Nothing Special   »   [go: up one dir, main page]

WO2011078248A1 - 高分子化合物、これを含む薄膜及びインク組成物 - Google Patents

高分子化合物、これを含む薄膜及びインク組成物 Download PDF

Info

Publication number
WO2011078248A1
WO2011078248A1 PCT/JP2010/073187 JP2010073187W WO2011078248A1 WO 2011078248 A1 WO2011078248 A1 WO 2011078248A1 JP 2010073187 W JP2010073187 W JP 2010073187W WO 2011078248 A1 WO2011078248 A1 WO 2011078248A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer compound
formula
organic
compound
Prior art date
Application number
PCT/JP2010/073187
Other languages
English (en)
French (fr)
Inventor
和男 瀧宮
格 尾坂
健司 小廣
健一郎 大家
邦仁 三宅
Original Assignee
住友化学株式会社
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人広島大学 filed Critical 住友化学株式会社
Priority to DE201011004999 priority Critical patent/DE112010004999T5/de
Priority to CN201080059154.8A priority patent/CN102666643B/zh
Priority to US13/518,671 priority patent/US8921836B2/en
Priority to KR20127018900A priority patent/KR20120129889A/ko
Publication of WO2011078248A1 publication Critical patent/WO2011078248A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a polymer compound, a thin film and an ink composition containing the polymer compound, an organic transistor including the thin film, a planar light source including the organic transistor, and a display device.
  • Organic transistors are suitable for uses such as electronic paper and flexible displays because they have low cost and are flexible and bendable, and have attracted attention in recent years.
  • An organic transistor includes a layer having a charge transport property (meaning holes and electrons, hereinafter the same) composed of an organic substance, and an organic semiconductor material is mainly used as the organic substance.
  • an organic semiconductor material a high molecular compound capable of forming a layer (that is, an organic semiconductor layer and generally also referred to as an active layer) by a coating method in a state dissolved in a solvent has been studied.
  • a polymer compound having only a thiophene skeleton has been proposed (Non-patent Document 1).
  • the characteristics of the organic transistor mainly depend on the charge mobility in the organic semiconductor layer, and the higher the charge mobility, the better the field effect mobility of the organic transistor and the better the characteristics.
  • the use of organic transistors has been diversified, and higher charge mobility is required than ever before.
  • the conventional polymer compound as described above it tends to be difficult to obtain sufficient high mobility as recently required.
  • an object of the present invention is to provide a polymer compound capable of obtaining high charge mobility.
  • Another object of the present invention is to provide a thin film and an ink composition containing the polymer compound, an organic transistor including the thin film, a planar light source including the organic transistor, and a display device.
  • the present invention provides a polymer compound having a repeating unit represented by the formula (1).
  • Ar 1 and Ar 2 are the same or different and each have an aromatic hydrocarbon ring which may have a substituent, a heterocyclic ring which may have a substituent, or a substituent. It is a condensed ring of an aromatic hydrocarbon ring which may be substituted and a heterocyclic ring which may have a substituent.
  • R 1 , R 2 , R 3 and R 4 are the same or different and each represents a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio A group, a substituted silyl group, an unsubstituted or substituted carboxyl group, a monovalent heterocyclic group which may have a substituent, a cyano group or a fluorine atom; ]
  • the polymer compound of the present invention When the polymer compound of the present invention has the repeating unit represented by the formula (1), it can exhibit high charge mobility when applied as an organic semiconductor layer. Although the cause is not necessarily clear, a plurality of aromatic rings are condensed, and the structure of the condensed structure is highly symmetric, so that the main chains of the polymer compound are easy to overlap (easy to pack). From this, it is considered that high conjugation is obtained. In addition, since the polymer compound of the present invention has the specific repeating unit described above, it tends to be highly soluble in a solvent, and it is relatively easy to form an organic semiconductor layer by a coating method as a solution state. It is.
  • At least one of Ar 1 and Ar 2 in the formula (1) is preferably a 5-membered heterocyclic ring.
  • the repeating unit represented by Formula (1) is selected from the group consisting of the repeating unit represented by Formula (2), the repeating unit represented by Formula (3), and the repeating unit represented by Formula (4). It is preferred that it is at least one repeating unit. By having these repeating units as the repeating unit represented by the formula (1), a higher charge mobility can be obtained.
  • [X 21 and X 22 in the formula (2), X 31 and X 32 in the formula (3), and X 41 and X 42 in the formula (4) are the same or different and each represents a chalcogen atom, and the formula (2) R 23 , R 24 , R 25 , R 26 , R 27 and R 28 in formula (3), R 33 , R 34 , R 35 , R 36 , R 37 and R 38 in formula (4), R 43 in formula (4), R 44 , R 45 , R 46 , R 47 and R 48 are the same or different and each is a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group , Arylalkylthio group, substituted silyl group, unsubstituted or substituted carboxyl group, monovalent heterocyclic group optionally having substituent, cyano group Or a fluorine atom is
  • X 21 and X 22 , X 31 and X 32 , and X 41 and X 42 in formula (4) are a sulfur atom, a selenium atom, or an oxygen atom Is preferable, a sulfur atom or an oxygen atom is more preferable, and a sulfur atom is particularly preferable. According to the polymer compound having such a structure, higher charge mobility can be obtained.
  • the combination of R 23 and R 26 , the combination of R 24 and R 27, and the combination of R 25 and R 28 in the formula (2) is a combination of the same groups, and the formula (3)
  • the combination of R 33 and R 36 , the combination of R 34 and R 37, and the combination of R 35 and R 38 are combinations of the same groups, and R 44 and R in the formula (4)
  • the combination with 47 and the combination of R 45 and R 48 are each preferably a combination of the same groups. In this way, by making specific groups the same group, the polymer compound has a repeating unit with higher symmetry and becomes easy to pack, so that higher charge mobility can be obtained.
  • More preferable structures include R 23 , R 24 , R 25 , R 26 , R 27 and R 28 in formula (2), and R 33 , R 34 , R 35 , R 36 , R 37 in formula (3) above.
  • R 38 , and R 43 , R 44 , R 45 , R 46 , R 47 and R 48 in the above formula (4) are hydrogen atoms. As a result, higher charge mobility can be obtained.
  • the polymer compound of the present invention further has a repeating unit represented by the formula (5) in addition to the repeating unit represented by the formula (1).
  • a repeating unit represented by the formula (5) By further including such a repeating unit, it is possible to obtain even better charge mobility.
  • Y represents an arylene group, a divalent heterocyclic group, a divalent group having a metal complex structure or an ethynylene group, each of which may have a substituent.
  • two or more Y exists they may be the same or different.
  • Y in the repeating unit represented by the formula (5) is a 5-membered bivalent heterocyclic group having 4 to 12 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or a polycyclic divalent A hetero group is preferred. By doing so, even better charge mobility can be obtained.
  • Y in the repeating unit represented by the formula (5) is preferably a group represented by the formula (6).
  • T represents a divalent heterocyclic group which may have a substituent, and n represents an integer of 2 to 8.
  • a plurality of T may be the same or different.
  • Y in the repeating unit represented by the formula (5) is preferably a group represented by the formula (7).
  • Ar 3 and Ar 4 are the same or different and each have an aromatic hydrocarbon ring which may have a substituent, a heterocyclic ring which may have a substituent, or a substituent. It is a condensed ring of an aromatic hydrocarbon ring which may be substituted and a heterocyclic ring which may have a substituent.
  • R 71 and R 72 are the same or different and each is a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, substituted silyl group, An unsubstituted or substituted carboxyl group, a monovalent heterocyclic group which may have a substituent, a cyano group or a fluorine atom is shown. ]
  • the repeating unit represented by the formula (5) preferably includes at least one kind of aromatic group having an electron accepting property (hereinafter referred to as “electron accepting group”).
  • electron accepting group an electron accepting property
  • the difference from the highest value of the molecular orbital energy level is 4.4 eV or less, particularly excellent charge mobility tends to be obtained.
  • the present invention also provides a thin film containing the polymer compound of the present invention. Moreover, this invention provides an organic transistor provided with the organic-semiconductor layer which consists of this thin film. Since the thin film of the present invention contains the polymer compound of the present invention, it can exhibit high charge mobility. Therefore, the organic transistor of the present invention including the organic semiconductor layer made of such a thin film has high electric field effect mobility because the charge mobility of the organic semiconductor layer is high.
  • the present invention also provides an ink composition containing the polymer compound of the present invention and a solvent.
  • Such an ink composition is effective for forming an organic semiconductor layer or the like by a coating method because the polymer compound is uniformly dispersed or dissolved in a solvent.
  • this invention provides the planar light source provided with the organic transistor of the said invention, and a display apparatus provided with the said organic transistor of this invention. Since these planar light sources and display devices include the organic transistor of the present invention that provides excellent field effect mobility, they can exhibit excellent characteristics.
  • the present invention also includes an anode, a cathode, and an organic semiconductor layer provided between the anode and the cathode, and the organic semiconductor layer includes an electron donating compound and an electron accepting compound, and the electron donating compound And a photoelectric conversion element in which at least one of the electron-accepting compounds is the polymer compound of the present invention, and a solar cell module and an image sensor including the photoelectric conversion element. These also exhibit excellent characteristics because the organic semiconductor layer has high charge mobility.
  • the polymer compound of the present invention having the specific structure described above can obtain high charge mobility when used in an organic semiconductor layer, and can easily form such an organic semiconductor layer.
  • an ink composition containing such a polymer compound and advantageous for forming a thin film, and a thin film having a high charge mobility, which is preferably obtained by such an ink composition. Can do.
  • the present invention includes an organic semiconductor layer made of a thin film containing the polymer compound of the present invention, and has an organic transistor capable of obtaining excellent field-effect mobility, and has high characteristics.
  • a planar light source and a display device can be provided.
  • the organic transistor of the present invention includes a driving circuit for a liquid crystal display and electronic paper, a switch circuit for a curved or flat light source for illumination, a segment type display element, and a dot matrix flat panel. It is also useful for driving circuits such as displays.
  • the polymer compound of the present invention can also be used as a material for an organic semiconductor layer of a photoelectric conversion element, and a photoelectric conversion element including such an organic semiconductor layer is useful as a solar cell module or an image sensor.
  • 1 is a schematic cross-sectional view of an organic transistor according to a first embodiment. It is a schematic cross section of the organic transistor which concerns on 2nd Embodiment. It is a schematic cross section of the organic transistor which concerns on 3rd Embodiment. It is a schematic cross section of the organic transistor which concerns on 4th Embodiment. It is a schematic cross section of the organic transistor which concerns on 5th Embodiment. It is a schematic cross section of the organic transistor which concerns on 6th Embodiment. It is a schematic cross section of the organic transistor which concerns on 7th Embodiment. It is a schematic cross section of the planar light source according to the embodiment. It is a schematic cross section of the organic transistor produced in the Example. It is a schematic cross section of the photoelectric conversion element which concerns on embodiment.
  • “repeating unit” means a monomer unit forming a skeleton of a polymer compound, and is a structural unit present in at least one polymer compound.
  • the “n-valent heterocyclic group” (n is 1 or 2) is formed by removing n hydrogen atoms from a heterocyclic compound (particularly a heterocyclic compound having aromaticity). , A group whose part forms a bond with another atom.
  • a “heterocyclic compound” is an organic compound having a cyclic structure in which the elements constituting the ring are not only carbon atoms but also hetero atoms such as oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms, and the like. An atom containing an atom in the ring.
  • the polymer compound of the present invention has a repeating unit represented by the above formula (1).
  • At least one of Ar 1 and Ar 2 in the formula (1) is preferably a heterocyclic ring, particularly a 5-membered heterocyclic ring.
  • a heterocyclic ring particularly a 5-membered heterocyclic ring.
  • the polymer compound of the present invention has at least one repeating unit selected from the group consisting of the repeating units represented by the above formulas (2), (3) and (4) as the repeating unit represented by the formula (1). It is preferable to have a unit.
  • the polymer compound may be a homopolymer having only one of the formulas (2) to (4) as a repeating unit (ie, a homopolymer), and the repeating unit may be represented by the formula (2)
  • a copolymer having a plurality of types of (4) or a combination of one type of formulas (2) to (4) and other types may also be used.
  • X 21 and X 22 in Formula (2), X 31 and X 32 in Formula (3), and X 41 and X 42 in Formula (4) are the same or different and are chalcogen atoms.
  • a chalcogen atom is an element belonging to Group 16 of the periodic table, and examples include an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom, and a polonium atom. Since a high charge mobility can be obtained, the chalcogen atom is preferably a sulfur atom, a selenium atom, or an oxygen atom. In consideration of the burden on the environment, a sulfur atom and an oxygen atom are more preferable, and a sulfur atom is particularly preferable.
  • R 23 , R 24 , R 25 , R 26 , R 27 and R 28 in the formula (2) (hereinafter expressed as “R 23 to R 28 ”), R 33 to R 38 in the formula (3) And R 43 to R 48 in formula (4) are the same or different and each represents a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, aryl
  • An alkylthio group, a substituted silyl group, an unsubstituted or substituted carboxyl group, a monovalent heterocyclic group which may have a substituent, a cyano group or a fluorine atom is shown.
  • the alkyl group may be linear, branched or cyclic, and preferably has 1 to 36 carbon atoms, more preferably 6 to 30 carbon atoms, and still more preferably 8 to 24 carbon atoms.
  • alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, isoamyl, hexyl, cyclohexyl, heptyl, octyl, 2- Ethylhexyl, nonyl, decyl, 3,7-dimethyloctyl, undecyl, dodecyl, tetradecyl, hexadodecyl, octadodecyl trifluoromethyl, pentafluoroethyl, perfluorobutyl, perfluoro Examples include a hexyl group and a
  • the alkoxy group may be linear, branched or cyclic, and preferably has 1 to 36 carbon atoms, more preferably 6 to 30 carbon atoms.
  • alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, tert-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy, octyloxy Group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, undecyloxy group, dodecyloxy group, tetradecyloxy group, hexadecyloxy group, octadecyloxy group, trifluoromethoxy group A pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyl group, a perfluor
  • An undecyloxy group, a dodecyloxy group, a tetradecyloxy group, a hexadecyloxy group, and an octadecyloxy group are preferable.
  • the alkylthio group may be linear, branched or cyclic, and preferably has 1 to 36 carbon atoms, more preferably 6 to 30 carbon atoms.
  • alkylthio groups include methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, tert-butylthio, pentylthio, hexylthio, cyclohexylthio, heptylthio, octylthio, 2- Examples include ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group, undecylthio group, dodecylthio group, tetradecylthio group, hexadecylthio group, octadecylthio group, and trifluoromethylthio group.
  • hexylthio group, octylthio group, 2-ethylhexylthio group, decylthio group, 3,7-dimethyloctylthio group, undecylthio group Group, dodecylthio group, tetradecylthio group, hexadecylthio group and octadecylthio group are preferred.
  • An aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon, having a condensed ring, or having two or more independent benzene rings or condensed rings bonded directly or via a vinylene group including.
  • the aryl group preferably has 6 to 60 carbon atoms, more preferably 6 to 48, still more preferably 6 to 20, and particularly preferably 6 to 10. This carbon number does not include the carbon number of the substituent.
  • the aryl group includes a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, a 1-tetracenyl group, a 2-tetracenyl group, a 5-tetracenyl group, 1- Pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-perylenyl group, 3-perylenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 1-biphenylenyl group, 2-biphenylenyl group, 2- Phenanthrenyl group, 9-phenanthrenyl group, 6-chrysenyl group, 1-coronenyl group, 2-phenylphenyl group, 3-phenylphenyl group, 4-phenylphenyl group, 4- (anth
  • the hydrogen atom in these groups is further an alkyl group, alkoxy group, alkyloxycarbonyl group, acyl group, N, N-dialkylamino group, N, N-diarylamino group, cyano group, nitro group, chlorine atom, fluorine atom Etc. may be substituted.
  • the aryloxy group preferably has 6 to 60 carbon atoms, more preferably 7 to 48 carbon atoms.
  • Examples of the aryloxy group include a phenoxy group, a C 1 -C 18 alkoxyphenoxy group (“C 1 -C 18 alkoxy” indicates that the alkoxy moiety has 1 to 18 carbon atoms, and the same applies hereinafter)
  • a C 1 -C 18 alkylphenoxy group (“C 1 -C 18 alkyl” indicates that the alkyl moiety has 1 to 18 carbon atoms, the same shall apply hereinafter), a 1-naphthyloxy group, 2-naphthyl Examples thereof include an oxy group and a pentafluorophenyloxy group.
  • a C 1 -C 18 alkoxyphenoxy group and a C 1 -C 18 alkylphenoxy group are preferred because the balance between the solubility of the polymer compound in an organic solvent and the heat resistance becomes good.
  • C 1 -C 18 alkoxyphenoxy group examples include methoxyphenoxy group, ethoxyphenoxy group, propyloxyphenoxy group, isopropyloxyphenoxy group, butoxyphenoxy group, isobutoxyphenoxy group, tert-butoxyphenoxy group, pentyl Oxyphenoxy group, hexyloxyphenoxy group, cyclohexyloxyphenoxy group, heptyloxyphenoxy group, octyloxyphenoxy group, 2-ethylhexyloxyphenoxy group, nonyloxyphenoxy group, decyloxyphenoxy group, 3,7-dimethyloctyloxyphenoxy group , Undecyloxyphenoxy group, dodecyloxyphenoxy group, tetradecyloxyphenoxy group, hexadecyloxyphenoxy group, octadecyloxyphene group Alkoxy groups.
  • C 1 to C 18 alkylphenoxy group examples include methylphenoxy group, ethylphenoxy group, dimethylphenoxy group, propylphenoxy group, 1,3,5-trimethylphenoxy group, methylethylphenoxy group, isopropyl Phenoxy group, butylphenoxy group, isobutylphenoxy group, tert-butylphenoxy group, pentylphenoxy group, isoamylphenoxy group, hexylphenoxy group, heptylphenoxy group, octylphenoxy group, nonylphenoxy group, decylphenoxy group, undecylphenoxy group, Examples include dodecylphenoxy group, tetradecylphenoxy group, hexadecylphenoxy group, and octadecylphenoxy group.
  • the arylthio group preferably has 3 to 60 carbon atoms.
  • Specific examples of the arylthio group include a phenylthio group, a C 1 -C 18 alkoxyphenylthio group, a C 1 -C 18 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.
  • a C 1 -C 18 alkoxyphenylthio group and a C 1 -C 18 alkylphenylthio group are preferred because the balance between the solubility of the polymer compound in an organic solvent and the heat resistance is improved.
  • the arylalkyl group preferably has 7 to 60 carbon atoms, more preferably 7 to 48 carbon atoms.
  • Examples of the arylalkyl group include a phenyl-C 1 -C 18 alkyl group, a C 1 -C 18 alkoxyphenyl-C 1 -C 18 alkyl group, a C 1 -C 18 alkylphenyl-C 1 -C 18 alkyl group, Examples thereof include 1 -naphthyl-C 1 -C 18 alkyl group and 2-naphthyl-C 1 -C 18 alkyl group.
  • the arylalkoxy group preferably has 7 to 60 carbon atoms, more preferably 7 to 48 carbon atoms.
  • arylalkoxy groups include phenyl-C 1 -C 18 alkoxy such as phenylmethoxy group, phenylethoxy group, phenylbutoxy group, phenylpentyloxy group, phenylhexyloxy group, phenylheptyloxy group, phenyloctyloxy group, etc.
  • C 1 -C 18 alkoxyphenyl-C 1 -C 18 alkoxy group C 1 -C 18 alkylphenyl-C 1 -C 18 alkoxy group, 1-naphthyl-C 1 -C 18 alkoxy group, 2-naphthyl- And C 1 -C 18 alkoxy groups.
  • a C 1 -C 18 alkoxyphenyl-C 1 -C 18 alkoxy group, a C 1 -C 18 alkylphenyl-C 1 - C18 alkoxy groups are preferred.
  • the arylalkylthio group preferably has 7 to 60 carbon atoms, more preferably 7 to 48 carbon atoms.
  • Examples of the arylalkylthio group include phenyl-C 1 -C 18 alkylthio group, C 1 -C 18 alkoxyphenyl-C 1 -C 18 alkylthio group, C 1 -C 18 alkylphenyl-C 1 -C 18 alkylthio group, Examples thereof include a 1 -naphthyl-C 1 -C 18 alkylthio group and a 2-naphthyl-C 1 -C 18 alkylthio group.
  • Examples of the substituted silyl group include a silyl group substituted with 1, 2 or 3 groups selected from an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group.
  • the substituted silyl group preferably has 1 to 60 carbon atoms, more preferably 3 to 48 carbon atoms. Note that the alkyl group, aryl group, arylalkyl group, or monovalent heterocyclic group may have a substituent.
  • substituted silyl groups include trimethylsilyl, triethylsilyl, tripropylsilyl, triisopropylsilyl, dimethylisopropylpropyl, diethylisopropylsilyl, tert-butylsilyldimethylsilyl, pentyldimethylsilyl, hexyldimethylsilyl.
  • substituted carboxyl group examples include an alkyl group, an aryl group, an arylalkyl group or a carboxyl group substituted with a monovalent heterocyclic group, preferably having 2 to 60 carbon atoms, more preferably 2 carbon atoms. 48.
  • substituted carboxyl groups include methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, tert-butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group Cyclohexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, nonyloxycarbonyl group, decyloxycarbonyl group, 3,7-dimethyloctyloxycarbonyl group, undecyloxycarbonyl group, Dodecyloxycarbonyl group, tetradecyloxycarbonyl group, hexadecyloxycarbonyl group, octadecyloxycarbonyl group, trifluoromethoxycarbonyl , Pentafluoro
  • the monovalent heterocyclic group preferably has 4 to 60 carbon atoms, more preferably 4 to 20 carbon atoms.
  • the carbon number of the monovalent heterocyclic group does not include the carbon number of the substituent.
  • Examples of the monovalent heterocyclic group include thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidyl group, quinolyl group, isoquinolyl group, pyrimidyl group, and triazinyl group.
  • a thienyl group, a pyridyl group, a quinolyl group, an isoquinolyl group, a pyrimidyl group, and a triazinyl group are preferable, and a thienyl group, a pyridyl group, a pyrimidyl group, and a triazinyl group are more preferable.
  • the monovalent heterocyclic group may have a substituent such as an alkyl group or an alkoxy group.
  • the substituents having the condensed ring structure in the formulas (1) to (4) It is preferable that the structure is axisymmetric with respect to any one axis or is replaced with a point-symmetric structure with respect to the center of gravity.
  • the combination of R 23 and R 26 , the combination of R 24 and R 27, and the combination of R 25 and R 28 in formula (2) are combinations of the same groups.
  • the combination of R 33 and R 36 , the combination of R 34 and R 37, and the combination of R 35 and R 38 are combinations of the same groups.
  • the combination of R 44 and R 47 and the combination of R 45 and R 48 are preferably combinations of the same groups.
  • the “combination of the same groups with each other” means that the groups are of the same type, for example, alkyl groups or alkoxy groups.
  • the combination of the same groups is preferably the same when the substituent structure is the same, such as chain length or branching, because the packing of the polymer compound is improved.
  • R 23 to R 28 in the formula (2), R 33 to R 38 in the formula (3), All of R 43 to R 48 in Formula (4) are preferably hydrogen atoms.
  • the repeating units represented by the formulas (2), (3) and (4) are preferably the repeating units represented by the formulas (2a), (3a) and (4a), respectively. is there.
  • X 21 , X 22 , X 31 , X 32 , X 41 and X 42 in the formulas (1a), (2a) and (4a) are the same as those in the above formulas (2), (3) and (4). It is synonymous with the group shown with the same code
  • the polymer compound is a copolymer
  • a suitable repeating unit to be combined with a repeating unit represented by the formula (1) preferably at least one repeating unit of the formulas (2) to (4)
  • Y represents an arylene group, a divalent heterocyclic group, a divalent group having a metal complex structure, or an ethynylene group (a group represented by —C ⁇ C—), It may have a substituent.
  • Y is preferably a copolymer in which the repeating unit represented by the formula (5) (in the case where there are a plurality of repeating units composed of a plurality of Y) together with the repeating unit represented by the formula (1)
  • a ⁇ -conjugated system in which multiple bonds and single bonds are alternately repeated is formed by bonds between carbons or bonds between carbon and heteroatoms.
  • Is a group selected to be Examples of such a ⁇ -conjugated system include structures shown within a dotted line in the following exemplary formula (E1).
  • the arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon, and includes those having an independent benzene ring or condensed ring.
  • the arylene group preferably has 6 to 60 carbon atoms, more preferably 6 to 48 carbon atoms, still more preferably 6 to 30 carbon atoms, and particularly preferably 6 to 18 carbon atoms.
  • arylene group examples include unsubstituted or substituted phenylene groups such as 1,4-phenylene group, 1,3-phenylene group and 1,2-phenylene group; 1,4-naphthalenediyl group and 1,5-naphthalenediyl group 1,6-naphthalenediyl group such as 2,6-naphthalenediyl group; 1,4-anthracenediyl group, 1,5-anthracenediyl group, 2,6-anthracenediyl group, 9,10-anthracenediyl group Unsubstituted or substituted anthracenediyl groups such as 2,7-phenanthrenediyl group and the like; 1,7-naphthacenediyl group, 2,8-naphthacenediyl group, 5,12-naphthacenediyl group, etc.
  • phenylene groups such as 1,4-phenylene group, 1,3-phenylene group and 1,2-phenylene group
  • an unsubstituted or substituted phenylene group an unsubstituted or substituted fluorenediyl group is preferable, an unsubstituted or substituted fluorenediyl group is more preferable, and a substituted fluorenediyl group is preferably used. Particularly preferred.
  • Examples of such an arylene group include groups represented by formulas (9a) to (9f).
  • R 93 , R 94 and R 96 are the same or different and each is a hydrogen atom, a halogen atom or a monovalent group, and R 95 is a halogen atom or a monovalent group. is there.
  • U is an integer of 0 or more.
  • Examples of the monovalent group include the same monovalent groups as those exemplified as R 23 to R 28 in Formula (2).
  • the groups represented by the same reference numerals may be the same or different.
  • R 93 , R 94 , R 95 and R 96 or groups represented by the same symbol are bonded to the same carbon atom or an adjacent carbon atom, this relationship is established.
  • Some groups may be bonded together to form a ring.
  • the ring formed in this case may be a single ring or a condensed ring, and may be a hydrocarbon ring or a heterocyclic ring. Moreover, these rings may have a substituent.
  • the ring to be formed is preferably a monocyclic hydrocarbon ring or a monocyclic heterocycle containing an oxygen atom or a sulfur atom as a hetero atom.
  • the divalent heterocyclic group generally has 4 to 60 carbon atoms, preferably 4 to 48, more preferably 4 to 30, still more preferably 4 to 22, and particularly preferably 4 carbon atoms. ⁇ 12, particularly preferably 4. This carbon number does not include the carbon number of the substituent.
  • divalent heterocyclic group examples include an unsubstituted or substituted thiophenediyl group such as a 2,5-thiophenediyl group; an unsubstituted or substituted furandyl group such as a 2,5-furandiyl group; -Unsubstituted or substituted pyridinediyl group such as pyridinediyl group and 2,6-pyridinediyl group; unsubstituted or substituted quinolinediyl group such as 2,6-quinolinediyl group; 1,4-isoquinolinediyl group and 1,5 -Unsubstituted or substituted isoquinoline diyl group such as isoquinoline diyl group; unsubstituted or substituted quinoxaline diyl group such as 5,8-quinoxaline diyl group; and 4,7-benzo [1,2,5] thiadiazole diyl group Unsubstituted or substituted benzo [1,2,5] thiadiazoled
  • Benzothiazolediyl group unsubstituted or substituted carbazolediyl group such as 2,7-carbazolediyl group and 3,6-carbazolediyl group; unsubstituted or substituted phenoxazinediyl group such as 3,7-phenoxazinediyl group
  • An unsubstituted or substituted phenothiazinediyl group such as a 3,7-phenothiazinediyl group
  • dibenzosiloldiyl group such as a 2,7-dibenzosiloldiyl group.
  • the divalent heterocyclic group is preferably an unsubstituted or substituted thiophenediyl group such as a 2,5-thiophenediyl group; an unsubstituted or substituted furandyl group such as a 2,5-furandiyl group; An unsubstituted or substituted pyridinediyl group such as a 2,5-pyridinediyl group, a 2,6-pyridinediyl group; an unsubstituted or substituted quinolinediyl group such as a 2,6-quinolinediyl group; a 1,4-isoquinolinediyl group More preferred is an unsubstituted or substituted thiophenediyl group such as a 2,5-thiophenediyl group.
  • Examples of such a divalent heterocyclic group include groups represented by formulas (11a) to (11p).
  • R 115 , R 116 , R 117 , R 118 and v are R 93 , R 94 , R 95 , R 96 and u in the above formulas (9a) to (9f), respectively. It is synonymous with.
  • Z is a heteroatom such as an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, or a silicon atom.
  • the divalent group having a metal complex structure is a group composed of the remaining atomic groups formed by removing two hydrogen atoms from an organic ligand of a metal complex having an organic ligand and a central metal.
  • the metal complex include a low-molecular fluorescent material, a metal complex known as a phosphorescent material, a triplet light-emitting complex, and the like.
  • the central metal of the metal complex include aluminum, zinc, beryllium, iridium, platinum, gold, europium, and terbium.
  • the carbon number of the organic ligand is preferably 4 to 60.
  • organic ligands include 8-quinolinol and its derivatives, benzoquinolinol and its derivatives, 2-phenyl-pyridine and its derivatives, 2-phenyl-benzothiazole and its derivatives, 2-phenyl-benzoxazole and its derivatives Derivatives, porphyrins and their derivatives, etc. are mentioned.
  • Examples of the divalent group having such a metal complex structure include groups represented by formulas (100) to (106).
  • R in the formulas (100) to (106) is a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkenyl group , Arylalkynyl group, amino group, substituted amino group, silyl group, substituted silyl group, halogen atom, acyl group, acyloxy group, imine residue, amide group, acid imide group, monovalent heterocyclic group, carboxyl group, non A substituted or substituted carboxyl group or a cyano group is represented.
  • the carbon atom which these groups have may be substituted with the nitrogen atom, the oxygen atom, or the sulfur atom, and also the hydrogen atom may be substituted with the fluorine atom.
  • a plurality of R may be the same or different.
  • Y in the repeating unit represented by the formula (5) is particularly preferably a group represented by the formula (6).
  • the polymer compound can exhibit higher charge mobility.
  • T represents a divalent heterocyclic group which may have a substituent, and n represents an integer of 2 to 8.
  • a plurality of T may be the same or different.
  • the repeating unit represented by formula (6) is more preferably a repeating unit represented by formula (6a).
  • the polymer compound can exhibit higher charge mobility.
  • R 61 , R 62 , R 63 and R 64 are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylalkyl group, an arylalkoxy group, or a substituent.
  • a silyl group, an unsubstituted or substituted carboxyl group, a monovalent heterocyclic group, a cyano group or a fluorine atom is shown.
  • the groups represented by R 61 to R 64 are the same as the groups represented by R 23 to R 28 described above, but are preferably alkyl groups.
  • Y in Formula (5) is preferable even if it is group represented by Formula (7).
  • Ar 3 and Ar 4 are the same or different and each have an aromatic hydrocarbon ring which may have a substituent, a heterocyclic ring which may have a substituent, or a substituent. It is a condensed ring of an aromatic hydrocarbon ring which may be substituted and a heterocyclic ring which may have a substituent.
  • R 71 and R 72 are the same or different and each is a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkoxy group, arylalkylthio group, substituted silyl group, An unsubstituted or substituted carboxyl group, a monovalent heterocyclic group which may have a substituent, a cyano group or a fluorine atom is shown. ]
  • the group represented by the formula (7) is more preferably a group represented by the formula (7a).
  • R 73 and R 74 are the same or different and each represents a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylalkyl group, arylalkoxy group, substituted silyl group, unsubstituted or A substituted carboxyl group, a monovalent heterocyclic group, a cyano group or a fluorine atom is shown.
  • R 73 and R 74 are the same or different and each represents a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, aryloxy group, arylalkyl group, arylalkoxy group, substituted silyl group, unsubstituted or A substituted carboxyl group, a monovalent heterocyclic group, a cyano group or a fluorine atom is shown.
  • R 71 to R 74 are the same as the groups represented by R 23 to R 28 described above.
  • Ar 3 and Ar 4 are preferably a benzene ring which may have a substituent.
  • the polymer compound may have a plurality of types in which the groups represented by Y in the formula are different from each other as the repeating unit represented by the formula (5).
  • the groups represented by Y in the formula are different from each other as the repeating unit represented by the formula (5).
  • an unsubstituted or substituted bithiophenediyl group represented by the formula (6) is used as the repeating unit represented by the formula (5).
  • Group and a group represented by formula (7) may be combined.
  • the polymer compound of the present invention has a repeating unit represented by the formula (1) (preferably the formulas (2) to (4)). And in a copolymer, when it is suitable as a repeating unit combined with the repeating unit represented by Formula (1), it has a repeating unit represented by Formula (5), when suitable.
  • the repeating unit represented by the formula (5) preferably includes at least one electron accepting group, and at least one of Y is an electron accepting group. It is more preferable.
  • the electron acceptability in a predetermined group is estimated by the lowest unoccupied molecular orbital (LUMO), and the value of the energy level of this LUMO is calculated by quantum chemical calculation Gaussian.
  • the density functional method is used as the calculation method
  • B3LYP is used as the density functional
  • 3-21G * is used as the basis function
  • the program used is Gaussian 09 Rev.
  • a case where the LUMO calculated as A02 is ⁇ 1.4 eV or less is called electron acceptability.
  • the energy level value of the highest occupied molecular orbital (HOMO) calculated by the quantum chemical calculation Gaussian of the repeating unit represented by the formula (1) and the electron accepting property in the formula (5) is preferably 4.4 eV or less.
  • the polymer compound includes a plurality of types of repeating units represented by formula (1) and electron accepting groups, the lowest value among the HOMO energy level values calculated above and the LUMO It is preferable that the difference from the highest energy level value is 4.4 eV or less.
  • Examples of such electron accepting groups include groups represented by formulas (12a) to (12j).
  • R 123 , R 124 and R 126 have the same meanings as R 93 , R 94 and R 96 in formulas (9a) to (9f), respectively.
  • At least one of Y in the repeating unit represented by the formula (5) is an electron accepting group represented by the formula (8).
  • X 81 represents a chalcogen atom, —N (R 83 ) — or —CR 84 ⁇ CR 85 —.
  • R 81 and R 82 are the same or different and each represents a hydrogen atom or a substituent.
  • groups having 1 to 30 carbon atoms are preferred. Examples of such substituents include methyl groups, ethyl groups, butyl groups, hexyl groups, octyl groups, dodecyl groups and other alkyl groups, methoxy groups, ethoxy groups, butoxy groups, hexyloxy groups, octyloxy groups, dodecyloxy groups.
  • aryl groups such as phenyl and naphthyl.
  • R 81 and R 82 may be connected to each other to form a cyclic structure.
  • Examples of the repeating unit represented by the formula (8) in which R 81 and R 82 are linked to form a cyclic structure include the following.
  • R 86 and R 87 are the same or different and each represents a hydrogen atom or a substituent.
  • substituent represented by R 86 and R 87 include the same groups as the substituents represented by R 81 and R 82 described above.
  • X 81 is preferably a sulfur atom.
  • a repeating unit represented by the formula (8a) is particularly preferable.
  • the value of the LUMO energy level calculated by the above quantum chemical calculation Gaussian in such a repeating unit is ⁇ 2.32 eV.
  • N in the formulas (130) to (175) represents the number of repeating units (degree of polymerization), preferably 4 to 3000, and more preferably 6 to 850.
  • the polymer compound is a copolymer
  • good charge injection properties and solubility can be obtained, so that the formula (1) (preferably the formulas (2) to (4)) with respect to the total number of moles of all repeating units. Is preferably 20 to 80%, more preferably 30 to 70%, and still more preferably 40 to 60%.
  • the polymer compound good main chain orientation can be obtained, so that the total number of moles of the repeating units represented by the formula (1) (preferably the formulas (2) to (4)) is reduced.
  • the total number of moles of repeating units other than these is preferably 10% or less, more preferably 5% or less, further preferably 1% or less, and particularly preferably 0.05% or less. preferable. If the orientation of the main chain is good, high packing becomes possible, so that a better charge mobility can be obtained.
