Nothing Special   »   [go: up one dir, main page]

WO2011081188A1 - Quadrupole mass spectroscope - Google Patents

Quadrupole mass spectroscope Download PDF

Info

Publication number
WO2011081188A1
WO2011081188A1 PCT/JP2010/073736 JP2010073736W WO2011081188A1 WO 2011081188 A1 WO2011081188 A1 WO 2011081188A1 JP 2010073736 W JP2010073736 W JP 2010073736W WO 2011081188 A1 WO2011081188 A1 WO 2011081188A1
Authority
WO
WIPO (PCT)
Prior art keywords
quadrupole
electrodes
mass spectrometer
annular
electrode
Prior art date
Application number
PCT/JP2010/073736
Other languages
French (fr)
Japanese (ja)
Inventor
善郎 塩川
恵 中村
強 彭
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Publication of WO2011081188A1 publication Critical patent/WO2011081188A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/068Mounting, supporting, spacing, or insulating electrodes

Definitions

  • the present invention relates to a quadrupole mass spectrometer that performs mass separation of ions passing through four electrodes.
  • FIG. 1A is a configuration diagram of a conventional quadrupole analyzer, where reference numeral 1 is an ion source, reference numeral 2 is a mass analyzer, and reference numeral 3 is a detector.
  • the mass analyzer 2 has four cylindrical electrodes 4, and ions 5 emitted from the ion source 1 pass between the four cylindrical electrodes 4 and enter the detector 3.
  • the opposing electrodes (facing each other with the central axis of the mass analyzer in between) are electrically coupled (conducted), and a direct-current voltage (DC) and a high-frequency voltage (RF) is applied to form a quadrupole electric field (“U-quadrupole electric field” to be described later) 7, and only ions having a mass number corresponding to each voltage, frequency, etc. It is made to pass in the longitudinal direction of the electrode 4.
  • DC direct-current voltage
  • RF high-frequency voltage
  • vacuum ultraviolet rays may be incident on the detector 3 from the ion source 1 as described above. This is because vacuum ultraviolet light (light with high energy) is generated in the ion source 1. Further, when the ions 5 collide with the cylindrical electrode 4, soft X-rays (light having higher energy) may be generated and enter the detector 3. Such high-energy light that has entered the detector 3 due to vacuum ultraviolet rays, soft X-rays, or other factors will be collectively referred to as “stray light”. That is, the stray light 6 may enter the mass analyzer 2 together with the ions 5.
  • a high-frequency voltage and a DC voltage are applied to four parallel electrodes.
  • a rectangular frame-shaped insulating support 14 having an inner dimensional accuracy is used, and each of the four cylindrical electrodes 11a to 11d is brought into close contact with the inner surface of the insulating support 14 by tightening screws 13. ing.
  • This method has a problem that the accuracy (internal dimensional accuracy) of the insulating support 14 is difficult to obtain and is high in cost, and that the screw tightening force must be within a range.
  • a metal film formed on the surface of an insulator processed into an arc shape is used instead of a metal cylinder as a cylinder electrode (see Patent Document 1). That is, the metal films 16a to 16d are formed on the surfaces of the insulating supports 15a to 15d, respectively.
  • various methods can be used for the structure of the four insulating supports 15a to 15d, it is general that the outer sides of the insulating supports 15a to 15d are pressed together with the fixtures 17a to 17d. In this method, there are many places where the accuracy of the insulating support is required, and it is also difficult to arrange the metal films 16a to 16d in parallel with each other, and the cost is high.
  • two metal films are formed on one insulator (see Patent Document 2). That is, two protrusions 19a and 19b are formed on the insulating support 18a, and metal films 20a and 20b are formed on the protrusions 19a and 19b. Similarly, two protrusions 19c and 19d are formed on the insulating support 18b, and metal films 20c and 20d are formed on the protrusions 19c and 19d.
  • Various methods can be used for positioning and assembling the two insulating supports 18a and 18b, but it is general that the spacers are pressed with a thickness accuracy between them. In this method, the number of parts is reduced, but it is difficult to obtain the accuracy of the insulating support so that the four protrusions 19a to 19d are parallel to each other, and the problem of high cost is not improved so much.
  • the insulating support 21 is a hollow insulating support 21 having four regions recessed in a hyperbola inward along the longitudinal direction, and inside the four recessed regions of the insulating support 21.
  • Metal films 22a to 22d are formed. This method is excellent in that the number of parts is extremely small and assembly is not required, but the insulating support 21 when forming the hyperbolic depressions so that the formed metal films 22a to 22d are parallel to each other. It is difficult to ensure the accuracy of the system, and the cost problem is increasing.
  • the ions 5 to be signals are emitted from the ion source 1, but unavoidably high energy such as vacuum ultraviolet light or soft X-rays (that is, the ionization process) , Stray light 6) is emitted. Since the stray light 6 has no electric charge, it is incident on the detector 3 without being separated by the mass analyzer 2 and is detected as a false signal by the detector 3 because of its high energy. Since this is not an original signal, it becomes a background (noise) and deteriorates the performance of sensitivity (S / N). In particular, the conventional quadrupole mass spectrometer has a problem of stray light because the electrodes are straight (the detector can be expected from the ion source).
  • FIG. 2A there is an example in which the stray light 6 from the ion source 1 is difficult to enter the detector 3 by installing a curved ion guide 1 in front of the mass analyzer 2.
  • a bent ion guide 30 is provided between the ion source 1 and the mass analyzer 2.
  • the ion guide 30 has four curved cylindrical electrodes (metal cylinders) 31, and the ion 5 passes between the four cylindrical electrodes 31.
  • a quadrupole electric field (“U-less quadrupole electric field” described later) 32 is formed between the cylindrical electrodes 31. .
  • the ions 5 travel while bending along the curve of the cylindrical electrode 31 (curve of the ion guide).
  • the ions 5 pass between the cylindrical electrodes 31 or at the cylindrical electrode 31. It will be absorbed and reflected. Therefore, the stray light 6 incident on the detector 3 can be reduced.
  • the stray light 6 is reflected on the surface of the cylindrical electrode 31 with a reflectivity of about several tens of percent, some of the reflected stray light is reflected to the detector 3 side. Therefore, the stray light problem has not been significantly improved.
  • the ion guide allows all ions to pass through without mass separation, and the quadrupole mass analyzer has the same mechanical structure and coupling (conduction) state, but only high-frequency voltage. Is applied and no DC voltage is applied. The high frequency voltage is customarily called the V voltage and the DC voltage is called the U voltage.
  • a quadrupole electric field having a mass analysis function as a mass analyzer is referred to as “a quadrupole electric field with U”, an ion guide.
  • a quadrupole electric field having no mass spectrometric function is referred to as “U-less quadrupole electric field”.
  • the ion guide does not perform mass fractionation, the accuracy of the electrodes (particularly, the accuracy with which the four electrodes are arranged in parallel) is not as required as the mass analyzer. Therefore, although the conventional ion guide uses an electrode having a curvature, the fixing method is basically the same as the method of the mass analyzer (FIGS. 1B to 1E).
  • FIG. 2B to 2E are cross-sectional views showing how a conventional ion guide is fixed.
  • the cylindrical electrodes 33a to 33d of the ion guide are fixed by screws 34 inside the insulating support 35 having a hollow structure.
  • FIG. 2B is a cross-sectional view of FIG.
  • FIG. 2D also shows a structure in which the metal parts 39a to 39d are fixed to the insulating support 38 by screws 34 (see Patent Document 6).
  • the insulating support 38 has a very complicated shape, and the cost problem is counterproductive even if the number of parts is reduced. Note that not only the structure shown in FIG. 2D but also in FIGS. 2A and 2B, the influence of “bending” is strong, and it is difficult to achieve accuracy throughout. Therefore, in this state, the structure shown in FIGS. 2A to 2D can be used as an ion guide, but cannot be used as a mass analyzer.
  • Patent Document 5 discloses an ion filter in which a curved ion guide and a curved quadrupole mass spectrometer are arranged between an ion source and a detector.
  • 2E is a perspective view of the curved quadrupole mass spectrometer disclosed in Patent Document 5, and FIG. 2F illustrates how to assemble the curved quadrupole mass spectrometer shown in FIG. 2E. It is a figure for doing.
  • the curved quadrupole mass spectrometer 40 includes an insulating support 41 and metal parts 43 to 46 fixed to the insulating support 41 with screws 42. These metal parts 43 to 46 function as quadrupole electrodes and have hyperbolic surfaces 43c to 46c. In this way, the surfaces 43c to 46c are arranged so as to face each other, thereby forming a quadrupole electric field.
  • a plurality of through holes 49 are provided in the first surface 47 of the insulating support 41 and the second surface 48 facing the first surface 47. It has been.
  • Each of the metal parts 43 to 46 functions as a quadrupole electrode and is curved.
  • the metal part 43 has a hyperbolic surface 43c and a plurality of support spokes 43a, and a through hole 43b is formed in each of the support spokes 43a.
  • the metal part 44 has a hyperbolic surface 44c and a plurality of support spokes 44a, and through holes (not shown) are formed in each of the support spokes 44a.
  • the metal parts 45 and 46 have hyperbolic surfaces 45c and 46c and a plurality of support spokes 45a and 46a, respectively, and through holes 45b and 46b are formed in the support spokes 45a and 46a, respectively. ing.
  • each of the support spokes 43a is provided on the first surface 47 side of the insulating support 41 by passing the screws 42 through the through holes 43b, the through holes 49, and the through holes formed in the support spokes 44a.
  • the support spokes 44 a are fixed to the second surface 48 side of the insulating support 41.
  • each of the support spokes 45a is fixed to the first surface 47 side of the insulating support body 41 by passing the screw 42 through the through hole 45b, the through hole 49, and the through hole 46b.
  • the support spoke 46a is fixed to the second surface 48 side.
  • each of the four metal parts 43 to 46 to be arranged in parallel has a plurality of support spokes and through holes formed in the support spokes so that the surfaces 43c to 46c are parallel to each other.
  • each of the many through holes must be formed accurately. That is, each of the metal parts 43 to 46 has three objects to be adjusted so as to establish a parallel relationship so that the surfaces 43c to 46c are parallel to each other.
  • the metal part 43 establishes the positional relationship with the metal part 44 so that the surface 43c and the surface 44c are parallel, and the positional relation with the metal part 45 so that the surface 43c and the surface 45c become parallel.
  • positioning must be performed while aligning with the through holes of other metal parts positioned in this manner.
  • each through hole formed in the support spokes is positioned, there are a plurality of support spokes that should form the through holes, so each through hole must be accurately formed in the support spoke. Very high strictness is required for through-hole forming processing. Furthermore, since each support spoke is fixed to the insulating support body 41 through a plurality of through holes 49, the above through holes 49 are also required to be processed very strictly.
  • Patent Document 5 there are many reference points (such as through holes formed in the support spokes and through holes formed in the insulating support 41) as factors that determine the parallelism of the surfaces 43c to 46c. There will be a separate reference point. Therefore, unless the through holes, each of the metal parts having the support spokes, and the insulating support 41 are made precisely, the parallelism of the surfaces 43c to 46c cannot be expected. Further, as described above, since there are many factors that determine the parallelism, the process of adjusting them is complicated and takes a lot of time and effort.
  • Patent Document 5 the metal parts 43 to 46 have a very complicated shape, which increases costs.
  • each of the metal parts 43 to 46 serving as the quadrupole electrodes has support spokes, so there is a limit to downsizing the quadrupole mass spectrometer 40.
  • the support spoke has a complicated structure and is difficult to manufacture. Therefore, when the support spoke is further reduced, it becomes more difficult to produce the support spoke.
  • the support spoke must be formed with a through hole for fixing the support spoke to the insulating support 41, and in order to stably fix the support spoke to the insulating support 41 while forming the through hole. The support spokes need to secure a certain length.
  • the present invention has been made in view of such problems, and the object of the present invention is to reduce the incidence of stray light from the ion source on the detector and to increase the sensitivity (S / N). It is an object of the present invention to provide a quadrupole mass spectrometer that can be miniaturized.
  • Another object of the present invention is to reduce the incidence of stray light from the ion source to the detector while improving the accuracy of the parallelism of the quadrupole electrode and increasing the resolution. It is an object of the present invention to provide a quadrupole mass spectrometer that can be configured.
  • one embodiment of the present invention is a quadrupole mass spectrometer that includes an ion source that ionizes neutral molecules and emits ions, and four non-linear electrodes.
  • a quadripole in a region surrounded by the four electrodes by applying a voltage in which a DC voltage and a high-frequency voltage are superimposed between two opposing electrode sets of the four electrodes.
  • a mass separation region for performing mass fractionation of the ions passing through the quadrupole field by forming an electric field; a detector for detecting the ions that have passed through the mass separation region as signals; and a concentric fit
  • the mass separation region is configured, and the four electrodes are at least a part of four concentric annular electrodes, and each of the four annular electrodes is formed on a part of the insulating support.
  • the conductive film is assembled by a circularly symmetrical fitting between the insulating supports by the fitting portion.
  • Another aspect of the present invention is a quadrupole mass spectrometer, a mass fractionation region having an ion source that ionizes neutral molecules and emits ions, and four non-linear electrodes, A quadrupole electric field is formed in a region surrounded by the four electrodes by applying a voltage in which a DC voltage and a high-frequency voltage are superimposed between two opposing electrode sets among the four electrodes, and the quadrupole electric field is formed.
  • the mass fractionation region is non-linear.
  • the mass fractionation region is configured such that the non-linear mass fractionation region prevents the detector from being viewed from the ion source through the mass fractionation region, and the four electrodes are concentric four annular rings. Less of electrode Also part, the four annular electrodes, characterized in that it is assembled by fitting the plate-like insulating support having a concentric fitting portion.
  • the detector is configured such that the detector cannot be expected through a portion surrounded by four electrodes for forming a quadrupole electric field having a U necessary for mass spectrometry from the ion source. Incident stray light can be reduced. Furthermore, by forming the four electrodes in a concentric ring shape, the four electrodes can be arranged with high parallelism.
  • FIG. 2E It is a block diagram of the conventional quadrupole-type mass spectrometer provided with the ion guide to which a DC voltage is not applied. It is sectional drawing which shows a mode that the conventional ion guide is fixed. It is sectional drawing which shows a mode that the conventional ion guide is fixed. It is sectional drawing which shows a mode that the conventional ion guide is fixed. It is a perspective view of the conventional curved quadrupole mass spectrometer. It is a figure for demonstrating how to assemble the curved quadrupole-type mass spectrometer shown by FIG. 2E. It is a figure which shows the structure of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention. FIG.
  • FIG. 3B is a cross-sectional view of the quadrupole mass spectrometer shown in FIG. 3A.
  • FIG. 3B is a circuit diagram of the quadrupole mass spectrometer shown in FIG. 3A. It is a figure which shows the structure of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention. It is a figure explaining the mode of fitting of the circularly symmetric thing of the quadrupole-type mass spectrometer shown to FIG. 3D, Comprising: The mode of fitting with an annular electrode and an annular
  • FIG. 3D It is a figure explaining the mode of fitting of the circularly symmetric thing of the quadrupole-type mass spectrometer shown to FIG. 3D, Comprising: The mode of fitting with an annular electrode and an annular
  • FIG. 3A It is sectional drawing of the orthogonal
  • FIG. 3A it is a figure for demonstrating the form which provides a spacer in the fitting part of a cylindrical electrode and an insulation support body. It is a figure which shows the mode of the fitting of the electrode which concerns on one Embodiment of this invention, and an insulation support body, and the fitting of insulation support bodies. It is a figure which shows the example which attaches the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention to a sputtering device.
  • the four electrodes (quadrupole electrode) provided in the quadrupole mass spectrometer are configured so that the cross section of the quadrupole electrode satisfies a specific relationship regarding the curvature and position of the electrode in each cross section.
  • the longitudinal direction is concentric "annular" so that stray light from the ion source does not enter the detector or reduces the incidence of the stray light, and these quadrupole electrodes are fitted to each other so ] To improve the accuracy of the parallelism of the electrodes.
  • the quadrupole electrode is bent so as to reduce stray light incidence.
  • the quadrupole mass spectrometer having the above structure can be easily downsized.
  • a support spoke and an insulating support for fixing the support spoke are required.
  • the support spokes that are difficult to reduce in size are not required by adopting the fitting structure. Therefore, it is easy to reduce the size of the quadrupole mass spectrometer.
  • the merit of miniaturization of the apparatus according to the present invention relating to a quadrupole mass spectrometer has the intrinsic value of expanding the upper limit of the atmospheric pressure that can be measured, in addition to saving space and reducing weight.
  • the upper limit of the pressure that can be measured is the pressure at which the mean free path of the atmosphere is approximately the same as or longer than the orbital distance (movement distance) of ions.
  • the orbital distance movement distance
  • Sputtering equipment is frequently used in advanced industries such as semiconductors, but the operating pressure of the sputtering equipment is about 0.3 Pa, and the mean free path at that time is about 10 to 20 mm. That is, a small quadrupole mass spectrometer with an orbital distance of ions of about 10 to 20 mm is required.
  • the conventional quadrupole mass spectrometer has an orbital distance of about 100 to 200 mm, downsizing of 1/10 is required.
  • the quadrupole mass spectrometer is used. Can be reduced in size, so that the orbital distance of ions can be shortened. More importantly, in one embodiment of the present invention, even if the quadrupole electrodes are bent so as to reduce stray light incidence on the detector, the parallelism between the quadrupole electrodes is improved, The downsizing can be realized.
  • the quadrupole mass spectrometer 100 includes an ion source 101, a quadrupole mass analyzer 102, and a detector 103.
  • the ion source 101 and the detector 103 are surrounded by cases 108a and 108b with openings, respectively.
  • the component to be measured (neutral molecule) becomes an ion 105 in the ion source 101, and only specific ions that meet the set conditions pass through the quadrupole mass analyzer 102 and reach the detector 103 as a signal. Detected.
  • the ion source 101 can be the most common electron impact (EI) type ion
  • the detector 103 can be a microchannel type electron multiplier plate (MCP).
  • EI electron impact
  • MCP microchannel type electron multiplier plate
  • the quadrupole mass analyzer 102 of the present embodiment basically has four electrodes 104a to 104d (in this specification, electrodes 104a to 104d) that are, for example, metal cylinders.
  • a high-frequency voltage (RF) and a direct-current voltage (DC) are applied to the electrode 104 (also generally referred to as an electrode 104).
  • the opposing electrodes 104a and 104d (facing each other with the central axis of the mass analyzer in between) and electrodes 104b and 104c are coupled (conducted), respectively, and a DC voltage is generated between the two electrode sets.
  • a quadrupole electric field 107 is formed in a region U (region where ions 105 fly) surrounded by the electrodes 104a to 104d.
  • the center voltage of the DC voltage and the high-frequency voltage determines the axial velocity of the ions, and is determined by other requirements.
  • the curvature of each electrode and each position satisfy a specific relationship known in the art, while the longitudinal direction of the electrode is a concentric “circular ring”. (3/4 laps).
  • the four electrodes 104 are non-linear and are annular, so the quadrupole mass analyzer 102 is also a linear ring. Therefore, the present embodiment is configured such that the detector 103 cannot be expected from the ion source 101 by the non-linear quadrupole mass analyzer 102.
  • Each of the four electrodes 104 is a concentric annular electrode, and two of the four electrodes 104 (reference numerals 104a and 104c in FIG. 3B) have the same first radius, and the remaining 2 Two electrodes (reference numerals 104b and 104d in FIG. 3B) are larger than the first radius and have the same second radius. Therefore, as shown in FIG. 3B, the parallelism between the annular electrodes 104a and 104b can be improved by arranging the annular electrodes 104a and 104b to be concentric. Similarly, by arranging the annular electrodes 104c and 104d to be concentric, the parallelism between the annular electrodes 104c and 104d can be improved.
  • annular electrode 104a (104b) and the annular electrode 104c (104d) are arranged.
  • the degree of parallelism with 104c (104d) can be improved, and as a result, the four annular electrodes 104a to 104d can be arranged in parallel with each other or with the degree of parallelism improved.
  • the electrodes 104a to 104a are arranged such that the annular surface of the electrode 104a (104c) having the first radius coincides with the annular surface of the electrode 104b (104d) having the second radius. 104d are arranged concentrically. Therefore, the electrodes 104a to 104d can be arranged with high parallelism.
  • the metal cylinder used as the cylinder electrode 104 is made of stainless steel (SUS) or molybdenum (Mo). In any cross section, the curvature of each electrode and the position of each electrode maintain a system of several microns (micrometers) or less. Therefore, ions exiting the ion source 101 enter the detector 103 with a 270 ° curve.
  • SUS stainless steel
  • Mo molybdenum
  • the ions 105 are converged while vibrating with a high frequency voltage of several hundreds V or more and about several MHz in the cross-sectional direction, but proceed with a voltage difference of only about several V in the longitudinal direction. . Therefore, the centrifugal force generated in the ions due to the curve in the traveling direction is almost canceled by the high potential in the cross-sectional direction, so the adverse effect due to the curve is very slight. Therefore, the ion incident from the ion source 101 is detected by detecting the ion 105 to be detected by traveling in the quadrupole electric field 107 with U and being separated by mass while the annular electrode 104 is curved. Incident on the vessel 103.
  • the ion source 101 and the detector 103 are installed in cases 108a and 108b that are closed except for the surface on the quadrupole mass spectrometer 102 side, the stray light 106 from the ion source 101 is quadruple. There is a possibility of being incident on the detector 103 only by reflection inside the polar mass analyzer 102. However, since the quadrupole mass spectrometer 102 is curved as much as 270 °, the incident light to the detector 103 is limited to only one reflected several times.
  • the quadrupole mass analyzer 102 that can perform mass analysis by applying both a DC voltage and a high-frequency voltage is non-linear, and the non-linear quadrupole.
  • the ion source 101 and the detector are prevented from being detected by the polar mass analyzer 102 through the portion surrounded by the four electrodes 104 that are components of the quadrupole mass analyzer 102 from the ion source 101.
  • 103 and the quadrupole mass analyzer 102 are configured.
  • the ions 105 and the stray light 106 are on the left side of the ion source 101 in FIG. 3A. Since the cases 108a and 108b are obstructed, a configuration in which the detector 103 cannot be expected from the ion source 101 is realized. Further, on the right side of the ion source 101 in FIG. 3A, the quadrupole mass analyzer 102 is formed in a non-linear annular shape, so that a configuration in which the detector 103 cannot be expected from the ion source 101 is realized. ing.
  • the ions 105 that are desired to be detected can reach the detector 103, and the amount of stray light 106 that is not desired to be detected can be reduced. Therefore, detection of noise in the detector 103 can be reduced, and sensitivity (S / N ratio) can be increased.
  • the quadrupole mass analyzer 102 By bending the quadrupole mass analyzer 102 itself, through the portion surrounded by the four electrodes 104a to 10d (bent electrodes) of the quadrupole mass analyzer 102 from the ion source 101. This is preferable because the detector can be prevented from being expected and the incidence of the stray light 106 on the detector 103 can be reduced.
  • the quadrupole mass analyzer 102 considering that the quadrupole mass analyzer 102 operates well, it is more preferable to arrange the four bent electrodes with high parallelism. In order to achieve this, it is required to arrange at least the electrodes 104a to 104d with the parallelism required for the user to perform a desired measurement.
  • the electrode is bent in order to reduce the incidence of stray light on the detector, but the configuration of bending this electrode is to form a U-less quadrupole field. It is an ion guide, not a mass analyzer with a U-containing quadrupole field. That is, conventionally, in order to reduce the incidence of the stray light 6 on the detector 3, it is necessary to provide an ion guide 30 that is curved separately from the mass analyzer 2. This is because even if the cylindrical electrode 4 of the mass analyzer 2 is bent, it is still required to arrange the four electrodes necessary for the mass analysis in parallel as much as possible, and the four bent electrodes are highly parallel to each other. Arranging at a degree is associated with considerable difficulty.
  • annular electrodes 104a and 104c two annular electrodes having a first radius and two annular electrodes having a second radius larger than the first radius are used.
  • a quadrupole mass spectrometer 102 is formed using electrodes (electrodes 104b and 104d). Therefore, by arranging the four electrodes concentrically, the electrodes can be arranged with high parallelism simply and at low cost. This is because a technique for processing an annular object with high accuracy has been established, and by using this technique, concentric annular electrodes having a uniform radius (a pair of electrodes 104a and 104c, and electrodes 104b and 104d). Since the electrodes are annular, when the four electrodes 104a to 104d are arranged, the reference points for the arrangement of the respective electrodes can be set at the same point. is there.
  • annular electrodes 104a and 104c inner electrodes arranged on the inside
  • two annular electrodes 104b and 104d outer electrodes having a larger diameter than the inner electrodes.
  • annular electrodes with the arranged outer electrode are prepared, and two pairs are arranged in which the inner electrode is arranged concentrically inside the outer electrode (first pair (electrode 104a and electrode 104b) and second pair Pair (electrode 104c and electrode 104d), and these pairs are spaced apart in the left-right direction (the in-plane vertical direction of the annular electrode, the left-right direction in FIG. 3D). Since the inner electrode and the outer electrode are annular, the parallelism between the outer electrode and the inner electrode can be improved by arranging them concentrically.
  • the first pair of inner electrodes and the second pair of inner electrodes face each other (facing each other with the central axis of the mass analyzer in between), and the first pair of outer electrodes and the second pair Of the first pair of inner electrodes and the second pair of inner electrodes, and between the first pair of outer electrodes and the second pair of outer electrodes.
  • a spacer having the same thickness for example, insulating supports 111a and 111b described later
  • the electrodes 104a and 104d are electrically coupled, and the electrodes 104b and 104c are electrically coupled, and a high frequency voltage (RF) and a direct current are connected between these two electrode sets.
  • RF high frequency voltage
  • DC voltage superimposed with a voltage
  • a quadrupole electric field 107 with U is formed, and mass spectrometry can be performed. That is, each electrode is arranged concentrically using an annular electrode 104, and further, a high frequency voltage and a direct current voltage are applied to the annular electrode 104, so that the quadrupole mass analyzer 102 has a stray light reduction function. And a mass spectrometric function.
  • the present embodiment by arranging the four annular electrodes concentrically, the portions surrounded by the four electrodes 104a to 104d from the ion source 101 while arranging each electrode with high parallelism.
  • the detector 103 cannot be expected.
  • by incorporating a stray light reduction function into the mass analyzer it is possible to suppress the incidence of stray light to the detector without providing an ion guide separately as in the prior art.
  • FIG. 3D is a diagram illustrating a configuration for arranging the annular electrodes 104 provided in the quadrupole mass spectrometer according to the present embodiment with high parallelism.
  • the left figure of FIG. 3D is a cross-sectional view perpendicular to the flight direction of the ions 105 (3 ⁇ cross-section of the right figure of FIG. 3D), and the right figure of FIG. (3 ⁇ cross section in the left figure of 3D).
  • an insulating support that determines the position while insulating them is important.
  • the insulating support include machinable ceramics (ceramics that can be machined, such as Macor, Photovale, Macerite, etc.) in view of electrical insulation and workability.
  • the insulating supports 111a, 111b, 112a, and 112b are formed of such materials.
  • the insulating supports 112a and 112b are formed in the same concentric annular shape as the annular electrode 104, and their cross sections have this character shape.
  • the position of the electrode having a large ring diameter is determined by the surface facing the center direction on the outside of the character, and the position of the electrode having a small ring diameter is determined by the surface facing the outside direction on the inside.
  • the position of the electrode 104a having a small diameter is determined by the surface 113a facing the outer direction inside the character, and the diameter is determined by the surface 113b facing the center direction outside the character.
  • the position of the large electrode 104b is determined.
  • the position of the electrode 104c having a small diameter is determined by the surface 113c facing the outer direction inside the character, and the surface 113d facing the central direction outside the character.
  • the position of the electrode 104d having a large diameter is determined.
  • the positioning of the ring in the axial direction is not a fit but a method similar to the conventional method. That is, the axial positioning is performed using an annular insulating support 111a and an annular insulating support 111b having a diameter smaller than that of the insulating support 111a as spacers.
  • 3E and 3F show details of an assembling method by fitting circularly symmetric objects of the quadrupole mass spectrometer shown in FIG. 3D.
  • the electrodes 104a to 104d are positioned by the respective surfaces of the corresponding insulating supports 112a and 112b. Furthermore, the insulating supports 112a and 112b are also positioned by fitting circularly symmetrical objects. Therefore, each of the electrodes 104a to 104d has a structure that provides accuracy with reference to a common center point (concentric point).
  • the insulating support 112a is provided along the circumferential direction of the annular electrode 104b.
  • a fitting portion is formed between the surface 113b of the body 112a and the electrode 104b.
  • the electrode 104b is fitted by the presence of the surface 113b by producing the electrode 104b and the insulating support 112a so that the outer wall surface (surface 113b) of this character in the cross section of the insulating support 112a is fitted.
  • the insulating support 112a is fixed in place.
  • each of the insulating support 112a and the electrode 104b and the insulating support 112a and the electrode 104a, which are fittings of circularly symmetrical objects, are positioned with reference to a common center point (concentric point). Therefore, as a result, the electrodes 104a and 104b are also positioned with respect to a common center point (concentric point). Therefore, the electrode 104a and the electrode 104b can be arranged with high parallelism.
  • the description is omitted here, the same applies to ⁇ electrode 104cvs insulating support 112b> and ⁇ electrode 104dvs insulating support 112b> in FIG. 3F.
  • the electrode 104a and the electrode 104c, and the electrode 104b and the electrode 104d can be arranged with high parallelism, and as a result, the electrodes 104a to 104d can be arranged with high parallelism with each other.
  • Patent Document 5 when forming a curved quadrupole mass spectrometer, a reference for arranging four quadrupole electrodes in parallel with each other Since there are a plurality of points, the parallelism of the quadrupole electrode cannot be improved unless each of the plurality of reference points is formed with high accuracy. Therefore, it is necessary to accurately position the plurality of reference points.
  • the through holes formed in the support spokes 43a to 46a and the insulating support 41 for fixing the support spokes are used as reference points. It is necessary to precisely process the through hole.
  • each of the annular electrodes 104a to 104d included in the quadrupole mass spectrometer 100 is fitted to one of the annular insulating supports 112a and 112b, and The insulating supports 112a and 112b are fitted together. Since the fitting is a fitting of a circularly symmetric object, as a result, each of the annular electrodes 104a to 104d and the annular insulating supports 112a and 112b is based on the same reference point (concentric point). Thus, the electrodes 104a to 104d can be arranged with a high degree of parallelism.
  • the electrodes 104a to 104d are fixed by the fitting structure as described above, a support spoke that extends inward and is difficult to be miniaturized is required as in Patent Document 5. do not do.
  • the curved electrodes 104a to 104d (quadrupole electrodes) can be fixed with high parallelism without using support spokes that are rate-limiting for downsizing. Therefore, it is possible to reduce the size of the apparatus while reducing the detection of stray light and improving the parallelism of the quadrupole electrode.
  • the electrode 104a and the electrode 104b are fitted to the insulating support 112a, and the electrode 104c and the electrode 104d are fitted to the insulating support 112b. Then, the insulating support 112a and the insulating support 112b are fitted together via the insulating supports 111a and 111b, and the insulating supports 112a and 112b are fixed to the insulating supports 111a and 111b with screws 114. In this way, the quadrupole mass analyzer 102 in which the annular electrodes 104a to 104d are arranged with high parallelism is formed.
  • a circularly symmetric object can achieve high accuracy with respect to the size of the diameter.
  • the absolute value of the dimension itself may vary by several tens of ⁇ to several hundreds of ⁇ , but the value must match within a few microns in the longitudinal direction of the electrode. I must. This demands that there is little dimensional variation at each point on the circumference, which is in good agreement with the processing characteristics of a circularly symmetric object.
  • the gap in the fitting can be made very small. There is always a gap required for fitting, which is a deviation, but there is a technology established by many years of research on this value for fittings that are circularly symmetric, and design, processing, and assembly are performed accordingly. If this is done, the minimum gap can be realized. Specifically, a gap of several tens of micrometers or less is sufficiently possible.
  • the electrodes 104a to 104d which are metal cylinders, are partially cut away to avoid interference. That is, the notch 110 a is provided in the electrode 104 around the ion source 101, and the notch 110 b is provided in the electrode 104 around the detector 103. This may have some effect on the accuracy of a circularly symmetric object, but mass separation is not performed at the notched part, and the circular shape of the metal cylinder remains unchanged (the ring is broken). Is not considered to be a big problem.
  • the four electrodes 104 in order to realize a mass analysis function in the quadrupole mass analyzer 102 formed by the four electrodes 104, it is an object to arrange the four electrodes 104 with high parallelism to each other. Although it is one, it is not intended to be completely parallel. Although it is of course a preferred embodiment to be perfectly parallel, the above object of the present invention can be achieved even if it is not perfectly parallel. For example, even if the annular electrode 104 and the insulating supports 112a and 112b are manufactured with high accuracy, an error always occurs. Therefore, even if the quadrupole mass analyzer is configured by the method of this embodiment, the electrode 104 is It may be displaced from parallel.
  • the degree of parallelism can be realized so that the measurement desired by the user at that time can be performed.
  • the electrodes bent in order to reduce the influence of the stray light 106 are arranged with a low degree of parallelism, the mass spectrometry function may not be achieved. Therefore, if the electrodes 104a to 104d can be arranged with a high degree of parallelism, the mass analyzer formed by the electrodes can realize a mass analysis function sufficient for performing the measurement desired by the user, and is favorable. Mass spectrometry can be performed. Therefore, in this embodiment, it is only necessary that the longitudinal directions of the respective electrodes are aligned to such an extent that a desired measurement accuracy can be realized, and the electrodes need not be completely parallel.
  • the four quadrupole electrodes for forming a quadrupole electric field with U which are constituent elements of a quadrupole mass spectrometer, are non-linear (annular or the like).
  • These four electrodes an annular cylindrical electrode as in the present embodiment, an annular conductive film as in the second embodiment, etc.
  • the four quadrupole electrodes are formed into an annular shape, and the closed loop of the annular electrode of the quadrupole electrode is formed. Ion source and detector are built in.
  • the quadrupole electrodes are connected in a closed loop shape as in this embodiment, a high-frequency voltage and a direct-current voltage may be applied to a region where ions do not actually pass.
  • the quadrupole electrode is formed in an annular shape, an ion source and a detector are incorporated in the annular quadrupole electrode, and the quadrupole mass analyzer itself has a function of reducing stray light.
  • the fact that the ions emitted from the ion source are separated by mass in a quadrupole electric field with U and made incident on the detector is the same as before. Therefore, in the present invention, a region in which a quadrupole electric field with U is formed and ions fly (pass through) (that is, a mass separation region) is called a quadrupole mass analyzer.
  • a metal film coated on the surface of an insulating support is used as an electrode of a quadrupole mass spectrometer, not a metal cylinder.
  • the metal film is not limited, gold (Au) or chromium (Cr) can be used, and the thickness is preferably about 1 micrometer.
  • the member formed on the surface of the insulating support is formed to form a quadrupole electric field with U, and a conductive material that can form a quadrupole electric field with U by applying a high-frequency voltage and a DC voltage. If it is a film
  • the portion of the insulating support on which the electrode film is formed is processed into a shape in which a quadrupole electric field is formed.
  • This shape is not an arc shape but a hyperbolic shape capable of forming a more accurate quadrupole electric field.
  • the portion of the insulating support corresponding to the electrode is circularly symmetric with respect to the concentric point. It is only necessary to slowly shift the cutting blade (bite) applied to to the concentric point direction.
  • a hyperbolic shape is realized in the insulating support by simply matching the shift shape of the cutting blade to the hyperbola, but this is not a problem at all if it is an NC (numerical) control type processing apparatus.
  • rotating around the concentric point greatly contributes to the improvement of parallelism. Even when a die is used instead of cutting each time, the same merit is obtained in the production of the die. Others are the same as those in the first embodiment.
  • FIG. 4A is a diagram showing a configuration of a quadrupole mass spectrometer according to the present embodiment.
  • 4A is a cross-sectional view perpendicular to the flight direction of the ions 105 (4 ⁇ cross-section of the right view of FIG. 4A), and the right view of FIG. 4A is a cross-sectional view of the ions 105 on the annular flight surface (FIG. 4).
  • 4A (the 4 ⁇ cross section in the left figure).
  • each of the insulating supports 141a to 141d is a concentric annular shape and has a hyperbolic surface.
  • the hyperbolic surfaces are each formed in an annular shape.
  • the annular insulating supports 141a and 141c have the same diameter, and the annular insulating supports 141b and 141d have the same diameter.
  • Metal films 140a to 140d are formed in an annular shape on the hyperbolic surfaces of the insulating supports 141a to 141d, respectively.
  • FIG. 4B is a diagram showing the insulating supports 141a to 141d shown in FIG. 4A.
  • the insulating supports 141d and 141b are just in a mirror image relationship (first mirror image relationship)
  • the insulating supports 141a and 141c are just in a mirror image relationship (second mirror image relationship).
  • the insulating support 141a is configured to fit with the insulating support 141b
  • the insulating support 141c in a second mirror image relationship with the insulating support 141a is configured to fit with the insulating support 141d. ing.
  • the insulating support 141b is configured to be fitted to both of the insulating supports 141a and 141d, and the insulating support 141d in a first mirror image relation with the insulating support 141b is the insulating support 141b. It is configured to fit both sides.
  • FIG. 4C shows how the insulating supports 141a to 141d are fitted.
  • a fitting portion is formed by fitting the annular insulating supports 141b and 141d in a mirror image relationship, and the fitting portion is fixed using screws 114.
  • the insulating support 141a and the insulating support 141b are fitted together so as to be concentric to form a fitting portion, and the fitting portion is fixed by using a screw 114.
  • the insulating support 141c and the insulating support 141d are fitted together so as to be concentric to form a fitting portion, and the fitting portion is fixed using a screw 114.
  • the insulating support 141a having the second mirror image relationship and the insulating support 141b having the first mirror image relationship are positioned by fitting the circularly symmetrical objects, and the second mirror image relationship is obtained.
  • the insulating support 141c which is the first mirror image and the insulating support 141d which is the first mirror image relationship are positioned by fitting the circularly symmetrical objects. Therefore, the first structure of the fitted insulating support 141a and the insulating support 141b and the second structure of the fitted insulating support 141c and the insulated support 141d are just the third.
  • the hyperbolic surfaces of the insulating supports 141a to 141d have high parallelism. Can be arranged. Therefore, the metal films 140a to 140d can be arranged with a high degree of parallelism.
  • each of the annular insulating supports 141a to 141d on which a conductive film such as a metal film is formed is configured to be fitted with at least one of the other insulating supports.
  • each of the annular insulating supports 141a to 141d is arranged with reference to the same reference point (concentric point), and as a result, the metal films 140a to 140d are made highly parallel to each other. Can be arranged. Therefore, a configuration in which the four conductive films are arranged in a highly parallel state and the detector cannot be seen through the portion surrounded by the four conductive films (for example, metal films 140a to 140d) from the ion source is realized. it can. Therefore, it is possible to reduce the incidence of stray light on the detector without providing an ion guide, and to perform mass analysis satisfactorily.
  • FIGS. 5A, 5B, and 5C A quadrupole mass spectrometer according to a third embodiment of the present invention will be described with reference to FIGS. 5A, 5B, and 5C.
  • this embodiment there are two insulating supports, and metal films as two conductive films are formed on each insulating support. Others are the same as those in the second embodiment.
  • FIG. 5A is a diagram showing a configuration of a quadrupole mass spectrometer according to the present embodiment.
  • 5A is a cross-sectional view perpendicular to the flight direction of the ions 105 (5 ⁇ cross-section of the right view of FIG. 5A), and the right view of FIG. 5A is a cross-sectional view of the ions 105 on the annular flight surface (FIG. 5). 5A in the left figure of 5A).
  • the insulating support 151a has an annular shape, and has two hyperbolic surfaces formed in an annular shape in the in-plane vertical direction of the annular shape. Each has an annular metal coating 150a, 150b. Similarly, the insulating support 151b has an annular shape, and has two hyperbolic surfaces formed in an annular shape in the in-plane vertical direction, and each of the hyperbolic surfaces. Are formed with an annular metal coating 150c, 150d.
  • FIG. 5B is a diagram showing the insulating supports 151a and 151b shown in FIG. 5A.
  • the insulating supports 151a and 151b are just mirror images of each other, and the insulating supports 151a and 151b are opposed to the formed metal film (with the central axis of the mass analyzer in between).
  • hyperbolic surfaces 152a and 152b are formed in the in-plane vertical direction of the ring of the insulating support 151a.
  • These hyperbolic surfaces 152a and 152b have an annular shape concentric with the insulating support 151a, and are formed so as to be arranged with a high degree of parallelism.
  • hyperbolic surfaces 152c and 152d are formed in the in-plane vertical direction of the ring of the insulating support 151b. These hyperbolic surfaces 152c and 152d have an annular shape concentric with the insulating support 151b, and are formed so as to be arranged with a high degree of parallelism.
  • FIG. 5C shows how the insulating supports 151a and 151b are fitted together.
  • a fitting portion is formed by fitting annular insulating supports 151a and 151b having a mirror image relationship, and the fitting portion is fixed using screws 114.
  • the insulating support 151a and the insulating support 151b that are mirror images are set to have the same reference point (concentric point) so that the metal films 150a and 150b and the metal films 150c and 150d face each other. Fits to the standard. Therefore, the pair of metal films 150a and 150b arranged with high parallelism and the pair of metal films 150c and 150d arranged with high parallelism can be arranged with high parallelism.
  • the annular insulating supports 151a and 151b on which a conductive film such as a metal film is formed are configured to fit with each other.
  • the annular insulating supports 151a and 151b are arranged with reference to the same reference point (concentric point), and as a result, the metal films 150a to 150d can be made highly parallel to each other. Can be arranged. Therefore, a configuration in which the four conductive films are arranged in a highly parallel state and the detector cannot be seen through the portion surrounded by the four conductive films (for example, metal films 150a to 150d) from the ion source is realized. it can. Therefore, it is possible to reduce the incidence of stray light on the detector without providing an ion guide, and to perform mass analysis satisfactorily.
  • the number of insulating supports on which the metal film is formed is two and four, but may be three.
  • two hyperbolic surfaces are formed on one insulating support, one hyperbolic surface is formed on the remaining two insulating supports, and the three insulating supports are connected to each other. What is necessary is just to comprise so that it may fit.
  • a relatively large hyperbolic surface 161a is formed on the inside of the ring of the insulating support 151a, and a relatively small hyperbolic surface 161b is formed on the outside of the ring.
  • a relatively large metal film 160a is formed on the hyperbolic surface 161a, and a relatively small metal film 160b is formed on the hyperbolic surface 161b.
  • a relatively large hyperbolic surface 161c is formed inside the ring of the insulating support 151b, and a relatively small hyperbolic surface 161d is formed outside the ring.
  • a relatively large metal film 160c is formed on the hyperbolic surface 161c, and a relatively small metal film 160d is formed on the hyperbolic surface 161d. That is, in this embodiment, as can be seen from FIG. 6, the metal coatings 160a and 161d arranged inside the ring and the metal coatings 160b and 160c arranged outside the ring The cross-sectional shape in the perpendicular direction is different.
  • the region surrounded by the metal films 160a to 160d (the ions are A quadrupole electric field is formed with U in the flying region.
  • the traveling direction of the ions 105 is curved.
  • the centrifugal force generated in the ions 105 due to the curve in the traveling direction is almost canceled by the high potential in the cross-sectional direction, but strictly speaking, there is a force toward the outside.
  • the electrode shape is symmetric in every cross section, the electric field in a certain cross section is an accumulation of the electric fields from not only the surface but also the electrodes before and after that, so strictly speaking, the electric field is not symmetric and distortion is generated. It has occurred.
  • the shapes of the electrodes (conductive films) on the outer side and the inner side of the ring are determined so as to correct these effects. That is, in this embodiment, the influence of the centrifugal force is further reduced by making the size of the metal films 160a and 160c inside the ring larger than the size of the metal films 160b and 160d outside the ring. be able to. Considering the influence of the centrifugal force in this way is unique to the present invention in which the electrode of the mass analyzer is bent. In the present embodiment, in consideration of the phenomenon peculiar to the present invention, the outer and inner shapes of the conductive film formed in an annular shape are set to be different.
  • the inner hyperbolic surfaces 161a and 161b and the outer hyperbolic surfaces 161b and 161d are changed in size, but the inner hyperbolic surfaces and the outer hyperbolic surfaces 161b and 161d are changed in size. It is not essential to change the size of the curved surface, but to change the shape of the inner electrode (conductive film) and the outer electrode (conductive film). Therefore, as long as the shape can be changed between the metal films 160a and 160c and the metal films 160b and 160d, the shapes and sizes of the hyperbolic surfaces 161a to 161d are not limited.
  • a quadrupole mass spectrometer according to a fifth embodiment of the present invention will be described with reference to FIG.
  • the entire position of the electrode (conductive film) is rotated by 45 ° as a whole, and the electrode film of the insulating support is formed.
  • the shape is different on the outside, middle and inside. Others are the same as those in the fourth embodiment.
  • the insulating support 151a is formed with two hyperbolic surfaces 171a and 171b formed along the ring of the insulating support 151a, and the hyperbolic surfaces 171a, 171a,
  • the metal films 170a and 170b are formed on 171b.
  • the metal film 170b corresponds to the outer electrode of the ring, and the metal film 170a corresponds to the intermediate electrode. Therefore, the metal film 170b has the smallest shape and the metal film 170c has the intermediate size. Have.
  • two hyperbolic surfaces 171c and 171d formed along the ring of the insulating support 151b are formed on the insulating support 151b, and the hyperbolic surfaces 171c and 171d are formed on the hyperbolic surfaces 171c and 171d.
  • the metal film 170c corresponds to the inner electrode of the ring
  • the metal film 170c corresponds to the intermediate electrode. Therefore, the metal film 170c has the largest shape, and the metal film 170d has the intermediate size.
  • the four electrodes for forming a U-shaped quadrupole electric field have three radii (the largest radius electrode, the middle radius electrode, and the smallest radius electrode). Electrode).
  • the metal film 170c disposed inside the ring, the metal film 170b disposed outside the ring, and the metal films 170a and 170d disposed in the middle. are different from each other in the cross-sectional shape in the direction perpendicular to the ion traveling direction.
  • the region surrounded by the metal coatings 170a to 170d (the ions are A quadrupole electric field is formed with U in the flying region.
  • the insulating supports 151a and 151b on which the metal films 170a to 170d are formed are annular and curved, so that the traveling direction of the ions 105 is curved.
  • the shape of the three types of electrodes is determined so as to more accurately correct the influence of the centrifugal force generated in the ions and the distortion of the electric field due to the curved traveling direction.
  • three types of electrodes are used, but it is needless to say that all may have the same shape, or two types or four types. Furthermore, cylindrical electrodes having different shapes may be used.
  • FIG. 8 is a diagram showing a quadrupole mass spectrometer according to the present embodiment.
  • an ion source 181 larger than the ion source 101 is arranged in a case 184a larger than the case 108a, and a detector 183 larger than the detector 103 is arranged in a case 184b larger than the case 108b.
  • a notch 182 is formed in a part of a region (for example, hyperbolic surfaces 152a to 152d) along the circumference of the annular insulating supports 151a and 151b.
  • the notch 182 is also formed in a part (1/4 region) of the metal films 150a to 150d formed on the hyperbolic surfaces 152a to 152d. Note that the insulating supports 151a and 151b are only partially removed from the surface, so there is almost no deterioration in accuracy.
  • the notch portion 182 by providing the notch portion 182 and notching at least part of the metal film, a large ion source and a large detector can be provided, and formation of a useless metal film can be suppressed. it can. Since the notch 182 of this embodiment is not a region that should function as a mass separation region, it is not necessary to form an essential metal film in the mass separation region. Accordingly, by avoiding the formation of the metal film in the region other than the region functioning as the mass separation region, it is possible to reduce the formation of useless metal film, thereby further reducing the cost.
  • the notch 182 it is important to provide the notch 182 in a part of the metal films 150a to 150d, and it is not essential to form the notch 182 in the hyperbolic surfaces 152a to 152d. That is, in this embodiment, by providing a notch in at least a part of the metal film, the restriction on the size of the ion source and the detector can be relaxed, and the formation of a useless metal film can be suppressed.
  • FIG. 9 is a diagram showing a quadrupole mass spectrometer according to the present embodiment.
  • an ion source 191 larger than the ion source 181 is arranged in a case 194a larger than the case 184a, and a detector 193 larger than the detector 183 is arranged in a case 194b larger than the case 184b.
  • a cutout portion 192 is formed in a partial region along the circumference of the annular insulating supports 151a and 151b and the metal films 150a to 150d.
  • the insulating support is made of a very hard ceramic. Therefore, even if there is a cutout in a part, it is considered that there is little deterioration in accuracy and does not pose a major problem.
  • the ion source and the detector are arranged in the notch, and the insulating supports 151a and 151b and the metal films 150a to 150d may be arranged based on the same reference point (concentric point).
  • the annular metal coatings 150a to 150d are used to form a U-equipped quadrupole electric field, but the electrode portion for mass separation has a quadrupole mass. What is necessary is just to be formed at least in the area
  • an ion source 211 capable of emitting ions in two opposing directions is arranged in a case 218a having openings on opposing surfaces.
  • a detector 213 is arranged in a case 128b having openings on the opposing surfaces.
  • an extraction electrode 211a having an opening spaced from one ion emission portion of the ion source 211 is disposed, and an extraction electrode 211b having an opening spaced from the other ion emission portion is disposed.
  • the ion 215a ion that flies clockwise in FIG.
  • Reference numeral 214 denotes four annular electrodes for forming a quadrupole electric field with U, which are the cylindrical electrodes or metal films described in the first to fifth embodiments.
  • the annular electrodes 214 are arranged concentrically. A high-frequency voltage is applied to two of the four annular electrodes 214 facing each other, and a high-frequency voltage and a direct-current voltage between the remaining two electrode sets (facing each other with the central axis of the mass analyzer in between). Is applied to form a quadrupole electric field 217 with U.
  • mass separation can be performed either clockwise or counterclockwise using the ion source 211 that can emit ions in both directions and the detector 213 that can detect ions from both directions. It is the extraction electrodes 211a and 211b that can switch the voltage application to determine the ion emission. That is, when a predetermined voltage is applied to the extraction electrode 211a and 211b on the side from which ions are emitted, ions are extracted to the extraction electrode to which the voltage is applied, and formed on the extraction electrode. Ions are released through the openings.
  • the ions 215a are curved by 270 ° in the ring of the quadrupole electric field 217 with U, and the detector 218. Will be incident on.
  • the ions 215b enter the detector 218 after being curved by 90 ° in the ring of the quadrupole electric field 217 with U. Will do.
  • there are two mass separation regions having different lengths.
  • the applied voltages to the two sets of electrodes are common in the clockwise mass analyzing unit and the counterclockwise mass analyzing unit. Yes. Therefore, although it is structurally the same as one set of mass analyzers, two types of mass analyzers having different characteristics can be made to function.
  • the specific assembly structure uses any of the first to fifth embodiments.
  • the optimal length (longitudinal direction) of the electrode of the quadrupole mass spectrometer varies depending on the atmospheric pressure, select either one according to the pressure and perform measurement. Thereby, the measurable pressure range can be widened.
  • the quadrupole mass spectrometer (mass separation region) described in the above-described embodiment is arranged in multiple lanes in the radial direction of the annular electrode.
  • an ion source 221a is disposed in the case 222a
  • a detector 223a is disposed in the case 222b.
  • Reference numeral 224a denotes four annular electrodes for forming a U-folded quadrupole electric field, which are the cylindrical electrodes or metal films described in the first to fifth embodiments. Each of the annular electrodes 224a is disposed concentrically.
  • a quadrupole electric field 227a with U is generated. It is formed.
  • a quadrupole mass spectrometer of the inner lane is formed, and the ions 225a emitted from the ion source 221a are detected by a detector 223a arranged so as not to be expected from the ion source 221a.
  • Reference numeral 224b denotes four annular electrodes for forming a U-shaped quadrupole electric field, which are the cylindrical electrodes or metal films described in the first to fifth embodiments.
  • Each of the annular electrodes 224b is disposed concentrically with the annular electrode 224a outside the annular electrode 224a.
  • a high-frequency voltage and a direct-current voltage are applied between two opposing electrode sets among the four annular electrodes 224b, whereby a U-containing quadrupole electric field 227b is formed.
  • These components form a quadrupole mass spectrometer in the outer lane, and ions 225b emitted from the ion source 221b are detected by a detector 223b arranged so as not to be expected from the ion source 221b.
  • two sets of annular electrodes (4 ⁇ 2; 224a, 224b) having different radii have a fitting structure with respect to the same concentric point and are assembled by the same insulating support.
  • the radial distance between the electrodes is changed. Therefore, two types of mass analyzers having different characteristics can be made to function although they are structurally substantially the same as one set of mass analyzers.
  • the specific assembly structure uses any of the first to fifth embodiments. Since not only the length in the longitudinal direction of the electrodes but also the distance in the radial direction between the electrodes varies depending on the required performance, the applicable range can be widened by making a difference in the distance between the electrodes.
  • two U-quadrupole electric fields 227a and 227b are formed by disposing a two-lane quadrupole mass spectrometer in the radial direction of the annular electrode. Since ions are passed through a region where a quadrupole electric field with U is formed, the radial direction of an annular electrode (quadrupole mass spectrometer formed in an annular shape) There will be two mass fractionation regions. In the present embodiment, two lanes (quadrupole mass spectrometer) are arranged in the radial direction, but two or more lanes (quadrupole mass spectrometer) may be arranged. At this time, two or more mass separation regions exist in the radial direction.
  • the quadrupole mass spectrometer (mass separation region) described in the above-described embodiment is arranged in multiple lanes in the axial direction of the annular electrode (the vertical direction in the plane of the ring).
  • the insulating support 231a has an annular shape, and has two hyperbolic surfaces formed in an annular shape in the in-plane vertical direction of the annular shape. Each has an annular metal coating 230a, 230b.
  • the insulating support 231b has an annular shape, and has two hyperbolic surfaces formed in an annular shape on opposite surfaces in the axial direction of the annular shape. Each is formed with an annular metal coating 230c to 230f.
  • the insulating support 231c has an annular shape, and has two hyperbolic surfaces formed in an annular shape in the in-plane vertical direction, and each of the hyperbolic surfaces has an annular shape.
  • a quadrupole mass spectrometer formed of the metal films 230a to 230d and a quadrupole mass spectrometer formed of the metal films 230e to 230h are arranged in the axial direction of the ring.
  • a structure arranged in parallel is formed.
  • the region surrounded by the metal coatings 230a to 230d (the ions fly).
  • the quadrupole electric field is formed in the region U).
  • two sets of annular electrodes having the same radius (4 ⁇ 2; set of metal films 230a, 230c, 230e, and 230g, and set of metal films 230b, 230d, 230f, and 230h) are related to the same concentric point.
  • a single insulating support 231b is used as a common structure.
  • the two sets of electrodes are all the same including the length and the distance between the electrodes, but the voltage applied to the two sets of electrodes can be set independently, that is, ions of different mass numbers can be passed. Yes. Therefore, although it is structurally close to one set of mass analyzers, it is possible to function two sets of mass analyzers that are independent and have the same characteristics.
  • the specific assembly structure is the same as that of the third embodiment.
  • two U-equipped quadrupoles are provided. An electric field is formed. Since ions are passed through a region where a quadrupole electric field with U is formed, the axial direction of an annular electrode (a quadrupole mass spectrometer formed in an annular shape) There will be two mass fractionation regions.
  • two lanes quadrupole mass spectrometer
  • two or more lanes quadrupole mass spectrometer
  • N is an integer of 2 or more mass analysis regions are formed in the axial direction
  • the insulating supports 231a and 231c (on one of the opposing surfaces in the axial direction)
  • An insulating support having two metal films formed thereon is disposed, and N ⁇ 1 insulating supports 231b (the metal films are formed on each of the axially opposed surfaces) between the insulating supports 231a and 231c.
  • Insulating supports formed by two) are arranged. Then, in the arrangement of N-1 insulating supports 231b, the insulating support 231b and the insulating support 231a at one end in the axial direction are fitted together, and the insulating support 231b and the insulating support 231c at the other end are fitted together.
  • the remaining insulating supports 231b are fitted together.
  • N U-quadrupole electric fields can be formed, and N mass analysis regions can be formed in the axial direction.
  • N 2
  • the configuration is as shown in FIG. 13, so that one insulating support 231 b is arranged between the insulating support 231 a and the insulating support 231 c.
  • the insulating support that is fitted into each of the insulating supports 231a and 231c is the same insulating support 231b.
  • two or more mass separation regions having different lengths can exist in the same quadrupole mass spectrometer.
  • the operation is as follows.
  • a detector 223b is provided at a position 180 ° from the ion source 221b, the ion sources 221a and 221b are changed to the ion source 211, and extraction electrodes 211a and 211b are provided in the respective ion sources. Further, the detectors 223a and 223b are changed to the detector 213.
  • three mass fractionation regions having different lengths can exist in the same quadrupole mass spectrometer.
  • quadrupole mass analyzers mass fractionation regions
  • FIG. 14 A quadrupole mass spectrometer according to the twelfth embodiment of the present invention will be described with reference to FIG.
  • an annular soft spacer 241 is provided at the fitting portion between the electrode 104b and the insulating support 112a, and the insulating support 112a and the insulating support 112b are fitted.
  • An annular soft spacer 242 is provided at the mating portion.
  • the soft spacer 241 is used in each of the fitting portion between the electrode 104a and the insulating support 112a, the fitting portion between the electrode 104c and the insulating support 112b, and the fitting portion between the electrode 104d and the insulating support 112b. Is provided.
  • annular spacer made of a soft material is sandwiched between the fitting portions.
  • the soft spacer is preferably made of aluminum (Al), copper (Cu), or indium (In).
  • the thickness should be within the range that can be assembled (usually equal to or more than twice the gap between the two to be accurate) but less uneven thickness (circular symmetry variation). Therefore, it is preferable to use one having an average thickness of about 10 micrometers and non-uniformity within about several tens of percent.
  • a ribbon slightly shorter than the circumferential length to be actually used is used.
  • the force applied between the two should be equal, that is, circularly symmetrical, so that the accuracy of concentricity of the two sandwiching the soft spacer can be further increased. it can.
  • the fitting portions are all cylindrical (the cross section is parallel to the axis). However, as shown in FIG. 15, this is tapered (the cross section is inclined with respect to the axis). Positioning of the ring in the axial direction (left-right direction in the figure) can be realized at the same time. Further, in the above embodiment, not only the electrodes but also the insulating support and soft spacer are all annular, but if the quadrupole electric field is formed with high accuracy, the fitting portion of the insulating support and soft spacer is not necessarily provided.
  • the electrodes 104a to 104d for forming the U-folded quadrupole electric field 107 described in the first embodiment are concentric toric rings, but the embodiment is modified so that the electrodes 104a to 104d It can be fitted to an insulating support at the top few points. Further, by modifying the twelfth embodiment, several small pieces of soft spacers can be arranged and sandwiched.
  • the points are arranged so that the intervals between the points are as uniform as possible.
  • the fitting since one of the fittings is a point, the fitting is not strictly circularly symmetric. However, since the fitting is almost circularly symmetric as a whole, the electrodes 104a to 104d are made highly parallel. Can be arranged in degrees. Therefore, in the present invention, it is sufficient that the fitting is almost circularly symmetric as a whole. Therefore, although the electrode is basically an annular shape, the insulating support may be a plate having a fitting portion that is nearly circularly symmetric. . In addition, the soft spacer may have any shape as long as it can be finally arranged in the fitting portion in a shape close to circular symmetry.
  • FIG. 16 is a diagram illustrating an example in which the quadrupole mass spectrometer according to the above-described embodiment is attached to a sputtering apparatus.
  • reference numeral 160 denotes a sputtering apparatus provided with a vacuum vessel, a film forming mechanism, an exhaust mechanism and the like, and a commonly used apparatus can be applied.
  • the sputtering apparatus 160 is provided with an opening 161, and a pipe 162 having a vacuum flange 163 (for example, a vacuum flange (70 ICF) having an outer diameter of 70 mm) is connected to the opening 161.
  • a vacuum pipe 165 (for example, a vacuum pipe with an inner diameter of 38 mm) is connected to the vacuum flange 164 (for example, 70 ICF), and one embodiment of the present invention is included in the vacuum pipe 165.
  • a quadrupole mass spectrometer 166 according to the embodiment is incorporated. In such a configuration, the quadrupole mass spectrometer 166 is attached to the sputtering apparatus 160 by connecting the vacuum flange 163 and the vacuum flange 164.
  • the quadrupole mass spectrometer 166 can be incorporated in the vacuum flange 164 and attached to a film forming apparatus such as the sputtering apparatus 160.
  • a film forming apparatus such as the sputtering apparatus 160.
  • the quadrupole mass spectrometer 166 according to an embodiment of the present invention is easy to downsize, it is incorporated into a vacuum flange ( ⁇ 70 ICF) having a general outer diameter of ⁇ 70 mm in a vacuum device such as a sputtering device. It is possible to attach.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Provided is a quadrupole mass spectroscope capable of increasing sensitivity (S/N) by reducing the incidence of stray light from an ion source on a detector. Specifically disclosed is a quadrupole mass spectroscope (100) provided with an ion source (101), a quadrupole mass spectrometer (102) which has annular metal films, and a detector (103) which detects, as a signal, an ion which has passed through the quadrupole mass spectrometer. The quadrupole mass spectrometer is nonlinear, and thanks to the nonlinear quadrupole mass spectrometer, the quadrupole mass spectrometer is configured so that the detector cannot be seen through the quadrupole mass spectrometer from the ion source. The metal films are formed on insulating supports, and assembled by mating the insulating supports with each other.

