WO2011096239A1 - 検出方法および検出装置 - Google Patents
検出方法および検出装置 Download PDFInfo
- Publication number
- WO2011096239A1 WO2011096239A1 PCT/JP2011/000700 JP2011000700W WO2011096239A1 WO 2011096239 A1 WO2011096239 A1 WO 2011096239A1 JP 2011000700 W JP2011000700 W JP 2011000700W WO 2011096239 A1 WO2011096239 A1 WO 2011096239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- image
- illumination
- region
- detection method
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/14—Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/028—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67092—Apparatus for mechanical treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
- H01L21/681—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Definitions
- the present invention relates to a detection method and a detection apparatus.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2009-231671
- the outer shape of each substrate may be used as a reference for positioning.
- the outer shape is detected by a transmissive optical system.
- a detection method for detecting a position of a specific substrate among a plurality of stacked substrates the step of irradiating a region including a part of an edge of the specific substrate; A direction of illuminating the region in the step of irradiating illumination, the method comprising: obtaining an image obtained by imaging the region; and identifying a position of an edge of a specific substrate based on the position of the stepped portion appearing in the image.
- a detection method is provided in which at least one of the directions of capturing the region in the step of acquiring an image is oblique with respect to the surface direction of the substrate.
- a detection device for detecting the position of a specific substrate among a plurality of stacked substrates, wherein the illumination unit illuminates a region including a part of an edge of the specific substrate. And an image acquisition unit that acquires an image obtained by imaging the region obliquely with respect to the surface direction of the substrate, and a position specifying unit that specifies the position of the edge of the specific substrate based on the position of the stepped portion appearing in the image.
- a detection device in which at least one of the direction in which illumination is applied to the region in the illumination unit and the direction in which the region in the image acquisition unit is imaged is oblique with respect to the surface direction of the substrate.
- FIG. 1 is a perspective view schematically showing the structure of a detection apparatus 100 according to an embodiment.
- the detection apparatus 100 detects the position of the upper substrate 104 among the stacked lower substrate 102 and upper substrate 104.
- the detection apparatus 100 includes a stage 101, an illumination unit 108, an image acquisition unit 110, and a position specifying unit 120.
- the lower substrate 102 and the upper substrate 104 are overlapped in the thickness direction by a substrate bonding apparatus or the like.
- the outer shape of the upper substrate 104 is smaller than the outer shape of the lower substrate 102. Therefore, a step is formed between the upper surface of the upper substrate 104 and the upper surface of the lower substrate 102 at the edge of the upper substrate 104.
- the stage 101 mounts the lower substrate 102 and the upper substrate 104, which are detection targets.
- the stage 101 moves in parallel with respect to the X axis, the Y axis, and the Z axis.
- the stage 101 may be a stage of an apparatus for attaching another substrate to the upper substrate 104 or the like. In that case, the stage 101 may rotate around the X, Y, and Z axes.
- a reference mark 103 is provided on the upper surface of the stage 101.
- the left-right direction in the upper surface of the stage 101 is taken as the X axis
- the front back direction is taken as the Y axis.
- the Z axis is taken upward perpendicular to the X axis and Y axis.
- the reference mark 103 is used for adjusting the illumination unit 108 and the image acquisition unit 110.
- the slit image 114 is irradiated on the reference mark 103 and used as a reference for focusing the optical system so that a sharp reference mark 103 image can be formed on the imaging unit 105.
- the reference mark 103 is used as a reference for associating the position on the stage 101 with the position on the image captured by the imaging unit 105 via the reference mark 103.
- the illumination unit 108 provides a slit image 114 for substrate position detection.
- the illumination unit 108 includes a light source 119, a lens 118, a slit 116, and a lens 115 in this order.
- the light source 119 emits light having a wavelength that can be detected by the imaging unit 105, for example, visible light when the imaging unit 105 can capture visible light.
- the lens 118 focuses the light from the light source 119.
- the slit 116 defines an illumination range when detecting the position of the upper substrate 104.
- the lens 115 focuses the light passing through the slit 116 and forms a slit image 114 on the upper surfaces of the lower substrate 102 and the upper substrate 104.
- the illumination unit 108 irradiates the lower substrate 102 and the upper substrate 104 obliquely with respect to the plane directions of the lower substrate 102 and the upper substrate 104, and from the upper left in FIG.