  • the polymer compound is a copolymer
  • any copolymer may be used, such as a block copolymer, a random copolymer, an alternating copolymer, or a graft copolymer.
  • the structure of the polymer compound is represented by the formula (1) (preferably the formulas (2) to (4)). It is preferable to include a structure in which repeating units to be bonded and repeating units represented by the formula (5) are alternately bonded.
  • the polymer compound has a repeating unit represented by the formula (1) (preferably any one of the repeating units represented by the formulas (2) to (4)). Any one of the repeating units represented by formulas (2) and (3), and the formula (5). It is more preferable that the repeating unit represented by
  • the total number of repeating units constituting the “alternately bonded structure” It is preferably 90% or more, more preferably 99% or more, further preferably 99.5% or more, and particularly preferably 99.9% or more, based on the unit, on a molar basis.
  • the polymer compound is a compound having a plurality of repeating units, and at least one of them is a repeating unit represented by the formula (1) (preferably any one of the formulas (2) to (4)). There is something.
  • the polymer compound gel permeation chromatography (hereinafter, "GPC" hereinafter.)
  • the number average molecular weight in terms of polystyrene by (Mn) is preferable to be 1 ⁇ 10 3 ⁇ 1 ⁇ 10 8, 1 ⁇ 10 4 More preferably, it is ⁇ 1 ⁇ 10 6 .
  • the polymer compound preferably has a polystyrene-equivalent weight average molecular weight (Mw) of 1 ⁇ 10 3 to 1 ⁇ 10 8 by GPC.
  • the weight average molecular weight is more preferably 1 ⁇ 10 4 to 5 ⁇ 10 6. ⁇ 10 4 to 5 ⁇ 10 5 is more preferable, and 1 ⁇ 10 4 to 5 ⁇ 10 5 is even more preferable.
  • the terminal group is preferably a stable group.
  • Such a terminal group is preferably one having a conjugated bond to the main chain, such as a structure bonded to an aryl group or a heterocyclic group via a carbon-carbon bond.
  • substituents described in Chemical formula 10 of JP-A-9-45478 can be exemplified as terminal groups.
  • Such a high molecular compound is useful as it is as a light emitting material, a hole transport material, an electron transport material, or the like, but when used, it may be used in combination with other high molecular weight compounds. You may use as such a composition.
  • the polymer compound can be produced, for example, by subjecting a raw material compound corresponding to the repeating unit represented by the formula (1) such as the compound represented by the formula (21) to condensation polymerization.
  • a raw material compound corresponding to the repeating unit represented by the formula (1) such as the compound represented by the formula (21)
  • the repeating unit represented by the formula (1) is a repeating unit represented by the formula (2), (3) or (4)
  • a compound represented by formula (23), a compound represented by formula (24), and the like can be used.
  • the repeating unit represented by the formula (5) is introduced, it is preferable to use the raw material compound represented by the formula (25) in combination.
  • Ar 1 , Ar 2 , R 1 , R 2 , R 3 , R 4 , X 21 , X 22 , X 31 , X 32 , X 41 , X 42 , R 23 to R 28 , R 33 to R 38 , R 43 to R 48 and n are the same as described above.
  • Z 1 , Z 2 , Z 21 , Z 22 , Z 31 , Z 32 , Z 41 , Z 42 , Z 51 and Z 52 are the same or different polymerization active groups.
  • the polymerization active group include a halogen atom, a sulfonate group represented by the formula (a-1), a methoxy group, a boric acid ester residue, a boric acid residue (a group represented by —B (OH) 2 ), And a group represented by the formula (a-2), a group represented by the formula (a-3), and a group represented by the formula (a-4).
  • groups represented by the same reference numerals may be the same or different from each other.
  • R T represents an alkyl group which may have a substituent, or an aryl group which may have a substituent, and X A represents a halogen atom.
  • Show. Equation (1-4) plurality of R T in may each be the same or different.
  • Examples of the alkyl group and aryl group represented by R T include the same groups as those exemplified as R 23 to R 28 in the above formula (2).
  • As the halogen atom represented by X A a chlorine atom, a bromine atom, an iodine atom.
  • the halogen atom is preferably a chlorine atom, a bromine atom or an iodine atom.
  • the sulfonate group represented by the formula (a-1) include a methane sulfonate group, a trifluoromethane sulfonate group, a phenyl sulfonate group, and a 4-methylphenyl sulfonate group.
  • boric acid ester residue examples are represented by the formula (a-5), (a-6), (a-7), (a-8), (a-9) or (a-10). Groups.
  • examples of the group represented by the formula (a-4) include a trimethylstannanyl group, a triethylstannanyl group, and a tributylstannanyl group.
  • the polymerization active group since the synthesis of the raw material compounds represented by these formulas is simple and easy to handle, halogen atoms, boric acid ester residues, boric acid residues It is preferably a group.
  • the raw material compounds represented by the formulas (21) to (25) those synthesized and isolated in advance may be used, or those prepared in the reaction system may be used as they are.
  • Examples of the method for subjecting the raw material compound to condensation polymerization include a method in which the raw material compound is reacted using an appropriate catalyst or an appropriate base as necessary.
  • the catalyst include palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium complexes such as palladium acetate, nickel [tetrakis (triphenylphosphine)], [1,3-bis And transition metal complexes such as (diphenylphosphino) propane] dichloronickel and nickel complexes such as [bis (1,4-cyclooctadiene)] nickel.
  • transition metal complexes may be further combined with a ligand such as triphenylphosphine, tri (tert-butylphosphine), tricyclohexylphosphine, diphenylphosphinopropane, bipyridyl, etc. as a catalyst.
  • a ligand such as triphenylphosphine, tri (tert-butylphosphine), tricyclohexylphosphine, diphenylphosphinopropane, bipyridyl, etc.
  • a catalyst synthesized in advance may be used, or a catalyst prepared in a reaction system may be used as it is.
  • a catalyst may be used individually by 1 type and may use 2 or more types together.
  • a catalyst When a catalyst is used, it is preferably 0.00001 to 3 molar equivalents, more preferably 0.00005 to 0.5 molar equivalents, and further 0.0001 to 0.2 molar equivalents relative to the total number of moles of raw material compounds. preferable.
  • Examples of the base that promotes the condensation reaction include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, and tripotassium phosphate, tetrabutylammonium fluoride, tetrabutylammonium chloride, and bromide.
  • examples include organic bases such as tetrabutylammonium and tetrabutylammonium hydroxide.
  • the amount thereof is preferably 0.5 to 20 molar equivalents and more preferably 1 to 10 molar equivalents relative to the total number of moles of the raw material compounds.
  • the condensation polymerization may be performed in the absence of a solvent or in the presence of a solvent, but is preferably performed in the presence of an organic solvent.
  • organic solvent for example, toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide can be used, although it varies depending on the type of raw material compound and reaction. . Since side reactions can be suppressed, it is desirable to use an organic solvent that has been subjected to deoxygenation treatment. These organic solvents may be used individually by 1 type, and may use 2 or more types together.
  • the amount used is preferably such that the total concentration of the raw material compounds is 0.1 to 90% by weight, more preferably 1 to 50% by weight. More preferably, the amount is 30% by weight.
  • the reaction temperature for the condensation polymerization is preferably ⁇ 100 ° C. to 200 ° C., more preferably ⁇ 80 ° C. to 150 ° C., and further preferably 0 ° C. to 120 ° C.
  • a suitable reaction time is 1 hour or more, more preferably 2 to 500 hours, although it depends on conditions such as reaction temperature.
  • condensation polymerization examples include a method of polymerizing by a Suzuki reaction (Chem. Rev., Vol. 95, p. 2457 (1995)), a method of polymerizing by a Grignard reaction (Kyoritsu Shuppan, series of functional polymer materials) Volume 2, Polymer Synthesis and Reaction (2), pages 432 to 433), Method of Polymerization by Yamamoto Polymerization Method (Progressive Polymer Science (Prog. Polym. Sci.), Volume 17, pages 1153-1205, 1992 Year).
  • a known post-treatment can be performed after the condensation polymerization.
  • a method may be mentioned in which a reaction solution obtained by condensation polymerization is added to a lower alcohol such as methanol and the resulting precipitate is filtered and dried.
  • the polymer compound of the present invention can be obtained.
  • the purity of the polymer compound is low, it can be purified by usual methods such as recrystallization, continuous extraction with a Soxhlet extractor, column chromatography and the like. That's fine.
  • the raw material compound represented by the formula (21) (preferably any one of the raw material compounds represented by the formulas (22) to (24)) and the raw material compound represented by the formula (25)
  • the polymer compound preferably copolymerized
  • the polymer compound preferably has a repeating unit consisting of the former raw material compound and a repeating unit consisting of the latter raw material compound alternately. is there.
  • a compound in which the polymerization active group in the formula (21) (preferably the formulas (22) to (24)) is a halogen atom, and the polymerization active group in the formula (25) are boric acid residues or boric acid ester residues.
  • a method of polymerizing a combination with a compound in which the polymerization active group is a halogen atom in the polymerization method using Suzuki polymerization is preferred.
  • composition The above-described polymer compound of the present invention can be used as a light-emitting material or a charge transport material as a composition containing a combination of other components.
  • a composition include those containing a polymer compound and at least one material selected from the group consisting of a hole transport material, an electron transport material and a light emitting material.
  • suitable hole transport materials and electron transport materials those exemplified in the description of the thin film described later can be applied.
  • the content ratio of the polymer compound and at least one material selected from the group consisting of a hole transport material, an electron transport material and a light emitting material may be determined according to the use of the composition.
  • the polymer compound is preferably 20 to 99 parts by weight and more preferably 40 to 95 parts by weight with respect to 100 parts by weight of the total composition.
  • the number average molecular weight (Mn) in terms of polystyrene by GPC of the composition containing the polymer compound is preferably 1 ⁇ 10 3 to 1 ⁇ 10 8 and more preferably 5 ⁇ 10 3 to 1 ⁇ 10 6. preferable.
  • the weight average molecular weight (Mw) in terms of polystyrene is preferably 1 ⁇ 10 3 to 1 ⁇ 10 8 , good film formability can be obtained, and high efficiency can be obtained when used for device fabrication. Therefore, it is more preferably 1 ⁇ 10 4 to 5 ⁇ 10 6 .
  • the average molecular weight of the composition containing the polymer compound refers to a value obtained by analyzing this composition by GPC.
  • the composition of the present embodiment can also be a solution containing a solvent such as an organic solvent (hereinafter referred to as “ink composition”), as will be described later.
  • a solvent such as an organic solvent
  • a suitable form of the ink composition will be described.
  • the ink composition containing the polymer compound of the present invention contains a polymer compound and a solvent.
  • the ink composition may contain a composition containing the polymer compound as described above and a solvent.
  • This ink composition is mainly in the form of a solution and is useful for forming a thin film by a printing method or the like.
  • Components other than the polymer compound and solvent contained in the ink composition include hole transport materials, electron transport materials, light emitting materials, stabilizers, thickeners (high molecular weight compounds and poor solvents for increasing viscosity), viscosity A low molecular weight compound for lowering the pH, a surfactant (for lowering the surface tension), an antioxidant and the like.
  • the ink composition may contain only one kind of the polymer compound of the present invention, or may contain two or more kinds in combination. Further, it may contain a high molecular weight compound other than the polymer compound of the present invention as long as the characteristics are not impaired when used for the production of an element.
  • the ratio of the polymer compound of the present invention in the ink composition is preferably 1 to 99.9 parts by weight and more preferably 60 to 99.5 parts by weight with respect to 100 parts by weight of the total amount of the ink composition. 80 to 99.0 parts by weight is even more preferable.
  • the coating method can be performed satisfactorily, and a thin film or the like that can exhibit the excellent characteristics of the polymer compound can be easily formed.
  • the viscosity of the ink composition may be adjusted depending on the type of printing method to be used.For example, when the ink composition such as an ink jet printing method is applied to a method that passes through a discharge device, clogging or flight bending at the time of discharge is caused. In order to prevent this, it is preferably in the range of 1 to 20 mPa ⁇ s at 25 ° C.
  • the solvent used in the ink composition is preferably one that can dissolve or uniformly disperse the solid components in the ink composition.
  • Solvents include chloro solvents such as chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o-dichlorobenzene, ether solvents such as tetrahydrofuran, dioxane, anisole, toluene, xylene, etc.
  • Aromatic hydrocarbon solvents cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane and other aliphatic hydrocarbon solvents, acetone, methyl ethyl ketone, Ketone solvents such as cyclohexanone, benzophenone and acetophenone, ester solvents such as ethyl acetate, butyl acetate, ethyl cellosolve acetate, methyl benzoate and phenyl acetate, ethylene glycol, ethylene glycol monobutyl ether, ethylene glycol Polyethyl alcohol and its derivatives such as monoethyl ether, ethylene glycol monomethyl ether, dimethoxyethane, propylene glycol, diethoxymethane, triethylene glycol monoethyl ether, g
  • aromatic hydrocarbon solvents since the solubility, viscosity characteristics, and uniformity during film formation of polymer compounds and the like are improved, aromatic hydrocarbon solvents, ether solvents, aliphatic hydrocarbon solvents, ester solvents, Ketone solvents are preferred.
  • the solvent film formability and device characteristics are improved, so that two or more types are preferably used in combination, more preferably two to three types are used in combination, and two types are particularly preferably used in combination. .
  • one of the solvents When combining two types of solvents, one of the solvents may be in a solid state at 25 ° C.
  • the boiling point of at least one kind of solvent is preferably 180 ° C. or higher, and more preferably 200 ° C. or higher.
  • both of the two types of solvents are those capable of dissolving 1% by weight or more of the aromatic polymer at 60 ° C., and in particular, one of the two types of solvents.
  • the type of solvent is preferably one that dissolves 1% by weight or more of the aromatic polymer at 25 ° C.
  • the solvent having the highest boiling point among the combined solvents should be 40 to 90% by weight of the total solvent weight. It is preferably 50 to 90% by weight, more preferably 65 to 85% by weight.
  • the ink composition contains a high molecular weight compound as a thickener
  • this compound is soluble in the same solvent as the polymer compound of the present invention, and does not inhibit light emission or charge transport when a device is formed.
  • thickeners include high molecular weight polystyrene and high molecular weight polymethyl methacrylate. These high molecular weight compounds preferably have a polystyrene equivalent weight average molecular weight of 500,000 or more, more preferably 1,000,000 or more.
  • the poor solvent with respect to solid content in the component of an ink composition can also be used.
  • the viscosity can be increased moderately by adding a small amount of such a poor solvent.
  • the type and amount of the solvent may be selected as long as the solid content in the ink composition does not precipitate.
  • the amount of the poor solvent is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, with respect to 100 parts by weight of the entire ink composition. .
  • the antioxidant is for improving the storage stability of the ink composition.
  • the antioxidant is not particularly limited as long as it is soluble in the same solvent as the polymer compound of the present invention and does not inhibit light emission or charge transport when a device is formed.
  • a phenolic antioxidant or a phosphorus antioxidant Is exemplified.
  • the ink composition may contain water, metal or a salt thereof in the range of 1 to 1000 ppm on a weight basis.
  • the metal include lithium, sodium, calcium, potassium, iron, copper, nickel, aluminum, zinc, chromium, manganese, cobalt, platinum, and iridium.
  • the ink composition may contain silicon, phosphorus, fluorine, chlorine, bromine and the like in a range of 1 to 1000 ppm on a weight basis.
  • the thin film containing the polymer compound of the present invention can be applied as, for example, a light-emitting thin film, a conductive thin film, or an organic semiconductor thin film.
  • the thin film is a light-emitting thin film
  • high luminance and light emission voltage can be obtained, so that the quantum yield of light emission is preferably 30% or more, more preferably 50% or more, and 60% or more. Is more preferable, and 70% or more is particularly preferable.
  • the surface resistance is preferably 1 k ⁇ / ⁇ or less, more preferably 100 ⁇ / ⁇ or less, and even more preferably 10 ⁇ / ⁇ or less.
  • the conductive thin film is doped with a Lewis acid, an ionic compound, or the like, higher electrical conductivity can be obtained.
  • the larger one of the electron mobility and the hole mobility is preferably 10 ⁇ 5 cm 2 / Vs or more, and more preferably 10 ⁇ 3 cm 2 / Vs or more. Preferably, it is more preferably 10 ⁇ 1 cm 2 / Vs or more.
  • An organic transistor as described later can be formed using such an organic semiconductor thin film.
  • the thickness is preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, still more preferably 3 nm to 500 nm, and particularly preferably 5 nm to 200 nm.
  • the organic semiconductor thin film may contain one kind of the polymer compound of the present invention alone, or may contain two or more kinds in combination.
  • a low molecular compound or polymer compound having electron transport property or hole transport property other than the polymer compound may be mixed.
  • hole transport material known materials can be used, such as pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triaryldiamine derivatives, oligothiophenes and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilanes and derivatives thereof, side chains or main chains.
  • pyrazoline derivatives such as pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triaryldiamine derivatives, oligothiophenes and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilanes and derivatives thereof, side chains or main chains.
  • examples thereof include polysiloxane derivatives having an aromatic amine, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyarylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.
  • known materials can be used, such as oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and a derivative thereof, and fullerenes such as C 60 And derivatives thereof.
  • the thin film of this embodiment may contain the charge generation material in order to generate an electric charge with the light absorbed by the said thin film depending on a use.
  • the charge generation material known materials can be used, azo compounds and derivatives thereof, diazo compounds and derivatives thereof, metal-free phthalocyanine compounds and derivatives thereof, metal phthalocyanine compounds and derivatives thereof, perylene compounds and derivatives thereof, polycyclic quinone series compounds and their derivatives, squarylium compounds and their derivatives, azulenium compounds and their derivatives, thiapyrylium compounds and their derivatives, fullerenes and derivatives thereof such as C 60 is illustrated.
  • the thin film of this embodiment may contain other materials necessary for expressing various functions.
  • examples of such materials include sensitizers for sensitizing the function of generating charges by absorbed light, stabilizers for increasing stability, and UV absorbers for absorbing UV light.
  • a polymer compound other than the polymer compound of the present invention may be included as a polymer binder.
  • the polymer binder those not extremely disturbing the electron transport property or hole transport property are preferable, and those having no strong absorption against visible light are preferably used.
  • Such polymer binders include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof.
  • Examples include derivatives, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • Examples of the method for producing a thin film of the present embodiment include a method of using the polymer compound of the present invention as it is, or a method of forming a film using the above-described composition (for example, an ink composition).
  • a thin film can be formed by vacuum deposition.
  • Thin film formation methods include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, screen printing, flexographic printing.
  • Method, offset printing method, inkjet printing method, capillary coating method, nozzle coating method, dispenser printing method, etc., screen printing method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method are preferable, flexographic printing method A printing method, an inkjet method, and a dispenser printing method are more preferable.
  • a solution for example, an ink composition
  • a solvent to be used in addition to the polymer compound of the present invention, components to be mixed (electron transport material, hole transport material, polymer binder, etc.) are dissolved. It is preferable to use those to be used.
  • those used in the ink composition described above can be applied, and unsaturated hydrocarbons such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, etc.
  • unsaturated hydrocarbons such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, etc.
  • Solvent halogenated saturated hydrocarbon solvents such as carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, trichlorobenzene And halogenated unsaturated hydrocarbon solvents such as tetrahydrofuran, and ether solvents such as tetrahydrofuran and tetrahydropyran.
  • the polymer compound of the present invention depends on its structure and molecular weight, it can often be dissolved in these solvents in an amount of 0.1% by weight or more.
  • the glass transition temperature of the polymer compound of the present invention contained in this solution tends to be high, and thus it can be baked at a temperature of 100 ° C. or higher during the film formation process. In addition, even when baked at a temperature of 130 ° C., the characteristics are less likely to be deteriorated when used for device fabrication, so that a thin film can be easily formed. Furthermore, depending on the type of the polymer compound, baking may be performed at a temperature of 160 ° C. or higher.
  • the process of orientating a high molecular compound may be included in the manufacturing process.
  • the main chain molecules or the side chain molecules are arranged in one direction, and therefore the charge mobility is further increased.
  • a method of aligning the polymer compound a method known as a liquid crystal alignment method can be used.
  • the rubbing method, the photo-alignment method, the sharing method (shear stress application method) and the pulling coating method are simple, useful and easy to use as the alignment method, and the rubbing method and the sharing method are preferable.
  • a thin film for example, an organic semiconductor thin film
  • the polymer compound of the present invention has a charge transport property, it can transport and control electrons or holes injected from an electrode or a charge generated by light absorption. It can be used for various organic thin film elements such as organic transistors, solar cell modules, and optical sensors.
  • suitable examples of the organic thin film element will be described.
  • Organic transistor First, a preferred embodiment of an organic transistor including an organic semiconductor layer containing the polymer compound of the present invention will be described.
  • An organic transistor includes a source electrode and a drain electrode, an organic semiconductor layer containing the polymer compound as a current path between them, and a gate electrode that controls the amount of current passing through the current path.
  • An electric induction type is exemplified.
  • a field-effect organic transistor includes a source electrode and a drain electrode, an organic semiconductor layer serving as a current path between them, a gate electrode that controls the amount of current passing through the current path, and a gap between the organic semiconductor layer and the gate electrode. It is preferable to provide an insulating layer to be disposed.
  • the source electrode and the drain electrode are preferably provided in contact with the organic semiconductor layer, and the gate electrode is preferably provided with an insulating layer in contact with the organic semiconductor layer interposed therebetween.
  • the static induction organic transistor has a source electrode and a drain electrode, an organic semiconductor layer serving as a current path between them, and a gate electrode for controlling the amount of current passing through the current path, and the gate electrode is in the organic semiconductor layer.
  • the source electrode, the drain electrode, and the gate electrode provided in the organic semiconductor layer are preferably provided in contact with the organic semiconductor layer.
  • the structure of the gate electrode may be a structure in which a current path flowing from the source electrode to the drain electrode is formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. An electrode is mentioned.
  • FIG. 1 is a schematic cross-sectional view of an organic transistor (field effect organic transistor) according to the first embodiment.
  • the organic transistor 100 shown in FIG. 1 is formed on the substrate 1 so as to cover the substrate 1, the source electrode 5 and the drain electrode 6 formed on the substrate 1 with a predetermined interval, and the source electrode 5 and the drain electrode 6.
  • a gate electrode 4 is a schematic cross-sectional view of an organic transistor (field effect organic transistor) according to the first embodiment.
  • the organic transistor 100 shown in FIG. 1 is formed on the substrate 1 so as to cover the substrate 1, the source electrode 5 and the drain electrode 6 formed on the substrate 1 with a predetermined interval, and the source electrode 5 and the drain electrode 6.
  • Formed on the insulating layer 3 so as to cover the region of the insulating layer 3 formed on the organic semiconductor layer 2,
  • FIG. 2 is a schematic cross-sectional view of an organic transistor (field effect organic transistor) according to the second embodiment.
  • An organic transistor 110 shown in FIG. 2 includes a substrate 1, a source electrode 5 formed on the substrate 1, an organic semiconductor layer 2 formed on the substrate 1 so as to cover the source electrode 5, The drain electrode 6 formed on the organic semiconductor layer 2 with a predetermined interval, the insulating layer 3 formed on the organic semiconductor layer 2 and the drain electrode 6, and the insulation between the source electrode 5 and the drain electrode 6 And a gate electrode 4 formed on the insulating layer 3 so as to cover the region of the layer 3.
  • FIG. 3 is a schematic cross-sectional view of an organic transistor (field effect organic transistor) according to a third embodiment.
  • 3 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • FIG. 4 is a schematic cross-sectional view of an organic transistor (field effect organic transistor) according to a fourth embodiment.
  • An organic transistor 130 shown in FIG. 4 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • FIG. 5 is a schematic cross-sectional view of an organic transistor (static induction organic transistor) according to a fifth embodiment.
  • the organic transistor 140 shown in FIG. 5 includes a substrate 1, a source electrode 5 formed on the substrate 1, an organic semiconductor layer 2 formed on the source electrode 5, and a plurality of organic transistors 140 with a predetermined interval on the organic semiconductor layer 2.
  • a drain electrode 6 formed on the organic semiconductor layer 2a is a schematic cross-sectional view of an organic transistor (static induction organic transistor) according to a fifth embodiment.
  • the organic transistor 140 shown in FIG. 5 includes a substrate 1, a source electrode 5 formed on the substrate 1, an organic semiconductor layer 2 formed on the source electrode 5, and a plurality of organic transistors 140 with a predetermined interval on the organic semiconductor layer 2.
  • FIG. 6 is a schematic cross-sectional view of an organic transistor (field effect organic transistor) according to a sixth embodiment.
  • An organic transistor 150 shown in FIG. 6 includes a substrate 1, an organic semiconductor layer 2 formed on the substrate 1, a source electrode 5 and a drain electrode 6 formed on the organic semiconductor layer 2 with a predetermined interval, and a source electrode. 5 and the drain electrode 6 so as to partially cover the insulating layer 3 formed on the organic semiconductor layer 2, the region of the insulating layer 3 where the source electrode 5 is formed below, and the drain electrode 6 are formed below.
  • a gate electrode 4 formed on the insulating layer 3 so as to partially cover the region of the insulating layer 3.
  • FIG. 7 is a schematic cross-sectional view of an organic transistor (field effect organic transistor) according to a seventh embodiment.
  • the organic transistor 160 shown in FIG. 7 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 below.
  • the organic semiconductor layer 2 formed so as to cover the region of the insulating layer 3 formed on the organic semiconductor layer 2 and the organic semiconductor layer 2 so as to partially cover the region of the organic semiconductor layer 2 where the gate electrode 4 is formed below.
  • the drain formed on the organic semiconductor layer 2 with a predetermined distance from the source electrode 5 so as to partially cover the region of the organic semiconductor layer 2 on which the source electrode 5 and the gate electrode 4 are formed below.
  • the electrode 6 is provided.
  • the organic semiconductor layer 2 and / or the organic semiconductor layer 2a serve as a current path (channel) between the source electrode 5 and the drain electrode 6.
  • the gate electrode 4 controls the amount of current passing through the current path (channel) in the organic semiconductor layer 2 and / or the organic semiconductor layer 2a by applying a voltage.
  • a field effect organic transistor can be produced by a known method, for example, a method described in JP-A-5-110069.
  • the electrostatic induction organic transistor can be manufactured by a known method, for example, a method described in JP-A-2004-006476.
  • the substrate 1 does not have to obstruct the characteristics as an organic transistor, and a glass substrate, a flexible film substrate, or a plastic substrate can also be used.
  • the organic semiconductor layer 2 is comprised from the thin film (for example, organic-semiconductor thin film) containing the polymer compound of this invention mentioned above.
  • This organic semiconductor layer 2 may be composed of only this polymer compound, or may be composed of materials other than the polymer compound. Moreover, only 1 type of the high molecular compound of this invention may be included, and 2 or more types may be included.
  • the organic semiconductor layer 2 may further contain an electron transport material and / or a hole transport material in addition to the polymer compound of the present invention in order to enhance the electron transport property or the hole transport property.
  • As the hole transport material and the electron transport material those which can be contained in the above-described thin film can be applied.
  • the organic semiconductor layer 2 may contain a polymer binder in order to obtain high mechanical properties. As the polymer binder, those which can be contained in the above-described thin film can be applied.
  • the thickness of the organic semiconductor layer 2 is preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, still more preferably 3 nm to 500 nm, and particularly preferably 5 nm to 200 nm.
  • the organic semiconductor layer 2 can be formed by applying the thin film forming method as described above. That is, in the manufacture of an organic transistor, a thin film (organic semiconductor thin film) is formed on the surface on which the organic semiconductor layer 2 is to be formed (for example, the substrate 1 or the insulating layer 3) by the above-described thin film forming method, thereby The semiconductor layer 2 is formed. Moreover, when forming the organic-semiconductor layer 2, when the process of orienting the high molecular compound contained in a thin film is performed, since the mobility of an electric charge improves, it is preferable.
  • any material having high electrical insulation may be used, and a known material can be used.
  • the constituent material of the insulating layer 3 include SiOx, SiNx, Ta 2 O 5 , polyimide, polyvinyl alcohol, polyvinyl phenol, organic glass, and photoresist. Since the voltage can be lowered, it is preferable to use a material having a high dielectric constant for the insulating layer 3.
  • the surface of the insulating layer 3 is treated with a surface treatment agent such as a silane coupling agent in order to improve the interface characteristics between the insulating layer 3 and the organic semiconductor layer 2. It is also possible to form the organic semiconductor layer 2 after the surface modification.
  • a surface treatment agent such as a silane coupling agent
  • silane coupling agents include alkylchlorosilanes (octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODTS), phenylethyltrichlorosilane, etc.), alkylalkoxysilanes, fluorinated alkylchlorosilanes, fluorinated alkylalkoxysilanes, Examples thereof include silylamine compounds such as hexamethyldisilazane (HMDS).
  • HMDS hexamethyldisilazane
  • the surface of the insulating layer 3 can be treated with ozone UV or O 2 plasma before the treatment with the surface treatment agent.
  • the surface energy of the silicon oxide film or the like used as the insulating layer 3 can be controlled. Further, the surface treatment improves the orientation of the polymer compound constituting the organic semiconductor layer 2 on the insulating layer 3, thereby obtaining high charge mobility.
  • the gate electrode 4 examples include metals such as gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum, low resistance polysilicon, and low resistance amorphous silicon, tin oxide, indium oxide, indium / tin oxide.
  • a material such as (ITO) can be used. These materials can be used alone or in combination of two or more.
  • a highly doped silicon substrate can be used as the gate electrode 4.
  • a highly doped silicon substrate has not only a property as a gate electrode but also a property as a substrate.
  • the substrate 1 may be omitted in the organic transistor in which the substrate 1 and the gate electrode 4 are in contact with each other.
  • the gate electrode 4 can also serve as the substrate 1.
  • the source electrode 5 and the drain electrode 6 are made of a low resistance material, for example, gold, platinum, silver, copper, chromium, palladium, aluminum, indium, or molybdenum.
  • a low resistance material for example, gold, platinum, silver, copper, chromium, palladium, aluminum, indium, or molybdenum.
  • gold and platinum are preferable because the charge injection property is improved, and gold is more preferable because it is excellent in process ease.
  • These materials may be used alone or in combination of two or more.
  • an organic transistor is not limited to said embodiment.
  • a layer made of a compound different from the above-described polymer compound of the present invention may be interposed between the source electrode 5 and the drain electrode 6 and the organic semiconductor layer 2. Thereby, the contact resistance between the source electrode 5 and the drain electrode 6 and the organic semiconductor layer 2 is reduced, and the carrier mobility of the organic transistor may be further increased.
  • Such layers include low molecular compounds having electron or hole transport properties as described above; alkali metals, alkaline earth metals, rare earth metals, complexes of these metals with organic compounds, etc .; iodine, bromine, chlorine, Halogens such as iodine chloride; sulfur oxide compounds such as sulfuric acid, sulfuric anhydride, sulfur dioxide, and sulfates; nitric oxide compounds such as nitric acid, nitrogen dioxide, and nitrates; halogenated compounds such as perchloric acid and hypochlorous acid; alkylthiols Examples thereof include a layer made of an aromatic thiol compound such as a compound, an aromatic thiol, and a fluorinated alkyl aromatic thiol.
  • the organic transistor after manufacturing the organic transistor as described above, it is preferable to form a protective film on the organic transistor in order to protect the element. Thereby, an organic transistor is interrupted
  • Examples of the method for forming the protective film include a method of covering the organic transistor with a UV curable resin, a thermosetting resin, an inorganic SiONx film, or the like.
  • a UV curable resin for example, a UV curable resin
  • a thermosetting resin for example, a thermosetting resin
  • an inorganic SiONx film for example, a thermosetting resin
  • the planar light source and the display device include at least two organic transistors, that is, a driving transistor and a switching transistor.
  • the planar light source and display device of the present embodiment uses the above-described organic transistor of the present invention as at least one of the organic transistors.
  • FIG. 8 is a schematic cross-sectional view of a planar light source according to a preferred embodiment.
  • An organic transistor T is configured by the organic semiconductor layer 2 formed on the insulating layer 3 so as to partially cover the organic semiconductor layer 2 and the protective film 11 formed on the organic semiconductor layer 2 so as to cover the entire organic semiconductor layer 2. Yes.
  • a lower electrode (anode) 13, a light emitting element 14, and an upper electrode (cathode) 15 are sequentially stacked on the organic transistor T via the interlayer insulating film 12.
  • the lower electrode 13 and the drain electrode 6 are electrically connected through a via hole provided in 12.
  • a bank portion 16 is provided around the lower electrode 13 and the light emitting element 14.
  • a substrate 18 is disposed above the upper electrode 15, and a gap between the upper electrode 15 and the substrate 18 is sealed with a sealing member 17.
  • the organic transistor T functions as a drive transistor. Further, in the planar light source 200 shown in FIG. 8, the switching transistor is omitted.
  • the organic transistor of the present invention described above is used as the organic transistor T.
