, there are concerns about its practicality in terms of manufacturing cost and impact resistance. Further, the mode stability of a DBR (distributed reflection type) laser is improved and further integrated with a modulator. Although reported in Non-Patent Document 2 by Mason et al., There are problems in terms of cost reduction and reliability.
  • DBR distributed reflection type
  • a tunable light source using a planar optical circuit (PLC) as an external resonator is relatively easy to manufacture and does not have a movable part like MEMS. Therefore, it is excellent in terms of production yield and reliability (particularly vibration resistance) and is considered suitable for mass production, and several configurations have been proposed at present.
  • PLC planar optical circuit
  • the wavelength tunable range is determined by the wavelength tunable range of the ring-type external resonator and the gain band of the semiconductor amplifier. For this reason, there is a structural limitation in performing wavelength tuning over a wide range with high output.
  • DWDM wavelength division multiplex transmission system
  • a communication wavelength band is mainly divided into a C band and an L band, and a large number of wavelength signal lights are assigned to a wavelength range of about 40 nm.
  • many tunable lasers are being developed based on a wavelength range of 40 nm.
  • CWDM Coarse WDM
  • the present invention has been made to solve the above problems, and provides a wavelength tunable laser light source capable of expanding the wavelength tunable range with a relatively simple configuration, and a driving method thereof. For the purpose.
  • a wavelength tunable laser light source includes a first input port, a second input port, and an output port, and a wavelength tunable filter capable of moving a wavelength spectrum peak of transmitted light intensity;
  • a first optical amplifier having one end optically connected to the first input port;
  • a second optical amplifier having one end optically connected to the second input port and having a gain wavelength spectrum different from that of the first optical amplifier;
  • an optical mirror provided on the end face of the output port and having a predetermined reflectance and transmittance.
  • a wavelength tunable laser light source driving method is the above-described wavelength tunable laser light source driving method, wherein the first optical amplifier and the second light are selected according to a desired wavelength. It is characterized in that current is injected into one of the amplifiers and at the same time no current is injected into the other.
  • the present invention it is possible to provide a wavelength tunable laser light source capable of expanding the wavelength tunable range with a relatively simple configuration, and a driving method thereof.
  • FIG. 2 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to Embodiment 1.
  • FIG. 3 is a schematic diagram illustrating a state of a resonance path of a light wave when one optical amplifier is driven in the wavelength tunable laser light source according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating a state of a resonance path of a light wave when one optical amplifier is driven in the wavelength tunable laser light source according to the first embodiment.
  • 6 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to Embodiment 2.
  • FIG. FIG. 5 is a schematic diagram showing a state of a resonance path of a light wave when one optical amplifier is driven in the wavelength tunable laser light source according to the second embodiment.
  • FIG. 5 is a schematic diagram showing a state of a resonance path of a light wave when one optical amplifier is driven in the wavelength tunable laser light source according to the second embodiment.
  • 6 is a schematic diagram illustrating a schematic configuration of a wavelength tunable laser light source according to Embodiment 3.
  • FIG. 10 is a schematic diagram illustrating a state of a resonance path of a light wave when one optical amplifier is driven in the wavelength tunable laser light source according to the third embodiment.
  • FIG. 10 is a schematic diagram illustrating a state of a resonance path of a light wave when one optical amplifier is driven in the wavelength tunable laser light source according to the third embodiment.
  • 6 is a schematic diagram illustrating a schematic configuration of a wavelength tunable laser light source according to Embodiment 4.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to Embodiment 5.
  • FIG. 10 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source
  • the wavelength tunable laser light source of the present invention has a wavelength tunable external resonator that can move the wavelength spectrum peak of transmitted light intensity, and a gain medium that can vary the gain spectrum.
  • the wavelength is varied by changing both the loss spectrum of the external resonator and the gain spectrum of the gain medium.
  • variable wavelength external resonator having a periodic transmission spectrum and the variable gain function configured to selectively change the gain wavelength distribution are used for controlling the oscillation wavelength.
  • the wavelength variable range can be increased as compared with the control using only the variable external resonator as proposed so far.
  • the wavelength tunable laser light source of the present invention includes an external resonator having at least two or more input ports and one or more output ports, and at least two or more connected to the input ports of the external resonator.
  • Gain medium At this time, it is preferable to use two types of gain media having different gain wavelength spectra. Thereby, the wavelength band of laser oscillation can be divided into a short wave side and a long wave side. Therefore, as compared with the conventional case where only one type of gain medium is used, a large gain intensity can be obtained over a wide band, and high-power laser oscillation can be realized.
  • the external resonator has a small variable amount, but enables highly accurate wavelength control.
  • the gain variable function cannot perform fine and high-precision control, but can change the gain by a large variable amount. For this reason, the external resonator can be used for fine adjustment of the wavelength, and the variable gain function can be used for coarse adjustment of the wavelength.
  • the wavelength variable range is large and the wavelength variable operation with high accuracy is possible.
  • the wavelength tunable laser light source of the present invention can have a simple configuration in which two types of gain media are connected in parallel to an external resonator as described above.
  • two types of gain media a system is used in which one of them is driven while the other is not driven, but functions as an absorption passive region. Therefore, it is not necessary to control a particularly complicated gain medium, and the wavelength control of laser oscillation can be easily performed.
  • the wavelength tunable laser light source of the present invention can use a ring-type optical waveguide as the wavelength tunable resonator and two semiconductor amplifiers having different gain spectra as the gain variable medium.
  • a ring-type optical waveguide as the wavelength tunable resonator and two semiconductor amplifiers having different gain spectra as the gain variable medium.
  • the wavelength tunable laser light source of the present invention can change the oscillation wavelength of the laser beam to be output by electrical drive control.
  • the laser light source is composed of a gain medium and a resonator.
  • the oscillation wavelength is mostly changed by tuning the resonance wavelength of the resonator by external control.
  • a resonator generally has transmission or reflection characteristics having a certain wavelength period. Therefore, the tuning range is limited to the wavelength period interval near the peak of the gain wavelength distribution of the gain medium. Even if the wavelength period interval of the resonator is expanded by some method, the optical output is determined according to the gain distribution, so that the optical output is reduced as the tuning range is expanded.
  • the wavelength tunable laser light source of the present invention employs a system in which two gain media having different gain wavelength distributions are provided, and each gain medium is selectively driven according to the oscillation wavelength band to be output. This makes it possible to expand the wavelength variable range without sacrificing the light output.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of a wavelength tunable laser light source according to the first embodiment.
  • the wavelength tunable laser light source according to the present embodiment includes a wavelength tunable resonator using a planar optical circuit in which a silicon layer is a core layer and an upper silicon oxide film is a cladding layer on an SOI (Silicon on Insulator) substrate 10; It has a configuration in which a semiconductor optical amplifier is hybrid-mounted. Details are described below.
  • the wavelength tunable laser light source includes a wavelength tunable resonator 1, and a first semiconductor optical amplifier 11 and a second semiconductor optical amplifier 12 that are connected in parallel to the wavelength tunable resonator 1, respectively.
  • the wavelength tunable resonator 1 is capable of moving the wavelength spectrum peak of transmitted light intensity, and is also referred to as a wavelength tunable external resonator or a wavelength tunable filter.
  • the wavelength tunable resonator 1 has two input ports and one output port.
  • the tunable resonator 1 includes a ring resonator 2 in which a plurality of ring optical waveguides are optically coupled, and optically via the ring resonator 2 and the optical waveguide. And a 3 dB multiplexer / demultiplexer 16 connected thereto.
  • the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are arranged close to the SOI substrate 10 so as to be optically coupled with a predetermined strength.
  • the first ring optical waveguide 21 and the second ring optical waveguide 22 are disposed adjacent to each other along the waveguide direction.
  • the second ring-type optical waveguide 22 has a slightly different peripheral length from the first ring-type optical waveguide 21 and has a different optical path length.
  • a heater 23 for changing the refractive index of the waveguide is formed in a part of the first ring type optical waveguide 21.
  • a heater 24 for changing the refractive index of the waveguide is formed in a part of the second ring type optical waveguide 22.
  • the heaters 23 and 24 are positioned in a range where the temperature of the core layer of the waveguide can be changed, such as above, below, or beside the ring optical waveguide.
  • heaters 23 and 24 are disposed above the first ring optical waveguide 21 and the second ring optical waveguide 22, respectively.
  • an electrode structure other than the heater may be used as long as the electrode structure is used for tuning the wavelength characteristics by changing the refractive index of the waveguide.
  • the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 constitute the ring-type resonator 2.
  • the ring resonator 2 is a double ring resonator in which two ring optical waveguides are arranged in close proximity to each other in cascade.
  • the second ring-type optical waveguide 22 is disposed close to the optical waveguide 20 so as to be optically coupled. Both ends of the optical waveguide 20 are connected to the input optical waveguide 15 of the 3 dB multiplexer / demultiplexer 16.
  • the output end of the output optical waveguide 17 of the 3 dB multiplexer / demultiplexer 16 is provided with a dielectric multilayer film 18 so as to have a predetermined reflectance.
  • the dielectric multilayer film 18 becomes an optical mirror (semi-mirror) having a predetermined reflectance and transmittance suitable for causing laser oscillation in the wavelength tunable resonator 1 and allowing the laser to be output to the outside.
  • the dielectric multilayer film 18 is formed so as to have a reflectance of 20%, for example.
  • the wavelength tunable resonator 1 is provided with the 3 dB multiplexer / demultiplexer 16 having two input port ends and one output port end.
  • the 3 dB multiplexer / demultiplexer 16 having two input port ends and one output port end is referred to as a 2 ⁇ 1 3 dB multiplexer / demultiplexer 16.
  • the 2 ⁇ 1 3 dB multiplexer / demultiplexer 16 is formed so as to be optically connected to the second ring optical waveguide 22 of the ring resonator 2 via the optical waveguide 20.
  • the output optical waveguide 17 of the 3 dB multiplexer / demultiplexer 16 becomes the output port of the wavelength tunable resonator 1.
  • a dielectric multilayer film 18 which is an optical mirror having a predetermined reflectance and transmittance is provided on the end face of the output port.
  • the portion of the optical waveguide 20 that is coupled to the second ring optical waveguide 22 is formed in a straight line.
  • the first ring-type optical waveguide 21 of the ring-type resonator 2 is disposed close to the optical waveguide 19 so as to be optically coupled.
  • two semiconductor amplifiers first semiconductor optical amplifier 11 and second semiconductor optical amplifier 12 having different gain spectra are disposed so as to be optically coupled to each other. That is, the optical waveguide 19 is optically connected to the first semiconductor optical amplifier 11 at one end and the second semiconductor optical amplifier 12 at the other end, and optically coupled to the first ring optical waveguide 21. It is formed to do.
  • the optical waveguide 19 serves as two input ports of the wavelength tunable resonator 1.
  • the portion of the optical waveguide 19 that is coupled to the first ring optical waveguide 21 is formed in a straight line.
  • the first semiconductor optical amplifier 11 has a gain spectrum on the short wave side and is provided so as to be optically joined to one input port of the wavelength tunable resonator 1.
  • the second semiconductor optical amplifier 12 has a gain spectrum on the long wave side and is provided so as to be optically joined to the other input port of the wavelength tunable resonator 1.
  • the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12 are optically connected to each other via an optical waveguide 19. Further, highly reflective films 13 and 14 are formed on the opposite end faces of the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12, respectively.
  • the 3 dB multiplexer / demultiplexer 16 is configured to have a minimum loss at 3 dB, but other multiplexer / demultiplexers can of course be used as the 3 dB multiplexer / demultiplexer 16.
  • FIGS. 2A and 2B are schematic diagrams showing the state of the resonance path of the light wave when one of the optical amplifiers is driven in the wavelength tunable laser light source according to the first embodiment.
  • FIG. 2A is a schematic diagram illustrating an oscillation operation in a long wave band
  • FIG. 2B is a schematic diagram illustrating an oscillation operation in a short wave band.
  • the second semiconductor optical amplifier 12 having a long-waveband gain spectrum is turned on (a state in which a driving current is injected), and the first semiconductor optical amplifier 11 having a short-wave gain spectrum is turned off (a driving current is reduced).
  • FIG. 2A shows the path of the light wave when the injection is not performed.
  • the components that resonate with both the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are indicated by dotted lines. Propagate such a route. That is, from the second semiconductor optical amplifier 12, the optical waveguide 19, the first ring optical waveguide 21, the second ring optical waveguide 22, the optical waveguide 20, the input optical waveguide 15, and the 3 dB multiplexer / demultiplexer 16 are sequentially provided. It propagates to the output optical waveguide 17 via. Then, a part of the stimulated emission light propagated on the semi-reflective end face made of the dielectric multilayer film 18 is reflected, and returns to the second semiconductor optical amplifier 12 through the reverse path again. That is, laser oscillation occurs in the resonance path 41 indicated by the dotted line of the wavelength tunable resonator 1.
  • components of the stimulated emission light output from the second semiconductor optical amplifier 12 that do not resonate with the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are non-resonant as indicated by the one-dot chain line. Propagates through the resonance path 42. That is, the light is input from the second semiconductor optical amplifier 12 to the first semiconductor optical amplifier 11 via the optical waveguide 19. At this time, the first semiconductor optical amplifier 11 is in an OFF state, and the input non-resonant component is absorbed and does not return to the second semiconductor optical amplifier 12.
  • FIG. 2B shows the path of the light wave when the drive current is not injected.
  • the component that resonates with both the first ring optical waveguide 21 and the second ring optical waveguide 22 is indicated by a dotted line.
  • Propagate such a route That is, from the first semiconductor optical amplifier 11, the optical waveguide 19, the first ring-type optical waveguide 21, the second ring-type optical waveguide 22, the optical waveguide 20, the input optical waveguide 15, and the 3 dB multiplexer / demultiplexer 16 are sequentially provided. It propagates to the output optical waveguide 17 via. Then, a part of the stimulated emission light propagated on the semi-reflecting end face made of the dielectric multilayer film 18 is reflected, and returns to the first semiconductor optical amplifier 11 along the reverse path again. That is, laser oscillation occurs in the resonance path 43 indicated by the dotted line of the wavelength tunable resonator 1.
  • the stimulated emission light output from the first semiconductor optical amplifier 11 components that do not resonate with the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are non-resonant as shown by the one-dot chain line. Propagates through the resonance path 44. That is, the light is input from the first semiconductor optical amplifier 11 to the second semiconductor optical amplifier 12 via the optical waveguide 19. At this time, the second semiconductor optical amplifier 12 is in an OFF state, and the input non-resonant component is absorbed and does not return to the first semiconductor optical amplifier 11.
  • the wavelength tunability in the short wave band is a double ring type resonance consisting of the first ring type optical waveguide 21 and the second ring type optical waveguide 22. This is possible within the range of the FSR of the instrument.
  • the wavelength tunable laser light source of the present embodiment changes both the gain spectrum of the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12 and the loss spectrum of the wavelength tunable resonator 1.
  • the wavelength is varied. That is, in addition to the wavelength tunability by the wavelength tunable resonator 1, the wavelength tunability by two semiconductor optical amplifiers is newly used for wavelength control of laser oscillation. Thereby, the selection range of the wavelength of the light to output can be made wider.
  • the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12 are selectively driven according to the oscillation wavelength band to be output. This makes it possible to expand the wavelength variable range without sacrificing the light output.
  • the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12 may be controlled so as to drive one according to a desired wavelength and not drive the other while driving one. No complicated control is required.
  • the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12 having different gain wavelength spectra are connected in parallel to the wavelength variable resonator 1.
  • the gain variable function obtained by selectively driving the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12 is combined with the wavelength variable resonator 1 to control the wavelength of laser oscillation. .
  • a large gain intensity can be obtained over a wide band, and high-power laser oscillation can be realized.
  • wavelength tunable resonator 1 that can change the peak position of the loss spectrum within a predetermined range and the gain variable function that can greatly change the gain spectrum shape, particularly the peak position of the gain spectrum, can be used.
  • the wavelength tunable range is large and high output wavelength tunability can be realized by using the control.
  • the wavelength tunable resonator 1 is used for fine adjustment of the wavelength
  • the two semiconductor optical amplifiers can be used for coarse adjustment of the wavelength as a gain variable medium having a large variable amount. Therefore, highly accurate wavelength variable operation is possible.
  • the case where the 2 ⁇ 1 3 dB multiplexer / demultiplexer 16 is used has been described as an example.
  • the 2 ⁇ 2 3 dB multiplexer having two input port ends and two output port ends is used.
  • a duplexer can also be used.
  • one of the two output port ends is subjected to antireflection processing, and the other output port end is provided with a high reflection mirror.
  • a 1 ⁇ 2 3 dB multiplexer / demultiplexer having one input port end and two output port ends connected to each other may be provided.
  • non-reflection processing is applied to one output port end of the 2 ⁇ 2 3 dB multiplexer / demultiplexer, and two output port ends of the 1 ⁇ 2 3 dB multiplexer / demultiplexer are mutually connected to the other output port end.
  • the loop mirror composed of the closed loop waveguide formed by the 1 ⁇ 2 3 dB multiplexer / demultiplexer functions as if it is a high reflection mirror.
  • FIG. 3 is a schematic diagram showing a schematic configuration of the wavelength tunable laser light source according to the second embodiment.
  • the wavelength tunable resonator 1 having a configuration different from that of the first embodiment is provided in the wavelength tunable laser light source.
  • the wavelength tunable resonator 1 according to the present embodiment includes a ring resonator 2 in which a plurality of ring optical waveguides are optically coupled, and optical via the ring resonator 2 and the optical waveguide.
  • an optical switch 52 connected thereto is, instead of the 3 dB multiplexer / demultiplexer 16 of the first embodiment, an optical switch 52 is formed in this embodiment. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the wavelength tunable resonator 1 having two input ports and one output port includes a first semiconductor optical amplifier 11 and a second semiconductor optical amplifier 11 having different gain wavelength spectra.
  • the semiconductor optical amplifiers 12 are connected in parallel.
  • 2 ⁇ 2 having two input port ends and two output port ends so as to be optically connected via the second ring-type optical waveguide 22 and the optical waveguide 20 of the ring-type resonator 2.
  • the optical switch 52 is provided. Specifically, both ends of the optical waveguide 20 disposed so as to be optically coupled to the second ring optical waveguide 22 of the ring resonator 2 are two input optical waveguides of the optical switch 52. 15 are connected to each other.
  • the output end of at least one of the output optical waveguides 17 is provided with a dielectric multilayer film 18 so as to have a predetermined reflectance.
  • the dielectric multilayer film 18 is formed so as to have a reflectance of 20%, for example.
  • the output optical waveguide 17 provided with the dielectric multilayer film 18 serves as an output port of the wavelength tunable resonator 1.
  • a heater 51 for changing the refractive index of the waveguide is formed above the optical waveguide constituting the optical switch 52.
  • FIGS. 4A and 4B are schematic diagrams showing the state of the resonance path of the light wave when one of the optical amplifiers is driven in the wavelength tunable laser light source according to the second embodiment.
  • FIG. 4A is a schematic diagram showing an oscillation operation in a long wave band
  • FIG. 4B is a schematic diagram showing an oscillation operation in a short wave band.
  • the second semiconductor optical amplifier 12 having a long-waveband gain spectrum is turned on (a state in which a driving current is injected), and the first semiconductor optical amplifier 11 having a short-wave gain spectrum is turned off (a driving current is reduced).
  • FIG. 4A shows a light wave path when the injection is not performed.
  • the components that resonate with both the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are indicated by dotted lines. Propagate such a route. That is, the optical switch 52 is sequentially passed from the second semiconductor optical amplifier 12 through the optical waveguide 19, the first ring optical waveguide 21, the second ring optical waveguide 22, the optical waveguide 20, and the input optical waveguide 15. Propagate to. In the optical switch 52, the path is adjusted by the heater 51 so that the light is output to the output optical waveguide 17 on the side where the dielectric multilayer film 18 is provided.
  • the path of the optical switch 52 is adjusted in accordance with the semiconductor optical amplifier on the side where the drive current is injected so that the output optical waveguide 17 on the side where the dielectric multilayer film 18 is provided can obtain a desired optical output. Is switched. Thereafter, a part of the stimulated emission light propagated on the semi-reflecting end face made of the dielectric multilayer film 18 is reflected, and returns to the second semiconductor optical amplifier 12 through the reverse path again. That is, laser oscillation occurs in the resonance path 61 indicated by the dotted line of the wavelength tunable resonator 1.
  • components of the stimulated emission light output from the second semiconductor optical amplifier 12 that do not resonate with the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are non-resonant as indicated by the one-dot chain line. Propagates through the resonance path 62. That is, the light is input from the second semiconductor optical amplifier 12 to the first semiconductor optical amplifier 11 via the optical waveguide 19. At this time, the first semiconductor optical amplifier 11 is in an OFF state, and the input non-resonant component is absorbed and does not return to the second semiconductor optical amplifier 12.
  • laser oscillation occurs due to the gain distribution on the long wave side, and the wavelength variation in the long wave band is a double ring type resonance composed of the first ring type optical waveguide 21 and the second ring type optical waveguide 22. This is possible within the range of the FSR of the instrument.
  • the first semiconductor optical amplifier 11 having the gain spectrum in the short wave band is turned on (the state in which the drive current is injected), and the second semiconductor optical amplifier 12 having the gain spectrum on the long wave side is turned off.
  • FIG. 4B shows a lightwave path when the drive current is not injected.
  • the component that resonates with both the first ring optical waveguide 21 and the second ring optical waveguide 22 is indicated by a dotted line.