Description

四重極型質量分析装置Quadrupole mass spectrometer
 本発明は、4つの電極中を通過するイオンの質量分離を行う四重極型質量分析装置に関するものである。 The present invention relates to a quadrupole mass spectrometer that performs mass separation of ions passing through four electrodes.
 質量分析装置では中性分子をイオン源にてイオン化し、そのイオンを質量分析器にて質量を分別し、分別されたイオンをコレクタにて電流として計測する。図1Aは、従来の四重極型分析装置の構成図であり、符号1はイオン源であり、符号2は質量分析器であり、符号3は検出器である。質量分析器2は、4つの円柱電極4を有しており、該4つの円柱電極4の間をイオン源1から放出されたイオン5が通過して検出器3に入射する。このとき、4つの円柱電極のうち対向する(質量分析器の中心軸を間にして向き合う)電極を電気的に結合(導通)し、それぞれの電極セット間に直流電圧(DC)と高周波電圧(RF)を重畳した電圧を印加することにより、四重極電界(後述する“Uあり四重極電界”)7が形成され、各電圧、周波数等に応じた質量数を有するイオンのみを、円柱電極4の長手方向に通過させるようにしている。 In the mass spectrometer, neutral molecules are ionized by an ion source, the mass of the ions is separated by a mass analyzer, and the separated ions are measured as current by a collector. FIG. 1A is a configuration diagram of a conventional quadrupole analyzer, where reference numeral 1 is an ion source, reference numeral 2 is a mass analyzer, and reference numeral 3 is a detector. The mass analyzer 2 has four cylindrical electrodes 4, and ions 5 emitted from the ion source 1 pass between the four cylindrical electrodes 4 and enter the detector 3. At this time, of the four cylindrical electrodes, the opposing electrodes (facing each other with the central axis of the mass analyzer in between) are electrically coupled (conducted), and a direct-current voltage (DC) and a high-frequency voltage ( RF) is applied to form a quadrupole electric field (“U-quadrupole electric field” to be described later) 7, and only ions having a mass number corresponding to each voltage, frequency, etc. It is made to pass in the longitudinal direction of the electrode 4.
 このような質量分析の際には、上述のようにイオン源1から検出器3にはイオン5の他に真空紫外線が入射することがある。これは、真空紫外光(高エネルギーを持った光)がイオン源1で発生するためである。また、円柱電極4にイオン5が衝突することにより、軟X線(より高いエネルギーを持った光)が発生して検出器3に入射することもある。このような真空紫外線や軟X線、あるいは他の要因で検出器3に入射した高エネルギーを持った光を総じて「迷光」と呼ぶことにする。すなわち、質量分析器2には、イオン5と共に迷光6が入射することがある。 In such mass analysis, in addition to the ions 5, vacuum ultraviolet rays may be incident on the detector 3 from the ion source 1 as described above. This is because vacuum ultraviolet light (light with high energy) is generated in the ion source 1. Further, when the ions 5 collide with the cylindrical electrode 4, soft X-rays (light having higher energy) may be generated and enter the detector 3. Such high-energy light that has entered the detector 3 due to vacuum ultraviolet rays, soft X-rays, or other factors will be collectively referred to as “stray light”. That is, the stray light 6 may enter the mass analyzer 2 together with the ions 5.
 このように、最も一般的な四重極型の質量分析器では、平行な4本の電極に高周波電圧と直流電圧を印加する。 Thus, in the most common quadrupole mass spectrometer, a high-frequency voltage and a DC voltage are applied to four parallel electrodes.
 しかし、4本の電極によって四重極電界をいかに正確に実現するかが分解能の性能を大きく左右するため、電極の曲率(太さ)と位置は特定な関係を満足しつつ4本の電極の平行度は極めて高くなければならない。平行度の必要精度は数ミクロン(マイクロメータ)以下であり、これが電極の長さ(数十mmから数百mm)において満足していなければならない。そのため、図1B~1Eに示すように、従来では電極の固定方法で様々の工夫がなされている。 However, how accurately the quadrupole electric field is realized by the four electrodes greatly affects the resolution performance, so that the curvature (thickness) and position of the electrodes satisfy a specific relationship while satisfying a specific relationship. Parallelism must be very high. The required accuracy of parallelism is several microns (micrometers) or less, which must be satisfied in the length of the electrodes (several tens to hundreds of mm). Therefore, as shown in FIGS. 1B to 1E, various devices have been conventionally used in the electrode fixing method.
 例えば、図1Bでは、内側の寸法精度を出した四角の枠状の絶縁支持体14を使い、4つの円柱電極11a~11dのそれぞれをネジ13の締め込みによって絶縁支持体14の内面に密着させている。本方式は、絶縁支持体14の精度(内寸法精度)は出しにくくコストが高いこと、および、やはりネジの締め込み力がある範囲内でなければならないことが問題となっている。 For example, in FIG. 1B, a rectangular frame-shaped insulating support 14 having an inner dimensional accuracy is used, and each of the four cylindrical electrodes 11a to 11d is brought into close contact with the inner surface of the insulating support 14 by tightening screws 13. ing. This method has a problem that the accuracy (internal dimensional accuracy) of the insulating support 14 is difficult to obtain and is high in cost, and that the screw tightening force must be within a range.
 図1Cでは、円柱電極としての金属円柱の代わりに円弧状に加工した絶縁物の表面に形成した金属皮膜を使用している(特許文献1参照)。すなわち、絶縁支持体15a~15dのそれぞれの表面に金属皮膜16a~16dが形成されている。4個の絶縁支持体15a~15d同士の構造はいろいろな方法が可能だが、固定具17a~17dにより、絶縁支持体15a~15dの外側を揃ながら押し付けることが一般となる。本方式は、絶縁支持体の精度出しが必要な個所が多く、さらに、金属皮膜16a~16dがそれぞれ平行になるように配置することも困難であり、コストが高いことが問題となっている。 In FIG. 1C, a metal film formed on the surface of an insulator processed into an arc shape is used instead of a metal cylinder as a cylinder electrode (see Patent Document 1). That is, the metal films 16a to 16d are formed on the surfaces of the insulating supports 15a to 15d, respectively. Although various methods can be used for the structure of the four insulating supports 15a to 15d, it is general that the outer sides of the insulating supports 15a to 15d are pressed together with the fixtures 17a to 17d. In this method, there are many places where the accuracy of the insulating support is required, and it is also difficult to arrange the metal films 16a to 16d in parallel with each other, and the cost is high.
 図1Dでは、1個の絶縁物に2ヶ所の金属皮膜を形成している(特許文献2参照)。すなわち、絶縁支持体18aには2つの突起19aおよび19bが形成されており、該突起19a、19bには金属皮膜20a、20bが形成されている。同様に、絶縁支持体18bには2つの突起19cおよび19dが形成されており、該突起19c、19dには金属皮膜20c、20dが形成されている。2個の絶縁支持体18a、18b同士の位置出し・組み立てはいろいろな方法が可能だが、厚み精度を出したスペーサを間に挟んで押し付けることが一般となる。この方式では、部品点数は少なくなっているが、上記4つの突起19a~19dをそれぞれ平行になるように絶縁支持体の精度を出すことが難しく、コスト高の問題点はあまり改善されていない。 In FIG. 1D, two metal films are formed on one insulator (see Patent Document 2). That is, two protrusions 19a and 19b are formed on the insulating support 18a, and metal films 20a and 20b are formed on the protrusions 19a and 19b. Similarly, two protrusions 19c and 19d are formed on the insulating support 18b, and metal films 20c and 20d are formed on the protrusions 19c and 19d. Various methods can be used for positioning and assembling the two insulating supports 18a and 18b, but it is general that the spacers are pressed with a thickness accuracy between them. In this method, the number of parts is reduced, but it is difficult to obtain the accuracy of the insulating support so that the four protrusions 19a to 19d are parallel to each other, and the problem of high cost is not improved so much.
 図1Eでは、1個の絶縁物に4個の金属皮膜を形成している(特許文献3、4参照)。すなわち、中空の絶縁支持体21であって、長手方向に沿って内側に双曲線状に窪んだ4つの領域を有する絶縁支持体21を用い、該絶縁支持体21の4つの窪んだ領域の内側に金属皮膜22a~22dが形成されている。この方式では、部品点数が極端に少なく組み立てが不要な点は優れているが、形成される金属皮膜22a~22dがそれぞれ平行になるように上記双曲線状の窪みを形成する際の絶縁支持体21の精度確保が難しくコスト問題も大きくなっている。 In FIG. 1E, four metal films are formed on one insulator (see Patent Documents 3 and 4). That is, the insulating support 21 is a hollow insulating support 21 having four regions recessed in a hyperbola inward along the longitudinal direction, and inside the four recessed regions of the insulating support 21. Metal films 22a to 22d are formed. This method is excellent in that the number of parts is extremely small and assembly is not required, but the insulating support 21 when forming the hyperbolic depressions so that the formed metal films 22a to 22d are parallel to each other. It is difficult to ensure the accuracy of the system, and the cost problem is increasing.
 これらの例も含めて従来の固定方法はいずれも、最終的に必要な「四重極電界の中心、すなわちイオンの軌道に関する精度」が“直接”出るような基本構造となっているが、個々の構造・組み立ての実際的な問題から低コストで十分な精度を出すことが困難となっている。 All of the conventional fixing methods, including these examples, have a basic structure that “directly” the “necessary accuracy of the center of the quadrupole field, that is, the trajectory of ions,” which is finally required. It is difficult to obtain sufficient accuracy at a low cost due to the practical problems of the structure and assembly.
 一方、図1Aに示したように、イオン源1からは信号となるべきイオン5のみが放出されるのではなく、イオン化の過程で不可避的に高エネルギーを持つ真空紫外光や軟X線(すなわち、迷光6)が放出される。迷光6は電荷を持たないので質量分析器2では全く分別されずに検出器3に入射し、しかもエネルギーが高いため検出器3にて偽信号として検出されてしまう。これは本来の信号ではないのでバックグランド(ノイズ)となって、感度(S/N)の性能を悪くしている。特に、従来の四重極型質量分析器は電極が直線である(イオン源から検出器が見込める)ため迷光の問題が深刻となっている。 On the other hand, as shown in FIG. 1A, not only the ions 5 to be signals are emitted from the ion source 1, but unavoidably high energy such as vacuum ultraviolet light or soft X-rays (that is, the ionization process) , Stray light 6) is emitted. Since the stray light 6 has no electric charge, it is incident on the detector 3 without being separated by the mass analyzer 2 and is detected as a false signal by the detector 3 because of its high energy. Since this is not an original signal, it becomes a background (noise) and deteriorates the performance of sensitivity (S / N). In particular, the conventional quadrupole mass spectrometer has a problem of stray light because the electrodes are straight (the detector can be expected from the ion source).
 そこで、図2Aに示すように、質量分析器2の前段にカーブしたイオンガイド1を設置することにより、イオン源1からの迷光6が検出器3に入りにくくしている例もある。図2Aにおいて、イオン源1と質量分析器2との間には、曲げられたイオンガイド30が設けられている。該イオンガイド30は、4つのカーブした円柱電極(金属円柱)31を有しており、4つの円柱電極31の間をイオン5が通過するような構成である。また、イオンガイド30の円柱電極31には、高周波電圧のみが印加されるので、円柱電極31の間には、四重極電界(後述する“Uなし四重極電界”)32が形成される。従って、イオン5は、円柱電極31のカーブ(イオンガイドのカーブ)に沿って曲がりながら進むが、迷光6はイオンガイド30内を直進するので、円柱電極31間を通り抜けたり、円柱電極31にて吸収、反射されることになる。よって、検出器3に入射する迷光6を低減することができる。 Therefore, as shown in FIG. 2A, there is an example in which the stray light 6 from the ion source 1 is difficult to enter the detector 3 by installing a curved ion guide 1 in front of the mass analyzer 2. In FIG. 2A, a bent ion guide 30 is provided between the ion source 1 and the mass analyzer 2. The ion guide 30 has four curved cylindrical electrodes (metal cylinders) 31, and the ion 5 passes between the four cylindrical electrodes 31. Further, since only the high-frequency voltage is applied to the cylindrical electrode 31 of the ion guide 30, a quadrupole electric field (“U-less quadrupole electric field” described later) 32 is formed between the cylindrical electrodes 31. . Accordingly, the ions 5 travel while bending along the curve of the cylindrical electrode 31 (curve of the ion guide). However, since the stray light 6 travels straight through the ion guide 30, the ions 5 pass between the cylindrical electrodes 31 or at the cylindrical electrode 31. It will be absorbed and reflected. Therefore, the stray light 6 incident on the detector 3 can be reduced.
 しかし、迷光6は円柱電極31表面にて数十%程度の反射率で反射するので、該反射された迷光においては、検出器3側に反射されるものも存在する。よって、迷光問題の大幅な改善はなされていない。 However, since the stray light 6 is reflected on the surface of the cylindrical electrode 31 with a reflectivity of about several tens of percent, some of the reflected stray light is reflected to the detector 3 side. Therefore, the stray light problem has not been significantly improved.
 なお、イオンガイドとは質量分別せずにすべてのイオンを透過させるものであり、四重極型質量分析器と機械的構造、および結合(導通)状態は同じとなっているが、高周波電圧のみを印加して直流電圧は印加しない。習慣的に高周波電圧はV電圧、直流電圧はU電圧と呼ばれているので、本明細書では質量分析器として質量分析機能を持つ四重極電界を「Uあり四重極電界」、イオンガイドとして質量分析機能を持たない四重極電界を「Uなし四重極電界」とする。 The ion guide allows all ions to pass through without mass separation, and the quadrupole mass analyzer has the same mechanical structure and coupling (conduction) state, but only high-frequency voltage. Is applied and no DC voltage is applied. The high frequency voltage is customarily called the V voltage and the DC voltage is called the U voltage. In this specification, a quadrupole electric field having a mass analysis function as a mass analyzer is referred to as “a quadrupole electric field with U”, an ion guide. A quadrupole electric field having no mass spectrometric function is referred to as “U-less quadrupole electric field”.
 イオンガイドでは質量分別は行なわないので電極の精度(特に、4つの電極をそれぞれ平行に配置する精度)は質量分析器ほど要求されない。そこで、従来のイオンガイドでは曲率を持った電極を使用しているものの、その固定方法は質量分析器の方法(図1B~1E)と基本的には同様な方式となっている。 Since the ion guide does not perform mass fractionation, the accuracy of the electrodes (particularly, the accuracy with which the four electrodes are arranged in parallel) is not as required as the mass analyzer. Therefore, although the conventional ion guide uses an electrode having a curvature, the fixing method is basically the same as the method of the mass analyzer (FIGS. 1B to 1E).
 図2B~2Eは、従来のイオンガイドを固定する様子を示す断面図である。 
 例えば、図2Bでは、中空構造の絶縁支持体35の内側にイオンガイドの円柱電極33a~33dをネジ34により固定している。図2Bは、断面で見れば図1C
と同じ固定法であるが、図2Cに示すように長手方向に短い絶縁支持体2~3式が傾斜をつけて配置されているので、コスト高が深刻となる。また、図2D)も、絶縁支持体38に、金属部品39a~39dがそれぞれ、ネジ34により固定される構造(特許文献6参照)である。
2B to 2E are cross-sectional views showing how a conventional ion guide is fixed.
For example, in FIG. 2B, the cylindrical electrodes 33a to 33d of the ion guide are fixed by screws 34 inside the insulating support 35 having a hollow structure. FIG. 2B is a cross-sectional view of FIG.
Although the same fixing method as that shown in FIG. 2C, since the insulating support bodies 2 to 3 having a short length in the longitudinal direction are arranged with an inclination as shown in FIG. 2C, the cost increases. FIG. 2D) also shows a structure in which the metal parts 39a to 39d are fixed to the insulating support 38 by screws 34 (see Patent Document 6).
 しかしながら、図2Dでは絶縁支持体38が大変複雑な形状となっており、いずれも部品点数は減ってもコスト問題は逆効果ともなる。なお、図2Dに示す構造だけでなく図2A、2Bにおいても、“曲がり”の影響が強く、全体に渡って精度を出すことは困難となっている。そのため、このままでは、図2A~2Dに示す構造をイオンガイドとして用いることはできても、質量分析器としての使用は不可能となる。 However, in FIG. 2D, the insulating support 38 has a very complicated shape, and the cost problem is counterproductive even if the number of parts is reduced. Note that not only the structure shown in FIG. 2D but also in FIGS. 2A and 2B, the influence of “bending” is strong, and it is difficult to achieve accuracy throughout. Therefore, in this state, the structure shown in FIGS. 2A to 2D can be used as an ion guide, but cannot be used as a mass analyzer.
 一方、特許文献5には、イオン源と検出器との間に、カーブしたイオンガイドと、カーブした四重極型質量分析計とが配置されたイオンフィルタが開示されている。 
 図2Eは、特許文献5に開示されたカーブした四重極型質量分析計の斜視図であり、図2Fは、図2Eに示されたカーブした四重極型質量分析計の組み立て方を説明するための図である。
On the other hand, Patent Document 5 discloses an ion filter in which a curved ion guide and a curved quadrupole mass spectrometer are arranged between an ion source and a detector.
2E is a perspective view of the curved quadrupole mass spectrometer disclosed in Patent Document 5, and FIG. 2F illustrates how to assemble the curved quadrupole mass spectrometer shown in FIG. 2E. It is a figure for doing.
 図2Eにおいて、カーブした四重極型質量分析計40は、絶縁支持体41と、ネジ42により絶縁支持体41に固定された金属部品43~46とを備えている。これら金属部品43~46は、四重極電極として機能するものであり、双曲線状の表面43c~46cを有している。このように、表面43c~46cが互いに対向するように配置されることにより、四重極電界を形成する。 2E, the curved quadrupole mass spectrometer 40 includes an insulating support 41 and metal parts 43 to 46 fixed to the insulating support 41 with screws 42. These metal parts 43 to 46 function as quadrupole electrodes and have hyperbolic surfaces 43c to 46c. In this way, the surfaces 43c to 46c are arranged so as to face each other, thereby forming a quadrupole electric field.
 具体的に説明すると、図2Fに示されているように、絶縁支持体41の第1の面47および該第1の面47と対向する第2の面48には、貫通孔49が複数設けられている。また、金属部品43~46はそれぞれ、四重極電極として機能するものであり、それぞれカーブしている。金属部品43は、双曲線状の表面43cと、複数のサポートスポーク43aを有しており、サポートスポーク43aのそれぞれには貫通孔43bが形成されている。金属部品44は、双曲線状の表面44cと、複数のサポートスポーク44aを有しており、サポートスポーク44aのそれぞれには貫通孔(不図示)が形成されている。同様に、金属部品45、46はそれぞれ、双曲線状の表面45c、46cと、複数のサポートスポーク45a、46aを有しており、サポートスポーク45a、46aのそれぞれには貫通孔45b、46bが形成されている。 More specifically, as shown in FIG. 2F, a plurality of through holes 49 are provided in the first surface 47 of the insulating support 41 and the second surface 48 facing the first surface 47. It has been. Each of the metal parts 43 to 46 functions as a quadrupole electrode and is curved. The metal part 43 has a hyperbolic surface 43c and a plurality of support spokes 43a, and a through hole 43b is formed in each of the support spokes 43a. The metal part 44 has a hyperbolic surface 44c and a plurality of support spokes 44a, and through holes (not shown) are formed in each of the support spokes 44a. Similarly, the metal parts 45 and 46 have hyperbolic surfaces 45c and 46c and a plurality of support spokes 45a and 46a, respectively, and through holes 45b and 46b are formed in the support spokes 45a and 46a, respectively. ing.
 特許文献5では、ネジ42を、貫通孔43b、貫通孔49、およびサポートスポーク44aに形成された貫通孔をそれぞれ通すことによって、絶縁支持体41の第1の面47側にサポートスポーク43aの各々を固定し、絶縁支持体41の第2の面48側にサポートスポーク44aを固定している。同様に、ネジ42を、貫通孔45b、貫通孔49、および貫通孔46bをそれぞれ通すことによって、絶縁支持体41の第1の面47側にサポートスポーク45aの各々を固定し、絶縁支持体41の第2の面48側にサポートスポーク46aを固定している。 In Patent Document 5, each of the support spokes 43a is provided on the first surface 47 side of the insulating support 41 by passing the screws 42 through the through holes 43b, the through holes 49, and the through holes formed in the support spokes 44a. The support spokes 44 a are fixed to the second surface 48 side of the insulating support 41. Similarly, each of the support spokes 45a is fixed to the first surface 47 side of the insulating support body 41 by passing the screw 42 through the through hole 45b, the through hole 49, and the through hole 46b. The support spoke 46a is fixed to the second surface 48 side.
特開平5-74411号公報Japanese Patent Laid-Open No. 5-74411 特開2006-332003号公報JP 2006-33003 A 特開昭63-152846号公報JP-A-63-152846 特開平8-96709号公報JP-A-8-96709 米国特許第5,559,327号明細書US Pat. No. 5,559,327 米国特許第6,576,897号明細書US Pat. No. 6,576,897
 このように、特許文献5に開示された技術では、絶縁支持体41に複数のサポートスポークによって四重極電極となる金属部品を固定しているので、表面43c~46cの各々に対する平行度を向上することは非常に難しい。何故ならば、平行に配置したい4つの金属部品43~46の各々が、複数のサポートスポーク、および該サポートスポークに形成された貫通孔を有しており、表面43c~46cが互いに平行になるように、多数ある貫通孔の各々を正確に形成しなければならないからである。すなわち、金属部品43~46の各々は、表面43c~46cが互いに平行になるようにするために、平行関係を確立するように調整する対象が3つずつある。例えば、金属部品43は、表面43cと表面44cとが平行になるように金属部品44との位置関係を確立し、表面43cと表面45cとが平行になるように金属部品45との位置関係を確立し、さらに表面43cと表面46cとが平行になるように金属部品46との位置関係を確立する必要があり、これら3つの確立を実現するように、複数の貫通孔43bの各々を、同じように位置決めされた他の金属部品の貫通孔との整合をとりつつ位置決めしなければならない。 As described above, in the technique disclosed in Patent Document 5, since the metal parts to be the quadrupole electrodes are fixed to the insulating support body 41 by the plurality of support spokes, the parallelism with respect to each of the surfaces 43c to 46c is improved. It is very difficult to do. This is because each of the four metal parts 43 to 46 to be arranged in parallel has a plurality of support spokes and through holes formed in the support spokes so that the surfaces 43c to 46c are parallel to each other. In addition, each of the many through holes must be formed accurately. That is, each of the metal parts 43 to 46 has three objects to be adjusted so as to establish a parallel relationship so that the surfaces 43c to 46c are parallel to each other. For example, the metal part 43 establishes the positional relationship with the metal part 44 so that the surface 43c and the surface 44c are parallel, and the positional relation with the metal part 45 so that the surface 43c and the surface 45c become parallel. In addition, it is necessary to establish a positional relationship with the metal part 46 so that the surface 43c and the surface 46c are parallel to each other. Thus, positioning must be performed while aligning with the through holes of other metal parts positioned in this manner.
 また、サポートスポークに形成される貫通孔が位置決めされたとしても、該貫通孔を形成すべきサポートスポークは複数存在しているので、それぞれの貫通孔を正確にサポートスポークに形成しなければならず、貫通孔形成加工に非常に高い厳密性が要求される。さらに、各サポートスポークは、複数の貫通孔49を介して絶縁支持体41にそれぞれ固定されるので、上記複数の貫通孔49についても、非常に厳密な加工が要求される。 Further, even if the through holes formed in the support spokes are positioned, there are a plurality of support spokes that should form the through holes, so each through hole must be accurately formed in the support spoke. Very high strictness is required for through-hole forming processing. Furthermore, since each support spoke is fixed to the insulating support body 41 through a plurality of through holes 49, the above through holes 49 are also required to be processed very strictly.
 このように、特許文献5では、表面43c~46cの平行度を決める因子としての基準点(サポートスポークに形成された貫通孔、絶縁支持体41に形成された貫通孔など)が多く、さらにそれら基準点が別個に存在することになる。よって、各貫通孔、サポートスポークを有する金属部品の各々、および絶縁支持体41を精密に作り込まなければ、表面43c~46cの平行度向上は期待できない。また、上述のように、平行度を決める因子が多いので、それらを調整する工程も煩雑であり、非常に手間がかかってしまう。 As described above, in Patent Document 5, there are many reference points (such as through holes formed in the support spokes and through holes formed in the insulating support 41) as factors that determine the parallelism of the surfaces 43c to 46c. There will be a separate reference point. Therefore, unless the through holes, each of the metal parts having the support spokes, and the insulating support 41 are made precisely, the parallelism of the surfaces 43c to 46c cannot be expected. Further, as described above, since there are many factors that determine the parallelism, the process of adjusting them is complicated and takes a lot of time and effort.
 また、特許文献5では、金属部品43~46が大変複雑な形状となっており、コストがかかってしまう。 Further, in Patent Document 5, the metal parts 43 to 46 have a very complicated shape, which increases costs.
 さらに、特許文献5では、四重極電極となる金属部品43~46はそれぞれ、サポートスポークを有しているので、四重極型質量分析計40を小型化するには限界がある。図4,5からも分かるように、サポートスポークは複雑な構造をしているので作製するのは困難である。従って、サポートスポークをさらに小さくする場合、該サポートスポークを作製するのはさらに困難になる。また、サポートスポークには、該サポートスポークを絶縁支持体41に固定するための貫通孔を形成しなければならず、貫通孔を形成しつつも、安定して絶縁支持体41に固定するためには、サポートスポークはある程度の長さを確保する必要がある。 Furthermore, in Patent Document 5, each of the metal parts 43 to 46 serving as the quadrupole electrodes has support spokes, so there is a limit to downsizing the quadrupole mass spectrometer 40. As can be seen from FIGS. 4 and 5, the support spoke has a complicated structure and is difficult to manufacture. Therefore, when the support spoke is further reduced, it becomes more difficult to produce the support spoke. Further, the support spoke must be formed with a through hole for fixing the support spoke to the insulating support 41, and in order to stably fix the support spoke to the insulating support 41 while forming the through hole. The support spokes need to secure a certain length.
 本発明は、このような課題に鑑みてなされたもので、その目的とするところは、イオン源からの迷光が検出器に入射することを低減して感度(S/N)を上げることが可能であり、小型化が可能な四重極型質量分析装置を提供することにある。 The present invention has been made in view of such problems, and the object of the present invention is to reduce the incidence of stray light from the ion source on the detector and to increase the sensitivity (S / N). It is an object of the present invention to provide a quadrupole mass spectrometer that can be miniaturized.
 さらに、本発明の別の目的は、イオン源からの迷光の検出器への入射を低減しつつも、四重極電極の平行度の精度を向上して分解能を上げることが可能であり、小型化が可能な四重極型質量分析装置を提供することにある。 Furthermore, another object of the present invention is to reduce the incidence of stray light from the ion source to the detector while improving the accuracy of the parallelism of the quadrupole electrode and increasing the resolution. It is an object of the present invention to provide a quadrupole mass spectrometer that can be configured.
 このような目的を達成するために、本発明の一態様は、四重極型質量分析装置であって、中性分子をイオン化してイオンを放出するイオン源と、非直線状の4つの電極を有する質量分別領域であって、前記4つの電極のうち対向する2つの電極セット間に直流電圧と高周波電圧を重畳した電圧を印加することによって前記4つの電極に囲まれた領域に四重極電界を形成して、該四重極電界中を通過する前記イオンの質量分別を行なう質量分別領域と、前記質量分別領域を通過した前記イオンを検出して信号とする検出器と、同心の嵌め合い部を有する、複数の板状の絶縁支持体とを備え、前記質量分別領域は非直線状であり、該非直線状の質量分別領域により、前記イオン源から該質量分別領域を通して前記検出器が見込めないように、前記質量分別領域は構成されており、前記4つの電極は、同心の4つの円環状の電極の少なくとも一部であり、前記4つの円環状の電極の各々は、前記絶縁支持体の一部に形成された導電膜であり、前記嵌め合い部による絶縁支持体同士の円対称的な嵌め合いによって組み立てられていることを特徴とする。 In order to achieve such an object, one embodiment of the present invention is a quadrupole mass spectrometer that includes an ion source that ionizes neutral molecules and emits ions, and four non-linear electrodes. A quadripole in a region surrounded by the four electrodes by applying a voltage in which a DC voltage and a high-frequency voltage are superimposed between two opposing electrode sets of the four electrodes. A mass separation region for performing mass fractionation of the ions passing through the quadrupole field by forming an electric field; a detector for detecting the ions that have passed through the mass separation region as signals; and a concentric fit A plurality of plate-like insulating supports having mating portions, wherein the mass fractionation region is non-linear, and the non-linear mass fractionation region allows the detector to pass through the mass fractionation region from the ion source. So as not to expect The mass separation region is configured, and the four electrodes are at least a part of four concentric annular electrodes, and each of the four annular electrodes is formed on a part of the insulating support. The conductive film is assembled by a circularly symmetrical fitting between the insulating supports by the fitting portion.
 本発明の他の態様は、四重極型質量分析装置であって、中性分子をイオン化してイオンを放出するイオン源と、非直線状の4つの電極を有する質量分別領域であって、前記4つの電極のうち対向する2つの電極セット間に直流電圧と高周波電圧を重畳した電圧を印加することによって前記4つの電極に囲まれた領域に四重極電界を形成して、該四重極電界中を通過する前記イオンの質量分別を行なう質量分別領域と、前記質量分別領域を通過した前記イオンを検出して信号とする検出器とを備え、前記質量分別領域は非直線状であり、該非直線状の質量分別領域により、前記イオン源から該質量分別領域を通して前記検出器が見込めないように、前記質量分別領域は構成されており、前記4つの電極は、同心の4つの円環状の電極の少なくとも一部であり、前記4つの円環状の電極は、同心の嵌め合い部を有する板状の絶縁支持体との嵌め合いによって組み立てられていることを特徴とする。 Another aspect of the present invention is a quadrupole mass spectrometer, a mass fractionation region having an ion source that ionizes neutral molecules and emits ions, and four non-linear electrodes, A quadrupole electric field is formed in a region surrounded by the four electrodes by applying a voltage in which a DC voltage and a high-frequency voltage are superimposed between two opposing electrode sets among the four electrodes, and the quadrupole electric field is formed. A mass fractionation region for mass fractionation of the ions passing through the polar electric field; and a detector for detecting the ions that have passed through the mass fractionation region as signals. The mass fractionation region is non-linear. The mass fractionation region is configured such that the non-linear mass fractionation region prevents the detector from being viewed from the ion source through the mass fractionation region, and the four electrodes are concentric four annular rings. Less of electrode Also part, the four annular electrodes, characterized in that it is assembled by fitting the plate-like insulating support having a concentric fitting portion.
 本発明によれば、イオン源から質量分析に必要なUあり四重極電界を形成するための4つの電極に囲まれた部分を通して検出器が見込めないように構成しているので、検出器へ入射する迷光を低減することができる。さらに、上記4つの電極を同心の円環状に形成することで、該4つの電極を高い平行度で配置することができる。 According to the present invention, the detector is configured such that the detector cannot be expected through a portion surrounded by four electrodes for forming a quadrupole electric field having a U necessary for mass spectrometry from the ion source. Incident stray light can be reduced. Furthermore, by forming the four electrodes in a concentric ring shape, the four electrodes can be arranged with high parallelism.