- the slit image 114 on the lower substrate 102 and the upper substrate 104 by the illumination unit 108 has an elongated shape extending in the radial direction of the disk-shaped lower substrate 102 and the upper substrate 104, and the irradiation range thereof is the edge of the upper substrate 104. Includes a portion.
- the illumination unit 108 stores in advance a position where an edge is to come when the laminated substrate is correctly placed at a predetermined position of the stage 101, and irradiates the position with illumination. This edge is a circumference when the lower substrate 102 or the like is disk-shaped.
- the edge may include a characteristic portion such as a notch.
- the image acquisition unit 110 includes an imaging unit 105 and a lens 112.
- the image acquisition unit 110 captures an area including a part of the edge of the upper substrate 104 obliquely with respect to the surface direction of the upper substrate 104 and the like, and from the upper right in FIG. Also in this case, the image acquisition unit 110 stores in advance a position where an edge should come when the laminated substrate is correctly placed at a predetermined position of the stage 101, and images a region including the position.
- the lens 112 images the light reflected from the upper surfaces of the lower substrate 102 and the upper substrate 104 on the imaging unit 105.
- An example of the imaging unit 105 is a CCD, CMOS, or the like in which pixels are two-dimensionally arranged.
- the imaging unit 105 acquires the image 106 by converting the optical signal of the image formed on the imaging surface into an electrical signal for each pixel.
- the position specifying unit 120 analyzes the image 106 and specifies the position of the edge of the upper substrate 104 based on the position of the stepped portion appearing in the image 106.
- the optical system of the illumination unit 108 and the image acquisition unit 110 does not limit the optical system of the illumination unit 108 and the image acquisition unit 110.
- the lenses 118, 115, and 112 schematically show an optical system, and are not limited to one lens.
- the optical system of the image acquisition unit 110 may be a non-tilting optical system or a tilting optical system.
- the tilting optical system can focus the surface of the upper substrate 104 and the lower substrate 102 that are inclined with respect to the principal ray over a wide range by tilting the imaging unit 105.
- This detection method includes a step of acquiring an image and a step of specifying a position.
- the image acquisition step includes illuminating an area including a part of the edge of the upper substrate 104 by the illumination unit 108 from the upper left to form a slit image 114, and reflecting on the upper surfaces of the lower substrate 102 and the upper substrate 104. Capturing the slit image 114 by the imaging unit 105 obliquely with respect to the plane direction of the lower substrate 102 and the upper substrate 104 to obtain the image 106.
- FIG. 2 is a conceptual diagram of the image 106 of the substrate edge portion acquired by the image acquisition unit 110.
- An upper substrate reflection image 132 in the image 106 is an image of a portion of the slit image 114 reflected by the upper substrate 104.
- the lower substrate reflection image 134 is an image of a portion of the slit image 114 reflected by the lower substrate 102.
- the step of specifying the position includes a step of transferring the image 106 from the imaging unit 105 to the position specifying unit 120 and a stepped portion that appears between the upper substrate reflected image 132 and the lower substrate reflected image 134 by image analysis of the position specifying unit 120. Determining the position of the edge of the upper substrate 104 based on the position of E.
- the position of the stepped portion E on the image 106 corresponds to the position of the edge of the upper substrate 104.
- the position of the stepped portion E in the image 106 moves to the left, and the edge of the upper substrate 104 changes.
- the position of the stepped portion E in the image 106 moves to the right. Therefore, by analyzing the position of the stepped portion E, the position of the edge of the upper substrate 104 can be specified.
- the position specifying unit 120 stores in advance the vertical width D of the upper substrate reflection image 132 based on the size of the slit 116, the optical magnification of the illumination unit 108 and the image acquisition unit 110, and the like.
- the position specifying unit 120 stores in advance a maximum value L max that appears in the lateral width L of the upper substrate reflection image 132 based on the size of the slit 116, the optical magnification of the illumination unit 108, and the image acquisition unit 110, and the like.
- the range of the image to be analyzed is selected by the selection window 136.
- the vertical width b of the selection window 136 is wider than the width D, and the horizontal width a of the selection window 136 is narrower than the width Lmax. preferable. Since the luminance of the portion of the upper substrate reflection image 132 is higher than that of the surrounding area, the position specifying unit 120 analyzes the luminance in the vertical direction of the image selected in the selection window 136 to thereby determine the vertical position and width of the upper substrate reflection image 132. D can be obtained.