  • the optical switch 52 is sequentially passed from the second semiconductor optical amplifier 12 through the optical waveguide 19, the first ring optical waveguide 21, the second ring optical waveguide 22, the optical waveguide 20, and the input optical waveguide 15. Propagate to.
  • the path is adjusted by the heater 51 so that the light is output to the output optical waveguide 17 on the side where the dielectric multilayer film 18 is provided.
  • the path of the optical switch 52 is adjusted in accordance with the semiconductor optical amplifier on the side where the drive current is injected so that the output optical waveguide 17 on the side where the dielectric multilayer film 18 is provided can obtain a desired optical output. Is switched. Thereafter, a part of the stimulated emission light propagated on the semi-reflecting end face made of the dielectric multilayer film 18 is reflected, and returns to the first semiconductor optical amplifier 11 along the reverse path again. That is, laser oscillation occurs in the resonance path 63 indicated by the dotted line of the wavelength tunable resonator 1.
  • the stimulated emission light output from the first semiconductor optical amplifier 11 components that do not resonate with the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are non-resonant as shown by the one-dot chain line. It propagates through the resonance path 64. That is, the light is input from the first semiconductor optical amplifier 11 to the second semiconductor optical amplifier 12 via the optical waveguide 19. At this time, the second semiconductor optical amplifier 12 is in an OFF state, and the input non-resonant component is absorbed and does not return to the first semiconductor optical amplifier 11.
  • the wavelength tunability in the short wave band is a double ring type resonance consisting of the first ring type optical waveguide 21 and the second ring type optical waveguide 22. This is possible within the range of the FSR of the instrument.
  • variable wavelength resonator 1 having a configuration in which the ring type resonator 2 is combined with the optical switch 52 is used.
  • the optical switch 52 instead of the 3 dB multiplexer / demultiplexer 16, it is possible to avoid the 3 dB excess loss that occurs in principle in the 3 dB multiplexer / demultiplexer 16. Therefore, the internal excess loss of the wavelength tunable resonator 1 can be reduced in the wavelength tunable laser light source. Further, the same effects as those of the first embodiment can be obtained.
  • FIG. 5 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to the third embodiment.
  • the wavelength tunable resonator 1 having a configuration different from that of the first embodiment is provided in the wavelength tunable laser light source.
  • the wavelength tunable resonator 1 of the present embodiment includes a ring resonator 3 in which a plurality of ring optical waveguides are optically coupled, and optical via the ring resonator 3 and the optical waveguide. And a 3 dB multiplexer / demultiplexer 16 connected to each other.
  • the ring resonator 3 of the present embodiment has three ring optical waveguides (first ring optical waveguide 31, first ring optical waveguide 31).
  • the wavelength tunable resonator 1 having two input ports and one output port includes a first semiconductor optical amplifier 11 and a second semiconductor optical amplifier 11 having different gain wavelength spectra.
  • the semiconductor optical amplifiers 12 are connected in parallel.
  • the SOI substrate 10 includes a second ring-type optical waveguide 32 and a third ring-type optical waveguide 33 that are optically coupled to the first ring-type optical waveguide 31. They are arranged close to each other so as to be optically coupled through the waveguide 37.
  • the optical waveguide 37 is formed in a straight line.
  • the optical waveguide 37 includes a second ring optical waveguide 32 and a third ring optical waveguide 33 at positions symmetrical to each other with respect to the optical proximity coupling position with the first ring optical waveguide 31.
  • the second ring-type optical waveguide 32 and the third ring-type optical waveguide 33 are slightly different in peripheral length from the first ring-type optical waveguide 31 and have different optical path lengths.
  • a heater 34 for changing the refractive index of the waveguide is formed in a part of the first ring type optical waveguide 31.
  • the heater 35 for changing the refractive index of the waveguide is changed to a part of the second ring type optical waveguide 32, and the refractive index of the waveguide is changed to a part of the third ring type optical waveguide 33.
  • the heater 36 for making it form is each formed.
  • the heaters 34, 35, and 36 are located in a range in which the temperature of the core layer of the waveguide can be changed, such as above, below, or beside the ring optical waveguide.
  • heaters 34, 35, and 36 are disposed above the ring-type optical waveguides, respectively.
  • an electrode structure other than the heater may be used as long as the electrode structure is used for tuning the wavelength characteristics by changing the refractive index of the waveguide.
  • the ring resonator 3 in which three ring optical waveguides are optically connected to each other through the linear optical waveguide 37 is used.
  • An optical waveguide 38 is disposed close to the second ring optical waveguide 32 of the ring resonator 3 so as to be optically coupled.
  • the optical waveguide 39 is disposed close to the third ring optical waveguide 33 of the ring resonator 3 so as to be optically coupled.
  • the optical waveguides 38 and 39 are both connected to the 2 ⁇ 1 3 dB multiplexer / demultiplexer 16 and serve as input optical waveguides for the 3 dB multiplexer / demultiplexer 16.
  • a dielectric multilayer film 18 is applied to the output end of the output optical waveguide 17 of the 3 dB multiplexer / demultiplexer 16 so as to have a predetermined reflectance.
  • the dielectric multilayer film 18 is applied so as to have a reflectance of 20%, for example.
  • the portion of the optical waveguide 38 that is coupled to the second ring type optical waveguide 32 and the portion of the optical waveguide 39 that is coupled to the third ring type optical waveguide 33 are linearly formed.
  • the optical waveguide 19 is disposed close to the first ring optical waveguide 31 of the ring resonator 3 so as to be optically coupled.
  • two semiconductor amplifiers first semiconductor optical amplifier 11 and second semiconductor optical amplifier 12
  • first semiconductor optical amplifier 11 and second semiconductor optical amplifier 12 having different gain spectra are optically coupled to both ends of the optical waveguide 19, respectively. Is arranged.
  • the portion of the optical waveguide 19 that is coupled to the first ring optical waveguide 31 is formed in a straight line.
  • FIGS. 6A and 6B are schematic diagrams showing the state of the resonance path of the light wave when one of the optical amplifiers is driven in the wavelength tunable laser light source according to the third embodiment.
  • FIG. 6A is a schematic diagram showing an oscillation operation in a long wave band
  • FIG. 6B is a schematic diagram showing an oscillation operation in a short wave band.
  • the second semiconductor optical amplifier 12 having a long-waveband gain spectrum is turned on (a state in which a driving current is injected), and the first semiconductor optical amplifier 11 having a short-wave gain spectrum is turned off (a driving current is reduced).
  • FIG. 6A shows the path of the light wave when it is not injected.
  • the components that resonate with both the first ring-type optical waveguide 31 and the third ring-type optical waveguide 33 are indicated by dotted lines. Propagation through various routes. That is, the second semiconductor optical amplifier 12 is sequentially passed through the optical waveguide 19, the first ring optical waveguide 31, the optical waveguide 37, the third ring optical waveguide 33, the optical waveguide 39, and the 3 dB multiplexer / demultiplexer 16. Then, it propagates to the output optical waveguide 17. Then, a part of the stimulated emission light propagated on the semi-reflective end face made of the dielectric multilayer film 18 is reflected, and returns to the second semiconductor optical amplifier 12 through the reverse path again. That is, laser oscillation occurs in the resonance path 81 indicated by the dotted line of the wavelength tunable resonator 1.
  • components of the stimulated emission light output from the second semiconductor optical amplifier that do not resonate with the first ring-type optical waveguide 31 and the third ring-type optical waveguide 33 are non-resonant as indicated by the alternate long and short dash line.
  • Propagate path 82 That is, the light is input from the second semiconductor optical amplifier 12 to the first semiconductor optical amplifier 11 via the optical waveguide 19. At this time, the first semiconductor optical amplifier 11 is in an OFF state, and the input non-resonant component is absorbed and does not return to the second semiconductor optical amplifier 12.
  • laser oscillation occurs due to the gain distribution on the long wave side, and the wavelength variation of the long wave band is a double ring resonator composed of the first ring optical waveguide 31 and the third ring optical waveguide 33. This is possible within the range of FSR.
  • the first semiconductor optical amplifier 11 having a short-waveband gain spectrum is turned on (a state in which a drive current is injected), and the second semiconductor optical amplifier 12 having a long-wave gain spectrum is turned off ( FIG. 6B shows the lightwave path when the drive current is not injected.
  • the component that resonates with both the first ring type optical waveguide 31 and the second ring type optical waveguide 32 is indicated by a dotted line.
  • the first semiconductor optical amplifier 11 is sequentially passed through the optical waveguide 19, the first ring optical waveguide 31, the optical waveguide 37, the second ring optical waveguide 32, the optical waveguide 38, and the 3 dB multiplexer / demultiplexer 16. Then, it propagates to the output optical waveguide 17. Then, a part of the stimulated emission light propagated on the semi-reflecting end face made of the dielectric multilayer film 18 is reflected, and returns to the first semiconductor optical amplifier 11 along the reverse path again. That is, laser oscillation occurs in the resonance path 83 indicated by the dotted line of the wavelength tunable resonator 1.
  • components of the stimulated emission light output from the first semiconductor optical amplifier 11 that do not resonate with the first ring-type optical waveguide 31 and the second ring-type optical waveguide 32 are non-resonant as indicated by a one-dot chain line. Propagates through the resonance path 84. That is, the light is input from the first semiconductor optical amplifier 11 to the second semiconductor optical amplifier 12 via the optical waveguide 19. At this time, the second semiconductor optical amplifier 12 is in an OFF state, and the input non-resonant component is absorbed and does not return to the first semiconductor optical amplifier 11.
  • the wavelength variation of the short wave band is a double ring resonator composed of the first ring type optical waveguide 31 and the second ring type optical waveguide 32. This is possible within the range of FSR.
  • the ring resonator 3 in which the ring optical waveguides are optically coupled via the linear optical waveguide 37 is used.
  • the optical coupling between the ring type optical waveguides can be eliminated. That is, the optical coupling in the wavelength tunable resonator 1 is unified to the optical coupling between the ring type optical waveguide and the linear optical waveguide.
  • the wavelength tunable resonator 1 includes the optical coupling between the ring type optical waveguides and the optical coupling between the ring type optical waveguide and the linear optical waveguide, each coupling strength has a certain level. It is necessary to set the relationship, and stricter manufacturing control is required from the viewpoint of manufacturing accuracy.
  • the wavelength tunable resonator 1 is unified to optical coupling between the ring optical waveguide and the linear optical waveguide, so that the optical coupling between each linear optical waveguide and the ring optical waveguide is integrated.
  • the strength can be set the same in each part. Therefore, the manufacturing control can be made easier. Further, the same effects as those of the first embodiment can be obtained.
  • the third embodiment can be used in combination with the first and second embodiments as appropriate. That is, in the present embodiment, the case where the 2 ⁇ 1 3 dB multiplexer / demultiplexer 16 is used in combination with the ring resonator 3 having three ring optical waveguides has been exemplarily described. However, the present invention is not limited to this.
  • the optical switch 52 shown in the second embodiment may be combined with the ring resonator 3 having three ring optical waveguides.
  • a 2 ⁇ 2 3 dB multiplexer / demultiplexer may be used in combination.
  • FIG. 7 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to the fourth embodiment.
  • a wavelength tunable laser light source that enables miniaturization of the wavelength tunable resonator 1 having two ring optical waveguides and a 3 dB multiplexer / demultiplexer as main components will be described.
  • the wavelength tunable resonator 1 having a configuration different from that of the first embodiment is provided in the wavelength tunable laser light source. Since other configurations are the same as those in the first embodiment, description thereof is omitted. That is, in the present embodiment, similarly to the first embodiment, the wavelength tunable resonator 1 having at least two input ports and one output port includes the first semiconductor optical amplifier 11 having different gain wavelength spectra. The second semiconductor optical amplifier 12 is connected in parallel.
  • the wavelength tunable resonator 1 includes a ring resonator 120 in which two ring optical waveguides having different peripheral lengths are optically connected to each other via an optical waveguide, and the ring resonator 120. And a 3 dB multiplexer / demultiplexer 117 optically connected to each other.
  • the optical waveguide 125 is disposed adjacent to each other so as to be optically coupled to each of the first ring optical waveguide 121 and the second ring optical waveguide 122. That is, one optical waveguide 125 is disposed close to each of the first ring optical waveguide 121 and the second ring optical waveguide 122, whereby the first ring optical waveguide 121 and the second ring optical waveguide 125 are disposed.
  • the optical waveguide 122 is optically connected to each other.
  • the second ring-type optical waveguide 122 has a slightly different peripheral length from the first ring-type optical waveguide 121, and is different in optical path length.
  • the ring resonator 120 is configured by the first ring optical waveguide 121 and the second ring optical waveguide 122 that are optically coupled via the optical waveguide 125.
  • a 2 ⁇ 2 3 dB multiplexer / demultiplexer 117 having two input port ends and two output port ends is disposed in close proximity so as to be optically coupled. That is, the first ring optical waveguide 121 and the second ring optical waveguide 122 are arranged close to each other so as to be optically coupled to the two output optical waveguides 118 and 119 of the 3 dB multiplexer / demultiplexer 117, respectively.
  • the input optical waveguides 115 and 116 of the 3 dB multiplexer / demultiplexer 117 have one ends of two semiconductor optical amplifiers (first semiconductor optical amplifier 11 and second semiconductor optical amplifier 12) having different gain spectra, respectively.
  • the two input optical waveguides 115 and 116 of the 3 dB multiplexer / demultiplexer 117 serve as input ports of the wavelength tunable resonator 1.
  • high reflection films (high reflection dielectric films) 13 and 14 are provided on the opposite end surfaces of the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12, respectively. It has become.
  • optical waveguide 125 that optically connects the two ring-type optical waveguides is disposed close to the optical waveguide for extracting light wave power so as to be optically coupled.
  • the optical multiplexer / demultiplexer 131 is disposed close to the optical waveguide 125 so as to be optically coupled.
  • An optical antireflection film (not shown) is applied to end faces of the output optical waveguides 132 and 133 of the optical multiplexer / demultiplexer 131 (output optical waveguide ends 134 and 135, respectively).
  • the signal is output from the driven semiconductor optical amplifier.
  • the stimulated emission light is branched into two by a 3 dB multiplexer / demultiplexer 117.
  • the 3 dB multiplexer / demultiplexer 117 only the wavelength component resonating with the first ring optical waveguide 121 and the second ring optical waveguide 122 is again 3 dB multiplexed / divided via the optical waveguide 125. Return to Waver 117. Then, the feedback is made to the driven semiconductor optical amplifier.
  • a highly reflective film is added to one end of the semiconductor optical amplifier, a light wave having a specific wavelength reciprocates between the wavelength tunable resonator 1 including the ring resonator 120 and the semiconductor optical amplifier.
  • laser oscillation occurs.
  • the laser oscillation light is partially coupled to the optical multiplexer / demultiplexer 131 and output from the optical waveguide end face 135 to the outside.
  • the oscillation wavelength can be tuned by the heaters 123 and 124 that are added to the first ring-type optical waveguide 121 and the second ring-type optical waveguide 122 and change the effective refractive index of the waveguide.
  • the wavelength tunable resonator 1 having two ring optical waveguides and a 3 dB multiplexer / demultiplexer 117 as main components can be miniaturized. Further, the same effects as those of the first embodiment can be obtained.
  • FIG. 8 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to the fifth embodiment.
  • an example of a wavelength tunable laser light source having a configuration in which a 2 ⁇ 2 directional coupler type switch is added to the fourth embodiment as means for improving the output light intensity will be described.
  • the wavelength tunable resonator 1 having a configuration different from that of the fourth embodiment is provided in the wavelength tunable laser light source. Since other configurations are the same as those in the fourth embodiment, description thereof is omitted. That is, in the present embodiment, as in the fourth embodiment, the wavelength tunable resonator 1 having at least two input ports and one output port includes the first semiconductor optical amplifier 11 having different gain wavelength spectra. The second semiconductor optical amplifier 12 is connected in parallel.
  • the wavelength tunable resonator 1 of the present embodiment includes a ring resonator 120 in which two ring optical waveguides having different peripheral lengths are optically connected to each other via an optical waveguide, and the ring resonator 120. And a 2 ⁇ 2 3 dB multiplexer / demultiplexer 117 optically connected to each other, and a 2 ⁇ 2 optical switch 150 having two input port ends and two output port ends.
  • the optical waveguide 125 is formed on the SOI substrate 10 so as to be optically coupled to each of the first ring optical waveguide 121 and the second ring optical waveguide 122, as in the fourth embodiment.
  • the ring resonator 120 is configured by being arranged close to each other.
  • the first ring optical waveguide 121 and the second ring optical waveguide 122 are arranged close to each other so as to be optically coupled to the two output optical waveguides 118 and 119 of the 3 dB multiplexer / demultiplexer 117, respectively. Has been.
  • the input optical waveguides 115 and 116 of the 3 dB multiplexer / demultiplexer 117 have one ends of two semiconductor optical amplifiers (first semiconductor optical amplifier 11 and second semiconductor optical amplifier 12) having different gain spectra, respectively. Are optically connected.
  • the other ends of the two semiconductor optical amplifiers are connected to the two input optical waveguides 151 and 152 of the optical switch 150, respectively.
  • the optical switch 150 is a Mach-Zehnder optical switch including two 3 dB multiplexers / demultiplexers 153 and 157, two optical waveguides 154 and 155, and a phase shifter 156.
  • a heater may be used as in the second embodiment.
  • the output end of at least one of the output optical waveguides is provided with a dielectric multilayer film (dielectric film) (not shown) so as to have a predetermined reflectance.
  • a dielectric film having an optical reflectivity of about 5% to 10% is applied to the output optical waveguide end 160 of the output optical waveguide 158, for example.
  • the output optical waveguide end 160 provided with the dielectric film becomes an output port of the wavelength tunable resonator 1.
  • the wavelength tunable laser light source When either the first semiconductor optical amplifier 11 having the short-wave gain spectrum or the second semiconductor optical amplifier 12 having the long-wave gain spectrum is driven, the signal is output from the driven semiconductor optical amplifier.
  • the stimulated emission light propagates through the ring resonator 120 and returns again to the semiconductor optical amplifier on the side where only a specific wavelength light component is driven.
  • the phase of the stimulated emission light guided from the driven semiconductor optical amplifier to the 3 dB multiplexer / demultiplexer 153 of the optical switch 150 is guided by the phase shifter 156 to the output optical waveguide end 160. Then, a part of the light wave component reflected at the output optical waveguide end 160 returns again to the driven semiconductor optical amplifier.
  • an optical resonator is formed between the ring resonator 120 and the output optical waveguide end 160 across the driven semiconductor optical amplifier, and laser oscillation occurs, and the output light is output to the output optical waveguide. It is output from the waveguide end 160.
  • the tunable wavelength band of the laser oscillation light is appropriately selected by operating only one of the two semiconductor optical amplifiers (the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12) having different gain wavelength bands. It is possible.
  • the output light intensity can be improved in this embodiment. Further, the same effects as those of the first and fourth embodiments can be obtained.
  • FIG. 9 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to the sixth embodiment.
  • an example of a wavelength tunable laser light source in which an optical modulator that converts an electric signal into an optical signal is integrated will be described.
  • the tunable resonator 1 includes a ring resonator 120 in which two ring optical waveguides having different peripheral lengths are optically connected to each other via the optical waveguide, and the ring resonator 120. And a 2 ⁇ 2 3 dB multiplexer / demultiplexer 117 optically connected to each other.
  • the optical waveguide 125 is formed on the SOI substrate 10 so as to be optically coupled to each of the first ring optical waveguide 121 and the second ring optical waveguide 122, as in the fourth embodiment.
  • the ring resonator 120 is configured by being arranged close to each other.
  • the first ring optical waveguide 121 and the second ring optical waveguide 122 are arranged close to each other so as to be optically coupled to the two output optical waveguides 118 and 119 of the 3 dB multiplexer / demultiplexer 117, respectively.
  • heaters 123 and 124 for changing the effective refractive index of the waveguide are formed above the first ring-type optical waveguide 121 and the second ring-type optical waveguide 122, respectively.
  • each of the semiconductor optical amplifier 111 and the optical modulator 112 is optically connected to the input optical waveguides 115 and 116 of the 3 dB multiplexer / demultiplexer 117, respectively.
  • a high reflection film 113 is added to the other end of the semiconductor optical amplifier 111.
  • an antireflection film 114 is added to the other end of the optical modulator 112.
  • the semiconductor optical amplifier 111 When the semiconductor optical amplifier 111 is driven, the stimulated emission light output from the semiconductor optical amplifier 111 propagates through the input optical waveguide 115 and is branched in two directions by the 3 dB multiplexer / demultiplexer 117.
  • the light waves branched by the 3 dB multiplexer / demultiplexer 117 propagate only through the output optical waveguides 118 and 119, respectively, and only light waves having wavelength components that resonate with the first ring optical waveguide 121 and the second ring optical waveguide 122, respectively.
  • a laser wave is oscillated by the reciprocation of the light wave between the high reflection film 113 and the ring resonator 120 via the semiconductor optical amplifier 111, and a part of the oscillation light is optically modulated. It is configured to pass through the device 112 and output to the outside.
  • the wavelength tunable laser light source includes the ring resonator 120 in which two ring optical waveguides having different peripheral lengths are optically connected to each other via the optical waveguide, and the ring resonator 120
  • a wavelength tunable resonator 1 including a 2 ⁇ 2 3 dB multiplexer / demultiplexer 117 optically connected, and a semiconductor optical amplifier 111 and an optical modulator 112 connected in parallel to the wavelength tunable resonator 1 are provided.
  • the optical modulator 112 can be integrated in the same form as the semiconductor optical amplifier 111. Therefore, the mounting process can be shared and the cost can be reduced.
  • the present invention is a light source used for optical communication, optical information processing, optical interconnection, and the like, and can be used for a wavelength variable laser light source having a wavelength variable function and a driving method thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Disclosed is a wavelength-variable laser light source, wherein the wavelength-variable range is expanded with a relatively simple configuration. A method for driving such wavelength-variable laser light source is also provided. The wavelength-variable laser light source is provided with: a wavelength-variable resonator (1), which has a first input port, a second input port and an output port, and can move the wavelength spectral peak of the transmitting light intensity; a first semiconductor optical amplifier (11) having one end thereof optically connected to the first input port of the wavelength-variable resonator (1); a second semiconductor optical amplifier (12), which has one end thereof optically connected to the second input port of the wavelength-variable resonator (1) and has a gain wavelength spectrum different from that of the first semiconductor optical amplifier (11); and a dielectric multilayer film (18) which is provided on the end surface of the output port of the wavelength-variable resonator (1) and has predetermined reflection ratio and transmissivity.