従来の、直流電圧が印加される四重極型質量分析装置の構成図である。It is a block diagram of the conventional quadrupole-type mass spectrometer to which a DC voltage is applied. 従来の、直流電圧が印加される四重極型質量分析装置の電極を固定する様子を示す断面図である。It is sectional drawing which shows a mode that the electrode of the conventional quadrupole-type mass spectrometer to which a DC voltage is applied is fixed. 従来の、直流電圧が印加される四重極型質量分析装置の電極を固定する様子を示す断面図である。It is sectional drawing which shows a mode that the electrode of the conventional quadrupole-type mass spectrometer to which a DC voltage is applied is fixed. 従来の、直流電圧が印加される四重極型質量分析装置の電極を固定する様子を示す断面図である。It is sectional drawing which shows a mode that the electrode of the conventional quadrupole-type mass spectrometer to which a DC voltage is applied is fixed. 従来の、直流電圧が印加される四重極型質量分析装置の電極を固定する様子を示す断面図である。It is sectional drawing which shows a mode that the electrode of the conventional quadrupole-type mass spectrometer to which a DC voltage is applied is fixed. 従来の、直流電圧が印加されないイオンガイドを備える四重極型質量分析装置の構成図である。It is a block diagram of the conventional quadrupole-type mass spectrometer provided with the ion guide to which a DC voltage is not applied. 従来のイオンガイドを固定する様子を示す断面図である。It is sectional drawing which shows a mode that the conventional ion guide is fixed. 従来のイオンガイドを固定する様子を示す断面図である。It is sectional drawing which shows a mode that the conventional ion guide is fixed. 従来のイオンガイドを固定する様子を示す断面図である。It is sectional drawing which shows a mode that the conventional ion guide is fixed. 従来の、カーブした四重極型質量分析計の斜視図である。It is a perspective view of the conventional curved quadrupole mass spectrometer. 図2Eに示されたカーブした四重極型質量分析計の組み立て方を説明するための図である。It is a figure for demonstrating how to assemble the curved quadrupole-type mass spectrometer shown by FIG. 2E. 本発明の一実施形態に係る四重極型質量分析装置の構成を示す図である。It is a figure which shows the structure of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention. 図3Aに示す四重極型質量分析器の断面図である。FIG. 3B is a cross-sectional view of the quadrupole mass spectrometer shown in FIG. 3A. 図3Aに示す四重極型質量分析器の回路図である。FIG. 3B is a circuit diagram of the quadrupole mass spectrometer shown in FIG. 3A. 本発明の一実施形態に係る四重極型質量分析装置の構成を示す図である。It is a figure which shows the structure of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention. 図3Dに示す四重極型質量分析装置の円対称物同士の嵌め合いの様子を説明する図であって、円環状の電極と円環状の絶縁支持体との嵌合の様子、および円環状の絶縁支持体同士の嵌合の様子を示す図である。It is a figure explaining the mode of fitting of the circularly symmetric thing of the quadrupole-type mass spectrometer shown to FIG. 3D, Comprising: The mode of fitting with an annular electrode and an annular | circular shaped insulation support body, and an annular shape It is a figure which shows the mode of fitting of other insulation support bodies. 図3Dに示す四重極型質量分析装置の円対称物同士の嵌め合いの様子を説明する図であって、円環状の電極と円環状の絶縁支持体との嵌合の様子、および円環状の絶縁支持体同士の嵌合の様子を示す図である。It is a figure explaining the mode of fitting of the circularly symmetric thing of the quadrupole-type mass spectrometer shown to FIG. 3D, Comprising: The mode of fitting with an annular electrode and an annular | circular shaped insulation support body, and an annular shape It is a figure which shows the mode of fitting of other insulation support bodies. 本発明の一実施形態に係る四重極型質量分析装置の構成を示す図である。It is a figure which shows the structure of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention. 図4Aに示す四重極型質量分析装置の各絶縁支持体を示す図である。It is a figure which shows each insulation support body of the quadrupole-type mass spectrometer shown to FIG. 4A. 図4Bに示す四重極型質量分析装置の円対称物同士の嵌め合いの様子を説明する図であって、円環状の絶縁支持体の各々の嵌合の様子を示す図である。It is a figure explaining the mode of fitting of the circularly symmetric thing of the quadrupole-type mass spectrometer shown to FIG. 4B, Comprising: It is a figure which shows the mode of each fitting of an annular | circular shaped insulation support body. 本発明の一実施形態に係る四重極型質量分析装置の構成を示す図である。It is a figure which shows the structure of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention. 図5Aに示す四重極型質量分析装置の各絶縁支持体を示す図である。It is a figure which shows each insulation support body of the quadrupole-type mass spectrometer shown to FIG. 5A. 図5Bに示す四重極型質量分析装置の円対称物同士の嵌め合いの様子を説明する図であって、円環状の絶縁支持体の各々の嵌合の様子を示す図である。It is a figure explaining the mode of fitting of the circularly symmetric thing of the quadrupole-type mass spectrometer shown to FIG. 5B, Comprising: It is a figure which shows the mode of each fitting of an annular | circular shaped insulation support body. 本発明の一実施形態に係る四重極型質量分析装置の円対称物同士の嵌め合いの様子を説明する図であって、円環状の絶縁支持体の各々の嵌合の様子を示す図である。It is a figure explaining the mode of fitting of the circularly symmetric thing of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention, Comprising: It is a figure which shows the mode of each fitting of an annular | circular shaped insulation support body. is there. 本発明の一実施形態に係る四重極型質量分析装置の円対称物同士の嵌め合いの様子を説明する図であって、円環状の絶縁支持体の各々の嵌合の様子を示す図である。It is a figure explaining the mode of fitting of the circularly symmetric thing of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention, Comprising: It is a figure which shows the mode of each fitting of an annular | circular shaped insulation support body. is there. 本発明の一実施形態に係る四重極型質量分析装置の、円環の上方から見た断面図である。It is sectional drawing seen from the upper direction of the annular ring of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention. 本発明の一実施形態に係る四重極型質量分析装置の、円環の上方から見た断面図である。It is sectional drawing seen from the upper direction of the annular ring of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention. 本発明の一実施形態に係る四重極型質量分析装置の、円環の上方から見た断面図である。It is sectional drawing seen from the upper direction of the annular ring of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention. 本発明の一実施形態に係る四重極型質量分析装置の、円環の上方から見た断面図である。It is sectional drawing seen from the upper direction of the annular ring of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention. 本発明の一実施形態に係る四重極型質量分析装置の、円環の上方から見た断面図である。It is sectional drawing seen from the upper direction of the annular ring of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention. 本発明の一実施形態に係る四重極型質量分析装置の、イオンの飛行方向の直角方向の断面図である。It is sectional drawing of the orthogonal | vertical direction of the flight direction of ion of the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention. 図3Aに示す四重極型質量分析装置において、円柱電極と絶縁支持体との嵌め合い部においてスペーサを設ける形態を説明するための図である。In the quadrupole mass spectrometer shown in FIG. 3A, it is a figure for demonstrating the form which provides a spacer in the fitting part of a cylindrical electrode and an insulation support body. 本発明の一実施形態に係る電極と絶縁支持体との嵌め合い、および絶縁支持体同士の嵌め合いの様子を示す図である。It is a figure which shows the mode of the fitting of the electrode which concerns on one Embodiment of this invention, and an insulation support body, and the fitting of insulation support bodies. 本発明の一実施形態に係る四重極型質量分析装置をスパッタリング装置に取り付ける例を示す図である。It is a figure which shows the example which attaches the quadrupole-type mass spectrometer which concerns on one Embodiment of this invention to a sputtering device.
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。 
 本発明の一実施形態では、四重極型質量分析装置が備える4つの電極(四重極電極)を、各断面では電極の曲率と位置について特定な関係を満足しつつ上記四重極電極の長手方向は同心の『円環状』としてイオン源からの迷光が検出器に入射しない、あるいは該迷光の入射を低減させるようにするとともに、これらの四重極電極を『円対称物同士の嵌め合い』によって組み立てることによって電極の平行度の精度を向上する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings described below, components having the same function are denoted by the same reference numerals, and repeated description thereof is omitted.
In one embodiment of the present invention, the four electrodes (quadrupole electrode) provided in the quadrupole mass spectrometer are configured so that the cross section of the quadrupole electrode satisfies a specific relationship regarding the curvature and position of the electrode in each cross section. The longitudinal direction is concentric "annular" so that stray light from the ion source does not enter the detector or reduces the incidence of the stray light, and these quadrupole electrodes are fitted to each other so ] To improve the accuracy of the parallelism of the electrodes.
 従来の質量分析器では、直線の電極を四重極電極として用いて「四重極電界の中心、すなわちイオンの軌道に関する精度」を“直接”出す基本構造としている。これに対して、本発明の一実施形態では、円環状の電極を四重極電極として用いて「円環状の同心点に関して精度」を出すことによって“間接”的とはなるが、結果的には「四重極電界の中心、すなわちイオンの軌道に関する精度」をより高く、しかもより簡便に実現することが可能となっている。言わば、従来のイオンガイドでは“電極の曲がり”のために精度が出せなかったが、本発明の一実施形態では“電極の曲がり”を“嵌め合い”に発展させることによって精度出しに成功している。 Conventional mass spectrometers have a basic structure that uses a straight electrode as a quadrupole electrode to “directly” provide “accuracy regarding the center of the quadrupole electric field, that is, the trajectory of ions”. On the other hand, in one embodiment of the present invention, an "indirect" is obtained by using an annular electrode as a quadrupole electrode to obtain "accuracy with respect to an annular concentric point". Has a higher accuracy with respect to the center of the quadrupole electric field, that is, the ion trajectory, and can be realized more easily. In other words, accuracy could not be achieved with the conventional ion guide due to “bending of the electrode”, but in one embodiment of the present invention, the “bending of electrode” was successfully developed to “fit”. Yes.
 また、本発明の一実施形態に係る四重極型質量分析装置では、上記嵌め合い構造により4つの四重極電極を配置しているので、迷光入射を低減するように四重極電極を曲げた構造の四重極型質量分析装置を容易に小型化することができる。例えば、従来では、特許文献5に開示されているように、カーブした四重極電極を有する構造において、サポートスポークおよび該サポートスポークを固定するための絶縁支持体を必要としていたが、本発明の一実施形態では、上記嵌め合い構造を採用することにより、小型化が困難なサポートスポークを必要としない。よって、四重極型質量分析装置の小型化が容易である。 Further, in the quadrupole mass spectrometer according to one embodiment of the present invention, since the four quadrupole electrodes are arranged by the fitting structure, the quadrupole electrode is bent so as to reduce stray light incidence. The quadrupole mass spectrometer having the above structure can be easily downsized. For example, conventionally, as disclosed in Patent Document 5, in a structure having a curved quadrupole electrode, a support spoke and an insulating support for fixing the support spoke are required. In one embodiment, the support spokes that are difficult to reduce in size are not required by adopting the fitting structure. Therefore, it is easy to reduce the size of the quadrupole mass spectrometer.
 四重極型質量分析装置に関わる本発明における装置の小型化のメリットは、省スペースと軽量化以外に、計測できる雰囲気圧力の上限を拡大すると言う本質的な価値がある。 
 四重極型質量分析装置を正常に動作させるためには、計測できる圧力上限は、雰囲気の平均自由行程が、イオンの軌道距離(移動距離)と概ね同じ長さ、あるいはそれ以上となる圧力でなければならない。半導体などの先端産業ではスパッタ装置が多用されているが、スパッタ装置の動作圧力は0.3Pa程度であり、その時の平均自由行程は10~20mm程度となる。すなわち、イオンの軌道距離が10~20mm程度となる小型の四重極型質量分析装置が必要となる。
The merit of miniaturization of the apparatus according to the present invention relating to a quadrupole mass spectrometer has the intrinsic value of expanding the upper limit of the atmospheric pressure that can be measured, in addition to saving space and reducing weight.
In order for a quadrupole mass spectrometer to operate normally, the upper limit of the pressure that can be measured is the pressure at which the mean free path of the atmosphere is approximately the same as or longer than the orbital distance (movement distance) of ions. There must be. Sputtering equipment is frequently used in advanced industries such as semiconductors, but the operating pressure of the sputtering equipment is about 0.3 Pa, and the mean free path at that time is about 10 to 20 mm. That is, a small quadrupole mass spectrometer with an orbital distance of ions of about 10 to 20 mm is required.
 従来の四重極型質量分析装置はイオンの軌道距離が100~200mm程度が多いので、1/10のダウンサイジングが必要となるが、本発明の一実施形態では、四重極型質量分析装置を小型化することができるので、イオンの軌道距離を短くすることができる。さらに重要なことは、本発明の一実施形態では、検出器への迷光入射を低減するように四重極電極を曲げても、四重極電極同士の平行度を向上しつつも、装置の小型化を実現できることにある。 Since the conventional quadrupole mass spectrometer has an orbital distance of about 100 to 200 mm, downsizing of 1/10 is required. In one embodiment of the present invention, the quadrupole mass spectrometer is used. Can be reduced in size, so that the orbital distance of ions can be shortened. More importantly, in one embodiment of the present invention, even if the quadrupole electrodes are bent so as to reduce stray light incidence on the detector, the parallelism between the quadrupole electrodes is improved, The downsizing can be realized.
 さて、雰囲気圧力を高くするほど平均自由行程は短くなるので、四重極型質量分析装置におけるイオンの軌道距離を小さくする必要があるが、特許文献5に示すようなカーブした四重極型質量分析装置においては、上述のように、四重極型質量分析装置の小型化、すなわちイオンの軌道距離の縮小化には制限があった。これに対して、本発明の一実施形態では、カーブした四重極型質量分析装置を容易に小型化することができる。よって、迷光の検出を低減しつつ、雰囲気による減衰を抑えて質量分析できる雰囲気圧力の上限を拡大することができる。 Now, as the atmospheric pressure is increased, the mean free path is shortened. Therefore, it is necessary to reduce the orbital distance of ions in the quadrupole mass spectrometer, but the curved quadrupole mass as shown in Patent Document 5 is required. In the analyzer, as described above, there has been a limit to the miniaturization of the quadrupole mass spectrometer, that is, the reduction of the orbital distance of ions. On the other hand, in one embodiment of the present invention, a curved quadrupole mass spectrometer can be easily downsized. Therefore, it is possible to expand the upper limit of the atmospheric pressure at which mass analysis can be performed while suppressing attenuation due to the atmosphere while reducing detection of stray light.
 (第1の実施形態) 
 本発明の第1の実施形態の要素構成を図3A~3Fに示す。 
 四重極型質量分析装置100は、イオン源101、四重極型質量分析器102、および検出器103を備えている。イオン源101および検出器103はそれぞれ、開口付きのケース108aおよび108bにて囲まれている。被測定成分(中性分子)はイオン源101にてイオン105となり、設定された条件に合う特定なイオンのみが四重極型質量分析器102を通過し、検出器103に到達して信号として検出される。イオン源101は最も一般的な電子衝撃(EI)型イオンとすることができ、検出器103はマイクロチャンネル型電子増倍プレート(MCP)とすることができる。
(First embodiment)
The element configuration of the first embodiment of the present invention is shown in FIGS. 3A to 3F.
The quadrupole mass spectrometer 100 includes an ion source 101, a quadrupole mass analyzer 102, and a detector 103. The ion source 101 and the detector 103 are surrounded by cases 108a and 108b with openings, respectively. The component to be measured (neutral molecule) becomes an ion 105 in the ion source 101, and only specific ions that meet the set conditions pass through the quadrupole mass analyzer 102 and reach the detector 103 as a signal. Detected. The ion source 101 can be the most common electron impact (EI) type ion, and the detector 103 can be a microchannel type electron multiplier plate (MCP).
 本実施形態の四重極型質量分析器102の電極は、図3Cに示すように基本的には例えば、金属円柱である4本の電極104a~104d(本明細書では、電極104a~104dを総じて電極104と呼ぶこともある)に高周波電圧(RF)と直流電圧(DC)を印加するものである。具体的には、対向する(質量分析器の中心軸を間にして向き合う)電極104aと104d、および電極104bと104cをそれぞれ結合(導通)するとともに、この二つの電極セットの間に直流電圧と高周波電圧を重畳した電圧を印加することにより、電極104a~104dに囲まれた領域(イオン105が飛行する領域)にUあり四重極電界107が形成される。なお、直流電圧と高周波電圧の中心電圧(四重極電界の中心電位)はイオンの軸方向速度を定めることとなり、別の要件で決定される。 As shown in FIG. 3C, the quadrupole mass analyzer 102 of the present embodiment basically has four electrodes 104a to 104d (in this specification, electrodes 104a to 104d) that are, for example, metal cylinders. A high-frequency voltage (RF) and a direct-current voltage (DC) are applied to the electrode 104 (also generally referred to as an electrode 104). Specifically, the opposing electrodes 104a and 104d (facing each other with the central axis of the mass analyzer in between) and electrodes 104b and 104c are coupled (conducted), respectively, and a DC voltage is generated between the two electrode sets. By applying a voltage superimposed with a high-frequency voltage, a quadrupole electric field 107 is formed in a region U (region where ions 105 fly) surrounded by the electrodes 104a to 104d. The center voltage of the DC voltage and the high-frequency voltage (the center potential of the quadrupole electric field) determines the axial velocity of the ions, and is determined by other requirements.
 このような電極104は、飛行方向の直角方向の断面においては各電極の曲率とそれぞれの位置とは従来から知られている特定な関係を満足しつつ、電極の長手方向は同心の『円環状』(3/4周分)となっている。すなわち、本実施形態では、4つの電極104は非直線状であり、円環状であるので、四重極型質量分析器102も被直線状の円環状になる。従って、本実施形態は、非直線状の四重極型質量分析器102により、イオン源101から検出器103が見込めないような構成となっている。 In such an electrode 104, in the cross section perpendicular to the flight direction, the curvature of each electrode and each position satisfy a specific relationship known in the art, while the longitudinal direction of the electrode is a concentric “circular ring”. (3/4 laps). In other words, in the present embodiment, the four electrodes 104 are non-linear and are annular, so the quadrupole mass analyzer 102 is also a linear ring. Therefore, the present embodiment is configured such that the detector 103 cannot be expected from the ion source 101 by the non-linear quadrupole mass analyzer 102.
 また、4つの電極104の各々は、同心の円環状の電極であり、4つの電極104のうち2つの電極(図3Bでは符号104a、104c)は同じ第1の半径を有し、残りの2つの電極(図3Bでは符号104b、104d)は該第1の半径よりも大きく、かつ同じ第2の半径を有する。よって、図3Bに示すように、円環状の電極104aおよび104bを同心となるように配置することにより、円環状の電極104aと104bとの平行度を向上することができる。同様に、円環状の電極104cおよび104dを同心となるように配置することにより、円環状の電極104cと104dとの平行度を向上することができる。これらの配置要件に加えて、円環状の電極104a(104b)と円環状の電極104c(104d)とを同心となるように配置することにより、円環状の電極104a(104b)と円環状の電極104c(104d)との平行度を向上することができ、その結果、4つの円環状の電極104a~104dを互いに平行に、あるいは平行度を向上した状態で配置することができる。 Each of the four electrodes 104 is a concentric annular electrode, and two of the four electrodes 104 ( reference numerals 104a and 104c in FIG. 3B) have the same first radius, and the remaining 2 Two electrodes ( reference numerals 104b and 104d in FIG. 3B) are larger than the first radius and have the same second radius. Therefore, as shown in FIG. 3B, the parallelism between the annular electrodes 104a and 104b can be improved by arranging the annular electrodes 104a and 104b to be concentric. Similarly, by arranging the annular electrodes 104c and 104d to be concentric, the parallelism between the annular electrodes 104c and 104d can be improved. In addition to these arrangement requirements, by arranging the annular electrode 104a (104b) and the annular electrode 104c (104d) to be concentric, the annular electrode 104a (104b) and the annular electrode are arranged. The degree of parallelism with 104c (104d) can be improved, and as a result, the four annular electrodes 104a to 104d can be arranged in parallel with each other or with the degree of parallelism improved.
 すなわち、本実施形態では、第1の半径を有する電極104a(104c)の円環の面と第2の半径を有する電極104b(104d)の円環の面とが一致するように、電極104a~104dを同心で配置している。従って、電極104a~104dを高い平行度で配置することができる。 That is, in the present embodiment, the electrodes 104a to 104a are arranged such that the annular surface of the electrode 104a (104c) having the first radius coincides with the annular surface of the electrode 104b (104d) having the second radius. 104d are arranged concentrically. Therefore, the electrodes 104a to 104d can be arranged with high parallelism.
 このような円柱電極104となる金属円柱はステンレス(SUS)製、あるいはモリブデン(Mo)製が望ましい。いずれの断面でも、各電極の曲率とそれぞれの位置は数ミクロン(マイクロメータ)以下の制度を維持している。したがって、イオン源101を出たイオンは270°カーブして検出器103に入る。 It is desirable that the metal cylinder used as the cylinder electrode 104 is made of stainless steel (SUS) or molybdenum (Mo). In any cross section, the curvature of each electrode and the position of each electrode maintain a system of several microns (micrometers) or less. Therefore, ions exiting the ion source 101 enter the detector 103 with a 270 ° curve.
 円環状の電極104内では、イオン105は断面方向では数百V以上、数MHz程度の高周波電圧によって振動しながら収束されているが、長手方向ではわずか数V程度の電圧差で進行している。そのため、進行方向がカーブしていることによってイオンに生じる遠心力は、断面方向の高電位によってほとんど打ち消されてしまうので、カーブによる悪影響は極めてわずかとなっている。従って、イオン源101から入射されたイオンは、円環状の電極104がカーブしているが、Uあり四重極電界107内を進行し、かつ質量分離されることにより、検出したいイオン105が検出器103に入射する。 In the annular electrode 104, the ions 105 are converged while vibrating with a high frequency voltage of several hundreds V or more and about several MHz in the cross-sectional direction, but proceed with a voltage difference of only about several V in the longitudinal direction. . Therefore, the centrifugal force generated in the ions due to the curve in the traveling direction is almost canceled by the high potential in the cross-sectional direction, so the adverse effect due to the curve is very slight. Therefore, the ion incident from the ion source 101 is detected by detecting the ion 105 to be detected by traveling in the quadrupole electric field 107 with U and being separated by mass while the annular electrode 104 is curved. Incident on the vessel 103.
 一方、イオン源101と検出器103とは四重極型質量分析器102側の面以外は閉じているケース108a、108bの中に設置されているので、イオン源101からの迷光106は四重極型質量分析器102の内部の反射によってのみ検出器103に入射する可能性がある。しかし、四重極型質量分析器102は270°もカーブしているので、検出器103に入射するのは数回以上も反射したものだけに限られる。反射率は数十%でしかも電極104の各々は丸いので、反射の度に光量は減衰ししかも外向きに拡がるので、最終的に検出器103に入射する迷光106は極めて微量となる。このように、本実施形態では、直流電圧および高周波電圧の双方が印加されることで質量分析することが可能な四重極型質量分析器102は非直線状であり、該非直線状の四重極型質量分析器102により、イオン源101から四重極型質量分析器102の構成要素である4つの電極104に囲まれた部分を通して検出器103が見込めないように、イオン源101、検出器103、および四重極型質量分析器102は構成されている。例えば、本実施形態では、イオン源101がケース108aを有し、検出器103がケース108bを有するように構成しているので、イオン源101の図3Aの左側においては、イオン105および迷光106はケース108a、108bにより遮られることになり、イオン源101から検出器103が見込めない構成が実現されている。また、イオン源101の図3Aの右側においては、四重極型質量分析器102が非直線状である円環状に形成されているので、イオン源101から検出器103が見込めない構成が実現されている。従って、検出したいイオン105については検出器103に到達させ、検出したくない迷光106の検出器103への入射量を低減することができる。よって、検出器103におけるノイズの検出を低減することができ、感度(S/N比)を上げることができる。 On the other hand, since the ion source 101 and the detector 103 are installed in cases 108a and 108b that are closed except for the surface on the quadrupole mass spectrometer 102 side, the stray light 106 from the ion source 101 is quadruple. There is a possibility of being incident on the detector 103 only by reflection inside the polar mass analyzer 102. However, since the quadrupole mass spectrometer 102 is curved as much as 270 °, the incident light to the detector 103 is limited to only one reflected several times. Since the reflectivity is several tens of percent and each of the electrodes 104 is round, the amount of light attenuates and spreads outward each time it is reflected, so that the amount of stray light 106 that finally enters the detector 103 is extremely small. As described above, in this embodiment, the quadrupole mass analyzer 102 that can perform mass analysis by applying both a DC voltage and a high-frequency voltage is non-linear, and the non-linear quadrupole. The ion source 101 and the detector are prevented from being detected by the polar mass analyzer 102 through the portion surrounded by the four electrodes 104 that are components of the quadrupole mass analyzer 102 from the ion source 101. 103 and the quadrupole mass analyzer 102 are configured. For example, in the present embodiment, since the ion source 101 has the case 108a and the detector 103 has the case 108b, the ions 105 and the stray light 106 are on the left side of the ion source 101 in FIG. 3A. Since the cases 108a and 108b are obstructed, a configuration in which the detector 103 cannot be expected from the ion source 101 is realized. Further, on the right side of the ion source 101 in FIG. 3A, the quadrupole mass analyzer 102 is formed in a non-linear annular shape, so that a configuration in which the detector 103 cannot be expected from the ion source 101 is realized. ing. Therefore, the ions 105 that are desired to be detected can reach the detector 103, and the amount of stray light 106 that is not desired to be detected can be reduced. Therefore, detection of noise in the detector 103 can be reduced, and sensitivity (S / N ratio) can be increased.
 このように、四重極型質量分析器102自体を曲げることによって、イオン源101から四重極型質量分析器102が有する4つの電極104a~10d(曲げられた電極)に囲まれた部分を通して検出器が見込めないようにすることができ、迷光106の検出器103への入射を低減することができるので好ましい。ここで、四重極型質量分析器102を良好に動作せることを考慮すると、上記曲げられた4つの電極を互いに、高い平行度で配置することはさらに好ましい。このことを達成するためには、電極104a~104dを、ユーザが所望の測定を行うために求められる平行度で少なくとも配置することが求められる。 In this way, by bending the quadrupole mass analyzer 102 itself, through the portion surrounded by the four electrodes 104a to 10d (bent electrodes) of the quadrupole mass analyzer 102 from the ion source 101. This is preferable because the detector can be prevented from being expected and the incidence of the stray light 106 on the detector 103 can be reduced. Here, considering that the quadrupole mass analyzer 102 operates well, it is more preferable to arrange the four bent electrodes with high parallelism. In order to achieve this, it is required to arrange at least the electrodes 104a to 104d with the parallelism required for the user to perform a desired measurement.
 図2Aに示したように従来では、迷光の検出器への入射を低減するために電極を曲げることは行われているが、この電極を曲げる構成はあくまでUなし四重極電界が形成されるイオンガイドであって、Uあり四重極電界が形成される質量分析器では無い。すなわち、従来では、迷光6の検出器3への入射を低減するためには、質量分析器2とは別個にカーブしたイオンガイド30を設ける必要があった。何故ならば、質量分析器2の円柱電極4を曲げても質量分析に必要な4つの電極をなるべく平行に配置することが要求されることは変わりが無く、曲がった4つの電極をそれぞれ高い平行度で配置することには相当な困難が伴う。すなわち、図1B~1Eの説明で述べたように、直線の4つの電極を配置するだけでもコストや手間がかかるが、曲がった電極を平行度を向上して配置することは、さらなるコストや手間がかかることになる。これに対して、イオンガイドは、質量分析を行うものではないので、曲がった4つの電極が高い平行度を持つ必要が無い。従って、従来では、手間やコストに鑑みて質量分析器自体は直線の電極で構成し、コストや手間がかからないイオンガイドを質量分析器とは別個に配置することにより、迷光の影響を低減している。このように、質量分析器が備える4つの電極の平行度に鑑みつつ生産性やコストを考慮すると、直線状の電極でもコストや手間がかかる4つの電極をなるべく平行に配置することを、さらにコストや手間がかかる曲がった電極において実現して迷光の影響を低減しようとするモチベーションは従来技術には存在せず、上記迷光影響の低減のために、電極の平行配置に気にする必要の無いイオンガイドを別個に設けることが従来では採用されている。 Conventionally, as shown in FIG. 2A, the electrode is bent in order to reduce the incidence of stray light on the detector, but the configuration of bending this electrode is to form a U-less quadrupole field. It is an ion guide, not a mass analyzer with a U-containing quadrupole field. That is, conventionally, in order to reduce the incidence of the stray light 6 on the detector 3, it is necessary to provide an ion guide 30 that is curved separately from the mass analyzer 2. This is because even if the cylindrical electrode 4 of the mass analyzer 2 is bent, it is still required to arrange the four electrodes necessary for the mass analysis in parallel as much as possible, and the four bent electrodes are highly parallel to each other. Arranging at a degree is associated with considerable difficulty. That is, as described in the explanation of FIGS. 1B to 1E, it is costly and troublesome to arrange only four straight electrodes, but arranging bent electrodes with improved parallelism is more costly and troublesome. Will take. On the other hand, since the ion guide does not perform mass spectrometry, it is not necessary for the four bent electrodes to have high parallelism. Therefore, conventionally, the mass analyzer itself is configured with straight electrodes in view of labor and cost, and the ion guide that does not cost and labor is arranged separately from the mass analyzer to reduce the influence of stray light. Yes. In this way, considering productivity and cost in consideration of the parallelism of the four electrodes included in the mass spectrometer, it is further costly to arrange four electrodes that are costly and troublesome even with linear electrodes as much as possible. There is no motivation to reduce the effect of stray light by realizing it in a bent electrode which takes time and effort, and there is no need to worry about the parallel arrangement of electrodes in order to reduce the effect of stray light. Conventionally, a guide is provided separately.
 このような従来技術に対して、本実施形態では、第1の半径の2つの円環状の電極(電極104a、104c)と、第1の半径よりも大きな第2の半径の2つの円環状の電極(電極104b、104d)とを用い、四重極型質量分析器102を形成している。従って、上記4つの電極を同心状に配置することによって、簡便にかつ低コストでそれら電極を高い平行度で配置することができる。何故ならば、円環状にものを高精度で加工する技術は確立されており、該技術を用いれば半径が揃った同心の円環状の電極(電極104aと104cのペア、および電極104bと104dのペア)を作製することができ、かつ該電極が円環状であるので、4つの電極104a~104dを配置する際に、それぞれの電極の配置の基準点を同一点で設定することができるからである。 In contrast to such a conventional technique, in this embodiment, two annular electrodes ( electrodes 104a and 104c) having a first radius and two annular electrodes having a second radius larger than the first radius are used. A quadrupole mass spectrometer 102 is formed using electrodes ( electrodes 104b and 104d). Therefore, by arranging the four electrodes concentrically, the electrodes can be arranged with high parallelism simply and at low cost. This is because a technique for processing an annular object with high accuracy has been established, and by using this technique, concentric annular electrodes having a uniform radius (a pair of electrodes 104a and 104c, and electrodes 104b and 104d). Since the electrodes are annular, when the four electrodes 104a to 104d are arranged, the reference points for the arrangement of the respective electrodes can be set at the same point. is there.
 すなわち、従来の直線状の電極では、4つの電極を平行に配置する場合に平行配置の基準点が無い(基準点が電極内に存在しない)ので、平行に配置するためには絶縁支持体等において精度を出す必要があった。しかしながら、本実施形態では、径が等しい2つの円環状の電極104a、104c(内側に配置された内側電極)と、該内側電極よりも径が大きい2つの円環状の電極104b、104d(外側に配置された外側電極)との4つの円環状の電極を用意し、外側電極の内側に内側電極を同心で配置するペアを2つ作り(第1のペア(電極104aおよび電極104b)ならびに第2のペア(電極104cおよび電極104d))、それらのペアを左右方向(円環状の電極の面内鉛直方向、図3Dの左側図の左右方向)に離間して配置している。内側電極と外側電極とは円環状であるので、同心で配置することにより、外側電極と内側電極との平行度を向上することができる。 That is, in the case of the conventional linear electrode, when four electrodes are arranged in parallel, there is no reference point for parallel arrangement (the reference point does not exist in the electrode). It was necessary to put out accuracy. However, in the present embodiment, two annular electrodes 104a and 104c (inner electrodes arranged on the inside) having the same diameter and two annular electrodes 104b and 104d (outside) having a larger diameter than the inner electrodes. Four annular electrodes with the arranged outer electrode) are prepared, and two pairs are arranged in which the inner electrode is arranged concentrically inside the outer electrode (first pair (electrode 104a and electrode 104b) and second pair Pair (electrode 104c and electrode 104d), and these pairs are spaced apart in the left-right direction (the in-plane vertical direction of the annular electrode, the left-right direction in FIG. 3D). Since the inner electrode and the outer electrode are annular, the parallelism between the outer electrode and the inner electrode can be improved by arranging them concentrically.