  • the structural member in a well-known planar light source can be used.
  • substrate 18, a transparent thing is used.
  • planar light source 200 shown in FIG. 8 functions as a planar light source by using a white light emitting material for the light emitting element 14, but uses a red light emitting material, a blue light emitting material, and a green light emitting material for the light emitting element 14. By controlling the driving of each light emitting element, a color display device can be obtained.
  • a method of installing a mask provided with a patterned window on the surface of the planar light emitting element, non-light emission of a light emitting layer constituting the light emitting element There are a method of forming a portion to be extremely thick and making substantially no light emission, and a method of forming an anode or a cathode, or both electrodes in a pattern.
  • both the anode and the cathode may be formed in stripes and arranged so as to be orthogonal to each other. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of light emitting materials having different emission colors or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix element can be passively driven or can be actively driven in combination with a TFT or the like. These display elements can be used as display devices for computers, televisions, mobile terminals, mobile phones, car navigation systems, video camera viewfinders, and the like.
  • the polymer compound of the present invention is also useful as an organic semiconductor layer for a photoelectric conversion element.
  • a pair of electrodes at least one of which is transparent or translucent, an electron donating compound (p-type organic semiconductor) and an electron-accepting compound (n-type organic semiconductor, etc.) Examples include a bulk hetero organic semiconductor layer or a p / n stacked organic semiconductor layer formed from an organic composition.
  • the polymer compound of the present invention described above is contained in these organic semiconductor layers as at least one of an electron donating compound and an electron accepting compound.
  • the photoelectric conversion element having such a configuration light energy incident from a transparent or translucent electrode is absorbed by the electron-accepting compound and / or the electron-donating compound, and electrons and holes are coulomb-bonded. Generate excitons. When the excitons generated thereby move and reach the heterojunction interface where the electron accepting compound and the electron donating compound are adjacent to each other, the value of each HOMO energy level and the LUMO energy level at the interface Electrons and holes are separated by the difference in the values of, and a charge that can move independently is generated. Then, each generated charge moves to each electrode, and can be taken out as electric energy (current) to the outside. Since the photoelectric conversion element having the organic semiconductor layer containing the polymer compound of the present invention described above has high mobility of the polymer compound, excellent photoelectric conversion efficiency can be obtained.
  • FIG. 10 is a schematic cross-sectional view showing a photoelectric conversion element according to a preferred embodiment.
  • a photoelectric conversion element 300 shown in FIG. 10 is formed on the substrate 1, the anode 7a formed on the substrate 1, the organic semiconductor layer 2 made of an organic thin film formed on the anode 7a, and the organic semiconductor layer 2.
  • the organic semiconductor layer 2 includes an electron donating compound and an electron accepting compound, and at least one of them is the above-described polymer compound of the present invention.
  • anode 7a the organic semiconductor layer 2, and the electron-donating compound and electron-accepting compound, the cathode 7b, and other components formed as necessary, which constitute the photoelectric conversion element 300, will be described in detail. To do.
  • the photoelectric conversion element usually has a configuration in which each layer is formed on a substrate.
  • the substrate 1 may be any substrate that can form electrodes and does not change chemically when forming an organic layer. Examples of the material of the substrate 1 include glass, plastic, polymer film, silicon, and the like.
  • the opposite electrode that is, the electrode far from the substrate
  • At least one of the electrodes is made of a transparent or translucent electrode material.
  • the transparent or translucent electrode material include a conductive metal oxide film and a translucent metal thin film. Specifically, it is manufactured using indium oxide, zinc oxide, tin oxide, and conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), and NESA that are composites thereof. A film, gold, platinum, silver, copper or the like is used. Of these, ITO, indium / zinc / oxide, and tin oxide are preferable.
  • the other may not be transparent.
  • a metal, a conductive polymer, or the like can be used as a material for such an electrode.
  • the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. And one or more alloys selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin.
  • Examples include alloys with metals, graphite, graphite intercalation compounds, polyaniline and derivatives thereof, and polythiophene and derivatives thereof.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • Examples of methods for producing these electrodes include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • the transparent or translucent electrode may be an anode or a cathode.
  • the organic semiconductor layer included in the photoelectric conversion element includes the above-described polymer compound of the present invention as at least one of an electron donating compound and an electron accepting compound.
  • the electron-donating compound and the electron-accepting compound are relatively determined from the value of the HOMO energy level or the value of the LUMO energy level of these compounds.
  • the electron donating compound the polymer compound of the present invention, and other low molecular compounds and polymer compounds can be applied.
  • the electron donating compound other than the polymer compound of the present invention include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, side Polysiloxane derivatives having aromatic amines in the chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polymer compounds having thiophene as a partial skeleton, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and And derivatives thereof.
  • the electron donating compound the above-described polymer compound of the present invention is particularly suitable.
  • Examples of the electron-donating compound other than the polymer compound of the present invention include polythiophene (including polythiophene and derivatives thereof) which may have a substituent, a structure containing a dimer or pentamer of thiophene, or a derivative of thiophene.
  • a polymer compound having a structure containing a ⁇ 5-mer and a polymer compound having thiophene as a partial skeleton are preferable. Of these, polythiophene and its derivatives are more preferable.
  • the polythiophene derivative refers to a polymer compound having a thiophenediyl group having a substituent.
  • Polythiophene and its derivatives are preferably homopolymers.
  • the homopolymer means a polymer in which only a plurality of groups selected from the group consisting of a thiophenediyl group and a substituted thiophenediyl group are bonded.
  • the thiophene diyl group is preferably a thiophene-2,5-diyl group, and the thiophene diyl group having a substituent is preferably an alkylthiophene-2, 5-diyl group.
  • homopolymer polythiophene and derivatives thereof include poly (3-hexylthiophene-2,5-diyl) (P3HT), poly (3-octylthiophene-2,5-diyl), poly (3-dodecyl) Thiophene-2,5-diyl) and poly (3-octadecylthiophene-2,5-diyl).
  • P3HT poly (3-hexylthiophene-2,5-diyl)
  • poly3HT poly (3-octylthiophene-2,5-diyl)
  • poly (3-dodecyl) Thiophene-2,5-diyl) poly (3-octadecylthiophene-2,5-diyl
  • polythiophenes and derivatives thereof that are homopolymers polythiophene homopolymers composed of thiophene diyl groups substituted with alkyl groups having 6 to
  • n the number of repetitions.
  • R 111 and R 112 are the same or different and each represents a hydrogen atom or a substituent.
  • a plurality of R 111 and R 112 may be the same or different.
  • the substituent represented by R 111 and R 112 an alkoxy group having 1 to 20 carbon atoms and an alkyl group having 1 to 20 carbon atoms are preferable.
  • the polymer compound represented by the formula (11) is preferably a polymer compound in which R 111 is an alkyl group and R 112 is a hydrogen atom.
  • Such a polymer compound is represented by the formula (11-1).
  • the electron-accepting compound in addition to the polymer compound of the present invention described above, for example, oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof Tetracyanoanthraquinodimethane and derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof derivatives, fullerene and derivatives thereof such as C 60, phenanthrene derivatives such as bathocuproin, metal oxides such as titanium oxide, and carbon nanotube.
  • oxadiazole derivatives anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone
  • the electron-accepting compound preferably, in addition to the polymer compound of the present invention, a compound having a benzothiadiazole structure, a polymer compound having a benzothiadiazole structure in a repeating unit, a compound having a quinoxaline structure, and a quinoxaline structure in a repeating unit.
  • a compound having a benzothiadiazole structure preferably, in addition to the polymer compound of the present invention, a compound having a benzothiadiazole structure, a polymer compound having a benzothiadiazole structure in a repeating unit, a compound having a quinoxaline structure, and a quinoxaline structure in a repeating unit.
  • examples thereof include high molecular compounds, titanium oxide, carbon nanotubes, fullerenes and fullerene derivatives.
  • fullerenes, fullerene derivatives, compounds containing a benzothiadiazole structure, polymer compounds containing a benzothiadiazole structure in a repeating unit, compounds containing a quinoxaline structure, and a polymer compound containing a quinoxaline structure in a repeating unit More preferably, it is a compound containing a benzothiadiazole structure, a polymer compound containing a benzothiadiazole structure in a repeating unit, a compound containing a quinoxaline structure, a polymer compound containing a quinoxaline structure in a repeating unit, and particularly preferably a benzothiadiazole structure containing a benzothiadiazole structure.
  • Examples of the polymer compound having a benzothiadiazole structure in the repeating unit include the polymer compound represented by the formula (11) exemplified as the electron donating compound, and represented by the formula (11-1). High molecular compounds are preferred. That is, depending on the combination with the compound applied as the electron donating compound, the polymer compound represented by the formula (11) can be applied as the electron accepting compound.
  • examples of an n-type semiconductor suitable as an electron-accepting compound include fullerene and fullerene derivatives.
  • the fullerene derivative refers to a compound in which at least a part of fullerene is modified.
  • Examples of fullerene, C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, include C 84 fullerene, the fullerene derivative, derivatives of the fullerene and the like.
  • C 60 fullerene derivative examples include compounds represented by the following formulae.
  • C 70 fullerene derivative examples include compounds represented by the following formulae.
  • Examples of other fullerene derivatives include [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6] -Phenyl C61 butyric acid methyl ester), [6,6] phenyl-C71 butyric acid methyl ester.
  • the content ratio of the electron accepting compound is preferably 10 to 1000 parts by weight, and more preferably 20 to 500 parts by weight with respect to 100 parts by weight of the electron donating compound.
  • the thickness of the organic semiconductor layer 2 is preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, further preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.
  • the combination of the electron donating compound and the electron accepting compound contained in the organic semiconductor layer 2 is preferably a combination of the polymer compound of the present invention and a fullerene derivative or a combination of the polymer compounds of the present invention.
  • each polymer compound that is an electron-donating compound and an electron-accepting compound is a combination that provides a HOMO suitable for the electron-donating compound and a LUMO suitable for the electron-accepting compound.
  • the organic semiconductor layer 2 may contain components other than the above as necessary in order to express various functions.
  • Components other than the above include, for example, ultraviolet absorbers, antioxidants, sensitizers for sensitizing the function of generating charges by absorbed light, and light stabilizers for increasing stability from ultraviolet rays. Can be mentioned.
  • Components other than the electron-donating compound and the electron-accepting compound that constitute the organic semiconductor layer 2 are each 5 parts by weight or less, particularly 0.01% with respect to 100 parts by weight of the total amount of the electron-donating compound and the electron-accepting compound. Mixing at a ratio of ⁇ 3 parts by weight is effective because high charge mobility can be obtained while ensuring the effect of each component.
  • the organic semiconductor layer 2 may contain a polymer compound other than an electron donating compound and an electron accepting compound as a polymer binder in order to improve mechanical properties.
  • a polymer binder those that do not inhibit the electron transport property or hole transport property and those that do not strongly absorb visible light are preferably used.
  • Polymer binders include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof, polycarbonate , Polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like.
  • the organic semiconductor layer 2 having the above-described configuration is formed using a solution containing an electron-donating compound, an electron-accepting compound, and other components blended as necessary. Can be formed.
  • the organic semiconductor layer 2 can be formed by applying this solution on the anode 7a or the cathode 7b.
  • the solvent in film formation using a solution may be any solvent that dissolves the above-described electron-donating compound and electron-accepting compound, and a plurality of solvents may be mixed.
  • the solvent include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, Halogenated saturated hydrocarbon solvents such as dichloroethane, dichloropropane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane, and halogenated unsaturated carbonization such as chlorobenzene, dichlorobenzene and trichlor
  • the organic semiconductor layer 2 is formed by spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, and screen printing.
  • Application methods such as gravure printing, flexographic printing, offset printing, ink jet printing, dispenser printing, nozzle coating, and capillary coating can be used. Of these, spin coating, flexographic printing, gravure printing, ink jet printing, and dispenser printing are preferred.
  • the photoelectric conversion element 300 includes an additional intermediate layer (buffer layer) other than the organic semiconductor layer 2 in order to improve the photoelectric conversion efficiency.
  • buffer layer buffer layer
  • Charge transport layer etc.
  • Such an intermediate layer can be formed, for example, between the anode 7 a and the organic semiconductor layer 2 or between the cathode 7 b and the organic semiconductor layer 2.
  • the intermediate layer examples include alkali metal or alkaline earth metal halides or oxides such as lithium fluoride.
  • the intermediate layer also includes fine particles of inorganic semiconductor such as titanium oxide, a mixture of PEDOT (poly (3,4-ethylenedioxythiophene)) and PSS (poly (4-styrenesulfonate)) (PEDOT: PSS), etc. May be used.
  • the photoelectric conversion element 300 as described above irradiates light such as sunlight from the transparent or translucent electrode (anode 7a or cathode 7b) side, thereby generating a photovoltaic power between these electrodes, and organic It can be operated as a thin film solar cell element.
  • a solar cell module can also be configured by integrating a plurality of such organic thin film solar cell elements.
  • the photoelectric conversion element 300 has a photocurrent generated by making light incident from a transparent or translucent electrode in a state where a voltage is applied between the electrodes (the anode 7a and the cathode 7b) or in a state where no voltage is applied. Since it flows, it can be operated as an organic light sensor. By integrating a plurality of such organic photosensors, it can be used as an organic image sensor.
  • the organic thin-film solar cell using the photoelectric conversion element of the present invention can basically have the same module structure as a conventional solar cell module. That is, as a solar cell module, a cell (for example, the photoelectric conversion element of the above-described embodiment) is formed on a support substrate such as metal or ceramic, and the top is covered with a filling resin or protective glass, and is opposite to the support substrate. One having a structure for taking in light from the side is mentioned. Further, by using a transparent material such as tempered glass for the support substrate and forming a cell thereon, it is possible to adopt a structure for taking in light from the transparent support substrate side.
  • a transparent material such as tempered glass for the support substrate and forming a cell thereon
  • a module structure called a super straight type, a substrate type, or a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known.
  • the organic thin film solar cell to which the photoelectric conversion element of the present invention is applied can also select these module structures according to the purpose of use, the place of use, the environment of use, and the like.
  • cells are arranged at regular intervals between support substrates that are transparent on one side or both sides and treated with antireflection, and adjacent cells are metal leads. Or it has the structure which takes out generated electric power outside by having the structure where the current collection electrode is arrange
  • plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency.
  • EVA ethylene vinyl acetate
  • the protective function can be achieved by configuring the surface protective layer with a transparent plastic film or curing the filling resin. It is also possible to eliminate the support substrate on one side.
  • the periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and the support substrate and the frame are hermetically sealed with a sealing material. May be.
  • a sealing material if a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
  • a solar cell using a flexible support such as a polymer film
  • cells are sequentially formed while feeding a roll-shaped support, cut into a desired size, and then the periphery is made of a flexible and moisture-proof material.
  • the main body of the solar cell can be manufactured by sealing.
  • a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 may be used.
  • a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
  • the molecular weight of the polymer compound (polymer) is GPC (trade name: LC-10Avp) manufactured by Shimadzu Corporation (hereinafter referred to as “LC-10Avp”) or GPC (trade name: GPC Laboratory).
  • LC-10Avp LC-10Avp
  • GPC GPC Laboratory
  • PL-GPC2000 PL-GPC2000
  • the polymer When measuring with LC-10Avp, the polymer was dissolved in tetrahydrofuran (THF) to a concentration of about 0.5% by weight, and 50 ⁇ L was injected into GPC. Tetrahydrofuran was used as the GPC mobile phase, and flowed at a flow rate of 0.6 mL / min.
  • THF tetrahydrofuran
  • Tetrahydrofuran was used as the GPC mobile phase, and flowed at a flow rate of 0.6 mL / min.
  • TSKgel SuperHM-H manufactured by Tosoh
  • TSKgel SuperH2000 manufactured by Tosoh
  • a differential refractive index detector (manufactured by Shimadzu Corporation, trade name: RID-10A) was used as the detector.
  • the polymer when measured with PL-GPC2000, the polymer was dissolved in o-dichlorobenzene so as to have a concentration of about 1% by weight.
  • o-dichlorobenzene As the mobile phase of GPC, o-dichlorobenzene was used and allowed to flow at a measurement temperature of 140 ° C. at a flow rate of 1 mL / min.
  • the column three PLGEL 10 ⁇ m MIXED-B (PL Laboratory) were connected in series.
  • the obtained compound (32) (141 mg, 0.19 mmol) was dissolved in tetrahydrofuran (7 ml), and N-bromosuccinimide (NBS) (68 mg, 0.38 mmol) was added thereto.
  • NBS N-bromosuccinimide
  • the solution was stirred at 40 ° C. for 6 hours, water and dichloromethane were added, and the organic layer was washed with saturated brine (100 ml ⁇ 3). Thereafter, the organic layer was dried over anhydrous magnesium sulfate and filtered, and then the solvent was distilled off under reduced pressure.
  • the obtained reaction solution was poured into a mixed solution of methanol (200 ml) and hydrochloric acid (5 ml) and stirred for 3 hours.
  • the deposited precipitate was collected by filtration, washed with methanol and hexane in order, and then extracted with chloroform.
  • the obtained chloroform solution is concentrated, this solution is poured into methanol, and the deposited precipitate is collected by filtration to obtain a polymer compound (polymer compound P1) (106 mg) represented by the following formula P1 as a red solid. It was.
  • the polymer compound P1 had a polystyrene-equivalent number average molecular weight of 7.1 ⁇ 10 3 and a weight average molecular weight of 1.3 ⁇ 10 4 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • the organic transistor shown in FIG. 9 was produced using the polymer compound P1, and the transistor characteristics were measured. That is, first, the surface of the heavily doped n-type silicon substrate 31 to be a gate electrode was thermally oxidized to form a 200 nm silicon oxide film 32. After thoroughly washing the substrate, the substrate surface was silane treated with hexamethylene disilazane (HMDS).
  • HMDS hexamethylene disilazane
  • the polymer compound P1 was dissolved in orthodichlorobenzene to prepare a 3 g / L solution, which was filtered through a membrane filter.
  • a thin film (organic semiconductor layer 35) containing a polymer compound P1 of about 30 nm was formed on the surface-treated substrate by spin coating. This thin film was heated at 150 ° C. for 30 minutes in a nitrogen atmosphere. Then, a source electrode 33 and a drain electrode 34 having a channel length of 50 ⁇ m and a channel width of 1.5 mm were produced on the obtained thin film by vacuum deposition, thereby obtaining an organic transistor.
  • the obtained reaction solution was poured into a mixed solution of methanol (200 ml) and hydrochloric acid (5 ml) and stirred for 3 hours.
  • the deposited precipitate was collected by filtration, washed with methanol, hexane and chloroform in this order, and then extracted with chlorobenzene.
  • the obtained chlorobenzene solution is concentrated, this solution is poured into methanol, and the deposited precipitate is collected by filtration to obtain a polymer compound (polymer compound P2) (83 mg) represented by the following formula P2 as a red solid. It was.
  • the polymer compound P2 had a polystyrene-equivalent number average molecular weight of 2.9 ⁇ 10 4 and a weight average molecular weight of 4.6 ⁇ 10 4 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • An organic transistor shown in FIG. 9 was prepared using the polymer compound P2, and the transistor characteristics were measured. That is, first, the surface of the heavily doped n-type silicon substrate 31 to be a gate electrode was thermally oxidized to form a 200 nm silicon oxide film 32. After thoroughly washing the substrate, the substrate surface was silane treated with hexamethylene disilazane (HMDS).
  • HMDS hexamethylene disilazane
  • the polymer compound P2 was dissolved in orthodichlorobenzene to prepare a 3 g / L solution, which was filtered through a membrane filter.
  • a thin film (organic semiconductor layer 35) containing a polymer compound P2 of about 30 nm was formed on the surface-treated substrate by spin coating. This thin film was heated at 150 ° C. for 30 minutes in a nitrogen atmosphere. Then, a source electrode 33 and a drain electrode 34 having a channel length of 50 ⁇ m and a channel width of 1.5 mm were produced on the obtained thin film by vacuum deposition, thereby obtaining an organic transistor.
  • the obtained reaction solution was poured into a mixed solution of methanol (200 ml) and hydrochloric acid (5 ml) and stirred for 3 hours.
  • the deposited precipitate was collected by filtration, washed with methanol and hexane in order, and then extracted with chloroform.
  • the obtained chloroform solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain a polymer compound (polymer compound P3) (106 mg) represented by the following formula P3 as a red solid. It was.
  • the number average molecular weight in terms of polystyrene of the polymer compound P3 was 3.7 ⁇ 10 3 , and the weight average molecular weight was 5.1 ⁇ 10 3 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • the organic transistor shown in FIG. 9 was produced using the polymer compound P3, and the transistor characteristics were measured. That is, first, the surface of the heavily doped n-type silicon substrate 31 to be a gate electrode was thermally oxidized to form a 200 nm silicon oxide film 32. After thoroughly washing the substrate, the substrate surface was silane treated with hexamethylene disilazane (HMDS).
  • HMDS hexamethylene disilazane
  • the polymer compound P3 was dissolved in chloroform to prepare a 1 g / L solution, which was filtered through a membrane filter.
  • a thin film (organic semiconductor layer 35) containing a polymer compound P3 of about 30 nm was formed on the surface-treated substrate by a drop casting method.
  • a source electrode 33 and a drain electrode 34 having a channel length of 50 ⁇ m and a channel width of 1.5 mm were produced on the obtained thin film by vacuum deposition, thereby obtaining an organic transistor.
  • the obtained reaction solution was poured into a mixed solution of methanol (200 ml) and hydrochloric acid (5 ml) and stirred for 3 hours.
  • the deposited precipitate was collected by filtration, washed with methanol and hexane in order, and then extracted with chloroform.
  • the obtained chloroform solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain a polymer compound (polymer compound P4) (97 mg) represented by the following formula P4 as a red solid. It was.
  • the polymer compound P4 had a polystyrene-equivalent number average molecular weight of 6.7 ⁇ 10 3 and a weight average molecular weight of 9.5 ⁇ 10 3 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • the polymer compound P4 was dissolved in chloroform to prepare a 3 g / L solution, which was filtered through a membrane filter.
  • a thin film (organic semiconductor layer 35) containing the polymer compound P4 of about 30 nm was formed on the surface-treated substrate by spin coating. This thin film was heated at 150 ° C. for 30 minutes in a nitrogen atmosphere. Then, a source electrode 33 and a drain electrode 34 having a channel length of 50 ⁇ m and a channel width of 1.5 mm were produced on the obtained thin film by vacuum deposition, thereby obtaining an organic transistor.
  • n represents the number of repeating units.
  • the number average molecular weight in terms of polystyrene of the polymer compound P5 was 8.5 ⁇ 10 3 , and the weight average molecular weight was 4.3 ⁇ 10 4 .
  • n represents the number of repeating units.
  • An organic transistor shown in FIG. 9 was prepared using the polymer compound P5, and the transistor characteristics were measured. That is, first, the surface of the heavily doped n-type silicon substrate 31 to be a gate electrode was thermally oxidized to form a 200 nm silicon oxide film 32. The substrate was ultrasonically cleaned with acetone for 10 minutes and then irradiated with ozone UV for 20 minutes. Thereafter, silane treatment was performed on the substrate surface by spin coating using ⁇ -phenethyltrichlorosilane ( ⁇ -PTS).
  • ⁇ -PTS ⁇ -phenethyltrichlorosilane
  • the polymer compound P5 was dissolved in toluene as a solvent to prepare a solution having a total concentration of 0.5% by weight, and this was filtered through a membrane filter.
  • the obtained solution was applied onto the surface-treated substrate by a spin coating method to form a thin film (organic semiconductor layer 35) of a polymer compound P5 having a thickness of about 60 nm.
  • a source electrode 33 and a drain electrode 34 (having a laminated structure of MoO 3 and gold in order from the thin film side) by a vacuum deposition method using a metal mask with a channel length of 20 ⁇ m and a channel width of 2 mm. Electrode) to produce an organic transistor.
  • Example 5 Synthesis of polymer compound P6 Using a four-necked flask, the compound (34) obtained in Synthesis Example 3 (119.4 mg, 0.300 mmol), the compound represented by the following formula (35) (compound (35)) (159.4 mg, 0.270 mmol), toluene (10 mL) and methyltrialkylammonium chloride (trade name Aliquat 336 (registered trademark), manufactured by Aldrich) (60.6 mg, 0.15 mmol) were added, and argon was added at room temperature (25 ° C.) for 30 minutes. Bubbling was performed.
  • the temperature of the solution thus obtained was raised to 90 ° C., and then palladium acetate (0.67 mg, 1 mol%) and tris (2-methoxyphenyl) phosphine (3.70 mg, 3.5 mol%) were added. Then, stirring at 100 degreeC, sodium carbonate aqueous solution (16.7 weight%, 1.90g, 3.00mmol) was dripped over 30 minutes. After 4 hours, phenylboric acid (3.66 mg, 0.03 mmol), palladium acetate (0.67 mg, 1 mol%) and tris (2-methoxyphenyl) phosphine (3.70 mg, 3.5 mol%) were added and an additional 1 After stirring for hours, the reaction was stopped. The reaction was performed in an argon atmosphere.
  • the obtained polymer compound was filtered and dried, and then the polymer compound was redissolved in toluene (15 mL) and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer compound, filtered, and dried to obtain 87 mg of a polymer compound represented by the following formula P6 (polymer compound P6).
  • the number average molecular weight (Mn) in terms of polystyrene of the polymer compound P6 was 5.5 ⁇ 10 3
  • Mw weight average molecular weight
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • An organic transistor shown in FIG. 9 was prepared using the polymer compound P6, and the transistor characteristics were measured. That is, first, the surface of the heavily doped n-type silicon substrate 31 to be a gate electrode was thermally oxidized to form a 200 nm silicon oxide film 32. The substrate was ultrasonically cleaned with acetone for 10 minutes and then irradiated with ozone UV for 20 minutes. Thereafter, silane treatment was performed on the substrate surface by spin coating using ⁇ -phenethyltrichlorosilane ( ⁇ -PTS).
  • ⁇ -PTS ⁇ -phenethyltrichlorosilane
  • the polymer compound P6 was dissolved in chloroform as a solvent to prepare a solution having a total concentration of 0.5% by weight, and this was filtered through a membrane filter.
  • a thin film (organic semiconductor layer 35) of a polymer compound P6 having a thickness of about 60 nm was formed on the surface-treated substrate by spin coating.
  • a source electrode 33 and a drain electrode 34 (having a laminated structure of MoO 3 and gold in order from the thin film side) by a vacuum deposition method using a metal mask with a channel length of 20 ⁇ m and a channel width of 2 mm. Electrode) to produce an organic transistor.
  • the temperature of the solution was raised to 90 ° C., and palladium acetate (0.67 mg, 1 mol%) and tris (2-methoxyphenyl) phosphine (3.70 mg, 3.5 mol%) were added. Then, stirring at 100 degreeC, sodium carbonate aqueous solution (16.7 weight%, 1.90g, 3.00mmol) was dripped over 30 minutes. After 4 hours, phenylboric acid (3.66 mg, 0.03 mmol), palladium acetate (0.67 mg, 1 mol%) and tris (2-methoxyphenyl) phosphine (3.70 mg, 3.5 mol%) were added and an additional 1 After stirring for hours, the reaction was stopped. The reaction was performed in an argon atmosphere.
  • the obtained polymer compound was filtered and dried, and then the polymer compound was redissolved in toluene (15 mL) and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer compound, filtered, and dried to obtain 69 mg of a polymer compound represented by the following formula P7 (polymer compound P7).
  • the polymer compound P7 had a polystyrene-equivalent number average molecular weight of 1.2 ⁇ 10 4 and a weight average molecular weight of 2.5 ⁇ 10 4 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • the transistor characteristics were measured by changing the gate voltage Vg from 10 to -50 V and the source-drain voltage Vsd from 0 to -50 V.
  • the drain current value was 0.42 ⁇ A, which was lower than that in Example 5.
  • the field effect mobility was calculated as 1.3 ⁇ 10 ⁇ 3 cm 2 / Vs, which was lower than that in Example 5.
  • the reaction solution was poured into a mixed solution of methanol (200 ml) and hydrochloric acid (5 ml) and stirred for 3 hours.
  • the deposited precipitate was collected by filtration, washed with methanol, hexane and chloroform, and extracted with chlorobenzene.
  • the chlorobenzene solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain a polymer compound (polymer compound P8) (38 mg) represented by the following formula P8 as a black-brown solid.
  • the polymer compound P8 had a polystyrene-equivalent number average molecular weight of 1.7 ⁇ 10 4 and a weight average molecular weight of 2.1 ⁇ 10 4 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • the transistor characteristics were measured by changing the gate voltage Vg to 20 to ⁇ 60 V and the source-drain voltage Vsd to 0 to ⁇ 60 V.
  • lithium fluoride was vapor-deposited with a thickness of 0.8 nm by a vacuum vapor deposition machine, and then Al was vapor-deposited with a thickness of 100 nm to produce an organic thin film solar cell.
  • the shape of the organic thin film solar cell was a circle having a diameter of 2 mm.
  • the obtained organic thin film solar cell is irradiated with constant light using a solar simulator (trade name HAL302: AM1.5G filter, irradiance 100 mW / cm 2 , manufactured by Asahi Spectroscopic Co., Ltd.), and the generated current and voltage are
  • the photoelectric conversion efficiency, the short circuit current density (Jsc), the open circuit voltage (Voc), and the fill factor (ff) were determined by measurement.
  • Jsc (short circuit current density) 5.36 mA / cm 2
  • Voc (open circuit voltage) 0.61 V
  • ff (fill factor) 0.38
  • photoelectric conversion efficiency ( ⁇ ) 1.4% are obtained. It was.
  • the reaction solution was poured into a mixed solution of methanol (200 ml) and hydrochloric acid (5 ml) and stirred for 3 hours.
  • the deposited precipitate was collected by filtration, washed with methanol and hexane and then extracted with heated chloroform.
  • the chloroform solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain a polymer compound (polymer compound P9) (149 mg) represented by the following formula P9 as a red solid.
  • the polymer compound P9 had a polystyrene-equivalent number average molecular weight of 1.35 ⁇ 10 4 and a weight average molecular weight of 2.6 ⁇ 10 4 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • the polymer was filtered and dried to obtain 460 mg of a polymer compound represented by the following formula P10 (polymer compound P10).
  • the number average molecular weight in terms of polystyrene of the polymer compound P10 measured by GPC was 1.2 ⁇ 10 4
  • the weight average molecular weight was 3.2 ⁇ 10 4 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • the transistor characteristics were measured by changing the gate voltage Vg from 10 to ⁇ 60 V and the source-drain voltage Vsd from 0 to ⁇ 60 V.
  • the drain current value was 0.54 ⁇ A, which was lower than that in Example 6. From this result, the field effect mobility was calculated to be 2.0 ⁇ 10 ⁇ 4 cm 2 / Vs.
  • the reaction solution was poured into a mixed solution of methanol (200 ml) and hydrochloric acid (5 ml) and stirred for 3 hours.
  • the deposited precipitate was collected by filtration, heated and washed with methanol and hexane, and extracted with chloroform.
  • the chloroform solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain a polymer compound (polymer compound P11) (199 mg) represented by the following formula P11 as a black-brown solid.
  • the polymer compound P11 had a polystyrene-equivalent number average molecular weight of 1.6 ⁇ 10 4 and a weight average molecular weight of 2.6 ⁇ 10 4 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • the reaction solution was poured into a mixed solution of methanol (200 ml) and hydrochloric acid (5 ml) and stirred for 3 hours.
  • the deposited precipitate was collected by filtration, heated and washed with methanol and hexane, and extracted with chloroform.
  • the chloroform solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain a polymer compound (polymer compound P12) (230 mg) represented by the following formula P12 as a black solid.
  • the polymer compound P12 had a polystyrene-equivalent number average molecular weight of 1.9 ⁇ 10 4 and a weight average molecular weight of 5.0 ⁇ 10 4 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • the reaction solution was poured into a mixed solution of methanol (200 ml) and hydrochloric acid (5 ml) and stirred for 3 hours.
  • the deposited precipitate was collected by filtration, washed with methanol, hexane and chloroform, and extracted with chlorobenzene.
  • the chlorobenzene solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain a polymer compound (polymer compound P13) (150 mg) represented by the following formula P13 as a black-brown solid.
  • the polymer compound P13 had a polystyrene-equivalent number average molecular weight of 3.3 ⁇ 10 4 and a weight average molecular weight of 7.3 ⁇ 10 4 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • the reaction solution was poured into a mixed solution of methanol (200 ml) and hydrochloric acid (5 ml) and stirred for 3 hours.
  • the deposited precipitate was collected by filtration, washed with methanol, hexane and chloroform, and extracted with chlorobenzene.
  • the chlorobenzene solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain a polymer compound represented by the following formula P14 (polymer compound P14) (90 mg) as a black-brown solid.
  • the polymer compound P14 had a polystyrene-equivalent number average molecular weight of 3.0 ⁇ 10 4 and a weight average molecular weight of 6.3 ⁇ 10 4 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • the reaction solution was poured into a mixed solution of methanol (200 ml) and hydrochloric acid (5 ml) and stirred for 3 hours.
  • the deposited precipitate was collected by filtration, washed with methanol, hexane and chloroform, and extracted with chlorobenzene.
  • the chlorobenzene solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain a polymer compound (polymer compound P15) (102 mg) represented by the following formula P15 as a black-brown solid.
  • the polymer compound P15 had a polystyrene-equivalent number average molecular weight of 2.6 ⁇ 10 4 and a weight average molecular weight of 10.5 ⁇ 10 4 .
  • This reaction is as shown in the following reaction formula. In the formula, n represents the number of repeating units.
  • Organic-semiconductor layer 100 ... Organic transistor which concerns on 1st Embodiment, 110 ... Organic transistor which concerns on 2nd Embodiment, 120 ... 3rd Embodiment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 本発明は、高い電荷の移動度が得られる高分子化合物を提供することを目的とする。本発明の高分子化合物は、式(1)で表される繰り返し単位を有する。[Ar及びArは、芳香族炭化水素環、複素環、又は芳香族炭化水素環と複素環との縮合環である。R、R、R及びRは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、置換シリル基、非置換若しくは置換のカルボキシル基、1価の複素環基、シアノ基又はフッ素原子を示す。]