- FIG. 3 is an explanatory diagram for specifying the position of the stepped portion.
- the vertical width b of the selection window 136 is preferably narrower than the width D.
- FIG. 4 is a curve conceptually showing a change in luminance at the stepped portion E of the upper substrate reflection image 132 appearing in the image 106.
- the horizontal axis indicates the coordinates in the horizontal direction in the image 106 shown in FIG. 2, and the vertical axis indicates the luminance.
- the luminance change of the upper substrate reflection image 132 is observed.
- the upper substrate reflection image 132 shows a sharp change in luminance at the stepped portion E as shown by the broken line 142, but in reality, the upper substrate reflected image 132 appears at the stepped portion E as shown by the curve 144 due to aberration of the optical system.
- the full width at half maximum Sx of the region where the luminance changes gradually is referred to as a blur amount.
- the amount of blur Sx due to diffraction on the imaging surface is on the order of ⁇ / NA.
- ⁇ is the optical system imaging magnification
- ⁇ is the wavelength of the incident light
- NA is the lens numerical aperture.
- three or more measurement points are included in the range of the blur amount. For example, when a CCD is used for the imaging unit 105, if the CCD pixel size is u, the condition that three or more pixels are included in the range of Sx is ( ⁇ / NA)> 3u. That is, the condition is NA ⁇ ( ⁇ / 3u).
- NA ⁇ 0.045.
- This conditional expression of NA indicates a preferable upper limit value of NA when using the above ⁇ , u, and ⁇ .
- the above ⁇ may be replaced with the lateral magnification ⁇ ′ of the tilt optical system.
- FIG. 5 is an explanatory diagram for explaining other conditions.
- the blur amount Sy also exists in the vertical direction of the upper substrate reflected image 132 and the lower substrate reflected image 134.
- the height H of the stepped portion E is preferably larger than (Sy + mu).
- m is the number of pixels for specifying the stepped portion E, and is therefore an integer of 1 or more.
- the blur amount Sy is also in the order of ⁇ / NA, it is preferable that the following expression is satisfied. H> ( ⁇ / NA) + mu (1)
- the height H of the stepped portion E corresponds to the distance h between the upper surface of the lower substrate 102 and the upper surface of the upper substrate 104, that is, the thickness of the upper substrate 104, and the size of H is determined by the following equation.
- H 2h ⁇ sin ⁇ i (2)
- h is the distance between the upper surface of the lower substrate 102 and the upper surface of the upper substrate 104
- ⁇ i is the incident angle of incident light.
- an incident plane including incident light and reflected light is in contact with the edge of the upper substrate 104. If the incident plane deviates from the direction of the substrate cut line, an error occurs in the detection result. In order to suppress the error within an allowable range, it is preferable to adjust the angle formed by the incident plane and the tangential direction of the upper substrate 104 within 5 °.
- FIG. 6 shows another embodiment for specifying the position of the edge of the upper substrate 104.
- slit images 114, 172, and 174 are formed in three regions of the edge of the upper substrate 104, respectively, and images reflected in the respective regions are acquired to specify the position of the upper substrate 104.
- the detection apparatus 100 corresponding to each of the slit image 114, the slit image 172, and the slit image 174 is provided.
- Each detection device 100 can specify the position of the edge of the corresponding part by the above-described detection method.
- the position of the upper substrate 104 on the stage 101 is detected more accurately by specifying the positions of the three edges of the upper substrate 104 in the image 106. be able to.
- the upper substrate 104 is a disk shape
- the center position and radius of the upper substrate 104 can be specified by specifying the positions of three edges of the upper substrate 104.
- the position of the upper substrate 104 can be accurately detected.
- not only the detection efficiency is high, but also errors that occur when a plurality of locations are detected by moving the substrate can be prevented.
- FIG. 7 and 8 show still another embodiment for specifying the position of the edge of the upper substrate 104.
- FIG. 7 and 8 show the operation following FIG. In this embodiment, while relatively moving the upper substrate 104 and the like and the illumination and imaging regions irradiated on the upper substrate 104 and the like, a plurality of images are acquired and a characteristic portion such as a notch is specified. .
- the slit image 114 irradiates a region including the notch of the upper substrate 104
- the slit image 172 irradiates a position rotated 90 degrees with respect to the notch
- the slit image 174 becomes a notch.