 また、左右方向については、第1のペアの内側電極と第2のペアの内側電極とが対向し(質量分析器の中心軸を間にして向き合い)、第1のペアの外側電極と第2のペアの外側電極とが対向することになるが、第1のペアの内側電極と第2のペアの内側電極との間および第1のペアの外側電極と第2のペアの外側電極との間に、後述するように同一の厚さのスペーサ(例えば、後述の絶縁支持体111a、111b)を挿入することで、第1のペアと第2のペアとの間をなるべく平行にすることができる。 
 これらの結果、本実施形態では、簡便な方法で、曲がった構造の電極を高い平行度で配置することができる。
In the left-right direction, the first pair of inner electrodes and the second pair of inner electrodes face each other (facing each other with the central axis of the mass analyzer in between), and the first pair of outer electrodes and the second pair Of the first pair of inner electrodes and the second pair of inner electrodes, and between the first pair of outer electrodes and the second pair of outer electrodes. As described later, a spacer having the same thickness (for example, insulating supports 111a and 111b described later) is inserted between the first pair and the second pair as much as possible. it can.
As a result, in the present embodiment, it is possible to arrange the bent electrodes with high parallelism by a simple method.
 ここで、図3Cに示すように、電極104aと104dとを電気的に結合し、かつ電極104bと104cとを電気的に結合して、これら二つの電極セット間に高周波電圧(RF)と直流電圧(DC)を重畳した電圧を印加することにより、Uあり四重極電界107が形成され、質量分析を行うことができる。すなわち、円環状の電極104を用い各電極を同心状に配置し、さらに該円環状の電極104に高周波電圧および直流電圧を印加することにより、四重極型質量分析器102に、迷光低減機能と質量分析機能との双方を持たせることができる。 Here, as shown in FIG. 3C, the electrodes 104a and 104d are electrically coupled, and the electrodes 104b and 104c are electrically coupled, and a high frequency voltage (RF) and a direct current are connected between these two electrode sets. By applying a voltage superimposed with a voltage (DC), a quadrupole electric field 107 with U is formed, and mass spectrometry can be performed. That is, each electrode is arranged concentrically using an annular electrode 104, and further, a high frequency voltage and a direct current voltage are applied to the annular electrode 104, so that the quadrupole mass analyzer 102 has a stray light reduction function. And a mass spectrometric function.
 このように、本実施形態では、4つの円環状の電極を同心で配置することにより、それぞれの電極を高い平行度で配置しながら、イオン源101から4つの電極104a~104dに囲まれた部分を通して検出器103が見込めないようにする構成を実現することができる。すなわち、本実施形態では、質量分析器に迷光低減機能を組み込むことにより、従来のように、イオンガイドを別個に設けなくても迷光の検出器への入射を抑えることができる。逆に言うと、四重極型質量分析装置に、迷光低減機能を付加したとしても、イオンガイドのような複雑な構成を別個に設ける必要が無くなり、コスト低減および装置の小型化を実現することができる。 As described above, in the present embodiment, by arranging the four annular electrodes concentrically, the portions surrounded by the four electrodes 104a to 104d from the ion source 101 while arranging each electrode with high parallelism. Thus, it is possible to realize a configuration in which the detector 103 cannot be expected. In other words, in the present embodiment, by incorporating a stray light reduction function into the mass analyzer, it is possible to suppress the incidence of stray light to the detector without providing an ion guide separately as in the prior art. In other words, even if a stray light reduction function is added to the quadrupole mass spectrometer, it is not necessary to separately provide a complicated configuration such as an ion guide, thereby realizing cost reduction and downsizing of the apparatus. Can do.
 以下、円環状の電極の組み立て方法とそのメリットを詳しく説明する。すなわち、以下において、簡便な方法で円環状の電極を高い平行度で配置できる構成を説明する。 
 図3Dは、本実施形態に係る四重極型質量分析装置が備える円環状の電極104を高い平行度で配置するための構成を示す図である。図3Dの左図はイオン105の飛行方向に直角方向の断面図(図3Dの右図の3β断面)であり、図3Dの右図はイオン105の円環状の飛行面での断面図(図3Dの左図の3α断面)である。
Hereinafter, a method for assembling the annular electrode and its merit will be described in detail. That is, in the following, a configuration in which an annular electrode can be arranged with high parallelism by a simple method will be described.
FIG. 3D is a diagram illustrating a configuration for arranging the annular electrodes 104 provided in the quadrupole mass spectrometer according to the present embodiment with high parallelism. The left figure of FIG. 3D is a cross-sectional view perpendicular to the flight direction of the ions 105 (3β cross-section of the right figure of FIG. 3D), and the right figure of FIG. (3α cross section in the left figure of 3D).
 本実施形態における組み立てには4本の円環状の電極以外に、これらを絶縁しながら位置を決める絶縁支持体が重要となる。絶縁支持体としては、電気絶縁性と加工性とを考慮するとマシナブルセラミック(機械加工が可能なセラミック。商品名はマコール、ホトベール、マセライトなど)が挙げられる。本実施形態では、このような材料により、絶縁支持体111a、111b、112a、112bを形成している。 For the assembly in this embodiment, in addition to the four annular electrodes, an insulating support that determines the position while insulating them is important. Examples of the insulating support include machinable ceramics (ceramics that can be machined, such as Macor, Photovale, Macerite, etc.) in view of electrical insulation and workability. In the present embodiment, the insulating supports 111a, 111b, 112a, and 112b are formed of such materials.
 絶縁支持体112a、112bは、円環状の電極104と同一の同心の円環状に形成されており、それらの断面はこの字型をしている。該この字の外側の中心方向を向いている面によって円環の径が大きい電極の、また内側の外方向を向いている面によって円環の径が小さい電極の位置を決めている。例えば、絶縁支持体112aでは、この字の内側の外方向を向いている面113aによって径が小さい電極104aの位置を決めており、この字の外側の中心方向を向いている面113bによって径が大きい電極104bの位置を決めている。また、同様に、絶縁支持体112bでは、この字の内側の外方向を向いている面113cによって径が小さい電極104cの位置を決めており、この字の外側の中心方向を向いている面113dによって径が大きい電極104dの位置を決めている。これらはいずれも円環の径方向(図で上下方向)の位置決めであって、その方法は円対称物同士の嵌め合いによっている。すなわち、円環状の電極104、および絶縁支持体112a、112bのいずれも同心の円環状であり、円環状の電極104を、円環状の絶縁支持体112a、112bのこの字構造に嵌合している。 The insulating supports 112a and 112b are formed in the same concentric annular shape as the annular electrode 104, and their cross sections have this character shape. The position of the electrode having a large ring diameter is determined by the surface facing the center direction on the outside of the character, and the position of the electrode having a small ring diameter is determined by the surface facing the outside direction on the inside. For example, in the insulating support 112a, the position of the electrode 104a having a small diameter is determined by the surface 113a facing the outer direction inside the character, and the diameter is determined by the surface 113b facing the center direction outside the character. The position of the large electrode 104b is determined. Similarly, in the insulating support 112b, the position of the electrode 104c having a small diameter is determined by the surface 113c facing the outer direction inside the character, and the surface 113d facing the central direction outside the character. Thus, the position of the electrode 104d having a large diameter is determined. These are all positioning in the radial direction of the ring (vertical direction in the figure), and the method is based on fitting of circularly symmetric objects. That is, each of the annular electrode 104 and the insulating supports 112a and 112b is a concentric annular shape, and the annular electrode 104 is fitted to this character structure of the annular insulating supports 112a and 112b. Yes.
 なお、円環の軸方向(図で左右方向)の位置決めは嵌め合いではなく従来と同様な方法となっている。すなわち、円環状の絶縁支持体111aおよび円環状であり絶縁支持体111aよりも径が小さい絶縁支持体111bをスペーサとして用いて上記軸方向の位置決めを行っている。 The positioning of the ring in the axial direction (left-right direction in the figure) is not a fit but a method similar to the conventional method. That is, the axial positioning is performed using an annular insulating support 111a and an annular insulating support 111b having a diameter smaller than that of the insulating support 111a as spacers.
 図3Dに示す四重極型質量分析装置が有する円対称物同士の嵌め合いによる組み立て方法の詳細を図3E、3Fに示す。各電極104a~104dは、それぞれに対応する絶縁支持体112a、112bの各面によって位置決めがなされている。さらに、絶縁支持体112a、112b同士も円対称物同士の嵌め合いで位置決めがなされている。したがって、各電極104a~104dは、共通する中心点(同心点)を基準として精度が出される構造となっている。 3E and 3F show details of an assembling method by fitting circularly symmetric objects of the quadrupole mass spectrometer shown in FIG. 3D. The electrodes 104a to 104d are positioned by the respective surfaces of the corresponding insulating supports 112a and 112b. Furthermore, the insulating supports 112a and 112b are also positioned by fitting circularly symmetrical objects. Therefore, each of the electrodes 104a to 104d has a structure that provides accuracy with reference to a common center point (concentric point).
 例えば、<電極104bvs絶縁支持体112a>の場合、図3Eに示すように、円環状の電極104bを絶縁支持体112aに嵌合すると、円環状の電極104bの円周方向に沿って、絶縁支持体112aの面113bと電極104bとの間に嵌め合い部が形成される。ここで、絶縁支持体112aの断面のこの字の外側の壁面(面113b)とちょうど嵌め合うように、電極104bと絶縁支持体112aとを作製することにより、面113bの存在により電極104bが嵌まり込んだ絶縁支持体112aにおいて固定される。一方、<電極104avs絶縁支持体112a>の場合、図3Eに示すように、円環状の電極104aを絶縁支持体112aに嵌合すると、円環状の電極104aの円周方向に沿って、絶縁支持体112aの面113aと電極104aとの間に嵌め合い部が形成される。ここで、絶縁支持体112aの断面のこの字の内側の壁面(面113a)とちょうど嵌め合うように、電極104bと絶縁支持体112aとを作製することにより、面113aの存在により電極104aが嵌まり込んだ絶縁支持体112aにおいて固定される。 For example, in the case of <electrode 104bvs insulating support 112a>, as shown in FIG. 3E, when the annular electrode 104b is fitted to the insulating support 112a, the insulating support is provided along the circumferential direction of the annular electrode 104b. A fitting portion is formed between the surface 113b of the body 112a and the electrode 104b. Here, the electrode 104b is fitted by the presence of the surface 113b by producing the electrode 104b and the insulating support 112a so that the outer wall surface (surface 113b) of this character in the cross section of the insulating support 112a is fitted. The insulating support 112a is fixed in place. On the other hand, in the case of <electrode 104avs insulating support 112a>, as shown in FIG. 3E, when the annular electrode 104a is fitted to the insulating support 112a, the insulating support is provided along the circumferential direction of the annular electrode 104a. A fitting portion is formed between the surface 113a of the body 112a and the electrode 104a. Here, the electrode 104a is fitted by the presence of the surface 113a by making the electrode 104b and the insulating support 112a so as to be fitted to the inner wall surface (surface 113a) of this character in the cross section of the insulating support 112a. The insulating support 112a is fixed in place.
 このとき、円対称物の嵌め合いである、絶縁支持体112aと電極104b、および絶縁支持体112aと電極104aの各々では、共通する中心点(同心点)を基準に位置決めされている。従ってその結果、電極104aおよび電極104bも共通する中心点(同心点)を基準に位置決めされていることになる。よって、電極104aと電極104bとを高い平行度で配置することができる。 
 ここでは説明を省略するが、図3Fの<電極104cvs絶縁支持体112b>、および<電極104dvs絶縁支持体112b>についても同様のことが言える。さらに、絶縁支持体112aおよび112bが嵌め合うような構造を設けることにより、図3Fの<絶縁支持体112avs絶縁支持体112b>のように、共通する中心点(同心点)を基準とした円対称物の嵌め合い部が形成される。その結果、電極104aおよび電極104cは共通する中心点(同心点)を基準に位置決めされていることになる。同様に、電極104bおよび電極104dも共通する中心点(同心点)を基準に位置決めされていることになる。よって、電極104aと電極104cとを、および電極104bと電極104dとをそれぞれ高い平行度で配置することができ、その結果、電極104a~104dのそれぞれを互いに高い平行度で配置することができる。
At this time, each of the insulating support 112a and the electrode 104b and the insulating support 112a and the electrode 104a, which are fittings of circularly symmetrical objects, are positioned with reference to a common center point (concentric point). Therefore, as a result, the electrodes 104a and 104b are also positioned with respect to a common center point (concentric point). Therefore, the electrode 104a and the electrode 104b can be arranged with high parallelism.
Although the description is omitted here, the same applies to <electrode 104cvs insulating support 112b> and <electrode 104dvs insulating support 112b> in FIG. 3F. Further, by providing a structure in which the insulating supports 112a and 112b are fitted to each other, as shown in <Insulating Support 112avs Insulating Support 112b> in FIG. 3F, circular symmetry with respect to a common center point (concentric point). A fitting part of the object is formed. As a result, the electrode 104a and the electrode 104c are positioned with respect to a common center point (concentric point). Similarly, the electrodes 104b and 104d are also positioned with reference to a common center point (concentric point). Accordingly, the electrode 104a and the electrode 104c, and the electrode 104b and the electrode 104d can be arranged with high parallelism, and as a result, the electrodes 104a to 104d can be arranged with high parallelism with each other.
 従来では、特許文献5に開示されているように(図2E、2F参照)、カーブした四重極型質量分析装置を形成する場合、4つの四重極電極を互いに平行に配置するための基準点が複数存在しているので、複数の基準点の各々が精度良く形成されないと、四重極電極の平行度の向上は期待できない。従って、これら複数の基準点を正確に位置決めする必要があり、基準点となる、サポートスポーク43a~46aに形成された貫通孔、および該サポートスポークを固定するための絶縁支持体41に形成された貫通孔を厳密に加工する必要がある。 Conventionally, as disclosed in Patent Document 5 (see FIGS. 2E and 2F), when forming a curved quadrupole mass spectrometer, a reference for arranging four quadrupole electrodes in parallel with each other Since there are a plurality of points, the parallelism of the quadrupole electrode cannot be improved unless each of the plurality of reference points is formed with high accuracy. Therefore, it is necessary to accurately position the plurality of reference points. The through holes formed in the support spokes 43a to 46a and the insulating support 41 for fixing the support spokes are used as reference points. It is necessary to precisely process the through hole.
 これに対して、本実施形態では、四重極型質量分析装置100が有する円環状の電極104a~104dの各々を、円環状の絶縁支持体112a、112bの一方と嵌め合わせ、かつ円環状の絶縁支持体112aと112bとを嵌め合わせている。上記嵌合は、円対称物の嵌め合いであるので、その結果、円環状の電極104a~104d、および円環状の絶縁支持体112a、112bの各々は、同一の基準点(同心点)を基準に配置されることになり、電極104a~104dを互いに高い平行度で配置することができる。 In contrast, in the present embodiment, each of the annular electrodes 104a to 104d included in the quadrupole mass spectrometer 100 is fitted to one of the annular insulating supports 112a and 112b, and The insulating supports 112a and 112b are fitted together. Since the fitting is a fitting of a circularly symmetric object, as a result, each of the annular electrodes 104a to 104d and the annular insulating supports 112a and 112b is based on the same reference point (concentric point). Thus, the electrodes 104a to 104d can be arranged with a high degree of parallelism.
 また、本実施形態では、上述のように、嵌め合い構造により電極104a~104dを固定しているので、特許文献5のように、内側に延在し、小型化が困難なサポートスポークを必要としない。すなわち、小型化に対して律速となるサポートスポークを用いなくても、カーブした電極104a~104d(四重極電極)を高い平行度で固定することができる。従って、迷光検出を低減し、四重極電極の平行度を向上しつつも、装置の小型化を実現することができる。 Further, in the present embodiment, since the electrodes 104a to 104d are fixed by the fitting structure as described above, a support spoke that extends inward and is difficult to be miniaturized is required as in Patent Document 5. do not do. In other words, the curved electrodes 104a to 104d (quadrupole electrodes) can be fixed with high parallelism without using support spokes that are rate-limiting for downsizing. Therefore, it is possible to reduce the size of the apparatus while reducing the detection of stray light and improving the parallelism of the quadrupole electrode.
 なお、本実施形態では、図3Dに示すように、絶縁支持体112aに電極104aおよび電極104bを嵌合し、かつ絶縁支持体112bに電極104cおよび電極104dを嵌合する。そして、絶縁支持体111a、111bを介して、絶縁支持体112aと絶縁支持体112bとを嵌め合わせ、ネジ114により、絶縁支持体112a、112bを、絶縁支持体111a、111bに固定する。このようにして、高い平行度で円環状の電極104a~104dを配置した四重極型質量分析器102を形成する。 In this embodiment, as shown in FIG. 3D, the electrode 104a and the electrode 104b are fitted to the insulating support 112a, and the electrode 104c and the electrode 104d are fitted to the insulating support 112b. Then, the insulating support 112a and the insulating support 112b are fitted together via the insulating supports 111a and 111b, and the insulating supports 112a and 112b are fixed to the insulating supports 111a and 111b with screws 114. In this way, the quadrupole mass analyzer 102 in which the annular electrodes 104a to 104d are arranged with high parallelism is formed.
 上述のように、円環状の本質的なメリットは『円対称物同士の嵌め合い』による大幅な精度向上である。この主な原因は以下の点である。 
 1)円対称物では、径の寸法に関して高い精度を実現できる。 
 特に、寸法の絶対値だけでなく、円周上の各点での寸法のバラツキが非常に少ないことが重要となっている。これは被加工物を回転させて切削する旋盤などの加工原理から当然なことである。しかも、四重極型質量分析器では、寸法の絶対値自体は数十μ~数百μの差があっても構わないが、その値が電極の長手方向では数ミクロン以内で一致していなければならない。これは、すなわち円周上の各点での寸法のバラツキが少ないことを要求している訳で、円対称物の加工特性とよく一致している。
As described above, the essential merit of the annular shape is a significant improvement in accuracy due to “fitting of circularly symmetric objects”. The main reasons for this are as follows.
1) A circularly symmetric object can achieve high accuracy with respect to the size of the diameter.
In particular, it is important that not only the absolute value of the dimension but also the variation in dimension at each point on the circumference is very small. This is natural from the principle of processing such as a lathe that rotates the workpiece to cut. In addition, in a quadrupole mass spectrometer, the absolute value of the dimension itself may vary by several tens of μ to several hundreds of μ, but the value must match within a few microns in the longitudinal direction of the electrode. I must. This demands that there is little dimensional variation at each point on the circumference, which is in good agreement with the processing characteristics of a circularly symmetric object.
 2)嵌め合いでのすき間を非常に小さくすることが出来る。 
 嵌め合いには必ずすき間が必要でありこれがずれとなる訳であるが、円対称物同士である嵌合ではこの値に関して長年の研究によって確立した技術があり、これにしたがって設計・加工・組み立てを行なえば最小のすき間を実現できる。具体的には、数十マイクロメータ以下のすき間が十分に可能となる。
2) The gap in the fitting can be made very small.
There is always a gap required for fitting, which is a deviation, but there is a technology established by many years of research on this value for fittings that are circularly symmetric, and design, processing, and assembly are performed accordingly. If this is done, the minimum gap can be realized. Specifically, a gap of several tens of micrometers or less is sufficiently possible.
 3)すき間があっても最終的な位置は同心の正しい位置となる可能性が高い。 
 円対称物同士では、特に軸に直角方向に力がかからない限りは同心の位置が安定となり、そこに納まることがほとんどである。したがって、すき間があっても実際にはその中間の本来の位置、すなわち同心の正しい位置に固定される。
3) Even if there is a gap, the final position is likely to be a concentric correct position.
For circularly symmetric objects, unless a force is applied in a direction perpendicular to the axis, the concentric position is stable and almost always fits there. Therefore, even if there is a gap, it is actually fixed at an original position in the middle, that is, a concentric correct position.
 4)熱膨張や内部応力による変形の影響が少ない。 
 円対称物でかつ嵌合なので、熱膨張や内部応力による変形があってもそれが互いの軸ずれ(電極の平行精度の劣化)の方向にならない。変形しても径の絶対値が変わるだけで、四重極型質量分析器で重要な長手方向での平行精度には無関係となる。
4) Less affected by deformation due to thermal expansion and internal stress.
Since they are circularly symmetric and fitted, even if they are deformed by thermal expansion or internal stress, they are not in the direction of mutual axis misalignment (deterioration of parallel accuracy of electrodes). Even if it is deformed, only the absolute value of the diameter changes, and it becomes irrelevant to the parallel accuracy in the longitudinal direction, which is important in a quadrupole mass spectrometer.
 なお、イオン源101および検出器103の周辺では、干渉を避けるため金属円柱である電極104a~104dを一部切り欠いている。すなわち、イオン源101の周囲の電極104に切り欠き部110aを設け、検出器103の周囲の電極104に切り欠き部110bを設ける。これにより円対称物としての精度に多少の影響が出る可能性もあるが、切り欠いている部分では質量分別を行なわないこと、金属円柱としては円環状であることは変わりない(円環が切れていない)ことから大きな問題とはならないと考えられる。 In the vicinity of the ion source 101 and the detector 103, the electrodes 104a to 104d, which are metal cylinders, are partially cut away to avoid interference. That is, the notch 110 a is provided in the electrode 104 around the ion source 101, and the notch 110 b is provided in the electrode 104 around the detector 103. This may have some effect on the accuracy of a circularly symmetric object, but mass separation is not performed at the notched part, and the circular shape of the metal cylinder remains unchanged (the ring is broken). Is not considered to be a big problem.
 さて、本実施形態では、4つの電極104で形成された四重極型質量分析器102に質量分析機能を実現させるために、上記4つの電極104を互いに高い平行度で配置することを目的の1つとしているが、完全に平行にすることを目的としているのではない。完全に平行にすることはもちろん好適な実施形態ではあるが、完全に平行ではなくても、本発明の上記目的は達成できるのである。例えば、円環状の電極104や絶縁支持体112a、112bを高精度に作製しても誤差は必ず生じるので、本実施形態の方法で四重極型質量分析器を構成しても、電極104が平行からずれて配置されることもある。しかしながら、完全に平行では無くても、その時々のユーザの所望の測定が行えるほどの平行度が実現できていれば良いのである。逆に言えば、迷光106の影響を低減するために曲げた電極が低い平行度で配置されていると、質量分析機能を果たすことができないことがある。よって、高い平行度で電極104a~104dを配置することができれば、該電極にて形成された質量分析器は、ユーザが望む測定を行うのに十分な質量分析機能を実現することができ、良好に質量分析を行うことができる。よって、本実施形態では、所望の測定精度を実現できる程度に、各電極の長手方向が揃っていれば良いのであって、完全に平行では無くても良いのである。 Now, in this embodiment, in order to realize a mass analysis function in the quadrupole mass analyzer 102 formed by the four electrodes 104, it is an object to arrange the four electrodes 104 with high parallelism to each other. Although it is one, it is not intended to be completely parallel. Although it is of course a preferred embodiment to be perfectly parallel, the above object of the present invention can be achieved even if it is not perfectly parallel. For example, even if the annular electrode 104 and the insulating supports 112a and 112b are manufactured with high accuracy, an error always occurs. Therefore, even if the quadrupole mass analyzer is configured by the method of this embodiment, the electrode 104 is It may be displaced from parallel. However, even if it is not completely parallel, it suffices if the degree of parallelism can be realized so that the measurement desired by the user at that time can be performed. In other words, if the electrodes bent in order to reduce the influence of the stray light 106 are arranged with a low degree of parallelism, the mass spectrometry function may not be achieved. Therefore, if the electrodes 104a to 104d can be arranged with a high degree of parallelism, the mass analyzer formed by the electrodes can realize a mass analysis function sufficient for performing the measurement desired by the user, and is favorable. Mass spectrometry can be performed. Therefore, in this embodiment, it is only necessary that the longitudinal directions of the respective electrodes are aligned to such an extent that a desired measurement accuracy can be realized, and the electrodes need not be completely parallel.
 なお、本発明の一実施形態では、四重極型質量分析器の構成要素である、U有り四重極電界を形成するための4つの四重極電極を、非直線状(円環状等)の4つの電極(本実施形態のような円環状の円柱電極や、第2の実施形態等のような円環状の導電膜など)にしている。すなわち、上述のように、質量分離するための四重極型質量分析器に迷光低減機能を組み込むために、4つの四重極電極を円環状にし、その四重極電極の円環の閉ループの中にイオン源と検出器を組み込んでいる。従って、本発明では、後述する第6~8の実施形態のように四重極電極の一部(イオン源と検出器との間の領域)が切り欠かれている形態と、本実施形態のように、四重極電極が閉ループ状に繋がっている形態とが存在する。 In one embodiment of the present invention, the four quadrupole electrodes for forming a quadrupole electric field with U, which are constituent elements of a quadrupole mass spectrometer, are non-linear (annular or the like). These four electrodes (an annular cylindrical electrode as in the present embodiment, an annular conductive film as in the second embodiment, etc.) are used. That is, as described above, in order to incorporate the stray light reduction function into the quadrupole mass analyzer for mass separation, the four quadrupole electrodes are formed into an annular shape, and the closed loop of the annular electrode of the quadrupole electrode is formed. Ion source and detector are built in. Therefore, in the present invention, as in the sixth to eighth embodiments to be described later, a part of the quadrupole electrode (region between the ion source and the detector) is cut off, Thus, there exists a form in which the quadrupole electrodes are connected in a closed loop shape.
 本実施形態のように、四重極電極が閉ループ状に繋がっている形態では、実際にイオンが通過しない領域にも、高周波電圧および直流電圧が印加されることがある。本発明では、四重極電極を円環状に形成し、該円環状の四重極電極にイオン源および検出器を組み込んで、四重極型質量分析器自体に迷光低減機能を持たせる構成自体が従来にない全く新しいものであるが、イオン源から放出されたイオンを、Uあり四重極電界にて質量分別して検出器に入射させること自体は従来とは変わらない。よって、本発明では、Uあり四重極電界が形成され、かつイオンが飛行する(通過する)領域(すなわち、質量分別領域)を、四重極型質量分析器と呼んでいる。 In the form in which the quadrupole electrodes are connected in a closed loop shape as in this embodiment, a high-frequency voltage and a direct-current voltage may be applied to a region where ions do not actually pass. In the present invention, the quadrupole electrode is formed in an annular shape, an ion source and a detector are incorporated in the annular quadrupole electrode, and the quadrupole mass analyzer itself has a function of reducing stray light. However, the fact that the ions emitted from the ion source are separated by mass in a quadrupole electric field with U and made incident on the detector is the same as before. Therefore, in the present invention, a region in which a quadrupole electric field with U is formed and ions fly (pass through) (that is, a mass separation region) is called a quadrupole mass analyzer.
 (第2の実施形態) 
 本発明の第2の実施形態に係る四重極型質量分析装置を図4A、4B、4Cを用いて説明する。本実施形態では、四重極型質量分析器の電極として金属円柱ではなく、絶縁支持体の表面にコーティングされた金属皮膜を使用している。金属皮膜は、限定ではないが金(Au)製、あるいはクロム(Cr)製などを用いることができ、厚みは1マイクロメータ程度が望ましい。また、絶縁支持体の表面に形成される部材は、Uあり四重極電界を形成するために形成されるものであり、高周波電圧および直流電圧の印加によりUあり四重極電界が形成できる導電膜であれば、金属皮膜でなくても良い。
(Second Embodiment)
A quadrupole mass spectrometer according to a second embodiment of the present invention will be described with reference to FIGS. 4A, 4B, and 4C. In this embodiment, a metal film coated on the surface of an insulating support is used as an electrode of a quadrupole mass spectrometer, not a metal cylinder. Although the metal film is not limited, gold (Au) or chromium (Cr) can be used, and the thickness is preferably about 1 micrometer. Further, the member formed on the surface of the insulating support is formed to form a quadrupole electric field with U, and a conductive material that can form a quadrupole electric field with U by applying a high-frequency voltage and a DC voltage. If it is a film | membrane, it may not be a metal film.
 絶縁支持体の電極皮膜が形成されている部分は、四重極電界が形成されるような形状に加工されている。この形状は円弧状ではなく、より正確な四重極電界を形成することの出来る双曲形状としている。ちなみに、金属円柱を用いる場合には双曲形状とするのは大変困難であるが、本実施形態のように絶縁支持体のコーティング面を用いる場合は実現可能である。加工の難易について説明すると、絶縁支持体の電極に対応する部分は同心点に関して円対称となるので、加工の際には同心点を軸として絶縁支持体を高速で回転させながら、運動方向と直角に当てた切削刃(バイト)を同心点方向にゆっくりシフトして行くだけで良い。そこで、切削刃のシフト形状を双曲線に合わせるだけで、絶縁支持体に双曲形状が実現されるが、NC(数値)制御型の加工装置であればこれは全く問題がない。また、同心点を軸として回転させることは平行度の向上にも大きく貢献する。なお、毎回切削加工するのではなく金型を使う場合でも、その金型の製作で同じメリットがある。その他に関しては、第1の実施形態と同じである。 The portion of the insulating support on which the electrode film is formed is processed into a shape in which a quadrupole electric field is formed. This shape is not an arc shape but a hyperbolic shape capable of forming a more accurate quadrupole electric field. Incidentally, it is very difficult to form a hyperbolic shape when using a metal cylinder, but it is feasible when the coating surface of the insulating support is used as in this embodiment. Explaining the difficulty of processing, the portion of the insulating support corresponding to the electrode is circularly symmetric with respect to the concentric point. It is only necessary to slowly shift the cutting blade (bite) applied to to the concentric point direction. Therefore, a hyperbolic shape is realized in the insulating support by simply matching the shift shape of the cutting blade to the hyperbola, but this is not a problem at all if it is an NC (numerical) control type processing apparatus. In addition, rotating around the concentric point greatly contributes to the improvement of parallelism. Even when a die is used instead of cutting each time, the same merit is obtained in the production of the die. Others are the same as those in the first embodiment.
 図4Aは、本実施形態に係る四重極型質量分析装置の構成を示す図である。図4Aの左図はイオン105の飛行方向に直角方向の断面図(図4Aの右図の4β断面)であり、図4Aの右図はイオン105の円環状の飛行面での断面図(図4Aの左図の4α断面)である。 FIG. 4A is a diagram showing a configuration of a quadrupole mass spectrometer according to the present embodiment. 4A is a cross-sectional view perpendicular to the flight direction of the ions 105 (4β cross-section of the right view of FIG. 4A), and the right view of FIG. 4A is a cross-sectional view of the ions 105 on the annular flight surface (FIG. 4). 4A (the 4α cross section in the left figure).
 図4Aにおいて、絶縁支持体141a~141dの各々は、同心の円環状であり、双曲形状の表面を有している。この双曲形状の表面はそれぞれ、円環状に形成されている。上記円環状の絶縁支持体141aと141cは同一の径を有し、また円環状の絶縁支持体141bと141dとは同一の径を有している。絶縁支持体141a~141dの各々の双曲形状の表面にはそれぞれ、金属皮膜140a~140dが円環状に形成されている。本実施形態では、金属皮膜140aと140dの電極セットと、金属皮膜140bと140cの電極セットの間に高周波電圧と直流電圧が印加されるので、金属皮膜140a~140dに囲まれた領域(イオン105が飛行する領域)にUあり四重極電界107が形成される。 4A, each of the insulating supports 141a to 141d is a concentric annular shape and has a hyperbolic surface. The hyperbolic surfaces are each formed in an annular shape. The annular insulating supports 141a and 141c have the same diameter, and the annular insulating supports 141b and 141d have the same diameter. Metal films 140a to 140d are formed in an annular shape on the hyperbolic surfaces of the insulating supports 141a to 141d, respectively. In this embodiment, since a high frequency voltage and a direct current voltage are applied between the electrode sets of the metal coatings 140a and 140d and the electrode sets of the metal coatings 140b and 140c, the region surrounded by the metal coatings 140a to 140d (ion 105 A quadrupole electric field 107 is formed in the U).