Description

高分子化合物、これを含む薄膜及びインク組成物
本発明は、高分子化合物、これを含む薄膜及びインク組成物、この薄膜を備える有機トランジスタ、並びにこの有機トランジスタを備える面状光源及び表示装置に関する。
有機トランジスタは、低コストであり、また柔軟で折り曲げ可能である等の特性を有するため、電子ペーパー、フレキシブルディスプレイ等の用途に好適であり、近年、注目されている。
有機トランジスタは、有機物により構成される電荷(ホール及び電子を意味し、以下、同様である。)輸送性を有する層を備えているが、この有機物としては、主として有機半導体材料が用いられる。このような有機半導体材料として、溶媒に溶解させた状態で塗布法により層(即ち、有機半導体層であり、一般的に活性層とも呼ばれる。)を形成できる高分子化合物が検討されており、例えば、チオフェン骨格のみを有する高分子化合物が提案されている(非特許文献1)。
Organic Electronics 6(2005)p.142~146
有機トランジスタの特性は、有機半導体層における電荷の移動度に主に依存し、この電荷の移動度が高いほど有機トランジスタの電界効果移動度が向上し、特性の優れたものとなる。近年では、有機トランジスタの用途も多様化しており、従来にも増して高い電荷の移動度が得られることが求められている。しかしながら、上述したような従来の高分子化合物を用いた場合は、近年求められているような高い移動度を十分に得ることは困難な傾向にあった。
そこで、本発明はこのような事情に鑑みてなされたものであり、高い電荷の移動度が得られる高分子化合物を提供することを目的とする。また、本発明は、この高分子化合物を含む薄膜及びインク組成物、この薄膜を備える有機トランジスタ、並びにこの有機トランジスタを備える面状光源及び表示装置を提供することを目的とする。
上記目的を達成するために、本発明は、式(1)で表される繰り返し単位を有する高分子化合物を提供する。
Figure JPOXMLDOC01-appb-C000006
[式中、Ar及びArは、それぞれ同一又は異なり、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい複素環、又は置換基を有していてもよい芳香族炭化水素環と置換基を有していてもよい複素環との縮合環である。R、R、R及びRは、それぞれ同一又は異なり、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、置換シリル基、非置換若しくは置換のカルボキシル基、置換基を有してもよい1価の複素環基、シアノ基又はフッ素原子を示す。]
上記本発明の高分子化合物は、式(1)で表される繰り返し単位を有していることで、有機半導体層として適用した場合に高い電荷の移動度を発揮することができる。その要因は必ずしも明らかではないものの、芳香族性を有する環が複数縮環しており、しかもこの縮環した構造の対称性が高く、高分子化合物の主鎖同士が重なり易い(パッキングし易い)ことから、高い共役性が得られることによると考えられる。また、本発明の高分子化合物は、上記の特定の繰り返し単位を有することから、溶媒への溶解性が高い傾向にあり、溶液の状態として塗布法により有機半導体層を形成することも比較的容易である。
上記本発明の高分子化合物は、式(1)のAr及びArの少なくとも一方が、5員の複素環であることが好ましい。これにより、本発明の高分子化合物を有機半導体層に使用した場合に、高い電荷の移動度を発揮することができる。特に、繰り返し単位の両端、すなわち、繰り返し単位間の炭素-炭素結合に関与する部分が複素環であると、更に高い電荷の移動度が得られる傾向にある。
式(1)で表される繰り返し単位は、式(2)で表される繰り返し単位、式(3)で表される繰り返し単位及び式(4)で表される繰り返し単位からなる群より選ばれる少なくとも1種の繰り返し単位であると好適である。式(1)で表される繰り返し単位としてこれらの繰り返し単位を有することで、更に高い電荷の移動度が得られるようになる。
Figure JPOXMLDOC01-appb-C000007
[式(2)におけるX21及びX22、式(3)におけるX31及びX32、並びに式(4)におけるX41及びX42は、それぞれ同一又は異なり、カルコゲン原子を示し、式(2)におけるR23、R24、R25、R26、R27及びR28、式(3)におけるR33、R34、R35、R36、R37及びR38、式(4)におけるR43、R44、R45、R46、R47及びR48は、それぞれ同一又は異なり、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、置換シリル基、非置換若しくは置換のカルボキシル基、置換基を有してもよい1価の複素環基、シアノ基又はフッ素原子を示す。]
式(2)~(4)で表される繰り返し単位においては、X21及びX22、X31及びX32、並びに式(4)におけるX41及びX42が、硫黄原子、セレン原子又は酸素原子であると好ましく、硫黄原子又は酸素原子であるとより好ましく、硫黄原子であると特に好ましい。このような構造を有する高分子化合物によれば、より高い電荷の移動度を得ることができる。
また、式(2)におけるR23とR26との組み合わせ、R24とR27との組み合わせ、及びR25とR28との組み合わせが、それぞれ互いに同じ基同士の組み合わせであり、式(3)におけるR33とR36との組み合わせ、R34とR37との組み合わせ、及びR35とR38との組み合わせが、それぞれ互いに同じ基同士の組み合わせであり、並びに式(4)におけるR44とR47との組み合わせ、及びR45とR48との組み合わせが、それぞれ互いに同じ基同士の組み合わせであると好ましい。このように、特定の基同士を同じ基とすることによって、高分子化合物はより対称性の高い繰り返し単位を有し、パッキングし易くなるため、一層高い電荷の移動度が得られるようになる。
より好適な構造としては、式(2)におけるR23、R24、R25、R26、R27及びR28、上記式(3)におけるR33、R34、R35、R36、R37及びR38、並びに上記式(4)におけるR43、R44、R45、R46、R47及びR48が、水素原子である構造が挙げられる。これによって、一層高い電荷の移動度が得られるようになる。
本発明の高分子化合物は、式(1)で表される繰り返し単位に加えて、式(5)で表される繰り返し単位を更に有していると好ましい。このような繰り返し単位を更に有することで、さらに優れた電荷の移動度を得ることが可能となる。
Figure JPOXMLDOC01-appb-C000008
[式中、Yは、アリーレン基、2価の複素環基、金属錯体構造を有する2価の基又はエチニレン基を示し、これらはそれぞれ置換基を有していてもよい。なお、Yが複数存在する場合、それらは同一でも異なっていてもよい。]
式(5)で表される繰り返し単位におけるYは、炭素数4~12の5員の2価の複素環基、炭素数6~18の芳香族炭化水素基、又は、多環の2価の複素基であると好ましい。こうすることで、一層優れた電荷の移動度が得られるようになる。
また、優れた電荷の移動度が得られるので、式(5)で表される繰り返し単位におけるYは、式(6)で表される基であっても好ましい。
Figure JPOXMLDOC01-appb-C000009
[式中、Tは、置換基を有していてもよい2価の複素環基を示し、nは、2~8の整数を示す。複数存在するTは、それぞれ同一でも異なっていてもよい。]
さらに、同様に優れた電荷の移動度が得られるので、式(5)で表される繰り返し単位におけるYは、式(7)で表される基であっても好適である。
Figure JPOXMLDOC01-appb-C000010
[式中、Ar及びArは、それぞれ同一又は異なり、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい複素環、又は置換基を有していてもよい芳香族炭化水素環と置換基を有していてもよい複素環との縮合環である。R71及びR72は、それぞれ同一又は異なり、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、置換シリル基、非置換若しくは置換のカルボキシル基、置換基を有してもよい1価の複素環基、シアノ基又はフッ素原子を示す。]
式(5)で表される繰り返し単位は、少なくとも1種の電子受容性を有する芳香族基(以下、「電子受容性基」と言う。)を含むと好適である。このような電子受容性基と、式(1)中に含まれる電子供与性基とを組み合わせて含むことで、高分子化合物は、一層優れた電荷の移動度が得られ易いものとなる。
また、この場合、式(1)で表される繰り返し単位が有している最高被占軌道のエネルギーレベルの値のうちの最も低い値と、上記の電子受容性基が有している最低空分子軌道のエネルギーレベルの値のうちの最も高い値との差が、4.4eV以下であると、特に優れた電荷の移動度が得られる傾向にある。
本発明はまた、上記本発明の高分子化合物を含む薄膜を提供する。また、本発明は、かかる薄膜からなる有機半導体層を備える有機トランジスタを提供する。本発明の薄膜は、上記本発明の高分子化合物を含むことから、高い電荷の移動度を発揮することができる。
したがって、このような薄膜からなる有機半導体層を備える本発明の有機トランジスタは、有機半導体層の電荷の移動度が高いため、高い電界効果移動度が得られるものとなる。
また、本発明は、本発明の高分子化合物と、溶媒とを含有するインク組成物を提供する。このようなインク組成物は、高分子化合物が均一に溶媒に分散又は溶解したものとなるため、塗布法により有機半導体層等を形成するのに有効である。
さらに、本発明は、上記本発明の有機トランジスタを備える面状光源、及び、上記本発明の有機トランジスタを備える表示装置を提供する。これらの面状光源及び表示装置は、優れた電界効果移動度が得られる本発明の有機トランジスタを備えることから、優れた特性を発揮することができる。
また、本発明は、陽極と、陰極と、陽極と陰極との間に設けられる有機半導体層とを有し、有機半導体層が、電子供与性化合物及び電子受容性化合物を含み、電子供与性化合物及び電子受容性化合物の少なくとも一方が、上記本発明の高分子化合物である光電変換素子、並びに、かかる光電変換素子を含む太陽電池モジュール及びイメージセンサーを提供する。これらも、有機半導体層が高い電荷の移動度を有することから、優れた特性を発揮することができる。
上述した特定の構造を有する本発明の高分子化合物は、有機半導体層に用いた場合に、高い電荷の移動度を得ることができるほか、このような有機半導体層の形成が容易なものでもある。そして、本発明によれば、かかる高分子化合物を含み、薄膜の形成に有利なインク組成物、及びこのようなインク組成物によって好適に得られ、高い電荷の移動度を有する薄膜を提供することができる。
また、本発明は、本発明の高分子化合物を含む薄膜からなる有機半導体層を備えており、優れた電界効果移動度を得ることができる有機トランジスタや、この有機トランジスタを備え、高い特性を有する面状光源及び表示装置を提供することができる。このような本発明の有機トランジスタは、具体的には、液晶ディスプレイや電子ペーパーの駆動回路、照明用としての曲面状や平面状の光源のスイッチ回路、セグメントタイプの表示素子、ドットマトリックスのフラットパネルディスプレイ等の駆動回路にも有用である。
さらに、本発明の高分子化合物は、光電変換素子の有機半導体層の材料としても使用でき、そのような有機半導体層を備える光電変換素子は、太陽電池モジュールやイメージセンサーとして有用である。
第1実施形態に係る有機トランジスタの模式断面図である。 第2実施形態に係る有機トランジスタの模式断面図である。 第3実施形態に係る有機トランジスタの模式断面図である。 第4実施形態に係る有機トランジスタの模式断面図である。 第5実施形態に係る有機トランジスタの模式断面図である。 第6実施形態に係る有機トランジスタの模式断面図である。 第7実施形態に係る有機トランジスタの模式断面図である。 実施形態に係る面状光源の模式断面図である。 実施例で作製した有機トランジスタの模式断面図である。 実施形態に係る光電変換素子の模式断面図である。
以下、本発明の好適な実施形態について詳細に説明する。
まず、本明細書において、「繰り返し単位」とは、高分子化合物の骨格を形成しているモノマー単位を意味し、高分子化合物中に少なくとも1個存在する構造単位である。また、「n価の複素環基」(nは1又は2である)とは、複素環式化合物(特には、芳香族性をもつ複素環式化合物)からn個の水素原子を除いてなり、その部分が他の原子との結合を形成している基を意味する。そして、「複素環式化合物」とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、燐原子、硼素原子等のヘテロ原子を環内に含むものをいう。
[高分子化合物]
 本発明の高分子化合物は、上記の式(1)で表される繰り返し単位を有するものである。
この高分子化合物において、式(1)のAr及びArの少なくとも一方は、複素環、特に5員の複素環であることが好ましい。特に、式(1)で表される繰り返し単位の両端部分、すなわち、式(1)で表される繰り返し単位の、他の繰り返し単位との炭素-炭素結合に関与する部分に、5員の複素環を有していると、高い電荷の移動度が得られる。
本発明の高分子化合物は、式(1)で表される繰り返し単位として、上記の式(2)、(3)及び(4)で表される繰り返し単位からなる群より選ばれる少なくとも1つの繰り返し単位を有すると好ましい。この場合、高分子化合物は、繰り返し単位として式(2)~(4)のうちの1種類だけを有する単独重合体(即ち、ホモポリマー)であってもよく、繰り返し単位として、式(2)~(4)のうちの複数種類、或いは式(2)~(4)のうちの1種類とそれら以外の種類を組み合わせて有する共重合体であってもよい。
これらの式(2)~(4)が有している好適な基や原子は以下の通りである。
まず、式(2)におけるX21及びX22、式(3)におけるX31及びX32、並びに式(4)におけるX41及びX42は、それぞれ同一又は異なり、カルコゲン原子である。
カルコゲン原子とは、周期表第16族に属する元素であり、酸素原子、硫黄原子、セレン原子、テルル原子及びポロニウム原子が挙げられる。高い電荷の移動度が得られるので、カルコゲン原子としては、硫黄原子、セレン原子及び酸素原子が好ましく、環境への負荷を考慮すると、硫黄原子及び酸素原子がより好ましく、硫黄原子が特に好ましい。
式(2)におけるR23、R24、R25、R26、R27及びR28(以下、「R23~R28」のように表記する。)、式(3)におけるR33~R38、並びに式(4)におけるR43~R48は、それぞれ同一又は異なり、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、置換シリル基、非置換若しくは置換のカルボキシル基、置換基を有してもよい1価の複素環基、シアノ基又はフッ素原子を示す。
上述した基のうち、アルキル基は、直鎖、分岐又は環状のいずれでもよく、炭素数が好ましくは1~36であり、より好ましくは6~30であり、更に好ましくは8~24である。アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサドデシル基、オクタドデシル基トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基が挙げられる。
なかでも、高分子化合物の有機溶媒への溶解性と耐熱性とのバランスが良好になるので、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、ヘキシル基、オクチル基、2-エチルヘキシル基、デシル基、3,7-ジメチルオクチル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサドデシル基、オクタドデシル基が好ましい。
アルコキシ基は、直鎖、分岐又は環状のいずれでもよく、炭素数が好ましくは1~36であり、より好ましくは6~30である。アルコキシ基の例としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、テトラデシルオキシ基、ヘキサデシルオキシ基、オクタデシルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシル基、パーフルオロオクチル基、メトキシメチルオキシ基、2-メトキシエチルオキシ基、2-エトキシエチルオキシ基が挙げられる。
なかでも、高分子化合物の有機溶媒への溶解性と耐熱性とのバランスが良好になるので、ヘキシルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、テトラデシルオキシ基、ヘキサデシルオキシ基、オクタデシルオキシ基が好ましい。
アルキルチオ基は、直鎖、分岐又は環状のいずれでもよく、炭素数が好ましくは1~36であり、より好ましくは6~30である。アルキルチオ基の例としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、ウンデシルチオ基、ドデシルチオ基、テトラデシルチオ基、ヘキサデシルチオ基、オクタデシルチオ基、トリフルオロメチルチオ基が挙げられる。
なかでも、高分子化合物の有機溶媒への溶解性と耐熱性とのバランスが良好になるので、ヘキシルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、ウンデシルチオ基、ドデシルチオ基、テトラデシルチオ基、ヘキサデシルチオ基、オクタデシルチオ基が好ましい。
アリール基は、芳香族炭化水素から水素原子1個を除いた原子団であり、縮合環をもつもの、独立したベンゼン環や縮合環の2個以上が直接又はビニレン基等を介して結合したものを含む。アリール基は、炭素数が好ましくは6~60であり、より好ましくは6~48であり、更に好ましくは6~20であり、特に好ましくは6~10である。なお、この炭素数には、置換基の炭素数は含まれない。
アリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-テトラセニル基、2-テトラセニル基、5-テトラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-ペリレニル基、3-ペリレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、1-ビフェニレニル基、2-ビフェニレニル基、2-フェナンスレニル基、9-フェナンスレニル基、6-クリセニル基、1-コロネニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、4-(アントラン-9-イル)フェニル基、[1,1’]ビナフタレン-4-イル基、10-フェニルアントラセン-9-イル基、[9,9’]ビアントラセン-10-イル基が挙げられる。これらの基における水素原子は、さらにアルキル基、アルコキシ基、アルキルオキシカルボニル基、アシル基、N,N-ジアルキルアミノ基、N,N-ジアリールアミノ基、シアノ基、ニトロ基、塩素原子、フッ素原子等で置換されていてもよい。
アリールオキシ基は、炭素数が好ましくは6~60であり、より好ましくは7~48である。アリールオキシ基の例としては、フェノキシ基、C~C18アルコキシフェノキシ基(「C~C18アルコキシ」は、アルコキシ部分の炭素数1~18であることを示し、以下、同様である)、C~C18アルキルフェノキシ基(「C~C18アルキル」は、アルキル部分の炭素数1~18であることを示し、以下、同様である)、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基が挙げられる。なかでも、高分子化合物の有機溶媒への溶解性と耐熱性とのバランスが良好になるので、C~C18アルコキシフェノキシ基、C~C18アルキルフェノキシ基が好ましい。
~C18アルコキシフェノキシ基としては、具体的には、メトキシフェノキシ基、エトキシフェノキシ基、プロピルオキシフェノキシ基、イソプロピルオキシフェノキシ基、ブトキシフェノキシ基、イソブトキシフェノキシ基、tert-ブトキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、シクロヘキシルオキシフェノキシ基、ヘプチルオキシフェノキシ基、オクチルオキシフェノキシ基、2-エチルヘキシルオキシフェノキシ基、ノニルオキシフェノキシ基、デシルオキシフェノキシ基、3,7-ジメチルオクチルオキシフェノキシ基、ウンデシルオキシフェノキシ基、ドデシルオキシフェノキシ基、テトラデシルオキシフェノキシ基、ヘキサデシルオキシフェノキシ基、オクタデシルオキシフェノキシ基が例示される。
また、C~C18アルキルフェノキシ基としては、具体的には、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5-トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、tert-ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基、ウンデシルフェノキシ基、ドデシルフェノキシ基、テトラデシルフェノキシ基、ヘキサデシルフェノキシ基、オクタデシルフェノキシ基が例示される。
アリールチオ基は、炭素数が好ましくは3~60である。アリールチオ基の具体例としては、フェニルチオ基、C~C18アルコキシフェニルチオ基、C~C18アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、ペンタフルオロフェニルチオ基が挙げられる。なかでも、高分子化合物の有機溶媒への溶解性と耐熱性とのバランスが良好になるので、C~C18アルコキシフェニルチオ基、C~C18アルキルフェニルチオ基が好ましい。
アリールアルキル基は、炭素数が好ましくは7~60であり、より好ましくは7~48である。アリールアルキル基の例としては、フェニル-C~C18アルキル基、C~C18アルコキシフェニル-C~C18アルキル基、C~C18アルキルフェニル-C~C18アルキル基、1-ナフチル-C~C18アルキル基、2-ナフチル-C~C18アルキル基が挙げられる。なかでも、高分子化合物の有機溶媒への溶解性と耐熱性とのバランスが良好になるので、C~C18アルコキシフェニル-C~C18アルキル基、C~C18アルキルフェニル-C~C18アルキル基が好ましい。
アリールアルコキシ基は、炭素数が好ましくは7~60であり、より好ましくは炭素数7~48である。アリールアルコキシ基の例としては、フェニルメトキシ基、フェニルエトキシ基、フェニルブトキシ基、フェニルペンチロキシ基、フェニルヘキシロキシ基、フェニルヘプチロキシ基、フェニルオクチロキシ基等のフェニル-C~C18アルコキシ基、C~C18アルコキシフェニル-C~C18アルコキシ基、C~C18アルキルフェニル-C~C18アルコキシ基、1-ナフチル-C~C18アルコキシ基、2-ナフチル-C~C18アルコキシ基が挙げられる。なかでも、高分子化合物の有機溶媒への溶解性と耐熱性とのバランスが良好になるので、C~C18アルコキシフェニル-C~C18アルコキシ基、C~C18アルキルフェニル-C~C18アルコキシ基が好ましい。
アリールアルキルチオ基は、炭素数が好ましくは7~60であり、より好ましくは炭素数7~48である。アリールアルキルチオ基の例としては、フェニル-C~C18アルキルチオ基、C~C18アルコキシフェニル-C~C18アルキルチオ基、C~C18アルキルフェニル-C~C18アルキルチオ基、1-ナフチル-C~C18アルキルチオ基、2-ナフチル-C~C18アルキルチオ基が挙げられる。なかでも、高分子化合物の有機溶媒への溶解性と耐熱性とのバランスが良好になるので、C~C18アルコキシフェニル-C~C18アルキルチオ基、C~C18アルキルフェニル-C~C18アルキルチオ基が好ましい。
置換シリル基としては、アルキル基、アリール基、アリールアルキル基及び1価の複素環基から選ばれる1、2又は3個の基で置換されたシリル基が挙げられる。置換シリル基の炭素数は、好ましくは1~60であり、より好ましくは炭素数3~48である。なお、アルキル基、アリール基、アリールアルキル基又は1価の複素環基は、置換基を有していてもよい。
置換シリル基としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、ジメチルイソプロピリシリル基、ジエチルイソプロピルシリル基、tert-ブチルシリルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシル-ジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチルジメチルシリル基、ウンデシルジメチルシリル基、ドデシルジメチルシリル基、テトラデシルジメチルシリル基、ヘキサデシルジメチルシリル基、オクタデシルジメチルシリル基、フェニル-C~C18アルキルシリル基、C~C18アルコキシフェニル-C~C18アルキルシリル基、C~C18アルキルフェニル-C~C18アルキルシリル基、1-ナフチル-C~C18アルキルシリル基、2-ナフチル-C~C18アルキルシリル基、フェニル-C~C18アルキルジメチルシリル基、トリフェニルシリル基、トリ-p-キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、tert-ブチルジフェニルシリル基、ジメチルフェニルシリル基が例示される。
置換のカルボキシル基としては、アルキル基、アリール基、アリールアルキル基又は1価の複素環基で置換されたカルボキシル基が挙げられ、炭素数は好ましくは2~60であり、より好ましくは炭素数2~48である。置換のカルボキシル基の例としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ウンデシルオキシカルボニル基、ドデシルオキシカルボニル基、テトラデシルオキシカルボニル基、ヘキサデシルオキシカルボニル基、オクタデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基が挙げられる。なお、アルキル基、アリール基、アリールアルキル基又は1価の複素環基は、置換基を有していてもよい。また置換のカルボキシル基の炭素数には、置換基の炭素数は含まれない。
1価の複素環基は、炭素数が好ましくは4~60であり、より好ましくは4~20である。なお、1価の複素環基の炭素数には、置換基の炭素数は含まれない。1価の複素環基としては、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基、イソキノリル基、ピリミジル基、トリアジニル基が例示される。なかでも、チエニル基、ピリジル基、キノリル基、イソキノリル基、ピリミジル基、トリアジニル基が好ましく、チエニル基、ピリジル基、ピリミジル基、トリアジニル基がより好ましい。1価の複素環基は、アルキル基、アルコキシ基等の置換基を有していてもよい。
高分子化合物の主鎖のパッキングを良くして、より高い電荷の移動度が得られるので、式(1)~(4)における縮環構造が有している置換基は、各繰り返し単位が、任意の1つの軸に対して線対称であるか、又は重心に対して点対称の構造となるように置換していると好適である。
このような観点からは、式(2)におけるR23とR26との組み合わせ、R24とR27との組み合わせ、及びR25とR28との組み合わせが、それぞれ互いに同じ基同士の組み合わせであり、式(3)におけるR33とR36との組み合わせ、R34とR37との組み合わせ、及びR35とR38との組み合わせが、それぞれ互いに同じ基同士の組み合わせであり、式(4)におけるR44とR47との組み合わせ、及びR45とR48との組み合わせが、それぞれ互いに同じ基同士の組み合わせであると好ましい。ここで、「互いに同じ基同士の組み合わせ」とは、例えばアルキル基同士、アルコキシ基同士のように、同じ種類の基であることを表す。同じ基同士の組み合わせは、さらに、鎖長や分岐等、置換基の構造が同一であると、高分子化合物のパッキングが良くなるため、好ましい。
さらに、高分子化合物の主鎖のパッキングがさらに向上することにより、主鎖内の平面性が向上するので、式(2)におけるR23~R28、式(3)におけるR33~R38、式(4)におけるR43~R48は、いずれも水素原子であると好ましい。
これらの観点から、式(2)、(3)及び(4)で表される繰り返し単位は、それぞれ、式(2a)、(3a)及び(4a)で表される繰り返し単位であると好適である。なお、式(1a)、(2a)及び(4a)中のX21、X22、X31、X32、X41及びX42は、上記式(2)、(3)及び(4)中の同一符号で示される基と同義である。
Figure JPOXMLDOC01-appb-C000011
高分子化合物が共重合体である場合、式(1)で表される繰り返し単位(好ましくは式(2)~(4)のうちの少なくとも1種の繰り返し単位)と組み合わされる好適な繰り返し単位としては、式(5)で表される繰り返し単位が挙げられる。このような繰り返し単位を更に有することで、より高い電荷の移動度が得られ易くなる傾向にある。
Figure JPOXMLDOC01-appb-C000012
式(5)中、Yは、アリーレン基、2価の複素環基、金属錯体構造を有する2価の基、又はエチニレン基(-C≡C-で表される基)を表し、これらはそれぞれ置換基を有していてもよい。
また、Yは、好ましくは、式(5)で表される繰り返し単位(複数存在する場合には、複数のYからなる構成連鎖)が、式(1)で表される繰り返し単位とともに共重合体を形成する際に、高分子化合物の主鎖となる骨格において、炭素同士の結合や炭素とヘテロ原子との結合により、多重結合と単結合とが交互に繰り返して連なったπ共役系が形成されるように選択される基である。このようなπ共役系としては、例えば、下記の例示式(E1)中の点線内で示される構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
Yで表される基のうち、アリーレン基は、芳香族炭化水素から水素原子2個を除いてなる原子団であり、独立したベンゼン環や縮合環を持つものを含む。アリーレン基は、炭素数が好ましくは6~60であり、より好ましくは6~48であり、更に好ましくは6~30であり、特に好ましくは6~18である。
アリーレン基としては、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基等の非置換若しくは置換のフェニレン基;1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、2,6-ナフタレンジイル基等の非置換若しくは置換のナフタレンジイル基;1,4-アントラセンジイル基、1,5-アントラセンジイル基、2,6-アントラセンジイル基、9,10-アントラセンジイル基等の非置換若しくは置換のアントラセンジイル基;2,7-フェナントレンジイル基等の非置換若しくは置換のフェナントレンジイル基;1,7-ナフタセンジイル基、2,8-ナフタセンジイル基、5,12-ナフタセンジイル基等の非置換若しくは置換のナフタセンジイル基;2,7-フルオレンジイル基、3,6-フルオレンジイル基等の非置換若しくは置換のフルオレンジイル基;1,6-ピレンジイル基、1,8-ピレンジイル基、2,7-ピレンジイル基、4,9-ピレンジイル基等の非置換若しくは置換のピレンジイル基;3,9-ペリレンジイル基、3,10-ペリレンジイル基等の非置換若しくは置換のペリレンジイル基が挙げられる。
アリーレン基としては、上述したなかでも、非置換若しくは置換のフェニレン基、非置換若しくは置換のフルオレンジイル基が好ましく、非置換若しくは置換のフルオレンジイル基が更に好ましく、置換のフルオレンジイル基が特に好ましい。アリーレン基が好適なものであるほど、高い電荷の移動度が得られるようになる。
このようなアリーレン基としては、例えば、式(9a)~(9f)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000014
式(9a)~(9f)中、R93、R94及びR96は、それぞれ同一又は異なり、水素原子、ハロゲン原子又は1価の基であり、R95は、ハロゲン原子又は1価の基である。また、uは、0以上の整数である。1価の基としては、式(2)におけるR23~R28として例示したうちの1価の基と同様のものが挙げられる。なお、上記式で表される構造中、複数のR93、R94又はR95が含まれる場合、同じ符号で示される基同士は、それぞれ同一でも異なっていてもよい。また、R93、R94、R95及びR96のうちの2種、或いは、同じ符号で表される基同士が、同じ炭素原子又は隣接する炭素原子に結合している場合は、この関係にある基同士は一部で結合して環を形成していてもよい。この場合に形成される環は、単環でも縮合環でもよく、炭化水素環でも複素環でもよい。また、これらの環は、置換基を有していてもよい。形成される環としては、単環の炭化水素環や、ヘテロ原子として酸素原子又は硫黄原子を含む単環の複素環が好ましい。
2価の複素環基は、炭素数が、通常、4~60であり、好ましくは4~48であり、より好ましくは4~30であり、更に好ましくは4~22であり、特に好ましくは4~12であり、とりわけ好ましくは4である。この炭素数には、置換基の炭素数は含まない。
2価の複素環基の例としては、2,5-チオフェンジイル基等の非置換若しくは置換のチオフェンジイル基;2,5-フランジイル基等の非置換若しくは置換のフランジイル基;2,5-ピリジンジイル基、2,6-ピリジンジイル基等の非置換若しくは置換のピリジンジイル基;2,6-キノリンジイル基等の非置換若しくは置換のキノリンジイル基;1,4-イソキノリンジイル基、1,5-イソキノリンジイル基等の非置換若しくは置換のイソキノリンジイル基;5,8-キノキサリンジイル基等の非置換若しくは置換のキノキサリンジイル基;4,7-ベンゾ[1,2,5]チアジアゾールジイル基等の非置換若しくは置換のベンゾ[1,2,5]チアジアゾールジイル基;4,7-ベンゾチアゾールジイル基等の非置換若しくは置換のベンゾチアゾールジイル基;2,7-カルバゾールジイル基、3,6-カルバゾールジイル基等の非置換若しくは置換のカルバゾールジイル基;3,7-フェノキサジンジイル基等の非置換若しくは置換のフェノキサジンジイル基;3,7-フェノチアジンジイル基等の非置換若しくは置換のフェノチアジンジイル基;2,7-ジベンゾシロールジイル基等の非置換若しくは置換のジベンゾシロールジイル基が挙げられる。
なかでも、2価の複素環基としては、好ましくは2,5-チオフェンジイル基等の非置換若しくは置換のチオフェンジイル基;2,5-フランジイル基等の非置換若しくは置換のフランジイル基;2,5-ピリジンジイル基、2,6-ピリジンジイル基等の非置換若しくは置換のピリジンジイル基;2,6-キノリンジイル基等の非置換若しくは置換のキノリンジイル基;1,4-イソキノリンジイル基であり、さらに好ましくは2,5-チオフェンジイル基等の非置換若しくは置換のチオフェンジイル基である。
このような2価の複素環基としては、例えば、式(11a)~(11p)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
式(11a)~(11p)中、R115、R116、R117、R118及びvは、それぞれ、上記式(9a)~(9f)におけるR93、R94、R95、R96及びuと同義である。また、Zは、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子等のヘテロ原子である。
また、金属錯体構造を有する2価の基とは、有機配位子と中心金属とを有する金属錯体の有機配位子から水素原子を2個除いてなる残りの原子団から構成される基である。金属錯体としては、低分子の蛍光材料、燐光材料として公知の金属錯体、三重項発光錯体等が挙げられる。金属錯体の中心金属としては、例えば、アルミニウム、亜鉛、ベリリウム、イリジウム、白金、金、ユーロピウム、テルビウムが挙げられる。
有機配位子の炭素数は、好ましくは4~60である。有機配位子の例としては、8-キノリノール及びその誘導体、ベンゾキノリノール及びその誘導体、2-フェニル-ピリジン及びその誘導体、2-フェニル-ベンゾチアゾール及びその誘導体、2-フェニル-ベンゾキサゾール及びその誘導体、ポルフィリン及びその誘導体等が挙げられる。
このような金属錯体構造を有する2価の基としては、例えば、式(100)~(106)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
式(100)~(106)中のRは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、非置換若しくは置換のカルボキシル基又はシアノ基を表す。また、これらの基が有している炭素原子は、窒素原子、酸素原子又は硫黄原子と置き換えられていてもよく、さらに水素原子はフッ素原子に置換されていてもよい。さらに、複数存在するRは、それぞれ同一であっても異なっていてもよい。
なかでも、式(5)で表される繰り返し単位におけるYは、式(6)で表される基であると特に好ましい。このような繰り返し単位を有することで、高分子化合物は、より高い電荷の移動度を発揮し得るものとなる。
Figure JPOXMLDOC01-appb-C000019
[式中、Tは置換基を有していてもよい2価の複素環基を示し、nは2~8の整数を表す。複数存在するTは、それぞれ同一でも異なっていてもよい。]
式(6)で表される繰り返し単位は、式(6a)で表される繰り返し単位であるとさらに好ましい。このような繰り返し単位を有することで、高分子化合物は、さらに高い電荷の移動度を発揮し得るものとなる。
Figure JPOXMLDOC01-appb-C000020
[式中、R61、R62、R63及びR64は、それぞれ同一又は異なり、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、置換シリル基、非置換若しくは置換のカルボキシル基、1価の複素環基、シアノ基又はフッ素原子を示す。]
式(6a)中、R61~R64で表される基は、上述したR23~R28で表される基と同様であるが、アルキル基であることが好ましい。
また、高分子化合物の溶解性が向上するので、式(5)におけるYは、式(7)で表される基であっても好ましい。
Figure JPOXMLDOC01-appb-C000021
[式中、Ar及びArは、それぞれ同一又は異なり、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい複素環、又は置換基を有していてもよい芳香族炭化水素環と置換基を有していてもよい複素環との縮合環である。R71及びR72は、それぞれ同一又は異なり、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、置換シリル基、非置換若しくは置換のカルボキシル基、置換基を有してもよい1価の複素環基、シアノ基又はフッ素原子を示す。]
式(7)で表される基は、式(7a)で表される基であるとさらに好ましい。
Figure JPOXMLDOC01-appb-C000022
[式中、R73及びR74は、それぞれ同一又は異なり、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、置換シリル基、非置換若しくは置換のカルボキシル基、1価の複素環基、シアノ基又はフッ素原子を示す。]
式(7)、(7a)中、R71~R74で表される基は、上述したR23~R28で表される基と同様である。また、Ar及びArは、置換基を有していてもよいベンゼン環であることが好ましい。
高分子化合物は、式(5)で表される繰り返し単位として、式中のYで表される基がそれぞれ異なるものを複数種類有していてもよい。例えば、高い電荷の移動度を得るとともに、優れた溶解性が得られるので、式(5)で表される繰り返し単位として、非置換又は置換のビチオフェンジイル基(式(6)で表される基)と、式(7)で表される基とを組み合わせて有していてもよい。
以上説明したように、本発明の高分子化合物は、式(1)(好ましくは式(2)~(4))で表される繰り返し単位を有する。そして、共重合体においては、式(1)で表される繰り返し単位と組み合わせる繰り返し単位として、好適な場合、式(5)で表される繰り返し単位を有している。
なお、電荷の移動度が向上するので、式(5)で表される繰り返し単位としては、少なくとも1種の電子受容性基を含むことが好ましく、Yの少なくとも1種が電子受容性基であることがより好ましい。ここで、所定の基における電子受容性は、最低空分子軌道(LUMO)で見積もられ、このLUMOのエネルギーレベルの値は、量子化学計算Gaussianにより算出される。本明細書においては、計算方法として密度汎関数法を用い、密度汎関数としてB3LYP、基底関数として3-21G、使用プログラムをGaussian09 Rev.A02として算出したLUMOが-1.4eV以下である場合を、電子受容性という。
また、高分子化合物においては、式(1)で表される繰り返し単位の量子化学計算Gaussianにより算出される最高被占分子軌道(HOMO)のエネルギーレベルの値と、式(5)における電子受容性基のLUMOのエネルギーレベルの値の差が、4.4eV以下であると好ましい。なお、高分子化合物に式(1)で表される繰り返し単位や電子受容性基がそれぞれ複数種類含まれる場合は、上記で算出したHOMOのエネルギーレベルの値のうちの最も低い値と、LUMOのエネルギーレベルの値のうちの最も高い値との差が4.4eV以下となるようにすることが好ましい。
このような電子受容性基としては、例えば、式(12a)~(12j)で表される基が挙げられる。式(12a)~(12j)中、R123、R124及びR126は、上記の式(9a)~(9f)におけるR93、R94、R96とそれぞれ同義である。
Figure JPOXMLDOC01-appb-C000023
移動度が向上するので、特に、式(5)で表される繰り返し単位におけるYの少なくとも1つが、式(8)で表される電子受容性基であると好ましい。
Figure JPOXMLDOC01-appb-C000024
式(8)中、X81は、カルコゲン原子、-N(R83)-又は-CR84=CR85-を表す。R81及びR82は、それぞれ同一又は異なり、水素原子又は置換基を表す。R81及びR82が置換基である場合、炭素数1~30の基が好ましい。このような置換基としては、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基等のアルキル基、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等のアルコキシ基、フェニル、ナフチル等のアリール基等が挙げられる。
また、R81及びR82は、それぞれ互いに連結して環状構造を形成してもよい。R81及びR82が連結して環状構造を構成した式(8)で表される繰り返し単位の例としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000025
式中、R86及びR87は、それぞれ同一又は異なり、水素原子又は置換基を表す。R86及びR87で表される置換基としては、前述のR81及びR82で表される置換基と同様の基が挙げられる。また、X81は、好ましくは硫黄原子である。
式(8)で表される繰り返し単位としては、式(8a)で表される繰り返し単位が特に好ましい。この場合、かかる繰り返し単位における上記の量子化学計算Gaussianにより算出されるLUMOのエネルギーレベルの値は、-2.32eVとなる。
Figure JPOXMLDOC01-appb-C000026
以下、好適な高分子化合物の例を構造式で示す。式(130)~(175)中のnは、繰り返し単位数(重合度)を示しており、4~3000であると好ましく、6~850であるとより好ましい。また、後述する高分子化合物P1、P2、P3、P9において、n=4~3000(好ましくは6~850)であるものも好適な高分子化合物である。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
高分子化合物が共重合体である場合、良好な電荷注入性や溶解性が得られるので、全繰り返し単位の合計モル数に対し、式(1)(好ましくは式(2)~(4))で表される繰り返し単位の合計モル数は、20~80%であることが好ましく、30~70%であることがより好ましく、40~60%であることがさらに好ましい。
また、高分子化合物においては、良好な主鎖の配向性が得られるので、式(1)(好ましくは式(2)~(4))で表される繰り返し単位の合計のモル数に対して、これら以外の繰り返し単位の合計モル数が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましく、0.05%以下であることが特に好ましい。主鎖の配向性が良好であると、高いパッキングが可能となることから、より優れた電荷の移動度が得られる。
さらに、高分子化合物が共重合体である場合、どのような共重合体であってもよく、例えば、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体等のいずれであってもよい。ただし、良好な電荷注入性、電荷の移動特性、主鎖のパッキング及び溶解性が得られるので、高分子化合物の構造中、式(1)(好ましくは式(2)~(4))で示される繰り返し単位と、式(5)で示される繰り返し単位とが交互に結合した構造を含むことが好ましい。
なかでも、上記特性が更に良好に得られるので、高分子化合物は、式(1)で表される繰り返し単位(好ましくは、式(2)~(4)で表される繰り返し単位のうちのいずれか1種)と、式(5)で表される繰り返し単位とが交互に結合した構造であると好ましく、式(2)及び(3)で表される繰り返し単位のいずれかと、式(5)で表される繰り返し単位とが交互に結合した構造であるとより好ましい。
そして、このように「交互に結合した構造」による優れた効果を十分に得るためには、この「交互に結合した構造」を構成している繰り返し単位の合計が、高分子化合物の全ての繰り返し単位に対して、モル基準で90%以上であると好ましく、99%以上であるとより好ましく、99.5%以上であるとさらに好ましく、99.9%以上であると特に好ましい。
また、高分子化合物は、複数の繰り返し単位を有する化合物であって、そのうちの少なくとも1つが、式(1)(好ましくは式(2)~(4)のいずれか)で表される繰り返し単位であるものである。この高分子化合物は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」という。)によるポリスチレン換算の数平均分子量(Mn)が、1×10~1×10であると好ましく、1×10~1×10であるとより好ましい。また、この高分子化合物は、GPCによるポリスチレン換算の重量平均分子量(Mw)が、1×10~1×10であると好ましい。特に良好な成膜性が得られ、かつ、素子の作製に用いた場合に高い移動度が得られるので、この重量平均分子量は、1×10~5×10であるとより好ましく、1×10~5×10であるとさらに好ましく、1×10~5×10であると一層好ましい。
また、高分子化合物の末端基に、後述するような高分子化合物の製造に用いた重合活性基がそのまま残っていると、高分子化合物を有機トランジスタに用いた場合に電荷の移動度や素子寿命が低下する可能性がある。そのため、末端基は安定な基であると好ましい。
このような末端基としては、主鎖と共役結合しているものが好ましく、例えば、炭素-炭素結合を介してアリール基又は複素環基と結合している構造が挙げられる。具体的には、特開平9-45478号公報の化10に記載の置換基等が末端基として例示できる。
このような高分子化合物は、そのままでも発光材料、ホール輸送材料又は電子輸送材料等として有用であるが、使用する際には、その他の高分子量の化合物と併用してもよく、例えば、後述するような組成物として用いてもよい。
[高分子化合物の製造方法]
 次に、上述した高分子化合物の製造方法の好適な実施形態について説明する。
高分子化合物は、例えば、式(21)で表される化合物のような、式(1)で表される繰り返し単位に対応する原料化合物を縮合重合させることにより製造することができる。式(1)で表される繰り返し単位が、式(2)、(3)又は(4)で表される繰り返し単位である場合は、それらにそれぞれ対応する原料化合物、式(22)で表される化合物、式(23)で表される化合物、式(24)で表される化合物等を用いることができる。また、高分子化合物を共重合体とする場合は、これらの化合物を、組み合わせるべき繰り返し単位に対応する原料化合物と組み合わせて縮合重合させればよい。例えば、式(5)で表される繰り返し単位を導入する場合は、式(25)で表される原料化合物を併用することが好ましい。
Figure JPOXMLDOC01-appb-C000036
これらの式中、Ar、Ar、R、R、R、R、X21、X22、X31、X32、X41、X42、R23~R28、R33~R38、R43~R48及びnは、上記と同じである。
また、Z、Z、Z21、Z22、Z31、Z32、Z41、Z42、Z51及びZ52は、それぞれ同一又は異なる重合活性基である。かかる重合活性基としては、ハロゲン原子、式(a-1)で表されるスルホネート基、メトキシ基、ホウ酸エステル残基、ホウ酸残基(-B(OH)で表される基)、式(a-2)で表される基、式(a-3)で表される基、及び、式(a-4)で表される基が挙げられる。これらの基が分子中に複数存在している場合、同じ符号で示される基同士は、互いに同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000037
式(a-1)~(a-4)中、Rは、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアリール基、Xは、ハロゲン原子を示す。式(1-4)中に複数あるRは、それぞれ同一でも異なっていてもよい。Rで表されるアルキル基及びアリール基としては、上述した式(2)におけるR23~R28等として例示したのと同様のものが挙げられる。また、Xで表されるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が挙げられる。
重合活性基のうち、ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が好ましい。式(a-1)で表されるスルホネート基としては、例えば、メタンスルホネート基、トリフルオロメタンスルホネート基、フェニルスルホネート基、4-メチルフェニルスルホネート基が挙げられる。
ホウ酸エステル残基としては、例えば、式(a-5)、(a-6)、(a-7)、(a-8)、(a-9)又は(a-10)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000038
さらに、式(a-4)で表される基としては、例えば、トリメチルスタナニル基、トリエチルスタナニル基、トリブチルスタナニル基が挙げられる。
式(21)~(25)中、重合活性基としては、これらの式で表される原料化合物の合成が簡便であり、かつ、取り扱い易いので、ハロゲン原子、ホウ酸エステル残基、ホウ酸残基であることが好ましい。また、式(21)~(25)で表される原料化合物としては、あらかじめ合成して単離したものを用いてもよいし、反応系中で調製したものをそのまま用いてもよい。
原料化合物を縮合重合させる方法としては、原料化合物を、必要に応じて適切な触媒や適切な塩基を用いて反応させる方法が挙げられる。触媒としては、例えば、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート等のパラジウム錯体、ニッケル[テトラキス(トリフェニルホスフィン)]、[1,3-ビス(ジフェニルホスフィノ)プロパン]ジクロロニッケル、[ビス(1,4-シクロオクダジエン)]ニッケル等のニッケル錯体等の遷移金属錯体が挙げられる。また、必要に応じて、これらの遷移金属錯体に、さらにトリフェニルホスフィン、トリ(tert-ブチルホスフィン)、トリシクロヘキシルホスフィン、ジフェニルホスフィノプロパン、ビピリジル等の配位子を組み合わせて触媒とすることもできる。触媒は、予め合成したものを用いてもよいし、反応系中で調製したものをそのまま用いてもよい。また、触媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
触媒を用いる場合、原料化合物のモル数の合計に対して、0.00001~3モル当量が好ましく、0.00005~0.5モル当量がより好ましく、0.0001~0.2モル当量がさらに好ましい。
縮合反応を促進する塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基、フッ化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基が挙げられる。塩基を用いる場合、その量は、原料化合物のモル数の合計に対して、0.5~20モル当量であると好ましく、1~10モル当量であるとより好ましい。
縮合重合は、溶媒の非存在下で行っても、溶媒の存在下で行ってもよいが、有機溶媒の存在下で行うことが好ましい。
有機溶媒としては、原料化合物の種類や反応によって異なるが、例えば、トルエン、キシレン、メシチレン、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドが使用できる。副反応を抑制することができるので、有機溶媒は、脱酸素処理が施されたものを用いることが望ましい。これらの有機溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
有機溶媒を使用する場合、その使用量は、原料化合物の合計濃度が、0.1~90重量%となる量であると好ましく、1~50重量%となる量であるとより好ましく、2~30重量%となる量であると更に好ましい。
また、縮合重合の反応温度は、好ましくは-100℃~200℃であり、より好ましくは-80℃~150℃であり、さらに好ましくは0℃~120℃である。好適な反応時間は、反応温度等の条件によるが、1時間以上であり、より好ましくは2~500時間である。さらに、縮合重合は、脱水条件下で行うことが望ましい場合がある。例えば、式(21)~(25)中の重合活性基が式(a-2)で表される基である場合には、脱水条件下で行うことが好ましい。
縮合重合としては、例えば、Suzuki反応により重合する方法(ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年))、Grignard反応により重合する方法(共立出版、高分子機能材料シリーズ第2巻、高分子の合成と反応(2)、432~433頁)、山本重合法により重合する方法(プログレッシブ ポリマー サイエンス(Prog.Polym.Sci.),第17巻,1153~1205頁,1992年)が挙げられる。
縮合重合後、公知の後処理を行うことができる。例えば、メタノール等の低級アルコールに縮合重合で得られた反応溶液を加えて析出させた沈殿を濾過し、乾燥する方法が挙げられる。このような後処理によって本発明の高分子化合物が得られるが、高分子化合物の純度が低い場合には、再結晶、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製すればよい。
高分子化合物の製造において、式(21)で表される原料化合物(好ましくは、式(22)~(24)で表される原料化合物のいずれか)と式(25)で表される原料化合物とを共重合する場合、高分子化合物は、前者の原料化合物からなる繰り返し単位と後者の原料化合物からなる繰り返し単位を交互に有することが好ましいことから、以下のような反応を行うことが好適である。
すなわち、式(21)(好ましくは式(22)~(24))中の重合活性基がハロゲン原子である化合物と、式(25)中の重合活性基がホウ酸残基又はホウ酸エステル残基である化合物との組み合わせ、或いは、式(21)(好ましくは式(22)~(24))中の重合活性基がホウ酸残基又はホウ酸エステル残基である化合物と、式(25)中の重合活性基がハロゲン原子である化合物との組み合わせを、Suzuki重合を用いて重合させる方法が好ましい。
[組成物]
 上述した本発明の高分子化合物は、他の成分を組み合わせて含む組成物として、発光材料や電荷輸送材料として用いることもできる。このような組成物としては、例えば、高分子化合物と、ホール輸送材料、電子輸送材料及び発光材料からなる群より選ばれる少なくとも1種類の材料とを含有するものが挙げられる。好適なホール輸送材料及び電子輸送材料としては、後述する薄膜の説明で例示するものを適用できる。
高分子化合物と、ホール輸送材料、電子輸送材料及び発光材料からなる群から選ばれる少なくとも1種類の材料との含有比率は、組成物の用途に応じて決めればよいが、発光材料の用途の場合、組成物全体100重量部に対して、高分子化合物が20~99重量部であると好ましく、40~95重量部であるとより好ましい。
高分子化合物を含有する組成物の、GPCによるポリスチレン換算の数平均分子量(Mn)は、1×10~1×10であると好ましく、5×10~1×10であるとより好ましい。また、ポリスチレン換算の重量平均分子量(Mw)は、1×10~1×10であると好ましく、良好な成膜性が得られ、かつ、素子の作製に用いた場合に高い効率が得られるので、1×10~5×10であるとより好ましい。ここで、高分子化合物を含有する組成物の平均分子量とは、この組成物をGPCで分析して求めた値をいう。
また、本実施形態の組成物は、後述するように、有機溶媒等の溶媒を含有させた溶液(以下、「インク組成物」という。)とすることもできる。以下、インク組成物の好適な形態について説明する。
(インク組成物)
 本発明の高分子化合物を含有するインク組成物は、高分子化合物と溶媒とを含有するものである。また、インク組成物は、上述したような高分子化合物を含有する組成物と溶媒とを含有するものであってもよい。このインク組成物は、主に溶液の状態であり、印刷法等により薄膜を形成するのに有用である。インク組成物に含まれる高分子化合物及び溶媒以外の成分としては、ホール輸送材料、電子輸送材料、発光材料、安定剤、増粘剤(粘度を高めるための高分子量の化合物や貧溶媒)、粘度を下げるための低分子量の化合物、界面活性剤(表面張力を下げるためのもの)、酸化防止剤等が挙げられる。
インク組成物は、本発明の高分子化合物の1種類のみを含んでいてもよく、2種類以上を組み合わせて含んでいてもよい。また、素子の作製に用いたときに特性が損なわれない範囲で、本発明の高分子化合物以外の高分子量の化合物を含んでいてもよい。
インク組成物における本発明の高分子化合物の割合は、インク組成物の全量100重量部に対して、1~99.9重量部であると好ましく、60~99.5重量部であるとより好ましく、80~99.0重量部であると更に好ましい。このような割合で高分子化合物を含むことで、塗布法を良好に行うことができるとともに、高分子化合物の優れた特性を良好に発揮し得る薄膜等を形成し易くなる。
インク組成物の粘度は、用いる印刷法の種類によって調整すればよいが、例えば、インクジェットプリント法等のインク組成物が吐出装置を経由する方法に適用する場合、吐出時の目づまりや飛行曲がりを防止するために、25℃において1~20mPa・sの範囲であることが好ましい。
インク組成物に用いる溶媒は、インク組成物中の固形成分を溶解又は均一に分散できるものが好ましい。溶媒としては、クロロホルム、塩化メチレン、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒、テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン等の脂肪族炭化水素系溶媒、アセトン、メチルエチルケトン、シクロヘキサノン、ベンゾフェノン、アセトフェノン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒、エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2-ヘキサンジオール等の多価アルコール及びその誘導体、メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール等のアルコール系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が例示される。これらの溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
これらのなかでも、高分子化合物等の溶解性、粘度特性、成膜時の均一性が良好になるので、芳香族炭化水素系溶媒、エーテル系溶媒、脂肪族炭化水素系溶媒、エステル系溶媒、ケトン系溶媒が好ましい。具体的には、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、n-プロピルベンゼン、イソプロピルベンゼン、n-ブチルベンゼン、イソブチルベンゼン、sec-ブチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン、1-メチルナフタレン、テトラリン、アニソール、エトキシベンゼン、シクロヘキサン、ビシクロヘキシル、シクロヘキセニルシクロヘキサノン、n-ヘプチルシクロヘキサン、n-ヘキシルシクロヘキサン、デカリン、安息香酸メチル、シクロヘキサノン、2-プロピルシクロヘキサノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-オクタノン、2-ノナノン、2-デカノン、ジシクロヘキシルケトン、アセトフェノン、ベンゾフェノンが好適である。
溶媒としては、成膜性や素子特性が良好になるので、2種類以上を組み合わせて用いることが好ましく、2~3種類を組み合わせて用いることがより好ましく、2種類を組み合わせて用いることが特に好ましい。
2種類の溶媒を組み合わせる場合、そのうちの1種類の溶媒は25℃において固体状態のものでもよい。良好な成膜性が得られるので、少なくとも1種類の溶媒は、その沸点が180℃以上であることが好ましく、200℃以上であることがより好ましい。また、良好な粘度が得られるので、2種類の溶媒のいずれも、60℃において1重量%以上の芳香族重合体を溶解するものであることが好ましく、特に、2種類の溶媒のうちの1種類の溶媒は、25℃において1重量%以上の芳香族重合体を溶解するものであることが好ましい。
さらに、2種類以上の溶媒を組み合わせる場合は、良好な粘度及び成膜性が得られるので、組み合わせた溶媒のうち、沸点が最も高い溶媒が、全溶媒の重量の40~90重量%であることが好ましく、50~90重量%であることがより好ましく、65~85重量%であることが更に好ましい。
インク組成物に増粘剤として高分子量の化合物を含有させる場合、この化合物は、本発明の高分子化合物と同じ溶媒に可溶であり、素子を形成した場合の発光や電荷輸送を阻害しないものであることが好ましい。このような増粘剤としては、例えば、高分子量のポリスチレン、高分子量のポリメチルメタクリレート等が挙げられる。これらの高分子量の化合物は、ポリスチレン換算の重量平均分子量が50万以上であることが好ましく、100万以上であることがより好ましい。
また、増粘剤としては、インク組成物の成分中の固形分に対する貧溶媒を用いることもできる。このような貧溶媒を少量添加することで、粘度を適度に高めることができる。この目的で貧溶媒を添加する場合は、インク組成物中の固形分が析出しない範囲で、溶媒の種類と添加量を選択すればよい。インク組成物の保存時の安定性も考慮すると、貧溶媒の量は、インク組成物全体100重量部に対して、50重量部以下であることが好ましく、30重量部以下であることが更に好ましい。
酸化防止剤は、インク組成物の保存安定性を向上させるためのものである。酸化防止剤としては、本発明の高分子化合物と同じ溶媒に可溶性であり、素子を形成した場合の発光や電荷輸送を阻害しないものであればよく、フェノール系酸化防止剤、リン系酸化防止剤が例示される。
さらに、インク組成物には、水、金属やその塩が、重量基準で1~1000ppmの範囲で含まれていてもよい。金属の具体例としては、リチウム、ナトリウム、カルシウム、カリウム、鉄、銅、ニッケル、アルミニウム、亜鉛、クロム、マンガン、コバルト、白金、イリジウムが挙げられる。その他、インク組成物には、ケイ素、リン、フッ素、塩素、臭素等が、重量基準で1~1000ppmの範囲で含まれていてもよい。
[薄膜]
 本発明の高分子化合物を含有する薄膜は、例えば、発光性薄膜、導電性薄膜、有機半導体薄膜として適用できる。
薄膜が発光性薄膜である場合、高い輝度や発光電圧が得られるので、発光の量子収率が30%以上であることが好ましく、50%以上であることがより好ましく、60%以上であることがさらに好ましく、70%以上であることが特に好ましい。
薄膜が導電性薄膜である場合、表面抵抗が1kΩ/□以下であることが好ましく、100Ω/□以下であることがより好ましく、10Ω/□以下であることがさらに好ましい。
導電性薄膜は、ルイス酸、イオン性化合物等がドープされることにより、より高い電気伝導度が得られるようになる。
薄膜が有機半導体薄膜である場合、電子移動度又はホール移動度のいずれか大きい方が、10-5cm/Vs以上であることが好ましく、10-3cm/Vs以上であることがより好ましく、10-1cm/Vs以上であることがさらに好ましい。このような有機半導体薄膜を用いて、後述するような有機トランジスタを形成できる。
有機半導体薄膜の場合、その厚さは、1nm~100μmであると好ましく、2nm~1000nmであるとより好ましく、3nm~500nmであると更に好ましく、5nm~200nmであると特に好ましい。
有機半導体薄膜は、本発明の高分子化合物の1種類を単独で含むものであってもよく、2種類以上を組み合わせて含むものであってもよい。有機半導体薄膜の電子輸送性又はホール輸送性を高めるために、高分子化合物以外の電子輸送性又はホール輸送性を有する低分子化合物又は高分子化合物を混合することもできる。
ホール輸送材料としては、公知のものが使用でき、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリアリールジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリアリーレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が例示される。
また、電子輸送材料としては、公知のものが使用でき、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体が例示される。
また、本実施形態の薄膜は、用途によって、当該薄膜で吸収した光により電荷を発生させるために電荷発生材料を含んでいてもよい。電荷発生材料としては、公知のものが使用でき、アゾ化合物及びその誘導体、ジアゾ化合物及びその誘導体、無金属フタロシアニン化合物及びその誘導体、金属フタロシアニン化合物及びその誘導体、ペリレン化合物及びその誘導体、多環キノン系化合物及びその誘導体、スクアリリウム化合物及びその誘導体、アズレニウム化合物及びその誘導体、チアピリリウム化合物及びその誘導体、C60等のフラーレン類及びその誘導体が例示される。
さらに、本実施形態の薄膜は、その他、種々の機能を発現させるために必要な材料を含んでいてもよい。このような材料としては、吸収した光により電荷を発生させる機能を増感するためのため増感剤、安定性を増すための安定化剤、UV光を吸収するためのUV吸収剤が例示される。
また、薄膜は、機械的特性が向上するので、本発明の高分子化合物以外の高分子化合物を高分子バインダーとして含んでいてもよい。高分子バインダーとしては、電子輸送性又はホール輸送性を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好ましく用いられる。
このような高分子バインダーとしては、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサンが例示される。
本実施形態の薄膜の製造方法としては、上記本発明の高分子化合物をそのまま用いるか、上述した組成物(例えば、インク組成物)を用いて成膜する方法が挙げられる。例えば、高分子化合物に、必要に応じて電子輸送材料、ホール輸送材料、高分子バインダー等を加えた溶液を用いた成膜による方法である。また、高分子化合物がオリゴマーの状態である場合等は、真空蒸着法により薄膜を形成することもできる。
薄膜の形成方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、キャピラリ-コート法、ノズルコート法、ディスペンサー印刷法等が挙げられ、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、ディスペンサー印刷法が好ましく、フレキソ印刷法、インクジェット法、ディスペンサー印刷法がより好ましい。
溶液(例えば、インク組成物)等を用いて成膜する場合、用いる溶媒としては、本発明の高分子化合物のほか、混合する成分(電子輸送材料、ホール輸送材料、高分子バインダー等)を溶解させるものを用いることが好ましい。
溶媒としては、上述したインク組成物に用いるものを適用でき、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン等の不飽和炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒が例示される。本発明の高分子化合物は、その構造や分子量にもよるが、これらの溶媒に0.1重量%以上溶解させることができることが多い。
溶液を用いて薄膜を作製する場合は、この溶液に含まれる本発明の高分子化合物のガラス転移温度が高い傾向にあるため、成膜の過程において100℃以上の温度でベークすることが可能であり、130℃の温度でベークしても素子の作製に用いたときに特性の低下が起こることが少ないため、薄膜の形成が容易である。さらに、高分子化合物の種類によっては、160℃以上の温度でベークすることもできることがある。
本発明の高分子化合物を含有する有機半導体薄膜を製造する場合、その製造工程には、高分子化合物を配向させる工程が含まれていてもよい。この工程により高分子化合物を配向させた有機半導体薄膜は、主鎖分子又は側鎖分子が一方向に並ぶので、電荷の移動度が更に高いものとなる。
高分子化合物を配向させる方法としては、液晶の配向手法として知られている方法を用いることができる。なかでもラビング法、光配向法、シェアリング法(ずり応力印加法)や引き上げ塗布法が、配向手法として簡便かつ有用で利用しやすく、ラビング法、シェアリング法が好ましい。
[有機薄膜素子]
 本発明の高分子化合物を含有する薄膜(例えば、有機半導体薄膜)は、電荷の輸送性を有することから、電極から注入された電子若しくはホール、又は光吸収により発生した電荷を輸送制御することができ、有機トランジスタ、太陽電池モジュール、光センサー等種々の有機薄膜素子に用いることができる。なお、本発明の薄膜をこれらの有機薄膜素子に用いる場合は、上述したような配向処理により配向させて用いることが、より高い電子輸送性又はホール輸送性が得られることから好ましい。以下、有機薄膜素子の好適な例について説明する。
(有機トランジスタ)
 まず、本発明の高分子化合物を含有する有機半導体層を備える有機トランジスタの好適な実施形態について説明する。
有機トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となり上記高分子化合物を含有する有機半導体層、電流経路を通る電流量を制御するゲート電極を備えるものであり、電界効果型、静電誘導型が例示される。
電界効果型有機トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層、この電流経路を通る電流量を制御するゲート電極、並びに、有機半導体層とゲート電極との間に配置される絶縁層を備えることが好ましい。特に、ソース電極及びドレイン電極が、有機半導体層に接して設けられており、さらに有機半導体層に接した絶縁層を挟んでゲート電極が設けられていることが好ましい。
静電誘導型有機トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となる有機半導体層、並びに電流経路を通る電流量を制御するゲート電極を有し、このゲート電極が有機半導体層中に設けられていることが好ましい。特に、ソース電極、ドレイン電極及び有機半導体層中に設けられたゲート電極が、有機半導体層に接して設けられていることが好ましい。ここで、ゲート電極の構造としては、ソース電極からドレイン電極へ流れる電流経路が形成され、且つゲート電極に印加した電圧で電流経路を流れる電流量が制御できる構造であればよく、例えば、くし形電極が挙げられる。
図1は第1実施形態に係る有機トランジスタ(電界効果型有機トランジスタ)の模式断面図である。図1に示す有機トランジスタ100は、基板1と、基板1上に所定の間隔をもって形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を覆うようにして基板1上に形成された有機半導体層2と、有機半導体層2上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の絶縁層3の領域を覆うように絶縁層3上に形成されたゲート電極4と、を備えるものである。
図2は第2実施形態に係る有機トランジスタ(電界効果型有機トランジスタ)の模式断面図である。図2に示す有機トランジスタ110は、基板1と、基板1上に形成されたソース電極5と、ソース電極5を覆うようにして基板1上に形成された有機半導体層2と、ソース電極5と所定の間隔を持って有機半導体層2上に形成されたドレイン電極6と、有機半導体層2及びドレイン電極6上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の絶縁層3の領域を覆うように絶縁層3上に形成されたゲート電極4と、を備えるものである。
図3は第3実施形態に係る有機トランジスタ(電界効果型有機トランジスタ)の模式断面図である。図3に示す有機トランジスタ120は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域を一部覆うように、絶縁層3上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を一部覆うように絶縁層3上に形成された有機半導体層2と、を備えるものである。
図4は第4実施形態に係る有機トランジスタ(電界効果型有機トランジスタ)の模式断面図である。図4に示す有機トランジスタ130は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域を一部覆うように絶縁層3上に形成されたソース電極5と、ソース電極5を一部覆うようにして絶縁層3上に形成された有機半導体層2と、ゲート電極4が下方に形成されている有機半導体層2の領域を一部覆うように、ソース電極5と所定の間隔を持って絶縁層3上に形成されたドレイン電極6と、を備えるものである。
図5は第5実施形態に係る有機トランジスタ(静電誘導型有機トランジスタ)の模式断面図である。図5に示す有機トランジスタ140は、基板1と、基板1上に形成されたソース電極5と、ソース電極5上に形成された有機半導体層2と、有機半導体層2上に所定の間隔をもって複数形成されたゲート電極4と、ゲート電極4の全てを覆うようにして有機半導体層2上に形成された有機半導体層2a(有機半導体層2aを構成する材料は、有機半導体層2と同一でも異なっていてもよい)と、有機半導体層2a上に形成されたドレイン電極6と、を備えるものである。
図6は第6実施形態に係る有機トランジスタ(電界効果型有機トランジスタ)の模式断面図である。図6に示す有機トランジスタ150は、基板1と、基板1上に形成された有機半導体層2と、有機半導体層2上に所定の間隔をもって形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を一部覆うようにして有機半導体層2上に形成された絶縁層3と、ソース電極5が下方に形成されている絶縁層3の領域とドレイン電極6が下方に形成されている絶縁層3の領域とをそれぞれ一部覆うように、絶縁層3上に形成されたゲート電極4と、を備えるものである。
図7は第7実施形態に係る有機トランジスタ(電界効果型有機トランジスタ)の模式断面図である。図7に示す有機トランジスタ160は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下方に形成されている絶縁層3の領域を覆うように形成された有機半導体層2と、ゲート電極4が下方に形成されている有機半導体層2の領域を一部覆うように有機半導体層2上に形成されたソース電極5と、ゲート電極4が下方に形成されている有機半導体層2の領域を一部覆うように、ソース電極5と所定の間隔をもって有機半導体層2上に形成されたドレイン電極6と、を備えるものである。
上述した第1~第7実施形態に係る有機トランジスタにおいては、有機半導体層2及び/又は有機半導体層2aは、ソース電極5とドレイン電極6の間の電流通路(チャネル)となる。また、ゲート電極4は、電圧を印加することにより有機半導体層2及び/又は有機半導体層2aにおける電流通路(チャネル)を通る電流量を制御する。
上述した有機トランジスタのうち、電界効果型有機トランジスタは、公知の方法、例えば、特開平5-110069号公報に記載の方法により製造することができる。また、静電誘導型有機トランジスタは、公知の方法、例えば、特開2004-006476号公報に記載の方法により製造することができる。
基板1は、有機トランジスタとしての特性を阻害しなければよく、ガラス基板やフレキシブルなフィルム基板やプラスチック基板も用いることができる。
有機半導体層2は、上述した本発明の高分子化合物を含む薄膜(例えば、有機半導体薄膜)から構成される。この有機半導体層2は、この高分子化合物のみから構成されていてもよく、高分子化合物以外の材料を含んで構成されていてもよい。また、本発明の高分子化合物を1種のみ含んでいてもよく、2種以上含んでいてもよい。
有機半導体層2は、電子輸送性又はホール輸送性を高めるために、本発明の高分子化合物以外に、電子輸送材料及び/又はホール輸送材料をさらに含有していてもよい。ホール輸送材料及び電子輸送材料としては、上述した薄膜に含有させ得るものを適用できる。また、有機半導体層2は、高い機械的特性を得るために、高分子バインダーを含んでいてもよい。高分子バインダーとしては、上述した薄膜に含有させ得るものを適用できる。
有機半導体層2の厚さは、好ましくは1nm~100μmであり、より好ましくは2nm~1000nmであり、さらに好ましくは3nm~500nmであり、特に好ましくは5nm~200nmである。
有機半導体層2は、上述したような薄膜の形成方法を適用して形成することができる。すなわち、有機トランジスタの製造において、有機半導体層2を形成すべき面(例えば、基板1や絶縁層3)上に、上述した薄膜形成方法により薄膜(有機半導体薄膜)を成膜し、これにより有機半導体層2を形成する。また、有機半導体層2を形成する場合は、薄膜に含まれる高分子化合物を配向させる工程を行うと、電荷の移動度が向上するため好ましい。
有機半導体層2に接する絶縁層3としては、電気の絶縁性が高い材料であればよく、公知のものを用いることができる。絶縁層3の構成材料としては、例えば、SiOx、SiNx、Ta、ポリイミド、ポリビニルアルコール、ポリビニルフェノール、有機ガラス、フォトレジストが挙げられる。低電圧化できるので、絶縁層3には誘電率の高い材料を用いることが好ましい。
絶縁層3の上に有機半導体層2を形成する場合は、絶縁層3と有機半導体層2の界面特性を改善するため、シランカップリング剤等の表面処理剤で絶縁層3表面を処理して表面改質した後に有機半導体層2を形成することも可能である。
電界効果型有機トランジスタの場合、電荷は、一般に絶縁層3と有機半導体層2の界面付近を通過する。したがって、この界面の状態がトランジスタの移動度に大きな影響を与える。そこで、この界面状態を改良して特性を向上させる方法として、シランカップリング剤による界面の制御が知られている(例えば、表面科学,Vol.28.No.5,pp242-248,2007)。
シランカップリング剤としては、アルキルクロロシラン類(オクチルトリクロロシラン(OTS)、オクタデシルトリクロロシラン(ODTS)、フェニルエチルトリクロロシラン等)、アルキルアルコキシシラン類、フッ素化アルキルクロロシラン類、フッ素化アルキルアルコキシシラン類、ヘキサメチルジシラザン(HMDS)等のシリルアミン化合物が挙げられる。また、表面処理剤で処理する前には、絶縁層3の表面をオゾンUV、Oプラズマで処理をしておくことも可能である。
このような処理によって、絶縁層3として用いられるシリコン酸化膜等の表面エネルギーを制御することができる。また、表面処理により、有機半導体層2を構成している高分子化合物の絶縁層3上での配向性が向上し、これによって高い電荷の移動度が得られる。
ゲート電極4としては、金、白金、銀、銅、クロム、パラジウム、アルミニウム、インジウム、モリブデン、低抵抗ポリシリコン、低抵抗アモルファスシリコン等の金属や、錫酸化物、酸化インジウム、インジウム・錫酸化物(ITO)等の材料を用いることができる。これらの材料は、1種を単独で、又は2種以上を組み合わせて用いることができる。
なお、ゲート電極4としては、高濃度にドープされたシリコン基板を用いることも可能である。高濃度にドープされたシリコン基板は、ゲート電極としての性質とともに、基板としての性質も併せて有する。このような基板としての性質をも有するゲート電極4を用いる場合には、基板1とゲート電極4とが接している有機トランジスタにおいて、基板1を省略してもよい。例えば、上述した第3、4、7実施形態の有機トランジスタにおいて、ゲート電極4が基板1を兼ねる構成とすることができる。
ソース電極5及びドレイン電極6は、低抵抗の材料から構成され、例えば、金、白金、銀、銅、クロム、パラジウム、アルミニウム、インジウム又はモリブデンから構成される。これらの中でも、電荷注入性が向上するので、金、白金が好ましく、それに加えてプロセス容易性が優れるので、金がさらに好ましい。これらの材料は1種を単独で用いても2種以上を併用してもよい。
以上、本発明の有機トランジスタとして幾つかの例を説明したが、有機トランジスタは上記の実施形態に限定されない。例えば、ソース電極5及びドレイン電極6と、有機半導体層2との間には、上述した本発明の高分子化合物とは異なる化合物からなる層が介在していてもよい。これにより、ソース電極5及びドレイン電極6と、有機半導体層2との間の接触抵抗が低減され、有機トランジスタのキャリア移動度をさらに高めることができる場合がある。
このような層としては、上述したような電子又はホール輸送性を有する低分子化合物;アルカリ金属、アルカリ土類金属、希土類金属やこれらの金属と有機化合物との錯体等;ヨウ素、臭素、塩素、塩化ヨウ素等のハロゲン;硫酸、無水硫酸、二酸化硫黄、硫酸塩等の酸化硫黄化合物;硝酸、二酸化窒素、硝酸塩等の酸化窒素化合物;過塩素酸、次亜塩素酸等のハロゲン化化合物;アルキルチオール化合物、芳香族チオール類、フッ素化アルキル芳香族チオール類等の芳香族チオール化合物等からなる層が挙げられる。
また、上述したような有機トランジスタを作製した後には、素子を保護するため、有機トランジスタ上に保護膜を形成することが好ましい。これにより、有機トランジスタが大気から遮断され、有機トランジスタの特性の低下を抑制することができる。また、有機トランジスタの上に駆動する表示デバイスを形成する場合、保護膜によって、その形成工程における有機トランジスタへの影響も低減することができる。
保護膜を形成する方法としては、有機トランジスタを、UV硬化樹脂、熱硬化樹脂や無機のSiONx膜等でカバーする方法等が挙げられる。大気との遮断を効果的に行うため、有機トランジスタを作製後、保護膜を形成するまでの工程は、大気に曝すことなく(例えば、乾燥した窒素雰囲気中、真空中で)行うことが好ましい。
(面状光源及び表示装置)
 次に、上述した実施形態の有機トランジスタを用いた面状光源及び表示装置について説明する。
面状光源及び表示装置は、駆動トランジスタ及びスイッチングトランジスタの少なくとも2つの有機トランジスタを備えるものである。本実施形態の面状光源及び表示装置は、このうちの少なくとも1つの有機トランジスタとして、上述した本発明の有機トランジスタを用いたものである。
図8は、好適な実施形態に係る面状光源の模式断面図である。図8に示す面状光源200においては、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域を一部覆うように、絶縁層3上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を一部覆うように絶縁層3上に形成された有機半導体層2と、有機半導体層2全体を覆うように有機半導体層2上に形成された保護膜11とにより、有機トランジスタTが構成されている。
また、面状光源200においては、有機トランジスタT上に、層間絶縁膜12を介して、下部電極(陽極)13、発光素子14及び上部電極(陰極)15が順次積層されており、層間絶縁膜12に設けられたビアホールを通じて下部電極13とドレイン電極6とが電気的に接続されている。また、下部電極13及び発光素子14の周囲にはバンク部16が設けられている。さらに、上部電極15上方には基板18が配置され、上部電極15と基板18との間は封止部材17により封止されている。
図8に示した面状光源200において、有機トランジスタTは、駆動トランジスタとして機能する。また、図8に示した面状光源200においては、スイッチングトランジスタは省略されている。
本実施形態に係る面状光源200においては、有機トランジスタTに上述した本発明の有機トランジスタが用いられる。それ以外の構成部材については、公知の面状光源における構成部材を用いることができる。なお、上部電極15、封止部材17及び基板18としては、透明なものが用いられる。
また、図8に示した面状光源200は、発光素子14に白色発光材料を用いることで面状光源として機能するが、発光素子14に赤色発光材料、青色発光材料及び緑色発光材料を用い、それぞれの発光素子の駆動を制御することで、カラー表示装置とすることができる。
面状光源及び表示装置において、パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、発光素子を構成する発光層の非発光とすべき部分を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字や文字、簡単な記号等を表示できるセグメントタイプの表示素子が得られる。
さらに、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる発光材料を塗り分ける方法や、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス素子は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動することもできる。これらの表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダー等の表示装置として用いることができる。
(光電変換素子)
 本発明の高分子化合物は、光電変換素子用の有機半導体層としても有用である。光電変換素子の基本的形態としては、少なくとも一方が透明又は半透明である一対の電極と、電子供与性化合物(p型の有機半導体)と電子受容性化合物(n型の有機半導体等)との有機組成物から形成されるバルクへテロ型有機半導体層もしくはp/n積層型有機半導体層を有する形態が挙げられる。上述した本発明の高分子化合物は、電子供与性化合物及び電子受容性化合物のうちの少なくとも一方として、これらの有機半導体層中に含まれる。
このような構成を有する光電変換素子においては、透明又は半透明の電極から入射した光エネルギーが、電子受容性化合物及び/又は電子供与性化合物で吸収され、電子と正孔がクーロン結合してなる励起子を生成する。これにより生成した励起子が移動して、電子受容性化合物と電子供与性化合物が隣接しているヘテロ接合界面に達すると、界面でのそれぞれのHOMOのエネルギーレベルの値、及び、LUMOのエネルギーレベルの値の違いにより電子と正孔が分離し、独立に動くことができる電荷が発生する。そして、発生したそれぞれの電荷が、それぞれの電極へ移動することにより、外部へ電気エネルギー(電流)として取り出すことができる。上述した本発明の高分子化合物を含む有機半導体層を有する光電変換素子は、高分子化合物の移動度が高いことから、優れた光電変換効率が得られるようになる。
図10は、好適な実施形態に係る光電変換素子を示す模式断面図である。図10に示す光電変換素子300は、基板1と、基板1上に形成された陽極7aと、陽極7a上に形成された有機薄膜からなる有機半導体層2と、有機半導体層2上に形成された陰極7bと、を備えるものである。有機半導体層2は、電子供与性化合物と電子受容性化合物とを含み、これらの少なくとも一方が、上述した本発明の高分子化合物である。
以下、光電変換素子300を構成する、陽極7a、有機半導体層2及びそれを構成する電子供与性化合物及び電子受容性化合物、陰極7b、及び必要に応じて形成される他の構成要素について詳しく説明する。
<基板>
 光電変換素子は、通常、基板上に各層が形成された構成を有する。この基板1は、電極を形成でき、有機物の層を形成する際に化学的に変化しないものであればよい。基板1の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。不透明な基板1の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
<電極(陽極及び陰極)>
 電極(陽極7a及び陰極7b)のうち、少なくとも一方は、透明又は半透明の電極材料により構成される。透明又は半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド(IZO)、NESA等の導電性材料を用いて作製された膜や、金、白金、銀、銅等が用いられる。なかでも、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。
電極(陽極7a及び陰極7b)のいずれか一方が透明又は半透明である場合、他方は透明でなくてもよい。そのような電極の材料としては、金属、導電性高分子等を用いることができる。電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらのうち2つ以上の合金、又は、1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。
これらの電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。透明又は半透明の電極は、陽極であっても陰極であってもよい。
<有機半導体層>
 光電変換素子に含まれる有機半導体層は、電子供与性化合物若しくは電子受容性化合物の少なくとも一方として、上述した本発明の高分子化合物を含む。なお、電子供与性化合物及び電子受容性化合物は、これらの化合物のHOMOのエネルギーレベルの値、又は、LUMOのエネルギーレベルの値から相対的に決定されるものである。
電子供与性化合物としては、本発明の高分子化合物や、それ以外の低分子化合物や高分子化合物を適用できる。本発明の高分子化合物以外の電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、チオフェンを部分骨格として持つ高分子化合物、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。電子供与性化合物としては、特に、上述した本発明の高分子化合物が好適である。
本発明の高分子化合物以外の電子供与性化合物としては、置換基を有していてもよいポリチオフェン(ポリチオフェン及びその誘導体を含む)、チオフェンの2~5量体を含む構造又はチオフェンの誘導体の2~5量体を含む構造を有する高分子化合物、及びチオフェンを部分骨格として持つ高分子化合物が好ましい。なかでも、ポリチオフェン及びその誘導体がより好ましい。ここで、ポリチオフェン誘導体とは、置換基を有するチオフェンジイル基を有する高分子化合物をいうこととする。
ポリチオフェン及びその誘導体は、ホモポリマーであることが好ましい。この場合、ホモポリマーとは、チオフェンジイル基及び置換基を有するチオフェンジイル基からなる群から選ばれる基のみが複数個結合してなるポリマーを意味する。チオフェンジイル基としては、チオフェン-2,5-ジイル基が好ましく、置換基を有するチオフェンジイル基としては、アルキルチオフェン-2、5-ジイル基が好ましい。
ホモポリマーであるポリチオフェン及びその誘導体の具体例としては、ポリ(3-ヘキシルチオフェン-2,5-ジイル)(P3HT)、ポリ(3-オクチルチオフェン-2,5-ジイル)、ポリ(3-ドデシルチオフェン-2,5-ジイル)、ポリ(3-オクタデシルチオフェン-2,5-ジイル)が挙げられる。ホモポリマーであるポリチオフェン及びその誘導体の中では、炭素数6~30のアルキル基が置換したチオフェンジイル基からなるポリチオフェンホモポリマーが好ましい。
また、チオフェンを部分骨格として持つ高分子化合物としては、例えば、式(11)で表される高分子化合物が挙げられる。式(11)中、nは繰り返しの数を表す。
Figure JPOXMLDOC01-appb-C000039
式(11)中、R111及びR112は、それぞれ同一又は異なり、水素原子又は置換基を表す。また、複数存在するR111及びR112は、それぞれ同一でも異なってもよい。R111及びR112で表される置換基としては、炭素数1~20のアルコキシ基、炭素数1~20のアルキル基が好ましい。
特に、式(11)で表される高分子化合物としては、R111がアルキル基であり、R112が水素原子である高分子化合物が好ましい。このような高分子化合物は、式(11-1)で表される。
Figure JPOXMLDOC01-appb-C000040
一方、電子受容性化合物としては、上述した本発明の高分子化合物のほかに、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン及びその誘導体、バソクプロイン等のフェナントレン誘導体、酸化チタン等の金属酸化物、カーボンナノチューブが挙げられる。
電子受容性化合物としては、好ましくは、本発明の高分子化合物のほか、ベンゾチアジアゾール構造を含む化合物、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、キノキサリン構造を含む化合物、繰り返し単位にキノキサリン構造を含む高分子化合物、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体が挙げられる。なかでも、より好ましくは、フラーレン、フラーレン誘導体、ベンゾチアジアゾール構造を含む化合物、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、キノキサリン構造を含む化合物、繰り返し単位にキノキサリン構造を含む高分子化合物であり、さらに好ましくは、ベンゾチアジアゾール構造を含む化合物、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、キノキサリン構造を含む化合物、繰り返し単位にキノキサリン構造を含む高分子化合物であり、特に好ましくは、繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物、繰り返し単位にキノキサリン構造を含む高分子化合物である。
繰り返し単位にベンゾチアジアゾール構造を含む高分子化合物の例としては、上記の電子供与性化合物として例示した式(11)で表される高分子化合物が挙げられ、式(11-1)で表される高分子化合物が好適である。すなわち、電子供与性化合物として適用する化合物との組み合わせによっては、式(11)で表される高分子化合物を、電子受容性化合物として適用することもできる。
また、電子受容性化合物として好適なn型半導体としては、フラーレン及びフラーレン誘導体が挙げられる。ここで、フラーレン誘導体とは、フラーレンの少なくとも一部が修飾された化合物をいう。フラーレンの例としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレンが挙げられ、フラーレン誘導体としては、それらのフラーレンの誘導体が挙げられる。
60フラーレンの誘導体の具体例としては、以下の式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000041
70フラーレンの誘導体の具体例としては、以下の式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000042
また、その他のフラーレン誘導体の例としては、[6,6]フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チエニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)が挙げられる。
有機半導体層2において、電子受容性化合物の含有割合は、電子供与性化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。また、有機半導体層2の厚さは、1nm~100μmが好ましく、2nm~1000nmがより好ましく、5nm~500nmがさらに好ましく、20nm~200nmが特に好ましい。
有機半導体層2に含有される電子供与性化合物と電子受容性化合物との組み合わせとしては、本発明の高分子化合物とフラーレン誘導体との組み合わせや、本発明の高分子化合物同士の組み合わせが好適である。後者の場合、電子供与性化合物及び電子受容性化合物である各高分子化合物は、それぞれ、電子供与性化合物に好適なHOMO及び電子受容性化合物に好適なLUMOが得られる組み合わせとする。
なお、有機半導体層2は、種々の機能を発現させるために、必要に応じて上記以外の成分を含有させてもよい。上記以外の成分としては、例えば、紫外線吸収剤、酸化防止剤、吸収した光により電荷を発生させる機能を増感するためのため増感剤、紫外線からの安定性を増すための光安定剤が挙げられる。
有機半導体層2を構成する電子供与性化合物及び電子受容性化合物以外の成分は、電子供与性化合物及び電子受容性化合物の合計量100重量部に対し、それぞれ5重量部以下、特に、0.01~3重量部の割合で配合することが、各成分による効果を確実に得ながら、高い電荷の移動度が得られるので有効である。
また、有機半導体層2は、機械的特性を高めるため、電子供与性化合物及び電子受容性化合物以外の高分子化合物を高分子バインダーとして含んでいてもよい。高分子バインダーとしては、電子輸送性又はホール輸送性を阻害しないもの、及び、可視光に対する吸収が強くないものが好ましく用いられる。
高分子バインダーとしては、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
上述した構成を有する有機半導体層2は、例えば、バルクへテロ型の場合、電子供与性化合物、電子受容性化合物、及び必要に応じて配合される他の成分とを含む溶液を用いた成膜を行うことによって形成することができる。例えば、この溶液を陽極7a又は陰極7b上に塗布することで、有機半導体層2を形成することができる。
溶液を用いた成膜における溶媒は、上述の電子供与性化合物及び電子受容性化合物を溶解させるものであればよく、複数の溶媒を混合してもよい。溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン等の不飽和炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、ジクロロプロパン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル系溶媒等が挙げられる。有機半導体層2を構成する材料は、例えば、上記の溶媒に0.1重量%以上溶解させることができる。
有機半導体層2の成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができる。なかでも、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
<その他の層>
 光電変換素子300は、上述した基板1、電極(陽極7a及び7b)及び有機半導体層2のほかに、光電変換効率を向上させるために、有機半導体層2以外の付加的な中間層(バッファ層、電荷輸送層等)を使用してもよい。このような中間層は、例えば、陽極7aと有機半導体層2との間、或いは、陰極7bと有機半導体層2との間に形成することができる。
中間層に用いられる材料としては、フッ化リチウム等のアルカリ金属又はアルカリ土類金属のハロゲン化物又は酸化物等が挙げられる。また、中間層には、酸化チタン等の無機半導体の微粒子、PEDOT(ポリ(3,4-エチレンジオキシチオフェン))とPSS(ポリ(4-スチレンスルホネート))との混合物(PEDOT:PSS)等を用いてもよい。
(光電変換素子を用いたデバイス)
 上述したような光電変換素子300は、透明又は半透明の電極(陽極7a又は陰極7b)の側から太陽光等の光を照射することにより、これらの電極間に光起電力を発生させ、有機薄膜太陽電池素子として動作させることができる。このような有機薄膜太陽電池素子を複数集積することにより、太陽電池モジュールを構成することもできる。
また、光電変換素子300は、電極(陽極7a及び陰極7b)間に電圧を印加した状態、あるいは電圧の無印加の状態で、透明又は半透明の電極から光を入射させることにより、光電流が流れることから、有機光センサーとして動作させることもできる。このような有機光センサーを複数集積することにより、有機イメージセンサーとして用いることもできる。
<太陽電池モジュール>
 本発明の光電変換素子を用いた有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。すなわち、太陽電池モジュールとしては、金属、セラミック等の支持基板の上にセル(例えば、上記実施形態の光電変換素子)が構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造を有するものが挙げられる。また、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成することで、透明の支持基板側から光を取り込む構造とすることも可能である。
太陽電池モジュールとしては、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池等で用いられる基板一体型モジュール構造等が知られている。本発明の光電変換素子を適用した有機薄膜太陽電池も、使用目的や使用場所、使用環境等に応じて、これらのモジュール構造を選択できる。
代表的なスーパーストレートタイプあるいはサブストレートタイプのモジュールは、片側又は両側が透明で反射防止処理を施された支持基板の間に一定間隔にセル(光電変換素子)が配置され、隣り合うセル同士が金属リード又はフレキシブル配線等によって接続され、さらに外縁部に集電電極が配置された構成を有することで、発生した電力を外部に取り出す構造となっている。基板とセルの間には、セルの保護や集電効率向上のため、目的に応じてエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルム又は充填樹脂の形で用いてもよい。また、外部からの衝撃が少ない場所等、表面を硬い素材で覆う必要のない状況において使用する場合には、表面保護層を透明プラスチックフィルムで構成するか、又は充填樹脂を硬化させることによって保護機能を付与して、片側の支持基板をなくすことも可能である。
このような太陽電池モジュールでは、支持基板の周囲は、内部の密封及びモジュールの剛性を確保するため金属製のフレームでサンドイッチ状に固定し、支持基板とフレームの間は封止材料で密封シールしてもよい。また、セルそのものや支持基板、充填材料及び封止材料に可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。
例えば、ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより太陽電池の本体を作製できる。また、Solar Energy Materials and Solar Cells, 48,p383-391記載の「SCAF」とよばれるモジュール構造とすることもできる。フレキシブル支持体を用いた太陽電池は曲面ガラス等に接着固定して使用することもできる。
以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[数平均分子量及び重量平均分子量]
 以下の実施例において、高分子化合物(重合体)の分子量は、島津製作所製GPC(商品名:LC-10Avp)(以下、「LC-10Avp」と言う。)又はGPCラボラトリー製GPC(商品名:PL-GPC2000)(以下、「PL-GPC2000」と言う。)により、ポリスチレン換算の数平均分子量を求めた。
LC-10Avpにて測定する場合は、重合体を約0.5重量%の濃度となるようにテトラヒドロフラン(THF)に溶解させ、GPCに50μL注入した。GPCの移動相は、テトラヒドロフランを用い、0.6mL/分の流速で流した。カラムは、TSKgel SuperHM-H(東ソー製)2本と、TSKgel SuperH2000(東ソー製)1本とを直列に繋げた。検出器には、示差屈折率検出器(島津製作所製、商品名:RID-10A)を用いた。
一方、PL-GPC2000にて測定する場合は、重合体を約1重量%の濃度となるようにo-ジクロロベンゼンに溶解させた。GPCの移動相はo-ジクロロベンゼンを用い、測定温度140℃で、1mL/分の流速で流した。カラムは、PLGEL 10μm MIXED-B(PLラボラトリー製)を3本直列で繋げた。
[中間体化合物の合成]
(合成例1)
 窒素雰囲気下、ナフト[1,2-b:5,6-b’]ジチオフェン(0.50g,2.08mmol)をテトラヒドロフラン(50ml)に溶解させ、-78℃に冷却した後、n-BuLiの1.59Mテトラヒドロフラン溶液(4ml,6.36mmol)を滴下した。この溶液を室温まで昇温して30分間撹拌した後、-78℃に冷却し、塩化トリメチルスズ(1.66g,8.34mmol)を加えた。この溶液を室温まで昇温して12時間撹拌した。
得られた反応溶液に水(50ml)を加え、塩化メチレン(30ml×3)で抽出し、有機層を飽和食塩水(30ml×3)で洗浄した。その後、有機層を無水硫酸マグネシウムで乾燥させ、濾過した後、溶媒を減圧下で留去した。得られた固体をアセトンで再結晶することで、下記式(31)で表される化合物(化合物(31))(0.88g)を白色結晶として得た。この反応は、下記反応式で示される通りである。
Figure JPOXMLDOC01-appb-C000043
(合成例2)
 窒素雰囲気下、クロロベンゼン(20ml)を30分間脱気した。このクロロベンゼンに、Pd(dba)・CHCl(4mg,0.004mmol,2mol%)、P(o-tolyl)(5mg,0.016mmol,8mol%)、2-ブロモ-3-ドデシルチオフェン(188mg,0.5mmol)、及び上記化合物(31)(114mg,0.2mmol)を加え、3時間還流しながら撹拌した。なお、「dba」とは、ジベンジリデンアセトンを表す(以下同様)。
得られた反応溶液に水(50ml)を加え、塩化メチレン(30ml×3)で抽出し、有機層を飽和食塩水(30ml×3)で洗浄した。その後、有機層を無水硫酸マグネシウムで乾燥し、濾過した後、溶媒を減圧下で留去した。得られた固体を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィーで精製することで、下記式(32)で表される化合物(化合物(32))(148mg)を黄色固体として得た。この反応は、下記反応式で示される通りである。
Figure JPOXMLDOC01-appb-C000044
続いて、得られた化合物(32)(141mg,0.19mmol)をテトラヒドロフラン(7ml)に溶解させ、これにN-ブロモスクシンイミド(NBS)(68mg,0.38mmol)を加えた。この溶液を40℃で6時間撹拌した後、水とジクロロメタンを加え、有機層を飽和食塩水(100ml×3)で洗浄した。その後、有機層を無水硫酸マグネシウムで乾燥させ、濾過した後、溶媒を減圧下で留去した。得られた固体を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィーで分離精製することで、下記式(33)で表される化合物(化合物(33))(186mg)を黄色固体として得た。この反応は、下記反応式で示される通りである。
Figure JPOXMLDOC01-appb-C000045
(合成例3)
 窒素雰囲気下、ナフト[1,2-b:5,6-b’]ジチオフェン(0.50g,2.08mmol)をテトラヒドロフラン(50ml)に溶解させ、-78℃に冷却した後、n-BuLiの1.59Mテトラヒドロフラン溶液(4ml,6.36mmol)を滴下した。この溶液を室温まで昇温して30分間撹拌した後、-78℃に冷却し、1,2-ジブロモテトラクロロエタン(6.51g,20mmol)を加えた。この溶液を室温まで昇温して12時間撹拌した。
得られた反応溶液に1N塩酸(50ml)を加え、塩化メチレン(30ml×3)で抽出し、有機層を飽和食塩水(30ml×3)で洗浄した。その後、有機層を無水硫酸マグネシウムで乾燥させ、濾過した後、溶媒を減圧下で留去した。得られた固体をアセトンで再結晶することで、下記式(34)で表される化合物(化合物(34))を褐色結晶(0.58g)として得た。この反応は、下記反応式で示される通りである。
Figure JPOXMLDOC01-appb-C000046
[実施例1]
(高分子化合物P1の合成)
 窒素雰囲気下、クロロベンゼン(20ml)を30分間脱気した。このクロロベンゼンに、Pd(dba)・CHCl(4mg,0.004mmol,2mol%)、P(o-tolyl)(5mg,0.016mmol,8mol%)、5,5’-ジブロモ-4,4’-ジドデシル-2,2’-ビチオフェン(132mg,0.2mmol)、及び合成例1で得られた化合物(31)(114mg,0.2mmol)を加え、3日間還流しながら撹拌した。
得られた反応溶液を、メタノール(200ml)と塩酸(5ml)との混合溶液に注ぎ、3時間撹拌した。析出した沈殿物を濾取し、メタノール及びヘキサンで順に加熱洗浄した後、クロロホルムで抽出した。得られたクロロホルム溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、下記式P1で表される高分子化合物(高分子化合物P1)(106mg)を赤色固体として得た。高分子化合物P1のポリスチレン換算の数平均分子量は7.1×10、重量平均分子量は1.3×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000047
(高分子化合物P1の評価:有機トランジスタ)
 高分子化合物P1を用いて図9に示す有機トランジスタを作製し、そのトランジスタ特性を測定した。すなわち、まず、ゲート電極となる高濃度にドーピングされたn-型シリコン基板31の表面を熱酸化し、200nmのシリコン酸化膜32を形成した。この基板を十分に洗浄した後、ヘキサメチレンジシラザン(HMDS)を用いて、基板表面をシラン処理した。
次に、高分子化合物P1をオルトジクロロベンゼンに溶解させて3g/Lの溶液を調製し、メンブランフィルターでろ過した。得られた溶液を用い、上記の表面処理した基板上に、スピンコート法により約30nmの高分子化合物P1を含む薄膜(有機半導体層35)を形成した。この薄膜を窒素雰囲気下、150℃で30分加熱した。そして、得られた薄膜上に、真空蒸着によりチャネル長50μm、チャネル幅1.5mmのソース電極33及びドレイン電極34を作製して、有機トランジスタを得た。
この有機トランジスタに対し、ゲート電圧Vgを40~-80V、ソース・ドレイン間電圧Vsdを0~-80Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-60V、Vsd=-80Vにおいてドレイン電流0.011mAが得られた。また、この結果から電界効果移動度は1.2×10-2cm/Vsと算出された。
[実施例2]
(高分子化合物P2の合成)
 窒素雰囲気下、クロロベンゼン(20ml)を30分間脱気した。このクロロベンゼンに、Pd(dba)・CHCl(4mg,0.004mmol,2mol%)、P(o-tolyl)(5mg,0.016mmol,8mol%)、5,5’-ジブロモ-4,4’-ジヘキサデシル-2,2’-ビチオフェン(155mg,0.2mmol)、合成例1で得られた化合物(31)(114mg,0.2mmol)を加え、3日間還流しながら撹拌した。
得られた反応溶液を、メタノール(200ml)と塩酸(5ml)との混合溶液に注ぎ、3時間撹拌した。析出した沈殿物を濾取し、メタノール、ヘキサン及びクロロホルムで順に加熱洗浄した後、クロロベンゼンで抽出した。得られたクロロベンゼン溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、下記式P2で表される高分子化合物(高分子化合物P2)(83mg)を赤色固体として得た。高分子化合物P2のポリスチレン換算の数平均分子量は2.9×10、重量平均分子量は4.6×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000048
(高分子化合物P2の評価:有機トランジスタ)
 高分子化合物P2を用いて図9に示す有機トランジスタを作製し、そのトランジスタ特性を測定した。すなわち、まず、ゲート電極となる高濃度にドーピングされたn-型シリコン基板31の表面を熱酸化し、200nmのシリコン酸化膜32を形成した。この基板を十分に洗浄した後、ヘキサメチレンジシラザン(HMDS)を用いて、基板表面をシラン処理した。
次に、高分子化合物P2をオルトジクロロベンゼンに溶解させて3g/Lの溶液を調製し、メンブランフィルターでろ過した。得られた溶液を用い、上記の表面処理した基板上に、スピンコート法により約30nmの高分子化合物P2を含む薄膜(有機半導体層35)を形成した。この薄膜を窒素雰囲気下、150℃で30分加熱した。そして、得られた薄膜上に、真空蒸着によりチャネル長50μm、チャネル幅1.5mmのソース電極33及びドレイン電極34を作製して、有機トランジスタを得た。
この有機トランジスタに対し、ゲート電圧Vgを40~-80V、ソース・ドレイン間電圧Vsdを0~-80Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-60V、Vsd=-80Vにおいてドレイン電流0.5mAが得られた。また、この結果から電界効果移動度は5.4×10-1cm/Vsと算出された。
[実施例3]
(高分子化合物P3の合成)
 窒素雰囲気下、クロロベンゼン(20ml)を30分間脱気した。このクロロベンゼンに、Pd(dba)・CHCl(4mg,0.004mmol,2mol%)、P(o-tolyl)(5mg,0.016mmol,8mol%)、5,5’-ジブロモ-4,4’-ジエチルヘキシル-2,2’-ビチオフェン(112mg,0.2mmol)、及び合成例1で得られた化合物(31)(114mg,0.2mmol)を加え、3日間還流しながら撹拌した。
得られた反応溶液を、メタノール(200ml)と塩酸(5ml)との混合溶液に注ぎ、3時間撹拌した。析出した沈殿物を濾取し、メタノール及びヘキサンで順に加熱洗浄した後、クロロホルムで抽出した。得られたクロロホルム溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、下記式P3で表される高分子化合物(高分子化合物P3)(106mg)を赤色固体として得た。高分子化合物P3のポリスチレン換算の数平均分子量は3.7×10、重量平均分子量は5.1×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000049
(高分子化合物P3の評価:有機トランジスタ)
 高分子化合物P3を用いて図9に示す有機トランジスタを作製し、そのトランジスタ特性を測定した。すなわち、まず、ゲート電極となる高濃度にドーピングされたn-型シリコン基板31の表面を熱酸化し、200nmのシリコン酸化膜32を形成した。この基板を十分に洗浄した後、ヘキサメチレンジシラザン(HMDS)を用いて、基板表面をシラン処理した。
次に、高分子化合物P3をクロロホルムに溶解させて1g/Lの溶液を調製し、メンブランフィルターでろ過した。得られた溶液を用い、上記の表面処理した基板上に、ドロップキャスト法により約30nmの高分子化合物P3を含む薄膜(有機半導体層35)を形成した。そして、得られた薄膜上に、真空蒸着によりチャネル長50μm、チャネル幅1.5mmのソース電極33及びドレイン電極34を作製して、有機トランジスタを得た。
この有機トランジスタに対し、ゲート電圧Vgを40~-80V、ソース・ドレイン間電圧Vsdを0~-80Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-60V、Vsd=-80Vにおいてドレイン電流0.05μAが得られた。また、この結果から電界効果移動度は5.0×10-5cm/Vsと算出された。
[実施例4]
(高分子化合物P4の合成)
 窒素雰囲気下、クロロベンゼン(8ml)を30分間脱気した。このクロロベンゼンに、Pd(dba)・CHCl(2mg,0.002mmol,2mol%)、P(o-tolyl)(3mg,0.008mmol,8mol%)、5,5’-ビス(トリメチルスタニル)-4,4’-ジドデシルヘキシル-2,2’-ビチオフェン(100mg,0.12mmol)、及び合成例2で得られた化合物(33)(102mg,0.11mmol)を加え、3日間還流しながら撹拌した。
得られた反応溶液を、メタノール(200ml)と塩酸(5ml)との混合溶液に注ぎ、3時間撹拌した。析出した沈殿物を濾取し、メタノール及びヘキサンで順に加熱洗浄した後、クロロホルムで抽出した。得られたクロロホルム溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、下記式P4で表される高分子化合物(高分子化合物P4)(97mg)を赤色固体として得た。高分子化合物P4のポリスチレン換算の数平均分子量は6.7×10、重量平均分子量は9.5×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000050
(高分子化合物P4の評価:有機トランジスタ)
 高分子化合物P4を用いて図9に示す有機トランジスタを作製し、そのトランジスタ特性を測定した。すなわち、まず、ゲート電極となる高濃度にドーピングされたn-型シリコン基板31の表面を熱酸化し、200nmのシリコン酸化膜32を形成した。この基板を十分に洗浄した後、ヘキサメチレンジシラザン(HMDS)を用いて、基板表面をシラン処理した。
次に、高分子化合物P4をクロロホルムに溶解させて3g/Lの溶液を調製し、メンブランフィルターでろ過した。得られた溶液を用い、上記の表面処理した基板上に、スピンコート法により約30nmの高分子化合物P4を含む薄膜(有機半導体層35)を形成した。この薄膜を窒素雰囲気下にて、150℃で30分加熱した。そして、得られた薄膜上に、真空蒸着によりチャネル長50μm、チャネル幅1.5mmのソース電極33及びドレイン電極34を作製して、有機トランジスタを得た。
この有機トランジスタに対し、ゲート電圧Vgを20~-60V、ソース・ドレイン間電圧Vsdを0~-60Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-50V、Vsd=-60Vにおいてドレイン電流0.01mAが得られた。また、この結果から電界効果移動度は1.2×10-2cm/Vsと算出された。
[比較例1]
(高分子化合物P5の合成)
 フラスコに、4,4’-ジドデシル-5,5’-ビス(4,4,5,5-テトラメチル-1,3,5-ジオキサボロラン-2-イル)-2,2’-ビチオフェン(341mg,0.452mmol)、2,7-ジブロモ-4,5-ジヘプチルベンゾ[2,1-b:3,4-b’]ジチオフェン(246mg,0.452mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(8.3mg,0.009mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート(10.5mg,0.036mmol)、及びテトラヒドロフラン(12mL)を入れ、フラスコ中の溶液を60℃に加熱した。
この溶液に、炭酸カリウム水溶液(2mol/L、0.7mL)を加え、3時間還流しながら撹拌した。次いで、フェニルボロン酸(9mg)及びTHF(3mL)を加え、4.5時間還流しながら撹拌した。それから、N,N-ジエチルジチオカルバミド酸ナトリウム三水和物(0.25g)及び水(6mL)を加え、12時間還流しながら撹拌した。
この反応後の溶液にトルエンを加えた後、温水、酢酸水溶液、温水の順で洗浄した。得られたトルエン溶液を、シリカゲルカラムとアルミナカラムに通液させた。そして、トルエン溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、下記式P5で表される高分子化合物(高分子化合物P5)(302mg)を得た。なお、式P5中、nは繰り返し単位数を表す。高分子化合物P5のポリスチレン換算の数平均分子量は8.5×10、重量平均分子量は4.3×10であった。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000051
(高分子化合物P5の評価)
 高分子化合物P5を用いて図9に示す有機トランジスタを作製し、そのトランジスタ特性を測定した。すなわち、まず、ゲート電極となる高濃度にドーピングされたn-型シリコン基板31の表面を熱酸化し、200nmのシリコン酸化膜32を形成した。この基板をアセトンで10分間超音波洗浄した後、オゾンUVを20分間照射した。その後、β-フェニチルトリクロロシラン(β-PTS)を用いて、スピンコート法により基板表面をシラン処理した。
次に高分子化合物P5を溶媒であるトルエンに溶解させて合計の濃度が0.5重量%である溶液を調製し、これをメンブランフィルターでろ過した。得られた溶液を、上記の表面処理した基板上にスピンコート法により塗布し、約60nmの高分子化合物P5の薄膜(有機半導体層35)を形成した。そして、得られた薄膜上に、メタルマスクを用いた真空蒸着法により、チャネル長20μm、チャネル幅2mmのソース電極33及びドレイン電極34(薄膜側から、順番にMoO、金の積層構造を有する電極)を作製して、有機トランジスタを得た。
この有機トランジスタに対し、ゲート電圧Vgを10~-50V、ソース・ドレイン間電圧Vsdを0~-50Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-50V、Vsd=-50Vにおいてドレイン電流0.002μAが得られた。また、この結果から電界効果移動度は1.0×10-5cm/Vsであり、高分子化合物P1~P4を用いて作製した有機トランジスタと比較して低いことが確認された。
[実施例5]
(高分子化合物P6の合成)
 四つ口フラスコを用いて、合成例3で得られた化合物(34)(119.4mg、0.300mmol)、下記式(35)で表される化合物(化合物(35))(159.4mg、0.270mmol)、トルエン(10mL)及びメチルトリアルキルアンモニウムクロリド(商品名Aliquat336(登録商標)、アルドリッチ社製)(60.6mg、0.15mmol)を加え、室温(25℃)で30分間、アルゴンバブリングを行った。
こうして得られた溶液を90℃に昇温した後、酢酸パラジウム(0.67mg、1mol%)及びトリス(2-メトキシフェニル)ホスフィン(3.70mg、3.5mol%)を加えた。その後、100℃で攪拌しながら、炭酸ナトリウム水溶液(16.7重量%、1.90g、3.00mmol)を30分かけて滴下した。4時間後、フェニルホウ酸(3.66mg、0.03mmol)、酢酸パラジウム(0.67mg、1mol%)及びトリス(2-メトキシフェニル)ホスフィン(3.70mg、3.5mol%)を加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
その後、反応後の溶液に、ジエチルジチオカルバミン酸ナトリウム(1g)及び純水(10mL)を加え、1時間還流しながら攪拌を行った。得られた反応液中の水層を除去した後、有機層を水10mlで2回、酢酸水溶液(3重量%)10mLで2回、さらに水10mLで2回洗浄し、メタノールに注いで高分子化合物を析出させた。
得られた高分子化合物をろ過し、乾燥した後、この高分子化合物をトルエン(15mL)に再溶解させ、アルミナ/シリカゲルカラムを通した。そして、得られた溶液をメタノールに注いで高分子化合物を析出させ、ろ過した後、乾燥して、下記式P6で表される高分子化合物(高分子化合物P6)を87mg得た。高分子化合物P6のポリスチレン換算の数平均分子量(Mn)が5.5×10、重量平均分子量(Mw)は1.0×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000052
(高分子化合物P6の評価:有機トランジスタ)
 高分子化合物P6を用いて図9に示す有機トランジスタを作製し、そのトランジスタ特性を測定した。すなわち、まず、ゲート電極となる高濃度にドーピングされたn-型シリコン基板31の表面を熱酸化し、200nmのシリコン酸化膜32を形成した。この基板をアセトンで10分間超音波洗浄した後、オゾンUVを20分間照射した。その後、β-フェニチルトリクロロシラン(β-PTS)を用いて、スピンコート法により基板表面をシラン処理した。
次に、高分子化合物P6を溶媒であるクロロホルムに溶解させて、合計の濃度が0.5重量%である溶液を調製し、これをメンブランフィルターでろ過した。得られた溶液を用い、上記の表面処理した基板上に、スピンコート法により塗布して約60nmの高分子化合物P6の薄膜(有機半導体層35)を形成した。そして、得られた薄膜上に、メタルマスクを用いた真空蒸着法により、チャネル長20μm、チャネル幅2mmのソース電極33及びドレイン電極34(薄膜側から、順番にMoO、金の積層構造を有する電極)を作製して、有機トランジスタを得た。
この有機トランジスタに対し、ゲート電圧Vgを10~-50V、ソース・ドレイン間電圧Vsdを0~-50Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-50V、Vsd=-50Vにおいてドレイン電流0.54μAが得られた。また、この結果から電界効果移動度は1.5×10-3cm/Vsと算出された。
[比較例2]
(高分子化合物P7の合成)
 四つ口フラスコを用いて、下記式(36)で表される化合物(化合物(36))(97.2mg、0.300mmol)、化合物(35)(159.4mg、0.270mmol)、トルエン(10mL)及びメチルトリアルキルアンモニウムクロリド(商品名Aliquat336(登録商標)、アルドリッチ社製)(60.6mg、0.15mmol)を加え、室温(25℃)で30分間、アルゴンバブリングを行った。
この溶液を90℃に昇温した後、酢酸パラジウム(0.67mg、1mol%)及びトリス(2-メトキシフェニル)ホスフィン(3.70mg、3.5mol%)を加えた。
その後、100℃で攪拌しながら、炭酸ナトリウム水溶液(16.7重量%、1.90g、3.00mmol)を30分かけて滴下した。4時間後、フェニルホウ酸(3.66mg、0.03mmol)、酢酸パラジウム(0.67mg、1mol%)及びトリス(2-メトキシフェニル)ホスフィン(3.70mg、3.5mol%)を加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
その後、反応後の溶液に、ジエチルジチオカルバミン酸ナトリウム(1g)及び純水(10mL)を加え、1時間還流しながら攪拌を行った。得られた反応液中の水層を除去後、有機層を水10mlで2回、酢酸水溶液(3重量%)10mLで2回、さらに水10mLで2回洗浄し、メタノールに注いで高分子化合物を析出させた。
得られた高分子化合物をろ過し、乾燥した後、この高分子化合物をトルエン(15mL)に再溶解させ、アルミナ/シリカゲルカラムを通した。そして、得られた溶液をメタノールに注いで高分子化合物を析出させ、ろ過した後、乾燥して、下記式P7で表される高分子化合物(高分子化合物P7)を69mg得た。高分子化合物P7のポリスチレン換算の数平均分子量は1.2×10、重量平均分子量は2.5×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000053
(高分子化合物P7の評価:有機トランジスタ)
 高分子化合物P7を、高分子化合物P6に代えて用いた以外は、実施例5と同様にして有機トランジスタを作製した。
この有機トランジスタに対し、ゲート電圧Vgを10~-50V、ソース・ドレイン間電圧Vsdを0~-50Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-50V、Vsd=-50Vにおいてドレイン電流値は0.42μAであり、実施例5と比較して低かった。また、この結果から、電界効果移動度は1.3×10-3cm/Vsと算出され、実施例5と比較して低かった。
[実施例6]
(高分子化合物P8の合成)
 窒素雰囲気下、クロロベンゼン(20ml)を30分間脱気した。このクロロベンゼンに、Pd(dba)・CHCl(4mg,0.004mmol,2mol%)、P(o-tolyl)(6mg,0.016mmol,8mol%)、下記式(37)で表される化合物(化合物(37))(100mg,0.12mmol)、合成例1で得られた化合物(31)(113mg,0.2mmol)を加え、3日間還流、撹拌した。反応溶液をメタノール(200ml)と塩酸(5ml)の混合溶液に注ぎ、3時間撹拌した。析出した沈殿物を濾取し、メタノール、ヘキサン、クロロホルムで加熱洗浄した後、クロロベンゼンで抽出した。クロロベンゼン溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、下記式P8で表される高分子化合物(高分子化合物P8)(38mg)を黒褐色の固体として得た。高分子化合物P8のポリスチレン換算の数平均分子量は1.7×10、重量平均分子量は2.1×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000054
(高分子化合物P8の評価:有機トランジスタ)
 高分子化合物P8を、高分子化合物P6に代えて用いた以外は、実施例5と同様にして有機トランジスタを作製した。
この有機トランジスタに対し、ゲート電圧Vgを20~-60V、ソース・ドレイン間電圧Vsdを0~-60Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-60V、Vsd=-60Vにおいてドレイン電流-0.011mAが得られた。また、この結果から電界効果移動度は1.8×10-2cm/Vsと算出された。
(高分子化合物P8の評価:有機薄膜太陽電池)
 スパッタ法により115nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、高分子化合物P8及びフラーレン誘導体であるC60PCBM(フロンティアカーボン社製)を含むオルトジクロロベンゼン溶液(高分子化合物P8/C60PCBMの重量比=1/2)を用い、スピンコートにより塗布して有機半導体層を作製した(厚さ約100nm)。その後、真空蒸着機によりフッ化リチウムを厚さ0.8nmで蒸着し、次いでAlを厚さ100nmで蒸着して、有機薄膜太陽電池を作製した。この有機薄膜太陽電池の形状は、直径2mmの円であった。
得られた有機薄膜太陽電池に対し、ソーラシミュレーター(朝日分光社製、商品名HAL302:AM1.5Gフィルター、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定して、光電変換効率、短絡電流密度(Jsc)、開放電圧(Voc)、フィルファクター(ff)を求めた。その結果、Jsc(短絡電流密度)=5.36mA/cm、Voc(開放電圧)=0.61V、ff(フィルファクター)=0.38、光電変換効率(η)=1.4%が得られた。
[実施例7]
(高分子化合物P9の合成)
 窒素雰囲気下、クロロベンゼン(20ml)を30分間脱気した。このクロロベンゼンに、Pd(dba)・CHCl(4mg,0.004mmol,2mol%)、P(o-tolyl)(5mg,0.016mmol,8mol%)、5,5’-ジブロモ-4,4’-ジオクチルデシル-2,2’-ビチオフェン(166mg,0.2mmol)、合成例1で得られた化合物(31)(114mg,0.2mmol)を加え、3日間還流、撹拌した。反応溶液をメタノール(200ml)と塩酸(5ml)の混合溶液に注ぎ、3時間撹拌した。析出した沈殿物を濾取し、メタノール、ヘキサンで加熱洗浄した後、加熱したクロロホルムで抽出した。クロロホルム溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、下記式P9で表される高分子化合物(高分子化合物P9)(149mg)を赤色固体として得た。高分子化合物P9のポリスチレン換算の数平均分子量は1.35×10、重量平均分子量は2.6×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000055
(高分子化合物P9の評価:有機トランジスタ)
 高分子化合物P9を、高分子化合物P6に代えて用いた以外は、実施例5と同様にして有機トランジスタを作製した。
この有機トランジスタに対し、ゲート電圧Vgを20~-60V、ソース・ドレイン間電圧Vsdを0~-60Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-60V、Vsd=-60Vにおいてドレイン電流0.17mAが得られた。また、この結果から電界効果移動度は1.2×10-1cm/Vsと算出された。
(高分子化合物P9の評価:有機薄膜太陽電池)
 高分子化合物P8/C60PCBMの重量比=1/2に代えて、高分子化合物P9/C60PCBM=1/6(重量比)とした以外は、実施例6と同様にして有機薄膜太陽電池を作製し、その評価を行ったところ、Jsc(短絡電流密度)=1.82mA/cm、Voc(開放電圧)=0.62V、ff(フィルファクター)=0.51、光電変換効率(η)=0.56%という結果が得られた。
[比較例3]
(高分子化合物P10の合成)
 四つ口フラスコに、下記式(38)で表される化合物(化合物(38))(642.0mg、1.000mmol)、下記式(39)で表される化合物(化合物(39))(336.4mg、0.950mmol)、及びテトラヒドロフラン(25mL)を入れ、室温(25℃)で30分間アルゴンバブリングを行った。その後、トリス(ジベンジリデンアセトン)パラジウム(9.15mg、0.01mmol)、[トリ(tert-ブチル)ホスホニウム]テトラフルオロボレート(11.60mg、0.04mmol)を加えた。80℃で攪拌しながら、27.6重量%の炭酸カリウム水溶液(1.50g、3.00mmol)を30分かけて滴下した。15分後、フェニルホウ酸(36.6mg、0.30mmol)を加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴン雰囲気下で行った。
その後、ジエチルジチオカルバミン酸ナトリウム(2g)及び純水(20mL)を加え、1時間還流しながら攪拌を行った。反応液中の水層を除去後、有機層を水20mlで2回、3重量%の酢酸水溶液20mLで2回、さらに水20mLで2回洗浄し、メタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをトルエンに溶解させた。トルエン溶液をアルミナ/シリカゲルカラムに通し、得られた溶液をメタノールに注いでポリマーを析出させた。このポリマーをろ過した後、乾燥して、下記式P10で表される高分子化合物(高分子化合物P10)を460mg得た。GPCで測定した高分子化合物P10のポリスチレン換算の数平均分子量は1.2×10、重量平均分子量は3.2×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000056
(高分子化合物P10の評価:有機トランジスタ)
 高分子化合物P10を、高分子化合物P6に代えて用いた以外は、実施例5と同様にして有機トランジスタを作製した。
この有機トランジスタに対し、ゲート電圧Vgを10~-60V、ソース・ドレイン間電圧Vsdを0~-60Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-50V、Vsd=-60Vにおいてドレイン電流値は0.54μAであり、実施例6と比較して低かった。また、この結果から、電界効果移動度は2.0×10-4cm/Vsと算出された。
(高分子化合物P10の評価:有機薄膜太陽電池)
 高分子化合物P8/C60PCBMの重量比=1/2に代えて、高分子化合物P10/C60PCBM=1/3(重量比)とした以外は、実施例6と同様にして有機薄膜太陽電池を作製し、その評価を行った。その結果、Jsc(短絡電流密度)=1.62mA/cm、Voc(開放電圧)=0.04V、ff(フィルファクター)=0.25、光電変換効率(η)=0.02%であり、実施例6及び7と比較して低い特性となることが確認された。
[実施例8]
(高分子化合物P11の合成)
 窒素雰囲気下、クロロベンゼン(20ml)を30分間脱気した。Pd(dba)・CHCl(3.7mg,0.0036mmol,2mol%)、P(o-tolyl)(4.4mg,0.0144mmol,8mol%)、化合物(40)(102mg,0.18mmol)、合成例1で得られた化合物(31)(102mg,0.18mmol)を加え、3日間還流、撹拌した。反応溶液をメタノール(200ml)と塩酸(5ml)の混合溶液に注ぎ、3時間撹拌した。析出した沈殿物を濾取し、メタノール、ヘキサンで加熱洗浄した後、クロロホルムで抽出した。クロロホルム溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、下記式P11で表される高分子化合物(高分子化合物P11)(199mg)を黒褐色の固体として得た。高分子化合物P11のポリスチレン換算の数平均分子量は1.6×10、重量平均分子量は2.6×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000057
(高分子化合物P11の評価:有機トランジスタ)
 高分子化合物P11を、高分子化合物P6に代えて用いたこと以外は、実施例5と同様にして有機トランジスタを作製した。
この有機トランジスタに対し、ゲート電圧Vgを20~-60V、ソース・ドレイン間電圧Vsdを0~-60Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-50V、Vsd=-60Vにおいてドレイン電流-0.018mAが得られた。また、この結果から電界効果移動度は1.9×10-2cm/Vsと算出された。
(高分子化合物P11の評価:有機薄膜太陽電池)
 高分子化合物P8/C60PCBMの重量比=1/2に代えて、高分子化合物P11/C60PCBM=1/0.8(重量比)とした以外は、実施例6と同様にして有機薄膜太陽電池を作製し、その評価を行った。その結果、Jsc(短絡電流密度)=8.01mA/cm、Voc(開放電圧)=0.75V、ff(フィルファクター)=0.63、光電変換効率(η)=3.74%であった。
[実施例9]
(高分子化合物P12の合成)
 窒素雰囲気下、クロロベンゼン(20ml)を加え30分間脱気した。Pd(dba)・CHCl(4mg,0.004mmol,2mol%)、P(o-tolyl)(5mg,0.016mmol,8mol%)、下記式(41)で表される化合物(化合物(41))(226mg,0.2mmol)、合成例1で得られた化合物(31)(113mg,0.2mmol)を加え、3日間還流、撹拌した。反応溶液をメタノール(200ml)と塩酸(5ml)の混合溶液に注ぎ、3時間撹拌した。析出した沈殿物を濾取し、メタノール、ヘキサンで加熱洗浄した後、クロロホルムで抽出した。クロロホルム溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、下記式P12で表される高分子化合物(高分子化合物P12)(230mg)を黒色の固体として得た。高分子化合物P12のポリスチレン換算の数平均分子量は1.9×10、重量平均分子量は5.0×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000058
(高分子化合物P12の評価:有機トランジスタ)
 高分子化合物P12を、高分子化合物P6に代えて用いたこと以外は、実施例5と同様にして有機トランジスタを作製した。
この有機トランジスタに対し、ゲート電圧Vgを20~-60V、ソース・ドレイン間電圧Vsdを0~-60Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-50V、Vsd=-60Vにおいてドレイン電流0.022mAが得られた。また、この結果から電界効果移動度は5.0×10-2cm/Vsと算出された。
(高分子化合物P12の評価:有機薄膜太陽電池)
 高分子化合物P8/C60PCBMの重量比=1/2に代えて、高分子化合物P12/C60PCBM=1/1(重量比)とした以外は、実施例6と同様にして有機薄膜太陽電池を作製し、その評価を行った。その結果、Jsc(短絡電流密度)=4.08mA/cm、Voc(開放電圧)=0.72V、ff(フィルファクター)=0.48、光電変換効率(η)=1.30%であった。
[実施例10]
(高分子化合物P13の合成)
 窒素雰囲気下、クロロベンゼン(20ml)を加え30分間脱気した。Pd(dba)・CHCl(4.1mg,0.0038mmol,2mol%)、P(o-tolyl)(4.8mg,0.0152mmol,8mol%)、5,5’-ジブロモ-4,4’-ジイコシル-2,2’-ビチオフェン(170mg,0.19mmol)、合成例1で得られた化合物(31)(109mg,0.19mmol)を加え、3日間還流、撹拌した。反応溶液をメタノール(200ml)と塩酸(5ml)の混合溶液に注ぎ、3時間撹拌した。析出した沈殿物を濾取し、メタノール、ヘキサン、クロロホルムで加熱洗浄した後、クロロベンゼンで抽出した。クロロベンゼン溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、下記式P13で表される高分子化合物(高分子化合物P13)(150mg)を黒褐色の固体として得た。高分子化合物P13のポリスチレン換算の数平均分子量は3.3×10、重量平均分子量は7.3×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000059
(高分子化合物P13の評価:有機トランジスタ)
 高分子化合物P13を、高分子化合物P6に代えて用いたこと以外は、実施例5と同様にして有機トランジスタを作製した。
この有機トランジスタに対し、ゲート電圧Vgを40~-80V、ソース・ドレイン間電圧Vsdを0~-80Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-80V、Vsd=-80Vにおいてドレイン電流0.24mAが得られた。また、この結果から電界効果移動度は3.2×10-1cm/Vsと算出された。
[中間体化合物の合成]
(合成例4)
 ナフト[2,1-b:6,5-b’]ジチオフェンを、ナフト[1,2-b:5,6-b’]ジチオフェンに代えて用いた以外は、合成例1と同様にして、下記式(42)で表される化合物(化合物(42))を合成した。
Figure JPOXMLDOC01-appb-C000060
[実施例11]
(高分子化合物P14の合成)
 窒素雰囲気下、クロロベンゼン(20ml)を加え30分間脱気した。Pd(dba)・CHCl(4.1mg,0.0038mmol,2mol%)、P(o-tolyl)(4.8mg,0.0152mmol,8mol%)、5,5’-ジブロモ-4,4’-ジヘキサデシル-2,2’-ビチオフェン(149mg,0.2mmol)、合成例4で得られた化合物(42)(114mg,0.2mmol)を加え、3日間還流、撹拌した。反応溶液をメタノール(200ml)と塩酸(5ml)の混合溶液に注ぎ、3時間撹拌した。析出した沈殿物を濾取し、メタノール、ヘキサン、クロロホルムで加熱洗浄した後、クロロベンゼンで抽出した。クロロベンゼン溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、下記式P14で表される高分子化合物(高分子化合物P14)(90mg)を黒褐色の固体として得た。高分子化合物P14のポリスチレン換算の数平均分子量は3.0×10、重量平均分子量は6.3×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000061
(高分子化合物P14の評価:有機トランジスタ)
 高分子化合物P14を、高分子化合物P6に代えて用いたこと以外は、実施例5と同様にして有機トランジスタを作製した。
この有機トランジスタに対し、ゲート電圧Vgを20~-60V、ソース・ドレイン間電圧Vsdを0~-60Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-60V、Vsd=-60Vにおいてドレイン電流0.03mAが得られた。また、この結果から電界効果移動度は9.0×10-2cm/Vsと算出された。
[実施例12]
(高分子化合物P15の合成)
 窒素雰囲気下、クロロベンゼン(20ml)を加え30分間脱気した。Pd(dba)・CHCl(4.1mg,0.004mmol,2mol%)、P(o-tolyl)(4.8mg,0.016mmol,8mol%)、5,5’-ジブロモ-4,4’-ジイコシル-2,2’-ビチオフェン(177mg,0.2mmol)、合成例4で得られた化合物(42)(114mg,0.2mmol)を加え、3日間還流、撹拌した。反応溶液をメタノール(200ml)と塩酸(5ml)の混合溶液に注ぎ、3時間撹拌した。析出した沈殿物を濾取し、メタノール、ヘキサン、クロロホルムで加熱洗浄した後、クロロベンゼンで抽出した。クロロベンゼン溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、下記式P15で表される高分子化合物(高分子化合物P15)(102mg)を黒褐色の固体として得た。高分子化合物P15のポリスチレン換算の数平均分子量は2.6×10、重量平均分子量は10.5×10であった。この反応は、下記反応式で示される通りである。なお、式中、nは繰り返し単位数を示す。
Figure JPOXMLDOC01-appb-C000062
(高分子化合物P15の評価:有機トランジスタ)
 高分子化合物P6に代えて、高分子化合物P15を用いたこと以外は、実施例5と同様にして有機トランジスタを作製した。
この有機トランジスタに対し、ゲート電圧Vgを20~-60V、ソース・ドレイン間電圧Vsdを0~-60Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-60V、Vsd=-60Vにおいてドレイン電流0.08mAが得られた。また、この結果から電界効果移動度は1.5×10-1cm/Vsと算出された。
1…基板、2…有機半導体層、2a…有機半導体層、3…絶縁層、4…ゲート電極、5…ソース電極、6…ドレイン電極、7a…陽極、7b…陰極、11…保護膜、12…層間絶縁膜、13…下部電極(陽極)、14…発光素子、15…上部電極(陰極)、16…バンク部、17…封止部材、18…基板、31…n-型シリコン基板、32…シリコン酸化膜、33…ソース電極、34…ドレイン電極、35…有機半導体層、100…第1実施形態に係る有機トランジスタ、110…第2実施形態に係る有機トランジスタ、120…第3実施形態に係る有機トランジスタ、130…第4実施形態に係る有機トランジスタ、140…第5実施形態に係る有機トランジスタ、150…第6実施形態に係る有機トランジスタ、160…第7実施形態に係る有機トランジスタ、200…実施形態に係る面状光源、300…光電変換素子。