Description

波長可変レーザ光源、及びその駆動方法Wavelength tunable laser light source and driving method thereof
 本発明は、光通信、光情報処理及び光インターコネクション等に用いられる光源であり、特に波長可変機能を有する波長可変レーザ光源、及びその駆動方法に関するものである。 The present invention relates to a light source used for optical communication, optical information processing, optical interconnection, and the like, and more particularly to a wavelength tunable laser light source having a wavelength tunable function and a driving method thereof.
 近年、インターネットのトラフィックは急速に増加しており、これに対応すべく通信容量拡大の技術も進展している。波長分割多重通信(WDM:Wavelength Division Multiplexing)は、波長数を増やすことにより大容量化を行うものである。WDMは、ROADM(Reconfigurable Optical Add/Drop Multiplexing)、波長ルーティングによる光クロスコネクト等の進展とあいまって、より柔軟性に優れた通信容量の拡大が活発に検討されている。これは、波長資源を単に容量拡大のみに使用するのではなく、ネットワーク機能の向上にも積極的に利用していくものである。通信容量の拡大と通信方式の高機能化は、相互に関連して、低コストで安全性の高い通信サービスの提供を可能にするものである。波長可変レーザは、このような通信システムを構築する上で重要なキーデバイスの一つである。 In recent years, Internet traffic has been increasing rapidly, and technology to expand communication capacity has also been developed in response to this. Wavelength division multiplex communication (WDM: Wavelength Division Multiplexing) increases the capacity by increasing the number of wavelengths. In WDM, expansion of communication capacity with more flexibility is being actively studied, coupled with progress in ROADM (Reconfigurable Optical Add / Drop Multiplexing), optical cross-connect by wavelength routing, and the like. In this method, wavelength resources are not only used for capacity expansion, but are also actively used for improving network functions. The expansion of the communication capacity and the enhancement of the functions of the communication system enable the provision of a low-cost and highly secure communication service in relation to each other. A tunable laser is one of the key devices important in constructing such a communication system.
 従来の波長分割多重システムでは、一定の波長間隔を有する複数の固定波長光源を並べて対応しており、特に保守管理用バックアップ光源(波長数分)のコストは、システムの低コスト化を阻害する大きな要因となっていた。波長可変光源の適用により、光源の種類を一つに統合することができるので、システムコストの低減が大きく進展することになる。また、切り替え速度の速い波長可変光源は、波長ルーティングにおいても新しいネットワーク機能の実現に必要不可欠な要素となっている。 In conventional wavelength division multiplexing systems, a plurality of fixed wavelength light sources having a fixed wavelength interval are arranged side by side, and the cost of maintenance management backup light sources (for the number of wavelengths) is particularly large, which hinders cost reduction of the system. It was a factor. By applying the wavelength tunable light source, the types of the light sources can be integrated into one, so that the reduction of the system cost is greatly advanced. In addition, a wavelength tunable light source having a high switching speed is an indispensable element for realizing a new network function even in wavelength routing.
 C(Conventional)帯域またはL(Long)帯域をカバーできる波長可変光源には、可動MEMSミラー(Micro Electro Mechanical Systems Mirror)を用いたものが、Jill D.Berger等により、非特許文献1に発表されている。非特許文献1の波長可変光源は、比較的良好な光出力特性を示しているものの、製作コストや耐衝撃性の点でその実用性が懸念されている。また、DBR(分布反射型)レーザのモード安定性を高めて、更に変調器と集積化したものがB.Mason等により、非特許文献2に報告されているが、低コスト化や信頼性の点で課題がある。 As a wavelength tunable light source that can cover the C (Conventional) band or the L (Long) band, a movable MEMS mirror (Micro Electro Mechanical Systems Mirror) is used. Non-Patent Document 1 is published by Berger et al. Although the wavelength tunable light source of Non-Patent Document 1 shows relatively good light output characteristics, there are concerns about its practicality in terms of manufacturing cost and impact resistance. Further, the mode stability of a DBR (distributed reflection type) laser is improved and further integrated with a modulator. Although reported in Non-Patent Document 2 by Mason et al., There are problems in terms of cost reduction and reliability.
 一方、平面光回路(PLC)を外部共振器として用いた波長可変光源では、製作が比較的容易でMEMSのように可動部を持たない。そのため、製作歩留まり、信頼性(特に耐振動性)の点で優れており、量産性に適していると考えられ、現在のところ幾つかの構成が提案されている。リング型外部共振器と半導体増幅器を用いた構成としては、H.Yamazaki等により、非特許文献3において報告されている。非特許文献3の報告によれば、可動部をもたない波長可変光源としては、波長可変範囲、光出力等の面で良好な特性が得られている。 On the other hand, a tunable light source using a planar optical circuit (PLC) as an external resonator is relatively easy to manufacture and does not have a movable part like MEMS. Therefore, it is excellent in terms of production yield and reliability (particularly vibration resistance) and is considered suitable for mass production, and several configurations have been proposed at present. As a configuration using a ring-type external resonator and a semiconductor amplifier, H.K. Reported in Non-Patent Document 3 by Yamazaki et al. According to the report of Non-Patent Document 3, as a wavelength variable light source having no movable part, good characteristics are obtained in terms of wavelength variable range, light output, and the like.
 しかしながら、非特許文献3に提案された構成の波長可変光源では、リング型外部共振器の波長可変範囲と半導体増幅器の利得帯域で波長可変範囲が決まってしまう。そのため、高出力でより広範囲の波長可変を行うには、構成上の限界がある。 However, in the wavelength tunable light source having the configuration proposed in Non-Patent Document 3, the wavelength tunable range is determined by the wavelength tunable range of the ring-type external resonator and the gain band of the semiconductor amplifier. For this reason, there is a structural limitation in performing wavelength tuning over a wide range with high output.
 光通信における高密度波長多重伝送方式(DWDM:Dense WDM)では、通信波長帯を主にC帯域とL帯域に分け、それぞれ、およそ40nm程度の波長範囲に多くの波長信号光を割り当てている。現在では、多くの波長可変レーザが40nmの波長範囲を基準に開発が進んでいる。しかし、C,L両帯域を一つの光源でカバーできる波長可変範囲80nm以上の波長可変レーザは殆どない。また、およそ20nm間隔で信号光波長を設定するCWDM(Coase WDM)方式では、より広範囲な波長可変が要求されることになる。 In a high-density wavelength division multiplex transmission system (DWDM: Dense WDM) in optical communication, a communication wavelength band is mainly divided into a C band and an L band, and a large number of wavelength signal lights are assigned to a wavelength range of about 40 nm. Currently, many tunable lasers are being developed based on a wavelength range of 40 nm. However, there are few wavelength tunable lasers having a wavelength tunable range of 80 nm or more that can cover both C and L bands with a single light source. Further, in the CWDM (Coarse WDM) system in which signal light wavelengths are set at intervals of about 20 nm, a wider range of wavelength variation is required.
 本発明は、上記のような問題点を解決するためになされたものであり、比較的簡単な構成で、波長可変範囲を拡大することが可能な波長可変レーザ光源、及びその駆動方法を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a wavelength tunable laser light source capable of expanding the wavelength tunable range with a relatively simple configuration, and a driving method thereof. For the purpose.
 本発明の第1の態様にかかる波長可変レーザ光源は、第1入力ポート、第2入力ポート、及び出力ポートを有し、透過光強度の波長スペクトルピークを移動させることのできる波長可変フィルターと、一端が前記第1入力ポートと光学的に接続された第1光増幅器と、一端が前記第2入力ポートと光学的に接続され、前記第1光増幅器と利得波長スペクトルの異なる第2光増幅器と、前記出力ポートの端面に設けられ、所定の反射率及び透過率を有する光学ミラーと、を備えるものである。 A wavelength tunable laser light source according to the first aspect of the present invention includes a first input port, a second input port, and an output port, and a wavelength tunable filter capable of moving a wavelength spectrum peak of transmitted light intensity; A first optical amplifier having one end optically connected to the first input port; a second optical amplifier having one end optically connected to the second input port and having a gain wavelength spectrum different from that of the first optical amplifier; And an optical mirror provided on the end face of the output port and having a predetermined reflectance and transmittance.
 また、本発明の第2の態様にかかる波長可変レーザ光源の駆動方法は、上述の波長可変レーザ光源の駆動方法であって、所望する波長に応じて、前記第1光増幅器及び前記第2光増幅器のうちの一方に電流注入を行うと同時に、他方には電流注入を行わないことを特徴とするものである。 A wavelength tunable laser light source driving method according to the second aspect of the present invention is the above-described wavelength tunable laser light source driving method, wherein the first optical amplifier and the second light are selected according to a desired wavelength. It is characterized in that current is injected into one of the amplifiers and at the same time no current is injected into the other.
 本発明によれば、比較的簡単な構成で、波長可変範囲を拡大することが可能な波長可変レーザ光源、及びその駆動方法を提供することができる。 According to the present invention, it is possible to provide a wavelength tunable laser light source capable of expanding the wavelength tunable range with a relatively simple configuration, and a driving method thereof.
実施の形態1に係る波長可変レーザ光源の概略構成を示す模式図である。2 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to Embodiment 1. FIG. 実施の形態1に係る波長可変レーザ光源において、片方の光増幅器を駆動させた場合の光波の共振経路の様子を示す模式図である。FIG. 3 is a schematic diagram illustrating a state of a resonance path of a light wave when one optical amplifier is driven in the wavelength tunable laser light source according to the first embodiment. 実施の形態1に係る波長可変レーザ光源において、片方の光増幅器を駆動させた場合の光波の共振経路の様子を示す模式図である。FIG. 3 is a schematic diagram illustrating a state of a resonance path of a light wave when one optical amplifier is driven in the wavelength tunable laser light source according to the first embodiment. 実施の形態2に係る波長可変レーザ光源の概略構成を示す模式図である。6 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to Embodiment 2. FIG. 実施の形態2に係る波長可変レーザ光源において、片方の光増幅器を駆動させた場合の光波の共振経路の様子を示す模式図である。FIG. 5 is a schematic diagram showing a state of a resonance path of a light wave when one optical amplifier is driven in the wavelength tunable laser light source according to the second embodiment. 実施の形態2に係る波長可変レーザ光源において、片方の光増幅器を駆動させた場合の光波の共振経路の様子を示す模式図である。FIG. 5 is a schematic diagram showing a state of a resonance path of a light wave when one optical amplifier is driven in the wavelength tunable laser light source according to the second embodiment. 実施の形態3に係る波長可変レーザ光源の概略構成を示す模式図である。6 is a schematic diagram illustrating a schematic configuration of a wavelength tunable laser light source according to Embodiment 3. FIG. 実施の形態3に係る波長可変レーザ光源において、片方の光増幅器を駆動させた場合の光波の共振経路の様子を示す模式図である。FIG. 10 is a schematic diagram illustrating a state of a resonance path of a light wave when one optical amplifier is driven in the wavelength tunable laser light source according to the third embodiment. 実施の形態3に係る波長可変レーザ光源において、片方の光増幅器を駆動させた場合の光波の共振経路の様子を示す模式図である。FIG. 10 is a schematic diagram illustrating a state of a resonance path of a light wave when one optical amplifier is driven in the wavelength tunable laser light source according to the third embodiment. 実施の形態4に係る波長可変レーザ光源の概略構成を示す模式図である。6 is a schematic diagram illustrating a schematic configuration of a wavelength tunable laser light source according to Embodiment 4. FIG. 実施の形態5に係る波長可変レーザ光源の概略構成を示す模式図である。6 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to Embodiment 5. FIG. 実施の形態6に係る波長可変レーザ光源の概略構成を示す模式図である。10 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to Embodiment 6. FIG.
 本発明の波長可変レーザ光源は、透過光強度の波長スペクトルピークを移動させることのできる波長可変外部共振器と、利得スペクトルを可変できる利得媒質とを有している。そして、外部共振器の損失スペクトルと、利得媒質の利得スペクトルとの両方を変化させることにより、波長可変を行うものである。 The wavelength tunable laser light source of the present invention has a wavelength tunable external resonator that can move the wavelength spectrum peak of transmitted light intensity, and a gain medium that can vary the gain spectrum. The wavelength is varied by changing both the loss spectrum of the external resonator and the gain spectrum of the gain medium.
 すなわち、周期的な透過スペクトルを有する波長可変外部共振器と、利得の波長分布を選択的に変更できる構成の利得可変機能との両方を、発振波長の制御に利用する。これにより、これまで提案されているような可変外部共振器のみを用いた制御に比べて、波長可変範囲を大きくすることができる。 That is, both the variable wavelength external resonator having a periodic transmission spectrum and the variable gain function configured to selectively change the gain wavelength distribution are used for controlling the oscillation wavelength. As a result, the wavelength variable range can be increased as compared with the control using only the variable external resonator as proposed so far.
 具体的には、本発明の波長可変レーザ光源は、少なくとも2つ以上の入力ポートと1つ以上の出力ポートを有する外部共振器と、外部共振器の入力ポートに接続された少なくとも2つ以上の利得媒質とを備えている。このとき、利得波長スペクトルの異なる2種類の利得媒質を用いることが好ましい。これにより、レーザ発振の波長帯を短波側と長波側に分けて使用することができる。従って、従来のように1種類の利得媒質のみを使用する場合に比べて、広い帯域にわたって大きな利得強度を得ることができ、高出力のレーザ発振を実現できる。 Specifically, the wavelength tunable laser light source of the present invention includes an external resonator having at least two or more input ports and one or more output ports, and at least two or more connected to the input ports of the external resonator. Gain medium. At this time, it is preferable to use two types of gain media having different gain wavelength spectra. Thereby, the wavelength band of laser oscillation can be divided into a short wave side and a long wave side. Therefore, as compared with the conventional case where only one type of gain medium is used, a large gain intensity can be obtained over a wide band, and high-power laser oscillation can be realized.
 外部共振器は、可変量は小さいが高精度の波長制御が可能である。一方、利得可変機能は、細かく高精度な制御は出来ないが、可変量の大きな利得可変が可能である。そのため、外部共振器を波長の微調整として、また、利得可変機能を波長の粗調整として用いることができる。このように、外部共振器と利得可変機能とを組み合わせて用いることによって、波長可変範囲が大きく、かつ、高精度な波長可変動作が可能である。 The external resonator has a small variable amount, but enables highly accurate wavelength control. On the other hand, the gain variable function cannot perform fine and high-precision control, but can change the gain by a large variable amount. For this reason, the external resonator can be used for fine adjustment of the wavelength, and the variable gain function can be used for coarse adjustment of the wavelength. As described above, by using the external resonator and the gain variable function in combination, the wavelength variable range is large and the wavelength variable operation with high accuracy is possible.
 ここで、本発明の波長可変レーザ光源は、前述したように、2種類の利得媒質が外部共振器に並列して接続された単純な構成とすることができる。この2種類の利得媒質には、一方を駆動させている間、他方は駆動させずに吸収受動領域として機能させる方式が採用される。そのため、特に複雑な利得媒質の制御が必要とならず、レーザ発振の波長制御を簡易に行うことができる。 Here, the wavelength tunable laser light source of the present invention can have a simple configuration in which two types of gain media are connected in parallel to an external resonator as described above. For these two types of gain media, a system is used in which one of them is driven while the other is not driven, but functions as an absorption passive region. Therefore, it is not necessary to control a particularly complicated gain medium, and the wavelength control of laser oscillation can be easily performed.
 また、本発明の波長可変レーザ光源は、波長可変共振器としてリング型光導波路、利得可変媒質として利得スペクトルの異なる2つの半導体増幅器をそれぞれ用いることができる。リング型導波路と2つの半導体増幅器とを同じ化合物半導体基板上に形成することによって、モノリシック集積した波長可変レーザ機能を1つのチップ上に実現することが可能である。そのため、ハイブリット形成時における複雑なモジュール組み立てが必要とならず、低コスト化を図ることができる。 The wavelength tunable laser light source of the present invention can use a ring-type optical waveguide as the wavelength tunable resonator and two semiconductor amplifiers having different gain spectra as the gain variable medium. By forming the ring-type waveguide and the two semiconductor amplifiers on the same compound semiconductor substrate, it is possible to realize a monolithically integrated wavelength tunable laser function on one chip. Therefore, complicated module assembly at the time of hybrid formation is not required, and cost reduction can be achieved.
 このように、本発明の波長可変レーザ光源は、出力するレーザ光の発振波長を電気的な駆動制御により変化させることができる。通常、レーザ光源は利得媒質と共振器から構成されている。特に、波長可変レーザ光源においては、共振器の共振波長を外部制御によりチューニングすることによって発振波長を変化させる場合がほとんどである。共振器は、一般に、ある一定の波長周期をもつ透過あるいは反射特性を有している。そのため、利得媒質の利得波長分布のピーク近傍で、その波長周期間隔にチューニング範囲が限定されることになる。また、共振器の波長周期間隔を何らかの方法で拡大したとしても、利得分布に応じて光出力が決まるため、チューニング範囲の拡大と共に、光出力が低下することになる。 Thus, the wavelength tunable laser light source of the present invention can change the oscillation wavelength of the laser beam to be output by electrical drive control. Usually, the laser light source is composed of a gain medium and a resonator. In particular, in a tunable laser light source, the oscillation wavelength is mostly changed by tuning the resonance wavelength of the resonator by external control. A resonator generally has transmission or reflection characteristics having a certain wavelength period. Therefore, the tuning range is limited to the wavelength period interval near the peak of the gain wavelength distribution of the gain medium. Even if the wavelength period interval of the resonator is expanded by some method, the optical output is determined according to the gain distribution, so that the optical output is reduced as the tuning range is expanded.
 一方、本発明の波長可変レーザ光源では、異なる利得波長分布を有する2つの利得媒質を備え、出力させる発振波長帯に応じて、それぞれの利得媒質を選択的に駆動する方式を採用している。これにより、光出力を犠牲にすることなく波長可変範囲を拡大することが可能となる。 On the other hand, the wavelength tunable laser light source of the present invention employs a system in which two gain media having different gain wavelength distributions are provided, and each gain medium is selectively driven according to the oscillation wavelength band to be output. This makes it possible to expand the wavelength variable range without sacrificing the light output.
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施形態に限定されるものではない。また、説明の明確化のため、必要に応じて重複説明は省略されている。尚、各図において同一の符号を付されたものは同様の要素を示しており、適宜、説明が省略されている。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. For the sake of clarification, duplicate explanation is omitted as necessary. In addition, what attached | subjected the same code | symbol in each figure has shown the same element, and description is abbreviate | omitted suitably.
実施の形態1.
 本発明の第1の実施の形態に係る波長可変レーザ光源の構成について、図1を参照して詳細に説明する。図1は、実施の形態1に係る波長可変レーザ光源の概略構成を示す模式図である。本実施の形態の波長可変レーザ光源は、SOI(Silicon on insulator)基板10には、シリコン層をコア層とし、その上部のシリコン酸化膜をクラッド層とする平面光回路による波長可変共振器と、半導体光増幅器とがハイブリット実装された構成を有している。以下にその詳細を述べる。
Embodiment 1 FIG.
The configuration of the wavelength tunable laser light source according to the first embodiment of the present invention will be described in detail with reference to FIG. FIG. 1 is a schematic diagram illustrating a schematic configuration of a wavelength tunable laser light source according to the first embodiment. The wavelength tunable laser light source according to the present embodiment includes a wavelength tunable resonator using a planar optical circuit in which a silicon layer is a core layer and an upper silicon oxide film is a cladding layer on an SOI (Silicon on Insulator) substrate 10; It has a configuration in which a semiconductor optical amplifier is hybrid-mounted. Details are described below.
 図1において、波長可変レーザ光源は、波長可変共振器1と、この波長可変共振器1にそれぞれ並列して接続された第1の半導体光増幅器11及び第2の半導体光増幅器12とを備えている。波長可変共振器1は、透過光強度の波長スペクトルピークを移動させることを可能とするもので、波長可変外部共振器、あるいは波長可変フィルターともいう。波長可変共振器1は、2つの入力ポートと1つの出力ポートを有している。また、本実施の形態では、波長可変共振器1は、複数のリング型光導波路が光学的に結合されたリング型共振器2と、このリング型共振器2と光導波路を介して光学的に接続された3dB合分波器16とを有する。 In FIG. 1, the wavelength tunable laser light source includes a wavelength tunable resonator 1, and a first semiconductor optical amplifier 11 and a second semiconductor optical amplifier 12 that are connected in parallel to the wavelength tunable resonator 1, respectively. Yes. The wavelength tunable resonator 1 is capable of moving the wavelength spectrum peak of transmitted light intensity, and is also referred to as a wavelength tunable external resonator or a wavelength tunable filter. The wavelength tunable resonator 1 has two input ports and one output port. In the present embodiment, the tunable resonator 1 includes a ring resonator 2 in which a plurality of ring optical waveguides are optically coupled, and optically via the ring resonator 2 and the optical waveguide. And a 3 dB multiplexer / demultiplexer 16 connected thereto.
 具体的には、SOI基板10には、第1のリング型光導波路21と第2のリング型光導波路22とが、所定の強さで光学結合するように近接して配置されている。第1のリング型光導波路21と第2のリング型光導波路22は、導波路方向に沿って隣接して配置されている。第2のリング型光導波路22は、第1のリング型光導波路21と周囲長が僅かに異なっており、光路長が異なっている。第1のリング型光導波路21の一部には、導波路の屈折率を変化させるためのヒータ23が形成されている。同様に、第2のリング型光導波路22の一部には、導波路の屈折率を変化させるためのヒータ24が形成されている。ヒータ23、24は、リング型光導波路の上、下、または横など、導波路のコア層の温度を変化させることが可能な範囲に位置されている。ここでは、第1のリング型光導波路21と第2のリング型光導波路22の上部に、ヒータ23、24がそれぞれ配設されている。なお、リング型光導波路近傍にヒータを設ける場合について説明したが、導波路の屈折率を変化させて波長特性をチューニングするための電極構造であればヒータ以外のものを用いてもよい。 Specifically, the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are arranged close to the SOI substrate 10 so as to be optically coupled with a predetermined strength. The first ring optical waveguide 21 and the second ring optical waveguide 22 are disposed adjacent to each other along the waveguide direction. The second ring-type optical waveguide 22 has a slightly different peripheral length from the first ring-type optical waveguide 21 and has a different optical path length. A heater 23 for changing the refractive index of the waveguide is formed in a part of the first ring type optical waveguide 21. Similarly, a heater 24 for changing the refractive index of the waveguide is formed in a part of the second ring type optical waveguide 22. The heaters 23 and 24 are positioned in a range where the temperature of the core layer of the waveguide can be changed, such as above, below, or beside the ring optical waveguide. Here, heaters 23 and 24 are disposed above the first ring optical waveguide 21 and the second ring optical waveguide 22, respectively. In addition, although the case where the heater is provided in the vicinity of the ring type optical waveguide has been described, an electrode structure other than the heater may be used as long as the electrode structure is used for tuning the wavelength characteristics by changing the refractive index of the waveguide.
 このように、第1のリング型光導波路21と第2のリング型光導波路22とによって、リング型共振器2が構成されている。このリング型共振器2は、2つのリング型光導波路が近接して縦列配置された2重リング型共振器となる。 Thus, the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 constitute the ring-type resonator 2. The ring resonator 2 is a double ring resonator in which two ring optical waveguides are arranged in close proximity to each other in cascade.
 第2のリング型光導波路22には、光導波路20が光学的に結合するように近接して配置されている。この光導波路20の両端は、3dB合分波器16の入力光導波路15に接続されている。そして、3dB合分波器16の出力光導波路17の出力端は、所定の反射率になるように誘電体多層膜18が施されている。誘電体多層膜18は、波長可変共振器1内でレーザ発振を起こさせるとともに、レーザを外部に出力可能とするのに適した所定の反射率及び透過率を有する光学ミラー(半ミラー)となる。ここでは、例えば20%の反射率となるように、誘電体多層膜18が形成されている。 The second ring-type optical waveguide 22 is disposed close to the optical waveguide 20 so as to be optically coupled. Both ends of the optical waveguide 20 are connected to the input optical waveguide 15 of the 3 dB multiplexer / demultiplexer 16. The output end of the output optical waveguide 17 of the 3 dB multiplexer / demultiplexer 16 is provided with a dielectric multilayer film 18 so as to have a predetermined reflectance. The dielectric multilayer film 18 becomes an optical mirror (semi-mirror) having a predetermined reflectance and transmittance suitable for causing laser oscillation in the wavelength tunable resonator 1 and allowing the laser to be output to the outside. . Here, the dielectric multilayer film 18 is formed so as to have a reflectance of 20%, for example.
 このように、波長可変共振器1には、2つの入力ポート端と1つの出力ポート端とを有する3dB合分波器16が設けられている。以下では、2つの入力ポート端と1つの出力ポート端とを有する3dB合分波器16を、2×1の3dB合分波器16と呼ぶこととする。2×1の3dB合分波器16は、リング型共振器2の第2のリング型光導波路22と光導波路20を介して光学的に接続するように形成されている。そして、3dB合分波器16の出力光導波路17が、波長可変共振器1の出力ポートとなる。この出力ポートの端面に、所定の反射率及び透過率を有する光学ミラーである誘電体多層膜18が設けられている。なお、第2のリング型光導波路22と結合する部分の光導波路20は、直線状に形成されている。 As described above, the wavelength tunable resonator 1 is provided with the 3 dB multiplexer / demultiplexer 16 having two input port ends and one output port end. Hereinafter, the 3 dB multiplexer / demultiplexer 16 having two input port ends and one output port end is referred to as a 2 × 1 3 dB multiplexer / demultiplexer 16. The 2 × 1 3 dB multiplexer / demultiplexer 16 is formed so as to be optically connected to the second ring optical waveguide 22 of the ring resonator 2 via the optical waveguide 20. The output optical waveguide 17 of the 3 dB multiplexer / demultiplexer 16 becomes the output port of the wavelength tunable resonator 1. A dielectric multilayer film 18 which is an optical mirror having a predetermined reflectance and transmittance is provided on the end face of the output port. The portion of the optical waveguide 20 that is coupled to the second ring optical waveguide 22 is formed in a straight line.
 一方、リング型共振器2の第1のリング型光導波路21には、光導波路19が光学的に結合するように近接して配置されている。この光導波路19の両端には、利得スペクトルの異なる2つの半導体増幅器(第1の半導体光増幅器11、第2の半導体光増幅器12)が、それぞれ光学的に結合するように配置されている。すなわち、光導波路19は、その一端において第1の半導体光増幅器11と、他端において第2の半導体光増幅器12とに互いに光学的に接続し、かつ第1のリング型光導波路21と光学結合するように形成されている。この光導波路19が、波長可変共振器1の2つの入力ポートとなる。なお、第1のリング型光導波路21と結合する部分の光導波路19は、直線状に形成されている。 On the other hand, the first ring-type optical waveguide 21 of the ring-type resonator 2 is disposed close to the optical waveguide 19 so as to be optically coupled. At both ends of the optical waveguide 19, two semiconductor amplifiers (first semiconductor optical amplifier 11 and second semiconductor optical amplifier 12) having different gain spectra are disposed so as to be optically coupled to each other. That is, the optical waveguide 19 is optically connected to the first semiconductor optical amplifier 11 at one end and the second semiconductor optical amplifier 12 at the other end, and optically coupled to the first ring optical waveguide 21. It is formed to do. The optical waveguide 19 serves as two input ports of the wavelength tunable resonator 1. The portion of the optical waveguide 19 that is coupled to the first ring optical waveguide 21 is formed in a straight line.
 第1の半導体光増幅器11は、短波側の利得スペクトルを有し、波長可変共振器1の一方の入力ポートと光学的に接合するように設けられている。また、第2の半導体光増幅器12は、長波側の利得スペクトルを有し、波長可変共振器1の他方の入力ポートと光学的に接合するように設けられている。第1の半導体光増幅器11と第2の半導体光増幅器12は、光導波路19を介して互いに光学的に接続している。更に、第1の半導体光増幅器11及び第2の半導体光増幅器12の反対側の端面には、高反射膜13、14がそれぞれ形成されている。 The first semiconductor optical amplifier 11 has a gain spectrum on the short wave side and is provided so as to be optically joined to one input port of the wavelength tunable resonator 1. The second semiconductor optical amplifier 12 has a gain spectrum on the long wave side and is provided so as to be optically joined to the other input port of the wavelength tunable resonator 1. The first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12 are optically connected to each other via an optical waveguide 19. Further, highly reflective films 13 and 14 are formed on the opposite end faces of the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12, respectively.
 なお、3dB合分波器16は、3dBのときに損失が最小になる構成となっているが、3dB合分波器16として、他の合分波器を用いることも勿論できる。 The 3 dB multiplexer / demultiplexer 16 is configured to have a minimum loss at 3 dB, but other multiplexer / demultiplexers can of course be used as the 3 dB multiplexer / demultiplexer 16.
 続いて、本実施の形態の波長可変レーザ光源の動作機構について、図2A及びBを用いて詳細に説明する。図2A及びBは、実施の形態1に係る波長可変レーザ光源において、片方の光増幅器を駆動させた場合の光波の共振経路の様子を示す模式図である。図2Aは長波帯での発振動作を示す模式図であり、図2Bは短波帯での発振動作を示す模式図である。 Subsequently, an operation mechanism of the wavelength tunable laser light source according to the present embodiment will be described in detail with reference to FIGS. 2A and 2B. 2A and 2B are schematic diagrams showing the state of the resonance path of the light wave when one of the optical amplifiers is driven in the wavelength tunable laser light source according to the first embodiment. FIG. 2A is a schematic diagram illustrating an oscillation operation in a long wave band, and FIG. 2B is a schematic diagram illustrating an oscillation operation in a short wave band.
 長波帯の利得スペクトルを有する第2の半導体光増幅器12をON状態(駆動電流を注入した状態)にすると共に、短波側の利得スペクトルを有する第1の半導体光増幅器11をOFF状態(駆動電流を注入しない状態)にした場合の光波の経路を、図2Aに示す。 The second semiconductor optical amplifier 12 having a long-waveband gain spectrum is turned on (a state in which a driving current is injected), and the first semiconductor optical amplifier 11 having a short-wave gain spectrum is turned off (a driving current is reduced). FIG. 2A shows the path of the light wave when the injection is not performed.
 第2の半導体光増幅器12から出力された誘導放出光の波長スペクトル成分の中で、第1のリング型光導波路21と第2のリング型光導波路22の両方に共振する成分は、点線に示すような経路を伝搬する。すなわち、第2の半導体光増幅器12から、光導波路19、第1のリング型光導波路21、第2のリング型光導波路22、光導波路20、入力光導波路15、3dB合分波器16を順に経由して、出力光導波路17へと伝搬する。そして、誘電体多層膜18からなる半反射端面で伝搬した誘導放出光の一部が反射し、再び逆の経路を辿って第2の半導体光増幅器12に戻ることになる。すなわち、波長可変共振器1の点線で示す共振経路41でレーザ発振が生じる。 Among the wavelength spectrum components of the stimulated emission light output from the second semiconductor optical amplifier 12, the components that resonate with both the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are indicated by dotted lines. Propagate such a route. That is, from the second semiconductor optical amplifier 12, the optical waveguide 19, the first ring optical waveguide 21, the second ring optical waveguide 22, the optical waveguide 20, the input optical waveguide 15, and the 3 dB multiplexer / demultiplexer 16 are sequentially provided. It propagates to the output optical waveguide 17 via. Then, a part of the stimulated emission light propagated on the semi-reflective end face made of the dielectric multilayer film 18 is reflected, and returns to the second semiconductor optical amplifier 12 through the reverse path again. That is, laser oscillation occurs in the resonance path 41 indicated by the dotted line of the wavelength tunable resonator 1.
 一方、第2の半導体光増幅器12から出力された誘導放出光の中で、第1のリング型光導波路21と第2のリング型光導波路22に共振しない成分は、一点鎖線に示すような非共振経路42を伝搬する。すなわち、第2の半導体光増幅器12から、光導波路19を経由して、第1の半導体光増幅器11に入力されることになる。この時、第1の半導体光増幅器11はOFF状態であり、入力された非共振成分は吸収されて、第2の半導体光増幅器12に戻ることはない。 On the other hand, components of the stimulated emission light output from the second semiconductor optical amplifier 12 that do not resonate with the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are non-resonant as indicated by the one-dot chain line. Propagates through the resonance path 42. That is, the light is input from the second semiconductor optical amplifier 12 to the first semiconductor optical amplifier 11 via the optical waveguide 19. At this time, the first semiconductor optical amplifier 11 is in an OFF state, and the input non-resonant component is absorbed and does not return to the second semiconductor optical amplifier 12.
 従って、この動作においては、長波側の利得分布によりレーザ発振が生じ、その長波帯域の波長可変が、第1のリング型光導波路21と第2のリング型光導波路22からなる2重リング型共振器のフリースペクトラムレンジ(FSR)の範囲で可能となる。 Therefore, in this operation, laser oscillation occurs due to the gain distribution on the long wave side, and the wavelength variation in the long wave band is a double ring type resonance composed of the first ring type optical waveguide 21 and the second ring type optical waveguide 22. This is possible within the free spectrum range (FSR) of the instrument.
 これに対し、短波帯の利得スペクトルを有する第1の半導体光増幅器11をON状態(駆動電流を注入した状態)にすると共に、長波側の利得スペクトルを有する第2の半導体光増幅器12をOFF状態(駆動電流を注入しない状態)にした場合の光波の経路を、図2Bに示す。 On the other hand, the first semiconductor optical amplifier 11 having the gain spectrum in the short wave band is turned on (the state in which the drive current is injected), and the second semiconductor optical amplifier 12 having the gain spectrum on the long wave side is turned off. FIG. 2B shows the path of the light wave when the drive current is not injected.
 第1の半導体光増幅器11から出力された誘導放出光の波長スペクトル成分の中で、第1のリング型光導波路21と第2のリング型光導波路22の両方に共振する成分は、点線に示すような経路を伝搬する。すなわち、第1の半導体光増幅器11から、光導波路19、第1のリング型光導波路21、第2のリング型光導波路22、光導波路20、入力光導波路15、3dB合分波器16を順に経由して、出力光導波路17へと伝搬する。そして、誘電体多層膜18からなる半反射端面で伝搬した誘導放出光の一部が反射し、再び逆の経路を辿って第1の半導体光増幅器11に戻ることになる。すなわち、波長可変共振器1の点線で示す共振経路43でレーザ発振が生じる。 Among the wavelength spectrum components of the stimulated emission light output from the first semiconductor optical amplifier 11, the component that resonates with both the first ring optical waveguide 21 and the second ring optical waveguide 22 is indicated by a dotted line. Propagate such a route. That is, from the first semiconductor optical amplifier 11, the optical waveguide 19, the first ring-type optical waveguide 21, the second ring-type optical waveguide 22, the optical waveguide 20, the input optical waveguide 15, and the 3 dB multiplexer / demultiplexer 16 are sequentially provided. It propagates to the output optical waveguide 17 via. Then, a part of the stimulated emission light propagated on the semi-reflecting end face made of the dielectric multilayer film 18 is reflected, and returns to the first semiconductor optical amplifier 11 along the reverse path again. That is, laser oscillation occurs in the resonance path 43 indicated by the dotted line of the wavelength tunable resonator 1.
 一方、第1の半導体光増幅器11から出力された誘導放出光の中で、第1のリング型光導波路21と第2のリング型光導波路22に共振しない成分は、一点鎖線に示すような非共振経路44を伝搬する。すなわち、第1の半導体光増幅器11から、光導波路19を経由して、第2の半導体光増幅器12に入力されることになる。この時、第2の半導体光増幅器12はOFF状態であり、入力された非共振成分は吸収されて、第1の半導体光増幅器11に戻ることはない。 On the other hand, in the stimulated emission light output from the first semiconductor optical amplifier 11, components that do not resonate with the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are non-resonant as shown by the one-dot chain line. Propagates through the resonance path 44. That is, the light is input from the first semiconductor optical amplifier 11 to the second semiconductor optical amplifier 12 via the optical waveguide 19. At this time, the second semiconductor optical amplifier 12 is in an OFF state, and the input non-resonant component is absorbed and does not return to the first semiconductor optical amplifier 11.
 従って、この動作においては、短波側の利得分布によりレーザ発振が生じ、その短波帯域の波長可変が、第1のリング型光導波路21と第2のリング型光導波路22からなる2重リング型共振器のFSRの範囲で可能となる。 Therefore, in this operation, laser oscillation occurs due to the gain distribution on the short wave side, and the wavelength tunability in the short wave band is a double ring type resonance consisting of the first ring type optical waveguide 21 and the second ring type optical waveguide 22. This is possible within the range of the FSR of the instrument.
 このように、本実施の形態の波長可変レーザ光源は、第1の半導体光増幅器11と第2の半導体光増幅器12とによる利得スペクトルと、波長可変共振器1の損失スペクトルとの両方を変化させることにより、波長可変を行う。すなわち、波長可変共振器1による波長可変に加え、新たに、2つの半導体光増幅器による波長可変が、レーザ発振の波長制御に利用されることとなる。これにより、出力させる光の波長の選択範囲をより広くすることができる。このとき、本実施の形態では、出力させる発振波長帯に応じて、第1の半導体光増幅器11と第2の半導体光増幅器12を選択的に駆動するようにする。これにより、光出力を犠牲にすることなく波長可変範囲を拡大することが可能となる。なお、第1の半導体光増幅器11と第2の半導体光増幅器12は、所望する波長に応じて一方を駆動させ、一方を駆動させている間、他方を駆動させないように制御すればよいので、特に複雑な制御は必要ない。 As described above, the wavelength tunable laser light source of the present embodiment changes both the gain spectrum of the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12 and the loss spectrum of the wavelength tunable resonator 1. Thus, the wavelength is varied. That is, in addition to the wavelength tunability by the wavelength tunable resonator 1, the wavelength tunability by two semiconductor optical amplifiers is newly used for wavelength control of laser oscillation. Thereby, the selection range of the wavelength of the light to output can be made wider. At this time, in the present embodiment, the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12 are selectively driven according to the oscillation wavelength band to be output. This makes it possible to expand the wavelength variable range without sacrificing the light output. The first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12 may be controlled so as to drive one according to a desired wavelength and not drive the other while driving one. No complicated control is required.
 以上のように、本実施の形態では、互いに利得波長スペクトルの異なる第1の半導体光増幅器11と第2の半導体光増幅器12とを、波長可変共振器1に並列接続させている。そして、第1の半導体光増幅器11と第2の半導体光増幅器12とを選択的に駆動することで得られる利得可変機能を、波長可変共振器1と組み合わせてレーザ発振の波長制御を行っている。これにより、簡便な構成にもかかわらず、出力させる光の波長の選択範囲をより広くすることができる。また、広い帯域にわたって大きな利得強度を得ることができ、高出力のレーザ発振を実現できる。これは、損失スペクトルのピーク位置を所定の範囲で変えることができる波長可変共振器1と、利得スペクトル形状、特に利得スペクトルのピーク位置を大きく変えることができる利得可変機能との両方を発信波長の制御に利用して、波長可変範囲が大きく、かつ、高出力の波長可変を実現できるからである。さらに、波長可変共振器1を波長の微調整として用いる一方、2つの半導体光増幅器を可変量の大きい利得可変媒質として波長の粗調整に用いることができる。そのため、高精度な波長可変動作が可能である。 As described above, in the present embodiment, the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12 having different gain wavelength spectra are connected in parallel to the wavelength variable resonator 1. The gain variable function obtained by selectively driving the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12 is combined with the wavelength variable resonator 1 to control the wavelength of laser oscillation. . Thereby, it is possible to widen the selection range of the wavelength of the light to be output in spite of a simple configuration. In addition, a large gain intensity can be obtained over a wide band, and high-power laser oscillation can be realized. This is because both the wavelength tunable resonator 1 that can change the peak position of the loss spectrum within a predetermined range and the gain variable function that can greatly change the gain spectrum shape, particularly the peak position of the gain spectrum, can be used. This is because the wavelength tunable range is large and high output wavelength tunability can be realized by using the control. Furthermore, while the wavelength tunable resonator 1 is used for fine adjustment of the wavelength, the two semiconductor optical amplifiers can be used for coarse adjustment of the wavelength as a gain variable medium having a large variable amount. Therefore, highly accurate wavelength variable operation is possible.
 なお、本実施の形態では、2×1の3dB合分波器16を用いる場合について例示的に説明をしたが、2つの入力ポート端と2つの出力ポート端とを有する2×2の3dB合分波器を用いることもできる。2×2の3dB合分波器を用いる場合は、2つの出力ポート端のうち、一方の出力ポート端に無反射処理を施し、他方の出力ポート端に高反射ミラーを設ける。あるいは、高反射ミラーの代わりに、1つの入力ポート端と、相互に接続された2つの出力ポート端とを有する1×2の3dB合分波器を設けてもよい。すなわち、2×2の3dB合分波器の一方の出力ポート端に無反射処理を施し、他方の出力ポート端には、1×2の3dB合分波器の2つの出力ポート端が相互に接続された閉ループ状の導波路からなるループミラーを設けてもよい。この1×2の3dB合分波器によって構成された閉ループ状の導波路からなるループミラーが、高反射ミラーであるかのように機能することとなる。 In this embodiment, the case where the 2 × 1 3 dB multiplexer / demultiplexer 16 is used has been described as an example. However, the 2 × 2 3 dB multiplexer having two input port ends and two output port ends is used. A duplexer can also be used. In the case of using a 2 × 2 3 dB multiplexer / demultiplexer, one of the two output port ends is subjected to antireflection processing, and the other output port end is provided with a high reflection mirror. Alternatively, instead of the high reflection mirror, a 1 × 2 3 dB multiplexer / demultiplexer having one input port end and two output port ends connected to each other may be provided. That is, non-reflection processing is applied to one output port end of the 2 × 2 3 dB multiplexer / demultiplexer, and two output port ends of the 1 × 2 3 dB multiplexer / demultiplexer are mutually connected to the other output port end. You may provide the loop mirror which consists of the connected closed loop-shaped waveguide. The loop mirror composed of the closed loop waveguide formed by the 1 × 2 3 dB multiplexer / demultiplexer functions as if it is a high reflection mirror.
実施の形態2.
 本発明の第2の実施の形態に係る波長可変レーザ光源の構成について、図3を用いて説明する。図3は、実施の形態2に係る波長可変レーザ光源の概略構成を示す模式図である。
Embodiment 2. FIG.
The configuration of the wavelength tunable laser light source according to the second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic diagram showing a schematic configuration of the wavelength tunable laser light source according to the second embodiment.
 本実施の形態では、実施の形態1と異なる構成の波長可変共振器1が、波長可変レーザ光源に設けられている。具体的には、本実施の形態の波長可変共振器1は、複数のリング型光導波路が光学的に結合されたリング型共振器2と、このリング型共振器2と光導波路を介して光学的に接続された光スイッチ52とを有している。すなわち、実施の形態1の3dB合分波器16に代えて、本実施の形態では、光スイッチ52が形成されている。それ以外の構成については実施の形態1と同様であるため、説明を省略する。なお、本実施の形態では、実施の形態1と同様、2つの入力ポートと1つの出力ポートを有する波長可変共振器1には、互いに利得波長スペクトルの異なる第1の半導体光増幅器11と第2の半導体光増幅器12とが並列接続されている。 In the present embodiment, the wavelength tunable resonator 1 having a configuration different from that of the first embodiment is provided in the wavelength tunable laser light source. Specifically, the wavelength tunable resonator 1 according to the present embodiment includes a ring resonator 2 in which a plurality of ring optical waveguides are optically coupled, and optical via the ring resonator 2 and the optical waveguide. And an optical switch 52 connected thereto. That is, instead of the 3 dB multiplexer / demultiplexer 16 of the first embodiment, an optical switch 52 is formed in this embodiment. Since other configurations are the same as those in the first embodiment, description thereof is omitted. In the present embodiment, similarly to the first embodiment, the wavelength tunable resonator 1 having two input ports and one output port includes a first semiconductor optical amplifier 11 and a second semiconductor optical amplifier 11 having different gain wavelength spectra. The semiconductor optical amplifiers 12 are connected in parallel.
 図3において、リング型共振器2の第2のリング型光導波路22と光導波路20を介して光学的に接続するように、2つの入力ポート端と2つの出力ポート端とを有する2×2の光スイッチ52が設けられている。具体的には、リング型共振器2の第2のリング型光導波路22と光学的に結合するように近接して配置された光導波路20の両端は、この光スイッチ52の2つの入力光導波路15にそれぞれ接続されている。光スイッチ52の2つの出力光導波路のうち、少なくとも一方の出力光導波路17の出射端は、所定の反射率になるように誘電体多層膜18が施されている。ここでは、例えば20%の反射率となるように、誘電体多層膜18が形成されている。この誘電体多層膜18が設けられた出力光導波路17が、波長可変共振器1の出力ポートとなる。 In FIG. 3, 2 × 2 having two input port ends and two output port ends so as to be optically connected via the second ring-type optical waveguide 22 and the optical waveguide 20 of the ring-type resonator 2. The optical switch 52 is provided. Specifically, both ends of the optical waveguide 20 disposed so as to be optically coupled to the second ring optical waveguide 22 of the ring resonator 2 are two input optical waveguides of the optical switch 52. 15 are connected to each other. Of the two output optical waveguides of the optical switch 52, the output end of at least one of the output optical waveguides 17 is provided with a dielectric multilayer film 18 so as to have a predetermined reflectance. Here, the dielectric multilayer film 18 is formed so as to have a reflectance of 20%, for example. The output optical waveguide 17 provided with the dielectric multilayer film 18 serves as an output port of the wavelength tunable resonator 1.
 また、光スイッチ52を構成する光導波路の上部には、導波路の屈折率を変化させるためのヒータ51が形成されている。 Further, a heater 51 for changing the refractive index of the waveguide is formed above the optical waveguide constituting the optical switch 52.
 続いて、本実施の形態の波長可変レーザ光源の動作機構について、図4A及びBを用いて詳細に説明する。図4A及びBは、実施の形態2に係る波長可変レーザ光源において、片方の光増幅器を駆動させた場合の光波の共振経路の様子を示す模式図である。図4Aは長波帯での発振動作を示す模式図であり、図4Bは短波帯での発振動作を示す模式図である。 Subsequently, the operation mechanism of the wavelength tunable laser light source according to the present embodiment will be described in detail with reference to FIGS. 4A and 4B. 4A and 4B are schematic diagrams showing the state of the resonance path of the light wave when one of the optical amplifiers is driven in the wavelength tunable laser light source according to the second embodiment. FIG. 4A is a schematic diagram showing an oscillation operation in a long wave band, and FIG. 4B is a schematic diagram showing an oscillation operation in a short wave band.
 長波帯の利得スペクトルを有する第2の半導体光増幅器12をON状態(駆動電流を注入した状態)にすると共に、短波側の利得スペクトルを有する第1の半導体光増幅器11をOFF状態(駆動電流を注入しない状態)にした場合の光波の経路を、図4Aに示す。 The second semiconductor optical amplifier 12 having a long-waveband gain spectrum is turned on (a state in which a driving current is injected), and the first semiconductor optical amplifier 11 having a short-wave gain spectrum is turned off (a driving current is reduced). FIG. 4A shows a light wave path when the injection is not performed.
 第2の半導体光増幅器12から出力された誘導放出光の波長スペクトル成分の中で、第1のリング型光導波路21と第2のリング型光導波路22の両方に共振する成分は、点線に示すような経路を伝搬する。すなわち、第2の半導体光増幅器12から、光導波路19、第1のリング型光導波路21、第2のリング型光導波路22、光導波路20、入力光導波路15を順に経由して、光スイッチ52へと伝搬する。光スイッチ52では、誘電体多層膜18が設けられた側の出力光導波路17に出力されるように、ヒータ51により経路の調整が行われる。すなわち、誘電体多層膜18が設けられた側の出力光導波路17により所望する大きさの光出力が得られるように、駆動電流が注入された側の半導体光増幅器に合わせて光スイッチ52の経路が切り換えられる。その後、誘電体多層膜18からなる半反射端面で伝搬した誘導放出光の一部が反射して、再び逆の経路を辿って第2の半導体光増幅器12に戻ることになる。すなわち、波長可変共振器1の点線で示す共振経路61でレーザ発振が生じる。 Among the wavelength spectrum components of the stimulated emission light output from the second semiconductor optical amplifier 12, the components that resonate with both the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are indicated by dotted lines. Propagate such a route. That is, the optical switch 52 is sequentially passed from the second semiconductor optical amplifier 12 through the optical waveguide 19, the first ring optical waveguide 21, the second ring optical waveguide 22, the optical waveguide 20, and the input optical waveguide 15. Propagate to. In the optical switch 52, the path is adjusted by the heater 51 so that the light is output to the output optical waveguide 17 on the side where the dielectric multilayer film 18 is provided. That is, the path of the optical switch 52 is adjusted in accordance with the semiconductor optical amplifier on the side where the drive current is injected so that the output optical waveguide 17 on the side where the dielectric multilayer film 18 is provided can obtain a desired optical output. Is switched. Thereafter, a part of the stimulated emission light propagated on the semi-reflecting end face made of the dielectric multilayer film 18 is reflected, and returns to the second semiconductor optical amplifier 12 through the reverse path again. That is, laser oscillation occurs in the resonance path 61 indicated by the dotted line of the wavelength tunable resonator 1.
 一方、第2の半導体光増幅器12から出力された誘導放出光の中で、第1のリング型光導波路21と第2のリング型光導波路22に共振しない成分は、一点鎖線に示すような非共振経路62を伝搬する。すなわち、第2の半導体光増幅器12から、光導波路19を経由して、第1の半導体光増幅器11に入力されることになる。この時、第1の半導体光増幅器11はOFF状態であり、入力された非共振成分は吸収されて、第2の半導体光増幅器12に戻ることはない。 On the other hand, components of the stimulated emission light output from the second semiconductor optical amplifier 12 that do not resonate with the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are non-resonant as indicated by the one-dot chain line. Propagates through the resonance path 62. That is, the light is input from the second semiconductor optical amplifier 12 to the first semiconductor optical amplifier 11 via the optical waveguide 19. At this time, the first semiconductor optical amplifier 11 is in an OFF state, and the input non-resonant component is absorbed and does not return to the second semiconductor optical amplifier 12.
 従って、この動作においては、長波側の利得分布によりレーザ発振が生じ、その長波帯域の波長可変が、第1のリング型光導波路21と第2のリング型光導波路22からなる2重リング型共振器のFSRの範囲で可能となる。 Therefore, in this operation, laser oscillation occurs due to the gain distribution on the long wave side, and the wavelength variation in the long wave band is a double ring type resonance composed of the first ring type optical waveguide 21 and the second ring type optical waveguide 22. This is possible within the range of the FSR of the instrument.
 これに対し、短波帯の利得スペクトルを有する第1の半導体光増幅器11をON状態(駆動電流を注入した状態)にすると共に、長波側の利得スペクトルを有する第2の半導体光増幅器12をOFF状態(駆動電流を注入しない状態)にした場合の光波の経路を、図4Bに示す。 On the other hand, the first semiconductor optical amplifier 11 having the gain spectrum in the short wave band is turned on (the state in which the drive current is injected), and the second semiconductor optical amplifier 12 having the gain spectrum on the long wave side is turned off. FIG. 4B shows a lightwave path when the drive current is not injected.
 第1の半導体光増幅器11から出力された誘導放出光の波長スペクトル成分の中で、第1のリング型光導波路21と第2のリング型光導波路22の両方に共振する成分は、点線に示すような経路を伝搬する。すなわち、第2の半導体光増幅器12から、光導波路19、第1のリング型光導波路21、第2のリング型光導波路22、光導波路20、入力光導波路15を順に経由して、光スイッチ52へと伝搬する。光スイッチ52では、誘電体多層膜18が設けられた側の出力光導波路17に出力されるように、ヒータ51により経路の調整が行われる。すなわち、誘電体多層膜18が設けられた側の出力光導波路17により所望する大きさの光出力が得られるように、駆動電流が注入された側の半導体光増幅器に合わせて光スイッチ52の経路が切り換えられる。その後、誘電体多層膜18からなる半反射端面で伝搬した誘導放出光の一部が反射して、再び逆の経路を辿って第1の半導体光増幅器11に戻ることになる。すなわち、波長可変共振器1の点線で示す共振経路63でレーザ発振が生じる。 Among the wavelength spectrum components of the stimulated emission light output from the first semiconductor optical amplifier 11, the component that resonates with both the first ring optical waveguide 21 and the second ring optical waveguide 22 is indicated by a dotted line. Propagate such a route. That is, the optical switch 52 is sequentially passed from the second semiconductor optical amplifier 12 through the optical waveguide 19, the first ring optical waveguide 21, the second ring optical waveguide 22, the optical waveguide 20, and the input optical waveguide 15. Propagate to. In the optical switch 52, the path is adjusted by the heater 51 so that the light is output to the output optical waveguide 17 on the side where the dielectric multilayer film 18 is provided. That is, the path of the optical switch 52 is adjusted in accordance with the semiconductor optical amplifier on the side where the drive current is injected so that the output optical waveguide 17 on the side where the dielectric multilayer film 18 is provided can obtain a desired optical output. Is switched. Thereafter, a part of the stimulated emission light propagated on the semi-reflecting end face made of the dielectric multilayer film 18 is reflected, and returns to the first semiconductor optical amplifier 11 along the reverse path again. That is, laser oscillation occurs in the resonance path 63 indicated by the dotted line of the wavelength tunable resonator 1.
 一方、第1の半導体光増幅器11から出力された誘導放出光の中で、第1のリング型光導波路21と第2のリング型光導波路22に共振しない成分は、一点鎖線に示すような非共振経路64を伝搬する。すなわち、第1の半導体光増幅器11から、光導波路19を経由して、第2の半導体光増幅器12に入力されることになる。この時、第2の半導体光増幅器12はOFF状態であり、入力された非共振成分は吸収されて、第1の半導体光増幅器11に戻ることはない。 On the other hand, in the stimulated emission light output from the first semiconductor optical amplifier 11, components that do not resonate with the first ring-type optical waveguide 21 and the second ring-type optical waveguide 22 are non-resonant as shown by the one-dot chain line. It propagates through the resonance path 64. That is, the light is input from the first semiconductor optical amplifier 11 to the second semiconductor optical amplifier 12 via the optical waveguide 19. At this time, the second semiconductor optical amplifier 12 is in an OFF state, and the input non-resonant component is absorbed and does not return to the first semiconductor optical amplifier 11.
 従って、この動作においては、短波側の利得分布によりレーザ発振が生じ、その短波帯域の波長可変が、第1のリング型光導波路21と第2のリング型光導波路22からなる2重リング型共振器のFSRの範囲で可能となる。 Therefore, in this operation, laser oscillation occurs due to the gain distribution on the short wave side, and the wavelength tunability in the short wave band is a double ring type resonance consisting of the first ring type optical waveguide 21 and the second ring type optical waveguide 22. This is possible within the range of the FSR of the instrument.
 以上のように、本実施の形態では、リング型共振器2に光スイッチ52を組み合わせた構成の波長可変共振器1を用いている。3dB合分波器16に代えて、光スイッチ52を利用することにより、3dB合分波器16で原理的に生じる3dBの過剰損失を回避できる。従って、波長可変レーザ光源において、波長可変共振器1の内部過剰損失を低減することができる。また、実施の形態1と同様の効果を奏することができる。 As described above, in the present embodiment, the variable wavelength resonator 1 having a configuration in which the ring type resonator 2 is combined with the optical switch 52 is used. By using the optical switch 52 instead of the 3 dB multiplexer / demultiplexer 16, it is possible to avoid the 3 dB excess loss that occurs in principle in the 3 dB multiplexer / demultiplexer 16. Therefore, the internal excess loss of the wavelength tunable resonator 1 can be reduced in the wavelength tunable laser light source. Further, the same effects as those of the first embodiment can be obtained.
実施の形態3.
 本発明の第3の実施の形態に係る波長可変レーザ光源の構成について、図5を用いて説明する。図5は、実施の形態3に係る波長可変レーザ光源の概略構成を示す模式図である。
Embodiment 3 FIG.
A configuration of a wavelength tunable laser light source according to the third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to the third embodiment.
 本実施の形態では、実施の形態1と異なる構成の波長可変共振器1が、波長可変レーザ光源に設けられている。具体的には、本実施の形態の波長可変共振器1は、複数のリング型光導波路が光学的に結合されたリング型共振器3と、このリング型共振器3と光導波路を介して光学的に接続された3dB合分波器16とを有している。本実施の形態のリング型共振器3は、2つのリング型光導波路を有する実施の形態1のリング型共振器2と異なり、3つのリング型光導波路(第1のリング型光導波路31、第2のリング型光導波路32、第3のリング型光導波路33)を有している。すなわち、実施の形態1のリング型共振器2に代えて、本実施の形態では、リング型共振器3が形成されていて、それ以外の構成については実施の形態1と同様であるため、説明を省略する。なお、本実施の形態では、実施の形態1と同様、2つの入力ポートと1つの出力ポートを有する波長可変共振器1には、互いに利得波長スペクトルの異なる第1の半導体光増幅器11と第2の半導体光増幅器12とが並列接続されている。 In the present embodiment, the wavelength tunable resonator 1 having a configuration different from that of the first embodiment is provided in the wavelength tunable laser light source. Specifically, the wavelength tunable resonator 1 of the present embodiment includes a ring resonator 3 in which a plurality of ring optical waveguides are optically coupled, and optical via the ring resonator 3 and the optical waveguide. And a 3 dB multiplexer / demultiplexer 16 connected to each other. Unlike the ring resonator 2 of the first embodiment having two ring optical waveguides, the ring resonator 3 of the present embodiment has three ring optical waveguides (first ring optical waveguide 31, first ring optical waveguide 31). 2 ring type optical waveguides 32 and a third ring type optical waveguide 33). That is, instead of the ring type resonator 2 of the first embodiment, in this embodiment, the ring type resonator 3 is formed, and other configurations are the same as those of the first embodiment. Is omitted. In the present embodiment, similarly to the first embodiment, the wavelength tunable resonator 1 having two input ports and one output port includes a first semiconductor optical amplifier 11 and a second semiconductor optical amplifier 11 having different gain wavelength spectra. The semiconductor optical amplifiers 12 are connected in parallel.
 具体的には、図5に示すように、SOI基板10には、第1のリング型光導波路31に対して、第2のリング型光導波路32と第3のリング型光導波路33が、光導波路37を介して光学結合するように近接して配置されている。光導波路37は、直線状に形成されている。光導波路37には、第1のリング型光導波路31との光学的な近接結合の位置に対して互いに対称な位置で、第2のリング型光導波路32と第3のリング型光導波路33が光学的近接接合されている。第2のリング型光導波路32及び第3のリング型光導波路33は、第1のリング型光導波路31と周囲長が僅かに異なっており、光路長が異なっている。 Specifically, as shown in FIG. 5, the SOI substrate 10 includes a second ring-type optical waveguide 32 and a third ring-type optical waveguide 33 that are optically coupled to the first ring-type optical waveguide 31. They are arranged close to each other so as to be optically coupled through the waveguide 37. The optical waveguide 37 is formed in a straight line. The optical waveguide 37 includes a second ring optical waveguide 32 and a third ring optical waveguide 33 at positions symmetrical to each other with respect to the optical proximity coupling position with the first ring optical waveguide 31. Optical proximity bonding. The second ring-type optical waveguide 32 and the third ring-type optical waveguide 33 are slightly different in peripheral length from the first ring-type optical waveguide 31 and have different optical path lengths.
 また、第1のリング型光導波路31の一部には、導波路の屈折率を変化させるためのヒータ34が形成されている。同様に、第2のリング型光導波路32の一部に、導波路の屈折率を変化させるためのヒータ35と、第3のリング型光導波路33の一部に、導波路の屈折率を変化させるためのヒータ36とが、それぞれ形成されている。ヒータ34、35、36は、リング型光導波路の上、下、または横など、導波路のコア層の温度を変化させることが可能な範囲に位置されている。ここでは、各リング型光導波路の上部に、ヒータ34、35、36がそれぞれ配設されている。なお、リング型光導波路近傍にヒータを設ける場合について説明したが、導波路の屈折率を変化させて波長特性をチューニングするための電極構造であればヒータ以外のものを用いてもよい。 Further, a heater 34 for changing the refractive index of the waveguide is formed in a part of the first ring type optical waveguide 31. Similarly, the heater 35 for changing the refractive index of the waveguide is changed to a part of the second ring type optical waveguide 32, and the refractive index of the waveguide is changed to a part of the third ring type optical waveguide 33. The heater 36 for making it form is each formed. The heaters 34, 35, and 36 are located in a range in which the temperature of the core layer of the waveguide can be changed, such as above, below, or beside the ring optical waveguide. Here, heaters 34, 35, and 36 are disposed above the ring-type optical waveguides, respectively. In addition, although the case where the heater is provided in the vicinity of the ring type optical waveguide has been described, an electrode structure other than the heater may be used as long as the electrode structure is used for tuning the wavelength characteristics by changing the refractive index of the waveguide.
 このように、本実施の形態では、3つのリング型光導波路が直線状の光導波路37を介して互いに光学的に接続されたリング型共振器3が用いられている。リング型共振器3の第2のリング型光導波路32には、光導波路38が光学的に結合するように近接して配置されている。また、リング型共振器3の第3のリング型光導波路33には、光導波路39が光学的に結合するように近接して配置されている。光導波路38、39は、ともに2×1の3dB合分波器16に接続され、3dB合分波器16の入力光導波路となる。3dB合分波器16の出力光導波路17の出力端は、実施の形態1と同様、所定の反射率になるように誘電体多層膜18が施されている。ここでは、例えば20%の反射率となるように、誘電体多層膜18が施されている。なお、第2のリング型光導波路32と結合する部分の光導波路38と、第3のリング型光導波路33と結合する部分の光導波路39は、直線状に形成されている。 As described above, in this embodiment, the ring resonator 3 in which three ring optical waveguides are optically connected to each other through the linear optical waveguide 37 is used. An optical waveguide 38 is disposed close to the second ring optical waveguide 32 of the ring resonator 3 so as to be optically coupled. Further, the optical waveguide 39 is disposed close to the third ring optical waveguide 33 of the ring resonator 3 so as to be optically coupled. The optical waveguides 38 and 39 are both connected to the 2 × 1 3 dB multiplexer / demultiplexer 16 and serve as input optical waveguides for the 3 dB multiplexer / demultiplexer 16. Similar to the first embodiment, a dielectric multilayer film 18 is applied to the output end of the output optical waveguide 17 of the 3 dB multiplexer / demultiplexer 16 so as to have a predetermined reflectance. Here, the dielectric multilayer film 18 is applied so as to have a reflectance of 20%, for example. The portion of the optical waveguide 38 that is coupled to the second ring type optical waveguide 32 and the portion of the optical waveguide 39 that is coupled to the third ring type optical waveguide 33 are linearly formed.
 一方、リング型共振器3の第1のリング型光導波路31には、光導波路19が光学的に結合するように近接して配置されている。この光導波路19の両端には、実施の形態1と同様、利得スペクトルの異なる2つの半導体増幅器(第1の半導体光増幅器11、第2の半導体光増幅器12)が、それぞれ光学的に結合するように配置されている。なお、第1のリング型光導波路31と結合する部分の光導波路19は、直線状に形成されている。 On the other hand, the optical waveguide 19 is disposed close to the first ring optical waveguide 31 of the ring resonator 3 so as to be optically coupled. As in the first embodiment, two semiconductor amplifiers (first semiconductor optical amplifier 11 and second semiconductor optical amplifier 12) having different gain spectra are optically coupled to both ends of the optical waveguide 19, respectively. Is arranged. The portion of the optical waveguide 19 that is coupled to the first ring optical waveguide 31 is formed in a straight line.
 続いて、本実施の形態の波長可変レーザ光源の動作機構について、図6A及びBを用いて詳細に説明する。図6A及びBは、実施の形態3に係る波長可変レーザ光源において、片方の光増幅器を駆動させた場合の光波の共振経路の様子を示す模式図である。図6Aは長波帯での発振動作を示す模式図であり、図6Bは短波帯での発振動作を示す模式図である。 Subsequently, the operation mechanism of the wavelength tunable laser light source of the present embodiment will be described in detail with reference to FIGS. 6A and 6B. 6A and 6B are schematic diagrams showing the state of the resonance path of the light wave when one of the optical amplifiers is driven in the wavelength tunable laser light source according to the third embodiment. FIG. 6A is a schematic diagram showing an oscillation operation in a long wave band, and FIG. 6B is a schematic diagram showing an oscillation operation in a short wave band.
 長波帯の利得スペクトルを有する第2の半導体光増幅器12をON状態(駆動電流を注入した状態)にすると共に、短波側の利得スペクトルを有する第1の半導体光増幅器11をOFF状態(駆動電流を注入しない状態)した場合の光波の経路を、図6Aに示す。 The second semiconductor optical amplifier 12 having a long-waveband gain spectrum is turned on (a state in which a driving current is injected), and the first semiconductor optical amplifier 11 having a short-wave gain spectrum is turned off (a driving current is reduced). FIG. 6A shows the path of the light wave when it is not injected.
 第2の半導体光増幅器から出力された誘導放出光の波長スペクトル成分の中で、第1のリング型光導波路31と第3のリング型光導波路33の両方に共振する成分は、点線に示すような経路を伝搬する。すなわち、第2の半導体光増幅器12から、光導波路19、第1のリング型光導波路31、光導波路37、第3のリング型光導波路33、光導波路39、3dB合分波器16を順に経由して、出力光導波路17へと伝搬する。そして、誘電体多層膜18からなる半反射端面で伝搬した誘導放出光の一部が反射し、再び逆の経路を辿って第2の半導体光増幅器12に戻ることになる。すなわち、波長可変共振器1の点線で示す共振経路81でレーザ発振が生じる。 Of the wavelength spectrum components of the stimulated emission light output from the second semiconductor optical amplifier, the components that resonate with both the first ring-type optical waveguide 31 and the third ring-type optical waveguide 33 are indicated by dotted lines. Propagation through various routes. That is, the second semiconductor optical amplifier 12 is sequentially passed through the optical waveguide 19, the first ring optical waveguide 31, the optical waveguide 37, the third ring optical waveguide 33, the optical waveguide 39, and the 3 dB multiplexer / demultiplexer 16. Then, it propagates to the output optical waveguide 17. Then, a part of the stimulated emission light propagated on the semi-reflective end face made of the dielectric multilayer film 18 is reflected, and returns to the second semiconductor optical amplifier 12 through the reverse path again. That is, laser oscillation occurs in the resonance path 81 indicated by the dotted line of the wavelength tunable resonator 1.
 一方、第2の半導体光増幅器から出力された誘導放出光の中で、第1のリング型光導波路31と第3のリング型光導波路33に共振しない成分は、一点鎖線に示すような非共振経路82を伝搬する。すなわち、第2の半導体光増幅器12から、光導波路19を経由して、第1の半導体光増幅器11に入力されることになる。この時、第1の半導体光増幅器11はOFF状態であり、入力された非共振成分は吸収されて、第2の半導体光増幅器12に戻ることはない。 On the other hand, components of the stimulated emission light output from the second semiconductor optical amplifier that do not resonate with the first ring-type optical waveguide 31 and the third ring-type optical waveguide 33 are non-resonant as indicated by the alternate long and short dash line. Propagate path 82. That is, the light is input from the second semiconductor optical amplifier 12 to the first semiconductor optical amplifier 11 via the optical waveguide 19. At this time, the first semiconductor optical amplifier 11 is in an OFF state, and the input non-resonant component is absorbed and does not return to the second semiconductor optical amplifier 12.
 従って、この動作においては、長波側の利得分布によりレーザ発振が生じ、その長波帯域の波長可変が、第1のリング型光導波路31と第3のリング型光導波路33からなる2重リング共振器のFSRの範囲で可能となる。 Therefore, in this operation, laser oscillation occurs due to the gain distribution on the long wave side, and the wavelength variation of the long wave band is a double ring resonator composed of the first ring optical waveguide 31 and the third ring optical waveguide 33. This is possible within the range of FSR.
 これに対し、短波帯の利得スペクトルを有する第1の半導体光増幅器11をON状態(駆動電流を注入した状態)すると共に、長波側の利得スペクトルを有する第2の半導体光増幅器12をOFF状態(駆動電流を注入しない状態)した場合の光波の経路を、図6Bに示す。 On the other hand, the first semiconductor optical amplifier 11 having a short-waveband gain spectrum is turned on (a state in which a drive current is injected), and the second semiconductor optical amplifier 12 having a long-wave gain spectrum is turned off ( FIG. 6B shows the lightwave path when the drive current is not injected.
 第1の半導体光増幅器11から出力された誘導放出光の波長スペクトル成分の中で、第1のリング型光導波路31と第2のリング型光導波路32の両方に共振する成分は、点線に示すような経路を伝搬する。すなわち、第1の半導体光増幅器11から、光導波路19、第1のリング型光導波路31、光導波路37、第2のリング型光導波路32、光導波路38、3dB合分波器16を順に経由して、出力光導波路17へと伝搬する。そして、誘電体多層膜18からなる半反射端面で伝搬した誘導放出光の一部が反射し、再び逆の経路を辿って第1の半導体光増幅器11に戻ることになる。すなわち、波長可変共振器1の点線で示す共振経路83でレーザ発振が生じる。 Among the wavelength spectrum components of the stimulated emission light output from the first semiconductor optical amplifier 11, the component that resonates with both the first ring type optical waveguide 31 and the second ring type optical waveguide 32 is indicated by a dotted line. Propagate such a route. That is, the first semiconductor optical amplifier 11 is sequentially passed through the optical waveguide 19, the first ring optical waveguide 31, the optical waveguide 37, the second ring optical waveguide 32, the optical waveguide 38, and the 3 dB multiplexer / demultiplexer 16. Then, it propagates to the output optical waveguide 17. Then, a part of the stimulated emission light propagated on the semi-reflecting end face made of the dielectric multilayer film 18 is reflected, and returns to the first semiconductor optical amplifier 11 along the reverse path again. That is, laser oscillation occurs in the resonance path 83 indicated by the dotted line of the wavelength tunable resonator 1.
 一方、第1の半導体光増幅器11から出力された誘導放出光の中で、第1のリング型光導波路31と第2のリング型光導波路32に共振しない成分は、一点鎖線に示すような非共振経路84を伝搬する。すなわち、第1の半導体光増幅器11から、光導波路19を経由して、第2の半導体光増幅器12に入力されることになる。この時、第2の半導体光増幅器12はOFF状態であり、入力された非共振成分は吸収されて、第1の半導体光増幅器11に戻ることはない。 On the other hand, components of the stimulated emission light output from the first semiconductor optical amplifier 11 that do not resonate with the first ring-type optical waveguide 31 and the second ring-type optical waveguide 32 are non-resonant as indicated by a one-dot chain line. Propagates through the resonance path 84. That is, the light is input from the first semiconductor optical amplifier 11 to the second semiconductor optical amplifier 12 via the optical waveguide 19. At this time, the second semiconductor optical amplifier 12 is in an OFF state, and the input non-resonant component is absorbed and does not return to the first semiconductor optical amplifier 11.
 従って、この動作においては、短波側の利得分布によりレーザ発振が生じ、その短波帯域の波長可変が、第1のリング型光導波路31と第2のリング型光導波路32からなる2重リング共振器のFSRの範囲で可能となる。 Therefore, in this operation, laser oscillation occurs due to the gain distribution on the short wave side, and the wavelength variation of the short wave band is a double ring resonator composed of the first ring type optical waveguide 31 and the second ring type optical waveguide 32. This is possible within the range of FSR.
 以上のように、本実施の形態では、互いのリング型光導波路が直線状の光導波路37を介して光学結合したリング型共振器3を用いている。これにより、リング型光導波路同士の光学結合を無くすことができる。すなわち、波長可変共振器1における光学結合は、リング型光導波路と直線状の光導波路との光学結合に統一されることとなる。ここで、波長可変共振器1が、リング型光導波路同士の光学結合と、リング型光導波路と直線状の光導波路の光学結合が共存する場合、それぞれの結合の強さには、ある一定の関係を設定する必要があり、製作精度の点からより厳しい製造上の制御が必要となる。本実施の形態では、波長可変共振器1が、リング型光導波路と直線状の光導波路の光学結合に統一されているので、各直線状の光導波路とリング型光導波路の光学的な結合の強さは、それぞれの部分で同一に設定することができる。従って、製造上の制御をより容易にすることができる。また、実施の形態1と同様の効果を奏することができる。 As described above, in the present embodiment, the ring resonator 3 in which the ring optical waveguides are optically coupled via the linear optical waveguide 37 is used. Thereby, the optical coupling between the ring type optical waveguides can be eliminated. That is, the optical coupling in the wavelength tunable resonator 1 is unified to the optical coupling between the ring type optical waveguide and the linear optical waveguide. Here, when the wavelength tunable resonator 1 includes the optical coupling between the ring type optical waveguides and the optical coupling between the ring type optical waveguide and the linear optical waveguide, each coupling strength has a certain level. It is necessary to set the relationship, and stricter manufacturing control is required from the viewpoint of manufacturing accuracy. In the present embodiment, the wavelength tunable resonator 1 is unified to optical coupling between the ring optical waveguide and the linear optical waveguide, so that the optical coupling between each linear optical waveguide and the ring optical waveguide is integrated. The strength can be set the same in each part. Therefore, the manufacturing control can be made easier. Further, the same effects as those of the first embodiment can be obtained.
 なお、実施の形態3は、適宜、実施の形態1、2と組み合わせて用いることができる。すなわち、本実施の形態では、3つのリング型光導波路を有するリング型共振器3に、2×1の3dB合分波器16を組み合わせて用いる場合について例示的に説明をしたが、本発明は、これに限定されるものではない。例えば、3つのリング型光導波路を有するリング型共振器3に、実施の形態2で示した光スイッチ52を組み合わせて用いてもよい。また、2×2の3dB合分波器を組み合わせて用いることもできる。 The third embodiment can be used in combination with the first and second embodiments as appropriate. That is, in the present embodiment, the case where the 2 × 1 3 dB multiplexer / demultiplexer 16 is used in combination with the ring resonator 3 having three ring optical waveguides has been exemplarily described. However, the present invention is not limited to this. For example, the optical switch 52 shown in the second embodiment may be combined with the ring resonator 3 having three ring optical waveguides. A 2 × 2 3 dB multiplexer / demultiplexer may be used in combination.
実施の形態4.
 本発明の第4の実施の形態に係る波長可変レーザ光源の構成について、図7を用いて説明する。図7は、実施の形態4に係る波長可変レーザ光源の概略構成を示す模式図である。本実施の形態では、2つのリング型光導波路と3dB合分波器とを主な構成要素とする波長可変共振器1の小型化を可能にする波長可変レーザ光源の例について説明する。
Embodiment 4 FIG.
A configuration of a wavelength tunable laser light source according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to the fourth embodiment. In the present embodiment, an example of a wavelength tunable laser light source that enables miniaturization of the wavelength tunable resonator 1 having two ring optical waveguides and a 3 dB multiplexer / demultiplexer as main components will be described.
 本実施の形態では、実施の形態1と異なる構成の波長可変共振器1が、波長可変レーザ光源に設けられている。それ以外の構成については実施の形態1と同様であるため、説明を省略する。すなわち、本実施の形態では、実施の形態1と同様、2つの入力ポートと1つの出力ポートとを少なくとも有する波長可変共振器1には、互いに利得波長スペクトルの異なる第1の半導体光増幅器11と第2の半導体光増幅器12とが並列接続されている。 In the present embodiment, the wavelength tunable resonator 1 having a configuration different from that of the first embodiment is provided in the wavelength tunable laser light source. Since other configurations are the same as those in the first embodiment, description thereof is omitted. That is, in the present embodiment, similarly to the first embodiment, the wavelength tunable resonator 1 having at least two input ports and one output port includes the first semiconductor optical amplifier 11 having different gain wavelength spectra. The second semiconductor optical amplifier 12 is connected in parallel.
 図7において、本実施の形態の波長可変共振器1は、周囲長の異なる2つのリング型光導波路が光導波路を介して互いに光学接続されたリング型共振器120と、このリング型共振器120と光学的に接続された3dB合分波器117とを有している。 In FIG. 7, the wavelength tunable resonator 1 according to the present embodiment includes a ring resonator 120 in which two ring optical waveguides having different peripheral lengths are optically connected to each other via an optical waveguide, and the ring resonator 120. And a 3 dB multiplexer / demultiplexer 117 optically connected to each other.
 具体的には、SOI基板10において、第1のリング型光導波路121と第2のリング型光導波路122のそれぞれに光学的に結合するように、光導波路125が近接して配置されている。すなわち、1本の光導波路125が第1のリング型光導波路121と第2のリング型光導波路122のそれぞれに近接配置されることによって、第1のリング型光導波路121と第2のリング型光導波路122とが互いに光学接続された構成となっている。第2のリング型光導波路122は、第1のリング型光導波路121と周囲長が僅かに異なっており、光路長が異なっている。 Specifically, in the SOI substrate 10, the optical waveguide 125 is disposed adjacent to each other so as to be optically coupled to each of the first ring optical waveguide 121 and the second ring optical waveguide 122. That is, one optical waveguide 125 is disposed close to each of the first ring optical waveguide 121 and the second ring optical waveguide 122, whereby the first ring optical waveguide 121 and the second ring optical waveguide 125 are disposed. The optical waveguide 122 is optically connected to each other. The second ring-type optical waveguide 122 has a slightly different peripheral length from the first ring-type optical waveguide 121, and is different in optical path length.
 第1のリング型光導波路121と第2のリング型光導波路122の近傍には、実施の形態1と同様、導波路の屈折率を変化させるためのヒータ123、124がそれぞれ形成されている。なお、導波路の屈折率を変化させて波長特性をチューニングするための電極構造であれば、ヒータ以外のものを用いてもよい。このように、光導波路125を介して光学的に結合された第1のリング型光導波路121と第2のリング型光導波路122とによって、リング型共振器120が構成されている。 In the vicinity of the first ring-type optical waveguide 121 and the second ring-type optical waveguide 122, heaters 123 and 124 for changing the refractive index of the waveguide are formed in the same manner as in the first embodiment. In addition, as long as the electrode structure is used for tuning the wavelength characteristics by changing the refractive index of the waveguide, a material other than the heater may be used. As described above, the ring resonator 120 is configured by the first ring optical waveguide 121 and the second ring optical waveguide 122 that are optically coupled via the optical waveguide 125.
 リング型共振器120には、2つの入力ポート端と2つの出力ポート端とを有する2×2の3dB合分波器117が光学的に結合するように近接して配置されている。すなわち、第1のリング型光導波路121と第2のリング型光導波路122とが、3dB合分波器117の2つの出力光導波路118,119にそれぞれ光学的に結合するように近接して配置されている。一方、3dB合分波器117の入力光導波路115、116には、それぞれ、利得スペクトルの異なる2つの半導体光増幅器(第1の半導体光増幅器11、第2の半導体光増幅器12)のそれぞれの一端が光学的に接続されている。従って、3dB合分波器117の2つの入力光導波路115,116が、波長可変共振器1の入力ポートとなる。なお、実施の形態1と同様、第1の半導体光増幅器11と第2の半導体光増幅器12の反対側の端面には高反射膜(高反射誘電体膜)13,14がそれぞれ施された構成となっている。 In the ring resonator 120, a 2 × 2 3 dB multiplexer / demultiplexer 117 having two input port ends and two output port ends is disposed in close proximity so as to be optically coupled. That is, the first ring optical waveguide 121 and the second ring optical waveguide 122 are arranged close to each other so as to be optically coupled to the two output optical waveguides 118 and 119 of the 3 dB multiplexer / demultiplexer 117, respectively. Has been. On the other hand, the input optical waveguides 115 and 116 of the 3 dB multiplexer / demultiplexer 117 have one ends of two semiconductor optical amplifiers (first semiconductor optical amplifier 11 and second semiconductor optical amplifier 12) having different gain spectra, respectively. Are optically connected. Accordingly, the two input optical waveguides 115 and 116 of the 3 dB multiplexer / demultiplexer 117 serve as input ports of the wavelength tunable resonator 1. As in the first embodiment, high reflection films (high reflection dielectric films) 13 and 14 are provided on the opposite end surfaces of the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12, respectively. It has become.
 さらに、2つのリング型光導波路を光学接続する光導波路125の一部には、光波パワーを取り出すための光導波路が光学的に結合するように近接して配置されている。ここでは、光導波路125に光学的に結合するように、光合分波器131が近接して配置されている。そして、光合分波器131の出力光導波路132、133の端面(それぞれ、出力光導波路端134、135)に、図示しない光学反射防止膜が施されている。 Furthermore, a part of the optical waveguide 125 that optically connects the two ring-type optical waveguides is disposed close to the optical waveguide for extracting light wave power so as to be optically coupled. Here, the optical multiplexer / demultiplexer 131 is disposed close to the optical waveguide 125 so as to be optically coupled. An optical antireflection film (not shown) is applied to end faces of the output optical waveguides 132 and 133 of the optical multiplexer / demultiplexer 131 (output optical waveguide ends 134 and 135, respectively).
 続いて、本実施の形態の波長可変レーザ光源の動作機構について説明する。短波側の利得スペクトルを有する第1の半導体光増幅器11か長波側の利得スペクトルを有する第2の半導体光増幅器12のどちらか一方を駆動させると、駆動された側の半導体光増幅器から出力された誘導放出光は3dB合分波器117により2分岐される。3dB合分波器117により分岐されたそれぞれの光波において、第1のリング型光導波路121及び第2のリング型光導波路122に共振する波長成分のみが、光導波路125を介して再び3dB合分波器117へと戻る。そして、駆動されている側の半導体光増幅器に帰還する。 Subsequently, an operation mechanism of the wavelength tunable laser light source according to the present embodiment will be described. When either the first semiconductor optical amplifier 11 having the short-wave gain spectrum or the second semiconductor optical amplifier 12 having the long-wave gain spectrum is driven, the signal is output from the driven semiconductor optical amplifier. The stimulated emission light is branched into two by a 3 dB multiplexer / demultiplexer 117. In each of the light waves branched by the 3 dB multiplexer / demultiplexer 117, only the wavelength component resonating with the first ring optical waveguide 121 and the second ring optical waveguide 122 is again 3 dB multiplexed / divided via the optical waveguide 125. Return to Waver 117. Then, the feedback is made to the driven semiconductor optical amplifier.
 この半導体光増幅器の一端には高反射膜が付加されているので、リング型共振器120を含む波長可変共振器1と半導体光増幅器の間を特定波長の光波が往復する。これにより、レーザ発振が生じることになる。レーザ発振光は、光合分波器131に部分的に結合されて、光導波路端面135から外部に出力される。第1のリング型光導波路121及び第2のリング型光導波路122に付加された、導波路実効屈折率を変更するためのヒータ123、124により、発振波長をチューニングすることが可能となる。 Since a highly reflective film is added to one end of the semiconductor optical amplifier, a light wave having a specific wavelength reciprocates between the wavelength tunable resonator 1 including the ring resonator 120 and the semiconductor optical amplifier. As a result, laser oscillation occurs. The laser oscillation light is partially coupled to the optical multiplexer / demultiplexer 131 and output from the optical waveguide end face 135 to the outside. The oscillation wavelength can be tuned by the heaters 123 and 124 that are added to the first ring-type optical waveguide 121 and the second ring-type optical waveguide 122 and change the effective refractive index of the waveguide.
 以上のような構成とすることにより、本実施の形態では、2つのリング型光導波路と3dB合分波器117とを主な構成要素とする波長可変共振器1を小型化できる。また、実施の形態1と同様の効果を奏することができる。 By adopting the configuration as described above, in the present embodiment, the wavelength tunable resonator 1 having two ring optical waveguides and a 3 dB multiplexer / demultiplexer 117 as main components can be miniaturized. Further, the same effects as those of the first embodiment can be obtained.
実施の形態5.
 本発明の第5の実施の形態に係る波長可変レーザ光源の構成について、図8を用いて説明する。図8は、実施の形態5に係る波長可変レーザ光源の概略構成を示す模式図である。本実施の形態では、出力光強度を向上させるための手段として2×2の方向性結合器型スイッチを実施の形態4に付加した構成の波長可変レーザ光源の例について説明する。
Embodiment 5 FIG.
The configuration of the wavelength tunable laser light source according to the fifth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to the fifth embodiment. In the present embodiment, an example of a wavelength tunable laser light source having a configuration in which a 2 × 2 directional coupler type switch is added to the fourth embodiment as means for improving the output light intensity will be described.
 本実施の形態では、実施の形態4と異なる構成の波長可変共振器1が、波長可変レーザ光源に設けられている。それ以外の構成については実施の形態4と同様であるため、説明を省略する。すなわち、本実施の形態では、実施の形態4と同様、2つの入力ポートと1つの出力ポートとを少なくとも有する波長可変共振器1には、互いに利得波長スペクトルの異なる第1の半導体光増幅器11と第2の半導体光増幅器12とが並列接続されている。 In the present embodiment, the wavelength tunable resonator 1 having a configuration different from that of the fourth embodiment is provided in the wavelength tunable laser light source. Since other configurations are the same as those in the fourth embodiment, description thereof is omitted. That is, in the present embodiment, as in the fourth embodiment, the wavelength tunable resonator 1 having at least two input ports and one output port includes the first semiconductor optical amplifier 11 having different gain wavelength spectra. The second semiconductor optical amplifier 12 is connected in parallel.
 図8において、本実施の形態の波長可変共振器1は、周囲長の異なる2つのリング型光導波路が光導波路を介して互いに光学接続されたリング型共振器120と、このリング型共振器120と光学的に接続された2×2の3dB合分波器117と、2つの入力ポート端と2つの出力ポート端とを有する2×2の光スイッチ150と、を有している。 In FIG. 8, the wavelength tunable resonator 1 of the present embodiment includes a ring resonator 120 in which two ring optical waveguides having different peripheral lengths are optically connected to each other via an optical waveguide, and the ring resonator 120. And a 2 × 2 3 dB multiplexer / demultiplexer 117 optically connected to each other, and a 2 × 2 optical switch 150 having two input port ends and two output port ends.
 具体的には、SOI基板10には、実施の形態4と同様、第1のリング型光導波路121と第2のリング型光導波路122のそれぞれに光学的に結合するように、光導波路125が近接して配置されることによって、リング型共振器120が構成されている。また、第1のリング型光導波路121と第2のリング型光導波路122とが、3dB合分波器117の2つの出力光導波路118,119にそれぞれ光学的に結合するように近接して配置されている。そして、3dB合分波器117の入力光導波路115、116には、それぞれ、利得スペクトルの異なる2つの半導体光増幅器(第1の半導体光増幅器11、第2の半導体光増幅器12)のそれぞれの一端が光学的に接続されている。 Specifically, the optical waveguide 125 is formed on the SOI substrate 10 so as to be optically coupled to each of the first ring optical waveguide 121 and the second ring optical waveguide 122, as in the fourth embodiment. The ring resonator 120 is configured by being arranged close to each other. Also, the first ring optical waveguide 121 and the second ring optical waveguide 122 are arranged close to each other so as to be optically coupled to the two output optical waveguides 118 and 119 of the 3 dB multiplexer / demultiplexer 117, respectively. Has been. The input optical waveguides 115 and 116 of the 3 dB multiplexer / demultiplexer 117 have one ends of two semiconductor optical amplifiers (first semiconductor optical amplifier 11 and second semiconductor optical amplifier 12) having different gain spectra, respectively. Are optically connected.
 本実施の形態では、2つの半導体光増幅器(第1の半導体光増幅器11、第2の半導体光増幅器12)のそれぞれの他端は、光スイッチ150の2つの入力光導波路151、152にそれぞれ接続されている。この光スイッチ150は、2つの3dB合分波器153、157と、2本の光導波路154、155と、位相シフター156とを含むマッハツェンダー型光スイッチである。位相シフター156の一例として、実施の形態2と同様、ヒータを用いてもよい。光スイッチ150の2つの出力光導波路158、159のうち、少なくとも一方の出力光導波路の出射端は、所定の反射率になるように図示しない誘電体多層膜(誘電体膜)が施されている。ここでは、出力光導波路158の出力光導波路端160に、例えば光学反射率が5%から10%程度の誘電体膜が施されている。この誘電体膜の設けられた出力光導波路端160が、波長可変共振器1の出力ポートとなる。 In the present embodiment, the other ends of the two semiconductor optical amplifiers (first semiconductor optical amplifier 11 and second semiconductor optical amplifier 12) are connected to the two input optical waveguides 151 and 152 of the optical switch 150, respectively. Has been. The optical switch 150 is a Mach-Zehnder optical switch including two 3 dB multiplexers / demultiplexers 153 and 157, two optical waveguides 154 and 155, and a phase shifter 156. As an example of the phase shifter 156, a heater may be used as in the second embodiment. Of the two output optical waveguides 158 and 159 of the optical switch 150, the output end of at least one of the output optical waveguides is provided with a dielectric multilayer film (dielectric film) (not shown) so as to have a predetermined reflectance. . Here, a dielectric film having an optical reflectivity of about 5% to 10% is applied to the output optical waveguide end 160 of the output optical waveguide 158, for example. The output optical waveguide end 160 provided with the dielectric film becomes an output port of the wavelength tunable resonator 1.
 続いて、本実施の形態の波長可変レーザ光源の動作機構について説明する。短波側の利得スペクトルを有する第1の半導体光増幅器11か長波側の利得スペクトルを有する第2の半導体光増幅器12のどちらか一方を駆動させると、駆動された側の半導体光増幅器から出力された誘導放出光は、リング型共振器120を伝搬し、特定の波長光成分のみが駆動されている側の半導体光増幅器に再び帰還する。 Subsequently, an operation mechanism of the wavelength tunable laser light source according to the present embodiment will be described. When either the first semiconductor optical amplifier 11 having the short-wave gain spectrum or the second semiconductor optical amplifier 12 having the long-wave gain spectrum is driven, the signal is output from the driven semiconductor optical amplifier. The stimulated emission light propagates through the ring resonator 120 and returns again to the semiconductor optical amplifier on the side where only a specific wavelength light component is driven.
 また、駆動された側の半導体光増幅器から光スイッチ150の3dB合分波器153へ導波した誘導放出光は、位相シフター156により出力光導波路端160へ導波するように位相調整される。そして、この出力光導波路端160において反射された一部の光波成分は、駆動されている側の半導体光増幅器へ再び戻ることになる。これにより、駆動されている側の半導体光増幅器を挟んで、リング型共振器120と出力光導波路端160との間で光共振器が形成されて、レーザ発振が生じ、その出力光が出力光導波路端160から出力されることになる。レーザ発振光のチューニング可能な波長帯は、利得波長帯の異なる2つの半導体光増幅器(第1の半導体光増幅器11、第2の半導体光増幅器12)のどちらか一方のみ動作させることにより適宜選択することが可能である。 Further, the phase of the stimulated emission light guided from the driven semiconductor optical amplifier to the 3 dB multiplexer / demultiplexer 153 of the optical switch 150 is guided by the phase shifter 156 to the output optical waveguide end 160. Then, a part of the light wave component reflected at the output optical waveguide end 160 returns again to the driven semiconductor optical amplifier. Thus, an optical resonator is formed between the ring resonator 120 and the output optical waveguide end 160 across the driven semiconductor optical amplifier, and laser oscillation occurs, and the output light is output to the output optical waveguide. It is output from the waveguide end 160. The tunable wavelength band of the laser oscillation light is appropriately selected by operating only one of the two semiconductor optical amplifiers (the first semiconductor optical amplifier 11 and the second semiconductor optical amplifier 12) having different gain wavelength bands. It is possible.
 以上のような構成とすることにより、本実施の形態では、出力光強度を向上させることができる。また、実施の形態1、4と同様の効果を奏することができる。 By adopting the above configuration, the output light intensity can be improved in this embodiment. Further, the same effects as those of the first and fourth embodiments can be obtained.
実施の形態6.
 本発明の第6の実施の形態に係る波長可変レーザ光源の構成について、図9を用いて説明する。図9は、実施の形態6に係る波長可変レーザ光源の概略構成を示す模式図である。本実施の形態では、電気信号を光信号に変換する光変調器を集積した波長可変レーザ光源の例について説明する。
Embodiment 6 FIG.
The configuration of a wavelength tunable laser light source according to the sixth embodiment of the present invention will be described with reference to FIG. FIG. 9 is a schematic diagram showing a schematic configuration of a wavelength tunable laser light source according to the sixth embodiment. In this embodiment, an example of a wavelength tunable laser light source in which an optical modulator that converts an electric signal into an optical signal is integrated will be described.
 図9において、本実施の形態の波長可変共振器1は、周囲長の異なる2つのリング型光導波路が光導波路を介して互いに光学接続されたリング型共振器120と、このリング型共振器120と光学的に接続された2×2の3dB合分波器117と、を有している。 In FIG. 9, the tunable resonator 1 according to the present embodiment includes a ring resonator 120 in which two ring optical waveguides having different peripheral lengths are optically connected to each other via the optical waveguide, and the ring resonator 120. And a 2 × 2 3 dB multiplexer / demultiplexer 117 optically connected to each other.
 具体的には、SOI基板10には、実施の形態4と同様、第1のリング型光導波路121と第2のリング型光導波路122のそれぞれに光学的に結合するように、光導波路125が近接して配置されることによって、リング型共振器120が構成されている。また、第1のリング型光導波路121と第2のリング型光導波路122とが、3dB合分波器117の2つの出力光導波路118,119にそれぞれ光学的に結合するように近接して配置されている。なお、第1のリング型光導波路121と第2のリング型光導波路122の上部には、導波路の実効屈折率を変化させるためのヒータ123、124がそれぞれ形成されている。 Specifically, the optical waveguide 125 is formed on the SOI substrate 10 so as to be optically coupled to each of the first ring optical waveguide 121 and the second ring optical waveguide 122, as in the fourth embodiment. The ring resonator 120 is configured by being arranged close to each other. Also, the first ring optical waveguide 121 and the second ring optical waveguide 122 are arranged close to each other so as to be optically coupled to the two output optical waveguides 118 and 119 of the 3 dB multiplexer / demultiplexer 117, respectively. Has been. In addition, heaters 123 and 124 for changing the effective refractive index of the waveguide are formed above the first ring-type optical waveguide 121 and the second ring-type optical waveguide 122, respectively.
 本実施の形態では、3dB合分波器117の入力光導波路115,116には、それぞれ、半導体光増幅器111と光変調器112のそれぞれの一端が光学的に接続されている。半導体光増幅器111の他端には、高反射膜113が付加されている。一方、光変調器112の他端には、反射防止膜114が付加されている。 In this embodiment, one end of each of the semiconductor optical amplifier 111 and the optical modulator 112 is optically connected to the input optical waveguides 115 and 116 of the 3 dB multiplexer / demultiplexer 117, respectively. A high reflection film 113 is added to the other end of the semiconductor optical amplifier 111. On the other hand, an antireflection film 114 is added to the other end of the optical modulator 112.
 続いて、本実施の形態の波長可変レーザ光源の動作機構について説明する。半導体光増幅器111を駆動させると、この半導体光増幅器111から出力された誘導放出光は、入力光導波路115を伝搬して3dB合分波器117により2方向に分岐される。3dB合分波器117により分岐された光波は、それぞれ、出力光導波路118,119を伝搬し、第1のリング型光導波路121及び第2のリング型光導波路122に共振する波長成分の光波のみが、出力光導波路118,119を通過して再び3dB合分波器117へと戻る。そして、一部の光波は、入力光導波路116を伝搬した後に光変調器112に入力される。また、他の光波成分は入力光導波路115を伝搬して半導体光増幅器111に再帰し、高反射膜113で反射される。 Subsequently, an operation mechanism of the wavelength tunable laser light source according to the present embodiment will be described. When the semiconductor optical amplifier 111 is driven, the stimulated emission light output from the semiconductor optical amplifier 111 propagates through the input optical waveguide 115 and is branched in two directions by the 3 dB multiplexer / demultiplexer 117. The light waves branched by the 3 dB multiplexer / demultiplexer 117 propagate only through the output optical waveguides 118 and 119, respectively, and only light waves having wavelength components that resonate with the first ring optical waveguide 121 and the second ring optical waveguide 122, respectively. However, it passes through the output optical waveguides 118 and 119 and returns to the 3 dB multiplexer / demultiplexer 117 again. Then, a part of the light waves are input to the optical modulator 112 after propagating through the input optical waveguide 116. Other light wave components propagate through the input optical waveguide 115, return to the semiconductor optical amplifier 111, and are reflected by the high reflection film 113.
 即ち、本実施の形態では、半導体光増幅器111を介して高反射膜113とリング型共振器120との間で光波の往復が生じることによって、レーザ発振が起こり、発振光の一部が光変調器112を通過して外部に出力される構造となっている。 In other words, in this embodiment, a laser wave is oscillated by the reciprocation of the light wave between the high reflection film 113 and the ring resonator 120 via the semiconductor optical amplifier 111, and a part of the oscillation light is optically modulated. It is configured to pass through the device 112 and output to the outside.
 このように、本実施の形態の波長可変レーザ光源は、周囲長の異なる2つのリング型光導波路が光導波路を介して互いに光学接続されたリング型共振器120、及びこのリング型共振器120と光学的に接続された2×2の3dB合分波器117を含む波長可変共振器1と、この波長可変共振器1に並列接続された半導体光増幅器111及び光変調器112とを備えて構成されている。これにより、光変調器112を半導体光増幅器111と同様の形態で集積することが可能である。従って、実装工程の共通化、低コスト化を図ることができる。 As described above, the wavelength tunable laser light source according to the present embodiment includes the ring resonator 120 in which two ring optical waveguides having different peripheral lengths are optically connected to each other via the optical waveguide, and the ring resonator 120 A wavelength tunable resonator 1 including a 2 × 2 3 dB multiplexer / demultiplexer 117 optically connected, and a semiconductor optical amplifier 111 and an optical modulator 112 connected in parallel to the wavelength tunable resonator 1 are provided. Has been. Thereby, the optical modulator 112 can be integrated in the same form as the semiconductor optical amplifier 111. Therefore, the mounting process can be shared and the cost can be reduced.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2009年6月29日に出願された日本出願特願2009-153700を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2009-153700 filed on June 29, 2009, the entire disclosure of which is incorporated herein.
 本発明は、光通信、光情報処理及び光インターコネクション等に用いられる光源であり、特に波長可変機能を有する波長可変レーザ光源、及びその駆動方法に利用することができる。 The present invention is a light source used for optical communication, optical information processing, optical interconnection, and the like, and can be used for a wavelength variable laser light source having a wavelength variable function and a driving method thereof.
1 波長可変共振器、2、3 リング型共振器、10 基板、
11 第1の半導体光増幅器、12 第2の半導体光増幅器、
13、14 高反射膜、15 入力光導波路、
16 3dB合分波器、17 出力光導波路、
18 誘電体多層膜、19、20 光導波路、
21 第1のリング型光導波路、22 第2のリング型光導波路、
23、24 ヒータ、31 第1のリング型光導波路、
32 第2のリング型光導波路、33 第3のリング型光導波路、
34、35、36 ヒータ、37、38、39 光導波路、
41 共振経路、42 非共振経路、
43 共振経路、44 非共振経路、
51 ヒータ、52 光スイッチ、
61 共振経路、62 非共振経路、
63 共振経路、64 非共振経路、
81 共振経路、82 非共振経路、
83 共振経路、84 非共振経路、
111 半導体光増幅器、112 光変調器、
113 光反射膜、114 反射防止膜、
115、116 入力光導波路、117 3dB合分波器、
118、119 出力光導波路、120 リング型共振器、
121、122 リング型光導波路、123、124 ヒータ、
125 光導波路、131 光合分波器、
132、133 出力光導波路、134、135 出力光導波路端、
150 光スイッチ、151、152 入力光導波路、
153 3dB合分波器、154、155 光導波路、
156 位相シフター、157 3dB合分波器、
158、159 出力光導波路、160 出力光導波路端
1 wavelength tunable resonator, 2, 3 ring resonator, 10 substrate,
11 first semiconductor optical amplifier, 12 second semiconductor optical amplifier,
13, 14 highly reflective film, 15 input optical waveguide,
16 3 dB multiplexer / demultiplexer, 17 output optical waveguide,
18 Dielectric multilayer film, 19, 20 Optical waveguide,
21 first ring-type optical waveguide, 22 second ring-type optical waveguide,
23, 24 heater, 31 first ring type optical waveguide,
32 second ring-type optical waveguide, 33 third ring-type optical waveguide,
34, 35, 36 heater, 37, 38, 39 optical waveguide,
41 resonant path, 42 non-resonant path,
43 resonant path, 44 non-resonant path,
51 heater, 52 optical switch,
61 resonant path, 62 non-resonant path,
63 resonant path, 64 non-resonant path,
81 resonant path, 82 non-resonant path,
83 resonant path, 84 non-resonant path,
111 semiconductor optical amplifier, 112 optical modulator,
113 light reflection film, 114 antireflection film,
115, 116 input optical waveguide, 117 3 dB multiplexer / demultiplexer,
118, 119 output optical waveguide, 120 ring resonator,
121, 122 ring type optical waveguide, 123, 124 heater,
125 optical waveguide, 131 optical multiplexer / demultiplexer,
132, 133 output optical waveguide, 134, 135 output optical waveguide end,
150 optical switch, 151, 152 input optical waveguide,
153 3 dB multiplexer / demultiplexer, 154, 155 optical waveguide,
156 phase shifter, 157 3 dB multiplexer / demultiplexer,
158, 159 output optical waveguide, 160 output optical waveguide end

Claims (16)

  1.  第1入力ポート、第2入力ポート、及び出力ポートを有し、透過光強度の波長スペクトルピークを移動させることのできる波長可変フィルターと、
     一端が前記第1入力ポートと光学的に接続された第1光増幅器と、
     一端が前記第2入力ポートと光学的に接続され、前記第1光増幅器と利得波長スペクトルの異なる第2光増幅器と、
     前記出力ポートの端面に設けられ、所定の反射率及び透過率を有する光学ミラーと、を備える波長可変レーザ光源。
    A tunable filter having a first input port, a second input port, and an output port, and capable of moving a wavelength spectrum peak of transmitted light intensity;
    A first optical amplifier having one end optically connected to the first input port;
    A second optical amplifier having one end optically connected to the second input port and having a gain wavelength spectrum different from that of the first optical amplifier;
    A wavelength tunable laser light source comprising: an optical mirror provided on an end face of the output port and having a predetermined reflectance and transmittance.
  2.  前記第1光増幅器及び前記第2光増幅器は、互いに利得ピーク波長の異なる半導体光増幅器であり、平面光回路によって構成された前記波長可変フィルターと同一基板上に集積されている請求項1に記載の波長可変レーザ光源。 The first optical amplifier and the second optical amplifier are semiconductor optical amplifiers having different gain peak wavelengths, and are integrated on the same substrate as the wavelength tunable filter configured by a planar optical circuit. Tunable laser light source.
  3.  前記第1光増幅器、前記第2光増幅器、及び前記波長可変フィルターは、化合物半導体材料により形成され、同一基板上にモノリシック集積されている請求項2に記載の波長可変レーザ光源。 3. The wavelength tunable laser light source according to claim 2, wherein the first optical amplifier, the second optical amplifier, and the wavelength tunable filter are formed of a compound semiconductor material and monolithically integrated on the same substrate.
  4.  前記波長可変フィルターは、
     周囲長の異なる2つのリング型光導波路が近接して縦列配置されたリング型共振器と、
     2つの入力ポート端と1つの出力ポート端とを有する合分波器と、を備え、
     前記合分波器の2つの入力ポート端は、前記リング型共振器の一方のリング型光導波路に光学結合するように配置された光導波路で互いに接続され、
     前記合分波器の出力ポート端には、所定の反射率を有する半ミラーが備えられ、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの一端は、前記リング型共振器の他方のリング型光導波路に光学結合するように配置された光導波路で互いに接続され、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの他端には、高反射ミラーが備えられ、
     導波路の屈折率を変化させて波長特性をチューニングする電極構造が、前記リング型共振器の2つのリング型光導波路のそれぞれの近傍に設けられていることを特徴とする請求項1乃至3のいずれか1項に記載の波長可変レーザ光源。
    The wavelength tunable filter is
    A ring resonator in which two ring optical waveguides having different perimeters are arranged in close proximity to each other;
    A multiplexer / demultiplexer having two input port ends and one output port end,
    Two input port ends of the multiplexer / demultiplexer are connected to each other by an optical waveguide disposed so as to be optically coupled to one ring optical waveguide of the ring resonator,
    A half mirror having a predetermined reflectivity is provided at the output port end of the multiplexer / demultiplexer,
    One end of each of the first optical amplifier and the second optical amplifier is connected to each other by an optical waveguide disposed so as to be optically coupled to the other ring optical waveguide of the ring resonator,
    High reflection mirrors are provided at the other ends of the first optical amplifier and the second optical amplifier,
    The electrode structure for tuning the wavelength characteristic by changing the refractive index of the waveguide is provided in the vicinity of each of the two ring optical waveguides of the ring resonator. The wavelength tunable laser light source according to any one of the above.
  5.  前記波長可変フィルターは、
     第1リング型光導波路と、前記第1リング型光導波路と直線状の光導波路を介して互いに対称な位置で光学的に接続された、前記第1リング型光導波路と異なる周囲長の第2リング型光導波路及び第3リング型光導波路と、を有するリング型共振器と、
     2つの入力ポート端と1つの出力ポート端とを有する合分波器と、を備え、
     前記合分波器の一方の入力ポート端には、前記第2リング型光導波路と光学的に結合するように近接配置された光導波路の一端が光学的に接続され、
     前記合分波器の他方の入力ポート端には、前記第3リング型光導波路と光学的に結合するように近接配置された光導波路の一端が光学的に接続され、
     前記合分波器の出力ポート端には、所定の反射率を有する半ミラーが備えられ、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの一端は、前記第1リング型光導波路に光学結合するように配置された光導波路で互いに接続され、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの他端には、高反射ミラーが備えられ、
     導波路の屈折率を変化させて波長特性をチューニングする電極構造が、前記第1リング型光導波路、前記第2リング型光導波路、及び前記第3リング型光導波路のそれぞれの近傍に設けられていることを特徴とする請求項1乃至3のいずれか1項に記載の波長可変レーザ光源。
    The wavelength tunable filter is
    A second ring-type optical waveguide and a second peripheral length different from that of the first ring-type optical waveguide, optically connected to each other at positions symmetrical to each other via the first ring-type optical waveguide and the linear optical waveguide. A ring resonator having a ring optical waveguide and a third ring optical waveguide;
    A multiplexer / demultiplexer having two input port ends and one output port end,
    One input port end of the multiplexer / demultiplexer is optically connected to one end of an optical waveguide that is disposed in close proximity so as to be optically coupled to the second ring optical waveguide,
    The other input port end of the multiplexer / demultiplexer is optically connected to one end of an optical waveguide disposed in close proximity so as to be optically coupled to the third ring optical waveguide,
    A half mirror having a predetermined reflectivity is provided at the output port end of the multiplexer / demultiplexer,
    One end of each of the first optical amplifier and the second optical amplifier is connected to each other by an optical waveguide disposed so as to be optically coupled to the first ring optical waveguide,
    High reflection mirrors are provided at the other ends of the first optical amplifier and the second optical amplifier,
    An electrode structure for tuning a wavelength characteristic by changing a refractive index of the waveguide is provided in the vicinity of each of the first ring optical waveguide, the second ring optical waveguide, and the third ring optical waveguide. The tunable laser light source according to claim 1, wherein the tunable laser light source is a light source.
  6.  前記波長可変フィルターは、
     周囲長の異なる2つのリング型光導波路が近接して縦列配置されたリング型共振器と、
     2つの入力ポート端と2つの出力ポート端とを有する合分波器と、を備え、
     前記合分波器の2つの入力ポート端は、前記リング型共振器の一方のリング型光導波路に光学結合するように配置された光導波路で互いに接続され、
     前記合分波器の一方の出力ポート端には、高反射ミラーが備えられ、
     前記合分波器の他方の出力ポート端には、無反射処理が施され、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの一端は、前記リング型共振器の他方のリング型光導波路に光学結合するように配置された光導波路で互いに接続され、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの他端には、高反射ミラーが備えられ、
     導波路の屈折率を変化させて波長特性をチューニングする電極構造が、前記リング型共振器の2つのリング型光導波路のそれぞれの近傍に設けられていることを特徴とする請求項1乃至3のいずれか1項に記載の波長可変レーザ光源。
    The wavelength tunable filter is
    A ring resonator in which two ring optical waveguides having different perimeters are arranged in close proximity to each other;
    A multiplexer / demultiplexer having two input port ends and two output port ends,
    Two input port ends of the multiplexer / demultiplexer are connected to each other by an optical waveguide disposed so as to be optically coupled to one ring optical waveguide of the ring resonator,
    A high reflection mirror is provided at one output port end of the multiplexer / demultiplexer,
    The other output port end of the multiplexer / demultiplexer is subjected to antireflection treatment,
    One end of each of the first optical amplifier and the second optical amplifier is connected to each other by an optical waveguide disposed so as to be optically coupled to the other ring optical waveguide of the ring resonator,
    High reflection mirrors are provided at the other ends of the first optical amplifier and the second optical amplifier,
    The electrode structure for tuning the wavelength characteristic by changing the refractive index of the waveguide is provided in the vicinity of each of the two ring optical waveguides of the ring resonator. The wavelength tunable laser light source according to any one of the above.
  7.  前記波長可変フィルターは、
     第1リング型光導波路と、前記第1リング型光導波路と直線状の光導波路を介して互いに対称な位置で光学的に接続された、前記第1リング型光導波路と異なる周囲長の第2リング型光導波路及び第3リング型光導波路と、を有するリング型共振器と、
     2つの入力ポート端と2つの出力ポート端とを有する合分波器と、を備え、
     前記合分波器の一方の入力ポート端には、前記第2リング型光導波路と光学的に結合するように近接配置された光導波路の一端が光学的に接続され、
     前記合分波器の他方の入力ポート端には、前記第3リング型光導波路と光学的に結合するように近接配置された光導波路の一端が光学的に接続され、
     前記合分波器の一方の出力ポート端には、高反射ミラーが具備され、
     前記合分波器の他方の出力ポート端には、無反射処理が施され、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの一端は、前記第1リング型光導波路に光学結合するように配置された光導波路で互いに接続され、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの他端には、高反射ミラーが備えられ、
     導波路の屈折率を変化させて波長特性をチューニングする電極構造が、前記第1リング型光導波路、前記第2リング型光導波路、及び前記第3リング型光導波路のそれぞれの近傍に設けられていることを特徴とする請求項1乃至3のいずれか1項に記載の波長可変レーザ光源。
    The wavelength tunable filter is
    A second ring-type optical waveguide and a second peripheral length different from that of the first ring-type optical waveguide, optically connected to each other at positions symmetrical to each other via the first ring-type optical waveguide and the linear optical waveguide. A ring resonator having a ring optical waveguide and a third ring optical waveguide;
    A multiplexer / demultiplexer having two input port ends and two output port ends,
    One input port end of the multiplexer / demultiplexer is optically connected to one end of an optical waveguide that is disposed in close proximity so as to be optically coupled to the second ring optical waveguide,
    The other input port end of the multiplexer / demultiplexer is optically connected to one end of an optical waveguide disposed in close proximity so as to be optically coupled to the third ring optical waveguide,
    A high reflection mirror is provided at one output port end of the multiplexer / demultiplexer,
    The other output port end of the multiplexer / demultiplexer is subjected to antireflection treatment,
    One end of each of the first optical amplifier and the second optical amplifier is connected to each other by an optical waveguide disposed so as to be optically coupled to the first ring optical waveguide,
    High reflection mirrors are provided at the other ends of the first optical amplifier and the second optical amplifier,
    An electrode structure for tuning a wavelength characteristic by changing a refractive index of the waveguide is provided in the vicinity of each of the first ring optical waveguide, the second ring optical waveguide, and the third ring optical waveguide. The tunable laser light source according to claim 1, wherein the tunable laser light source is a light source.
  8.  前記合分波器の一方の出力ポート端に備えられた前記高反射ミラーは、1つの入力ポート端と、相互に接続された2つの出力ポート端と、を有する別の合分波器によって構成された閉ループ状の導波路からなるループミラーであることを特徴とする請求項6又は7に記載の波長可変レーザ光源。 The high reflection mirror provided at one output port end of the multiplexer / demultiplexer is constituted by another multiplexer / demultiplexer having one input port end and two output port ends connected to each other. 8. The tunable laser light source according to claim 6, wherein the tunable laser light source is a loop mirror made of a closed loop-shaped waveguide.
  9.  前記波長可変フィルターは、
     周囲長の異なる2つのリング型光導波路が光導波路を介して互いに光学接続されたリング型共振器と、
     2つの入力ポート端と2つの出力ポート端とを有する合分波器と、を備え、
     前記合分波器の2つの出力ポート端のそれぞれに、前記リング型共振器の2つのリング型光導波路のそれぞれが光学結合するように近接して配置され、
     前記リング型共振器の2つのリング型光導波路を光学接続する前記光導波路の一部に、光波パワーを取り出す為の光導波路が光学結合するように近接して配置され、
     前記合分波器の2つの入力ポート端には、前記第1光増幅器及び前記第2光増幅器のそれぞれの一端が光学的に接続され、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの他端には、高反射ミラーが備えられ、
     光導波路の屈折率を変化させて波長特性をチューニングする電極構造が、前記リング型共振器の2つのリング型光導波路のそれぞれの近傍に設けられていることを特徴とする請求項1乃至3のいずれか1項に記載の波長可変レーザ光源。
    The wavelength tunable filter is
    A ring resonator in which two ring optical waveguides having different perimeters are optically connected to each other via the optical waveguide;
    A multiplexer / demultiplexer having two input port ends and two output port ends,
    The two output port ends of the multiplexer / demultiplexer are arranged close to each other so that the two ring optical waveguides of the ring resonator are optically coupled,
    A portion of the optical waveguide that optically connects the two ring-type optical waveguides of the ring-type resonator, is disposed close to the optical waveguide for taking out the light wave power so as to be optically coupled;
    One end of each of the first optical amplifier and the second optical amplifier is optically connected to two input port ends of the multiplexer / demultiplexer,
    High reflection mirrors are provided at the other ends of the first optical amplifier and the second optical amplifier,
    The electrode structure for tuning the wavelength characteristic by changing the refractive index of the optical waveguide is provided in the vicinity of each of the two ring optical waveguides of the ring resonator. The wavelength tunable laser light source according to any one of the above.
  10.  前記波長可変フィルターは、
     周囲長の異なる2つのリング型光導波路が近接して縦列配置されたリング型共振器と、
     2つの入力ポート端と2つの出力ポート端とを有する光スイッチと、を備え、
     前記光スイッチの2つの入力ポート端は、前記リング型共振器の一方のリング型光導波路に光学結合するように配置された光導波路で互いに接続され、
     前記光スイッチの2つ出力ポート端のうち、少なくとも一方には、所定の反射率を有する半ミラーが備えられ、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの一端は、前記リング型共振器の他方のリング型光導波路に光学結合するように配置された光導波路で互いに接続され、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの他端には、高反射ミラーが備えられ、
     導波路の屈折率を変化させて波長特性をチューニングする電極構造が、前記リング型共振器の2つのリング型光導波路のそれぞれの近傍に設けられていることを特徴とする請求項1乃至3のいずれか1項に記載の波長可変レーザ光源。
    The wavelength tunable filter is
    A ring resonator in which two ring optical waveguides having different perimeters are arranged in close proximity to each other;
    An optical switch having two input port ends and two output port ends,
    Two input port ends of the optical switch are connected to each other by an optical waveguide arranged so as to be optically coupled to one ring optical waveguide of the ring resonator,
    At least one of the two output port ends of the optical switch is provided with a half mirror having a predetermined reflectance.
    One end of each of the first optical amplifier and the second optical amplifier is connected to each other by an optical waveguide disposed so as to be optically coupled to the other ring optical waveguide of the ring resonator,
    High reflection mirrors are provided at the other ends of the first optical amplifier and the second optical amplifier,
    The electrode structure for tuning the wavelength characteristic by changing the refractive index of the waveguide is provided in the vicinity of each of the two ring optical waveguides of the ring resonator. The wavelength tunable laser light source according to any one of the above.
  11.  前記波長可変フィルターは、
     第1リング型光導波路と、前記第1リング型光導波路と直線状の光導波路を介して互いに対称な位置で光学的に接続された、前記第1リング型光導波路と異なる周囲長の第2リング型光導波路及び第3リング型光導波路と、を有するリング型共振器と、
     2つの入力ポート端と2つの出力ポート端とを有する光スイッチと、を備え、
     前記光スイッチの一方の入力ポート端には、前記第2リング型光導波路と光学的に結合するように近接配置された光導波路の一端が光学的に接続され、
     前記光スイッチの他方の入力ポート端には、前記第3リング型光導波路と光学的に結合するように近接配置された光導波路の一端が光学的に接続され、
     前記光スイッチの2つの出力ポート端のうち、少なくとも一方には、所定の反射率を有する半ミラーが備えられ、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの一端は、前記第1リング型光導波路に光学結合するように配置された光導波路で互いに接続され、
     前記第1光増幅器及び前記第2光増幅器のそれぞれの他端には、高反射ミラーが備えられ、
     導波路の屈折率を変化させて波長特性をチューニングする電極構造が、前記第1リング型光導波路、前記第2リング型光導波路、及び前記第3リング型光導波路のそれぞれの近傍に設けられていることを特徴とする請求項1乃至3のいずれか1項に記載の波長可変レーザ光源。
    The wavelength tunable filter is
    A second ring-type optical waveguide and a second peripheral length different from that of the first ring-type optical waveguide, optically connected to each other at positions symmetrical to each other via the first ring-type optical waveguide and the linear optical waveguide. A ring resonator having a ring optical waveguide and a third ring optical waveguide;
    An optical switch having two input port ends and two output port ends,
    One input port end of the optical switch is optically connected to one end of an optical waveguide that is disposed in close proximity so as to be optically coupled to the second ring optical waveguide,
    The other input port end of the optical switch is optically connected to one end of an optical waveguide that is disposed in close proximity so as to be optically coupled to the third ring optical waveguide,
    At least one of the two output port ends of the optical switch is provided with a half mirror having a predetermined reflectance.
    One end of each of the first optical amplifier and the second optical amplifier is connected to each other by an optical waveguide disposed so as to be optically coupled to the first ring optical waveguide,
    High reflection mirrors are provided at the other ends of the first optical amplifier and the second optical amplifier,
    An electrode structure for tuning a wavelength characteristic by changing a refractive index of the waveguide is provided in the vicinity of each of the first ring optical waveguide, the second ring optical waveguide, and the third ring optical waveguide. The tunable laser light source according to claim 1, wherein the tunable laser light source is a light source.
  12.  前記波長可変フィルターは、
     周囲長の異なる2つのリング型光導波路が光導波路を介して互いに光学接続されたリング型共振器と、
     2つの入力ポート端と2つの出力ポート端とを有する合分波器と、
     2つの入力ポート端と2つの出力ポート端とを有する光スイッチと、を備え、
     前記合分波器の2つの出力ポート端のそれぞれに、前記リング型共振器の2つのリング型光導波路のそれぞれが光学結合するように近接して配置され、
     前記合分波器の2つの入力ポート端には、前記第1光増幅器及び前記第2光増幅器のそれぞれの一端が光学的に接続され、
     前記第1光増幅器および前記第2光増幅器のそれぞれの他端には、前記光スイッチの2つの入力ポート端がそれぞれ光学的に接続され、
     前記光スイッチの2つの出力ポート端のうち、少なくとも一方端には、所定の反射率を有する半ミラーが備えられ、
     光導波路の屈折率を変化させて波長特性をチューニングする電極構造が、前記リング型共振器の2つのリング型光導波路のそれぞれの近傍に設けられていることを特徴とする請求項1乃至3のいずれか1項に記載の波長可変レーザ光源。
    The wavelength tunable filter is
    A ring resonator in which two ring optical waveguides having different perimeters are optically connected to each other via the optical waveguide;
    A multiplexer / demultiplexer having two input port ends and two output port ends;
    An optical switch having two input port ends and two output port ends,
    The two output port ends of the multiplexer / demultiplexer are arranged close to each other so that the two ring optical waveguides of the ring resonator are optically coupled,
    One end of each of the first optical amplifier and the second optical amplifier is optically connected to two input port ends of the multiplexer / demultiplexer,
    Two input port ends of the optical switch are optically connected to the other ends of the first optical amplifier and the second optical amplifier,
    At least one of the two output port ends of the optical switch is provided with a half mirror having a predetermined reflectance,
    The electrode structure for tuning the wavelength characteristic by changing the refractive index of the optical waveguide is provided in the vicinity of each of the two ring optical waveguides of the ring resonator. The wavelength tunable laser light source according to any one of the above.
  13.  請求項1乃至9のいずれか1項に記載の波長可変レーザ光源の駆動方法であって、
     所望する波長に応じて、前記第1光増幅器及び前記第2光増幅器のうちの一方に電流注入を行うと同時に、他方には電流注入を行わないことを特徴とする波長可変レーザ光源の駆動方法。
    A method of driving a wavelength tunable laser light source according to any one of claims 1 to 9,
    A method of driving a wavelength tunable laser light source, wherein current is injected into one of the first optical amplifier and the second optical amplifier according to a desired wavelength, and no current is injected into the other. .
  14.  請求項10乃至12のいずれか1項に記載の波長可変レーザ光源の駆動方法であって、
     所望する波長に応じて、前記第1光増幅器及び前記第2光増幅器のうちの一方に電流注入を行うと同時に、他方には電流注入を行わず、
     前記半ミラーの設けられた前記出力ポート端で所望する大きさの光出力が得られるよう、電流が注入された側の光増幅器に合わせて前記光スイッチの経路を切り換えることを特徴とする波長可変レーザ光源の駆動方法。
    A driving method of a wavelength tunable laser light source according to any one of claims 10 to 12,
    According to a desired wavelength, current is injected into one of the first optical amplifier and the second optical amplifier, and at the same time, no current is injected into the other
    Wavelength variable, characterized in that the path of the optical switch is switched in accordance with the optical amplifier on the side where current is injected so that a desired optical output can be obtained at the output port end provided with the half mirror Driving method of laser light source.
  15.  透過光強度の波長スペクトルピークを移動させることのできる波長可変フィルターと、
     前記波長可変フィルターにそれぞれ並列接続された光増幅器及び光変調器と、を備え、
     前記光変調器が、前記波長可変フィルター及び前記光増幅器と同一基板上に集積されている波長可変レーザ光源。
    A tunable filter capable of moving the wavelength spectrum peak of transmitted light intensity;
    An optical amplifier and an optical modulator respectively connected in parallel to the wavelength tunable filter,
    A wavelength tunable laser light source in which the optical modulator is integrated on the same substrate as the wavelength tunable filter and the optical amplifier.
  16.  前記波長可変フィルターは、
     周囲長の異なる2つのリング型光導波路が光導波路を介して互いに光学接続されたリング型共振器と、
     2つの入力ポート端と2つの出力ポート端とを有する合分波器と、を備え、
     前記合分波器の2つの出力ポート端のそれぞれに、前記リング型共振器の2つのリング型光導波路のそれぞれが光学結合するように近接して配置され、
     前記合分波器の2つの入力ポート端の一方には前記光増幅器の一端が光学的に接続され、他方には前記光変調器の一端が光学的に接続され、
     前記光増幅器の他端には、高反射ミラーが備えられ、
     前記光変調器の他端には、反射防止膜が施され、
     光導波路の屈折率を変化させて波長特性をチューニングする電極構造が、前記リング型共振器の2つのリング型光導波路のそれぞれの近傍に設けられていることを特徴とする請求項15に記載の波長可変レーザ光源。
    The wavelength tunable filter is
    A ring resonator in which two ring optical waveguides having different perimeters are optically connected to each other via the optical waveguide;
    A multiplexer / demultiplexer having two input port ends and two output port ends,
    The two output port ends of the multiplexer / demultiplexer are arranged close to each other so that the two ring optical waveguides of the ring resonator are optically coupled,
    One end of the optical amplifier is optically connected to one of the two input port ends of the multiplexer / demultiplexer, and one end of the optical modulator is optically connected to the other.
    The other end of the optical amplifier is provided with a high reflection mirror,
    The other end of the light modulator is provided with an antireflection film,
    The electrode structure for tuning the wavelength characteristic by changing the refractive index of the optical waveguide is provided in the vicinity of each of the two ring optical waveguides of the ring resonator. Tunable laser light source.
PCT/JP2010/002043 2009-06-29 2010-03-23 Wavelength-variable laser light source and method for driving same WO2011001571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009153700A JP5240095B2 (en) 2008-09-03 2009-06-29 Wavelength tunable laser light source and driving method thereof
JP2009-153700 2009-06-29

Publications (1)

Publication Number Publication Date
WO2011001571A1 true WO2011001571A1 (en) 2011-01-06

Family

ID=43411523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002043 WO2011001571A1 (en) 2009-06-29 2010-03-23 Wavelength-variable laser light source and method for driving same

Country Status (1)

Country Link
WO (1) WO2011001571A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453351A (en) * 2013-08-05 2016-03-30 浜松光子学株式会社 Variable-wavelength light source
CN110971305A (en) * 2018-10-01 2020-04-07 韩国电子通信研究院 Optical device and driving method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096462A1 (en) * 2004-03-31 2005-10-13 Nec Corporation Tunable laser
JP2006073549A (en) * 2004-08-31 2006-03-16 Yokogawa Electric Corp External resonator-type wavelength variable optical source
WO2007029647A1 (en) * 2005-09-06 2007-03-15 Nec Corporation Wavelength variable filter and wavelength variable laser
JP2008251673A (en) * 2007-03-29 2008-10-16 Nec Corp Optical device and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096462A1 (en) * 2004-03-31 2005-10-13 Nec Corporation Tunable laser
JP2006073549A (en) * 2004-08-31 2006-03-16 Yokogawa Electric Corp External resonator-type wavelength variable optical source
WO2007029647A1 (en) * 2005-09-06 2007-03-15 Nec Corporation Wavelength variable filter and wavelength variable laser
JP2008251673A (en) * 2007-03-29 2008-10-16 Nec Corp Optical device and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453351A (en) * 2013-08-05 2016-03-30 浜松光子学株式会社 Variable-wavelength light source
CN105453351B (en) * 2013-08-05 2019-03-29 浜松光子学株式会社 Wavelength variable light source
CN110971305A (en) * 2018-10-01 2020-04-07 韩国电子通信研究院 Optical device and driving method thereof
US11454831B2 (en) 2018-10-01 2022-09-27 Electronics And Telecommunications Research Institute Optical device and driving method thereof
CN110971305B (en) * 2018-10-01 2023-01-31 韩国电子通信研究院 Optical device and driving method thereof

Similar Documents

Publication Publication Date Title
JP5240095B2 (en) Wavelength tunable laser light source and driving method thereof
US10126501B2 (en) Tunable reflectors based on multi-cavity interference
EP2144102A1 (en) Optical device and manufacturing method thereof
JP2009278015A (en) Planar lightwave circuit and wavelength tunable laser apparatus with the same
JP5867509B2 (en) Optical semiconductor device
EP3387473B1 (en) Tunable microring resonator
US20040213507A1 (en) Silicon-based tunable single passband optical filter
JP6666423B2 (en) High index contrast photonic devices and their applications
JP2010212472A (en) Wavelength variable light source and adjusting method of oscillation wavelength thereof
JP5998651B2 (en) Optical transmitter
JP2000261086A (en) Wavelength variable light source
WO2011001571A1 (en) Wavelength-variable laser light source and method for driving same
JP5609135B2 (en) Tunable laser light source
US8379300B2 (en) Wavelength-variable light source with dual resonator loop circuit
JP2007115900A (en) Wavelength tunable light source, module thereof, and method for driving the same
KR100657764B1 (en) Coupled-Ring Reflector
WO2002079863A2 (en) Optoelectronic filters
JP2008268763A (en) Light reflecting circuit, half-mirror circuit, optical resonance circuit, laser oscillator, and optical function circuit
WO2007107186A1 (en) Integrated laser optical source
Roeloffzen et al. Design and realization of optical filters on an integrated Si 3 N 4 PIC platform
JPH07301716A (en) Resonance filter for wavelength-division multiplexing optical communication system
JP2010212610A (en) Variable wavelength light source and method for manufacturing the same
JP2015184593A (en) optical wavelength filter
WO2019242555A1 (en) Wavelength tunable laser
CN114583541A (en) Hybrid integrated laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793749

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012016813

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012016813

Country of ref document: BR

Free format text: APRESENTE O RELATORIO DESCRITIVO E ESCLARECA O NUMERO CORRETO DO PCT.