 図4Bは、図4Aに示す絶縁支持体141a~141dを示す図である。図4Bに示されるように、絶縁支持体141dと141bとはちょうど鏡像の関係(第1の鏡像関係)にあり、また絶縁支持体141aと141cともちょうど鏡像の関係(第2の鏡像関係)にある。そして、絶縁支持体141aは絶縁支持体141bと嵌め合うように構成されており、該絶縁支持体141aと第2の鏡像関係にある絶縁支持体141cは絶縁支持体141dと嵌め合うように構成されている。また、絶縁支持体141bは絶縁支持体141aおよび141dの双方と嵌め合うように構成されており、該絶縁支持体141bと第1の鏡像関係にある絶縁支持体141dは絶縁支持体141bおよび141cの双方と嵌め合うように構成されている。 FIG. 4B is a diagram showing the insulating supports 141a to 141d shown in FIG. 4A. As shown in FIG. 4B, the insulating supports 141d and 141b are just in a mirror image relationship (first mirror image relationship), and the insulating supports 141a and 141c are just in a mirror image relationship (second mirror image relationship). is there. The insulating support 141a is configured to fit with the insulating support 141b, and the insulating support 141c in a second mirror image relationship with the insulating support 141a is configured to fit with the insulating support 141d. ing. The insulating support 141b is configured to be fitted to both of the insulating supports 141a and 141d, and the insulating support 141d in a first mirror image relation with the insulating support 141b is the insulating support 141b. It is configured to fit both sides.
 これら絶縁支持体141a~141dの嵌め合いの様子を図4Cに示す。
 図4Cに示すように、鏡像関係にある円環状の絶縁支持体141bと141dとを嵌め合わせることによって嵌め合い部を形成し、該嵌め合い部においてネジ114を用いて固定する。また、絶縁支持体141aと絶縁支持体141bとを同心となるように嵌め合わせて嵌め合い部を形成し、該嵌め合い部においてネジ114を用いて固定する。同様に、絶縁支持体141cと絶縁支持体141dとを同心となるように嵌め合わせて嵌め合い部を形成し、該嵌め合い部においてネジ114を用いて固定する。
FIG. 4C shows how the insulating supports 141a to 141d are fitted.
As shown in FIG. 4C, a fitting portion is formed by fitting the annular insulating supports 141b and 141d in a mirror image relationship, and the fitting portion is fixed using screws 114. Further, the insulating support 141a and the insulating support 141b are fitted together so as to be concentric to form a fitting portion, and the fitting portion is fixed by using a screw 114. Similarly, the insulating support 141c and the insulating support 141d are fitted together so as to be concentric to form a fitting portion, and the fitting portion is fixed using a screw 114.
 すなわち、本実施形態では、第2の鏡像関係である絶縁支持体141aと第1の鏡像関係である絶縁支持体141bとを円対称物同士の嵌め合いで位置決めを行い、かつ第2の鏡像関係である絶縁支持体141cと第1の鏡像関係である絶縁支持体141dとを円対称物同士の嵌め合いで位置決めを行っている。よって、嵌合された絶縁支持体141aと絶縁支持体141bとの第1の構造物と、嵌合された絶縁支持体141cと絶縁支持体141dとの第2の構造物とは、ちょうど第3の鏡像関係になり、該第3の鏡像関係にある第1の構造物と第2の構造物とを嵌め合わせているので、絶縁支持体141a~141dが有する双曲形状の表面を高い平行度で配置することができる。よって、金属皮膜140a~140dを互いに高い平行度で配置することができる。 That is, in the present embodiment, the insulating support 141a having the second mirror image relationship and the insulating support 141b having the first mirror image relationship are positioned by fitting the circularly symmetrical objects, and the second mirror image relationship is obtained. The insulating support 141c which is the first mirror image and the insulating support 141d which is the first mirror image relationship are positioned by fitting the circularly symmetrical objects. Therefore, the first structure of the fitted insulating support 141a and the insulating support 141b and the second structure of the fitted insulating support 141c and the insulated support 141d are just the third. Since the first structure and the second structure that are in the third mirror image relationship are fitted together, the hyperbolic surfaces of the insulating supports 141a to 141d have high parallelism. Can be arranged. Therefore, the metal films 140a to 140d can be arranged with a high degree of parallelism.
 このように本実施形態では、金属皮膜といった導電膜を形成した円環状の絶縁支持体141a~141dの各々を、他の絶縁支持体の少なくとも1つと嵌め合うように構成する。このような構成により、円環状の絶縁支持体141a~141dの各々は、同一の基準点(同心点)を基準に配置されることになり、その結果、金属皮膜140a~140dを互いに高い平行度で配置することができる。よって、4つの導電膜を平行度が高い状態で配置し、かつイオン源から4つの導電膜(例えば、金属皮膜140a~140d)に囲まれた部分を通して検出器が見込めないようにする構成を実現できる。従って、イオンガイドを設けなくても検出器への迷光の入射を低減することができ、質量分析を良好に行うことができる。 As described above, in this embodiment, each of the annular insulating supports 141a to 141d on which a conductive film such as a metal film is formed is configured to be fitted with at least one of the other insulating supports. With such a configuration, each of the annular insulating supports 141a to 141d is arranged with reference to the same reference point (concentric point), and as a result, the metal films 140a to 140d are made highly parallel to each other. Can be arranged. Therefore, a configuration in which the four conductive films are arranged in a highly parallel state and the detector cannot be seen through the portion surrounded by the four conductive films (for example, metal films 140a to 140d) from the ion source is realized. it can. Therefore, it is possible to reduce the incidence of stray light on the detector without providing an ion guide, and to perform mass analysis satisfactorily.
 (第3の実施形態) 
 本発明の第3の実施形態に係る四重極型質量分析装置を図5A、5B、5Cを用いて説明する。本実施形態では、絶縁支持体は2つであり、それぞれの絶縁支持体に2つの導電膜としての金属皮膜が形成されている。その他に関しては、第2の実施形態と同じである。
(Third embodiment)
A quadrupole mass spectrometer according to a third embodiment of the present invention will be described with reference to FIGS. 5A, 5B, and 5C. In this embodiment, there are two insulating supports, and metal films as two conductive films are formed on each insulating support. Others are the same as those in the second embodiment.
 図5Aは、本実施形態に係る四重極型質量分析装置の構成を示す図である。図5Aの左図はイオン105の飛行方向に直角方向の断面図(図5Aの右図の5β断面)であり、図5Aの右図はイオン105の円環状の飛行面での断面図(図5Aの左図の5α断面)である。 FIG. 5A is a diagram showing a configuration of a quadrupole mass spectrometer according to the present embodiment. 5A is a cross-sectional view perpendicular to the flight direction of the ions 105 (5β cross-section of the right view of FIG. 5A), and the right view of FIG. 5A is a cross-sectional view of the ions 105 on the annular flight surface (FIG. 5). 5A in the left figure of 5A).
 図5Aにおいて、絶縁支持体151aは、円環状であり、円環の面内鉛直方向に2つの、円環状に形成された双曲形状の表面を有しており、該双曲形状の表面の各々には、円環状に金属皮膜150a、150bが形成されている。同様に、絶縁支持体151bは、円環状であり、円環の面内鉛直方向に2つの、円環状に形成された双曲形状の表面を有しており、該双曲形状の表面の各々には、円環状に金属皮膜150c、150dが形成されている。本実施形態では、金属皮膜150aと150dの電極セットと、金属皮膜150bと150cの電極セットの間に高周波電圧と直流電圧が印加されるので、金属皮膜150a~150dに囲まれた領域(イオン105が飛行する領域)にUあり四重極電界107が形成されている。 In FIG. 5A, the insulating support 151a has an annular shape, and has two hyperbolic surfaces formed in an annular shape in the in-plane vertical direction of the annular shape. Each has an annular metal coating 150a, 150b. Similarly, the insulating support 151b has an annular shape, and has two hyperbolic surfaces formed in an annular shape in the in-plane vertical direction, and each of the hyperbolic surfaces. Are formed with an annular metal coating 150c, 150d. In the present embodiment, since a high frequency voltage and a direct current voltage are applied between the electrode sets of the metal coatings 150a and 150d and the electrode sets of the metal coatings 150b and 150c, the region surrounded by the metal coatings 150a to 150d (ion 105 A quadrupole electric field 107 is formed in a region where U is flying.
 図5Bは、図5Aに示す絶縁支持体151a、151bを示す図である。図5Bに示されるように、絶縁支持体151aと151bとはちょうど鏡像の関係にあり、かつ絶縁支持体151aおよび151bは、形成された金属皮膜が対向する(質量分析器の中心軸を間にして向き合う)ように互いに嵌め合うように構成されている。また、絶縁支持体151aの円環の面内鉛直方向には双曲形状の表面152aおよび152bが形成されている。これら双曲形状の表面152aおよび152bは、絶縁支持体151aと同心の円環状であり、互いに高い平行度で配置されるように形成されている。同様に、絶縁支持体151bの円環の面内鉛直方向には双曲形状の表面152cおよび152dが形成されている。これら双曲形状の表面152cおよび152dは、絶縁支持体151bと同心の円環状であり、互いに高い平行度で配置されるように形成されている。 FIG. 5B is a diagram showing the insulating supports 151a and 151b shown in FIG. 5A. As shown in FIG. 5B, the insulating supports 151a and 151b are just mirror images of each other, and the insulating supports 151a and 151b are opposed to the formed metal film (with the central axis of the mass analyzer in between). Are configured to fit each other. In addition, hyperbolic surfaces 152a and 152b are formed in the in-plane vertical direction of the ring of the insulating support 151a. These hyperbolic surfaces 152a and 152b have an annular shape concentric with the insulating support 151a, and are formed so as to be arranged with a high degree of parallelism. Similarly, hyperbolic surfaces 152c and 152d are formed in the in-plane vertical direction of the ring of the insulating support 151b. These hyperbolic surfaces 152c and 152d have an annular shape concentric with the insulating support 151b, and are formed so as to be arranged with a high degree of parallelism.
 これら絶縁支持体151aおよび151bの嵌め合いの様子を図5Cに示す。 
 図5Cに示すように、鏡像関係にある円環状の絶縁支持体151aと151bとを嵌め合わせることによって嵌め合い部を形成し、該嵌め合い部においてネジ114を用いて固定する。すなわち、本実施形態では、鏡像関係である絶縁支持体151aと絶縁支持体151bとを、金属皮膜150a、150bと金属皮膜150c、150dとが対向するように、同一の基準点(同心点)を基準に嵌め合わせている。従って、高い平行度で配置されている金属皮膜150aおよび150bのペアと、同じく高い平行度で配置されている金属皮膜150cおよび150dのペアとを、高い平行度で配置することができる。
FIG. 5C shows how the insulating supports 151a and 151b are fitted together.
As shown in FIG. 5C, a fitting portion is formed by fitting annular insulating supports 151a and 151b having a mirror image relationship, and the fitting portion is fixed using screws 114. In other words, in the present embodiment, the insulating support 151a and the insulating support 151b that are mirror images are set to have the same reference point (concentric point) so that the metal films 150a and 150b and the metal films 150c and 150d face each other. Fits to the standard. Therefore, the pair of metal films 150a and 150b arranged with high parallelism and the pair of metal films 150c and 150d arranged with high parallelism can be arranged with high parallelism.
 このように本実施形態では、金属皮膜といった導電膜を形成した円環状の絶縁支持体151aと151bとを嵌め合うように構成する。このような構成により、円環状の絶縁支持体151aと151bとは、同一の基準点(同心点)を基準に配置されることになり、その結果、金属皮膜150a~150dを互いに高い平行度で配置することができる。よって、4つの導電膜を平行度が高い状態で配置し、かつイオン源から4つの導電膜(例えば、金属皮膜150a~150d)に囲まれた部分を通して検出器が見込めないようにする構成を実現できる。従って、イオンガイドを設けなくても検出器への迷光の入射を低減することができ、質量分析を良好に行うことができる。 As described above, in this embodiment, the annular insulating supports 151a and 151b on which a conductive film such as a metal film is formed are configured to fit with each other. With such a configuration, the annular insulating supports 151a and 151b are arranged with reference to the same reference point (concentric point), and as a result, the metal films 150a to 150d can be made highly parallel to each other. Can be arranged. Therefore, a configuration in which the four conductive films are arranged in a highly parallel state and the detector cannot be seen through the portion surrounded by the four conductive films (for example, metal films 150a to 150d) from the ion source is realized. it can. Therefore, it is possible to reduce the incidence of stray light on the detector without providing an ion guide, and to perform mass analysis satisfactorily.
 本実施形態では、金属皮膜が形成される絶縁支持体の数および嵌め合い部を減らしつつも、4つの導電膜を平行度が高い状態で配置し、かつイオン源1から4つの導電膜(例えば、金属皮膜150a~150d)に囲まれた部分を通して検出器が見込めないようにする構成を実現できる。よって、更なる低コスト化を図ることができる。 In the present embodiment, while reducing the number of insulating supports on which the metal film is formed and the fitting portions, four conductive films are arranged with high parallelism, and four conductive films (for example, from the ion source 1) Further, it is possible to realize a configuration in which the detector cannot be seen through a portion surrounded by the metal films 150a to 150d). Therefore, further cost reduction can be achieved.
 なお、第2、第3の実施形態では、金属皮膜が形成される絶縁支持体の数を2つおよび4つとしているが、3つであっても良い。この場合は、例えば、1つの絶縁支持体に2つの双曲形状の表面を形成し、残りの2つの絶縁支持体に双曲形状の表面を1つずつ形成し、3つの絶縁支持体を互いに嵌め合うように構成すれば良い。 In the second and third embodiments, the number of insulating supports on which the metal film is formed is two and four, but may be three. In this case, for example, two hyperbolic surfaces are formed on one insulating support, one hyperbolic surface is formed on the remaining two insulating supports, and the three insulating supports are connected to each other. What is necessary is just to comprise so that it may fit.
 (第4の実施形態) 
 本発明の第4の実施形態に係る四重極型質量分析装置を図6を用いて説明する。本実施形態では、第3の実施形態に係る四重極型質量分析装置において絶縁支持体の電極皮膜(金属皮膜といった導電膜)が形成されている部分の形状が外側と内側で異なっている。その他に関しては、第3の実施形態と同じである。
(Fourth embodiment)
A quadrupole mass spectrometer according to the fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, in the quadrupole mass spectrometer according to the third embodiment, the shape of the portion of the insulating support where the electrode film (conductive film such as a metal film) is formed is different between the outside and the inside. Others are the same as those in the third embodiment.
 本実施形態では、絶縁支持体151aの円環の内側に相対的に大きな双曲形状の表面161aが形成されており、円環の外側に相対的に小さな双曲形状の表面161bが形成されている。上記双曲形状の表面161aには、相対的に大きな金属皮膜160aが形成されており、双曲形状の表面161bには、相対的に小さな金属皮膜160bが形成されている。同様に、絶縁支持体151bの円環の内側に相対的に大きな双曲形状の表面161cが形成されており、円環の外側に相対的に小さな双曲形状の表面161dが形成されている。上記双曲形状の表面161cには、相対的に大きな金属皮膜160cが形成されており、双曲形状の表面161dには、相対的に小さな金属皮膜160dが形成されている。すなわち、本実施形態では、図6から分かるように、円環の内側に配置された金属皮膜160a、161dと、円環の外側に配置された金属皮膜160b、160cとでは、イオンの進行方向と直角方向の断面形状が異なっている。 In this embodiment, a relatively large hyperbolic surface 161a is formed on the inside of the ring of the insulating support 151a, and a relatively small hyperbolic surface 161b is formed on the outside of the ring. Yes. A relatively large metal film 160a is formed on the hyperbolic surface 161a, and a relatively small metal film 160b is formed on the hyperbolic surface 161b. Similarly, a relatively large hyperbolic surface 161c is formed inside the ring of the insulating support 151b, and a relatively small hyperbolic surface 161d is formed outside the ring. A relatively large metal film 160c is formed on the hyperbolic surface 161c, and a relatively small metal film 160d is formed on the hyperbolic surface 161d. That is, in this embodiment, as can be seen from FIG. 6, the metal coatings 160a and 161d arranged inside the ring and the metal coatings 160b and 160c arranged outside the ring The cross-sectional shape in the perpendicular direction is different.
 本実施形態では、金属皮膜160aと160dの電極セットと、金属皮膜160bと160cの電極セットの間に高周波電圧と直流電圧が印加されるので、金属皮膜160a~160dに囲まれた領域(イオンが飛行する領域)にUあり四重極電界が形成されている。 In the present embodiment, since a high frequency voltage and a direct current voltage are applied between the electrode sets of the metal films 160a and 160d and the electrode sets of the metal films 160b and 160c, the region surrounded by the metal films 160a to 160d (the ions are A quadrupole electric field is formed with U in the flying region.
 本実施形態では、金属皮膜160a~160dが形成された絶縁支持体151aおよび151bは円環状でありカーブしているので、イオン105の進行方向はカーブすることになる。このように進行方向がカーブしていることによってイオン105に生じる遠心力は、断面方向の高電位によってほとんど打ち消されてしまうが、厳密には外側に向かう力が存在している。また、電極形状はどの断面でも対称となっているが、ある断面の電界はその面だけでなくその前後の電極からの電界の積算となるので、厳密には電界は対称にはならずひずみが発生している。そこで、これら影響を補正するように、円環の外側と内側との電極(導電膜)の形状を定めている。すなわち、本実施形態では、円環の内側の金属皮膜160a、160cの大きさを、円環の外側の金属皮膜160b、160dの大きさよりも大きくすることにより、上記遠心力の影響をより低減することができる。このように遠心力の影響を考慮するのは、質量分析器が有する電極を曲げるようにする本発明に特有のものである。本実施形態では、この本発明に特有の事象を考慮して、円環状に形成される導電膜において、外側と内側とのの形状を異なるように設定している。 In this embodiment, since the insulating supports 151a and 151b on which the metal films 160a to 160d are formed are annular and curved, the traveling direction of the ions 105 is curved. The centrifugal force generated in the ions 105 due to the curve in the traveling direction is almost canceled by the high potential in the cross-sectional direction, but strictly speaking, there is a force toward the outside. In addition, although the electrode shape is symmetric in every cross section, the electric field in a certain cross section is an accumulation of the electric fields from not only the surface but also the electrodes before and after that, so strictly speaking, the electric field is not symmetric and distortion is generated. It has occurred. Therefore, the shapes of the electrodes (conductive films) on the outer side and the inner side of the ring are determined so as to correct these effects. That is, in this embodiment, the influence of the centrifugal force is further reduced by making the size of the metal films 160a and 160c inside the ring larger than the size of the metal films 160b and 160d outside the ring. be able to. Considering the influence of the centrifugal force in this way is unique to the present invention in which the electrode of the mass analyzer is bent. In the present embodiment, in consideration of the phenomenon peculiar to the present invention, the outer and inner shapes of the conductive film formed in an annular shape are set to be different.
 ちなみに、金属円柱を用いる場合には異なる電極形状とするのは大変困難であるが、本実施例のように絶縁支持体のコーティング面を用いる場合は容易に実現可能である。ただし、円柱電極を用いても良いことは言うまでもない。 Incidentally, when using a metal cylinder, it is very difficult to make different electrode shapes, but when using a coating surface of an insulating support as in this embodiment, it can be easily realized. However, it goes without saying that a cylindrical electrode may be used.
 なお、本実施形態では、内側の双曲形状の表面161a、161bと、外側の双曲形状の表面161b、161dとの大きさを変えているが、内側の双曲形状の表面と外側の双曲形状の表面との大きさを変えることが本質ではなく、内側の電極(導電膜)と外側の電極(導電膜)との形状を変えることが本質である。従って、金属皮膜160a、160cと、金属皮膜160b、160dとで形状が変えることができれば、双曲形状の表面161a~161dの形状、大きさは問わない。 In this embodiment, the inner hyperbolic surfaces 161a and 161b and the outer hyperbolic surfaces 161b and 161d are changed in size, but the inner hyperbolic surfaces and the outer hyperbolic surfaces 161b and 161d are changed in size. It is not essential to change the size of the curved surface, but to change the shape of the inner electrode (conductive film) and the outer electrode (conductive film). Therefore, as long as the shape can be changed between the metal films 160a and 160c and the metal films 160b and 160d, the shapes and sizes of the hyperbolic surfaces 161a to 161d are not limited.
 (第5の実施形態) 
 本発明の第5の実施形態に係る四重極型質量分析装置を図7を用いて説明する。本実施形態では、第3の実施形態に係る四重極型質量分析装置において電極(導電膜)の全体位置が全体に45°回転させるとともに、絶縁支持体の電極皮膜が形成されている部分の形状が外側、中間、および内側で異なっている。その他に関しては、第4の実施形態と同じである。
(Fifth embodiment)
A quadrupole mass spectrometer according to a fifth embodiment of the present invention will be described with reference to FIG. In the present embodiment, in the quadrupole mass spectrometer according to the third embodiment, the entire position of the electrode (conductive film) is rotated by 45 ° as a whole, and the electrode film of the insulating support is formed. The shape is different on the outside, middle and inside. Others are the same as those in the fourth embodiment.
 本実施形態では、絶縁支持体151aには、該絶縁支持体151aの円環に沿って形成された2つの双曲形状の表面171a、171bが形成されており、該双曲形状の表面171a、171bには、金属皮膜170a、170bが形成されている。なお、金属皮膜170bが円環の外側の電極に対応し、金属皮膜170aが中間の電極に対応するので、金属皮膜170bが最も小さい形状を有し、金属皮膜170cが中間の大きさの形状を有する。同様に、絶縁支持体151bには、該絶縁支持体151bの円環に沿って形成された2つの双曲形状の表面171c、171dが形成されており、該双曲形状の表面171c、171dには、金属皮膜170c、170dが形成されている。なお、金属皮膜170cが円環の内側の電極に対応し、金属皮膜170cが中間の電極に対応するので、金属皮膜170cが最も大きい形状を有し、金属皮膜170dが中間の大きさの形状を有する。このように、本実施形態では、Uあり四重極電界を形成するための4つの電極は、半径(径)について3つ(最も大きな半径の電極、真ん中の半径の電極、および最も小さな半径の電極)に分類される。すなわち、本実施形態では、図7から分かるように、円環の内側に配置された金属皮膜170cと、円環の外側に配置された金属皮膜170bと、真ん中に配置された金属皮膜170a、170dとでは、イオンの進行方向と直角方向の断面形状が異なっている。 In the present embodiment, the insulating support 151a is formed with two hyperbolic surfaces 171a and 171b formed along the ring of the insulating support 151a, and the hyperbolic surfaces 171a, 171a, The metal films 170a and 170b are formed on 171b. The metal film 170b corresponds to the outer electrode of the ring, and the metal film 170a corresponds to the intermediate electrode. Therefore, the metal film 170b has the smallest shape and the metal film 170c has the intermediate size. Have. Similarly, two hyperbolic surfaces 171c and 171d formed along the ring of the insulating support 151b are formed on the insulating support 151b, and the hyperbolic surfaces 171c and 171d are formed on the hyperbolic surfaces 171c and 171d. Are formed with metal films 170c and 170d. The metal film 170c corresponds to the inner electrode of the ring, and the metal film 170c corresponds to the intermediate electrode. Therefore, the metal film 170c has the largest shape, and the metal film 170d has the intermediate size. Have. Thus, in this embodiment, the four electrodes for forming a U-shaped quadrupole electric field have three radii (the largest radius electrode, the middle radius electrode, and the smallest radius electrode). Electrode). That is, in this embodiment, as can be seen from FIG. 7, the metal film 170c disposed inside the ring, the metal film 170b disposed outside the ring, and the metal films 170a and 170d disposed in the middle. Are different from each other in the cross-sectional shape in the direction perpendicular to the ion traveling direction.
 本実施形態では、金属皮膜170aと170dの電極セットと、金属皮膜170bと170cの電極セットの間に高周波電圧と直流電圧が印加されるので、金属皮膜170a~170dに囲まれた領域(イオンが飛行する領域)にUあり四重極電界が形成されている。 In the present embodiment, since a high frequency voltage and a direct current voltage are applied between the electrode sets of the metal coatings 170a and 170d and the electrode sets of the metal coatings 170b and 170c, the region surrounded by the metal coatings 170a to 170d (the ions are A quadrupole electric field is formed with U in the flying region.
 本実施形態では、金属皮膜170a~170dが形成された絶縁支持体151aおよび151bは円環状でありカーブしているので、イオン105の進行方向はカーブすることになる。このように進行方向がカーブしていることによってイオンに生じる遠心力、および電界のひずみの影響をより正確に補正するように3種の電極の形状を定めている。 In this embodiment, the insulating supports 151a and 151b on which the metal films 170a to 170d are formed are annular and curved, so that the traveling direction of the ions 105 is curved. The shape of the three types of electrodes is determined so as to more accurately correct the influence of the centrifugal force generated in the ions and the distortion of the electric field due to the curved traveling direction.
 なお、本実施形態では、電極の形状を3種類にしているが、全て同一の形状であっても良いし、2種類、あるいは4種類であっても良いことは言うまでもない。さらに、形状が異なる円柱電極であっても良い。 In the present embodiment, three types of electrodes are used, but it is needless to say that all may have the same shape, or two types or four types. Furthermore, cylindrical electrodes having different shapes may be used.
 (第6の実施形態) 
 本発明の第6の実施形態に係る四重極型質量分析装置を図8を用いて説明する。大きなイオン源と大きな検出器を使用しているので、1/4に渡って少なくとも金属皮膜の一部を切り欠いている。その他に関しては、第3の実施形態と同じである。
(Sixth embodiment)
A quadrupole mass spectrometer according to the sixth embodiment of the present invention will be described with reference to FIG. Since a large ion source and a large detector are used, at least a part of the metal film is cut out over 1/4. Others are the same as those in the third embodiment.
 図8は、本実施形態に係る四重極型質量分析装置を示す図である。本実施形態では、ケース108aよりも大きなケース184a内にイオン源101よりも大きなイオン源181が配置され、またケース108bよりも大きなケース184b内に検出器103よりも大きな検出器183が配置されている。そして、本実施形態では、円環状の絶縁支持体151a、151bの円周に沿った領域の一部(例えば、双曲形状の表面152a~152d)に切り欠き部182が形成されている。従って、双曲形状の表面152a~152dに形成された金属皮膜150a~150dの一部(1/4の領域)にも切り欠き部182が形成されている。なお、絶縁支持体151a、151bはその表面が一部削除されているだけなので精度の劣化はほとんどない。 FIG. 8 is a diagram showing a quadrupole mass spectrometer according to the present embodiment. In the present embodiment, an ion source 181 larger than the ion source 101 is arranged in a case 184a larger than the case 108a, and a detector 183 larger than the detector 103 is arranged in a case 184b larger than the case 108b. Yes. In the present embodiment, a notch 182 is formed in a part of a region (for example, hyperbolic surfaces 152a to 152d) along the circumference of the annular insulating supports 151a and 151b. Therefore, the notch 182 is also formed in a part (1/4 region) of the metal films 150a to 150d formed on the hyperbolic surfaces 152a to 152d. Note that the insulating supports 151a and 151b are only partially removed from the surface, so there is almost no deterioration in accuracy.
 さて、本実施形態では、切り欠き部182を設けて少なくとも金属皮膜の一部を切り欠くことによって、大きなイオン源や大きな検出器を設けることができると共に、無駄な金属皮膜の形成を抑えることができる。本実施形態の切り欠き部182は、質量分別領域として機能させるべき領域では無いので、質量分別領域には必須な金属皮膜を形成する必要は無い。従って、質量分別領域として機能させる領域以外においては、金属皮膜を形成しないようにすることで、無駄な金属皮膜の形成を低減することができるので、より低コスト化を図ることができる。 In the present embodiment, by providing the notch portion 182 and notching at least part of the metal film, a large ion source and a large detector can be provided, and formation of a useless metal film can be suppressed. it can. Since the notch 182 of this embodiment is not a region that should function as a mass separation region, it is not necessary to form an essential metal film in the mass separation region. Accordingly, by avoiding the formation of the metal film in the region other than the region functioning as the mass separation region, it is possible to reduce the formation of useless metal film, thereby further reducing the cost.
 従って、本実施形態では、金属皮膜150a~150dの一部に切り欠き部182を設けることが重要であり、双曲形状の表面152a~152dに切り欠き部182を形成することが本質ではない。すなわち、本実施形態では、少なくとも金属皮膜の一部に切り欠き部を設けることによって、イオン源や検出器のサイズの制限を緩和し、さらに無駄な金属皮膜の形成を抑制することができる。 Therefore, in this embodiment, it is important to provide the notch 182 in a part of the metal films 150a to 150d, and it is not essential to form the notch 182 in the hyperbolic surfaces 152a to 152d. That is, in this embodiment, by providing a notch in at least a part of the metal film, the restriction on the size of the ion source and the detector can be relaxed, and the formation of a useless metal film can be suppressed.
 (第7の実施形態) 
 本発明の第7の実施形態に係る四重極型質量分析装置を図9を用いて説明する。さらに大きなイオン源と大きな検出器を使用しているので、1/4に渡って金属皮膜と絶縁支持体を完全に切り欠いている。その他に関しては、第6の実施形態と同じである。
(Seventh embodiment)
A quadrupole mass spectrometer according to the seventh embodiment of the present invention will be described with reference to FIG. Furthermore, since a large ion source and a large detector are used, the metal film and the insulating support are completely cut out over 1/4. Others are the same as in the sixth embodiment.
 図9は、本実施形態に係る四重極型質量分析装置を示す図である。本実施形態では、ケース184aよりも大きなケース194a内にイオン源181よりも大きなイオン源191が配置され、またケース184bよりも大きなケース194b内に検出器183よりも大きな検出器193が配置されている。そして、本実施形態では、円環状の絶縁支持体151a、151b、および金属皮膜150a~150dの、円周に沿った一部の領域に切り欠き部192が形成されている。なお、金属体とは異なり絶縁支持体は非常に硬いセラミック製なので、一部に切り欠きがあっても精度の劣化は少なく大きな問題とはならないと考えられる。 FIG. 9 is a diagram showing a quadrupole mass spectrometer according to the present embodiment. In the present embodiment, an ion source 191 larger than the ion source 181 is arranged in a case 194a larger than the case 184a, and a detector 193 larger than the detector 183 is arranged in a case 194b larger than the case 184b. Yes. In the present embodiment, a cutout portion 192 is formed in a partial region along the circumference of the annular insulating supports 151a and 151b and the metal films 150a to 150d. Note that, unlike the metal body, the insulating support is made of a very hard ceramic. Therefore, even if there is a cutout in a part, it is considered that there is little deterioration in accuracy and does not pose a major problem.
 (第8の実施形態) 
 本発明の第8の実施形態に係る四重極型質量分析装置を図10を用いて説明する。質量分析器全体を小型化するため、切り欠き部200を形成して、1/2に渡って金属皮膜150a~150dと絶縁支持体151a、151bを完全に切り欠いている。その他に関しては、第7の実施形態と同じである。ただし、円環部が半分なので嵌め合いによって自立的に位置が固定されないので、絶縁支持体151bを絶縁支持体151aに押し付ける機構(不図示)を付加している。
(Eighth embodiment)
A quadrupole mass spectrometer according to the eighth embodiment of the present invention will be described with reference to FIG. In order to reduce the size of the entire mass analyzer, the notch 200 is formed, and the metal films 150a to 150d and the insulating supports 151a and 151b are completely cut out over 1/2. Others are the same as those in the seventh embodiment. However, since the annular portion is half, the position is not fixed independently by fitting, so a mechanism (not shown) for pressing the insulating support 151b against the insulating support 151a is added.