Claims (18)

  1.  式(1)で表される繰り返し単位を有する、高分子化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Ar及びArは、それぞれ同一又は異なり、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい複素環、又は置換基を有していてもよい芳香族炭化水素環と置換基を有していてもよい複素環との縮合環である。R、R、R及びRは、それぞれ同一又は異なり、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、置換シリル基、非置換若しくは置換のカルボキシル基、置換基を有してもよい1価の複素環基、シアノ基又はフッ素原子を示す。]
  2.  前記Ar及び前記Arの少なくとも一方が、複素5員環である、請求項1記載の高分子化合物。
  3.  式(1)で表される繰り返し単位が、式(2)で表される繰り返し単位、式(3)で表される繰り返し単位及び式(4)で表される繰り返し単位で表される群より選ばれる少なくとも1種の繰り返し単位である、請求項1又は2記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)におけるX21及びX22、式(3)におけるX31及びX32、並びに式(4)におけるX41及びX42は、それぞれ同一又は異なり、カルコゲン原子を示し、式(2)におけるR23、R24、R25、R26、R27及びR28、式(3)におけるR33、R34、R35、R36、R37及びR38、式(4)におけるR43、R44、R45、R46、R47及びR48は、それぞれ同一又は異なり、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、置換シリル基、非置換若しくは置換のカルボキシル基、置換基を有してもよい1価の複素環基、シアノ基又はフッ素原子を示す。]
  4.  式(2)における前記X21及び前記X22、式(3)における前記X31及び前記X32、並びに式(4)における前記X41及び前記X42が、硫黄原子、セレン原子又は酸素原子である、請求項3記載の高分子化合物。
  5.  式(5)で表される繰り返し単位を更に有する、請求項1~4のいずれか一項に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000003
    [式中、Yは、アリーレン基、2価の複素環基、金属錯体構造を有する2価の基又はエチニレン基を示し、これらはそれぞれ置換基を有していてもよい。]
  6.  前記Yが、炭素数4~12の5員の2価の複素環基、炭素数6~18の芳香族炭化水素基、又は、多環の2価の複素基である、請求項5記載の高分子化合物。
  7.  前記Yが、式(6)で表される基である、請求項5記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、Tは、置換基を有していてもよい2価の複素環基を示し、nは、2~8の整数を示す。複数存在するTは、それぞれ同一でも異なっていてもよい。]
  8.  前記Yが、式(7)で表される基である、請求項5記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、Ar及びArは、それぞれ同一又は異なり、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい複素環、又は置換基を有していてもよい芳香族炭化水素環と置換基を有していてもよい複素環との縮合環である。R71及びR72は、それぞれ同一又は異なり、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、置換シリル基、非置換若しくは置換のカルボキシル基、置換基を有してもよい1価の複素環基、シアノ基又はフッ素原子を示す。]
  9.  式(5)で表される繰り返し単位が、少なくとも1種の電子受容性を有する芳香族基を含む、請求項5~8のいずれか一項に記載の高分子化合物。
  10.  式(1)で表される繰り返し単位が有している最高被占軌道のエネルギーレベルの値と、前記電子受容性を有する芳香族基が有している最低空分子軌道のエネルギーレベルの値との差が、4.4eV以下である、請求項9記載の高分子化合物。
  11.  請求項1~10のいずれか一項に記載の高分子化合物を含む薄膜。
  12.  請求項1~10のいずれか一項に記載の高分子化合物と、溶媒と、を含有するインク組成物。
  13.  請求項11記載の薄膜からなる有機半導体層を備える、有機トランジスタ。
  14.  請求項13記載の有機トランジスタを備える、面状光源。
  15.  請求項13記載の有機トランジスタを備える、表示装置。
  16.  陽極と、陰極と、該陽極と該陰極との間に設けられる有機半導体層とを有し、
     前記有機半導体層が、電子供与性化合物及び電子受容性化合物を含み、該電子供与性化合物及び該電子受容性化合物の少なくとも一方が、請求項1~10のいずれかに記載の高分子化合物である、光電変換素子。
  17.  請求項16記載の光電変換素子を含む太陽電池モジュール。
  18.  請求項16記載の光電変換素子を含むイメージセンサー。
PCT/JP2010/073187 2009-12-25 2010-12-22 高分子化合物、これを含む薄膜及びインク組成物 WO2011078248A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE201011004999 DE112010004999T5 (de) 2009-12-25 2010-12-22 Polymerverbindung und Dünnschicht und Tintenzusammensetzung, die jeweils dieselbe enthalten
CN201080059154.8A CN102666643B (zh) 2009-12-25 2010-12-22 高分子化合物、含有该高分子化合物的薄膜和墨液组合物
US13/518,671 US8921836B2 (en) 2009-12-25 2010-12-22 Polymer compound, and thin film and ink composition each containing same
KR20127018900A KR20120129889A (ko) 2009-12-25 2010-12-22 고분자 화합물, 이것을 포함하는 박막 및 잉크 조성물

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009295362 2009-12-25
JP2009-295362 2009-12-25
JP2010-267707 2010-11-30
JP2010267707 2010-11-30

Publications (1)

Publication Number Publication Date
WO2011078248A1 true WO2011078248A1 (ja) 2011-06-30

Family

ID=44195775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073187 WO2011078248A1 (ja) 2009-12-25 2010-12-22 高分子化合物、これを含む薄膜及びインク組成物

Country Status (7)

Country Link
US (1) US8921836B2 (ja)
JP (1) JP5620255B2 (ja)
KR (1) KR20120129889A (ja)
CN (1) CN102666643B (ja)
DE (1) DE112010004999T5 (ja)
TW (1) TWI490250B (ja)
WO (1) WO2011078248A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522507A (zh) * 2011-12-08 2012-06-27 南昌大学 一种薄膜诱导活性层取向法制备柔性衬底有机薄膜太阳能电池的方法
WO2013015298A1 (ja) * 2011-07-25 2013-01-31 国立大学法人広島大学 有機半導体材料
WO2014021109A1 (ja) * 2012-08-03 2014-02-06 住友化学株式会社 高分子化合物、並びにこの高分子化合物を用いた有機半導体素子及び有機トランジスタ
WO2014021145A1 (ja) * 2012-08-03 2014-02-06 住友化学株式会社 高分子化合物及びそれを用いた有機トランジスタ
CN104039879A (zh) * 2011-11-15 2014-09-10 巴斯夫欧洲公司 有机半导体器件及其制造方法
JP2015519300A (ja) * 2012-03-29 2015-07-09 コーニング インコーポレイテッド 新規な縮合ナフタレンシクロヘテロ環式化合物、並びにその方法及び使用
WO2016051977A1 (ja) * 2014-09-29 2016-04-07 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2017131074A1 (ja) * 2016-01-29 2017-08-03 住友化学株式会社 組成物およびそれを用いた有機薄膜トランジスタ
JP2021038288A (ja) * 2019-08-30 2021-03-11 国立大学法人広島大学 高分子化合物、高分子化合物の合成方法、有機薄膜太陽電池材料及び有機薄膜太陽電池

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560147B2 (ja) 2010-09-13 2014-07-23 東京エレクトロン株式会社 成膜方法及び半導体装置の製造方法
CN104903330A (zh) * 2012-10-18 2015-09-09 日本化药株式会社 新的稠合多环芳香族化合物及其用途
CN103030789B (zh) * 2012-12-17 2014-10-15 北京科技大学 应用于ofet的一类联五元环聚合物及合成工艺
JP6143856B2 (ja) 2013-05-23 2017-06-07 富士フイルム株式会社 有機半導体組成物および有機薄膜トランジスタならびに電子ペーパーおよびディスプレイデバイス
CN103467712B (zh) * 2013-08-27 2015-10-14 上海交通大学 二维共轭萘并二呋喃基的半导体聚合物及其制备、用途
WO2015137304A1 (ja) * 2014-03-12 2015-09-17 Dic株式会社 化合物、並びにそれを含有する有機半導体材料、有機半導体インク及び有機トランジスタ
CN103897156B (zh) * 2014-04-02 2016-05-18 国家纳米科学中心 一种带噻吩侧链的萘并二噻吩类二维共轭聚合物、制备方法及其用途
KR102355558B1 (ko) * 2014-07-31 2022-01-27 삼성전자주식회사 이미지 센서
KR102250046B1 (ko) 2014-09-03 2021-05-11 삼성디스플레이 주식회사 디스플레이 장치
JP6463475B2 (ja) 2015-07-07 2019-02-06 富士フイルム株式会社 有機半導体素子、化合物、有機半導体組成物、および、有機半導体膜の製造方法
WO2017081844A1 (ja) * 2015-11-12 2017-05-18 パナソニックIpマネジメント株式会社 光センサ
JP6661365B2 (ja) * 2015-12-17 2020-03-11 東芝テック株式会社 インクジェットインク並びに有機薄膜太陽電池の製造方法及び製造装置
US20190112417A1 (en) * 2016-03-29 2019-04-18 The University Of Tokyo Novel organic polymer and method for producing same
US10418567B2 (en) * 2016-12-22 2019-09-17 Feng-wen Yen Organic compound for organic EL device and using the same
TWI624696B (zh) * 2016-12-27 2018-05-21 點晶科技股份有限公司 變焦液晶透鏡組件及其液晶透鏡結構
JP7342565B2 (ja) * 2018-09-28 2023-09-12 東ソー株式会社 共役ポリマー、有機半導体層形成用溶液、有機半導体層、及び有機薄膜トランジスタ
JP7556205B2 (ja) 2020-03-30 2024-09-26 東ソー株式会社 共役ポリマー、有機半導体層形成用溶液、有機半導体層、及び有機薄膜トランジスタ
KR102642761B1 (ko) 2023-11-27 2024-02-29 김환배 식재료의 수분짜는 기능을 갖는 주방용기
KR102697205B1 (ko) 2024-02-13 2024-08-20 김환배 절임용 용기의 누름판

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217312A (ja) * 2006-02-15 2007-08-30 Canon Inc ナフトジチオフェン化合物、ナフトジチオフェンオリゴマー化合物、および有機発光素子
WO2009102031A1 (ja) * 2008-02-13 2009-08-20 Osaka University 多環縮環化合物、多環縮環重合体及びこれらを含む有機薄膜
JP2009267134A (ja) * 2008-04-25 2009-11-12 Mitsui Chemicals Inc 有機トランジスタ
JP2009302463A (ja) * 2008-06-17 2009-12-24 Mitsui Chemicals Inc 有機トランジスタ
EP2145936A2 (en) * 2008-07-14 2010-01-20 Gracel Display Inc. Fluorene and pyrene derivatives and organic electroluminescent device using the same
WO2010058692A1 (ja) * 2008-11-21 2010-05-27 国立大学法人広島大学 新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイス
JP2010177633A (ja) * 2009-02-02 2010-08-12 Mitsui Chemicals Inc 有機トランジスタ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110069A (ja) 1991-10-14 1993-04-30 Mitsubishi Electric Corp 電界効果トランジスタの製造方法
JP3367064B2 (ja) 1995-02-01 2003-01-14 住友化学工業株式会社 高分子蛍光体とその製造方法および有機エレクトロルミネッセンス素子
US7002176B2 (en) 2002-05-31 2006-02-21 Ricoh Company, Ltd. Vertical organic transistor
JP4234952B2 (ja) 2002-05-31 2009-03-04 株式会社リコー 縦型有機トランジスタ
TW200530373A (en) 2003-12-12 2005-09-16 Sumitomo Chemical Co Polymer and light-emitting element using said polymer
JP2006216814A (ja) 2005-02-04 2006-08-17 Konica Minolta Holdings Inc 有機半導体材料、有機半導体薄膜、有機薄膜トランジスタ、電界効果トランジスタ及びスイッチング素子
JP2007299852A (ja) * 2006-04-28 2007-11-15 Konica Minolta Holdings Inc 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
KR101304697B1 (ko) 2006-06-07 2013-09-06 삼성전자주식회사 적층 유도 화합물을 사용한 유기 반도체 소재, 이를포함하는 조성물, 이를 이용한 유기 반도체 박막 및 유기전자 소자
JP2010180151A (ja) * 2009-02-04 2010-08-19 Hokkaido Univ チオフェン環縮合多環芳香族化合物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217312A (ja) * 2006-02-15 2007-08-30 Canon Inc ナフトジチオフェン化合物、ナフトジチオフェンオリゴマー化合物、および有機発光素子
WO2009102031A1 (ja) * 2008-02-13 2009-08-20 Osaka University 多環縮環化合物、多環縮環重合体及びこれらを含む有機薄膜
JP2009267134A (ja) * 2008-04-25 2009-11-12 Mitsui Chemicals Inc 有機トランジスタ
JP2009302463A (ja) * 2008-06-17 2009-12-24 Mitsui Chemicals Inc 有機トランジスタ
EP2145936A2 (en) * 2008-07-14 2010-01-20 Gracel Display Inc. Fluorene and pyrene derivatives and organic electroluminescent device using the same
WO2010058692A1 (ja) * 2008-11-21 2010-05-27 国立大学法人広島大学 新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイス
JP2010177633A (ja) * 2009-02-02 2010-08-12 Mitsui Chemicals Inc 有機トランジスタ

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013015298A1 (ja) * 2011-07-25 2015-02-23 国立大学法人広島大学 有機半導体材料
WO2013015298A1 (ja) * 2011-07-25 2013-01-31 国立大学法人広島大学 有機半導体材料
CN103703583A (zh) * 2011-07-25 2014-04-02 国立大学法人广岛大学 有机半导体材料
US9543521B2 (en) 2011-11-15 2017-01-10 Basf Se Organic semiconductor device and process for its production
EP2780409A4 (en) * 2011-11-15 2015-09-16 Basf Se ORGANIC SEMICONDUCTOR COMPONENT AND MANUFACTURING METHOD THEREFOR
CN104039879A (zh) * 2011-11-15 2014-09-10 巴斯夫欧洲公司 有机半导体器件及其制造方法
CN102522507A (zh) * 2011-12-08 2012-06-27 南昌大学 一种薄膜诱导活性层取向法制备柔性衬底有机薄膜太阳能电池的方法
JP2015519300A (ja) * 2012-03-29 2015-07-09 コーニング インコーポレイテッド 新規な縮合ナフタレンシクロヘテロ環式化合物、並びにその方法及び使用
US20160369045A1 (en) * 2012-03-29 2016-12-22 Corning Incorporated Novel fused naphthalene cyclohetero ring compounds, and methods and uses thereof
JP2014031446A (ja) * 2012-08-03 2014-02-20 Sumitomo Chemical Co Ltd 高分子化合物、並びにこの高分子化合物を用いた有機半導体素子及び有機トランジスタ
WO2014021145A1 (ja) * 2012-08-03 2014-02-06 住友化学株式会社 高分子化合物及びそれを用いた有機トランジスタ
WO2014021109A1 (ja) * 2012-08-03 2014-02-06 住友化学株式会社 高分子化合物、並びにこの高分子化合物を用いた有機半導体素子及び有機トランジスタ
WO2016051977A1 (ja) * 2014-09-29 2016-04-07 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
JPWO2016051977A1 (ja) * 2014-09-29 2017-08-31 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
WO2017131074A1 (ja) * 2016-01-29 2017-08-03 住友化学株式会社 組成物およびそれを用いた有機薄膜トランジスタ
JP2021038288A (ja) * 2019-08-30 2021-03-11 国立大学法人広島大学 高分子化合物、高分子化合物の合成方法、有機薄膜太陽電池材料及び有機薄膜太陽電池
JP7214119B2 (ja) 2019-08-30 2023-01-30 国立大学法人広島大学 高分子化合物、高分子化合物の合成方法、有機薄膜太陽電池材料及び有機薄膜太陽電池

Also Published As

Publication number Publication date
CN102666643B (zh) 2014-08-13
JP2012131938A (ja) 2012-07-12
KR20120129889A (ko) 2012-11-28
DE112010004999T5 (de) 2013-01-24
CN102666643A (zh) 2012-09-12
US20120305899A1 (en) 2012-12-06
US8921836B2 (en) 2014-12-30
TWI490250B (zh) 2015-07-01
TW201132671A (en) 2011-10-01
JP5620255B2 (ja) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5620255B2 (ja) 高分子化合物、これを含む薄膜及びインク組成物
JP5620256B2 (ja) 高分子化合物、これを含む薄膜及びインク組成物
US9267003B2 (en) Polymer compound, composition, and light-emitting device using the same
JP5728797B2 (ja) 高分子化合物及びそれを用いた高分子発光素子
US8298685B2 (en) Block copolymer and polymer light-emitting device
EP2471833B1 (en) Polymer, composition, liquid composition, and conductive thin film
US20120205593A1 (en) Polymeric compound and electronic element
JP5883639B2 (ja) 炭素クラスター構造を有する高分子化合物及びそれを用いた有機デバイス
EP2530759B1 (en) Light-emitting material, ink composition, thin film, light-emitting element, and method for manufacturing a light-emitting element
EP2112185A1 (en) Block copolymer, composition using the same, liquid composition, light-emitting thin film, and polymer light-emitting device
JP5546752B2 (ja) 高分子化合物及びその製造方法、並びに、この高分子化合物を含む組成物
EP2439802A1 (en) Organic thin film transistor, surface light source and display device
JP5228950B2 (ja) フルオレン系高分子化合物及び有機薄膜素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059154.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112010004999

Country of ref document: DE

Ref document number: 1120100049998

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20127018900

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13518671

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10839478

Country of ref document: EP

Kind code of ref document: A1