- the position rotated 180 degrees is irradiated.
- the slit image 114, the slit image 172, and the slit image 174 form a long and narrow illumination extending in the radial direction of the upper substrate 104 at each position.
- Each detection device 100 acquires an image of each region and specifies the position of the edge of the corresponding part. As shown in FIG. 7, by specifying the notch of the upper substrate 104, the rotation of the upper substrate 104 can be specified.
- the longitudinal direction of the slit image 114 and the slit image 174 is the Y-axis direction
- the longitudinal direction of the slit image 172 is the X-axis direction.
- the incident plane of the slit image 114 or the slit image 174 is a plane perpendicular to the Y axis.
- the incident plane of the slit image 172 is a plane perpendicular to the X axis.
- the stage 101 moves from the position of the upper substrate 104 and the like shown in FIG. 6 to the X direction and to the right in the drawing to move the upper substrate 104 and the lower substrate 102, and a plurality of edges are moved.
- the position is detected.
- the image acquisition unit 110 captures a plurality of images 106 while the stage 101 moves at a constant speed while the illumination unit 108 and the image acquisition unit 110 are fixed.
- the stage 101 may be moved intermittently, and the image 106 may be acquired when the stage 101 is temporarily stopped.
- FIG. 9 shows an example of information on a plurality of positions of the edge obtained by the embodiment shown in FIGS. 9, the positions Y1, Y2,... Of the step portions of the image 106 corresponding to the slit image 114 in FIGS. 6 to 8, and the positions X1, X2,. It is shown. Thereby, the XY position of the notch on the stage 101 can be specified.
- the method of moving the upper substrate 104 and the like to specify a plurality of positions of the edge is as follows.
- the three detection devices 100 are used. It is not limited to the case where three points on the laminated substrate are specified. As shown in FIG. 1, it can also be used when specifying one point and when specifying a plurality of points less than three and more than three. Even when one point is specified, the position and shape of the upper substrate 104 can be detected by specifying edges at a plurality of positions while moving the upper substrate 104 and the like.
- the positional relationship between the stage 101 and the imaging unit 105 may fluctuate during the movement, and a position specifying error may occur.
- the displacement due to the vibration of the Y axis is detected from the detection device 100 corresponding to the slit image 114 and the slit image 174. Based on the vibration displacement value of the Y axis, the value of the Y axis in the position information specified from the slit image 172 is corrected. Similarly, the detection device 100 corresponding to the slit image 172 detects displacement due to X-axis vibration.
- the value of the X axis in the position information specified from the slit image 114 and the slit image 174 is corrected.
- the shape and position of the upper substrate 104 can be detected more accurately.
- FIGS. 10 and 11 are front views illustrating an embodiment for scanning illumination.
- FIGS. 10 and 11 instead of moving the stage 101, multiple positions of the edge are detected while moving the illumination irradiation position.
- the illumination unit 108 includes a parallel flat glass 182 between the image side of the lens 115, that is, between the laminated substrate and the lens 115.
- the irradiation position of illumination through the parallel flat glass 182 is a position x extending from the lens center to the principal ray. 1
- the irradiation position when tilting the angle of the parallel plate glass 182 with respect to the principal ray from the lens, while maintaining the incident angle to the multilayer substrate, the irradiation position can be moved from x 1 to x 2. Thereby, a plurality of positions of the edge can be detected while changing the angle of the parallel flat glass 182 and scanning the irradiation position.
- FIG. 12 is a front view for explaining another embodiment for scanning illumination.
- the illumination unit 108 has a mirror 184 at the pupil position. By changing the angle of the mirror 184, the irradiation position of the slit image 114 can be moved.
- the whole detection apparatus 100 can be designed more compactly.
- an incident plane having incident rays and reflected rays is in contact with the edge of the upper substrate 104. If the moving range of the stage 101 or the incident light beam is large, the detection range also includes an edge that makes a large angle with the incident plane, and the detection accuracy in such a portion decreases (see FIGS. 6 to 8). Therefore, when measuring while moving the stage 101 or the incident light beam, it is preferable to limit the moving range.
- pre-alignment is performed so that the notch of the upper substrate 104 faces the Y direction with respect to the substrate center.
- the edge of the upper substrate 104 may be accurately detected while the stage 101 or the incident light beam is moved within a range of 5 mm or less.
- FIG. 13 shows an embodiment in which four points are specified.
- the positions of the edges in the four regions can be simultaneously determined. Can be identified. In this case, even when one of the four slit images irradiates the position of the notch of the upper substrate 104, the center position of the upper substrate 104 can be detected simultaneously by the other three slit images.
- FIG. 14 is a conceptual diagram of an image of a substrate edge portion that can be acquired by the detection apparatus 100 shown in FIG. 1 when three substrates of different sizes are stacked.
- the three substrates are respectively reflected in the upper substrate reflected image 132 and the lower substrate reflected image 134 in the order from the top in the image 106.
- a three-layer substrate reflection image 192 is formed. Even in this case, if a stepped portion E that can be identified in the upper substrate reflection image 132 appears corresponding to the edge of the uppermost upper substrate 104, the position of the edge can be detected by the above-described method.
- the outer shape and position of the substrates to be bonded can be accurately detected. Thereby, the relative position with the board
- the image acquisition unit 110 is located to acquire an image obtained by regular reflection of oblique illumination by the illumination unit 108.
- the arrangement of the illumination unit 108 and the image acquisition unit 110 is not limited to this.
- the illumination unit 108 may be oblique to the surface direction of the substrate, and the image acquisition unit 110 may acquire an image in the normal direction of the surface.
- the illumination unit 108 may irradiate illumination from the normal direction of the surface of the substrate, and the image acquisition unit 110 may acquire an image obliquely with respect to the surface direction.
- both the illumination unit 108 and the image acquisition unit 110 may be inclined with respect to the surface of the substrate and deviated from regular reflection.
- the slit image 114 is used as illumination in the above embodiment.
- the example of illumination is not restricted to this.
- the illumination has a pattern extending in the radial direction when the substrate is circular.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
[特許文献1]特開2009-231671号公報
H > (βλ/NA)+mu (1)
H = 2hβsinθi (2)
ここで、hは、下部基板102の上面と上部基板104の上面との間隔であり、θiは、入射光の入射角である。アオリ光学系を用いる場合には、βをアオリ光学系の横倍率β′に置き換える。
Hmax = 2hβ (3)
式(3)を式(1)に代入すると、次の式が得られる。
2hβ > (βλ/NA)+mu (4)
Claims (18)
- 積層された複数の基板のうちの特定の基板の位置を検出する検出方法であって、
前記特定の基板のエッジの一部分を含む領域に照明を照射するステップと、
前記領域を撮像した画像を取得するステップと、
前記画像に現れる段差部の位置に基づいて前記特定の基板のエッジの位置を特定するステップと
を備え、
前記照明を照射するステップにおける前記領域に照明を照射する方向、および、前記画像を取得するステップにおける前記領域を撮像する方向の少なくともいずれか一方が、前記基板の面方向に対して斜めである検出方法。 - 前記画像を取得するステップは、前記照明を照射するステップにおいて照射された照明の前記領域での正反射による画像を含む請求項1に記載の検出方法。
- 前記照明を照射するステップにおいて、照明の入射光線と反射光線とが作る面が、前記基板が円形の場合における径方向と交差する請求項1または2に記載の検出方法。
- 前記照明を照射するステップにおいて、前記特定の基板が円形の場合における径方向に延伸するパターンを持った照明を照射する請求項1から3のいずれか1項に記載の検出方法。
- 前記特定の基板が円形の場合における径方向と交差する方向に、前記複数の基板を移動するステップをさらに備え、
前記画像を取得するステップにおいて、前記基板の移動における前記基板の複数の位置のそれぞれにおいて、前記領域を、前記基板の面方向に対して斜めから撮像した画像を取得し、
前記基板の位置を特定するステップにおいて、前記基板の複数の位置における前記画像の前記段差部の位置に基づいて、前記エッジに含まれる特徴箇所の位置を検出する請求項1から4のいずれか1項に記載の検出方法。 - 前記照明を照射するステップにおいて、前記径方向に交差する方向に前記照明を走査し、
前記画像を取得するステップにおいて、前記照明の走査における前記照明の複数の位置のそれぞれにおいて、前記領域を、前記基板の面方向に対して斜めから撮像した画像を取得し、
前記基板の位置を特定するステップにおいて、前記照明の複数の位置における前記画像の前記段差部の位置に基づいて、前記エッジに含まれる特徴箇所の位置を特定する請求項4に記載の検出方法。 - 前記画像を取得するステップは、前記特定の基板のエッジがノッチを有している場合に、前記特定の基板における前記ノッチを含む領域および他の領域を撮像した画像を取得するステップを含み、
前記基板の位置を特定するステップは、前記他の領域を撮像した画像に基づいて、前記特定の基板の位置を特定するステップ、および、前記ノッチを含む領域を撮像した画像に基づいて、前記ノッチの回転方向を特定するステップを含む請求項1または2に記載の検出方法。 - 前記画像を取得するステップは、前記他の領域として複数の異なる領域のそれぞれについて画像を取得する請求項7に記載の検出方法。
- 前記照明を照射するステップにおいて、前記特定の基板が略円盤状の場合における径方向に延伸するパターンを持った照明を、前記ノッチを含む領域および前記他の領域に前記基板の面方向に対して斜めから照射する請求項7または8に記載の検出方法。
- 前記複数の基板を、前記径方向に交差する方向に移動するステップをさらに備え、
前記画像を取得するステップにおいて、前記基板の移動における前記基板の複数の位置のそれぞれにおいて、少なくとも前記ノッチを含む領域を、前記基板の面方向に対して斜めから撮像した画像を取得し、
前記エッジの位置を特定するステップにおいて、前記基板の複数の位置における前記画像の前記段差部の位置に基づいて、前記ノッチに含まれる特徴箇所の位置を検出する請求項9に記載の検出方法。 - 前記画像を取得するステップにおいて、前記基板の移動における複数の位置のそれぞれにおいて、前記他の領域を、前記基板の面方向に対して斜めから撮像した画像を取得し、
前記他の領域の前記複数の位置に対応する画像間におけるエッジの位置の変位に基づいて、前記ノッチの特徴箇所の位置を補正するステップをさらに備える請求項10に記載の検出方法。 - 前記照明を照射するステップにおいて、前記径方向に交差する方向に前記照明を走査し、
前記画像を取得するステップにおいて、前記照明の複数の位置のそれぞれにおいて、前記ノッチを含む領域を、前記基板の面方向に対して斜めから撮像した画像を取得し、
前記基板の位置を特定するステップにおいて、前記照明の複数の位置に対応する複数の画像の前記段差部の位置に基づいて、前記ノッチに含まれる特徴箇所の位置を特定する請求項9に記載の検出方法。 - 前記画像を取得するステップにおいて、前記他の領域は前記基板が円形の場合における前記ノッチに対して90度回転した位置を含む請求項7から12のいずれか1項に記載の検出方法。
- 前記画像を取得するステップにおいて、前記他の領域は前記基板が円形の場合における前記ノッチに対して180度回転した位置を含む請求項7から12のいずれか1項に記載の検出方法。
- 前記画像を取得するステップにおいて、アオリ光学系を用いる請求項1から14のいずれか1項に記載の検出方法。
- 積層された複数の基板のうちの特定の基板の位置を検出する検出装置であって、
前記特定の基板のエッジの一部分を含む領域に照明を照射する照明部と、
前記領域を前記基板の面方向に対して斜めから撮像した画像を取得する画像取得部と、
前記画像に現れる段差部の位置に基づいて前記特定の基板のエッジの位置を特定する位置特定部と
を備え、
前記照明部における前記領域に照明を照射する方向、および、前記画像取得部における前記領域を撮像する方向の少なくともいずれか一方が、前記基板の面方向に対して斜めである検出装置。 - 前記照明部において、照明の入射光線と反射光線とが作る面が、前記基板が円形の場合における径方向と交差する請求項16に記載の検出装置。
- 前記基板の複数の領域のそれぞれを照射すべく複数の前記照明部が設けられると共に、前記複数の照明部に対応した複数の前記画像取得部が設けられた請求項16または17に記載の検出装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11739588.9A EP2535923B1 (en) | 2010-02-08 | 2011-02-08 | Detection method and detection device |
JP2011552714A JP5708501B2 (ja) | 2010-02-08 | 2011-02-08 | 検出方法および検出装置 |
KR1020127023128A KR101809768B1 (ko) | 2010-02-08 | 2011-02-08 | 검출 방법 및 검출 장치 |
US13/568,897 US8547559B2 (en) | 2010-02-08 | 2012-08-07 | Detection method and detection apparatus |
US13/973,755 US8994957B2 (en) | 2010-02-08 | 2013-08-22 | Detection method and detection apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010025935 | 2010-02-08 | ||
JP2010-025935 | 2010-02-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/568,897 Continuation US8547559B2 (en) | 2010-02-08 | 2012-08-07 | Detection method and detection apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011096239A1 true WO2011096239A1 (ja) | 2011-08-11 |
Family
ID=44355249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/000700 WO2011096239A1 (ja) | 2010-02-08 | 2011-02-08 | 検出方法および検出装置 |
Country Status (5)
Country | Link |
---|---|
US (2) | US8547559B2 (ja) |
EP (1) | EP2535923B1 (ja) |
JP (1) | JP5708501B2 (ja) |
KR (1) | KR101809768B1 (ja) |
WO (1) | WO2011096239A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11935775B2 (en) | 2020-03-17 | 2024-03-19 | Kioxia Corporation | Semiconductor manufacturing apparatus and method of manufacturing semiconductor device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020123474A1 (en) * | 2018-12-10 | 2020-06-18 | Neocera, Llc | Method and apparatus for contactless high-resolution determination and control of an object position |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05332719A (ja) * | 1992-05-29 | 1993-12-14 | Hitachi Techno Eng Co Ltd | 板状体の非接触位置決め装置 |
WO1998057361A1 (fr) * | 1997-06-12 | 1998-12-17 | Nikon Corporation | Substrat de fabrication de dispositif, procede de fabrication de ce substrat, et procede d'exposition avec ce substrat |
JP2001006998A (ja) * | 1999-06-22 | 2001-01-12 | Hitachi Ltd | パターン露光装置 |
JP2002050749A (ja) * | 2000-07-31 | 2002-02-15 | Canon Inc | 複合部材の分離方法及び装置 |
JP2006220425A (ja) * | 2005-02-08 | 2006-08-24 | Matsushita Electric Ind Co Ltd | プリント基板外観検査装置及びプリント基板外観検査方法 |
WO2008153086A1 (ja) * | 2007-06-12 | 2008-12-18 | Nikon Corporation | 基板検出装置、基板位置決め装置、これらを有する基板貼り合わせ装置、ウェハ外形検出装置、ウェハ位置決め装置、及び、ウェハ外形検出装置及びウェハ外形検出装置を有するウェハ貼り合せ装置 |
JP2009139285A (ja) * | 2007-12-07 | 2009-06-25 | Univ Nihon | 半田ボール検査装置、及びその検査方法、並びに形状検査装置 |
JP2009231671A (ja) | 2008-03-25 | 2009-10-08 | Nikon Corp | アラインメント装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5563798A (en) * | 1994-04-05 | 1996-10-08 | Applied Materials, Inc. | Wafer positioning system |
US6452503B1 (en) * | 2001-03-15 | 2002-09-17 | Pri Automation, Inc. | Semiconductor wafer imaging system |
US6950181B2 (en) * | 2003-03-31 | 2005-09-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Optical wafer presence sensor system |
JP2007205864A (ja) * | 2006-02-01 | 2007-08-16 | Reitetsukusu:Kk | 基盤検査装置、及び、基盤検査方法 |
US8175831B2 (en) * | 2007-04-23 | 2012-05-08 | Kla-Tencor Corp. | Methods and systems for creating or performing a dynamic sampling scheme for a process during which measurements are performed on wafers |
US8099190B2 (en) * | 2007-06-22 | 2012-01-17 | Asm International N.V. | Apparatus and method for transferring two or more wafers whereby the positions of the wafers can be measured |
-
2011
- 2011-02-08 WO PCT/JP2011/000700 patent/WO2011096239A1/ja active Application Filing
- 2011-02-08 JP JP2011552714A patent/JP5708501B2/ja active Active
- 2011-02-08 KR KR1020127023128A patent/KR101809768B1/ko active IP Right Grant
- 2011-02-08 EP EP11739588.9A patent/EP2535923B1/en active Active
-
2012
- 2012-08-07 US US13/568,897 patent/US8547559B2/en active Active
-
2013
- 2013-08-22 US US13/973,755 patent/US8994957B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05332719A (ja) * | 1992-05-29 | 1993-12-14 | Hitachi Techno Eng Co Ltd | 板状体の非接触位置決め装置 |
WO1998057361A1 (fr) * | 1997-06-12 | 1998-12-17 | Nikon Corporation | Substrat de fabrication de dispositif, procede de fabrication de ce substrat, et procede d'exposition avec ce substrat |
JP2001006998A (ja) * | 1999-06-22 | 2001-01-12 | Hitachi Ltd | パターン露光装置 |
JP2002050749A (ja) * | 2000-07-31 | 2002-02-15 | Canon Inc | 複合部材の分離方法及び装置 |
JP2006220425A (ja) * | 2005-02-08 | 2006-08-24 | Matsushita Electric Ind Co Ltd | プリント基板外観検査装置及びプリント基板外観検査方法 |
WO2008153086A1 (ja) * | 2007-06-12 | 2008-12-18 | Nikon Corporation | 基板検出装置、基板位置決め装置、これらを有する基板貼り合わせ装置、ウェハ外形検出装置、ウェハ位置決め装置、及び、ウェハ外形検出装置及びウェハ外形検出装置を有するウェハ貼り合せ装置 |
JP2009139285A (ja) * | 2007-12-07 | 2009-06-25 | Univ Nihon | 半田ボール検査装置、及びその検査方法、並びに形状検査装置 |
JP2009231671A (ja) | 2008-03-25 | 2009-10-08 | Nikon Corp | アラインメント装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2535923A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11935775B2 (en) | 2020-03-17 | 2024-03-19 | Kioxia Corporation | Semiconductor manufacturing apparatus and method of manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
US20140022560A1 (en) | 2014-01-23 |
EP2535923A1 (en) | 2012-12-19 |
JP5708501B2 (ja) | 2015-04-30 |
EP2535923B1 (en) | 2020-06-17 |
EP2535923A4 (en) | 2014-09-17 |
US20130033712A1 (en) | 2013-02-07 |
KR20120123538A (ko) | 2012-11-08 |
KR101809768B1 (ko) | 2017-12-15 |
US8994957B2 (en) | 2015-03-31 |
US8547559B2 (en) | 2013-10-01 |
JPWO2011096239A1 (ja) | 2013-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101379538B1 (ko) | 접합 기판의 회전 어긋남량 계측 장치, 접합 기판의 회전 어긋남량 계측 방법 및 접합 기판의 제조 방법 | |
KR101141345B1 (ko) | 3차원 형상 계측 장치, 3차원 형상 계측 방법, 3차원 형상 계측 프로그램, 및 기록 매체 | |
JP4883181B2 (ja) | 部品実装方法 | |
JP4939843B2 (ja) | 欠陥検査方法及びその装置 | |
KR101808388B1 (ko) | 프로브 장치 및 프로브 방법 | |
JP2002310929A (ja) | 欠陥検査装置 | |
CN1795536A (zh) | 位置信息测量方法及装置、和曝光方法及装置 | |
JP5951793B2 (ja) | 撮像素子位置検出装置 | |
JP2015190826A (ja) | 基板検査装置 | |
JP5346759B2 (ja) | 基板位置決め方法 | |
WO2020188761A1 (ja) | カメラモジュール製造装置及びカメラモジュール製造方法 | |
CN106796185A (zh) | 具有沿循边缘轮廓的轨迹的晶片边缘检验 | |
JP6684992B2 (ja) | 突起検査装置及びバンプ検査装置 | |
JP5708501B2 (ja) | 検出方法および検出装置 | |
JP2005070225A (ja) | 表面画像投影装置及び表面画像投影方法 | |
US10847369B2 (en) | Wafer bonding method, method for manufacturing semiconductor device, and apparatus therefor | |
JPH11326229A (ja) | 異物検査装置 | |
WO2019180899A1 (ja) | 外観検査装置 | |
TWI510754B (zh) | Detection method and detection device | |
JP7531233B2 (ja) | カラー光学検査装置及びこれを含むシステム | |
US20220344192A1 (en) | Systems and methods for absolute sample positioning | |
JP2007042858A (ja) | 投影露光装置 | |
JP2013140187A (ja) | 検査装置 | |
JP2006165377A (ja) | 露光装置、露光方法、マスクおよび半導体装置 | |
JP2001091211A (ja) | 高さ測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11739588 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011552714 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011739588 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127023128 Country of ref document: KR Kind code of ref document: A |