 このように、第6~8の実施形態では、切り欠き部182、192、200等を形成して、円環の閉ループに形成された絶縁支持体151a、151b、金属皮膜150a~150dの少なくとも一部を切り欠き、切り欠き部にイオン源および検出器を配置しているが、絶縁支持体151a、151b、金属皮膜150a~150dを同一の基準点(同心点)を基準に配置することが、本発明の特徴の1つである。従って、絶縁支持体151a、151b、金属皮膜150a~150dを同心で配置することができれば、それらの円環は閉ループであろうが、一部に切り欠き部が形成されていようが関係無いのである。すなわち、本発明の一実施形態では、Uあり四重極電界を形成するために、円環状の金属皮膜150a~150dを用いているが、質量分別のための電極部分は、四重極型質量分別器(質量分別領域)に対応する領域に少なくとも形成されていれば良い。よって、本発明の一実施形態では、四重極型質量分別器(質量分別領域)が有する4つの電極は、金属皮膜150a~150dの少なくとも一部であると言える。このことは、第1の実施形態の円柱電極にも同じことが言える。 As described above, in the sixth to eighth embodiments, at least one of the insulating supports 151a and 151b and the metal films 150a to 150d formed in the closed loop of the ring by forming the notches 182 192, and 200, etc. The ion source and the detector are arranged in the notch, and the insulating supports 151a and 151b and the metal films 150a to 150d may be arranged based on the same reference point (concentric point). This is one of the features of the present invention. Therefore, if the insulating supports 151a and 151b and the metal coatings 150a to 150d can be arranged concentrically, the ring will be a closed loop, but it does not matter whether a notch is partly formed. . That is, in one embodiment of the present invention, the annular metal coatings 150a to 150d are used to form a U-equipped quadrupole electric field, but the electrode portion for mass separation has a quadrupole mass. What is necessary is just to be formed at least in the area | region corresponding to a separator (mass fractionation area). Therefore, in one embodiment of the present invention, it can be said that the four electrodes included in the quadrupole mass separator (mass separation region) are at least a part of the metal films 150a to 150d. The same can be said for the cylindrical electrode of the first embodiment.
 (第9の実施形態) 
 本発明の第9の実施形態に係る四重極型質量分析装置を図11を用いて説明する。 
 図11において、対向する面にそれぞれ開口を有するケース218a内に、対向する2方向でイオンを放出可能なイオン源211が配置されている。また、対向する面にそれぞれ開口を有するケース128b内に、検出器213が配置されている。ケース218a内において、イオン源211の一方のイオン放出部に離間して開口を有する引き出し電極211aが配置されており、他方のイオン放出部に離間して開口を有する引き出し電極211bが配置されている。上記一方のイオン放出部からはイオン215a(図11において右回りに飛行するイオン)が放出され、他方のイオン放出部からはイオン215b(図11において左回りに飛行するイオン)が放出される。符号214は、Uあり四重極電界を形成するための4つの円環状の電極であって、第1~第5の実施形態で説明した円柱電極または金属皮膜である。該円環状の電極214はそれぞれ、同心に配置されている。4つの円環状の電極214のうち対向する2つには、高周波電圧が印加され、残りの対向する(質量分析器の中心軸を間にして向き合う)2つの電極セット間に高周波電圧と直流電圧が印加されることにより、Uあり四重極電界217が形成される。
(Ninth embodiment)
A quadrupole mass spectrometer according to the ninth embodiment of the present invention will be described with reference to FIG.
In FIG. 11, an ion source 211 capable of emitting ions in two opposing directions is arranged in a case 218a having openings on opposing surfaces. A detector 213 is arranged in a case 128b having openings on the opposing surfaces. In the case 218a, an extraction electrode 211a having an opening spaced from one ion emission portion of the ion source 211 is disposed, and an extraction electrode 211b having an opening spaced from the other ion emission portion is disposed. . The ion 215a (ion that flies clockwise in FIG. 11) is emitted from the one ion emission part, and the ion 215b (ion that flies counterclockwise in FIG. 11) is emitted from the other ion emission part. Reference numeral 214 denotes four annular electrodes for forming a quadrupole electric field with U, which are the cylindrical electrodes or metal films described in the first to fifth embodiments. The annular electrodes 214 are arranged concentrically. A high-frequency voltage is applied to two of the four annular electrodes 214 facing each other, and a high-frequency voltage and a direct-current voltage between the remaining two electrode sets (facing each other with the central axis of the mass analyzer in between). Is applied to form a quadrupole electric field 217 with U.
 本実施形態では、両方向にイオンを放出できるイオン源211と両方向からのイオンを検出できる検出器213とを用いて、右回りと左回りのどちらでも質量分別を行なうことが出来る。イオンの放出をどちらかに決めるのは電圧印加を切り替えられる引き出し電極211a、211bによっている。すなわち、引き出し電極211a、211bのうち、イオンを放出した側の引き出し電極に所定の電圧を印加することにより、該電圧が印加された方の引き出し電極にイオンが引き出され、該引き出し電極に形成された開口を介してイオンが放出される。 In the present embodiment, mass separation can be performed either clockwise or counterclockwise using the ion source 211 that can emit ions in both directions and the detector 213 that can detect ions from both directions. It is the extraction electrodes 211a and 211b that can switch the voltage application to determine the ion emission. That is, when a predetermined voltage is applied to the extraction electrode 211a and 211b on the side from which ions are emitted, ions are extracted to the extraction electrode to which the voltage is applied, and formed on the extraction electrode. Ions are released through the openings.
 このとき、例えば、引き出し電極211aに所定の電圧を印加して右回りのイオン215aを放出する場合、イオン215aはUあり四重極電界217の円環中を270°分カーブして検出器218に入射することになる。同様に、引き出し電極211bに所定の電圧を印加して左回りのイオン215bを放出する場合、イオン215bはUあり四重極電界217の円環中を90°分カーブして検出器218に入射することになる。このように、本実施形態では、同一の四重極型質量分析装置において、長さが異なる質量分別領域が2つ存在することになる。 At this time, for example, when a predetermined voltage is applied to the extraction electrode 211a and the clockwise ions 215a are emitted, the ions 215a are curved by 270 ° in the ring of the quadrupole electric field 217 with U, and the detector 218. Will be incident on. Similarly, when a predetermined voltage is applied to the extraction electrode 211b and counterclockwise ions 215b are emitted, the ions 215b enter the detector 218 after being curved by 90 ° in the ring of the quadrupole electric field 217 with U. Will do. Thus, in this embodiment, in the same quadrupole mass spectrometer, there are two mass separation regions having different lengths.
 なお、Uあり四重極電界217による質量分別はイオンの進行方向を問わないので、右回り用質量分析部および左回り用質量分析部において、2組の電極への印加電圧は共通となっている。そのため、構造的には1組の質量分析部と同じであるにも関わらず、特性の異なる2種の質量分析部を機能させることが可能である。具体的な組み立て構造は、上記第1~第5の実施形態のいずれかを使用している。 In addition, since mass separation by the quadrupole electric field 217 with U does not matter the direction of ion travel, the applied voltages to the two sets of electrodes are common in the clockwise mass analyzing unit and the counterclockwise mass analyzing unit. Yes. Therefore, although it is structurally the same as one set of mass analyzers, two types of mass analyzers having different characteristics can be made to function. The specific assembly structure uses any of the first to fifth embodiments.
 四重極質量分析器の電極の最適長さ(長手方向)は雰囲気の圧力によって異なるので、圧力に合わせてどちらかを選んで測定を行なう。これにより、測定可能な圧力範囲を広くすることが出来る。 Since the optimal length (longitudinal direction) of the electrode of the quadrupole mass spectrometer varies depending on the atmospheric pressure, select either one according to the pressure and perform measurement. Thereby, the measurable pressure range can be widened.
 (第10の実施形態) 
 本発明の第10の実施形態に係る四重極型質量分析装置を図12を用いて説明する。 
 本実施形態では、上述の実施形態で説明した四重極型質量分析装置(質量分別領域)を円環状の電極の径方向に多レーンに配置している。図12において、ケース222a内に、イオン源221aが配置されており、ケース222b内に、検出器223aが配置されている。符号224aは、Uあり四重極電界を形成するための4つの円環状の電極であって、第1~第5の実施形態で説明した円柱電極または金属皮膜である。該円環状の電極224aはそれぞれ、同心に配置されている。4つの円環状の電極224aのうち対向する(質量分析器の中心軸を間にして向き合う)2つの電極セット間に高周波電圧と直流電圧が印加されることにより、Uあり四重極電界227aが形成される。これら構成要素によって、内側レーンの四重極型質量分析装置が形成され、イオン源221aから放出されたイオン225aを、イオン源221aから見込まれないように配置された検出器223aにより検出する。
(Tenth embodiment)
A quadrupole mass spectrometer according to the tenth embodiment of the present invention will be described with reference to FIG.
In the present embodiment, the quadrupole mass spectrometer (mass separation region) described in the above-described embodiment is arranged in multiple lanes in the radial direction of the annular electrode. In FIG. 12, an ion source 221a is disposed in the case 222a, and a detector 223a is disposed in the case 222b. Reference numeral 224a denotes four annular electrodes for forming a U-folded quadrupole electric field, which are the cylindrical electrodes or metal films described in the first to fifth embodiments. Each of the annular electrodes 224a is disposed concentrically. By applying a high-frequency voltage and a direct-current voltage between two electrode sets (facing each other with the central axis of the mass analyzer facing each other) among the four annular electrodes 224a, a quadrupole electric field 227a with U is generated. It is formed. By these components, a quadrupole mass spectrometer of the inner lane is formed, and the ions 225a emitted from the ion source 221a are detected by a detector 223a arranged so as not to be expected from the ion source 221a.
 同様に、ケース222aの外側に配置されたケース222c内に、イオン源221bが配置されており、ケース222bの外側に配置されたケース222d内に、検出器223bが配置されている。符号224bは、Uあり四重極電界を形成するための4つの円環状の電極であって、第1~第5の実施形態で説明した円柱電極または金属皮膜である。該円環状の電極224bはそれぞれ、円環状の電極224aの外側において該円環状の電極224aと同心状に配置されている。4つの円環状の電極224bのうち対向する2つの電極セット間に高周波電圧と直流電圧が印加されることにより、Uあり四重極電界227bが形成される。これら構成要素によって、外側レーンの四重極型質量分析装置が形成され、イオン源221bから放出されたイオン225bを、イオン源221bから見込まれないように配置された検出器223bにより検出する。 Similarly, the ion source 221b is arranged in the case 222c arranged outside the case 222a, and the detector 223b is arranged in the case 222d arranged outside the case 222b. Reference numeral 224b denotes four annular electrodes for forming a U-shaped quadrupole electric field, which are the cylindrical electrodes or metal films described in the first to fifth embodiments. Each of the annular electrodes 224b is disposed concentrically with the annular electrode 224a outside the annular electrode 224a. A high-frequency voltage and a direct-current voltage are applied between two opposing electrode sets among the four annular electrodes 224b, whereby a U-containing quadrupole electric field 227b is formed. These components form a quadrupole mass spectrometer in the outer lane, and ions 225b emitted from the ion source 221b are detected by a detector 223b arranged so as not to be expected from the ion source 221b.
 このように、本実施形態では、半径の異なる円環状の電極2組(4本×2;224a、224b)が同じ同心点に関して嵌め合い構造となり、同じ絶縁支持体によって組み立てられていれる。ただし、2組の電極224aと224bとでは電極間の径方向の距離を変えている。そのため、構造的には1組の質量分析部とほぼ同じであるにも関わらず、特性の異なる2種の質量分析部を機能させることが可能である。具体的な組み立て構造は、上記第1~第5の実施形態のいずれかを使用している。 
 電極の長手方向の長さだけでなく電極間の径方向の距離も必要性能に応じて最適値が異なるので、電極間距離に差異をつけることにより適用範囲を広くできる。
Thus, in this embodiment, two sets of annular electrodes (4 × 2; 224a, 224b) having different radii have a fitting structure with respect to the same concentric point and are assembled by the same insulating support. However, in the two sets of electrodes 224a and 224b, the radial distance between the electrodes is changed. Therefore, two types of mass analyzers having different characteristics can be made to function although they are structurally substantially the same as one set of mass analyzers. The specific assembly structure uses any of the first to fifth embodiments.
Since not only the length in the longitudinal direction of the electrodes but also the distance in the radial direction between the electrodes varies depending on the required performance, the applicable range can be widened by making a difference in the distance between the electrodes.
 上述のように、本実施形態では、円環状の電極の径方向に2レーンの四重極型質量分析装置を配置することにより、2つのUあり四重極電界227a、227bが形成される。Uあり四重極電界が形成された領域をイオンが通過することにより質量分別が行われることになるので、円環状の電極(円環状に形成された四重極型質量分析装置)の径方向において2つの質量分別領域が存在することになる。なお、本実施形態では、径方向に2つのレーン(四重極型質量分析装置)を配置しているが、2つ以上のレーン(四重極型質量分析装置)を配置しても良い。このときは、上記径方向において2つ以上の質量分別領域が存在することになる。 As described above, in this embodiment, two U-quadrupole electric fields 227a and 227b are formed by disposing a two-lane quadrupole mass spectrometer in the radial direction of the annular electrode. Since ions are passed through a region where a quadrupole electric field with U is formed, the radial direction of an annular electrode (quadrupole mass spectrometer formed in an annular shape) There will be two mass fractionation regions. In the present embodiment, two lanes (quadrupole mass spectrometer) are arranged in the radial direction, but two or more lanes (quadrupole mass spectrometer) may be arranged. At this time, two or more mass separation regions exist in the radial direction.
 (第11の実施形態) 
 本発明の第11の実施形態に係る四重極型質量分析装置を図13を用いて説明する。
(Eleventh embodiment)
A quadrupole mass spectrometer according to the eleventh embodiment of the present invention will be described with reference to FIG.
 本実施形態では、上述の実施形態で説明した四重極型質量分析装置(質量分別領域)を円環状の電極の軸方向(円環の面内鉛直方向)に多レーンに配置している。図13において、絶縁支持体231aは、円環状であり、円環の面内鉛直方向に2つの、円環状に形成された双曲形状の表面を有しており、該双曲形状の表面の各々には、円環状に金属皮膜230a、230bが形成されている。絶縁支持体231bは、円環状であり、円環の軸方向の対向する面にそれぞれ、2つの、円環状に形成された双曲形状の表面を有しており、該双曲形状の表面の各々には、円環状に金属皮膜230c~230f、が形成されている。さらに、絶縁支持体231cは、円環状であり、円環の面内鉛直方向に2つの、円環状に形成された双曲形状の表面を有しており、該双曲形状の表面の各々には、円環状に金属皮膜230g、230hが形成されている。 In the present embodiment, the quadrupole mass spectrometer (mass separation region) described in the above-described embodiment is arranged in multiple lanes in the axial direction of the annular electrode (the vertical direction in the plane of the ring). In FIG. 13, the insulating support 231a has an annular shape, and has two hyperbolic surfaces formed in an annular shape in the in-plane vertical direction of the annular shape. Each has an annular metal coating 230a, 230b. The insulating support 231b has an annular shape, and has two hyperbolic surfaces formed in an annular shape on opposite surfaces in the axial direction of the annular shape. Each is formed with an annular metal coating 230c to 230f. Further, the insulating support 231c has an annular shape, and has two hyperbolic surfaces formed in an annular shape in the in-plane vertical direction, and each of the hyperbolic surfaces has an annular shape. Are formed with metal films 230g and 230h in an annular shape.
 このような構成により、金属皮膜230a~230dにより形成される四重極型質量分析装置と、金属皮膜230e~230hにより形成される四重極型質量分析装置とが、上記円環の軸方向において並列に配置された構造が形成される。本実施形態では、金属皮膜230aと230dの電極セットと金属皮膜230bと230cの電極セットの間に高周波電圧と直流電圧が印加されるので、金属皮膜230a~230dに囲まれた領域(イオンが飛行する領域)にUあり四重極電界が形成されている。同様に、金属皮膜230eと230hの電極セットと金属皮膜230fと230gの電極セットの間に高周波電圧と直流電圧が印加されるので、金属皮膜230e~230hに囲まれた領域(イオンが飛行する領域)にUあり四重極電界が形成されている。 With such a configuration, a quadrupole mass spectrometer formed of the metal films 230a to 230d and a quadrupole mass spectrometer formed of the metal films 230e to 230h are arranged in the axial direction of the ring. A structure arranged in parallel is formed. In the present embodiment, since a high frequency voltage and a direct current voltage are applied between the electrode sets of the metal coatings 230a and 230d and the electrode sets of the metal coatings 230b and 230c, the region surrounded by the metal coatings 230a to 230d (the ions fly). The quadrupole electric field is formed in the region U). Similarly, since a high frequency voltage and a DC voltage are applied between the electrode sets of the metal coatings 230e and 230h and the electrode sets of the metal coatings 230f and 230g, the region surrounded by the metal coatings 230e to 230h (the region where ions fly) ) And a quadrupole electric field is formed.
 本実施形態では、同じ半径の円環状の電極2組(4本×2;金属皮膜230a、230c、230e、230gの組、および金属皮膜230b、230d、230f、230hの組)が同じ同心点に関して嵌め合い構造となっているとともに、1個の絶縁支持体231bを共通として重層構造になっている。2組の電極は長さや電極間距離も含めてすべて同じであるが、2組の電極への印加電圧は独立して設定できる、すなわち異なる質量数のイオンを通過させることが出来るようになっている。そのため、構造的には1組の質量分析部に近いにも関わらず、独立しかつ同じ特性を持った2組の質量分析部を機能させることが可能である。具体的な組み立て構造は、上記第3の実施形態と同じである。 In this embodiment, two sets of annular electrodes having the same radius (4 × 2; set of metal films 230a, 230c, 230e, and 230g, and set of metal films 230b, 230d, 230f, and 230h) are related to the same concentric point. In addition to a fitting structure, a single insulating support 231b is used as a common structure. The two sets of electrodes are all the same including the length and the distance between the electrodes, but the voltage applied to the two sets of electrodes can be set independently, that is, ions of different mass numbers can be passed. Yes. Therefore, although it is structurally close to one set of mass analyzers, it is possible to function two sets of mass analyzers that are independent and have the same characteristics. The specific assembly structure is the same as that of the third embodiment.
 2組の質量分析部は同じ特性を持つので、異なる成分(質量数)の変化を全く同時に、しかも正確に計測することが出来る。 Since the two sets of mass spectrometers have the same characteristics, changes in different components (mass number) can be measured exactly at the same time and accurately.
 上述のように、本実施形態では、円環状の電極の軸方向(円環の面内鉛直方向)に2レーンの四重極型質量分析装置を配置することにより、2つのUあり四重極電界が形成される。Uあり四重極電界が形成された領域をイオンが通過することにより質量分別が行われることになるので、円環状の電極(円環状に形成された四重極型質量分析装置)の軸方向において2つの質量分別領域が存在することになる。なお、本実施形態では、軸方向に2つのレーン(四重極型質量分析装置)を配置しているが、2つ以上のレーン(四重極型質量分析装置)を配置しても良い。このときは、上記軸方向において2つ以上の質量分別領域が存在することになる。 As described above, in this embodiment, by arranging a two-lane quadrupole mass spectrometer in the axial direction of the annular electrode (vertical direction in the plane of the ring), two U-equipped quadrupoles are provided. An electric field is formed. Since ions are passed through a region where a quadrupole electric field with U is formed, the axial direction of an annular electrode (a quadrupole mass spectrometer formed in an annular shape) There will be two mass fractionation regions. In this embodiment, two lanes (quadrupole mass spectrometer) are arranged in the axial direction, but two or more lanes (quadrupole mass spectrometer) may be arranged. At this time, two or more mass separation regions exist in the axial direction.
 なお、上記軸方向においてN個(Nは2以上の整数)の質量分析領域を形成する場合は、上記軸方向において、両端に絶縁支持体231a、231c(軸方向の対向する面の一方において、金属皮膜が2個形成された絶縁支持体)を配置し、該絶縁支持体231a、231cとの間に、N-1個の絶縁支持体231b(軸方向の対向する面の各々において金属皮膜が2個ずつ形成された絶縁支持体)を配置する。そして、N-1個の絶縁支持体231bの配列の、軸方向における一方の端の絶縁支持体231bと絶縁支持体231aとを嵌め合わせ、他方の端の絶縁支持体231bと絶縁支持体231cとを嵌め合わせ、残りの絶縁支持体231bを互いに嵌め合わせる。このように配置することにより、N個のUあり四重極電界を形成することができ、上記軸方向においてN個の質量分析領域を形成することができる。なお、N=2である場合には、図13のような構成になるので、絶縁支持体231aと絶縁支持体231cとの間には、1つの絶縁支持体231bが配列されることになり、絶縁支持体231a、231cの各々と勘合する絶縁支持体は、同一の絶縁支持体231bとなる。 When N (N is an integer of 2 or more) mass analysis regions are formed in the axial direction, the insulating supports 231a and 231c (on one of the opposing surfaces in the axial direction) An insulating support having two metal films formed thereon is disposed, and N−1 insulating supports 231b (the metal films are formed on each of the axially opposed surfaces) between the insulating supports 231a and 231c. Insulating supports formed by two) are arranged. Then, in the arrangement of N-1 insulating supports 231b, the insulating support 231b and the insulating support 231a at one end in the axial direction are fitted together, and the insulating support 231b and the insulating support 231c at the other end are fitted together. And the remaining insulating supports 231b are fitted together. By arranging in this way, N U-quadrupole electric fields can be formed, and N mass analysis regions can be formed in the axial direction. When N = 2, the configuration is as shown in FIG. 13, so that one insulating support 231 b is arranged between the insulating support 231 a and the insulating support 231 c. The insulating support that is fitted into each of the insulating supports 231a and 231c is the same insulating support 231b.
 なお、第9~第11の実施形態を組み合わせることによって、同一の四重極型質量分析装置において、長さが異なる質量分別領域を2つ以上存在させることができる。例えば、第10の実施形態に第9の実施形態を組み込む場合は、次の通りになる。図12において、検出器223bをイオン源221bから180°の位置に設け、イオン源221a、221bをそれぞれ、イオン源211に変更し、それぞれのイオン源に引き出し電極211a、211bを設ける。また、検出器223a、223bを検出器213に変更する。このようにすることで、同一の四重極型質量分析装置において、長さが異なる質量分別領域を3つ存在させることができる。同様に、四重極型質量分析器(質量分別領域)を多レーンに配置し、それらの各レーンにおいて検出器の位置を変えることで、質量分別領域を多数存在させることができる。 In addition, by combining the ninth to eleventh embodiments, two or more mass separation regions having different lengths can exist in the same quadrupole mass spectrometer. For example, when the ninth embodiment is incorporated in the tenth embodiment, the operation is as follows. In FIG. 12, a detector 223b is provided at a position 180 ° from the ion source 221b, the ion sources 221a and 221b are changed to the ion source 211, and extraction electrodes 211a and 211b are provided in the respective ion sources. Further, the detectors 223a and 223b are changed to the detector 213. By doing so, in the same quadrupole mass spectrometer, three mass fractionation regions having different lengths can exist. Similarly, by arranging quadrupole mass analyzers (mass fractionation regions) in multiple lanes and changing the position of the detector in each lane, a large number of mass fractionation regions can exist.
 (第12の実施形態) 
 本発明の第12の実施形態に係る四重極型質量分析装置を図14を用いて説明する。 
 本実施形態では、図14に示すように、電極104bと絶縁支持体112aとの嵌め合い部において、円環状のソフトスペーサ241が設けられており、絶縁支持体112aと絶縁支持体112bとの嵌め合い部において、円環状のソフトスペーサ242が設けられている。同様に、電極104aと絶縁支持体112aとの嵌め合い部、電極104cと絶縁支持体112bとの嵌め合い部、および電極104dと絶縁支持体112bとの嵌め合い部の各々においても、ソフトスペーサ241が設けられている。
(Twelfth embodiment)
A quadrupole mass spectrometer according to the twelfth embodiment of the present invention will be described with reference to FIG.
In the present embodiment, as shown in FIG. 14, an annular soft spacer 241 is provided at the fitting portion between the electrode 104b and the insulating support 112a, and the insulating support 112a and the insulating support 112b are fitted. An annular soft spacer 242 is provided at the mating portion. Similarly, in each of the fitting portion between the electrode 104a and the insulating support 112a, the fitting portion between the electrode 104c and the insulating support 112b, and the fitting portion between the electrode 104d and the insulating support 112b, the soft spacer 241 is used. Is provided.
 このように、本実施形態では、柔らかい材質で出来た円環状のスペーサ(ソフトスペーサ)が各嵌め合い部に挟み込まれている。ソフトスペーサはアルミニウム(Al)、銅(Cu)、あるいはインジウム(In)製が望ましい。また、厚みは組み立てが可能な(通常、精度を出すべき2者間のすき間と同等以上、かつ2倍以下程度)範囲であればよいが、厚みの不均一(円対称のバラツキ)は少ない方が望ましいので、厚みは平均で10マイクロメータ程度、不均一は数十%程度以内のものを使用することが好ましい。なお、不均一性を出さずに完全な円環状とするのは難しいので、実際には設置すべき円周長よりも若干短いリボンを使用する。 Thus, in the present embodiment, an annular spacer (soft spacer) made of a soft material is sandwiched between the fitting portions. The soft spacer is preferably made of aluminum (Al), copper (Cu), or indium (In). In addition, the thickness should be within the range that can be assembled (usually equal to or more than twice the gap between the two to be accurate) but less uneven thickness (circular symmetry variation). Therefore, it is preferable to use one having an average thickness of about 10 micrometers and non-uniformity within about several tens of percent. In addition, since it is difficult to obtain a complete annular shape without causing nonuniformity, a ribbon slightly shorter than the circumferential length to be actually used is used.
 組み立てによってソフトスペーサは延びて薄くなるが、それによる力は均等に、すなわち円対称に精度を出すべき2者間にかかるので、ソフトスペーサを挟み込む2者の同心度の精度をより高くすることができる。 Although the soft spacer extends and thins by assembly, the force applied between the two should be equal, that is, circularly symmetrical, so that the accuracy of concentricity of the two sandwiching the soft spacer can be further increased. it can.
 (その他の実施形態) 
 上記それぞれの実施形態に限らず、これらを組み合わせ使用することもできることは言うまでもない。 
 上記実施形態ではすべて嵌め合い部を円柱状(断面が軸に対し平行)としたが、図15に示すように、これをテーパ状(断面が軸に対し傾斜)として組み立て/取り外しの容易性や円環の軸方向(図で左右方向)の位置決めを同時に実現することも出来る。 
 また、上記実施形態では電極だけでなく絶縁支持体やソフトスペーサをすべて円環状としたが、四重極電界が精度よく形成されるのであれば、絶縁支持体やソフトスペーサの嵌め合い部は必ずしも厳密な円対称である必要はなく、ましてや全体形状が円環状である必然性も無い。例えば、第1の実施形態で説明したUあり四重極電界107を形成するための電極104a~104dはそれぞれ同心の円環状であるが、該実施形態を変形して電極104a~104dを円周上の数点において絶縁支持体に嵌合させることができる。また、第12の実施形態を変形して、小片のソフトスペーサを数個、配置して挟み込むことができる。
(Other embodiments)
Needless to say, these are not limited to the above embodiments, and may be used in combination.
In the above embodiment, the fitting portions are all cylindrical (the cross section is parallel to the axis). However, as shown in FIG. 15, this is tapered (the cross section is inclined with respect to the axis). Positioning of the ring in the axial direction (left-right direction in the figure) can be realized at the same time.
Further, in the above embodiment, not only the electrodes but also the insulating support and soft spacer are all annular, but if the quadrupole electric field is formed with high accuracy, the fitting portion of the insulating support and soft spacer is not necessarily provided. There is no need to be strictly circularly symmetric, and there is no necessity for the overall shape to be annular. For example, the electrodes 104a to 104d for forming the U-folded quadrupole electric field 107 described in the first embodiment are concentric toric rings, but the embodiment is modified so that the electrodes 104a to 104d It can be fitted to an insulating support at the top few points. Further, by modifying the twelfth embodiment, several small pieces of soft spacers can be arranged and sandwiched.
 なお、いずれも、数点(個)の点と点の間隔はなるべく均等となるように配置する。これらの例では嵌め合いの一方が点となっているので厳密な円対称の嵌め合いにはなっていないが、全体として円対称に近い嵌め合いとなっているので、電極104a~104dを高い平行度で配置することができる。したがって、本発明では全体として円対称に近い嵌め合いとなっていれば良いので、電極は円環状が基本となるものの、絶縁支持体は円対称に近い嵌め合い部を有する板状であれば良い。またソフトスペーサはどんな形であっても、最終的に円対称に近い形で嵌め合い部に配置できるものであれば良い。 In addition, in any case, the points are arranged so that the intervals between the points are as uniform as possible. In these examples, since one of the fittings is a point, the fitting is not strictly circularly symmetric. However, since the fitting is almost circularly symmetric as a whole, the electrodes 104a to 104d are made highly parallel. Can be arranged in degrees. Therefore, in the present invention, it is sufficient that the fitting is almost circularly symmetric as a whole. Therefore, although the electrode is basically an annular shape, the insulating support may be a plate having a fitting portion that is nearly circularly symmetric. . In addition, the soft spacer may have any shape as long as it can be finally arranged in the fitting portion in a shape close to circular symmetry.
 上記実施形態ではすべてそのままで簡単に嵌め込むことが出来る形としているが、例えば一方の部品を加熱・膨張させながら組み立てる焼き嵌め法など、従来知られている嵌め合いに関する諸技術を適用することができる。 In the above embodiment, all can be easily fitted as they are, but it is possible to apply conventionally known fitting techniques such as a shrink fitting method in which one part is assembled while being heated and expanded. it can.
 (さらにその他の実施形態) 
 本発明の一実施形態に係る四重極型質量分析装置は、様々な装置に取り付けても良い。図16は、上述した実施形態に係る四重極型質量分析装置をスパッタリング装置に取り付けた例を示す図である。
(Further other embodiments)
The quadrupole mass spectrometer according to an embodiment of the present invention may be attached to various apparatuses. FIG. 16 is a diagram illustrating an example in which the quadrupole mass spectrometer according to the above-described embodiment is attached to a sputtering apparatus.
 図16において、符号160は、真空容器、成膜機構、排気機構などを備えたスパッタリング装置であり、通常用いられる装置を適用することができる。スパッタリング装置160には、開口部161が設けられており、該開口部161には、真空用フランジ163(例えば、外形φ70mmの真空用フランジ(70ICF)など)を有する配管部162が接続されている。また、真空用フランジ164(例えば、70ICFなど)には、真空用パイプ165(例えば、内径φ38mmの真空用パイプなど)が接続されており、該真空用パイプ165内には、本発明の一実施形態に係る四重極型質量分析装置166が組み込まれている。このような構成において、真空用フランジ163と真空用フランジ164とを接続することにより、スパッタリング装置160に対して、四重極型質量分析装置166が取り付けられる。 In FIG. 16, reference numeral 160 denotes a sputtering apparatus provided with a vacuum vessel, a film forming mechanism, an exhaust mechanism and the like, and a commonly used apparatus can be applied. The sputtering apparatus 160 is provided with an opening 161, and a pipe 162 having a vacuum flange 163 (for example, a vacuum flange (70 ICF) having an outer diameter of 70 mm) is connected to the opening 161. . Further, a vacuum pipe 165 (for example, a vacuum pipe with an inner diameter of 38 mm) is connected to the vacuum flange 164 (for example, 70 ICF), and one embodiment of the present invention is included in the vacuum pipe 165. A quadrupole mass spectrometer 166 according to the embodiment is incorporated. In such a configuration, the quadrupole mass spectrometer 166 is attached to the sputtering apparatus 160 by connecting the vacuum flange 163 and the vacuum flange 164.
 このように、四重極型質量分析装置166は、真空フランジ164に組み込んで、スパッタリング装置160などの成膜装置に取り付けることができる。特に、本発明の一実施形態に係る四重極型質量分析装置166は、小型化が容易であるため、スパッタリング装置など真空装置で一般的な外径がφ70mmの真空フランジ(φ70ICF)に組み込んで取り付けることが可能である。 Thus, the quadrupole mass spectrometer 166 can be incorporated in the vacuum flange 164 and attached to a film forming apparatus such as the sputtering apparatus 160. In particular, since the quadrupole mass spectrometer 166 according to an embodiment of the present invention is easy to downsize, it is incorporated into a vacuum flange (φ70 ICF) having a general outer diameter of φ70 mm in a vacuum device such as a sputtering device. It is possible to attach.

Claims (21)

  1.  中性分子をイオン化してイオンを放出するイオン源と、
     非直線状の4つの電極を有する質量分別領域であって、前記4つの電極のうち対向する2つの電極セット間に直流電圧と高周波電圧を重畳した電圧を印加することによって前記4つの電極に囲まれた領域に四重極電界を形成して、該四重極電界中を通過する前記イオンの質量分別を行なう質量分別領域と、
     前記質量分別領域を通過した前記イオンを検出して信号とする検出器と、
     同心の嵌め合い部を有する、複数の板状の絶縁支持体とを備え、
     前記質量分別領域は非直線状であり、該非直線状の質量分別領域により、前記イオン源から該質量分別領域を通して前記検出器が見込めないように、前記質量分別領域は構成されており、
     前記4つの電極は、同心の4つの円環状の電極の少なくとも一部であり、
     前記4つの円環状の電極の各々は、前記絶縁支持体の一部に形成された導電膜であり、
     前記嵌め合い部による絶縁支持体同士の円対称的な嵌め合いによって組み立てられていることを特徴とする四重極型質量分析装置。
    An ion source that ionizes neutral molecules to release ions;
    A mass separation region having four non-linear electrodes, surrounded by the four electrodes by applying a voltage in which a DC voltage and a high-frequency voltage are superimposed between two opposing electrode sets of the four electrodes. A mass separation region for forming a quadrupole electric field in the region, and performing mass fractionation of the ions passing through the quadrupole field;
    A detector that detects the ions that have passed through the mass fractionation region and serves as a signal;
    A plurality of plate-like insulating supports having concentric fitting portions;
    The mass fractionation region is non-linear, and the mass fractionation region is configured such that the non-linear mass fractionation region prevents the detector from being expected from the ion source through the mass fractionation region;
    The four electrodes are at least part of four concentric annular electrodes;
    Each of the four annular electrodes is a conductive film formed on a part of the insulating support,
    The quadrupole mass spectrometer is assembled by circularly symmetric fitting between insulating supports by the fitting portion.
  2.  前記絶縁支持体は、同心の複数の嵌め合い部を有する板状の絶縁支持体であり、
     前記複数の嵌め合い部を有する板状の絶縁支持体の各々は、他の嵌め合い部を有する板状の絶縁支持体の少なくとも1つと嵌め合っていることを特徴とする請求項1に記載の四重極型質量分析装置。
    The insulating support is a plate-like insulating support having a plurality of concentric fitting portions,
    2. The plate-like insulating support having the plurality of fitting portions is fitted with at least one of the plate-like insulating supports having other fitting portions. Quadrupole mass spectrometer.
  3.  前記絶縁支持体の各々は、円環状に形成された双曲形状の表面を有し、
     前記双曲形状の表面に前記導電膜が形成されており、
     前記絶縁支持体の各々は、前記導電膜が対向するように、他の絶縁支持体の少なくとも1つと嵌め合っていることを特徴とする請求項1に記載の四重極型質量分析装置。
    Each of the insulating supports has a hyperbolic surface formed in an annular shape,
    The conductive film is formed on the hyperbolic surface;
    The quadrupole mass spectrometer according to claim 1, wherein each of the insulating supports is fitted with at least one of the other insulating supports so that the conductive film faces each other.
  4.  前記絶縁支持体は、2つの同心の嵌め合い部を有する板状の絶縁支持体であり、
     前記2つ嵌め合い部を有する板状の絶縁支持体の各々は、円環状に形成された2つの双曲形状の表面を有し、
     前記2つの絶縁支持体の各々に形成された2つの双曲形状の表面にはそれぞれ前記導電膜が形成されており、
     前記2つの絶縁支持体は、前記導電膜が対向するように、互いに嵌め合っていることを特徴とする請求項3に記載の四重極型質量分析装置。
    The insulating support is a plate-shaped insulating support having two concentric fitting portions,
    Each of the plate-like insulating supports having the two fitting portions has two hyperbolic surfaces formed in an annular shape,
    The conductive films are respectively formed on two hyperbolic surfaces formed on each of the two insulating supports,
    4. The quadrupole mass spectrometer according to claim 3, wherein the two insulating supports are fitted to each other so that the conductive film faces each other.
  5.  前記4つの円環状の電極のうち、円環の内側に配置された電極と、円環の外側に配置された電極の形状とは異なる形状であり、
     前記円環の内側に配置された電極と前記円環の外側に配置された電極とでは、イオンの進行と直角方向の断面形状が異なることを特徴とする請求項1に記載の四重極型質量分析装置。
    Of the four annular electrodes, the electrode disposed on the inner side of the ring and the shape of the electrode disposed on the outer side of the ring are different shapes,
    2. The quadrupole type according to claim 1, wherein an electrode disposed inside the annular ring and an electrode disposed outside the annular ring have different cross-sectional shapes in the direction perpendicular to the progression of ions. Mass spectrometer.
  6.  前記絶縁支持体の一部には、切り欠き部が形成されていることを特徴とする請求項1に記載の四重極型質量分析装置。 The quadrupole mass spectrometer according to claim 1, wherein a cutout portion is formed in a part of the insulating support.
  7.  前記イオンの進行方向の長さが異なるふたつ以上の質量分別領域が存在することを特徴とする請求項1に記載の四重極型質量分析装置。 The quadrupole mass spectrometer according to claim 1, wherein there are two or more mass separation regions having different lengths in the traveling direction of the ions.
  8.  前記4つの円環状の電極の半径が異なるふたつ以上の質量分別領域が存在することを特徴とする請求項1に記載の四重極型質量分析装置。 The quadrupole mass spectrometer according to claim 1, wherein there are two or more mass separation regions having different radii of the four annular electrodes.
  9.  前記4つの円環状の電極の軸方向の位置が異なるふたつ以上の質量分別領域が存在することを特徴とする請求項1に記載の四重極型質量分析装置。 The quadrupole mass spectrometer according to claim 1, wherein there are two or more mass separation regions having different positions in the axial direction of the four annular electrodes.
  10.  前記絶縁支持体同士の嵌め合いのすき間にスペーサが挟み込まれていることを特徴とする請求項1に記載の四重極型質量分析装置。 The quadrupole mass spectrometer according to claim 1, wherein a spacer is sandwiched between fitting gaps between the insulating supports.
  11.  中性分子をイオン化してイオンを放出するイオン源と、
     非直線状の4つの電極を有する質量分別領域であって、前記4つの電極のうち対向する2つの電極セット間に直流電圧と高周波電圧を重畳した電圧を印加することによって前記4つの電極に囲まれた領域に四重極電界を形成して、該四重極電界中を通過する前記イオンの質量分別を行なう質量分別領域と、
     前記質量分別領域を通過した前記イオンを検出して信号とする検出器とを備え、
     前記質量分別領域は非直線状であり、該非直線状の質量分別領域により、前記イオン源から該質量分別領域を通して前記検出器が見込めないように、前記質量分別領域は構成されており、
     前記4つの電極は、同心の4つの円環状の電極の少なくとも一部であり、
     前記4つの円環状の電極は、同心の嵌め合い部を有する板状の絶縁支持体との嵌め合いによって組み立てられていることを特徴とする四重極型質量分析装置。
    An ion source that ionizes neutral molecules to release ions;
    A mass separation region having four non-linear electrodes, surrounded by the four electrodes by applying a voltage in which a DC voltage and a high-frequency voltage are superimposed between two opposing electrode sets of the four electrodes. A mass separation region for forming a quadrupole electric field in the region, and performing mass fractionation of the ions passing through the quadrupole field;
    A detector that detects the ions that have passed through the mass fractionation region and uses them as a signal;
    The mass fractionation region is non-linear, and the mass fractionation region is configured such that the non-linear mass fractionation region prevents the detector from being expected from the ion source through the mass fractionation region;
    The four electrodes are at least part of four concentric annular electrodes;
    4. The quadrupole mass spectrometer according to claim 4, wherein the four annular electrodes are assembled by fitting with a plate-like insulating support having concentric fitting portions.
  12.  前記4つの円環状の電極は、嵌め合い部を有する板状の絶縁支持体との円対称的な嵌め合いによって組み立てられていることを特徴とする請求項11に記載の四重極型質量分析装置。 The quadrupole mass spectrometry according to claim 11, wherein the four annular electrodes are assembled by a circularly symmetric fitting with a plate-like insulating support having a fitting portion. apparatus.
  13.  前記4つの円環状の電極の各々は、同心の円環状の円柱電極であることを特徴とする請求項11に記載の四重極型質量分析装置。 The quadrupole mass spectrometer according to claim 11, wherein each of the four annular electrodes is a concentric annular cylindrical electrode.
  14.  前記4つの円環状の電極のうち、円環の内側に配置された電極と、円環の外側に配置された電極の形状とは異なる形状であり、
     前記円環の内側に配置された電極と前記円環の外側に配置された電極とでは、イオンの進行と直角方向の断面形状が異なることを特徴とする請求項11に記載の四重極型質量分析装置。
    Of the four annular electrodes, the electrode disposed on the inner side of the ring and the shape of the electrode disposed on the outer side of the ring are different shapes,
    12. The quadrupole type according to claim 11, wherein an electrode disposed inside the annular ring and an electrode disposed outside the annular ring have different cross-sectional shapes in the direction perpendicular to the progression of ions. Mass spectrometer.
  15.  前記絶縁支持体の一部には、切り欠き部が形成されていることを特徴とする請求項11に記載の四重極型質量分析装置。 The quadrupole mass spectrometer according to claim 11, wherein a cutout portion is formed in a part of the insulating support.
  16.  前記イオンの進行方向の長さが異なるふたつ以上の質量分別領域が存在することを特徴とする請求項11に記載の四重極型質量分析装置。 The quadrupole mass spectrometer according to claim 11, wherein there are two or more mass separation regions having different lengths in the traveling direction of the ions.
  17.  前記4つの円環状の電極の半径が異なるふたつ以上の質量分別領域が存在することを特徴とする請求項11に記載の四重極型質量分析装置。 The quadrupole mass spectrometer according to claim 11, wherein there are two or more mass separation regions having different radii of the four annular electrodes.
  18.  前記4つの円環状の電極の軸方向の位置が異なるふたつ以上の質量分別領域が存在することを特徴とする請求項1に記載の四重極型質量分析装置。 The quadrupole mass spectrometer according to claim 1, wherein there are two or more mass separation regions having different positions in the axial direction of the four annular electrodes.
  19.  前記4つの円環状の電極と前記絶縁支持体との嵌め合いのすき間にスペーサが挟み込まれていることを特徴とする請求項11に記載の四重極型質量分析装置。 The quadrupole mass spectrometer according to claim 11, wherein a spacer is sandwiched between gaps between the four annular electrodes and the insulating support.
  20.  真空容器と、該真空容器内に設けられた成膜機構と、該真空容器に取り付けられた質量分析装置とを備える成膜装置において、
     前記質量分析装置は、請求項1に記載の四重極型質量分析装置であることを特徴とする成膜装置。
    In a film forming apparatus comprising a vacuum container, a film forming mechanism provided in the vacuum container, and a mass spectrometer attached to the vacuum container,
    The film forming apparatus according to claim 1, wherein the mass spectrometer is a quadrupole mass spectrometer according to claim 1.
  21.  真空容器と、該真空容器内に設けられた成膜機構と、該真空容器に取り付けられた質量分析装置とを備える成膜装置において、
     前記質量分析装置は、請求項11に記載の四重極型質量分析装置であることを特徴とする成膜装置。
    In a film forming apparatus comprising a vacuum container, a film forming mechanism provided in the vacuum container, and a mass spectrometer attached to the vacuum container,
    12. The film forming apparatus according to claim 11, wherein the mass spectrometer is a quadrupole mass spectrometer according to claim 11.
PCT/JP2010/073736 2009-12-28 2010-12-28 Quadrupole mass spectroscope WO2011081188A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009298182 2009-12-28
JP2009-298182 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011081188A1 true WO2011081188A1 (en) 2011-07-07

Family

ID=44226590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073736 WO2011081188A1 (en) 2009-12-28 2010-12-28 Quadrupole mass spectroscope

Country Status (1)

Country Link
WO (1) WO2011081188A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492893A (en) * 2011-07-14 2013-01-16 Bruker Daltonics Inc A linear multipole ion collision cell
WO2014103100A1 (en) * 2012-12-27 2014-07-03 キヤノンアネルバ株式会社 Mass spectroscope
EP2804201A3 (en) * 2013-05-13 2016-05-25 Thermo Finnigan LLC Ion optics components and method of making the same
EP3008748A4 (en) * 2011-12-30 2017-02-15 Dh Technologies Development Pte. Ltd. Ion optical elements
CN112687518A (en) * 2020-12-21 2021-04-20 天津国科医工科技发展有限公司 Quadrupole rod structure convenient to repair and grind assembly
JP2022546579A (en) * 2019-09-10 2022-11-04 アプライド マテリアルズ インコーポレイテッド Thermally isolated repeller and electrode
WO2023181013A1 (en) * 2022-03-25 2023-09-28 Thermo Finnigan Llc Ion guide geometry improvements

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410997A (en) * 1964-09-08 1968-11-12 Bell & Howell Co Multipole mass filter
US4158771A (en) * 1976-06-08 1979-06-19 Leybold-Heraeus Gmbh & Co. Kg Ion filter and method of making the same
US4949047A (en) * 1987-09-24 1990-08-14 The Boeing Company Segmented RFQ accelerator
JPH0696726A (en) * 1992-05-26 1994-04-08 Finnigan Mat Gmbh Ion filter, especially ion filter for mass spectrometer and its manufacture
US5559327A (en) * 1995-07-27 1996-09-24 Bear Instruments, Inc. Ion filter and mass spectrometer using arcuate hyperbolic quadrapoles
JPH1154085A (en) * 1997-07-30 1999-02-26 Shimadzu Corp Multipole mass spectrometer
US6102763A (en) * 1996-07-10 2000-08-15 Cueni; Hansjoerg Process for producing a quadrupole electrode arrangement
JP2004349102A (en) * 2003-05-22 2004-12-09 Ulvac Japan Ltd Quadrupole type mass spectrometer and vacuum device provided with it
JP2010033735A (en) * 2008-07-25 2010-02-12 Jeol Ltd Quadrupole mass spectroscope

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410997A (en) * 1964-09-08 1968-11-12 Bell & Howell Co Multipole mass filter
US4158771A (en) * 1976-06-08 1979-06-19 Leybold-Heraeus Gmbh & Co. Kg Ion filter and method of making the same
US4949047A (en) * 1987-09-24 1990-08-14 The Boeing Company Segmented RFQ accelerator
JPH0696726A (en) * 1992-05-26 1994-04-08 Finnigan Mat Gmbh Ion filter, especially ion filter for mass spectrometer and its manufacture
US5559327A (en) * 1995-07-27 1996-09-24 Bear Instruments, Inc. Ion filter and mass spectrometer using arcuate hyperbolic quadrapoles
US6102763A (en) * 1996-07-10 2000-08-15 Cueni; Hansjoerg Process for producing a quadrupole electrode arrangement
JPH1154085A (en) * 1997-07-30 1999-02-26 Shimadzu Corp Multipole mass spectrometer
JP2004349102A (en) * 2003-05-22 2004-12-09 Ulvac Japan Ltd Quadrupole type mass spectrometer and vacuum device provided with it
JP2010033735A (en) * 2008-07-25 2010-02-12 Jeol Ltd Quadrupole mass spectroscope

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492893A (en) * 2011-07-14 2013-01-16 Bruker Daltonics Inc A linear multipole ion collision cell
US8481929B2 (en) 2011-07-14 2013-07-09 Bruker Daltonics, Inc. Lens free collision cell with improved efficiency
GB2492893B (en) * 2011-07-14 2014-07-02 Bruker Daltonics Inc Lens free collision cell with improved efficiency
DE102012211593B4 (en) * 2011-07-14 2016-08-11 Bruker Daltonics, Inc. Lens-free impact cell with improved efficiency
EP3008748A4 (en) * 2011-12-30 2017-02-15 Dh Technologies Development Pte. Ltd. Ion optical elements
WO2014103100A1 (en) * 2012-12-27 2014-07-03 キヤノンアネルバ株式会社 Mass spectroscope
JP5922256B2 (en) * 2012-12-27 2016-05-24 キヤノンアネルバ株式会社 Mass spectrometer
US9373491B2 (en) 2012-12-27 2016-06-21 Canon Anelva Corporation Mass spectrometer
US9524857B2 (en) 2013-05-13 2016-12-20 Thermo Finnigan Llc Ion optics components and method of making the same
US9543136B2 (en) 2013-05-13 2017-01-10 Thermo Finnigan Llc Ion optics components and method of making the same
EP2804201A3 (en) * 2013-05-13 2016-05-25 Thermo Finnigan LLC Ion optics components and method of making the same
EP3629363A1 (en) * 2013-05-13 2020-04-01 Thermo Finnigan LLC Ion optics components and method of making the same
JP2022546579A (en) * 2019-09-10 2022-11-04 アプライド マテリアルズ インコーポレイテッド Thermally isolated repeller and electrode
JP7314408B2 (en) 2019-09-10 2023-07-25 アプライド マテリアルズ インコーポレイテッド Thermally isolated repeller and electrode
CN112687518A (en) * 2020-12-21 2021-04-20 天津国科医工科技发展有限公司 Quadrupole rod structure convenient to repair and grind assembly
WO2023181013A1 (en) * 2022-03-25 2023-09-28 Thermo Finnigan Llc Ion guide geometry improvements

Similar Documents

Publication Publication Date Title
WO2011081188A1 (en) Quadrupole mass spectroscope
US6593570B2 (en) Ion optic components for mass spectrometers
US9117646B2 (en) Method and apparatus for a combined linear ion trap and quadrupole mass filter
JP5870848B2 (en) Ion guide and mass spectrometer
US7491932B2 (en) Multipole ion guide having longitudinally rounded electrodes
CA2667037A1 (en) Quadrupole faims apparatus
US8642955B2 (en) Toroidal ion trap mass analyzer with cylindrical electrodes
WO2011011742A1 (en) Linear ion processing apparatus with improved mechanical isolation and assembly
US8258470B2 (en) Radio frequency lens for introducing ions into a quadrupole mass analyzer
JP2018073703A (en) Mass spectrometer
JP2007173232A (en) Hyperbolic surface quadrupole mass spectrograph of quartz material with platinum group metal plated thereon
CN111326400B (en) Collision chamber with enhanced ion beam focusing and transport
WO2012081122A1 (en) Ion guide and mass spectrometer
US20130015340A1 (en) Multipole assembly having a main mass filter and an auxiliary mass filter
WO2017094146A1 (en) Quadrupole mass filter and quadrupole-type mass spectrometry device
US11810773B2 (en) Apparatus and methods for injecting ions into an electrostatic trap
US8314385B2 (en) System and method to eliminate radio frequency coupling between components in mass spectrometers
CN116598188A (en) Gradual change multipole rod ion guiding device and mass spectrometry system thereof
US20080315085A1 (en) FAIMS Cell Having an Offset Ion Inlet Orifice
CN111276387A (en) Dual-mode ion transmission device and method
JP2010113944A (en) Mass spectroscope and assembling method of ion transporting optical system
CN110767526A (en) Inclined multipole rod guide system
WO2022254526A1 (en) Quadrupole-type mass spectrometer
US11791149B2 (en) Axially progressive lens for transporting charged particles
WO2024161807A1 (en) Mass spectrscope and method for assemblying pre-rods and main rods of mass spectrscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10841043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP