Nothing Special   »   [go: up one dir, main page]

WO2011077756A1 - Glass plate and method for manufacturing glass plate - Google Patents

Glass plate and method for manufacturing glass plate Download PDF

Info

Publication number
WO2011077756A1
WO2011077756A1 PCT/JP2010/007529 JP2010007529W WO2011077756A1 WO 2011077756 A1 WO2011077756 A1 WO 2011077756A1 JP 2010007529 W JP2010007529 W JP 2010007529W WO 2011077756 A1 WO2011077756 A1 WO 2011077756A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
stress layer
ribbon
less
Prior art date
Application number
PCT/JP2010/007529
Other languages
French (fr)
Japanese (ja)
Inventor
哲郎 君嶋
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to CN201080058710.XA priority Critical patent/CN102958855B/en
Priority to KR1020137021278A priority patent/KR101541631B1/en
Priority to KR1020127016363A priority patent/KR101346930B1/en
Publication of WO2011077756A1 publication Critical patent/WO2011077756A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass plate and a method for producing the glass plate.
  • a flat panel display such as a liquid crystal display or a plasma display
  • a thin glass plate having a thickness of, for example, 1.0 mm or less is used as a glass substrate.
  • the FPD glass substrate has been increased in size, and for example, a glass plate called an eighth generation having a size of 2200 mm ⁇ 2500 mm is used.
  • the downdraw method is most often used for manufacturing such a FDP glass substrate.
  • a glass ribbon is continuously formed by overflowing molten glass from a groove of a forming apparatus. At that time, the glass ribbon is pulled down by a roller or the like. At this time, the thickness of the glass ribbon is adjusted by the pulling speed of the glass ribbon. Then, a glass ribbon is cut
  • Patent Document 1 discloses a glass plate manufacturing apparatus as shown in FIG.
  • This glass plate manufacturing apparatus includes a forming device 7 and a heat insulating structure 8 surrounding the forming device 7.
  • the heat insulating structure 8 is for maintaining the temperature of the molten glass overflowing from the molding apparatus 7 by maintaining high-temperature air around the molding apparatus 7. Normally, except for the gate 81 through which the glass ribbon passes. It is a sealed structure.
  • the heat insulating structure 8 includes a container-shaped main body 8A that opens downward, and a gate structure 8B that is disposed so as to close the opening of the main body 8A. It is configured.
  • the inside of the gate structure 8B is hollow, and cooling air is supplied to the inside of the gate structure 8B through the cooling pipe 82.
  • the glass ribbon 9 can be cooled immediately after formation.
  • a glass substrate for display that can be reduced in thickness and weight, has high mechanical strength and transparency, and can be manufactured in a short time is known (Patent Document 2).
  • the glass substrate a SiO 2 40 ⁇ 70 wt%, the Al 2 O 3 0.1 ⁇ 20 wt%, a Na 2 O 0 ⁇ 20 wt%, the Li 2 O 0 ⁇ 15 wt%, a ZrO 2
  • the glass material contains 0.1 to 9% by weight, and the total content of Li 2 O and Na 2 O is 3 to 20% by weight.
  • a compressive stress layer having a depth of 50 ⁇ m or more is formed on the surface of the glass substrate by chemical strengthening treatment.
  • a glass having an ion exchange surface layer having a depth of at least 20 ⁇ m from the surface by quenching from a first temperature higher than the annealing point to a second temperature lower than the strain point and performing chemical strengthening treatment by ion exchange.
  • Patent Document 3 Known (Patent Document 3).
  • a method for producing tempered glass in which the compressive stress value and thickness of the compressive stress layer in the glass can be optimized so that high mechanical strength can be obtained, and thermal processing can be easily performed.
  • Patent Document 4 a method for producing tempered glass is known in which the compressive stress value and thickness of the compressive stress layer in the glass can be optimized so that high mechanical strength can be obtained, and thermal processing can be easily performed.
  • the chemical strengthening treatment is performed after cooling the temperature range from the annealing point to the strain point at a cooling rate of 200 ° C./min or less, preferably 50 ° C./min or less.
  • the gate structure 8B is provided with a jet 83 for jetting cooling air from the cooling pipe 82 into a space covered with the main body 8A, and cooling air is supplied from the jet 83 to the gate 81. It is also disclosed to cool the glass ribbon 9 by flowing it. However, even if forced convection is generated in the vicinity of the gate 81 in this way, the air above it, that is, most of the air in the space covered by the main body 8A remains in that place, so that volatile components from the molten glass Volatilization is still suppressed.
  • a compressive stress layer is formed on the surface of the glass plate by performing ion exchange and performing chemical strengthening treatment.
  • chemically strengthening a glass substrate using alkali ions used for ion exchange affects, for example, TFT (Thin Film Transistor) characteristics formed on the glass substrate of the liquid crystal display device, and further contaminates the liquid crystal material. This is not preferable.
  • TFT Thin Film Transistor
  • the tempered glass chemically strengthened by ion exchange is hardly used for a liquid crystal display device glass substrate.
  • Even if chemical strengthening treatment by ion exchange is possible, it is inevitable that the surface of the glass plate is damaged in the pre-process of chemical strengthening treatment.
  • the above chemical strengthening treatment is performed immediately after the formation of the glass plate, the efficiency of the subsequent processing treatment including cutting of the glass surface, grinding / polishing of the glass plate, and shape processing is reduced.
  • the large stress value of the tensile stress layer means that, for example, when cutting a glass plate, a scribe line of a predetermined depth put for cutting extends unexpectedly in the thickness direction of the glass plate, This is not preferable in that it may be difficult to divide the glass plate into desired dimensions.
  • the stress value of the compressive stress layer is increased by chemically strengthening a glass plate formed by slowly cooling the glass.
  • the glass plate is cut into a predetermined size and shaped after being molded and before being chemically strengthened.
  • the glass plate may be scratched on the surface during conveyance between such processes, during cutting, and shape processing. If the glass plate is scratched before chemical strengthening, even if the glass plate is subsequently chemically strengthened and has high strength, scratches remain on the glass surface.
  • the present invention provides a glass plate manufacturing apparatus capable of promoting volatilization of volatile components from molten glass overflowing from a molding apparatus, and a glass plate manufacturing method using the glass plate manufacturing apparatus.
  • a first object is to provide a glass plate obtained by the glass plate manufacturing method.
  • the present invention provides a glass plate whose glass surface is strengthened to such an extent that it does not adversely affect the efficiency of processing after glass forming and the glass surface is hardly damaged during the production of the glass plate,
  • a second object is to provide a manufacturing method.
  • one aspect of the present invention is an apparatus for manufacturing a glass plate by a downdraw method, in which molten glass is overflowed from both sides of a groove, and the overflowed molten glass is walled.
  • a heat insulating structure having a gate that surrounds the forming device and has a gate through which the glass ribbon formed by the forming device passes.
  • the body is provided with a discharge port that is introduced into the heat insulating structure from outside the heat insulating structure and discharges the gas that has risen along the molten glass flowing down the wall surface of the molding apparatus to the outside of the heat insulating structure.
  • a glass plate manufacturing apparatus is provided.
  • One embodiment of the present invention is a method for producing a glass plate by a downdraw method, wherein the heat insulation is made from outside the heat insulation structure while overflowing molten glass from both sides of a groove of a molding apparatus surrounded by the heat insulation structure.
  • a glass plate manufacturing method including a step of raising a gas introduced into a structure along a molten glass flowing down on a wall surface of the molding apparatus and then discharging the gas outside the heat insulating structure.
  • one embodiment of the present invention provides a glass plate obtained by the above glass plate manufacturing method, and having a compressive stress layer on both front and back surfaces.
  • one embodiment of the present invention provides a glass plate formed by a downdraw method.
  • a Si high concentration region in which the concentration ratio of the Si atomic concentration (atomic%) to the Si atomic concentration (atomic%) at the center position in the thickness direction of the glass plate is 5% or more extends along the thickness direction from the glass surface. And a depth in the range of greater than 0 and 30 nm or less.
  • the Si high concentration region has a maximum peak of Si atom concentration, and the Si atom concentration along the thickness direction of the glass plate is continuously from the maximum peak position to the surface of the glass plate and the center position. Decrease.
  • the glass plate includes a tensile stress layer formed inside the glass plate and a compressive stress layer formed on both sides of the tensile stress layer.
  • the absolute value of the stress value of the compressive stress layer is 4 MPa or less, and the compressive stress layer is formed in a depth range from 10 ⁇ m to 50 ⁇ m or less along the thickness direction of the glass plate from the surface of the glass plate.
  • the thickness of the compressive stress layer is less than one-third of the thickness of the glass plate.
  • the absolute value of the stress value of the tensile stress layer is 0.4 MPa or less, and the deviation of the stress value of the tensile stress layer is 0.2 MPa or less.
  • Yet another embodiment of the present invention provides a method for producing a glass plate.
  • the manufacturing method is Melting glass raw materials, Using a downdraw method to form a glass ribbon from molten glass; Cutting the glass ribbon to form a glass plate.
  • the glass ribbon has a Si high concentration region in which the concentration ratio of the Si atomic concentration (atomic%) to the Si atomic concentration (atomic%) at the center position in the thickness direction of the glass plate is higher by 5% or more.
  • the Si high concentration region has a maximum peak of Si atom concentration, and is along the thickness direction of the glass plate
  • the Si atom concentration is shaped so as to continuously decrease from the maximum peak position to the surface of the glass plate and the center position.
  • Yet another embodiment of the present invention provides a method for producing a glass plate.
  • the manufacturing method is Melting glass raw materials, Using a downdraw method to form a glass ribbon from molten glass; Cutting the glass ribbon to form a glass plate.
  • it is a compressive stress layer formed in the range of the depth of 10 micrometers or more and 50 micrometers or less along the thickness direction of the glass ribbon from the surface of the glass ribbon, Comprising: 13 minutes of the thickness of the glass ribbon
  • Two compressive stress layers having a thickness of less than 1 and an absolute value of compressive stress value of 4 MPa or less, and sandwiched between the two compressive stress layers, and an absolute value of tensile stress value of 0.4 MPa or less
  • the glass ribbon is formed to have a tensile stress layer.
  • volatilization of volatile components from the molten glass can be promoted by raising the gas passing through the heat insulating structure along the molten glass flowing down on the wall surface of the molding apparatus.
  • the glass plate in which the compressive-stress layer with a high stress value was formed in both front and back surfaces can be obtained.
  • the glass surface is strengthened to such an extent that the glass surface is not easily damaged during the production of the glass plate without adversely affecting the processing efficiency after the glass forming.
  • the glass manufacturing method of this invention can manufacture the said glass plate efficiently.
  • FIG. 1 is a cross-sectional view showing the internal stress distribution of the glass plate 10 of the present embodiment.
  • the glass plate 10 is manufactured by a downdraw method, and is used for, for example, an FPD glass substrate.
  • the thickness and size of the glass plate 10 are not particularly limited.
  • the tempered glass which strengthened the glass plate 10 is used for the cover glass of the display screen of an electronic device, for example.
  • the glass plate 10 includes a tensile stress layer 12 formed inside the glass plate and a compressive stress layer 14 formed on both sides of the tensile stress layer 12.
  • the compressive stress layer 14 is formed in a depth range of 10 ⁇ m to 50 ⁇ m or less along the thickness direction of the glass plate 10 from the surface of the glass plate 10, and the thickness of the compressive stress layer 14 is the thickness of the glass plate 10. Less than 1/13.
  • the absolute value of the stress value of the compressive stress layer 14 is 4 MPa or less, and the absolute value of the stress value of the tensile stress layer 12 is 0.4 MPa or less.
  • the thickness of the compressive stress layer 14 is W 1
  • the thickness W 1 is greater than 0 ⁇ m and 50 ⁇ m or less, and less than 1/13 of the thickness W 0 of the glass plate 10.
  • the maximum value S 1 of the stress value (absolute value) of the compressive stress increase 14 is 4 MPa or less
  • the maximum value S 2 of the stress value (absolute value) of the tensile stress layer 12 is 0.4 MPa or less.
  • FIG. 1 A thick solid line in FIG. 1 indicates an internal stress distribution along the thickness direction of the glass plate 10, that is, a compression / tensile stress profile.
  • FIG. 2 is a diagram showing an internal stress distribution of a conventional glass plate obtained when glass is rapidly cooled in a slow cooling process.
  • the compression / tensile stress profile obtained when the glass is rapidly cooled in the slow cooling process is a profile that draws a parabola.
  • the compressive stress layer formed on the glass plate when the glass is rapidly cooled is caused by a difference in thermal expansion between the glass surface and the inside. This difference in coefficient of thermal expansion is caused by the thermal conductivity of the glass.
  • the thickness W ′ 1 (see FIG. 2) of the compressive stress layer conventionally obtained in the slow cooling step is 1/10 or more of the thickness W ′ 0 of the glass plate.
  • a thin compressive stress layer 14 is formed in the vicinity of the surface of the glass plate 10 due to a difference in thermal expansion caused by the Si high concentration region formed on the glass surface.
  • the Si high concentration region is formed by promoting volatilization of volatile components or increasing the volatilization amount from the surface of the molten glass or glass ribbon in the glass ribbon forming step.
  • the tensile stress layer 12 has a substantially constant low stress value in the thickness direction of the glass plate 10 so that the tensile stress value of the conventional tensile stress layer draws a parabola in the thickness direction of the glass plate. It is different from the case where it is distributed.
  • the compressive stress layer 14 has a stress value larger than the stress value of the compressive stress layer obtained only when, for example, the glass is rapidly cooled in the slow cooling step. That is, since the compressive stress layer 14 having a large stress value is formed on the glass surface on the glass plate 10, the glass surface of the glass plate 10 is compared with a conventional glass plate that has been strengthened by only a slow cooling process. Hard to scratch.
  • the glass plate 10 will be described in more detail.
  • the thickness W 1 of the compressive stress layer 14 formed on the glass plate 10 is greater than 0 ⁇ m and not greater than 50 ⁇ m.
  • the compressive stress layer 14 is formed on the glass surface. That is, the compressive stress layer 14 is formed in a range of a maximum depth of 50 ⁇ m from the glass surface. In other words, the depth from the surface of the compressive stress layer 14 is 50 ⁇ m or less.
  • the depth of the compressive stress layer can be increased by promoting volatilization from the surface of the molten glass or glass ribbon in the molding process, but if the depth of the compressive stress layer 14 exceeds 50 ⁇ m, Deviation of proper molding conditions or decrease in productivity occurs.
  • the depth from the surface of the compressive stress layer 14 is 50 ⁇ m or less.
  • the depth of the compressive-stress layer 14 is 45 micrometers or less, 40 micrometers or less, and 38 micrometers or less.
  • Such a preferred embodiment is realized by adjusting the glass plate manufacturing conditions and the glass plate composition including the conditions for promoting the volatilization of volatile components from the surface of the molten glass or the glass ribbon being formed or increasing the volatilization amount. Can be done.
  • the depth of the compressive stress layer 14 in this specification shows the depth from the glass surface of the deepest part of the compressive stress layer formed in one surface among the front and back of the glass plate 10.
  • the depth of the compressive stress layer 14 is more than 10 ⁇ m.
  • the depth of the compressive stress layer 14 is more preferably 15 ⁇ m or more, 20 ⁇ m or more, 25 ⁇ m or more, 30 ⁇ m or more, or 35 ⁇ m or more in consideration of the point that the glass plate 10 is not easily damaged even if a deep flaw is applied.
  • the depth of the compressive stress layer 14 formed on the glass surface is less than 1/13 of the thickness W 0 of the glass plate 10, but less than 1/15, less than 1/17, less than 1/20, 1/22 Less than 1/24.
  • Such a preferred embodiment is also realized by adjusting the glass plate manufacturing conditions and the glass plate composition including the conditions for promoting the volatilization of volatile components from the surface of the molten glass or the glass ribbon being molded or increasing the volatilization amount. Can be done.
  • the stress value (absolute value) of the compressive stress layer 14 formed near the surface of the glass plate 10 is 4 MPa at the maximum. If the maximum value of the stress value (absolute value) exceeds 4 MPa, the sum of the stress values of the compressive stress layer 14 becomes large, and it becomes difficult to process the glass plate 10, for example, shape processing. For this reason, it is preferable that the maximum value of the stress value (absolute value) of the compressive stress layer 14 is 3.7 MPa or less, 3.5 MPa or less, 3.0 MPa or less, or 2.8 MPa or less.
  • the maximum value of the stress value (absolute value) of the compressive stress layer 14 is 0.1 MPa or more, 0.5 MPa or more, 1 MPa or more, 1.5 MPa or more, 2 MPa or more. Since the compressive stress layer 14 is a layer having a stress value (absolute value) exceeding 0 MPa, the mechanical strength of the glass plate 10 is improved by forming the compressive stress layer 14 on the glass surface of the glass plate 10.
  • the “stress value” in this specification indicates an average value of 0 to 10 ⁇ m from the surface of the sample of the glass plate 10 cut from the glass surface at a predetermined depth. Therefore, locally, a glass plate in which the compressive stress layer 14 has a stress value exceeding the range of the stress value is also included as the glass plate 10.
  • the stress value of the tensile stress layer 12 formed inside the glass plate 10 is substantially constant in the thickness direction of the glass plate 10.
  • the stress value of the tensile stress layer 12 is 0.4 MPa or less as described above.
  • the maximum value of the stress value (absolute value) of the tensile stress layer 12 exceeds 0.4 MPa, for example, when cutting a glass plate, a scribe line having a predetermined depth inserted for cutting is the thickness of the glass plate.
  • the glass plate 10 extends unexpectedly in the vertical direction, making it difficult to divide the glass plate 10 into a desired dimension.
  • the maximum value (absolute value) of the stress value of the tensile stress layer 12 is 0.3 MPa or less, 0.2 MPa or less, 0.15 MPa, or 0.10 MPa.
  • the maximum value of the stress value (absolute value) of the compressive stress layer 14 on the glass surface / the maximum value of the stress value (absolute value) of the tensile stress layer 12 can be 6 or more.
  • the tensile stress layer 12 of the glass plate 10 at the central portion 4/5 hereinafter, simply referred to as “tensile center region”) of the tensile stress layer 12 excluding 1/10 on both sides in the thickness direction of the glass plate 10.
  • the fluctuation of the stress value at is 0.12 MPa or less.
  • they are 0.10 Mpa or less, 0.05 Mpa or less, 0.02 Mpa or less.
  • Such a preferred embodiment is also realized by adjusting the glass plate manufacturing conditions and the glass plate composition including the conditions for promoting the volatilization of volatile components from the surface of the molten glass or the glass ribbon being molded or increasing the volatilization amount. Can be done.
  • the stress value of the tensile stress layer 12 formed inside the glass plate 10 is substantially constant in the thickness direction of the glass plate 10, the stress value of the tensile stress layer draws a parabola in the thickness direction of the glass plate 10.
  • the tensile stress layer 12 can be kept thin as compared with the case where the tensile stress layer 12 is formed. More specifically, the stress value of the tensile stress layer 12 of the glass plate 10 is substantially constant in the thickness direction of the glass plate 10, and only in the slow cooling step compared to the maximum value (absolute value) of the stress value.
  • the maximum value (absolute value) of the tensile stress value of the obtained conventional glass plate is large.
  • the tensile stress layer is formed with a parabolic profile so as to cancel out the compressive stress of the compressive stress layer formed on the glass surface. For this reason, when the thickness of the glass plate is reduced, the thickness of the tensile stress layer for canceling the compressive stress of the compressive stress layer on the glass surface is also reduced. For example, when a glass plate is cut, a scribe line of a predetermined depth inserted for cutting extends unexpectedly in the thickness direction of the glass plate, and the glass plate 10 has a desired dimension. It may be difficult to divide.
  • the stress value of the tensile stress layer 12 of the glass plate 10 of the present embodiment is substantially constant in the thickness direction of the glass plate 10, the maximum value of the stress value of the tensile stress layer is difficult to increase. Processing can also be performed with high accuracy.
  • the glass plate 10 When the glass plate 10 is viewed from the glass composition, the glass plate 10 has a Si high concentration region (hereinafter referred to as a Si rich layer) in a depth range from 0 to 30 nm along the thickness direction from the glass surface. Is formed.
  • the Si-rich layer is a region where the concentration ratio of the Si atomic concentration (atomic%) to the Si atomic concentration (atomic%) at the center position in the thickness direction of the glass plate 10 is higher by 5% or more.
  • the range in which the Si-rich layer is located is preferably more than 0 to 25 nm, 2 to 20 nm, 5 to 16 nm, and 8 to 16 nm.
  • the depth of the Si-rich layer can be increased by promoting volatilization from the surface of the molten glass or glass ribbon in the molding process. Decrease.
  • the depth of the Si-rich layer exceeds 30 nm, etching becomes difficult when the glass surface of the glass plate 10 is etched.
  • the stress value (absolute value) of the compressive stress layer 14 formed on the glass surface increases, resulting in inconvenience that the cutting ability of the glass plate is lowered. Therefore, the depth of the Si rich layer is preferably 30 nm or less.
  • the Si rich layer has a maximum peak of Si atom concentration, and the Si atom concentration along the thickness direction of the glass plate 10 decreases from the position of the maximum peak toward both sides.
  • the Si atom concentration means the atomic percentage of Si with respect to the entire glass component excluding oxygen atoms (all glass components excluding oxygen atoms such as Si, Al, B, Ca, Sr, and Ba).
  • a volatile component having a vapor pressure (saturated vapor pressure) higher than that of SiO 2 in the glass melted state (for example, the viscosity of the glass is 10 4.5 to 10 5 poise or the temperature 1100 to 1300 ° C.) is the thickness of the glass plate. It is preferable that 30% by mass or more is contained in the center position in the vertical direction in terms of forming the Si rich layer.
  • the concentration ratio when the concentration ratio is less than 5%, a sufficient difference in thermal expansion coefficient between the glass surface and the inside cannot be obtained, and the compressive stress layer 14 is not effectively formed. Alternatively, sufficient Vickers hardness and durability cannot be obtained.
  • the concentration ratio exceeds 30%, the quality (physical characteristics, thermal characteristics, chemical characteristics) of the glass plate changes, and for example, it becomes difficult to cut or etch the glass plate and use it for desired applications. It may not be possible. From this point, it is preferable that the concentration ratio has an upper limit of 30%.
  • the peak position where the Si atom content and Si atom concentration are highest is located in the range of 0 to 5 nm deep from the glass surface.
  • the Si-rich layer By forming the Si-rich layer in the depth range from 0 to 30 nm along the thickness direction from the glass surface, a sufficient difference in coefficient of thermal expansion can be obtained between the glass surface and the inside.
  • the compressive stress layer 14 can be formed. Moreover, it becomes possible to improve the Vickers hardness and durability of the glass surface, and to prevent the glass plate 10 from being broken. That is, since Si is a component that improves the Vickers hardness, the Vickers hardness of the glass surface of the glass plate 10 is increased by the Si-rich layer formed on the glass surface. Moreover, since Si is excellent in chemical resistance, the durability of the glass plate 10 on which the Si-rich layer is formed on the glass surface is also improved.
  • the Vickers hardness of the glass surface is improved as compared with a conventional glass plate, the crack generation rate is reduced, and it is possible to obtain an effect that the glass surface is less likely to be damaged and hardly damaged.
  • the Vickers hardness of the glass surface of the glass plate 10 is, for example, 4 GPa or more, 5 GPa or more, and preferably 5.3 GPa or more.
  • the Vickers hardness of the glass surface is improved by 0.01% or more in comparison with the Vickers hardness inside the glass, and is 0.02% or more, 0.05% or more, 0.10% or more, 1% or more. It is preferable to improve.
  • the glass plate 10 has the tensile stress layer 12 and the compressive stress layer 14 in terms of internal stress, and has a Si-rich layer near the glass surface in terms of composition.
  • the glass plate 10 is made of SiO 2 in the molten glass or glass ribbon surface, for example, in a glass molten state with a glass viscosity of 10 4.5 to 10 5 poise or a temperature of 1100 to 1300 ° C. It can be obtained by promoting volatilization of a volatile component having a higher saturated vapor pressure.
  • Each aspect of the preferable numerical range described above also adjusts the glass plate production conditions and the glass plate composition including conditions for promoting volatilization of volatile components from the surface of the molten glass or glass ribbon during molding or increasing the volatilization amount. Can be realized.
  • Such a glass plate 10 may be further strengthened by performing chemical strengthening treatment by ion exchange.
  • the glass plate 10 may not be subjected to chemical strengthening treatment by ion exchange.
  • Embodiment of this invention also includes the tempered glass by which the glass surface of the glass plate 10 was chemically strengthened by ion exchange.
  • the above-mentioned Si-rich layer and the ion exchange treatment region by ion exchange are formed side by side on the glass surface.
  • the ion exchange treatment region is a region in which ion exchange components such as Li and Na, which are components in the glass surface, are exchanged with ion exchange components such as K in the treatment liquid for ion exchange.
  • a large compressive stress layer is formed on the chemically strengthened glass plate 10 by overlapping the compressive stress layer by the chemical strengthening process with the compressive stress layer 14 resulting from the Si-rich layer.
  • the thickness of the compressive stress layer formed from the glass surface toward the inside by ion exchange is 20 to 100 ⁇ m.
  • the maximum stress value (absolute value) of the compressive stress layer expanded by ion exchange is preferably 300 MPa or more, and more preferably 400 MPa or more. By setting the maximum value of the stress value (absolute value) to 300 MPa or more, the chemically strengthened glass plate 10 can obtain sufficient strength to protect a display or the like, for example.
  • the chemically strengthened glass plate 10 preferably has a maximum stress value (absolute value) of the compressive stress layer of 950 MPa or less, more preferably 800 MPa or less, More preferably, it is 700 MPa or less.
  • the stress value (absolute value) of the tensile stress layer is unlikely to increase as compared with a conventional glass plate in which a compression stress layer is formed on the glass surface by rapidly cooling the glass.
  • the thickness of the compressive stress layer after the chemical strengthening treatment is 20 ⁇ m or more, preferably 30 ⁇ m or more and 40 ⁇ m or more. As the thickness of the compressive stress layer increases, even when the tempered glass is deeply scratched, the tempered glass is less likely to break, and the variation in mechanical strength is reduced. On the other hand, the thickness of the compressive stress layer is 100 ⁇ m or less. The thickness of the compressive stress layer is preferably 90 ⁇ m or less and 80 ⁇ m or less in consideration of ease of processing of the tempered glass.
  • the thickness of the glass plate 10 and the cover glass which applied the tempered glass by which the glass plate 10 was chemically strengthened is 1.5 mm or less.
  • the strength of the glass plate itself is increased, and the compressive stress layer 14 formed in the vicinity of the glass surface does not function sufficiently. That is, the thickness of the glass plate 10 or the cover glass formed in the present embodiment is preferably 1.0 mm or less, 0.7 mm or less, 0.5 mm or less, 0.3 mm or less. The thinner the thickness, the more remarkable the effect of the present invention.
  • the glass plate manufacturing method of this embodiment is suitable for a large glass plate. This is because the larger the glass plate, the larger the amount of bending and the easier the glass plate breaks due to fine scratches resulting from handling, but the occurrence of the above problem can be reduced by forming the compressive stress layer 14 on the glass surface. Because. For this reason, when the width direction of the glass plate 10 is a glass plate of 1000 mm or more and 2000 mm or more, the effect of this invention becomes remarkable.
  • Glass type of glass plate As the glass used for the glass plate 10, types such as borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, alkali silicate glass, alkali aluminosilicate glass, and alkali aluminogermanate glass can be used.
  • the glass applicable to the glass plate of the present invention is not limited to the above-mentioned types, and at least at SiO 2 and the glass melting temperature (glass viscosity is 10 4.5 to 10 5 poise or temperature 1100 to 1300 ° C.).
  • saturated vapor pressure may be a type of glass including, a high volatile component than SiO 2.
  • Al 2 O 3 is a network-forming oxide and is a component having a relatively low saturated vapor pressure among glass components.
  • the saturated vapor pressure is higher than that of SiO 2
  • Al 2 O 3 is included in the volatile component.
  • content of the volatile component in a glass composition is 30 mass% or more, and it is further more preferable that it is 35 mass% or more and 40 mass% or more. Therefore, in the tensile stress layer 12 of the glass plate 10 where the volatile components of the glass plate 10 do not volatilize, the content of the volatile components is 30% by mass or more.
  • content of the volatile component in the glass composition is less than 30% by mass, volatilization of the volatile component is not promoted, and it becomes difficult to form a Si-rich layer or a compressive stress layer on the glass surface. Further, when a large amount of volatile components are contained, volatilization increases excessively and it becomes difficult to homogenize the glass. For this reason, it is preferable that content of the volatile component in a glass composition is 60 mass% or less, 50 mass% or less, and it is further more preferable that it is 45 mass% or less.
  • the aluminoborosilicate glass includes the following components.
  • the% display of the composition described below is a mass% display.
  • Aluminoborosilicate glass is used for a flat panel display glass substrate, for example.
  • the indication in the following parentheses is the preferred content of each component.
  • SiO 2 50 to 70% (55 to 65%, 57 to 64%, 58 to 62%), Al 2 O 3 : 5 to 20% (10 to 20%, 12 to 18%, 15 to 18%), B 2 O 3 : 0 to 15% (5 to 15%, 6 to 13%, 7 to 12%),
  • the following composition may be included as an optional component.
  • MgO 0 to 10% (lower limit is 0.01%, lower limit is 0.5%, upper limit is 5%, upper limit is 4%, upper limit is 2%), CaO: 0 to 10% (lower limit is 1%, lower limit is 3%, lower limit is 4%, upper limit is 9%, upper limit is 8%, upper limit is 7%, upper limit is 6%), SrO: 0 to 10% (lower limit is 0.5%, lower limit is 3%, upper limit is 9%, upper limit is 8%, upper limit is 7%, upper limit is 6%), BaO: 0 to 10% (upper limit is 8%, upper limit is 3%, upper limit is 1%, upper limit is 0.2%), ZrO 2 : 0 to 10% (0 to 5%, 0 to 4%, 0 to 1%, 0 to 0.1%).
  • composition is illustrated as alumino borosilicate glass.
  • the indication in the following parentheses is the preferred content of each component.
  • SiO 2 50 to 70% (55 to 65%, 58 to 62%), Al 2 O 3 : 10 to 25% (15 to 20%, 15 to 18%), B 2 O 3 : 5 to 18% (8 to 14%, 10 to 13%), MgO: 0-10% (1-5%, 1-2%), CaO: 0 to 20% (1 to 7%, 4 to 7%), SrO: 0-20% (1-10%, 1-3%), BaO: 0 to 10% (0 to 2%, 0 to 1%), K 2 O: 0 to 2% (0.1 to 2%, 0.1 to 0.5%), SnO 2 : 0 to 1% (0.01 to 0.5%, 0.01 to 0.3%).
  • alkali aluminosilicate glass examples include the following components.
  • Alkali aluminosilicate glass is used, for example, as a cover glass for display screens of electronic devices.
  • the indication in the following parentheses is the preferred content of each component.
  • SiO 2 50 to 70% (55 to 65%, 57 to 64%, 57 to 62%), Al 2 O 3 : 5 to 20% (9 to 18%, 12 to 17%), Na 2 O: 6-30% (7-20%, 8-18%, 10-15%), At this time, the following composition may be included as an optional component.
  • composition is illustrated as alkali-aluminosilicate glass.
  • SiO 2 50 to 70%, Al 2 O 3 : 5 to 20%, Na 2 O: 6-20%, K 2 O: 0 to 10%, MgO: 0 to 10%, CaO: more than 2% to 20% ZrO 2 : 0 to 4.8%,
  • CaO / RO wherein R is at least one selected from Mg, Ca, Sr and Ba
  • SrO content + BaO content is less than 10%
  • (ZrO 2 + TiO 2 ) / SiO 2 content ratio is 0 to less than 0.07
  • B 2 O 3 / R1 2 O (However, R1 is at least one selected from Li, Na and K) The content ratio is 0 to less than 0.1.
  • composition is illustrated as another alkali aluminosilicate glass.
  • SiO 2 58 to 68%
  • Al 2 O 3 8 to 15%
  • Na 2 O: 10-20% Li 2 O: 0 to 1%
  • K 2 O 1 to 5%
  • MgO 2 to 10%
  • SiO 2 is a component constituting the glass skeleton of the glass plate 10 and has an effect of improving the chemical durability and heat resistance of the glass.
  • the SiO 2 content is too low, the effects of chemical durability and heat resistance are not sufficiently obtained, and when the SiO 2 content is too high, the glass tends to be devitrified, making molding difficult, The viscosity increases and it becomes difficult to homogenize the glass.
  • Al 2 O 3 is a component that forms a glass skeleton, and has an effect of increasing the chemical durability and heat resistance of the glass. It also has the effect of increasing ion exchange performance and etching rate. If the Al 2 O 3 content is too low, the effects of chemical durability and heat resistance of the glass cannot be obtained sufficiently. On the other hand, when the Al 2 O 3 content is too high, the viscosity of the glass is increased and dissolution becomes difficult, and the acid resistance is lowered.
  • B 2 O 3 is a component that lowers the viscosity of the glass and promotes melting and clarification of the glass. If the B 2 O 3 content is too low, the viscosity of the glass becomes high and it becomes difficult to homogenize the glass.
  • MgO and CaO are components that lower the viscosity of the glass and promote glass melting and fining. Further, Mg and Ca are advantageous components for improving the meltability while reducing the weight of the obtained glass because the ratio of increasing the density of the glass is small in the alkaline earth metal. However, if the MgO and CaO content is too high, the chemical durability of the glass is lowered.
  • SrO and BaO are components that lower the viscosity of the glass and promote the melting and clarification of the glass. Moreover, it is also a component which improves the oxidizability of a glass raw material and improves clarity. However, if the SrO and BaO content is too high, the density of the glass increases, the weight of the glass plate cannot be reduced, and the chemical durability of the glass decreases.
  • Li 2 O is a component that lowers the viscosity of the glass and improves the meltability and moldability of the glass.
  • Li 2 O is a component that improves the Young's modulus of glass.
  • Li 2 O is one of the ion exchange components, and the effect of increasing the depth of the compressive stress layer 14 is high among alkali metal oxides.
  • the thermal expansion coefficient of the glass becomes too high, the thermal shock resistance of the glass is lowered, and it becomes difficult to match the thermal expansion coefficient with peripheral materials such as metals and organic adhesives.
  • Na 2 O is an essential component that lowers the high-temperature viscosity of the glass and improves the meltability and moldability of the glass. Moreover, it is a component which improves the devitrification resistance of glass. When the Na 2 O content is less than 6% by mass, the melting property of the glass is lowered, and the cost for melting is increased. Further, Na 2 O is an ion exchange component, and when the chemical strengthening treatment is performed, if the Na 2 O content is less than 6% by mass, the ion exchange performance is also deteriorated, so that sufficient strength cannot be obtained. In addition, the coefficient of thermal expansion is excessively reduced, and it becomes difficult to match the coefficient of thermal expansion with peripheral materials such as metals and organic adhesives.
  • the glass tends to be devitrified and the devitrification resistance is also lowered, it is impossible to apply the downdraw method for overflowing the glass, so that stable mass production of glass becomes difficult.
  • the Na 2 O content is too high, the low-temperature viscosity decreases, the thermal expansion coefficient becomes excessive, the impact resistance decreases, and the thermal expansion coefficient matches with peripheral materials such as metals and organic adhesives. It becomes difficult.
  • the devitrification resistance is lowered due to the deterioration of the glass balance, it is difficult to stably mass-produce glass using the downdraw method.
  • K 2 O is a component that lowers the high-temperature viscosity of the glass and improves the meltability and moldability of the glass and at the same time improves the devitrification resistance.
  • K 2 O is an ion exchange component, a component capable of improving the ion exchange performance of a glass by containing K 2 O.
  • the content of K 2 O becomes too high, the low-temperature viscosity decreases, the thermal expansion coefficient becomes excessive, and the impact resistance decreases, which is not preferable when applied as a cover glass.
  • the K 2 O content is too high, the peripheral material and thermal expansion coefficient such as metal or organic adhesive is hardly matched. Further, since the devitrification resistance is lowered due to the deterioration of the glass balance, it is difficult to stably mass-produce glass using the downdraw method.
  • Li 2 O, Na 2 O and K 2 O are components that are eluted from the glass to deteriorate TFT characteristics, and increase the thermal expansion coefficient of the glass to damage the substrate during heat treatment, flat panel displays When applied as a glass substrate, it is not preferable to contain a large amount. However, by deliberately containing a specific amount of the above components in the glass, while suppressing deterioration of TFT characteristics and thermal expansion of the glass within a certain range, the melting property of the glass is increased, and the basicity of the glass is increased, It is possible to easily oxidize a metal whose valence varies and to exhibit clarity.
  • ZrO 2 is a component that increases the viscosity and strain point near the devitrification temperature of glass. ZrO 2 is also a component that improves the heat resistance of the glass. ZrO 2 is a component that significantly improves the ion exchange performance. However, if the content of ZrO 2 becomes too high, the devitrification temperature increases and the devitrification resistance decreases.
  • TiO 2 is a component that lowers the high temperature viscosity of the glass. TiO 2 is a component that improves ion exchange performance. However, when the content of TiO 2 becomes too high, the devitrification resistance is lowered. Furthermore, since the glass is colored, application to an FPD glass substrate or a cover glass of a display screen of an electronic device is not preferable. Further, since the glass is colored, the ultraviolet transmittance is reduced, and therefore, when the treatment using the ultraviolet curable resin is performed, there is a disadvantage that the ultraviolet curable resin cannot be sufficiently cured.
  • a clarifier can be added as a component for defoaming bubbles in the glass.
  • the fining agent is not particularly limited as long as it has a small environmental burden and excellent glass fining properties.
  • it is made of a metal oxide such as tin oxide, iron oxide, cerium oxide, terbium oxide, molybdenum oxide and tungsten oxide. There may be mentioned at least one selected.
  • As 2 O 3 and Sb 2 O 3 are substances having an effect of refining the glass by causing a reaction with valence fluctuation in the molten glass, but As 2 O 3 and Sb 2 O 3 are environmental loads.
  • substantially not containing As 2 O 3 and Sb 2 O 3 means less than 0.01% by mass and intentionally not containing impurities.
  • the glass plate manufacturing method includes a melting step (step S10), a refining step (step S20), a stirring step (step S30), a forming step (step S40), a slow cooling step (step S50), and a cutting plate. It mainly includes a process (step S60), a shape processing process (step S70), and a chemical strengthening process (step S80).
  • step S10 in a melting furnace (not shown), the glass raw material is heated by indirect heating by combustion of fossil fuel and direct heating by electric conduction to produce molten glass.
  • the melting of the glass may be performed by other methods.
  • a clarification process is performed (step S20).
  • bubbles in the molten glass are removed using the above-described clarifier while the molten glass is stored in a liquid tank (not shown). Specifically, it is performed by a redox reaction of a metal oxide whose valence fluctuates in molten glass. In the molten glass at a high temperature, the metal oxide releases oxygen by a reduction reaction, and this oxygen becomes a gas, and bubbles in the molten glass grow and float on the liquid surface.
  • the molten glass is passed through a vertically-shown stirring tank (not shown) in order to maintain the chemical and thermal uniformity of the glass. While the molten glass is being stirred by the stirrer provided in the stirring tank, the molten glass moves to the bottom in the vertical downward direction and is guided to the subsequent process. Thereby, nonuniformity of the glass such as striae can be suppressed.
  • a molding process is performed (step S40).
  • a downdraw method is used.
  • the down-draw method including overflow down-draw and slot down-draw is a known method using, for example, Japanese Patent Application Laid-Open No. 2010-189220, Japanese Patent No. 3586142, and the apparatus shown in FIG.
  • the molding process in the downdraw method will be described later. Thereby, a sheet-like glass ribbon having a predetermined thickness and width is formed.
  • an overflow downdraw is most preferable among the downdraw methods, but a slot downdraw may be used.
  • an overflow downdraw with a large volatilization amount is preferable.
  • a slow cooling process is performed (step S50). Specifically, the glass ribbon formed into a sheet shape is cooled below the annealing point in a slow cooling furnace (not shown) by controlling the cooling rate so that distortion does not occur. Thereby, the glass ribbon has the compressive stress layer 14 and the tensile stress layer 12 in terms of stress, and the Si-rich layer in terms of composition, like the glass plate 10 as the final product.
  • a cutting board process is performed (step S60). Specifically, the continuously generated glass ribbon is cut every certain length to obtain a glass plate.
  • a shape processing step is performed (step S70). In the shape processing step, the glass surface and end faces are ground and polished in addition to cutting out to a predetermined glass plate size and shape.
  • shape processing physical means using sandblast, cutter or laser may be used, or chemical means such as etching may be used.
  • chemical means such as etching may be used.
  • shape-processing a glass plate to a complicated shape it is preferable to perform the said etching process before a chemical strengthening process.
  • the shape processing of the glass plate 10 there is an etching process in which holes 11 are formed in the glass plate 10 as shown in FIG. 4 and processed into an outer shape including curves and straight lines.
  • the glass plate 10 processed into such an outer shape is used for a cover glass of a display screen of an electronic device.
  • a resist material is coated on both main surfaces of the glass plate.
  • the resist material is exposed through a photomask having a pattern having a desired outer shape.
  • the outer shape is not particularly limited, for example, an outer shape including a portion having a negative curvature (a portion that turns to the right as it travels while proceeding to the left while looking inside the region of the outer shape along the edge of the outer shape) is there.
  • the resist material after exposure is developed, a resist pattern is formed in a region other than the etched region of the glass plate, and the etched region of the glass plate is etched.
  • the glass plate is isotropically etched.
  • the end surface of the glass plate is formed so that the central portion protrudes most outward and the inclined surface is gently curved from the central portion toward both main surface sides.
  • the boundary between the inclined surface and the main surface and the boundary of the same surface of the inclined surface are preferably rounded.
  • the resist material used in the etching step is not particularly limited, but a material having resistance to an etchant used when etching glass using a resist pattern as a mask can be used.
  • a material having resistance to an etchant used when etching glass using a resist pattern as a mask can be used.
  • the etchant a mixed acid containing at least one acid among hydrofluoric acid, sulfuric acid, nitric acid, hydrochloric acid, and silicic acid can be used.
  • hydrofluoric acid or the above mixed acid aqueous solution as an etchant, a cover glass having a desired shape can be obtained.
  • an alkaline solution such as KOH or NaOH can be used as a stripping solution for stripping the resist material from the glass plate.
  • the types of the resist material, etchant, and stripping solution can be appropriately selected according to the material of the glass plate.
  • As an etching method not only a method of immersing in an etching solution but also a spray etching method in which an etching solution is sprayed can be used.
  • a chemical strengthening process by ion exchange is performed (step S80).
  • the chemical strengthening process is not performed depending on circumstances.
  • a glass plate such as aluminoborosilicate glass used for a flat panel display is not subjected to chemical strengthening treatment.
  • a chemical strengthening treatment is performed on a glass plate suitably used for a cover glass of a display screen of an electronic device such as alkali aluminosilicate glass.
  • the strength of the glass plate 10 can be further improved. Moreover, compared with the conventional glass plate which forms a compressive-stress layer on the surface by quenching glass, the stress value (absolute value) of the tensile-stress layer of the glass plate of this embodiment does not become large easily.
  • the glass component it preferably contains Na 2 O and Li 2 O is an ion exchange component.
  • the chemically strengthened tempered glass of the present embodiment includes, in addition to a cover glass for a display screen of an electronic device, a casing for a mobile terminal device, a cover glass for a solar cell, a glass substrate for display, a cover glass for a touch panel display, and a touch panel. It can be applied to a glass substrate of a display.
  • the chemical strengthening treatment can be performed using the following method.
  • the glass plate 10 is immersed in a KNO 3 100% treatment bath maintained at, for example, about 350 to 550 ° C. for about 1 to 25 hours.
  • the glass plate is chemically strengthened by ion exchange of Na + ions or Li + ions on the surface of the glass with K + ions or Li + ions in the treatment bath.
  • the temperature, time, ion exchange solution, and the like during the ion exchange treatment can be changed as appropriate.
  • the ion exchange solution may be a mixed solution of two or more types.
  • the glass plate manufacturing method has a cleaning process and an inspection process in addition to this, but the description of these processes is omitted.
  • the shape processing step is performed before the chemical strengthening treatment step, but may be performed after the chemical strengthening treatment step.
  • the volatilization of volatile components from the glass ribbon is promoted or the volatilization amount is increased, so that a Si rich layer is formed.
  • the compressive stress layer 14 and the tensile stress layer 12 are formed before the cutting step.
  • the volatile component is a component that is more volatile than SiO 2 , in other words, in molten glass (for example, the viscosity of the glass is 10 4.5 to 10 5 poise, or the temperature is 1100 to 1300 ° C.), and the saturated vapor pressure is higher than that of SiO 2. Indicates a high component.
  • Examples of the volatile component include Al 2 O 3 , B 2 O 3 , Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, BaO, ZrO 2 , and SnO 2 . It is not limited to this. B 2 O 3 , alkali oxides (Li 2 O, Na 2 O, K 2 O), and alkaline earth metal oxides (MgO, CaO, SrO, BaO) have high volatility, and thus are used as glass components. It is preferable to contain at least one kind. SnO 2 Volatilizes as SnO. When volatilization becomes excessive, the glass plate cannot be molded properly.
  • the upper limit of the content of B 2 O 3 is more preferably 14% by mass, It is especially preferable that it is 13 mass%. Further, when the SnO 2 content is high, devitrification may occur in the glass. Therefore, from the viewpoint of preventing devitrification of the glass, the upper limit of the SnO 2 content is more preferably 0.5% by mass, and particularly preferably 0.3% by mass. Further, K 2 O used as a glass melting accelerator is eluted from the glass plate when added in a large amount. Therefore, when used in flat panel display glass substrates such as liquid crystal display device glass substrates, the upper limit of the content of K 2 O is more preferably 0.5% by mass.
  • these volatile components have a saturated vapor pressure higher than that of SiO 2 in the molten glass, they are volatilized from the molten glass or glass ribbon at the time of molding (in a molten state of the glass). That is, in a molding process in which a glass ribbon is formed from molten glass, components other than SiO 2 are volatilized on the glass ribbon surface. As a result, the Si atom concentration in the glass surface after molding has Si atoms inside the glass. A Si-rich layer that is higher than the concentration is formed. Further, when the Si-rich layer is formed on the glass surface of the glass plate, the compressive stress layer 14 is formed on the glass surface due to the difference in thermal expansion coefficient from the inside of the glass.
  • FIG. 5 is a diagram illustrating an example of a molding apparatus that performs a molding method using a downdraw method.
  • the forming device 101 has a pentagonal wedge shape (a narrow baseball home base shape) that is pointed downward.
  • the forming apparatus 101 has an upper surface provided with a linearly extending groove 111, a groove 111 provided on the upper surface, and a pair of wall surfaces 112 facing downward from both parallel end portions.
  • the direction in which the groove 111 extends on the horizontal plane is the X direction
  • the direction orthogonal to the X direction on the horizontal plane is the Y direction
  • the vertical direction is the vertical direction. It is also called the Z direction (see FIG. 6).
  • the groove 111 gradually decreases in depth from one end to the other end so that the molten glass 103 supplied to one end from a supply pipe (not shown) overflows uniformly over the entire length.
  • Each of the pair of wall surfaces 112 has a vertical surface that hangs vertically from an end portion of the upper surface in the Y direction, and an inclined surface that is inclined inward so as to approach each other from the lower end portion of the vertical surface. The lower ends of these inclined surfaces intersect to form a ridge line extending in the X direction.
  • the forming apparatus 101 continuously melts the molten glass 103 from both sides of the groove 111, guides the overflowed molten glasses on the wall surface 112, and fuses them at the lower end of the inclined surface, thereby continuously forming the belt-like glass ribbon 104. Form.
  • the heat insulating structure 102 forms a molding space (chamber) in which the molding apparatus 101 is accommodated.
  • the heat insulating structure 102 is made of a material having excellent heat insulating properties, and includes a bottom wall 121 and a ceiling wall 123 that face each other with the molding apparatus 101 in the vertical direction, and a bottom wall 121 and a ceiling wall 123.
  • the peripheral wall 122 of the rectangular cylinder which connects the periphery of each.
  • a gate 125 that allows the glass ribbon 104 formed by the molding apparatus 101 to pass therethrough is provided.
  • the heat insulating structure 102 may have a hollow structure, and air for heating or cooling may be supplied to the inside.
  • a plurality of discharge ports 126 penetrating the peripheral wall 122 are provided in the upper portion of the long wall portion of the peripheral wall 122 facing the wall surface 112 of the molding apparatus 101 and facing the Y direction.
  • a plurality of inlets 127 penetrating the peripheral wall 122 are provided in the lower portion of the long wall portion facing the Y direction of the peripheral wall 122.
  • the introduced air rises along the molten glass 103 flowing down on the wall surface 112 of the molding apparatus 101 and is then discharged out of the heat insulating structure 102 through the discharge port 126.
  • volatile components for example, Al 2 O 3 , B 2 O 3 , Li 2 O, Na 2 O).
  • a Si-rich layer is formed on the portion where the volatile components are volatilized, that is, on the surface of the molten glass 103 in contact with the rising air.
  • the compression stress layer 14 is formed by the generation of the Si rich layer. In order to increase the stress value (absolute value) of the compressive stress layer 14, it is preferable that the molten glass 103 contains many volatile components.
  • discharge port 126 and the introduction port 127 may also be provided in the short wall portion of the peripheral wall 122 facing the X direction.
  • the discharge port 126 and the introduction port 127 can be provided only in the short wall portion of the peripheral wall 122 facing the X direction.
  • the discharge ports 126 and the introduction ports 127 should be provided at a constant pitch only in the long wall portion facing the Y direction of the peripheral wall 122. preferable.
  • the shape and quantity of the discharge port 126 and the introduction port 127 can be appropriately selected as long as the necessary strength is maintained in the peripheral wall 122.
  • the shapes of the outlet 126 and the inlet 127 may be circular as shown in FIG. 6, or the number may be reduced as slits extending in the X direction.
  • the wider the opening area of the slit the more the gas flow rate increases, resulting in problems such as an increase in the surface defects of the glass plate, deterioration of the surface irregularities of the glass, and difficulty in securing the molding temperature.
  • the problem is that the temperature of air or inert gas introduced into the heat insulating structure 102 from the inlet 127 is set to the target temperature in the heat insulating structure 102 and the heat insulating structure 102 This can be solved by adjusting the gas flow rate so that the pressure can be maintained at a predetermined pressure.
  • the air introduced into the heat insulating structure 102 through the inlet 127 has a temperature that does not lower the temperature of the molten glass 103 or the glass ribbon 104, for example.
  • the amount of air to be introduced is small, the temperature of the molten glass 103 and the glass ribbon 104 does not decrease so much even if air at normal temperature is introduced. For this reason, normal temperature air may be introduced.
  • the amount of air introduced into the heat insulating structure 102 is large, the temperature of the molten glass 103 and the glass ribbon 104 is greatly lowered when air at normal temperature is introduced.
  • a heating device (not shown) for heating the air introduced through the inlet 127 to a predetermined temperature is provided outside or inside the heat insulating structure 102.
  • the discharge port 126 is provided in the upper part of the surrounding wall 122, the position of the discharge port 126 is not restrict
  • the discharge port 126 may be provided in a portion of the ceiling wall 123 directly above the molding apparatus 101. Even in this case, the air introduced into the heat insulating structure 102 from the outside of the heat insulating structure 102 is raised along the molten glass 103 flowing down on the wall surface 112 of the molding apparatus 101 by natural convection, and then the discharge port 126. Through the heat insulating structure 102.
  • the volatilization of the volatile components is less than when the discharge port 126 is provided at the upper part of the peripheral wall 122. Further promote.
  • the discharge port 126 when the discharge port 126 is provided in the ceiling wall 123, falling objects such as dust from above the heat insulating structure 102 may fall into the molten glass 103 through the discharge port 126. From this viewpoint, it is preferable to provide the discharge port 126 at the upper part of the peripheral wall 122 as in the embodiment shown in FIGS.
  • the introduction port 127 is provided at the lower part of the peripheral wall 122, but the position of the introduction port 127 is not particularly limited.
  • the inlet 127 may be provided in the bottom wall 121. In this case, if the inlet 127 is in the region R immediately below the molding apparatus 101, the air flow from the inlet 127 may affect the shape stability of the glass ribbon 104. For this reason, the introduction port 127 is preferably provided outside the region R.
  • the introduction port 127 may not be provided. Even in this case, air outside the heat insulating structure 102 is introduced into the heat insulating structure 102 through the gate 125. However, in this case, air passes through the gate 125 in the opposite direction to the glass ribbon 104, and the shape stability of the glass ribbon 104 may be impaired. It is preferable to provide it.
  • air is introduced into the heat insulating structure 102 and discharged out of the heat insulating structure 102 by natural convection, but air is introduced and discharged by forced convection. It is also possible to do this.
  • a supply pipe may penetrate through the lower part of the heat insulating structure 102
  • a discharge pipe may penetrate through the upper part of the heat insulating structure 102
  • a fan may be connected to the supply pipe or the discharge pipe.
  • the end portions of the supply pipe and the discharge pipe that open to the space in the heat insulating structure 102 constitute the introduction port and the discharge port, respectively.
  • Other methods for introducing air include, for example, a method in which compression air is introduced under reduced pressure through a filter.
  • the air introduction method is not limited to the above, and other air introduction methods may be used.
  • the gas introduced into the heat insulating structure 102 through the inlet 127 or the gate 125 is not necessarily air, and may be an inert gas.
  • the inert gas nitrogen is particularly preferably used from the viewpoint of preventing corrosion of the molding apparatus 101 and the heat insulating structure 102.
  • the gas is introduced into the heat insulating structure 102, and the gas is caused to flow along the flowing direction of the molten glass 103 or the glass ribbon 104, whereby the vaporized volatilization in the heat insulating structure 102 is performed.
  • the concentration of the component can be reduced.
  • the gas introduced into the heat insulating structure 102 functions to reduce the concentration of vaporized volatile components in the heat insulating structure 102. Therefore, the flow of the gas introduced from the outside is not limited to ascending but may be descending.
  • the inside of the molding space in the heat insulating structure 102 can be made a reduced pressure atmosphere. If the molding space in the heat insulating structure 102 is depressurized, volatilization of volatile components is promoted.
  • the inside of the heat insulating structure 102 can be depressurized by providing a suction device at the discharge port 126 shown in FIG. Note that the number of discharge ports 126 provided in the heat insulating structure 102 and the number of suction devices provided are not particularly limited, and one or more may be provided.
  • the glass ribbon 104 is not uniformized, and the thickness of the glass plate 10 varies. And further distortion may occur. Therefore, it is preferable to depressurize the molding space in the heat insulating structure 102 within a range of 1/10 or less compared to that in the heat insulating structure 102 before pressure reduction. That is, when the pressure in the molding space in the heat insulating structure 102 is 1 atm, it is preferable to reduce the pressure to 0.9 atm.
  • the glass ribbon 104 is formed by adjusting the atmosphere of the molding space in the heat insulating structure 102.
  • the atmosphere temperature of the molding space in the heat insulating structure 102 can be increased. If the atmospheric temperature of the molding space in the heat insulating structure 102 rises, the saturated vapor pressure of the volatile component also rises, so that the volatilization of the volatile component is promoted. In addition, when the atmospheric temperature of the molding space in the heat insulation structure 102 rises too much, it will become difficult to shape
  • the range of increase in the atmospheric temperature of the molding space in the heat insulating structure 102 to be raised is preferably 0 to 100 ° C., more preferably 0 to 50 ° C., more preferably 0 to 10 ° C. More preferably it is.
  • the atmosphere of the molding space in the heat insulating structure 102 is adjusted, and the partial pressure of the volatile component and the saturated vapor of the volatile component in the atmosphere facing the surface of the molten glass 103 or the glass ribbon 104 in the heat insulating structure 102.
  • the glass ribbon 104 is formed while promoting the volatilization of the volatile components.
  • Such a method of promoting volatilization of volatile components from the surface of the molten glass and glass ribbon can be applied to only one surface in addition to both surfaces of the molten glass and glass ribbon.
  • the distance from the lower end portion of the molding apparatus 101 to the upper end portion of the gate 125 in the molding process can be increased.
  • the passage time for the glass ribbon 104 to pass through the molding space can be increased.
  • the time during which the glass ribbon 104 is exposed to a high temperature in the space in the heat insulating structure 102 becomes longer, and the volatilization time increases.
  • the volatilization amount of the volatile component of the glass ribbon 104 increases.
  • the increment of the distance is more preferably more than 0 to 20 mm, more than 0 to 10 mm, more than 0 to 5 mm, more than 0 to 1 mm, more than 0 to 0.1 mm.
  • the size of the molded body device 101 itself may be increased to increase the length of flow of the wall surface 112 through which the molten glass 103 flows.
  • the time during which the molten glass 103 is exposed to a high temperature in the space in the heat insulating structure 102 becomes longer, and the volatilization time increases. For this reason, the volatilization amount of the volatile component of the molten glass 103 increases.
  • the compressive stress layer 14 is thinly formed on the glass surface, so that the glass surface can be prevented from being damaged while maintaining the workability of the glass plate.
  • the glass plate 10 when the glass plate 10 is used for an FDP glass substrate such as a glass substrate for a liquid crystal display device, it cannot contain a large amount of alkali metal ions that are ion exchange components. Therefore, the glass plate 10 is effective in that the compressive stress layer 14 can be obtained without performing ion exchange.
  • the compressive stress layer 14 which is thinner and has a larger stress value (absolute value) than the compressive stress layer of the conventional glass plate obtained by rapidly cooling the glass in the slow cooling step, the glass plate 10 is shaped. It can be used effectively as the previous thin glass plate.
  • a conventional glass plate may be scratched on the surface during conveyance between processes, during cutting or shaping.
  • the glass plate 10 can prevent the glass surface from being scratched before chemical strengthening, it can prevent the cover glass surface from being scratched and can improve the surface quality.
  • FIG. 9 is a diagram showing the distribution of the atomic concentration (%) of Si actually measured for the glass plate 10 of aluminoborosilicate glass.
  • the Si atomic concentration near the surface was measured using an X-ray photoelectron spectrometer (Quantera SXM manufactured by ULVAC-PHI). Specifically, the surface of the glass plate was dug down to various depths by sputtering, and the atomic concentration at each depth was measured.
  • Al, B, Ca, Sr, and Ba which are volatile components having a relatively high content, are specified together with Si, and the ratio of Si in the measurement element is obtained.
  • the glass plate A and the glass plate B shown in FIG. 9 are glass plates produced by changing the conditions of flowing air using the apparatus shown in FIG. As shown in FIG. 9, in both the glass plate A and the glass plate B, the region where the Si atom concentration is 5% or more higher than the glass center position has a depth of more than 0 and 30 nm or less along the thickness direction from the glass surface. It is formed in the range. This is considered to be due to the fact that in the glass plate A and the glass plate B, the amount of volatile components is smaller in the vicinity of the glass surface than in the interior.
  • the content rate (mass%) of each composition of the said glass plate A and the glass plate B was as follows. SiO 2 60.9% Al 2 O 3 16.9% B 2 O 3 11.6% MgO 1.7% CaO 5.1% SrO 2.6% BaO 0.7% K 2 O 0.25% SnO 2 0.13%
  • FIG. 10 is a diagram showing the distribution of internal stress measured for the glass plate 10 of the glass plate A.
  • the internal stress is determined by using a micro-area birefringence meter (KOBRA-CCD / X manufactured by Oji Scientific Instruments Co., Ltd.), and the optical path difference rate per 1 cm for each predetermined depth from the surface of the cross section of the glass plate 10 cut in the thickness direction. It is calculated by measuring (optical path difference / optical path length) and dividing this by the photoelastic constant.
  • “internal stress” indicates an average value of thicknesses of 0 to 10 ⁇ m along the thickness direction of the glass plate. Therefore, locally, a stress value exceeding the result shown in FIG. 10 may be formed. As shown in FIG.
  • the compressive stress layer 14 is formed on both the front and back surfaces of the glass plate 10, and the tensile stress layer 14 having a substantially constant tensile stress value is formed therein. It can also be seen that the stress value of the tensile stress layer 14 formed inside the glass plate is substantially constant in the glass plate thickness direction. This is due to the fact that volatile components are reduced in the vicinity of the front and back surfaces of the glass plate 10.
  • the glass raw material of aluminoborosilicate glass is melted at 1580 ° C. using a continuous melting device equipped with a refractory brick melting tank and a platinum border frame tank, and clarified at 1650 ° C. Then, after stirring at 1500 ° C., a thin glass plate having a thickness of 0.7 mm was formed by the down-draw method using the apparatus shown in FIG.
  • Comparative Example 2 is a tempered glass obtained by polishing a portion of the compressive stress layer 14 formed on the surface of a glass plate produced by the same method as in Examples 6 to 8, and then chemically strengthening it.
  • the glass plates of Examples 6 to 8 and Comparative Example 2 were prepared by continuously dissolving glass raw materials prepared so as to have the compositions shown in Table 2 below, with a melting tank made of refractory bricks, a border frame tank made of platinum, and the like.
  • a glass plate for chemical strengthening was obtained.
  • the glass plate of Comparative Example 2 was removed by polishing the surface of the compressive stress layer 14 of the glass plate 10 as in Comparative Example 1.
  • the glass surfaces of the glass plates of Examples 6 to 8 and Comparative Example 2 were scratched by the method described above.
  • the cleaned glass plate is immersed in a 100% KNO 3 treatment bath maintained at 400 ° C. for about 2.5 hours to exchange Na + ions existing on the glass surface layer with K + ions in the treatment bath.
  • the glass plate was chemically strengthened.
  • the glass plate after chemical strengthening was sequentially crushed and washed in a washing tank to obtain dried tempered glass.
  • the glass plate 10 of the present invention is suitable for a flat panel display glass substrate.
  • the tempered glass which chemically strengthened the glass plate of this invention is used suitably for the cover glass of a mobile telephone, a digital camera, PDA (mobile terminal device), a solar cell, and a flat panel display.
  • the glass plate of the present invention can be expected to be applied to, for example, a touch panel display substrate, window glass, magnetic disk substrate, solid-state imaging device cover glass, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Disclosed is a glass plate which has, at the time of being manufactured by a down-draw method, the glass surface strengthened to a certain extent that the processing efficiency after the glass formation is not affected and the glass surface is not easily scratched. The glass plate has a tensile stress layer formed inside of the glass plate, and compression stress layers formed on both the sides of the tensile stress layer. The compression stress layers are formed within a depth range of 10-50 μm in the thickness direction of the glass plate from the surface of the glass plate, and the thickness of the compression stress layers is less than a thirteenth part of the thickness of the glass plate. The absolute value of the stress value of the compression stress layers is 4 MPa or less, and the absolute value of the stress value of the tensile stress layer is 0.4 MPa or less.

Description

ガラス板およびガラス板の製造方法Glass plate and method for producing glass plate
 本発明は、ガラス板およびガラス板を製造する方法に関する。 The present invention relates to a glass plate and a method for producing the glass plate.
 液晶ディスプレイやプラズマディスプレイなどのフラットパネルディスプレイ(以下、「FPD」という)では、ガラス基板として、厚さが例えば1.0mm以下である薄いガラス板が用いられる。近年では、FPDガラス基板の大型化が進んでおり、例えば、サイズが2200mm×2500mmの第8世代と呼ばれるガラス板が用いられる。 In a flat panel display (hereinafter referred to as “FPD”) such as a liquid crystal display or a plasma display, a thin glass plate having a thickness of, for example, 1.0 mm or less is used as a glass substrate. In recent years, the FPD glass substrate has been increased in size, and for example, a glass plate called an eighth generation having a size of 2200 mm × 2500 mm is used.
 このような FDPガラス基板を製造するには、ダウンドロー法が最もよく使用される。ダウンドロー法では、溶融ガラスを成形装置の溝からオーバーフローさせることで帯状のガラスリボンが連続的に成形される。その際、ガラスリボンをローラ等によって下方に引き下げる。このときガラスリボンの引き下げ速度によってガラスリボンの厚さの調整が行われる。その後、ガラスリボンが所定長さで切断されて、ガラス板が製造される。 The downdraw method is most often used for manufacturing such a FDP glass substrate. In the down draw method, a glass ribbon is continuously formed by overflowing molten glass from a groove of a forming apparatus. At that time, the glass ribbon is pulled down by a roller or the like. At this time, the thickness of the glass ribbon is adjusted by the pulling speed of the glass ribbon. Then, a glass ribbon is cut | disconnected by predetermined length, and a glass plate is manufactured.
 例えば、特許文献1には、図11に示すようなガラス板製造装置が開示されている。このガラス板製造装置は、成形装置7と、成形装置7を取り囲む断熱構造体8とを備えている。断熱構造体8は、成形装置7の回りに高温の空気を保つことにより成形装置7からオーバーフローする溶融ガラスの温度を維持するためのものであり、通常は、ガラスリボンを通過させるゲート81以外は密閉構造とされる。 For example, Patent Document 1 discloses a glass plate manufacturing apparatus as shown in FIG. This glass plate manufacturing apparatus includes a forming device 7 and a heat insulating structure 8 surrounding the forming device 7. The heat insulating structure 8 is for maintaining the temperature of the molten glass overflowing from the molding apparatus 7 by maintaining high-temperature air around the molding apparatus 7. Normally, except for the gate 81 through which the glass ribbon passes. It is a sealed structure.
 具体的に、特許文献1に開示されたガラス板製造装置では、断熱構造体8が、下方に開口する容器状の主体8Aと、主体8Aの開口を塞ぐように配置されたゲート構成体8Bで構成されている。ゲート構成体8Bの内部は空洞となっており、このゲート構成体8Bの内部には冷却管82を通じて冷却用空気が供給されるようになっている。これにより、特許文献1に開示されたガラス板製造装置では、ガラスリボン9を形成直後から冷却できるようになっている。 Specifically, in the glass plate manufacturing apparatus disclosed in Patent Document 1, the heat insulating structure 8 includes a container-shaped main body 8A that opens downward, and a gate structure 8B that is disposed so as to close the opening of the main body 8A. It is configured. The inside of the gate structure 8B is hollow, and cooling air is supplied to the inside of the gate structure 8B through the cooling pipe 82. Thereby, in the glass plate manufacturing apparatus disclosed by patent document 1, the glass ribbon 9 can be cooled immediately after formation.
 このような状況下、例えば、薄型化、軽量化が可能で、機械的強度や透明性が高く、しかも短時間で製造可能なディスプレイ用ガラス基板が知られている(特許文献2)。このガラス基板は、SiOを40~70重量%、Alを0.1~20重量%、NaOを0~20重量%、LiOを0~15重量%、ZrOを0.1~9重量%含有し、LiOとNaOの合計含有量が3~20重量%であるガラス材料で形成される。このガラス基板の表面には化学強化処理により深さ50μm以上の圧縮応力層が形成される。 Under such circumstances, for example, a glass substrate for display that can be reduced in thickness and weight, has high mechanical strength and transparency, and can be manufactured in a short time is known (Patent Document 2). The glass substrate, a SiO 2 40 ~ 70 wt%, the Al 2 O 3 0.1 ~ 20 wt%, a Na 2 O 0 ~ 20 wt%, the Li 2 O 0 ~ 15 wt%, a ZrO 2 The glass material contains 0.1 to 9% by weight, and the total content of Li 2 O and Na 2 O is 3 to 20% by weight. A compressive stress layer having a depth of 50 μm or more is formed on the surface of the glass substrate by chemical strengthening treatment.
 また、アニール点より高い第1の温度から歪点より低い第2の温度に急冷し、イオン交換により化学強化処理を行って、表面から少なくとも20μmの深さを持つイオン交換表面層を有するガラスが知られている(特許文献3)。 Further, a glass having an ion exchange surface layer having a depth of at least 20 μm from the surface by quenching from a first temperature higher than the annealing point to a second temperature lower than the strain point and performing chemical strengthening treatment by ion exchange. Known (Patent Document 3).
 さらに、高い機械的強度が得られるように、ガラス内の圧縮応力層の圧縮応力値と厚みを適正化することができ、しかも熱加工を容易に行うことができる強化ガラスの製造方法が知られている(特許文献4)。
 この製造方法では、徐冷点から歪点までの温度域を200℃/分以下、好ましくは50℃/分以下の冷却速度で冷却した後、化学強化処理が行われる。
Furthermore, a method for producing tempered glass is known in which the compressive stress value and thickness of the compressive stress layer in the glass can be optimized so that high mechanical strength can be obtained, and thermal processing can be easily performed. (Patent Document 4).
In this production method, the chemical strengthening treatment is performed after cooling the temperature range from the annealing point to the strain point at a cooling rate of 200 ° C./min or less, preferably 50 ° C./min or less.
特表2009-519884号公報Special table 2009-519884 特開2002-174810号公報JP 2002-174810 A US 2009/0220761号 A1US 2009/0220761 A1 特開2010-168252号公報JP 2010-168252 A
 ところで、溶融ガラスからは、空気と接する境界面において揮発成分が揮発する。本願発明の発明者らは、この揮発をダウンドロー法で効果的に利用すれば、ガラス板の表裏両面に所望の圧縮応力層を形成できるのではないかと考えた。 By the way, from the molten glass, volatile components volatilize at the boundary surface in contact with air. The inventors of the present invention thought that a desired compressive stress layer could be formed on both the front and back surfaces of the glass plate if this volatilization was effectively utilized by the downdraw method.
(第1の問題)
 しかしながら、特許文献1に開示された製造装置のように、断熱構造体8が密閉構造である場合には、成形装置からオーバーフローする溶融ガラスからの揮発成分の揮発が抑制されるため、応力値の高い圧縮応力層を形成することができない。
(First problem)
However, when the heat insulating structure 8 has a sealed structure as in the manufacturing apparatus disclosed in Patent Document 1, volatilization of volatile components from the molten glass overflowing from the molding apparatus is suppressed, so that the stress value A high compressive stress layer cannot be formed.
 なお、特許文献1には、ゲート構成体8Bに、冷却管82からの冷却用冷気を主体8Aで覆われる空間内に噴出する噴出口83を設け、噴出口83からゲート81に冷却用空気を流すことによりガラスリボン9を冷却することも開示されている。しかし、このようにゲート81付近に強制対流を生じさせても、それより上側の空気、すなわち主体8Aで覆われる空間内の大部分の空気はその場所に留まるため、溶融ガラスからの揮発成分の揮発が抑制されることに変わりない。 In Patent Document 1, the gate structure 8B is provided with a jet 83 for jetting cooling air from the cooling pipe 82 into a space covered with the main body 8A, and cooling air is supplied from the jet 83 to the gate 81. It is also disclosed to cool the glass ribbon 9 by flowing it. However, even if forced convection is generated in the vicinity of the gate 81 in this way, the air above it, that is, most of the air in the space covered by the main body 8A remains in that place, so that volatile components from the molten glass Volatilization is still suppressed.
(第2の問題)
 特許文献2に開示されるガラス基板では、イオン交換を行って化学強化処理を行うことで、ガラス板の表面に圧縮応力層が形成される。しかし、イオン交換に用いるアルカリイオンを用いてガラス基板を化学強化処理することは、例えば、液晶表示装置ガラス基板上に形成するTFT(Thin Film Transistor)特性に影響を与え、さらに、液晶材料を汚染する点で、好ましくない。このため、イオン交換による化学強化された強化ガラスは液晶表示装置ガラス基板に用いられ難い。イオン交換による化学強化処理が可能であるとしても、化学強化処理の前工程において、ガラス板の表面に傷が付くことは避けられない。一方、ガラス板の成形直後に上記化学強化処理を行うと、その後に行うガラス表面の切断やガラス板の研削・研磨や形状加工を含む加工処理の効率が低下する。
(Second problem)
In the glass substrate disclosed in Patent Document 2, a compressive stress layer is formed on the surface of the glass plate by performing ion exchange and performing chemical strengthening treatment. However, chemically strengthening a glass substrate using alkali ions used for ion exchange affects, for example, TFT (Thin Film Transistor) characteristics formed on the glass substrate of the liquid crystal display device, and further contaminates the liquid crystal material. This is not preferable. For this reason, the tempered glass chemically strengthened by ion exchange is hardly used for a liquid crystal display device glass substrate. Even if chemical strengthening treatment by ion exchange is possible, it is inevitable that the surface of the glass plate is damaged in the pre-process of chemical strengthening treatment. On the other hand, if the above chemical strengthening treatment is performed immediately after the formation of the glass plate, the efficiency of the subsequent processing treatment including cutting of the glass surface, grinding / polishing of the glass plate, and shape processing is reduced.
 特許文献3に開示されるガラス板は、徐冷工程においてガラスを急冷するので、ガラス表面に小さな圧縮応力層ができる場合がある。しかし、徐冷工程のみにおいてガラスを急冷することで得られる圧縮応力層の応力値はきわめて低いため、化学強化処理の前工程においてガラスの表面に傷が付くこともある。また、厚さが薄いガラス板では、厚さ方向に沿って放物線形状を示す内部応力分布に起因して、ガラス板内部に形成される引っ張り応力層の応力値が大きくなる。引っ張り応力層の応力値が大きいことは、例えば、ガラス板を切断する場合に、切断のために入れた所定深さのスクライブ線が、ガラス板の厚さ方向に想定外に伸長してしまい、所望の寸法にガラス板を分割することが困難となる場合がある点で好ましくない。 Since the glass plate disclosed in Patent Document 3 rapidly cools the glass in the slow cooling step, a small compressive stress layer may be formed on the glass surface. However, since the stress value of the compressive stress layer obtained by quenching the glass only in the slow cooling step is extremely low, the surface of the glass may be damaged in the previous step of the chemical strengthening treatment. Further, in a thin glass plate, the stress value of the tensile stress layer formed inside the glass plate is increased due to the internal stress distribution showing a parabolic shape along the thickness direction. The large stress value of the tensile stress layer means that, for example, when cutting a glass plate, a scribe line of a predetermined depth put for cutting extends unexpectedly in the thickness direction of the glass plate, This is not preferable in that it may be difficult to divide the glass plate into desired dimensions.
 特許文献4では、ゆっくりとガラスを冷やして成形されたガラス板を化学強化することで、圧縮応力層の応力値は高くなる。しかし、ガラス板は、成形後、化学強化される前に、所定の大きさに裁断され形状加工される。ガラス板は、このような工程間の搬送中や切断や形状加工において、表面に傷がついてしまうことがある。ガラス板は、化学強化を行う前にガラス表面に傷がついてしまうと、たとえその後に化学強化がされて高い強度を得たとしても、ガラス表面には傷が残ってしまう。 In Patent Document 4, the stress value of the compressive stress layer is increased by chemically strengthening a glass plate formed by slowly cooling the glass. However, the glass plate is cut into a predetermined size and shaped after being molded and before being chemically strengthened. The glass plate may be scratched on the surface during conveyance between such processes, during cutting, and shape processing. If the glass plate is scratched before chemical strengthening, even if the glass plate is subsequently chemically strengthened and has high strength, scratches remain on the glass surface.
 本発明は、このような事情に鑑み、成形装置からオーバーフローする溶融ガラスからの揮発成分の揮発を促進させることができるガラス板製造装置およびこのガラス板製造装置を用いたガラス板製造方法を提供するとともに、前記のガラス板製造方法により得られたガラス板を提供することを第1の目的とする。 In view of such circumstances, the present invention provides a glass plate manufacturing apparatus capable of promoting volatilization of volatile components from molten glass overflowing from a molding apparatus, and a glass plate manufacturing method using the glass plate manufacturing apparatus. In addition, a first object is to provide a glass plate obtained by the glass plate manufacturing method.
 また、本発明は、ガラス板の製造の際に、ガラス成形後の加工処理の効率に悪影響を与えず、ガラス表面に傷が付き難い程度にガラス表面が強化されたガラス板と、ガラス板の製造方法を提供することを第2の目的とする。 Further, the present invention provides a glass plate whose glass surface is strengthened to such an extent that it does not adversely affect the efficiency of processing after glass forming and the glass surface is hardly damaged during the production of the glass plate, A second object is to provide a manufacturing method.
(第1の発明)
 上記第1の目的を達成するために、本発明の一態様は、ダウンドロー法によりガラス板を製造する装置であって、溶融ガラスを溝の両側からオーバーフローさせ、そのオーバーフローした溶融ガラス同士を壁面で誘導して融合させることによりガラスリボンを形成する成形装置と、前記成形装置を取り囲むとともに前記成形装置によって形成された前記ガラスリボンを通過させるゲートを有する断熱構造体と、を備え、前記断熱構造体には、前記断熱構造体外から前記断熱構造体内に導入され、前記成形装置の壁面上を流下する溶融ガラスに沿って上昇した気体を前記断熱構造体外に排出する排出口が設けられている、ガラス板製造装置を提供する。
(First invention)
In order to achieve the first object, one aspect of the present invention is an apparatus for manufacturing a glass plate by a downdraw method, in which molten glass is overflowed from both sides of a groove, and the overflowed molten glass is walled. And a heat insulating structure having a gate that surrounds the forming device and has a gate through which the glass ribbon formed by the forming device passes. The body is provided with a discharge port that is introduced into the heat insulating structure from outside the heat insulating structure and discharges the gas that has risen along the molten glass flowing down the wall surface of the molding apparatus to the outside of the heat insulating structure. A glass plate manufacturing apparatus is provided.
 また、本発明の一態様は、ダウンドロー法によりガラス板を製造する方法であって、断熱構造体で取り囲まれる成形装置の溝の両側から溶融ガラスをオーバーフローさせながら、前記断熱構造体外から前記断熱構造体内に導入した気体を前記成形装置の壁面上を流下する溶融ガラスに沿って上昇させた後に前記断熱構造体外に排出する工程を含む、ガラス板製造方法を提供する。 One embodiment of the present invention is a method for producing a glass plate by a downdraw method, wherein the heat insulation is made from outside the heat insulation structure while overflowing molten glass from both sides of a groove of a molding apparatus surrounded by the heat insulation structure. There is provided a glass plate manufacturing method including a step of raising a gas introduced into a structure along a molten glass flowing down on a wall surface of the molding apparatus and then discharging the gas outside the heat insulating structure.
 さらに、本発明の一態様は、上記のガラス板製造方法により得られたガラス板であって、表裏両面に圧縮応力層を有するガラス板を提供する。 Furthermore, one embodiment of the present invention provides a glass plate obtained by the above glass plate manufacturing method, and having a compressive stress layer on both front and back surfaces.
(第2の発明)
 前記第2の目的を達成するために、本発明の一態様は、ダウンドロー法で成形されたガラス板を提供する。
 前記ガラス板の厚さ方向の中心位置におけるSiの原子濃度(原子%)に対するSiの原子濃度(原子%)の濃度比率が5%以上高いSi高濃度領域が、ガラス表面から厚さ方向に沿って0より大きく30nm以下の深さの範囲に形成される。
 前記Si高濃度領域は、Si原子濃度の最大ピークを有し、前記ガラス板の厚さ方向に沿ったSi原子濃度は、前記最大ピーク位置から前記ガラス板の表面および前記中心位置まで連続的に減少する。
(Second invention)
In order to achieve the second object, one embodiment of the present invention provides a glass plate formed by a downdraw method.
A Si high concentration region in which the concentration ratio of the Si atomic concentration (atomic%) to the Si atomic concentration (atomic%) at the center position in the thickness direction of the glass plate is 5% or more extends along the thickness direction from the glass surface. And a depth in the range of greater than 0 and 30 nm or less.
The Si high concentration region has a maximum peak of Si atom concentration, and the Si atom concentration along the thickness direction of the glass plate is continuously from the maximum peak position to the surface of the glass plate and the center position. Decrease.
 本発明の他の一態様は、ダウンドロー法で成形されたガラス板を提供する。
 当該ガラス板は、前記ガラス板の内部に形成された引っ張り応力層と、前記引っ張り応力層の両側に形成された圧縮応力層と、を有する。
 前記圧縮応力層の応力値の絶対値は4MPa以下であり、前記圧縮応力層は前記ガラス板の表面から前記ガラス板の厚さ方向に沿った10μmより大きく50μm以下の深さの範囲に形成され、前記圧縮応力層の厚さは前記ガラス板の厚さの13分の1未満である。
 前記引っ張り応力層の応力値の絶対値は0.4MPa以下であり、前記引っ張り応力層の応力値の偏差は0.2MPa以下である。
Another embodiment of the present invention provides a glass plate formed by a downdraw method.
The glass plate includes a tensile stress layer formed inside the glass plate and a compressive stress layer formed on both sides of the tensile stress layer.
The absolute value of the stress value of the compressive stress layer is 4 MPa or less, and the compressive stress layer is formed in a depth range from 10 μm to 50 μm or less along the thickness direction of the glass plate from the surface of the glass plate. The thickness of the compressive stress layer is less than one-third of the thickness of the glass plate.
The absolute value of the stress value of the tensile stress layer is 0.4 MPa or less, and the deviation of the stress value of the tensile stress layer is 0.2 MPa or less.
 本発明のさらに他の一態様は、ガラス板の製造方法を提供する。当該製造方法は、
 ガラス原料を溶融する工程と、
 ダウンドロー法を用いて、溶融したガラスからガラスリボンを成形する工程と、
 前記ガラスリボンを切断し、ガラス板を形成する工程と、を備える。
 その際、前記ガラスリボンは、前記ガラス板の厚さ方向の中心位置におけるSiの原子濃度(原子%)に対するSiの原子濃度(原子%)の濃度比率が5%以上高いSi高濃度領域が、ガラス表面から厚さ方向に沿って0より大きく30nm以下の深さの範囲に形成され、前記Si高濃度領域は、Si原子濃度の最大ピークを有し、前記ガラス板の厚さ方向に沿ったSi原子濃度は、前記最大ピーク位置から前記ガラス板の表面および前記中心位置まで連続的に減少するように、成形される。
Yet another embodiment of the present invention provides a method for producing a glass plate. The manufacturing method is
Melting glass raw materials,
Using a downdraw method to form a glass ribbon from molten glass;
Cutting the glass ribbon to form a glass plate.
At that time, the glass ribbon has a Si high concentration region in which the concentration ratio of the Si atomic concentration (atomic%) to the Si atomic concentration (atomic%) at the center position in the thickness direction of the glass plate is higher by 5% or more. It is formed in a range of depth greater than 0 and not more than 30 nm along the thickness direction from the glass surface, and the Si high concentration region has a maximum peak of Si atom concentration, and is along the thickness direction of the glass plate The Si atom concentration is shaped so as to continuously decrease from the maximum peak position to the surface of the glass plate and the center position.
 本発明のさらに他の一態様は、ガラス板の製造方法を提供する。当該製造方法は、
 ガラス原料を溶融する工程と、
 ダウンドロー法を用いて、溶融したガラスからガラスリボンを成形する工程と、
 前記ガラスリボンを切断し、ガラス板を形成する工程と、を備える。
 その際、前記ガラスリボンの表面から前記ガラスリボンの厚さ方向に沿った10μmより大きく50μm以下の深さの範囲に形成される圧縮応力層であって、前記ガラスリボンの厚さの13分の1未満の厚さを有し、圧縮応力値の絶対値が4MPa以下である2つの圧縮応力層と、前記2つの圧縮応力層に挟まれ、引っ張り応力値の絶対値が0.4MPa以下である引っ張り応力層と、を有するように、前記ガラスリボンは成形される。
Yet another embodiment of the present invention provides a method for producing a glass plate. The manufacturing method is
Melting glass raw materials,
Using a downdraw method to form a glass ribbon from molten glass;
Cutting the glass ribbon to form a glass plate.
In that case, it is a compressive stress layer formed in the range of the depth of 10 micrometers or more and 50 micrometers or less along the thickness direction of the glass ribbon from the surface of the glass ribbon, Comprising: 13 minutes of the thickness of the glass ribbon Two compressive stress layers having a thickness of less than 1 and an absolute value of compressive stress value of 4 MPa or less, and sandwiched between the two compressive stress layers, and an absolute value of tensile stress value of 0.4 MPa or less The glass ribbon is formed to have a tensile stress layer.
 上記第1の発明によれば、断熱構造体を通過する気体を成形装置の壁面上を流下する溶融ガラスに沿って上昇させることにより溶融ガラスからの揮発成分の揮発を促進させることができる。これにより、表裏両面に応力値の高い圧縮応力層が形成されたガラス板を得ることができる。 According to the first aspect of the invention, volatilization of volatile components from the molten glass can be promoted by raising the gas passing through the heat insulating structure along the molten glass flowing down on the wall surface of the molding apparatus. Thereby, the glass plate in which the compressive-stress layer with a high stress value was formed in both front and back surfaces can be obtained.
 上記第2の発明のガラス板は、ガラス板の製造の際に、ガラス成形後の加工処理の効率に悪影響を与えず、ガラス表面に傷が付き難い程度にガラス表面が強化される。本発明のガラス製造方法は、上記ガラス板を効率よく製造することができる。 In the glass plate of the second invention, the glass surface is strengthened to such an extent that the glass surface is not easily damaged during the production of the glass plate without adversely affecting the processing efficiency after the glass forming. The glass manufacturing method of this invention can manufacture the said glass plate efficiently.
本実施形態のガラス板の内部応力分布を示す図である。It is a figure which shows the internal stress distribution of the glass plate of this embodiment. 徐冷工程でガラスを急冷した場合に得られる従来のガラス板の内部応力分布を示す図である。It is a figure which shows the internal stress distribution of the conventional glass plate obtained when glass is rapidly cooled by a slow cooling process. 本実施形態のガラス板の製造方法のフローの一例を説明する図である。It is a figure explaining an example of the flow of the manufacturing method of the glass plate of this embodiment. 本実施形態のガラス板の製造方法における形状加工を説明する図である。It is a figure explaining the shape process in the manufacturing method of the glass plate of this embodiment. 本実施形態のガラス板を製造するガラス板製造装置の断面図である。It is sectional drawing of the glass plate manufacturing apparatus which manufactures the glass plate of this embodiment. 図4に示すガラス板製造装置の斜視図である。It is a perspective view of the glass plate manufacturing apparatus shown in FIG. 変形例のガラス板製造装置の断面図である。It is sectional drawing of the glass plate manufacturing apparatus of a modification. 他の変形例のガラス板製造装置の断面図である。It is sectional drawing of the glass plate manufacturing apparatus of another modification. 本実施形態のガラス板の実測した内部応力の分布を示す図である。It is a figure which shows distribution of the measured internal stress of the glass plate of this embodiment. 本実施形態のガラス板の実測したSi原子濃度(%)の分布を示す図である。It is a figure which shows distribution of measured Si atom density | concentration (%) of the glass plate of this embodiment. 従来のガラス製造装置の断面図である。It is sectional drawing of the conventional glass manufacturing apparatus.
 以下、本発明のガラス板およびガラス板の製造方法について説明する。 Hereinafter, the glass plate of the present invention and the method for producing the glass plate will be described.
(ガラス板の概略説明)
 図1は、本実施形態のガラス板10の内部応力分布を示す断面図である。
 ガラス板10は、ダウンドロー法で製造され、例えば、FPDガラス基板に用いられる。ガラス板10は、厚さやサイズは特に限定されない。ガラス板10を強化した強化ガラスは、例えば、電子機器の表示画面のカバーガラスに用いられる。
 ガラス板10は、図1に示すように、ガラス板の内部に形成された引っ張り応力層12と、引っ張り応力層12の両側に形成された圧縮応力層14と、を有する。
 圧縮応力層14はガラス板10の表面からガラス板10の厚さ方向に沿った10μmより大きく50μm以下の深さの範囲に形成され、圧縮応力層14の厚さはガラス板10の厚さの1/13未満である。圧縮応力層14の応力値の絶対値は4MPa以下であり、引っ張り応力層12の応力値の絶対値は0.4MPa以下である。
(Outline explanation of glass plate)
FIG. 1 is a cross-sectional view showing the internal stress distribution of the glass plate 10 of the present embodiment.
The glass plate 10 is manufactured by a downdraw method, and is used for, for example, an FPD glass substrate. The thickness and size of the glass plate 10 are not particularly limited. The tempered glass which strengthened the glass plate 10 is used for the cover glass of the display screen of an electronic device, for example.
As shown in FIG. 1, the glass plate 10 includes a tensile stress layer 12 formed inside the glass plate and a compressive stress layer 14 formed on both sides of the tensile stress layer 12.
The compressive stress layer 14 is formed in a depth range of 10 μm to 50 μm or less along the thickness direction of the glass plate 10 from the surface of the glass plate 10, and the thickness of the compressive stress layer 14 is the thickness of the glass plate 10. Less than 1/13. The absolute value of the stress value of the compressive stress layer 14 is 4 MPa or less, and the absolute value of the stress value of the tensile stress layer 12 is 0.4 MPa or less.
 具体的には、圧縮応力層14の厚さをW1とすると、厚さW1は0μmより大きく50μm以下であり、ガラス板10の厚さW0の1/13未満である。圧縮応力増14の応力値(絶対値)の最大値S1は、4MPa以下であり、引っ張り応力層12の応力値(絶対値)の最大値S2は0.4MPa以下である。 Specifically, if the thickness of the compressive stress layer 14 is W 1 , the thickness W 1 is greater than 0 μm and 50 μm or less, and less than 1/13 of the thickness W 0 of the glass plate 10. The maximum value S 1 of the stress value (absolute value) of the compressive stress increase 14 is 4 MPa or less, and the maximum value S 2 of the stress value (absolute value) of the tensile stress layer 12 is 0.4 MPa or less.
 図1中の太い実線は、ガラス板10の厚さ方向に沿った内部応力分布、すなわち、圧縮・引っ張り応力プロファイルを示している。図2は、徐冷工程でガラスを急冷した場合に得られる従来のガラス板の内部応力分布を示す図である。
 徐冷工程でガラスを急冷した場合に得られる圧縮・引っ張り応力プロファイルは、放物線を描くようなプロファイルである。ガラスを急冷した場合にガラス板に形成される圧縮応力層は、ガラス表面と内部との熱膨張の差により生じるものである。この熱膨張率の差は、ガラスの熱伝導率に起因して生じる。また、徐冷工程において従来より得られる圧縮応力層の厚さW’1(図2参照)は、ガラス板の厚さW’0の1/10以上である。
A thick solid line in FIG. 1 indicates an internal stress distribution along the thickness direction of the glass plate 10, that is, a compression / tensile stress profile. FIG. 2 is a diagram showing an internal stress distribution of a conventional glass plate obtained when glass is rapidly cooled in a slow cooling process.
The compression / tensile stress profile obtained when the glass is rapidly cooled in the slow cooling process is a profile that draws a parabola. The compressive stress layer formed on the glass plate when the glass is rapidly cooled is caused by a difference in thermal expansion between the glass surface and the inside. This difference in coefficient of thermal expansion is caused by the thermal conductivity of the glass. In addition, the thickness W ′ 1 (see FIG. 2) of the compressive stress layer conventionally obtained in the slow cooling step is 1/10 or more of the thickness W ′ 0 of the glass plate.
 これに対し、ガラス板10では、ガラス表面に形成されるSi高濃度領域に起因した熱膨張の差によって、ガラス板10の表面近傍に、厚さの薄い圧縮応力層14が形成される。Si高濃度領域は、後述するようにガラスリボンの成形工程において、溶融ガラスあるいはガラスリボンの表面から揮発成分の揮発を促進させるあるいは揮発量を増大させることによって形成される。このとき、引っ張り応力層12は、ガラス板10の厚さ方向に略一定の低い応力値を有しており、従来の引っ張り応力層の引っ張り応力値がガラス板の厚さ方向に放物線を描くように分布する場合とは異なっている。
 また、ガラス板10全体において圧縮応力層14による圧縮と引っ張り応力層12による引張りが相殺されるので、圧縮応力層14が薄くなると引っ張り応力と相殺するために圧縮応力層14の応力値(絶対値)は高くなる。このため、圧縮応力層14は、例えば、徐冷工程おいてガラスを急冷した場合のみで得られる圧縮応力層の応力値よりも大きな応力値を有する。つまり、ガラス板10には大きな応力値を有する圧縮応力層14がガラス表面に形成されるので、ガラス板10のガラス表面は、徐冷工程のみでガラス表面を強化した従来のガラス板に比べて傷がつきにくい。
 以下、ガラス板10をより詳細に説明する。
On the other hand, in the glass plate 10, a thin compressive stress layer 14 is formed in the vicinity of the surface of the glass plate 10 due to a difference in thermal expansion caused by the Si high concentration region formed on the glass surface. As described later, the Si high concentration region is formed by promoting volatilization of volatile components or increasing the volatilization amount from the surface of the molten glass or glass ribbon in the glass ribbon forming step. At this time, the tensile stress layer 12 has a substantially constant low stress value in the thickness direction of the glass plate 10 so that the tensile stress value of the conventional tensile stress layer draws a parabola in the thickness direction of the glass plate. It is different from the case where it is distributed.
Further, since the compression by the compressive stress layer 14 and the tensile force by the tensile stress layer 12 are canceled in the entire glass plate 10, the stress value (absolute value) of the compressive stress layer 14 is canceled to cancel the tensile stress when the compressive stress layer 14 becomes thin. ) Will be higher. For this reason, the compressive stress layer 14 has a stress value larger than the stress value of the compressive stress layer obtained only when, for example, the glass is rapidly cooled in the slow cooling step. That is, since the compressive stress layer 14 having a large stress value is formed on the glass surface on the glass plate 10, the glass surface of the glass plate 10 is compared with a conventional glass plate that has been strengthened by only a slow cooling process. Hard to scratch.
Hereinafter, the glass plate 10 will be described in more detail.
(ガラス板の詳細説明)
 ガラス板10に形成される圧縮応力層14の厚さW1は0μmより大きく50μm以下である。圧縮応力層14はガラス表面に形成されている。すなわち、圧縮応力層14は、ガラス表面から最大50μmの深さの範囲に形成される。更に別な言い方をすると、圧縮応力層14の表面からの深さは50μm以下である。圧縮応力層の深さは、成形工程における溶融ガラスあるいはガラスリボンの表面からの揮発を促進することにより深くすることが可能であるが、圧縮応力層14の深さが50μmを超えると、それにより、成形適正条件の逸脱、或いは、生産性の低下を生じる。このため圧縮応力層14の表面からの深さは50μm以下である。このため、圧縮応力層14の深さは、45μm以下、40μm以下、38μm以下であることが好ましい。このような好ましい態様は、溶融ガラスあるいは成形中のガラスリボンの表面から揮発成分の揮発を促進させるあるいは揮発量を増大させる条件を含むガラス板の製造条件及びガラス板の組成を調整することで実現され得る。
(Detailed explanation of glass plate)
The thickness W 1 of the compressive stress layer 14 formed on the glass plate 10 is greater than 0 μm and not greater than 50 μm. The compressive stress layer 14 is formed on the glass surface. That is, the compressive stress layer 14 is formed in a range of a maximum depth of 50 μm from the glass surface. In other words, the depth from the surface of the compressive stress layer 14 is 50 μm or less. The depth of the compressive stress layer can be increased by promoting volatilization from the surface of the molten glass or glass ribbon in the molding process, but if the depth of the compressive stress layer 14 exceeds 50 μm, Deviation of proper molding conditions or decrease in productivity occurs. For this reason, the depth from the surface of the compressive stress layer 14 is 50 μm or less. For this reason, it is preferable that the depth of the compressive-stress layer 14 is 45 micrometers or less, 40 micrometers or less, and 38 micrometers or less. Such a preferred embodiment is realized by adjusting the glass plate manufacturing conditions and the glass plate composition including the conditions for promoting the volatilization of volatile components from the surface of the molten glass or the glass ribbon being formed or increasing the volatilization amount. Can be done.
 なお、本明細書における圧縮応力層14の深さとは、ガラス板10の表裏のうち、一方の面において形成された圧縮応力層の最深部の、ガラス表面からの深さを示す。つまり、ガラス板10の表裏表面に各々、上記深さを有する圧縮応力層14が形成されている。
 また、圧縮応力層14の深さは10μm超である。圧縮応力層14の深さを10μm超とすることで、取り扱いに起因する微細な傷によりガラスが割れやすくなることを防ぐことができる。圧縮応力層14の深さは、深い傷が付いてもガラス板10が破損し難い点を考慮して、15μm以上、20μm以上、25μm以上、30μm以上、35μm以上であることがより好ましい。
 ガラス表面に形成される圧縮応力層14の深さは、ガラス板10の厚さW0の1/13未満であるが、1/15未満、1/17未満、1/20未満、1/22未満、 1/24未満であることが好ましい。
 このような好ましい態様も、溶融ガラスあるいは成形中のガラスリボンの表面から揮発成分の揮発を促進させるあるいは揮発量を増大させる条件を含むガラス板の製造条件及びガラス板の組成を調整することで実現され得る。
In addition, the depth of the compressive stress layer 14 in this specification shows the depth from the glass surface of the deepest part of the compressive stress layer formed in one surface among the front and back of the glass plate 10. FIG. That is, the compressive stress layer 14 having the above depth is formed on the front and back surfaces of the glass plate 10, respectively.
The depth of the compressive stress layer 14 is more than 10 μm. By setting the depth of the compressive stress layer 14 to more than 10 μm, it is possible to prevent the glass from being easily broken by fine scratches resulting from handling. The depth of the compressive stress layer 14 is more preferably 15 μm or more, 20 μm or more, 25 μm or more, 30 μm or more, or 35 μm or more in consideration of the point that the glass plate 10 is not easily damaged even if a deep flaw is applied.
The depth of the compressive stress layer 14 formed on the glass surface is less than 1/13 of the thickness W 0 of the glass plate 10, but less than 1/15, less than 1/17, less than 1/20, 1/22 Less than 1/24.
Such a preferred embodiment is also realized by adjusting the glass plate manufacturing conditions and the glass plate composition including the conditions for promoting the volatilization of volatile components from the surface of the molten glass or the glass ribbon being molded or increasing the volatilization amount. Can be done.
 ガラス板10の表面近傍に形成された圧縮応力層14の応力値(絶対値)は、最大でも4MPaである。上記応力値(絶対値)の最大値が4MPaを超えると、圧縮応力層14の応力値の総和が大きくなり、ガラス板10の加工、例えば形状加工がし難くなる。このため、圧縮応力層14の応力値(絶対値)の最大値は、3.7MPa以下、3.5MPa以下、3.0MPa以下、2.8MPa以下であることが好ましい。また、圧縮応力層14の応力値(絶対値)の最大値は、0.1MPa以上、0.5MPa以上、1MPa以上、1.5MPa以上、2MPa以上であることが好ましい。圧縮応力層14は、応力値(絶対値)が0MPa超である層であるので、圧縮応力層14がガラス板10のガラス表面に形成されることでガラス板10の機械的強度が向上する。
 なお、本明細書での「応力値」は、ガラス板10のガラス表面から所定の深さごとに削った試料においてその試料の表面から0~10μmの平均値を示している。そのため、局部的には、上記応力値の範囲を超えるような応力値を圧縮応力層14が有しているガラス板もガラス板10として含まれる。
The stress value (absolute value) of the compressive stress layer 14 formed near the surface of the glass plate 10 is 4 MPa at the maximum. If the maximum value of the stress value (absolute value) exceeds 4 MPa, the sum of the stress values of the compressive stress layer 14 becomes large, and it becomes difficult to process the glass plate 10, for example, shape processing. For this reason, it is preferable that the maximum value of the stress value (absolute value) of the compressive stress layer 14 is 3.7 MPa or less, 3.5 MPa or less, 3.0 MPa or less, or 2.8 MPa or less. Moreover, it is preferable that the maximum value of the stress value (absolute value) of the compressive stress layer 14 is 0.1 MPa or more, 0.5 MPa or more, 1 MPa or more, 1.5 MPa or more, 2 MPa or more. Since the compressive stress layer 14 is a layer having a stress value (absolute value) exceeding 0 MPa, the mechanical strength of the glass plate 10 is improved by forming the compressive stress layer 14 on the glass surface of the glass plate 10.
The “stress value” in this specification indicates an average value of 0 to 10 μm from the surface of the sample of the glass plate 10 cut from the glass surface at a predetermined depth. Therefore, locally, a glass plate in which the compressive stress layer 14 has a stress value exceeding the range of the stress value is also included as the glass plate 10.
 ガラス板10内部に形成された引っ張り応力層12の応力値は、上述したように、ガラス板10の厚さ方向に略一定である。この引っ張り応力層12の応力値は、上述したように0.4MPa以下である。引っ張り応力層12の応力値(絶対値)の最大値が0.4MPaを超えると、例えば、ガラス板を切断する場合に、切断のために入れた所定深さのスクライブ線が、ガラス板の厚さ方向に想定外に伸長してしまい、所望の寸法にガラス板10を分割することが困難となる場合がある。このため、引っ張り応力層12の応力値の最大値(絶対値)は、0.3MPa以下、0.2MPa以下、0.15MPa、0.10Mpa以下であることが好ましい。本実施形態では、ガラス表面の圧縮応力層14の応力値(絶対値)の最大値/引張り応力層12の応力値(絶対値)の最大値を6以上とすることができる。
 また、ガラス板10の厚さ方向において両側1/10ずつを除いた引っ張り応力層12の中心部分4/5(以下、単に「引張中心領域」という。)でのガラス板10の引っ張り応力層12における応力値の変動、すなわち応力値(絶対値)の最大値と最小値の差は、0.12MPa以下であることが好ましい。これにより、ガラス板の切断性を向上させることができる。より好ましくは、0.10Mpa以下、0.05Mpa以下、0.02Mpa以下である。このような好ましい態様も、溶融ガラスあるいは成形中のガラスリボンの表面から揮発成分の揮発を促進させるあるいは揮発量を増大させる条件を含むガラス板の製造条件及びガラス板の組成を調整することで実現され得る。
As described above, the stress value of the tensile stress layer 12 formed inside the glass plate 10 is substantially constant in the thickness direction of the glass plate 10. The stress value of the tensile stress layer 12 is 0.4 MPa or less as described above. When the maximum value of the stress value (absolute value) of the tensile stress layer 12 exceeds 0.4 MPa, for example, when cutting a glass plate, a scribe line having a predetermined depth inserted for cutting is the thickness of the glass plate. In some cases, the glass plate 10 extends unexpectedly in the vertical direction, making it difficult to divide the glass plate 10 into a desired dimension. For this reason, it is preferable that the maximum value (absolute value) of the stress value of the tensile stress layer 12 is 0.3 MPa or less, 0.2 MPa or less, 0.15 MPa, or 0.10 MPa. In the present embodiment, the maximum value of the stress value (absolute value) of the compressive stress layer 14 on the glass surface / the maximum value of the stress value (absolute value) of the tensile stress layer 12 can be 6 or more.
Further, the tensile stress layer 12 of the glass plate 10 at the central portion 4/5 (hereinafter, simply referred to as “tensile center region”) of the tensile stress layer 12 excluding 1/10 on both sides in the thickness direction of the glass plate 10. It is preferable that the fluctuation of the stress value at, that is, the difference between the maximum value and the minimum value of the stress value (absolute value) is 0.12 MPa or less. Thereby, the cutting property of a glass plate can be improved. More preferably, they are 0.10 Mpa or less, 0.05 Mpa or less, 0.02 Mpa or less. Such a preferred embodiment is also realized by adjusting the glass plate manufacturing conditions and the glass plate composition including the conditions for promoting the volatilization of volatile components from the surface of the molten glass or the glass ribbon being molded or increasing the volatilization amount. Can be done.
 ガラス板10の内部に形成された引っ張り応力層12の応力値は、ガラス板10の厚さ方向に略一定であるため、引っ張り応力層の応力値がガラス板の厚さ方向に放物線を描くように形成されている場合に比較して、引っ張り応力層12を薄く保つことができる。
 より詳細には、ガラス板10の引っ張り応力層12の応力値は、ガラス板10の厚さ方向に略一定であり、その応力値の最大値(絶対値)に比べて、徐冷工程のみで得られる従来のガラス板の引っ張り応力値の最大値(絶対値)は大きい。すなわち、従来のガラス板では、ガラス表面に形成される圧縮応力層の圧縮応力に対して相殺するように放物線形状のプロファイルで引っ張り応力層が形成される。このため、ガラス板の厚さが薄くなると、ガラス表面の圧縮応力層の圧縮応力を相殺するための引っ張り応力層の厚さも薄くなるので、従来のガラス板において引っ張り応力層の応力値は極端に高くなり、例えば、ガラス板を切断する場合に、切断のために入れた所定深さのスクライブ線が、ガラス板の厚さ方向に想定外に伸長してしまい、所望の寸法にガラス板10を分割することが困難となる場合がある。しかし、本実施形態のガラス板10の引っ張り応力層12の応力値は、ガラス板10の厚さ方向に略一定であるので、引っ張り応力層の応力値の最大値は高くなりにくく、ガラス板の加工も精度よく行うことができる。
Since the stress value of the tensile stress layer 12 formed inside the glass plate 10 is substantially constant in the thickness direction of the glass plate 10, the stress value of the tensile stress layer draws a parabola in the thickness direction of the glass plate 10. The tensile stress layer 12 can be kept thin as compared with the case where the tensile stress layer 12 is formed.
More specifically, the stress value of the tensile stress layer 12 of the glass plate 10 is substantially constant in the thickness direction of the glass plate 10, and only in the slow cooling step compared to the maximum value (absolute value) of the stress value. The maximum value (absolute value) of the tensile stress value of the obtained conventional glass plate is large. That is, in the conventional glass plate, the tensile stress layer is formed with a parabolic profile so as to cancel out the compressive stress of the compressive stress layer formed on the glass surface. For this reason, when the thickness of the glass plate is reduced, the thickness of the tensile stress layer for canceling the compressive stress of the compressive stress layer on the glass surface is also reduced. For example, when a glass plate is cut, a scribe line of a predetermined depth inserted for cutting extends unexpectedly in the thickness direction of the glass plate, and the glass plate 10 has a desired dimension. It may be difficult to divide. However, since the stress value of the tensile stress layer 12 of the glass plate 10 of the present embodiment is substantially constant in the thickness direction of the glass plate 10, the maximum value of the stress value of the tensile stress layer is difficult to increase. Processing can also be performed with high accuracy.
 ガラス板10をガラスの組成から見ると、ガラス板10には、ガラス表面から厚さ方向に沿って0より大きく30nm以下の深さの範囲にSi高濃度領域(以降、Siリッチ層という)が形成されている。Siリッチ層とは、ガラス板10の厚さ方向の中心位置におけるSiの原子濃度(原子%)に対するSiの原子濃度(原子%)の濃度比率が5%以上高い領域である。Siリッチ層が位置する範囲は、好ましくは、0超~25nm、2~20nm、5~16nm、8~16nmである。他方、Siリッチ層の深さは、成形工程における溶融ガラスあるいはガラスリボンの表面からの揮発を促進することにより深くすることが可能であるが、それにより、成形適正条件の逸脱、或いは、生産性の低下が生じる。あるいは、Siリッチ層の深さが30nmを超えると、ガラス板10のガラス表面にエッチング処理を施す場合に、エッチングがし難くなる。また、Siリッチ層の深さが30nmを超えると、ガラス表面に形成される圧縮応力層14の応力値(絶対値)が大きくなり、ガラス板の切断性が低下するという不都合が生じる。そのため、Siリッチ層の深さが30nm以下であることが好ましい。
 Siリッチ層は、Si原子濃度の最大ピークを有し、ガラス板10の厚さ方向に沿ったSi原子濃度は、上記最大ピークの位置から両側に向かって減少する。このようなガラスの組成を有することにより、上述した圧縮応力層14および引っ張り応力層12が形成されている。Si原子濃度とは、酸素原子を除くガラス成分全体(Si,Al,B,Ca,Sr,Ba等の酸素原子を除くガラス全成分)に対するSiの原子%を意味する。
 このとき、ガラス溶融状態(例えば、ガラスの粘性が104.5~105poise、あるいは温度1100~1300℃)においてSiO2に比べて蒸気圧(飽和蒸気圧)の高い揮発成分が、ガラス板の厚さ方向の中心位置において30質量%以上含まれることが、上記Siリッチ層を形成する点で好ましい。
When the glass plate 10 is viewed from the glass composition, the glass plate 10 has a Si high concentration region (hereinafter referred to as a Si rich layer) in a depth range from 0 to 30 nm along the thickness direction from the glass surface. Is formed. The Si-rich layer is a region where the concentration ratio of the Si atomic concentration (atomic%) to the Si atomic concentration (atomic%) at the center position in the thickness direction of the glass plate 10 is higher by 5% or more. The range in which the Si-rich layer is located is preferably more than 0 to 25 nm, 2 to 20 nm, 5 to 16 nm, and 8 to 16 nm. On the other hand, the depth of the Si-rich layer can be increased by promoting volatilization from the surface of the molten glass or glass ribbon in the molding process. Decrease. Alternatively, when the depth of the Si-rich layer exceeds 30 nm, etching becomes difficult when the glass surface of the glass plate 10 is etched. On the other hand, when the depth of the Si-rich layer exceeds 30 nm, the stress value (absolute value) of the compressive stress layer 14 formed on the glass surface increases, resulting in inconvenience that the cutting ability of the glass plate is lowered. Therefore, the depth of the Si rich layer is preferably 30 nm or less.
The Si rich layer has a maximum peak of Si atom concentration, and the Si atom concentration along the thickness direction of the glass plate 10 decreases from the position of the maximum peak toward both sides. By having such a glass composition, the compressive stress layer 14 and the tensile stress layer 12 described above are formed. The Si atom concentration means the atomic percentage of Si with respect to the entire glass component excluding oxygen atoms (all glass components excluding oxygen atoms such as Si, Al, B, Ca, Sr, and Ba).
At this time, a volatile component having a vapor pressure (saturated vapor pressure) higher than that of SiO 2 in the glass melted state (for example, the viscosity of the glass is 10 4.5 to 10 5 poise or the temperature 1100 to 1300 ° C.) is the thickness of the glass plate. It is preferable that 30% by mass or more is contained in the center position in the vertical direction in terms of forming the Si rich layer.
 ここで、上記濃度比率が5%未満となると、ガラス表面と内部で十分な熱膨張率の差を得ることができず、圧縮応力層14が有効に形成されない。あるいは、十分なビッカース硬度や耐久性が得られない。
 他方、上記濃度比率が30%を越えると、ガラス板の品質(物理特性、熱的特性、化学特性)が変化し、例えば、ガラス板の切断やエッチング処理が困難になり、所望の用途に使用できなくなる場合がある。この点から、上記濃度比率は、30%を上限とすることが好ましい。
 また、Siリッチ層中で、最もSi原子含有量やSi原子濃度が高くなるピーク位置は、ガラス表面から0~5nmの深さの範囲に位置する。
Here, when the concentration ratio is less than 5%, a sufficient difference in thermal expansion coefficient between the glass surface and the inside cannot be obtained, and the compressive stress layer 14 is not effectively formed. Alternatively, sufficient Vickers hardness and durability cannot be obtained.
On the other hand, when the concentration ratio exceeds 30%, the quality (physical characteristics, thermal characteristics, chemical characteristics) of the glass plate changes, and for example, it becomes difficult to cut or etch the glass plate and use it for desired applications. It may not be possible. From this point, it is preferable that the concentration ratio has an upper limit of 30%.
In the Si-rich layer, the peak position where the Si atom content and Si atom concentration are highest is located in the range of 0 to 5 nm deep from the glass surface.
 Siリッチ層を、ガラス表面から厚さ方向に沿って0より大きく30nm以下の深さの範囲に形成することで、ガラス表面と内部で十分な熱膨張率の差を得ることができ、ガラス表面に圧縮応力層14を形成することができる。また、ガラス表面のビッカース硬度や耐久性も向上させることが可能となり、ガラス板10が割れることを防止することができる。すなわち、Siは、ビッカース硬度を向上させる成分であるため、ガラス表面に形成されるSiリッチ層により、ガラス板10のガラス表面のビッカース硬度は高くなる。また、Siは耐薬品性に優れているため、Siリッチ層がガラス表面に形成されるガラス板10の耐久性も向上する。また、ガラス表面のビッカース硬度は、従来のガラス板に比べて向上するため、クラック発生率が低下し、より傷がつきにくく、破損しがたいという効果を得ることができる。
 ガラス板10のガラス表面のビッカース硬度は、例えば4GPa以上であり、5GPa以上であり、5.3GPa以上であることが好ましい。あるいは、ガラス表面のビッカース硬度が、ガラス内部のビッカース硬度との比で、0.01%以上向上されており、0.02%以上、0.05%以上、0.10%以上、1%以上向上していることが好ましい。
By forming the Si-rich layer in the depth range from 0 to 30 nm along the thickness direction from the glass surface, a sufficient difference in coefficient of thermal expansion can be obtained between the glass surface and the inside. The compressive stress layer 14 can be formed. Moreover, it becomes possible to improve the Vickers hardness and durability of the glass surface, and to prevent the glass plate 10 from being broken. That is, since Si is a component that improves the Vickers hardness, the Vickers hardness of the glass surface of the glass plate 10 is increased by the Si-rich layer formed on the glass surface. Moreover, since Si is excellent in chemical resistance, the durability of the glass plate 10 on which the Si-rich layer is formed on the glass surface is also improved. In addition, since the Vickers hardness of the glass surface is improved as compared with a conventional glass plate, the crack generation rate is reduced, and it is possible to obtain an effect that the glass surface is less likely to be damaged and hardly damaged.
The Vickers hardness of the glass surface of the glass plate 10 is, for example, 4 GPa or more, 5 GPa or more, and preferably 5.3 GPa or more. Alternatively, the Vickers hardness of the glass surface is improved by 0.01% or more in comparison with the Vickers hardness inside the glass, and is 0.02% or more, 0.05% or more, 0.10% or more, 1% or more. It is preferable to improve.
 このように、ガラス板10は、内部応力の点では、引っ張り応力層12および圧縮応力層14を有し、組成の点では、ガラス表面の近くにSiリッチ層を有する。ガラス板10は、後述するガラスリボンの成形工程において、溶融ガラスあるいはガラスリボンの表面から例えば、ガラスの粘性が104.5~105poise、あるいは温度1100~1300℃のガラス溶融状態において、SiO2に比べて飽和蒸気圧の高い揮発成分の揮発を促進させることにより、得ることができる。
 上述した好ましい数値範囲の各態様も、溶融ガラスあるいは成形中のガラスリボンの表面から揮発成分の揮発を促進させるあるいは揮発量を増大させる条件を含むガラス板の製造条件及びガラス板の組成を調整することで実現され得る。
Thus, the glass plate 10 has the tensile stress layer 12 and the compressive stress layer 14 in terms of internal stress, and has a Si-rich layer near the glass surface in terms of composition. In the glass ribbon forming step, which will be described later, the glass plate 10 is made of SiO 2 in the molten glass or glass ribbon surface, for example, in a glass molten state with a glass viscosity of 10 4.5 to 10 5 poise or a temperature of 1100 to 1300 ° C. It can be obtained by promoting volatilization of a volatile component having a higher saturated vapor pressure.
Each aspect of the preferable numerical range described above also adjusts the glass plate production conditions and the glass plate composition including conditions for promoting volatilization of volatile components from the surface of the molten glass or glass ribbon during molding or increasing the volatilization amount. Can be realized.
 このようなガラス板10は、さらに、イオン交換による化学強化処理を行ってガラス表面が強化されてもよい。ガラス板10は、イオン交換による化学強化処理が行われなくてもよい。本発明の実施形態は、イオン交換によりガラス板10のガラス表面が化学強化された強化ガラスも含む。この場合、上述したSiリッチ層とイオン交換によるイオン交換処理領域がガラス表面に並存して形成される。イオン交換処理領域とは、ガラス表面中の成分であるLi,Na等のイオン交換成分がイオン交換用の処理液中のK等のイオン交換成分と交換された領域である。このとき、化学強化されたガラス板10には、化学強化処理による圧縮応力層が、Siリッチ層に起因する圧縮応力層14に重なって大きな圧縮応力層が形成される。イオン交換によりガラス表面から内部に向かって形成される圧縮応力層の厚さは、20~100μmとなる。
 イオン交換により拡大された圧縮応力層の応力値(絶対値)の最大値は300MPa以上であることが好ましく、400MPa以上であることがより好ましい。応力値(絶対値)の最大値を300MPa以上とすることで、化学強化されたガラス板10は、例えばディスプレイなどを保護するために十分な強度を得ることができる。なお、上記応力値(絶対値)が高いほどガラスの強度は向上するが、強化されたガラスが破損した際の衝撃も大きくなる。上記衝撃による事故を防止するために、化学強化処理されたガラス板10は、圧縮応力層の応力値(絶対値)の最大値が950MPa以下であることが好ましく、800MPa以下あることがより好ましく、700MPa以下であることがより一層好ましい。一方、ガラスを急冷することでガラス表面に圧縮応力層を形成した従来のガラス板と比較して、引っ張り応力層の応力値(絶対値)は大きくなり難い。
Such a glass plate 10 may be further strengthened by performing chemical strengthening treatment by ion exchange. The glass plate 10 may not be subjected to chemical strengthening treatment by ion exchange. Embodiment of this invention also includes the tempered glass by which the glass surface of the glass plate 10 was chemically strengthened by ion exchange. In this case, the above-mentioned Si-rich layer and the ion exchange treatment region by ion exchange are formed side by side on the glass surface. The ion exchange treatment region is a region in which ion exchange components such as Li and Na, which are components in the glass surface, are exchanged with ion exchange components such as K in the treatment liquid for ion exchange. At this time, a large compressive stress layer is formed on the chemically strengthened glass plate 10 by overlapping the compressive stress layer by the chemical strengthening process with the compressive stress layer 14 resulting from the Si-rich layer. The thickness of the compressive stress layer formed from the glass surface toward the inside by ion exchange is 20 to 100 μm.
The maximum stress value (absolute value) of the compressive stress layer expanded by ion exchange is preferably 300 MPa or more, and more preferably 400 MPa or more. By setting the maximum value of the stress value (absolute value) to 300 MPa or more, the chemically strengthened glass plate 10 can obtain sufficient strength to protect a display or the like, for example. In addition, although the intensity | strength of glass improves, so that the said stress value (absolute value) is high, the impact when the tempered glass is damaged also becomes large. In order to prevent an accident due to the impact, the chemically strengthened glass plate 10 preferably has a maximum stress value (absolute value) of the compressive stress layer of 950 MPa or less, more preferably 800 MPa or less, More preferably, it is 700 MPa or less. On the other hand, the stress value (absolute value) of the tensile stress layer is unlikely to increase as compared with a conventional glass plate in which a compression stress layer is formed on the glass surface by rapidly cooling the glass.
 化学強化処理後の圧縮応力層の厚さは、20μm以上であり、30μm以上、40μm以上が好ましい。圧縮応力層の厚さが大きい程、強化ガラスに深い傷がついても、強化ガラスが割れにくくなり、機械的強度のばらつきが小さくなる。一方、圧縮応力層の厚さは100μm以下である。圧縮応力層の厚さは、強化ガラスの加工のしやすさを考慮すると、90μm以下、80μm以下とするのが好ましい。 The thickness of the compressive stress layer after the chemical strengthening treatment is 20 μm or more, preferably 30 μm or more and 40 μm or more. As the thickness of the compressive stress layer increases, even when the tempered glass is deeply scratched, the tempered glass is less likely to break, and the variation in mechanical strength is reduced. On the other hand, the thickness of the compressive stress layer is 100 μm or less. The thickness of the compressive stress layer is preferably 90 μm or less and 80 μm or less in consideration of ease of processing of the tempered glass.
 なお、ガラス板10、ガラス板10が化学強化された強化ガラスを適用したカバーガラスの厚さは、1.5mm以下であることが好ましい。ここでは、1.5mm以上のガラス板では、ガラス板そのものの強度が大きくなり、ガラス表面近傍に形成された圧縮応力層14が十分に機能しないためである。つまり、本実施形態で形成されるガラス板10やカバーガラスの厚さは、1.0mm以下、0.7mm以下、0.5mm以下、0.3mm以下であることが好ましく、ガラス板10の厚さが薄いほど、本発明の効果が顕著となる。 In addition, it is preferable that the thickness of the glass plate 10 and the cover glass which applied the tempered glass by which the glass plate 10 was chemically strengthened is 1.5 mm or less. Here, in the glass plate of 1.5 mm or more, the strength of the glass plate itself is increased, and the compressive stress layer 14 formed in the vicinity of the glass surface does not function sufficiently. That is, the thickness of the glass plate 10 or the cover glass formed in the present embodiment is preferably 1.0 mm or less, 0.7 mm or less, 0.5 mm or less, 0.3 mm or less. The thinner the thickness, the more remarkable the effect of the present invention.
 また、本実施形態のガラス板製造方法は、大きいガラス板に好適である。これは、大きなガラス板ほど、撓み量が大きく、取り扱いに起因する微細な傷によりガラス板が割れ易くなるが、ガラス表面に圧縮応力層14が形成されることによって、上記問題の発生を低減できるためである。このため、ガラス板10の幅方向が1000mm以上、2000mm以上のガラス板である場合に、本発明の効果が顕著となる。 Moreover, the glass plate manufacturing method of this embodiment is suitable for a large glass plate. This is because the larger the glass plate, the larger the amount of bending and the easier the glass plate breaks due to fine scratches resulting from handling, but the occurrence of the above problem can be reduced by forming the compressive stress layer 14 on the glass surface. Because. For this reason, when the width direction of the glass plate 10 is a glass plate of 1000 mm or more and 2000 mm or more, the effect of this invention becomes remarkable.
(ガラス板のガラスの種類)
 ガラス板10に用いるガラスとして、ボロシリケートガラス、アルミノシリケートガラス、アルミノボロシリケートガラス、ソーダライムガラス、アルカリシリケートガラス、アルカリアルミノシリケートガラス、アルカリアルミノゲルマネイトガラスなどの種類が用いられ得る。なお、本発明のガラス板に適用できるガラスは上記種類に限定されるものではなく、少なくともSiOと、ガラス溶融温度(ガラスの粘性が104.5~105poise、あるいは温度1100~1300℃)における飽和蒸気圧がSiOよりも高い揮発成分と、を含む種類のガラスであればよい。なお、Alは、網目形成酸化物であり、ガラスの成分の中では比較的飽和蒸気圧が低い成分である。しかし、本実施形態では、SiOよりも飽和蒸気圧が高いため、Alを揮発成分に含めることとする。
 なお、ガラス組成中の揮発成分の含有量は、30質量%以上であることがより好ましく、35質量%以上、40質量%以上であることがさらに好ましい。したがって、ガラス板10の揮発成分が揮発しないガラス板10の引っ張り応力層12では、揮発成分の含有量は、30%質量以上となっている。ガラス組成中の揮発成分の含有量が30質量%未満であると、揮発成分の揮発が促進されず、ガラス表面にSiリッチ層や圧縮応力層が形成され難くなる。また、揮発成分を多く含有すると、揮発が増加しすぎ、ガラスの均質化が困難になる。このため、ガラス組成中の揮発成分の含有量は、60質量%以下、50質量%以下であることが好ましく、45質量%以下であることがさらに好ましい。
(Glass type of glass plate)
As the glass used for the glass plate 10, types such as borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, alkali silicate glass, alkali aluminosilicate glass, and alkali aluminogermanate glass can be used. The glass applicable to the glass plate of the present invention is not limited to the above-mentioned types, and at least at SiO 2 and the glass melting temperature (glass viscosity is 10 4.5 to 10 5 poise or temperature 1100 to 1300 ° C.). saturated vapor pressure may be a type of glass including, a high volatile component than SiO 2. Al 2 O 3 is a network-forming oxide and is a component having a relatively low saturated vapor pressure among glass components. However, in this embodiment, since the saturated vapor pressure is higher than that of SiO 2 , Al 2 O 3 is included in the volatile component.
In addition, it is more preferable that content of the volatile component in a glass composition is 30 mass% or more, and it is further more preferable that it is 35 mass% or more and 40 mass% or more. Therefore, in the tensile stress layer 12 of the glass plate 10 where the volatile components of the glass plate 10 do not volatilize, the content of the volatile components is 30% by mass or more. When the content of the volatile component in the glass composition is less than 30% by mass, volatilization of the volatile component is not promoted, and it becomes difficult to form a Si-rich layer or a compressive stress layer on the glass surface. Further, when a large amount of volatile components are contained, volatilization increases excessively and it becomes difficult to homogenize the glass. For this reason, it is preferable that content of the volatile component in a glass composition is 60 mass% or less, 50 mass% or less, and it is further more preferable that it is 45 mass% or less.
(各ガラスの組成例)
 例えば、アルミノボロシリケートガラスは、以下の成分を含むものが例示される。なお、以降で記載する組成の%表示は、質量%表示である。アルミノボロシリケートガラスは、例えばフラットパネルディスプレイガラス基板に用いられる。下記括弧内の表示は各成分の好ましい含有率である。
SiO:50~70%(55~65%,57~64%、58~62%)、
Al:5~20%(10~20%,12~18%,15~18%)、
:0~15%(5~15%,6~13%,7~12%)、
 このとき、任意成分として、下記の組成を含んでもよい。
MgO:0~10%(下限は0.01%、下限は0.5%、上限は5%、上限は4%、上限は2%)、
CaO:0~10%(下限は1%、下限は3%、下限は4%、上限は9%、上限は8%、上限は7%、上限は6%)、
SrO:0~10%(下限は0.5%、下限は3%、上限は9%、上限は8%、上限は7%、上限は6%)、
BaO:0~10%(上限は8%、上限は3%、上限は1%、上限は0.2%)、
ZrO:0~10%(0~5%,0~4%,0~1%,0~0.1%)。
(Example composition of each glass)
For example, the aluminoborosilicate glass includes the following components. In addition, the% display of the composition described below is a mass% display. Aluminoborosilicate glass is used for a flat panel display glass substrate, for example. The indication in the following parentheses is the preferred content of each component.
SiO 2 : 50 to 70% (55 to 65%, 57 to 64%, 58 to 62%),
Al 2 O 3 : 5 to 20% (10 to 20%, 12 to 18%, 15 to 18%),
B 2 O 3 : 0 to 15% (5 to 15%, 6 to 13%, 7 to 12%),
At this time, the following composition may be included as an optional component.
MgO: 0 to 10% (lower limit is 0.01%, lower limit is 0.5%, upper limit is 5%, upper limit is 4%, upper limit is 2%),
CaO: 0 to 10% (lower limit is 1%, lower limit is 3%, lower limit is 4%, upper limit is 9%, upper limit is 8%, upper limit is 7%, upper limit is 6%),
SrO: 0 to 10% (lower limit is 0.5%, lower limit is 3%, upper limit is 9%, upper limit is 8%, upper limit is 7%, upper limit is 6%),
BaO: 0 to 10% (upper limit is 8%, upper limit is 3%, upper limit is 1%, upper limit is 0.2%),
ZrO 2 : 0 to 10% (0 to 5%, 0 to 4%, 0 to 1%, 0 to 0.1%).
 さらに、アルミノボロシリケートガラスとして、下記組成が例示される。下記括弧内の表示は各成分の好ましい含有率である。
SiO:50~70%(55~65%,58~62%) 、
Al:10~25%(15~20%,15~18%)、
:5~18%(8~14%,10~13%)、
MgO:0~10%(1~5%,1~2%)、
CaO:0~20%(1~7%,4~7%)、
SrO:0~20%(1~10%,1~3%)、
BaO:0~10%(0~2%,0~1%)、
O:0~2%(0.1~2%,0.1~0.5%)、 
SnO:0~1%(0.01~0.5%,0.01~0.3%)。
Furthermore, the following composition is illustrated as alumino borosilicate glass. The indication in the following parentheses is the preferred content of each component.
SiO 2 : 50 to 70% (55 to 65%, 58 to 62%),
Al 2 O 3 : 10 to 25% (15 to 20%, 15 to 18%),
B 2 O 3 : 5 to 18% (8 to 14%, 10 to 13%),
MgO: 0-10% (1-5%, 1-2%),
CaO: 0 to 20% (1 to 7%, 4 to 7%),
SrO: 0-20% (1-10%, 1-3%),
BaO: 0 to 10% (0 to 2%, 0 to 1%),
K 2 O: 0 to 2% (0.1 to 2%, 0.1 to 0.5%),
SnO 2 : 0 to 1% (0.01 to 0.5%, 0.01 to 0.3%).
 また、アルカリアルミノシリケートガラスは、以下の成分を含むものが例示される。アルカリアルミノシリケートガラスは、例えば電子機器の表示画面のカバーガラスに用いられる。下記括弧内の表示は各成分の好ましい含有率である。
SiO:50~70%(55~65%,57~64%,57~62%)、
Al:5~20%(9~18%,12~17%)、
NaO:6~30%(7~20%,8~18%,10~15%)、
 このとき、任意成分として、下記の組成を含んでもよい。
LiO:0~8%(0~6%,0~2%,0~0.6%,0~0.4%,0~0.2%)、
:0~5%(0~2%,0~1%,0~0.8%)、
O:0~10%(下限は1%、下限は2%、上限は6%、上限は5%、上限は4%)、
MgO:0~10%(下限は1%、下限は2%、下限は3%、下限は4%、上限は9%、上限は8%、上限は7%)、
CaO:0~20%(下限は0.1%、下限は1%、下限は2%、上限は10%、上限は5%、上限は4%、上限は3%)、
ZrO:0~10%(0~5%、0~4%、0~1%、0~0.1%)。
Examples of the alkali aluminosilicate glass include the following components. Alkali aluminosilicate glass is used, for example, as a cover glass for display screens of electronic devices. The indication in the following parentheses is the preferred content of each component.
SiO 2 : 50 to 70% (55 to 65%, 57 to 64%, 57 to 62%),
Al 2 O 3 : 5 to 20% (9 to 18%, 12 to 17%),
Na 2 O: 6-30% (7-20%, 8-18%, 10-15%),
At this time, the following composition may be included as an optional component.
Li 2 O: 0 to 8% (0 to 6%, 0 to 2%, 0 to 0.6%, 0 to 0.4%, 0 to 0.2%),
B 2 O 3 : 0 to 5% (0 to 2%, 0 to 1%, 0 to 0.8%),
K 2 O: 0 to 10% (lower limit is 1%, lower limit is 2%, upper limit is 6%, upper limit is 5%, upper limit is 4%),
MgO: 0 to 10% (lower limit is 1%, lower limit is 2%, lower limit is 3%, lower limit is 4%, upper limit is 9%, upper limit is 8%, upper limit is 7%),
CaO: 0 to 20% (lower limit is 0.1%, lower limit is 1%, lower limit is 2%, upper limit is 10%, upper limit is 5%, upper limit is 4%, upper limit is 3%),
ZrO 2 : 0 to 10% (0 to 5%, 0 to 4%, 0 to 1%, 0 to 0.1%).
 さらに、アルカリアルミノシリケートガラスとして、下記組成が例示される。
SiO:50~70%、
Al:5~20%、
NaO:6~20%、
O:0~10%、
MgO:0~10%、
CaO:2%超~20%
ZrO:0~4.8%、
さらに、好ましくは、
SiO含有率-1/2・Alの含有率:46.5~59%、
CaO/RO(ただし、RはMg、Ca、SrおよびBaの中から選ばれる少なくとも1種である)含有量比が0.3%超、
SrO含有率+BaO含有率が10%未満、
(ZrO+TiO)/SiO含有量比が0~0.07未満、
/R1
(ただし、R1はLi、NaおよびKの中から選ばれる少なくとも1種である)含有量比が0~0.1未満。
Furthermore, the following composition is illustrated as alkali-aluminosilicate glass.
SiO 2 : 50 to 70%,
Al 2 O 3 : 5 to 20%,
Na 2 O: 6-20%,
K 2 O: 0 to 10%,
MgO: 0 to 10%,
CaO: more than 2% to 20%
ZrO 2 : 0 to 4.8%,
Furthermore, preferably,
SiO 2 content -1 / 2 · Al 2 O 3 content: 46.5 to 59%,
CaO / RO (wherein R is at least one selected from Mg, Ca, Sr and Ba) content ratio exceeds 0.3%,
SrO content + BaO content is less than 10%,
(ZrO 2 + TiO 2 ) / SiO 2 content ratio is 0 to less than 0.07,
B 2 O 3 / R1 2 O
(However, R1 is at least one selected from Li, Na and K) The content ratio is 0 to less than 0.1.
 さらに、別のアルカリアルミノシリケートガラスとして、下記組成が例示される。
SiO:58~68%、
Al:8~15%、
NaO:10~20%、
LiO:0~1%、
O:1~5%、
MgO:2~10%、
Furthermore, the following composition is illustrated as another alkali aluminosilicate glass.
SiO 2 : 58 to 68%,
Al 2 O 3 : 8 to 15%,
Na 2 O: 10-20%,
Li 2 O: 0 to 1%,
K 2 O: 1 to 5%,
MgO: 2 to 10%,
(各成分)
 SiOはガラス板10のガラスの骨格をなす成分であり、ガラスの化学的耐久性と耐熱性を高める効果を有している。SiO含有率が低すぎる場合には化学的耐久性と耐熱性の効果が十分に得られず、SiO含有率が高すぎるとガラスが失透を起こしやすくなり、成形が困難になるとともに、粘性が上昇してガラスの均質化が困難になる。
(Each component)
SiO 2 is a component constituting the glass skeleton of the glass plate 10 and has an effect of improving the chemical durability and heat resistance of the glass. When the SiO 2 content is too low, the effects of chemical durability and heat resistance are not sufficiently obtained, and when the SiO 2 content is too high, the glass tends to be devitrified, making molding difficult, The viscosity increases and it becomes difficult to homogenize the glass.
 Alはガラスの骨格をなす成分であり、ガラスの化学的耐久性と耐熱性を高める効果を有している。また、イオン交換性能やエッチング速度を高める効果を有している。Al含有率が低すぎる場合にはガラスの化学的耐久性と耐熱性の効果が十分に得られない。一方、Al含有率が高すぎると、ガラスの粘性が上昇して溶解が困難になるとともに、耐酸性が低下する。 Al 2 O 3 is a component that forms a glass skeleton, and has an effect of increasing the chemical durability and heat resistance of the glass. It also has the effect of increasing ion exchange performance and etching rate. If the Al 2 O 3 content is too low, the effects of chemical durability and heat resistance of the glass cannot be obtained sufficiently. On the other hand, when the Al 2 O 3 content is too high, the viscosity of the glass is increased and dissolution becomes difficult, and the acid resistance is lowered.
 Bはガラスの粘性を下げて、ガラスの熔解および清澄を促進する成分である。B含有率が低すぎると、ガラスの粘性が高くなりガラスの均質化が困難になる。 B 2 O 3 is a component that lowers the viscosity of the glass and promotes melting and clarification of the glass. If the B 2 O 3 content is too low, the viscosity of the glass becomes high and it becomes difficult to homogenize the glass.
 MgOおよびCaOは、ガラスの粘性を下げて、ガラスの熔解および清澄を促進する成分である。また、MgおよびCaは、アルカリ土類金属の中ではガラスの密度を上昇させる割合が小さいため、得られるガラスを軽量化しつつ熔解性を向上するためには有利な成分である。ただしそのMgOおよびCaO含有率が高くなりすぎると、ガラスの化学的耐久性が低下する。 MgO and CaO are components that lower the viscosity of the glass and promote glass melting and fining. Further, Mg and Ca are advantageous components for improving the meltability while reducing the weight of the obtained glass because the ratio of increasing the density of the glass is small in the alkaline earth metal. However, if the MgO and CaO content is too high, the chemical durability of the glass is lowered.
 SrOおよびBaOは、ガラスの粘性を下げて、ガラスの熔解および清澄を促進する成分である。また、ガラス原料の酸化性を高めて清澄性を高める成分でもある。ただし、SrOおよびBaO含有率が高くなりすぎると、ガラスの密度が上昇し、ガラス板の軽量化が図れないととともに、ガラスの化学的耐久性が低下する。 SrO and BaO are components that lower the viscosity of the glass and promote the melting and clarification of the glass. Moreover, it is also a component which improves the oxidizability of a glass raw material and improves clarity. However, if the SrO and BaO content is too high, the density of the glass increases, the weight of the glass plate cannot be reduced, and the chemical durability of the glass decreases.
 LiOは、ガラスの粘度を低下させて、ガラスの熔解性や成形性を向上させる成分である。また、LiOは、ガラスのヤング率を向上させる成分である。さらに、LiOは、イオン交換成分の一つであり、アルカリ金属酸化物の中では圧縮応力層14の深さを大きくする効果が高い。しかし、LiOの含有率が高くなり過ぎると、液相粘度が低下して、ガラスが失透しやすくなるため、ダウンドロー法を利用した安定したガラスの大量生産が困難となる。また、ガラスの熱膨張係数が高くなり過ぎて、ガラスの耐熱衝撃性が低下し、金属や有機系接着剤などの周辺材料と熱膨張係数が整合し難くなる。さらに、ガラス板の強化を行うためにイオン交換処理を行う場合、イオン交換処理におけるイオン交換塩の劣化がはやくなるという不都合がある。また、LiOの含有率が高くなり過ぎると、ガラスの低温粘度が過度に低下することで、化学強化後の加熱工程で応力緩和が発生し、圧縮応力値が低下してしまうため、十分な強度を得ることができない。 Li 2 O is a component that lowers the viscosity of the glass and improves the meltability and moldability of the glass. Li 2 O is a component that improves the Young's modulus of glass. Furthermore, Li 2 O is one of the ion exchange components, and the effect of increasing the depth of the compressive stress layer 14 is high among alkali metal oxides. However, if the Li 2 O content is too high, the liquidus viscosity is lowered and the glass is easily devitrified, making it difficult to stably mass-produce glass using the downdraw method. Moreover, the thermal expansion coefficient of the glass becomes too high, the thermal shock resistance of the glass is lowered, and it becomes difficult to match the thermal expansion coefficient with peripheral materials such as metals and organic adhesives. Furthermore, when performing an ion exchange process in order to reinforce | strengthen a glass plate, there exists a problem that deterioration of the ion exchange salt in an ion exchange process becomes quick. Further, if the Li 2 O content is too high, the low-temperature viscosity of the glass is excessively reduced, stress relaxation occurs in the heating step after chemical strengthening, and the compressive stress value is decreased. Can not get a good strength.
 NaOは、ガラスの高温粘度を低下させて、ガラスの熔融性や成形性を向上させる必須成分である。また、ガラスの耐失透性を改善する成分である。NaO含有率が6質量%未満ではガラスの熔解性が低下し、熔解のためのコストが高くなる。また、NaOは、イオン交換成分であり、化学強化処理を行う場合に、NaO含有率が6質量%未満ではイオン交換性能も低下するため、十分な強度を得ることができない。また、熱膨張率が過度に低下し、金属や有機系接着剤などの周辺材料と熱膨張係数が整合し難くなる。さらに、ガラスが失透を起こしやすくなり、耐失透性も低下するので、ガラスをオーバーフローさせるダウンドロー法の適用が不可能となるため、安定したガラスの大量生産が困難となる。他方、NaO含有率が高くなりすぎると、低温粘度が低下し、熱膨張率が過剰となり、耐衝撃性が低下し、金属や有機系接着剤などの周辺材料と熱膨張係数が整合し難くなる。また、ガラスバランスの悪化による耐失透性低下も生じるため、ダウンドロー法を利用した安定したガラスの大量生産が困難となる。 Na 2 O is an essential component that lowers the high-temperature viscosity of the glass and improves the meltability and moldability of the glass. Moreover, it is a component which improves the devitrification resistance of glass. When the Na 2 O content is less than 6% by mass, the melting property of the glass is lowered, and the cost for melting is increased. Further, Na 2 O is an ion exchange component, and when the chemical strengthening treatment is performed, if the Na 2 O content is less than 6% by mass, the ion exchange performance is also deteriorated, so that sufficient strength cannot be obtained. In addition, the coefficient of thermal expansion is excessively reduced, and it becomes difficult to match the coefficient of thermal expansion with peripheral materials such as metals and organic adhesives. Furthermore, since the glass tends to be devitrified and the devitrification resistance is also lowered, it is impossible to apply the downdraw method for overflowing the glass, so that stable mass production of glass becomes difficult. On the other hand, if the Na 2 O content is too high, the low-temperature viscosity decreases, the thermal expansion coefficient becomes excessive, the impact resistance decreases, and the thermal expansion coefficient matches with peripheral materials such as metals and organic adhesives. It becomes difficult. In addition, since the devitrification resistance is lowered due to the deterioration of the glass balance, it is difficult to stably mass-produce glass using the downdraw method.
 KOはガラスの高温粘度を低下させて、ガラスの熔解性や成形性を向上させると同時に、耐失透性を改善する成分でもある。また、KOは、イオン交換成分であり、KOを含有することでガラスのイオン交換性能を向上させることができる成分である。しかし、KOの含有率が高くなり過ぎると、低温粘度が低下し、熱膨張率が過剰となり、耐衝撃性が低下するため、カバーガラスとして適用する場合には好ましくない。また、KOの含有率が高くなり過ぎると、金属や有機系接着剤などの周辺材料と熱膨張係数が整合し難くなる。また、ガラスバランス悪化による耐失透性の低下も生じるため、ダウンドロー法を利用した安定したガラスの大量生産が困難となる。 K 2 O is a component that lowers the high-temperature viscosity of the glass and improves the meltability and moldability of the glass and at the same time improves the devitrification resistance. Further, K 2 O is an ion exchange component, a component capable of improving the ion exchange performance of a glass by containing K 2 O. However, if the content of K 2 O becomes too high, the low-temperature viscosity decreases, the thermal expansion coefficient becomes excessive, and the impact resistance decreases, which is not preferable when applied as a cover glass. Further, when the K 2 O content is too high, the peripheral material and thermal expansion coefficient such as metal or organic adhesive is hardly matched. Further, since the devitrification resistance is lowered due to the deterioration of the glass balance, it is difficult to stably mass-produce glass using the downdraw method.
 LiO、NaOおよびKOは、ガラスから溶出してTFT特性を劣化させ、また、ガラスの熱膨張係数を大きくして熱処理時に基板を破損する成分であることから、フラットパネルディスプレイガラス基板として適用する場合には、多量に含有することは好ましくない。しかし、ガラス中に上記成分を敢えて特定量含有させることによって、TFT特性の劣化やガラスの熱膨張を一定範囲内に抑制しつつ、ガラスの溶融性を高め、かつガラスの塩基性度を高め、価数変動する金属の酸化を容易にして、清澄性を発揮させることが可能である。 Since Li 2 O, Na 2 O and K 2 O are components that are eluted from the glass to deteriorate TFT characteristics, and increase the thermal expansion coefficient of the glass to damage the substrate during heat treatment, flat panel displays When applied as a glass substrate, it is not preferable to contain a large amount. However, by deliberately containing a specific amount of the above components in the glass, while suppressing deterioration of TFT characteristics and thermal expansion of the glass within a certain range, the melting property of the glass is increased, and the basicity of the glass is increased, It is possible to easily oxidize a metal whose valence varies and to exhibit clarity.
 ZrOは、ガラスの失透温度付近の粘性や歪点を高くする成分である。また、ZrOは、ガラスの耐熱性を向上させる成分でもある。また、ZrOは、イオン交換性能を顕著に向上させる成分である。しかし、ZrOの含有率が高くなりすぎると、失透温度が上昇し、耐失透性が低下する。 ZrO 2 is a component that increases the viscosity and strain point near the devitrification temperature of glass. ZrO 2 is also a component that improves the heat resistance of the glass. ZrO 2 is a component that significantly improves the ion exchange performance. However, if the content of ZrO 2 becomes too high, the devitrification temperature increases and the devitrification resistance decreases.
 TiOは、ガラスの高温粘度を低下させる成分である。また、TiOは、イオン交換性能を向上させる成分である。しかし、TiOの含有率が高くなり過ぎると、耐失透性が低下してしまう。さらに、ガラスが着色し、FPDガラス基板や電子機器の表示画面のカバーガラスなどへの適用は好ましくない。また、ガラスが着色することから、紫外線透過率が低下するので、紫外線硬化樹脂を使用した処理を行う場合に、紫外線硬化樹脂を十分に硬化することができないという不都合が生じる。 TiO 2 is a component that lowers the high temperature viscosity of the glass. TiO 2 is a component that improves ion exchange performance. However, when the content of TiO 2 becomes too high, the devitrification resistance is lowered. Furthermore, since the glass is colored, application to an FPD glass substrate or a cover glass of a display screen of an electronic device is not preferable. Further, since the glass is colored, the ultraviolet transmittance is reduced, and therefore, when the treatment using the ultraviolet curable resin is performed, there is a disadvantage that the ultraviolet curable resin cannot be sufficiently cured.
 ガラス板10のガラスにおいて、ガラス中の気泡を脱泡させる成分として清澄剤を添加することができる。清澄剤としては、環境負荷が小さく、ガラスの清澄性に優れたものであれば特に制限されないが、例えば、酸化スズ、酸化鉄、酸化セリウム、酸化テルビウム、酸化モリブデンおよび酸化タングステンといった金属酸化物から選ばれる少なくとも1種を挙げることができる。
 なお、AsおよびSbは、溶融ガラス中で価数変動を伴う反応を生じ、ガラスを清澄する効果を有する物質であるが、AsおよびSbは環境負荷が大きい物質であることから、本実施形態のガラス板10においては、ガラス中にAsおよびSbを実質的に含まない。なお、本明細書において、AsおよびSbを実質的に含まないとは、0.01%質量未満であって不純物を除き意図的に含有させないことを意味する。
In the glass of the glass plate 10, a clarifier can be added as a component for defoaming bubbles in the glass. The fining agent is not particularly limited as long as it has a small environmental burden and excellent glass fining properties. For example, it is made of a metal oxide such as tin oxide, iron oxide, cerium oxide, terbium oxide, molybdenum oxide and tungsten oxide. There may be mentioned at least one selected.
In addition, As 2 O 3 and Sb 2 O 3 are substances having an effect of refining the glass by causing a reaction with valence fluctuation in the molten glass, but As 2 O 3 and Sb 2 O 3 are environmental loads. Therefore, in the glass plate 10 of this embodiment, As 2 O 3 and Sb 2 O 3 are not substantially contained in the glass. In the present specification, “substantially not containing As 2 O 3 and Sb 2 O 3” means less than 0.01% by mass and intentionally not containing impurities.
(ガラス板の製造方法)
 このようなガラス板10は、ダウンドロー法を用いて製造される。図3は、本実施形態のガラス板の製造方法のフローの一例を説明する図である。ガラス板の製造方法は、熔解工程(ステップS10)と、清澄工程(ステップS20)と、攪拌工程(ステップS30)と、成形工程(ステップS40)と、徐冷工程(ステップS50)と、裁板工程(ステップS60)と、形状加工工程(ステップS70)と、化学強化処理工程(ステップS80)と、を主に有する。
(Glass plate manufacturing method)
Such a glass plate 10 is manufactured using a downdraw method. Drawing 3 is a figure explaining an example of the flow of the manufacturing method of the glass plate of this embodiment. The glass plate manufacturing method includes a melting step (step S10), a refining step (step S20), a stirring step (step S30), a forming step (step S40), a slow cooling step (step S50), and a cutting plate. It mainly includes a process (step S60), a shape processing process (step S70), and a chemical strengthening process (step S80).
 熔解工程(ステップS10)では、図示されない熔解炉で、ガラス原料が化石燃料の燃焼による間接加熱および電気通電による直接加熱により加熱されて溶融ガラスが作られる。ガラスの熔解は、これ以外の方法で行われてもよい。
 次に、清澄工程が行われる(ステップS20)。清澄工程では、溶融ガラスが図示されない液槽に貯留された状態で、溶融ガラス中の気泡が上述の清澄剤を用いて取り除かれる。具体的には、溶融ガラス中で価数変動する金属酸化物の酸化還元反応によって行われる。高温時の溶融ガラスにおいて、金属酸化物は還元反応により酸素を放出し、この酸素がガスとなって、溶融ガラス中の気泡を成長させて液面に浮上させる。これにより、溶融ガラス中の気泡は脱泡される。あるいは、酸素ガスの気泡は、溶融ガラス中の他の気泡中のガスを取り込んで成長し、溶融ガラスの液面に浮上する。これにより、溶融ガラス中の気泡は脱泡される。また、脱泡後、ガラスの温度が下がってくると、金属酸化物が酸化反応をおこし、浮上せずにガラス中に残っていた小泡中の酸素を吸収する。酸素が吸収されて小泡はより小さくなりガラス中に再吸収される。
 次に、攪拌工程が行われる(ステップS30)。攪拌工程では、ガラスの化学的および熱的均一性を保つために、垂直に向けられた図示されない撹拌槽に溶融ガラスが通される。攪拌槽に設けられたスターラによって溶融ガラスは攪拌されながら、垂直下方向底部に移動し、後工程に導かれる。これによって、脈理等のガラスの不均一性を抑制することができる。
In the melting step (step S10), in a melting furnace (not shown), the glass raw material is heated by indirect heating by combustion of fossil fuel and direct heating by electric conduction to produce molten glass. The melting of the glass may be performed by other methods.
Next, a clarification process is performed (step S20). In the clarification step, bubbles in the molten glass are removed using the above-described clarifier while the molten glass is stored in a liquid tank (not shown). Specifically, it is performed by a redox reaction of a metal oxide whose valence fluctuates in molten glass. In the molten glass at a high temperature, the metal oxide releases oxygen by a reduction reaction, and this oxygen becomes a gas, and bubbles in the molten glass grow and float on the liquid surface. Thereby, bubbles in the molten glass are defoamed. Or the bubble of oxygen gas takes in the gas in the other bubble in a molten glass, grows, and floats on the liquid level of a molten glass. Thereby, bubbles in the molten glass are defoamed. Further, when the temperature of the glass decreases after defoaming, the metal oxide undergoes an oxidation reaction and absorbs oxygen contained in the small bubbles remaining in the glass without rising. As oxygen is absorbed, the bubbles become smaller and reabsorbed into the glass.
Next, a stirring process is performed (step S30). In the stirring step, the molten glass is passed through a vertically-shown stirring tank (not shown) in order to maintain the chemical and thermal uniformity of the glass. While the molten glass is being stirred by the stirrer provided in the stirring tank, the molten glass moves to the bottom in the vertical downward direction and is guided to the subsequent process. Thereby, nonuniformity of the glass such as striae can be suppressed.
 次に、成形工程が行われる(ステップS40)。成形工程では、ダウンドロー法が用いられる。オーバーフローダウンドローやスロットダウンドロー等を含むダウンドロー法は、例えば特開2010-189220号公報、特許第3586142号公報や図5示された装置を用いた公知の方法である。ダウンドロー法における成形工程については、後述する。これにより、所定の厚さ、幅を有するシート状のガラスリボンが成形される。成形方法としては、ダウンドロー法の中でも、オーバーフローダウンドローが最も好ましいが、スロットダウンドローでもよい。しかし、揮発成分の揮発を促進させあるいは揮発量を増大させて圧縮応力層14の応力値(絶対値)を高めるには、揮発量が多いオーバーフローダウンドローが好ましい。 Next, a molding process is performed (step S40). In the molding process, a downdraw method is used. The down-draw method including overflow down-draw and slot down-draw is a known method using, for example, Japanese Patent Application Laid-Open No. 2010-189220, Japanese Patent No. 3586142, and the apparatus shown in FIG. The molding process in the downdraw method will be described later. Thereby, a sheet-like glass ribbon having a predetermined thickness and width is formed. As a molding method, an overflow downdraw is most preferable among the downdraw methods, but a slot downdraw may be used. However, in order to increase the stress value (absolute value) of the compressive stress layer 14 by promoting the volatilization of volatile components or increasing the volatilization amount, an overflow downdraw with a large volatilization amount is preferable.
 次に、徐冷工程が行われる(ステップS50)。具体的には、シート状に成形されたガラスリボンは、歪みが発生しないように冷却速度を制御して、図示されない徐冷炉にて徐冷点以下に冷却される。これにより、ガラスリボンは、最終製品であるガラス板10と同様に、応力の点で圧縮応力層14および引っ張り応力層12を有し、組成の点でSiリッチ層を有する。
 次に、裁板工程が行われる(ステップS60)。具体的に、連続的に生成されるガラスリボンは一定の長さ毎に裁板されガラス板が得られる。
 この後、形状加工工程が行われる(ステップS70)。形状加工工程では、所定のガラス板のサイズや形状に切り出す他、ガラス表面および端面の研削・研磨が行われる。形状加工は、サンドブラスト、カッターやレーザを用いた物理的手段を用いても、エッチングなどの化学的手段を用いてもよい。なお、ガラス板を複雑な形状に形状加工する際には、化学強化処理前に、上記エッチング処理を施すことが好ましい。
Next, a slow cooling process is performed (step S50). Specifically, the glass ribbon formed into a sheet shape is cooled below the annealing point in a slow cooling furnace (not shown) by controlling the cooling rate so that distortion does not occur. Thereby, the glass ribbon has the compressive stress layer 14 and the tensile stress layer 12 in terms of stress, and the Si-rich layer in terms of composition, like the glass plate 10 as the final product.
Next, a cutting board process is performed (step S60). Specifically, the continuously generated glass ribbon is cut every certain length to obtain a glass plate.
Thereafter, a shape processing step is performed (step S70). In the shape processing step, the glass surface and end faces are ground and polished in addition to cutting out to a predetermined glass plate size and shape. For the shape processing, physical means using sandblast, cutter or laser may be used, or chemical means such as etching may be used. In addition, when shape-processing a glass plate to a complicated shape, it is preferable to perform the said etching process before a chemical strengthening process.
 ガラス板10の形状加工の一例としては、図4に示されるようなガラス板10に孔11が開けられ、曲線及び直線を含んだ外形形状に加工するエッチング処理が挙げられる。このような外形形状に加工されたガラス板10は、電子機器の表示画面のカバーガラスに用いられる。
 この場合、まず、ガラス板の両主表面上にレジスト材料がコーテイングされる。次に、所望の外形形状のパターンを有するフォトマスクを介してレジスト材料が露光される。上記外形形状は特に限定されないが、例えば、負の曲率を持つ部分(外形形状の端に沿って外形形状の領域内部を左側に見ながら進むとき、進むにつれて右側に曲がる部分)を含む外形形状である。次に、露光後のレジスト材料が現像されて、ガラス板の被エッチング領域以外の領域にレジストパターンが形成され、ガラス板の被エッチング領域がエッチングされる。このとき、エッチャントとしてウェットエッチャントを使用した場合、ガラス板は、等方的にエッチングされる。これにより、ガラス板の端面は、中央部が外方に向かつて最も突出し、その中央部から両主表面側に向かつて緩やかに湾曲した傾斜面が形成される。なお、傾斜面と主表面との境界及び傾斜面同土の境界は、好適には、丸みを帯びた形状にする。
As an example of the shape processing of the glass plate 10, there is an etching process in which holes 11 are formed in the glass plate 10 as shown in FIG. 4 and processed into an outer shape including curves and straight lines. The glass plate 10 processed into such an outer shape is used for a cover glass of a display screen of an electronic device.
In this case, first, a resist material is coated on both main surfaces of the glass plate. Next, the resist material is exposed through a photomask having a pattern having a desired outer shape. Although the outer shape is not particularly limited, for example, an outer shape including a portion having a negative curvature (a portion that turns to the right as it travels while proceeding to the left while looking inside the region of the outer shape along the edge of the outer shape) is there. Next, the resist material after exposure is developed, a resist pattern is formed in a region other than the etched region of the glass plate, and the etched region of the glass plate is etched. At this time, when a wet etchant is used as the etchant, the glass plate is isotropically etched. As a result, the end surface of the glass plate is formed so that the central portion protrudes most outward and the inclined surface is gently curved from the central portion toward both main surface sides. The boundary between the inclined surface and the main surface and the boundary of the same surface of the inclined surface are preferably rounded.
 エッチング工程において用いるレジスト材料は特に限定されないが、レジストパターンをマスクにしてガラスをエッチングする際に使用するエッチャントに対して耐性を有する材料を適用することができる。例えば、ガラスは一般的にフッ酸を含む水溶液のウェットエッチングや、フッ素系ガスのドライエッチングにより腐食されるので、フッ酸耐性に優れたレジスト材料などが好適である。また、上記エッチャントとしては、フッ酸、硫酸、硝酸、塩酸、ケイフッ酸のうち少なくとも1つの酸を含む混酸を適用することができる。エッチャントとしてフッ酸あるいは上記混酸水溶液を使用することにより、所望の形状のカバーガラスを得ることができる。 The resist material used in the etching step is not particularly limited, but a material having resistance to an etchant used when etching glass using a resist pattern as a mask can be used. For example, since glass is generally corroded by wet etching of an aqueous solution containing hydrofluoric acid or by dry etching of a fluorine-based gas, a resist material having excellent resistance to hydrofluoric acid is suitable. As the etchant, a mixed acid containing at least one acid among hydrofluoric acid, sulfuric acid, nitric acid, hydrochloric acid, and silicic acid can be used. By using hydrofluoric acid or the above mixed acid aqueous solution as an etchant, a cover glass having a desired shape can be obtained.
 また、エッチングを利用して形状加工を行う際、マスクパターンを調整するだけで、複雑な外形形状も容易に実現することができる。さらに、エッチングにより形状加工を行うことで、より生産性も向上させることができ、加工コストも低減することができる。なおレジスト材をガラス板から剥離するための剥離液としては、KOHやNaOHなどのアルカリ溶液を用いることができる。上記レジスト材、エッチャント、剥離液の種類は、ガラス板の材料に応じて適宜選択することができる。
 なお、エッチングの方法としては、単にエッチング液に浸潰する方法のみならず、エッチング液を噴霧するスプレーエッチング法などを用いることもできる。このようなエッチングを利用してガラス板を形状加工することで、表面粗さが高平滑性である端面を有するカバーガラスを得ることが可能となる。つまり、機械加工により形状加工された際に必ず生じるマイクロクラックの発生を防止することができ、カバーガラスの機械的強度をさらに向上させることができる。
Further, when performing shape processing using etching, a complicated outer shape can be easily realized only by adjusting the mask pattern. Furthermore, by performing shape processing by etching, productivity can be further improved and processing costs can be reduced. Note that an alkaline solution such as KOH or NaOH can be used as a stripping solution for stripping the resist material from the glass plate. The types of the resist material, etchant, and stripping solution can be appropriately selected according to the material of the glass plate.
As an etching method, not only a method of immersing in an etching solution but also a spray etching method in which an etching solution is sprayed can be used. By processing the glass plate using such etching, it is possible to obtain a cover glass having an end surface with a highly smooth surface roughness. That is, it is possible to prevent the occurrence of microcracks that are inevitably generated when the shape is processed by machining, and the mechanical strength of the cover glass can be further improved.
 最後に、イオン交換による化学強化処理が行われる(ステップS80)。なお、化学強化処理は、場合によっては行われない。例えば、フラットパネルディスプレイに用いるアルミノボロシリケートガラス等のガラス板は、化学強化処理は行われない。一方、アルカリアルミノシリケートガラスのような電子機器の表示画面のカバーガラスに好適に用いられるガラス板には、化学強化処理が行われる。 Finally, a chemical strengthening process by ion exchange is performed (step S80). The chemical strengthening process is not performed depending on circumstances. For example, a glass plate such as aluminoborosilicate glass used for a flat panel display is not subjected to chemical strengthening treatment. On the other hand, a chemical strengthening treatment is performed on a glass plate suitably used for a cover glass of a display screen of an electronic device such as alkali aluminosilicate glass.
 ガラス表面近傍にSiリッチ層や圧縮応力層14が形成されたガラス板10をさらに化学強化することで、ガラス板10の強度をさらに向上させることができる。また、ガラスを急冷することで表面に圧縮応力層を形成する従来のガラス板と比較して、本実施形態のガラス板の引っ張り応力層の応力値(絶対値)は大きくなり難い。
 なお、イオン交換処理を行うためには、ガラス成分中に、イオン交換成分であるNaOやLiOを含有していることが好ましい。本実施形態の化学強化された強化ガラスは、電子機器の表示画面のカバーガラスの他に、携帯端末装置の筐体、太陽電池のカバーガラス、ディスプレイ用のガラス基板、タッチパネルディスプレイのカバーガラス、タッチパネルディスプレイのガラス基板などに適用することができる。
 例えば、化学強化処理は、下記のような方法を用いて行うことができる。
By further chemically strengthening the glass plate 10 in which the Si-rich layer and the compressive stress layer 14 are formed in the vicinity of the glass surface, the strength of the glass plate 10 can be further improved. Moreover, compared with the conventional glass plate which forms a compressive-stress layer on the surface by quenching glass, the stress value (absolute value) of the tensile-stress layer of the glass plate of this embodiment does not become large easily.
In order to carry out the ion exchange process, the glass component, it preferably contains Na 2 O and Li 2 O is an ion exchange component. The chemically strengthened tempered glass of the present embodiment includes, in addition to a cover glass for a display screen of an electronic device, a casing for a mobile terminal device, a cover glass for a solar cell, a glass substrate for display, a cover glass for a touch panel display, and a touch panel. It can be applied to a glass substrate of a display.
For example, the chemical strengthening treatment can be performed using the following method.
 化学強化処理では、ガラス板10を例えば350~550℃程度に保ったKNO100%の処理浴中に約1~25時間浸漬する。このとき、ガラス表層のNa+イオンあるいはLi+イオンが処理浴中のK+イオンあるいはLi+イオンとイオン交換することで、ガラス板は化学強化される。なお、イオン交換処理時の温度、時間、イオン交換溶液などは適宜変更可能である。例えば、イオン交換溶液は2種類以上の混合溶液であってもよい。 In the chemical strengthening treatment, the glass plate 10 is immersed in a KNO 3 100% treatment bath maintained at, for example, about 350 to 550 ° C. for about 1 to 25 hours. At this time, the glass plate is chemically strengthened by ion exchange of Na + ions or Li + ions on the surface of the glass with K + ions or Li + ions in the treatment bath. Note that the temperature, time, ion exchange solution, and the like during the ion exchange treatment can be changed as appropriate. For example, the ion exchange solution may be a mixed solution of two or more types.
 ガラス板の製造方法は、この他に、洗浄工程及び検査工程を有するが、これらの工程の説明は省略する。なお、形状加工工程は化学強化処理工程の前に行うが、化学強化処理工程の後に行ってもよい。 The glass plate manufacturing method has a cleaning process and an inspection process in addition to this, but the description of these processes is omitted. The shape processing step is performed before the chemical strengthening treatment step, but may be performed after the chemical strengthening treatment step.
 本実施形態のガラス板10の製造の成形工程において、ガラスリボンから揮発成分の揮発が促進されあるいは揮発量が増大することで、Siリッチ層が形成され、このSiリッチ層に起因して、徐冷後、裁板工程前に、圧縮応力層14および引っ張り応力層12が形成される。揮発成分とは、SiOよりも揮発しやすい成分、言い換えれば、溶融ガラスにおいて(例えば、ガラスの粘性が104.5~105poise、あるいは温度1100~1300℃)、飽和蒸気圧がSiOよりも高い成分のことを示す。揮発成分としては、例えば、Al,B,LiO,NaO,KO,MgO,CaO,SrO,BaO,ZrO,SnOなどを挙げることができるが、これに限定されない。なお、B,アルカリ酸化物(LiO,NaO,KO)、アルカリ土類金属酸化物(MgO,CaO,SrO,BaO)は、揮発性が高いため、ガラス成分として、少なくとも1種を含有することが好ましい。SnO
は、SnOとして揮発する。
 揮発が過度になるとガラス板の成形が適切にできないため、例えば、Bの含有率の上限は14質量%であることがより好ましく、
13質量%であることが特に好ましい。また、SnOの含有率が高いと、ガラスに失透が発生することがある。従って、ガラスの失透を防止するという観点からは、SnOの含有率の上限は0.5質量%であることがより好ましく、0.3質量%であることが特に好ましい。さらに、ガラスの熔解促進剤として用いられるKOは、多量に添加するとガラス板から溶出する。このため、液晶表示装置用ガラス基板等のフラットパネルディスプレイガラス基板に用いる場合には、KOの含有率の上限は0.5質量%であることがより好ましい。
In the molding process of manufacturing the glass plate 10 of the present embodiment, the volatilization of volatile components from the glass ribbon is promoted or the volatilization amount is increased, so that a Si rich layer is formed. After cooling, the compressive stress layer 14 and the tensile stress layer 12 are formed before the cutting step. The volatile component is a component that is more volatile than SiO 2 , in other words, in molten glass (for example, the viscosity of the glass is 10 4.5 to 10 5 poise, or the temperature is 1100 to 1300 ° C.), and the saturated vapor pressure is higher than that of SiO 2. Indicates a high component. Examples of the volatile component include Al 2 O 3 , B 2 O 3 , Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, BaO, ZrO 2 , and SnO 2 . It is not limited to this. B 2 O 3 , alkali oxides (Li 2 O, Na 2 O, K 2 O), and alkaline earth metal oxides (MgO, CaO, SrO, BaO) have high volatility, and thus are used as glass components. It is preferable to contain at least one kind. SnO 2
Volatilizes as SnO.
When volatilization becomes excessive, the glass plate cannot be molded properly. For example, the upper limit of the content of B 2 O 3 is more preferably 14% by mass,
It is especially preferable that it is 13 mass%. Further, when the SnO 2 content is high, devitrification may occur in the glass. Therefore, from the viewpoint of preventing devitrification of the glass, the upper limit of the SnO 2 content is more preferably 0.5% by mass, and particularly preferably 0.3% by mass. Further, K 2 O used as a glass melting accelerator is eluted from the glass plate when added in a large amount. Therefore, when used in flat panel display glass substrates such as liquid crystal display device glass substrates, the upper limit of the content of K 2 O is more preferably 0.5% by mass.
 これらの揮発成分は、溶融ガラスにおいて飽和蒸気圧がSiOよりも高いため、成形時に(ガラスが溶融した状態で)溶融ガラスあるいはガラスリボンから揮発する。つまり、溶融ガラスからガラスリボンが形成される成形工程では、ガラスリボン表面においてSiO以外の成分が揮発するので、結果的に、成形後のガラス表面には、Si原子濃度がガラス内部のSi原子濃度よりも高くなるSiリッチ層が形成される。また、ガラス板のガラス表面にSiリッチ層が形成されると、ガラス内部との熱膨張率の差により、ガラス表面に圧縮応力層14が形成される。 Since these volatile components have a saturated vapor pressure higher than that of SiO 2 in the molten glass, they are volatilized from the molten glass or glass ribbon at the time of molding (in a molten state of the glass). That is, in a molding process in which a glass ribbon is formed from molten glass, components other than SiO 2 are volatilized on the glass ribbon surface. As a result, the Si atom concentration in the glass surface after molding has Si atoms inside the glass. A Si-rich layer that is higher than the concentration is formed. Further, when the Si-rich layer is formed on the glass surface of the glass plate, the compressive stress layer 14 is formed on the glass surface due to the difference in thermal expansion coefficient from the inside of the glass.
(成形装置)
 図5は、ダウンドロー法による成形方法を実施する成形装置の一例を説明する図である。成形装置101は、下向きに尖る五角形楔状(幅の狭い、野球のホームベース形状)の断面形状を成している。成形装置101は、直線的に延びる溝111が設けられた上面と、この上面に設けられた溝111と、平行な両端部から下方に向かう一対の壁面112とを有している。なお、本明細書では、説明の便宜のために、水平面上で溝111の延びる方向(図5の紙面垂直方向)をX方向、水平面上でX方向と直交する方向をY方向、鉛直方向をZ方向ともいう(図6参照)。
(Molding equipment)
FIG. 5 is a diagram illustrating an example of a molding apparatus that performs a molding method using a downdraw method. The forming device 101 has a pentagonal wedge shape (a narrow baseball home base shape) that is pointed downward. The forming apparatus 101 has an upper surface provided with a linearly extending groove 111, a groove 111 provided on the upper surface, and a pair of wall surfaces 112 facing downward from both parallel end portions. In the present specification, for convenience of explanation, the direction in which the groove 111 extends on the horizontal plane (the vertical direction in FIG. 5) is the X direction, the direction orthogonal to the X direction on the horizontal plane is the Y direction, and the vertical direction is the vertical direction. It is also called the Z direction (see FIG. 6).
 溝111は、図示されない供給管から一端に供給された溶融ガラス103を全長に亘って均一にオーバーフローさせるように、一端から他端に向かうにつれて段々と深さが浅くなっている。一対の壁面112のそれぞれは、上面のY方向の端部から垂直に垂れ下がる垂直面と、この垂直面の下端部から互いに近づくように内向きに傾斜する傾斜面とを有する。これらの傾斜面の下端部同士は交わってX方向に延びる稜線を形成している。 The groove 111 gradually decreases in depth from one end to the other end so that the molten glass 103 supplied to one end from a supply pipe (not shown) overflows uniformly over the entire length. Each of the pair of wall surfaces 112 has a vertical surface that hangs vertically from an end portion of the upper surface in the Y direction, and an inclined surface that is inclined inward so as to approach each other from the lower end portion of the vertical surface. The lower ends of these inclined surfaces intersect to form a ridge line extending in the X direction.
 成形装置101は、溶融ガラス103を溝111の両側からオーバーフローさせ、そのオーバーフローした溶融ガラス同士を壁面112上で誘導して傾斜面の下端部で融合させることにより帯状のガラスリボン104を連続的に形成する。 The forming apparatus 101 continuously melts the molten glass 103 from both sides of the groove 111, guides the overflowed molten glasses on the wall surface 112, and fuses them at the lower end of the inclined surface, thereby continuously forming the belt-like glass ribbon 104. Form.
 断熱構造体102は、成形装置101を収容する成形空間(チャンバ)を形成している。具体的に、断熱構造体102は、断熱性に優れた材料で構成されており、上下方向に成形装置101を挟んで互いに対向する底壁121および天井壁123と、底壁121と天井壁123の周縁同士をつなぐ矩形筒状の周壁122とを有している。底壁121の中央には、成形装置101によって形成されたガラスリボン104を通過させるゲート125が設けられている。なお、断熱構造体102は、中空構造となっていて、内部に加熱用または冷却用の空気が供給されるようになっていてもよい。 The heat insulating structure 102 forms a molding space (chamber) in which the molding apparatus 101 is accommodated. Specifically, the heat insulating structure 102 is made of a material having excellent heat insulating properties, and includes a bottom wall 121 and a ceiling wall 123 that face each other with the molding apparatus 101 in the vertical direction, and a bottom wall 121 and a ceiling wall 123. The peripheral wall 122 of the rectangular cylinder which connects the periphery of each. In the center of the bottom wall 121, a gate 125 that allows the glass ribbon 104 formed by the molding apparatus 101 to pass therethrough is provided. The heat insulating structure 102 may have a hollow structure, and air for heating or cooling may be supplied to the inside.
 本実施形態では、図5に示すように、成形装置101の壁面112に対向し、Y方向に向く周壁122の長壁部の上部に、周壁122を貫通する複数の排出口126が設けられている。さらに、周壁122のY方向に向く長壁部の下部に、周壁122を貫通する複数の導入口127が設けられている。このため、自然対流により、図5中に矢印a,b,cで示すような空気の流れが形成される。すなわち、断熱構造体102外の空気が導入口127を通じて断熱構造体102内に導入される。導入された空気は成形装置101の壁面112上を流下する溶融ガラス103に沿って上昇し、その後に排出口126を通じて断熱構造体102外に排出される。このように、断熱構造体102内で外部から取り込んだ新鮮な空気を上昇させることにより、溶融ガラス103からの揮発成分(例えば、Al,B,LiO,NaO,KO,MgO,CaO,SrO,BaO,ZrO,SnOなど)の揮発を促進させることができる。この揮発成分が揮発した部分、すなわち上昇する空気と接した溶融ガラス103の表面には、ガラスリボン104が冷却されたときにSiリッチ層が形成される。このSiリッチ層の生成により、圧縮応力層14が形成される。圧縮応力層14の応力値(絶対値)を高くするためには、溶融ガラス103が多くの揮発成分を含有することが好ましい。 In the present embodiment, as shown in FIG. 5, a plurality of discharge ports 126 penetrating the peripheral wall 122 are provided in the upper portion of the long wall portion of the peripheral wall 122 facing the wall surface 112 of the molding apparatus 101 and facing the Y direction. . Further, a plurality of inlets 127 penetrating the peripheral wall 122 are provided in the lower portion of the long wall portion facing the Y direction of the peripheral wall 122. For this reason, an air flow as shown by arrows a, b, and c in FIG. 5 is formed by natural convection. That is, the air outside the heat insulating structure 102 is introduced into the heat insulating structure 102 through the inlet 127. The introduced air rises along the molten glass 103 flowing down on the wall surface 112 of the molding apparatus 101 and is then discharged out of the heat insulating structure 102 through the discharge port 126. In this way, by raising fresh air taken from outside in the heat insulating structure 102, volatile components from the molten glass 103 (for example, Al 2 O 3 , B 2 O 3 , Li 2 O, Na 2 O). , K 2 O, MgO, CaO, SrO, BaO, ZrO 2 , SnO 2, etc.) can be promoted. When the glass ribbon 104 is cooled, a Si-rich layer is formed on the portion where the volatile components are volatilized, that is, on the surface of the molten glass 103 in contact with the rising air. The compression stress layer 14 is formed by the generation of the Si rich layer. In order to increase the stress value (absolute value) of the compressive stress layer 14, it is preferable that the molten glass 103 contains many volatile components.
 なお、排出口126および導入口127は、周壁122におけるX方向に向く短壁部にも設けられていてもよい。あるいは、周壁122のX方向に向く短壁部のみに排出口126および導入口127を設けることも可能である。ただし、溶融ガラス103の全幅に亘って均一に揮発成分を揮発させるには、排出口126および導入口127が、周壁122のY方向に向く長壁部のみに一定のピッチで設けられていることが好ましい。 Note that the discharge port 126 and the introduction port 127 may also be provided in the short wall portion of the peripheral wall 122 facing the X direction. Alternatively, the discharge port 126 and the introduction port 127 can be provided only in the short wall portion of the peripheral wall 122 facing the X direction. However, in order to volatilize the volatile components uniformly over the entire width of the molten glass 103, the discharge ports 126 and the introduction ports 127 should be provided at a constant pitch only in the long wall portion facing the Y direction of the peripheral wall 122. preferable.
 また、排出口126および導入口127の形状および数量は、周壁122に必要な強度が保たれる限り適宜選定可能である。例えば、排出口126および導入口127の形状を図6に示すように円形としてもよいし、X方向に延びるスリット状として数を低減させてもよい。なお、均一に、かつ、効率よく断熱構造体102から気体を排出するためには、ガラスリボンの巾方向全体にわたって延びるスリットを用いることがより効果的である。ただし、スリットの開口面積を広げれば広げるほど、気体流量が増えすぎて、ガラス板の表面欠点の増加や、ガラスの表面凹凸の悪化、成形温度の確保が困難となる問題が生じる。但し、この問題は、以下に示すように、導入口127から断熱構造体102内に導入する空気もしくは不活性ガスの温度を断熱構造体102内の目標温度にして、且つ、断熱構造体102内の圧力が所定の圧力に維持できるように気体の流量を調整することにより、解決することができる。 Further, the shape and quantity of the discharge port 126 and the introduction port 127 can be appropriately selected as long as the necessary strength is maintained in the peripheral wall 122. For example, the shapes of the outlet 126 and the inlet 127 may be circular as shown in FIG. 6, or the number may be reduced as slits extending in the X direction. In order to exhaust gas uniformly and efficiently from the heat insulating structure 102, it is more effective to use a slit extending over the entire width direction of the glass ribbon. However, the wider the opening area of the slit, the more the gas flow rate increases, resulting in problems such as an increase in the surface defects of the glass plate, deterioration of the surface irregularities of the glass, and difficulty in securing the molding temperature. However, as shown below, the problem is that the temperature of air or inert gas introduced into the heat insulating structure 102 from the inlet 127 is set to the target temperature in the heat insulating structure 102 and the heat insulating structure 102 This can be solved by adjusting the gas flow rate so that the pressure can be maintained at a predetermined pressure.
 さらに、導入口127を通じて断熱構造体102内に導入される空気は、例えば溶融ガラス103やガラスリボン104の温度を低下させない程度の温度であることが好ましい。ここで、導入される空気の量が少量であれば、常温の空気を導入しても溶融ガラス103やガラスリボン104の温度はそれほど低下しない。このため、常温の空気が導入されてもよい。一方、断熱構造体102内に導入される空気の量が多量であれば、常温の空気を導入すると、溶融ガラス103やガラスリボン104の温度は大きく低下する。この場合には、導入口127を通じて導入される空気を所定の温度に加熱する図示されない加熱装置が断熱構造体102の外側または内側に設けられることが好ましい。 Furthermore, it is preferable that the air introduced into the heat insulating structure 102 through the inlet 127 has a temperature that does not lower the temperature of the molten glass 103 or the glass ribbon 104, for example. Here, if the amount of air to be introduced is small, the temperature of the molten glass 103 and the glass ribbon 104 does not decrease so much even if air at normal temperature is introduced. For this reason, normal temperature air may be introduced. On the other hand, if the amount of air introduced into the heat insulating structure 102 is large, the temperature of the molten glass 103 and the glass ribbon 104 is greatly lowered when air at normal temperature is introduced. In this case, it is preferable that a heating device (not shown) for heating the air introduced through the inlet 127 to a predetermined temperature is provided outside or inside the heat insulating structure 102.
 以上説明した成形装置101では、断熱構造体102により取り囲まれた成形装置101の溝111の両側から溶融ガラス103がオーバーフローする一方、成形装置101の壁面112上を流下する溶融ガラス103に沿って空気が上昇した後、断熱構造体102外に排出される。ここで、上記空気は、断熱構造体102外から断熱構造体102内に導入される。このように、断熱構造体102内の空気が成形装置101の壁面112上を流下する溶融ガラスに沿って流れることにより溶融ガラス103からの揮発成分の揮発は促進する。これにより、ガラス板10のガラスの表裏両面に応力値の高い圧縮応力層14が形成されたガラス板10を得ることができる。 In the molding apparatus 101 described above, while the molten glass 103 overflows from both sides of the groove 111 of the molding apparatus 101 surrounded by the heat insulating structure 102, air flows along the molten glass 103 flowing down on the wall surface 112 of the molding apparatus 101. After rising, the heat insulation structure 102 is discharged. Here, the air is introduced from outside the heat insulating structure 102 into the heat insulating structure 102. Thus, volatilization of the volatile components from the molten glass 103 is promoted by the air in the heat insulating structure 102 flowing along the molten glass flowing down on the wall surface 112 of the molding apparatus 101. Thereby, the glass plate 10 in which the compressive-stress layer 14 with a high stress value was formed in the front and back both surfaces of the glass of the glass plate 10 can be obtained.
 なお、本実施形態では、排出口126が周壁122の上部に設けられているが、排出口126の位置は特に制限されない。例えば、図7に示すように、排出口126を天井壁123における成形装置101の真上の部分に設けてもよい。このようにしても、自然対流により、断熱構造体102外から断熱構造体102内に導入された空気を成形装置101の壁面112上を流下する溶融ガラス103に沿って上昇させた後に排出口126を通じて断熱構造体102外に排出することができる。また、この場合には、成形装置101の上部においても溶融ガラス103が断熱構造体102を通過する空気と接触するため、排出口126を周壁122の上部に設けた場合よりも揮発成分の揮発はさらに促進する。 In addition, in this embodiment, although the discharge port 126 is provided in the upper part of the surrounding wall 122, the position of the discharge port 126 is not restrict | limited in particular. For example, as shown in FIG. 7, the discharge port 126 may be provided in a portion of the ceiling wall 123 directly above the molding apparatus 101. Even in this case, the air introduced into the heat insulating structure 102 from the outside of the heat insulating structure 102 is raised along the molten glass 103 flowing down on the wall surface 112 of the molding apparatus 101 by natural convection, and then the discharge port 126. Through the heat insulating structure 102. In this case, since the molten glass 103 is in contact with the air passing through the heat insulating structure 102 even at the upper part of the molding apparatus 101, the volatilization of the volatile components is less than when the discharge port 126 is provided at the upper part of the peripheral wall 122. Further promote.
 ただし、排出口126を天井壁123に設けた場合には、断熱構造体102の上方からの塵等の落下物が排出口126を通じて溶融ガラス103に落下する場合がある。この観点からは、図5,6に示す実施形態のように排出口126を周壁122の上部に設ける方が好ましい。 However, when the discharge port 126 is provided in the ceiling wall 123, falling objects such as dust from above the heat insulating structure 102 may fall into the molten glass 103 through the discharge port 126. From this viewpoint, it is preferable to provide the discharge port 126 at the upper part of the peripheral wall 122 as in the embodiment shown in FIGS.
 また、図5,6に示す実施形態では、導入口127が周壁122の下部に設けられているが、導入口127の位置は、特に制限されるものではない。例えば、図8に示すように、導入口127を底壁121に設けてもよい。この場合、導入口127が成形装置101の直下の領域R内にあると、導入口127からの空気の流れがガラスリボン104の形状安定性に影響を及ぼすおそれがある。このため、導入口127は領域Rの外側に設けることが好ましい。 In the embodiment shown in FIGS. 5 and 6, the introduction port 127 is provided at the lower part of the peripheral wall 122, but the position of the introduction port 127 is not particularly limited. For example, as shown in FIG. 8, the inlet 127 may be provided in the bottom wall 121. In this case, if the inlet 127 is in the region R immediately below the molding apparatus 101, the air flow from the inlet 127 may affect the shape stability of the glass ribbon 104. For this reason, the introduction port 127 is preferably provided outside the region R.
 また、図7に示すように、導入口127は設けられなくてもよい。このようにしても、断熱構造体102外の空気がゲート125を通じて断熱構造体102内に導入される。ただし、この場合にはゲート125をガラスリボン104と反対方向に向かって空気が通過することになり、ガラスリボン104の形状安定性が損なわれるおそれがあるため、ゲート125とは別に導入口127を設けることが好ましい。 Further, as shown in FIG. 7, the introduction port 127 may not be provided. Even in this case, air outside the heat insulating structure 102 is introduced into the heat insulating structure 102 through the gate 125. However, in this case, air passes through the gate 125 in the opposite direction to the glass ribbon 104, and the shape stability of the glass ribbon 104 may be impaired. It is preferable to provide it.
 また、図5~8に示す実施形態では、自然対流により断熱構造体102内への空気の導入および断熱構造体102外への空気の排出が行われるが、強制対流によって空気の導入および排出を行うことも可能である。例えば、断熱構造体102の下部に供給管が貫通するとともに断熱構造体102の上部に排出管が貫通し、供給管あるいは排出管にファンが接続すれるとよい。この場合、断熱構造体102内の空間に開口する供給管および排出管の端部がそれぞれ導入口および排出口を構成することになる。なお、空気の導入方法には、他にも、例えば、コンプレッションエアーを、フィルターを介して減圧して導入する等の方法がある。なお、空気の導入方法は上記に限定されず、他の空気導入方法を取ってもよい。 In the embodiment shown in FIGS. 5 to 8, air is introduced into the heat insulating structure 102 and discharged out of the heat insulating structure 102 by natural convection, but air is introduced and discharged by forced convection. It is also possible to do this. For example, a supply pipe may penetrate through the lower part of the heat insulating structure 102, a discharge pipe may penetrate through the upper part of the heat insulating structure 102, and a fan may be connected to the supply pipe or the discharge pipe. In this case, the end portions of the supply pipe and the discharge pipe that open to the space in the heat insulating structure 102 constitute the introduction port and the discharge port, respectively. Other methods for introducing air include, for example, a method in which compression air is introduced under reduced pressure through a filter. The air introduction method is not limited to the above, and other air introduction methods may be used.
 また、導入口127あるいはゲート125を通じて断熱構造体102内に導入される気体は必ずしも空気である必要はなく、不活性ガスであってもよい。不活性ガスとしては、成形装置101や断熱構造体102の腐食を防止するという観点から、特に窒素を用いることが好ましい。 Further, the gas introduced into the heat insulating structure 102 through the inlet 127 or the gate 125 is not necessarily air, and may be an inert gas. As the inert gas, nitrogen is particularly preferably used from the viewpoint of preventing corrosion of the molding apparatus 101 and the heat insulating structure 102.
 図5~8に示す実施形態では、気体を断熱構造体102内に導入し、溶融ガラス103あるいはガラスリボン104の流れる方向に沿って気体を流すことで、断熱構造体102内における気化された揮発成分の濃度を低下させることができる。気体を流さない場合、断熱構造体102内で揮発成分が飽和状態になるので、さらに揮発成分の揮発を促進することができなくなる。すなわち、断熱構造体102内に導入される気体は、断熱構造体102内における気化された揮発成分の濃度を低下させるために機能する。したがって、外部から導入される気体の流れは、上昇のみに限定されず、下降であってもよい。 In the embodiment shown in FIGS. 5 to 8, the gas is introduced into the heat insulating structure 102, and the gas is caused to flow along the flowing direction of the molten glass 103 or the glass ribbon 104, whereby the vaporized volatilization in the heat insulating structure 102 is performed. The concentration of the component can be reduced. When the gas is not flowed, the volatile component is saturated in the heat insulating structure 102, so that the volatilization of the volatile component cannot be further promoted. That is, the gas introduced into the heat insulating structure 102 functions to reduce the concentration of vaporized volatile components in the heat insulating structure 102. Therefore, the flow of the gas introduced from the outside is not limited to ascending but may be descending.
 また、溶融ガラス103あるいはガラスリボン104の揮発成分の揮発を促進させる別な方法として、断熱構造体102内の成形空間内を減圧雰囲気にすることもできる。断熱構造体102内の成形空間が減圧されれば、揮発成分の揮発が促進される。
 例えば、図5に示される排出口126に吸引装置を設けることで、断熱構造体102内を減圧することができる。なお、断熱構造体102に設けられる排出口126や設けられる吸引装置の数は特に限定されず、1以上設けられればよい。
 なお、断熱構造体102内の成形空間を減圧しすぎると、ゲート125から断熱構造体102内よりも低い温度の気体が導入され、ガラスリボン104が均一化されず、ガラス板10の厚みにばらつきが生じ、さらに歪が発生することもある。
 そこで、断熱構造体102内の成形空間を、減圧前の断熱構造体102内に比較して10分の1以下の範囲で減圧することが好ましい。つまり、断熱構造体102内の成形空間の気圧が1気圧である場合には、圧力の上限を0.9気圧として減圧することが好ましい。
 このようにして断熱構造体102内の成形空間の雰囲気を調整することにより、ガラスリボン104は形成される。
Further, as another method for promoting the volatilization of the volatile components of the molten glass 103 or the glass ribbon 104, the inside of the molding space in the heat insulating structure 102 can be made a reduced pressure atmosphere. If the molding space in the heat insulating structure 102 is depressurized, volatilization of volatile components is promoted.
For example, the inside of the heat insulating structure 102 can be depressurized by providing a suction device at the discharge port 126 shown in FIG. Note that the number of discharge ports 126 provided in the heat insulating structure 102 and the number of suction devices provided are not particularly limited, and one or more may be provided.
Note that if the molding space in the heat insulating structure 102 is excessively depressurized, a gas having a lower temperature than that in the heat insulating structure 102 is introduced from the gate 125, the glass ribbon 104 is not uniformized, and the thickness of the glass plate 10 varies. And further distortion may occur.
Therefore, it is preferable to depressurize the molding space in the heat insulating structure 102 within a range of 1/10 or less compared to that in the heat insulating structure 102 before pressure reduction. That is, when the pressure in the molding space in the heat insulating structure 102 is 1 atm, it is preferable to reduce the pressure to 0.9 atm.
Thus, the glass ribbon 104 is formed by adjusting the atmosphere of the molding space in the heat insulating structure 102.
 さらに、溶融ガラス103あるいはガラスリボン104の揮発成分の揮発を促進させる別な方法として、断熱構造体102内の成形空間の雰囲気温度を高くすることもできる。断熱構造体102内の成形空間の雰囲気温度が上昇すれば、揮発成分の飽和蒸気圧も上昇するため、揮発成分の揮発が促進される。
 なお、断熱構造体102内の成形空間の雰囲気温度が上昇しすぎるとガラスリボン104の成形がし難くなり、さらにエネルギー消費量が増加する。このため、上昇させる断熱構造体102内の成形空間の雰囲気温度の上昇の範囲は0超~100℃であることが好ましく、0超~50℃であることがさらに好ましく、0超~10℃であることがさらに好ましい。
 このようにして断熱構造体102内の成形空間の雰囲気を調整して、断熱構造体102内の溶融ガラス103あるいはガラスリボン104の表面に面する雰囲気における揮発成分の分圧と揮発成分の飽和蒸気圧の差を大きくする。これにより、揮発成分の揮発を促進させつつガラスリボン104が形成される。このような溶融したガラスおよびガラスリボンの表面から揮発成分の揮発を促進させる方法は、溶融したガラスおよびガラスリボンの両表面のほか、一方の表面のみに対して適用することもできる。
Furthermore, as another method for promoting the volatilization of the volatile components of the molten glass 103 or the glass ribbon 104, the atmosphere temperature of the molding space in the heat insulating structure 102 can be increased. If the atmospheric temperature of the molding space in the heat insulating structure 102 rises, the saturated vapor pressure of the volatile component also rises, so that the volatilization of the volatile component is promoted.
In addition, when the atmospheric temperature of the molding space in the heat insulation structure 102 rises too much, it will become difficult to shape | mold the glass ribbon 104, and also energy consumption will increase. For this reason, the range of increase in the atmospheric temperature of the molding space in the heat insulating structure 102 to be raised is preferably 0 to 100 ° C., more preferably 0 to 50 ° C., more preferably 0 to 10 ° C. More preferably it is.
In this way, the atmosphere of the molding space in the heat insulating structure 102 is adjusted, and the partial pressure of the volatile component and the saturated vapor of the volatile component in the atmosphere facing the surface of the molten glass 103 or the glass ribbon 104 in the heat insulating structure 102. Increase the pressure difference. Thereby, the glass ribbon 104 is formed while promoting the volatilization of the volatile components. Such a method of promoting volatilization of volatile components from the surface of the molten glass and glass ribbon can be applied to only one surface in addition to both surfaces of the molten glass and glass ribbon.
 さらに、溶融ガラス103あるいはガラスリボン104の揮発成分の揮発量を増やす方法として、成形工程における成形装置101の下端部からゲート125の上端部までの距離を長くすることができる。この距離を長くすることにより、ガラスリボン104が成形空間内を通過する通過時間を長くすることができる。その結果、断熱構造体102内の空間でガラスリボン104が高温に曝される時間が長くなり、揮発時間が増加する。このため、ガラスリボン104の揮発成分の揮発量が増える。
 上記距離を長くしすぎると、成形されるガラスリボン104の厚さが変化する。このため上記距離の増加分は、0超~20mm、0超~10mm、0超~5mm、0超~1mm、0超~0.1mmであることがさらに好ましい。
Furthermore, as a method of increasing the volatilization amount of the volatile component of the molten glass 103 or the glass ribbon 104, the distance from the lower end portion of the molding apparatus 101 to the upper end portion of the gate 125 in the molding process can be increased. By increasing this distance, the passage time for the glass ribbon 104 to pass through the molding space can be increased. As a result, the time during which the glass ribbon 104 is exposed to a high temperature in the space in the heat insulating structure 102 becomes longer, and the volatilization time increases. For this reason, the volatilization amount of the volatile component of the glass ribbon 104 increases.
If the distance is too long, the thickness of the glass ribbon 104 to be formed changes. For this reason, the increment of the distance is more preferably more than 0 to 20 mm, more than 0 to 10 mm, more than 0 to 5 mm, more than 0 to 1 mm, more than 0 to 0.1 mm.
 また、成形体装置101自体のサイズを大きくして、溶融ガラス103が流れる壁面112の流れる長さを長くしてもよい。これにより、断熱構造体102内の空間で溶融ガラス103が高温に曝される時間が長くなり、揮発時間が増加する。このため、溶融ガラス103の揮発成分の揮発量が増える。 Alternatively, the size of the molded body device 101 itself may be increased to increase the length of flow of the wall surface 112 through which the molten glass 103 flows. As a result, the time during which the molten glass 103 is exposed to a high temperature in the space in the heat insulating structure 102 becomes longer, and the volatilization time increases. For this reason, the volatilization amount of the volatile component of the molten glass 103 increases.
 断熱構造体102内を通過する溶融ガラスから揮発成分の揮発を促進させるあるいは揮発量を増やすための方法を種々説明したが、これらの方法は、単独であるいは組み合わせて用いることができる。 Various methods for promoting the volatilization of volatile components or increasing the amount of volatilization from the molten glass passing through the heat insulating structure 102 have been described, but these methods can be used alone or in combination.
 このようにして製造されるガラス板10は、圧縮応力層14がガラス表面に薄く形成されるので、ガラス板の加工性を保ちつつ、ガラス表面に傷がつくことを防止できる。
 特に、ガラス板10を液晶表示装置用ガラス基板等のFDPガラス基板に用いる場合、イオン交換成分であるアルカリ金属イオンを多く含有できない。このため、ガラス板10は、イオン交換を行わずに圧縮応力層14が得られる点で有効である。さらに、徐冷工程においてガラスを急冷することで得られる従来のガラス板の圧縮応力層よりも薄くかつ応力値(絶対値)が大きい圧縮応力層14が得られるので、ガラス板10は、形状加工前の薄いガラス板として有効に用いることができる。
In the glass plate 10 thus manufactured, the compressive stress layer 14 is thinly formed on the glass surface, so that the glass surface can be prevented from being damaged while maintaining the workability of the glass plate.
In particular, when the glass plate 10 is used for an FDP glass substrate such as a glass substrate for a liquid crystal display device, it cannot contain a large amount of alkali metal ions that are ion exchange components. Therefore, the glass plate 10 is effective in that the compressive stress layer 14 can be obtained without performing ion exchange. Furthermore, since the compressive stress layer 14 which is thinner and has a larger stress value (absolute value) than the compressive stress layer of the conventional glass plate obtained by rapidly cooling the glass in the slow cooling step, the glass plate 10 is shaped. It can be used effectively as the previous thin glass plate.
 従来のガラス板は、工程間の搬送中や切断や形状加工において、表面に傷がついてしまうことがある。しかし、ガラス板10は、化学強化を行う前にガラス表面に傷がついてしまうことを防止できるため、カバーガラス表面の傷を防止することができ、表面品質を向上させることができる。 A conventional glass plate may be scratched on the surface during conveyance between processes, during cutting or shaping. However, since the glass plate 10 can prevent the glass surface from being scratched before chemical strengthening, it can prevent the cover glass surface from being scratched and can improve the surface quality.
(実施例)
 図9は、アルミノボロシリケートガラスのガラス板10について実測したSiの原子濃度(%)の分布を示す図である。Siの原子濃度(%)は、X線光電子分光装置(アルバックファイ社製Quantera SXM)を用いて、表面近傍のSi原子濃度を測定した。具体的には、スパッタリングによりガラス板の表面を種々の深さまで掘り下げ、各深さにおける原子濃度を測定した。測定元素としては、Siとともに、含有率が相対的に高い揮発成分であるAl,B,Ca,Sr,Baを指定し、測定元素中に占めるSiの比率を求めた。これらの成分は、ガラスリボンの成形工程において、ガラスリボンの表面から揮発する揮発成分である。なお、揮発成分のうちでもKおよびSnの含有率は小さく、それらの量がSi原子濃度に与える影響は少ないと考えられるため、これらは測定元素に含めていない。図9に示すガラス板A,ガラス板Bは、図5に示す装置を用いて、流れる空気の条件を変えて作製されたガラス板である。
 図9に示すように、ガラス板A、ガラス板Bではいずれもガラス中心位置に比べてSi原子濃度が5%以上高い領域がガラス表面から厚さ方向に沿って0より大きく30nm以下の深さの範囲に形成されている。これは、ガラス板A、ガラス板Bでは、ガラス表面近傍で揮発成分の量が内部に比べて少なくなっていることによると考えられる。
(Example)
FIG. 9 is a diagram showing the distribution of the atomic concentration (%) of Si actually measured for the glass plate 10 of aluminoborosilicate glass. For the atomic concentration (%) of Si, the Si atomic concentration near the surface was measured using an X-ray photoelectron spectrometer (Quantera SXM manufactured by ULVAC-PHI). Specifically, the surface of the glass plate was dug down to various depths by sputtering, and the atomic concentration at each depth was measured. As the measurement element, Al, B, Ca, Sr, and Ba, which are volatile components having a relatively high content, are specified together with Si, and the ratio of Si in the measurement element is obtained. These components are volatile components that volatilize from the surface of the glass ribbon in the glass ribbon forming step. In addition, since the content rate of K and Sn is small among volatile components, and it is considered that the amount thereof has little influence on the Si atom concentration, these are not included in the measurement elements. The glass plate A and the glass plate B shown in FIG. 9 are glass plates produced by changing the conditions of flowing air using the apparatus shown in FIG.
As shown in FIG. 9, in both the glass plate A and the glass plate B, the region where the Si atom concentration is 5% or more higher than the glass center position has a depth of more than 0 and 30 nm or less along the thickness direction from the glass surface. It is formed in the range. This is considered to be due to the fact that in the glass plate A and the glass plate B, the amount of volatile components is smaller in the vicinity of the glass surface than in the interior.
なお、上記ガラス板Aおよびガラス板Bの各成文の含有率(質量%)は以下のとおりであった。
 SiO2 60.9%
 Al23 16.9%
 B23 11.6%
 MgO 1.7%
 CaO 5.1%
 SrO 2.6%
 BaO 0.7%
 K2O 0.25%
 SnO2 0.13%
In addition, the content rate (mass%) of each composition of the said glass plate A and the glass plate B was as follows.
SiO 2 60.9%
Al 2 O 3 16.9%
B 2 O 3 11.6%
MgO 1.7%
CaO 5.1%
SrO 2.6%
BaO 0.7%
K 2 O 0.25%
SnO 2 0.13%
 図10は、上記ガラス板Aのガラス板10について実測した内部応力の分布を示す図である。内部応力は、微小面積複屈折計 (王子計測機器社製 KOBRA-CCD/X)を用い、ガラス板10を厚さ方向に切断した断面について表面から所定の深さごとに1cm当たりの光路差率(光路差/光路長さ)を測定し、これを光弾性定数で割って算出している。なお、「内部応力」とは、ガラス板の厚さ方向に沿った0~10μmの厚さの平均値を示している。そのため、局部的には、図10に示す結果を超えるような応力値が形成されている場合もある。
 図10に示すように、ガラス板10の表裏両面には、圧縮応力層14が形成され、その内部に略一定の引っ張り応力値を有する引っ張り応力層14が形成されていることが分かる。また、ガラス板内部に形成された引っ張り応力層14の応力値がガラス板厚さ方向に略一定で形成されていることも分かる。これは、ガラス板10のガラス表裏両面近傍では揮発成分が少なくなっていることに起因するものである。
FIG. 10 is a diagram showing the distribution of internal stress measured for the glass plate 10 of the glass plate A. As shown in FIG. The internal stress is determined by using a micro-area birefringence meter (KOBRA-CCD / X manufactured by Oji Scientific Instruments Co., Ltd.), and the optical path difference rate per 1 cm for each predetermined depth from the surface of the cross section of the glass plate 10 cut in the thickness direction. It is calculated by measuring (optical path difference / optical path length) and dividing this by the photoelastic constant. Note that “internal stress” indicates an average value of thicknesses of 0 to 10 μm along the thickness direction of the glass plate. Therefore, locally, a stress value exceeding the result shown in FIG. 10 may be formed.
As shown in FIG. 10, it can be seen that the compressive stress layer 14 is formed on both the front and back surfaces of the glass plate 10, and the tensile stress layer 14 having a substantially constant tensile stress value is formed therein. It can also be seen that the stress value of the tensile stress layer 14 formed inside the glass plate is substantially constant in the glass plate thickness direction. This is due to the fact that volatile components are reduced in the vicinity of the front and back surfaces of the glass plate 10.
 さらに、図5に示す装置を用いて作製したガラス板10を複数枚取り出して実施例1~5とした。さらに、実施例1と同様の方法で作製したガラス板の圧縮応力層14を表面研摩して除去することにより圧縮・引っ張り応力プロファイル形状が実施例1~5と異なるガラス板を比較例1とした。ガラス板の製造の際、アルミノボロシリケートガラスのガラス原料を、耐火煉瓦製の溶解槽と白金製の境枠槽などを備えた連続溶解装置を用いて、1580℃で溶解し、1650℃で清澄し、1500℃で攪拌した後に図5に示す装置を用いたダウンドロ一法により厚さ0.7mmの薄板状のガラス板を成形した。実施例1~5および比較例1のガラス板に関するSi原子濃度の実測と内部応力の実測を、上記ガラス板A,Bと同様の方法で行った。
 また、引っ掻き荷重2N,引っ掻き長さ30mmの条件で、エリクセンモデル318(エリクセン社製)引っ掻き硬度計の先端に直径0.7mm(Bosch規格)のボールチップを設けて、実施例1~5、比較例1のガラス板に引っ掻き傷をつけた。この後、実施例1~5、比較例1のガラス板についてガラス表面をレーザ顕微鏡で観察し、傷によるクラックが進展したガラス板を不良、クラックが進展していなかったガラス板を良好と評価した。
 下記表1には、実測結果及び評価結果を示す。
Further, a plurality of glass plates 10 produced using the apparatus shown in FIG. Further, a glass plate having a compression / tensile stress profile shape different from that of Examples 1 to 5 by removing the compressive stress layer 14 of the glass plate produced by the same method as in Example 1 by surface polishing was used as Comparative Example 1. . During the production of the glass plate, the glass raw material of aluminoborosilicate glass is melted at 1580 ° C. using a continuous melting device equipped with a refractory brick melting tank and a platinum border frame tank, and clarified at 1650 ° C. Then, after stirring at 1500 ° C., a thin glass plate having a thickness of 0.7 mm was formed by the down-draw method using the apparatus shown in FIG. The actual measurement of the Si atom concentration and the internal stress of the glass plates of Examples 1 to 5 and Comparative Example 1 were performed in the same manner as the glass plates A and B.
In addition, a ball tip having a diameter of 0.7 mm (Bosch standard) is provided at the tip of an Erichsen model 318 (manufactured by Eriksen) scratch hardness meter under the conditions of a scratch load of 2 N and a scratch length of 30 mm. The glass plate of Example 1 was scratched. Thereafter, the glass surfaces of the glass plates of Examples 1 to 5 and Comparative Example 1 were observed with a laser microscope, and the glass plate in which cracks due to scratches progressed was evaluated as poor, and the glass plate in which cracks did not progress was evaluated as good. .
Table 1 below shows actual measurement results and evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1より、実施例1~5はいずれも、厚さが50μm以下の圧縮応力層14が形成されている。このため、ガラス成形後の加工処理の効率に悪影響を与えにくい。また、実施例1~5は、いずれも、傷の評価で良好と評価された。これより、ガラス板10は、ガラス成形後の加工処理の効率に悪影響を与えず、ガラス表面に傷が付き難い程度にガラス表面が強化されていることがわかる。
 また、実施例1~5の引っ張り応力層12の「引張中心領域」における応力値の変動、すなわち応力値(絶対値)の最大値と最小値の差は、いずれも0.12MPa以下である。
From Table 1 above, in each of Examples 1 to 5, a compressive stress layer 14 having a thickness of 50 μm or less is formed. For this reason, it is hard to adversely affect the efficiency of processing after glass forming. Also, all of Examples 1 to 5 were evaluated as good in the evaluation of scratches. From this, it can be seen that the glass surface of the glass plate 10 is strengthened to such an extent that the glass surface is not easily scratched without adversely affecting the efficiency of processing after glass forming.
Further, the fluctuation of the stress value in the “tensile center region” of the tensile stress layer 12 of Examples 1 to 5, that is, the difference between the maximum value and the minimum value of the stress value (absolute value) is 0.12 MPa or less.
 さらに、下記表2に示す組成の実施例6~8と比較例2のガラス板を下記の条件で化学強化した。比較例2は、実施例6~8と同様の方法で製造されたガラス板の表面に形成される圧縮応力層14の部分を研磨した後、化学強化して得られた強化ガラスである。
 実施例6~8および比較例2のガラス板は、下記表2に示される組成となるように調合したガラス原料を、耐火煉瓦製の溶解槽と白金製の境枠槽などを備えた連続溶解装置を用いて、1520℃で熔解し、1550℃で清澄し、1350℃で攪拌した後に図5に示す装置を用いたダウンドロ一法により厚さ0.7mmの薄板状のガラス板を成形し、化学強化用ガラス板を得た。比較例2のガラス板は、比較例1と同様にガラス板10の圧縮応力層14の部分を表面研磨して取り除いた。
 次に、実施例6~8及び比較例2のガラス板のガラス表面に、上述した方法により引っ掻き傷をつけた。
 洗浄されたガラス板を400℃に保ったKNO3100%の処理浴中に約2.5時間浸潰して、ガラス表層に存在するNa+イオンを、処理浴中のK+イオンとイオン交換させ、ガラス板を化学強化した。化学強化後のガラス板は、洗浄槽に順次浸潰して洗浄し、乾燥した強化ガラスを得た。
Furthermore, the glass plates of Examples 6 to 8 and Comparative Example 2 having the compositions shown in Table 2 below were chemically strengthened under the following conditions. Comparative Example 2 is a tempered glass obtained by polishing a portion of the compressive stress layer 14 formed on the surface of a glass plate produced by the same method as in Examples 6 to 8, and then chemically strengthening it.
The glass plates of Examples 6 to 8 and Comparative Example 2 were prepared by continuously dissolving glass raw materials prepared so as to have the compositions shown in Table 2 below, with a melting tank made of refractory bricks, a border frame tank made of platinum, and the like. Using a device, melt at 1520 ° C., clarify at 1550 ° C., and after stirring at 1350 ° C., form a thin glass plate having a thickness of 0.7 mm by the down-draw method using the device shown in FIG. A glass plate for chemical strengthening was obtained. The glass plate of Comparative Example 2 was removed by polishing the surface of the compressive stress layer 14 of the glass plate 10 as in Comparative Example 1.
Next, the glass surfaces of the glass plates of Examples 6 to 8 and Comparative Example 2 were scratched by the method described above.
The cleaned glass plate is immersed in a 100% KNO 3 treatment bath maintained at 400 ° C. for about 2.5 hours to exchange Na + ions existing on the glass surface layer with K + ions in the treatment bath. The glass plate was chemically strengthened. The glass plate after chemical strengthening was sequentially crushed and washed in a washing tank to obtain dried tempered glass.
 こうして得られた実施例6~8及び比較例2のガラス表面をレーザ顕微鏡で観察した。このとき、傷によるクラックが進展したガラス板を不良、クラックが進展していなかったガラス板を良好とした。
 下記表2には、組成と評価結果を示す。
The glass surfaces of Examples 6 to 8 and Comparative Example 2 thus obtained were observed with a laser microscope. At this time, the glass plate in which cracks due to scratches progressed was defective, and the glass plate in which cracks did not progress was considered good.
Table 2 below shows the composition and evaluation results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2より、実施例6~8の傷の評価は良好であったが、比較例2の評価は不良であった。これより、圧縮応力層14と引っ張り応力層12を有するガラス板10を化学強化することが、強化ガラス表面の傷発生を防止できる点で有効であることがわかる。 From Table 2 above, the evaluation of the scratches of Examples 6 to 8 was good, but the evaluation of Comparative Example 2 was poor. From this, it can be seen that chemically strengthening the glass plate 10 having the compressive stress layer 14 and the tensile stress layer 12 is effective in terms of preventing generation of scratches on the surface of the tempered glass.
 以上、本発明のガラス板及びガラス板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 As mentioned above, although the manufacturing method of the glass plate and glass plate of this invention was demonstrated in detail, this invention is not limited to the said embodiment, In the range which does not deviate from the main point of this invention, even if various improvement and a change are carried out. Of course it is good.
 本発明のガラス板10は、フラットパネルディスプレイガラス基板に好適である。また、本発明のガラス板を化学強化した強化ガラスは、携帯電話、デジタルカメラ、PDA(携帯端末装置)、太陽電池、フラットパネルディスプレイのカバーガラスに好適に用いられる。また本発明のガラス板は、例えば、タッチパネルディスプレイの基板、窓ガラス、磁気ディスク用基板、固体撮像素子用カバーガラスなどへの応用が期待できる。 The glass plate 10 of the present invention is suitable for a flat panel display glass substrate. Moreover, the tempered glass which chemically strengthened the glass plate of this invention is used suitably for the cover glass of a mobile telephone, a digital camera, PDA (mobile terminal device), a solar cell, and a flat panel display. The glass plate of the present invention can be expected to be applied to, for example, a touch panel display substrate, window glass, magnetic disk substrate, solid-state imaging device cover glass, and the like.
10 ガラス板
11 孔
12 引っ張り応力層
14 圧縮応力層
101 成形装置
102 断熱構造体
103 溶融ガラス
104 ガラスリボン
111 溝
112 壁面
121 底壁
122 周壁
123 天井壁
125 ゲート
126 排出口
127 導入口
 
DESCRIPTION OF SYMBOLS 10 Glass plate 11 Hole 12 Tensile stress layer 14 Compressive stress layer 101 Molding apparatus 102 Heat insulation structure 103 Molten glass 104 Glass ribbon 111 Groove 112 Wall surface 121 Bottom wall 122 Perimeter wall 123 Ceiling wall 125 Gate 126 Outlet 127 Inlet

Claims (23)

  1.  ダウンドロー法で成形されたガラス板であって、
     前記ガラス板の厚さ方向の中心位置におけるSiの原子濃度(原子%)に対するSiの原子濃度(原子%)の濃度比率が5%以上高いSi高濃度領域が、ガラス表面から厚さ方向に沿って0より大きく30nm以下の深さの範囲に形成され、
     前記Si高濃度領域は、Si原子濃度の最大ピークを有し、前記ガラス板の厚さ方向に沿ったSi原子濃度は、前記最大ピーク位置から前記ガラス板の表面および前記中心位置まで連続的に減少する、ことを特徴とするガラス板。
    A glass plate formed by the downdraw method,
    A Si high concentration region in which the concentration ratio of the Si atomic concentration (atomic%) to the Si atomic concentration (atomic%) at the center position in the thickness direction of the glass plate is 5% or more extends along the thickness direction from the glass surface. Formed in a range of depth greater than 0 and 30 nm or less,
    The Si high concentration region has a maximum peak of Si atom concentration, and the Si atom concentration along the thickness direction of the glass plate is continuously from the maximum peak position to the surface of the glass plate and the center position. A glass plate characterized by decreasing.
  2.  前記ガラス板の材料に含まれる、ガラス溶融状態においてSiO2に比べて飽和蒸気圧の高い揮発成分が、前記ガラス板の厚さ方向の中心位置において30質量%以上含まれる、請求項1に記載のガラス板。 The volatile component which is contained in the material of the glass plate and has a higher saturated vapor pressure than SiO 2 in the molten glass state is contained at 30% by mass or more at the center position in the thickness direction of the glass plate. Glass plate.
  3.  前記ガラス板は、前記ガラス板の内部に形成された引っ張り応力層と、前記引っ張り応力層の両側に形成された圧縮応力層と、を有し、
     前記圧縮応力層の応力値の絶対値は4MPa以下であり、
     前記圧縮応力層は前記ガラス板の表面から前記ガラス板の厚さ方向に沿った10μmより大きく50μm以下の深さの範囲に形成され、前記圧縮応力層の厚さは前記ガラス板の厚さの13分の1未満であり、
     前記引っ張り応力層の応力値の絶対値は0.4MPa以下であり、前記引っ張り応力層の応力値の偏差は0.2MPa以下である、請求項1または2に記載のガラス板。
    The glass plate has a tensile stress layer formed inside the glass plate, and a compressive stress layer formed on both sides of the tensile stress layer,
    The absolute value of the stress value of the compressive stress layer is 4 MPa or less,
    The compressive stress layer is formed in a depth range from 10 μm to 50 μm or less along the thickness direction of the glass plate from the surface of the glass plate, and the thickness of the compressive stress layer is equal to the thickness of the glass plate. Less than one-third,
    The glass plate according to claim 1 or 2, wherein the absolute value of the stress value of the tensile stress layer is 0.4 MPa or less, and the deviation of the stress value of the tensile stress layer is 0.2 MPa or less.
  4.  前記ガラス板のガラス表面にはイオン交換により化学強化されたイオン交換処理領域が形成され、
     前記ガラス板の内部に形成された引っ張り応力層と、前記引っ張り応力層の両側に形成された圧縮応力層と、を有し、
     前記圧縮応力層は、ガラス表面から、前記ガラス板の厚さ方向に沿った20~100μmの深さの範囲に形成される、請求項1または2に記載のガラス板。
    An ion exchange treatment region chemically strengthened by ion exchange is formed on the glass surface of the glass plate,
    A tensile stress layer formed inside the glass plate, and a compressive stress layer formed on both sides of the tensile stress layer,
    The glass plate according to claim 1 or 2, wherein the compressive stress layer is formed in a range of a depth of 20 to 100 µm along the thickness direction of the glass plate from the glass surface.
  5.  フラットディスプレイパネルガラス基板に用いられる、請求項1~4のいずれか1項に記載のガラス板。 The glass plate according to any one of claims 1 to 4, which is used for a flat display panel glass substrate.
  6.  ダウンドロー法で成形されたガラス板であって、
     前記ガラス板の内部に形成された引っ張り応力層と、前記引っ張り応力層の両側に形成された圧縮応力層と、を有し、
     前記圧縮応力層の応力値の絶対値は4MPa以下であり、
     前記圧縮応力層は前記ガラス板の表面から前記ガラス板の厚さ方向に沿った10μmより大きく50μm以下の深さの範囲に形成され、前記圧縮応力層の厚さは前記ガラス板の厚さの13分の1未満であり、
     前記引っ張り応力層の応力値の絶対値は0.4MPa以下であり、前記引っ張り応力層の応力値の偏差は0.2MPa以下である、ことを特徴とするガラス板。
    A glass plate formed by the downdraw method,
    A tensile stress layer formed inside the glass plate, and a compressive stress layer formed on both sides of the tensile stress layer,
    The absolute value of the stress value of the compressive stress layer is 4 MPa or less,
    The compressive stress layer is formed in a depth range from 10 μm to 50 μm or less along the thickness direction of the glass plate from the surface of the glass plate, and the thickness of the compressive stress layer is equal to the thickness of the glass plate. Less than one-third,
    The absolute value of the stress value of the tensile stress layer is 0.4 MPa or less, and the deviation of the stress value of the tensile stress layer is 0.2 MPa or less.
  7.  前記ガラス板の前記引っ張り応力層は、前記ガラス板の溶融状態においてSiO2に比べて飽和蒸気圧の高い揮発成分を30質量%以上含む、請求項6に記載のガラス板。 The glass plate according to claim 6, wherein the tensile stress layer of the glass plate contains 30% by mass or more of a volatile component having a saturated vapor pressure higher than that of SiO 2 in the molten state of the glass plate.
  8.  フラットディスプレイパネルガラス基板に用いられる、請求項6または7に記載のガラス板。 The glass plate according to claim 6 or 7, which is used for a flat display panel glass substrate.
  9.  ガラス原料を溶融する工程と、
     ダウンドロー法を用いて、溶融したガラスからガラスリボンを成形する工程と、
     前記ガラスリボンを切断し、ガラス板を形成する工程と、を備え、
     前記ガラスリボンは、前記ガラス板の厚さ方向の中心位置におけるSiの原子濃度(原子%)に対するSiの原子濃度(原子%)の濃度比率が5%以上高いSi高濃度領域が、ガラス表面から厚さ方向に沿って0より大きく30nm以下の深さの範囲に形成され、前記Si高濃度領域は、Si原子濃度の最大ピークを有し、前記ガラス板の厚さ方向に沿ったSi原子濃度は、前記最大ピーク位置から前記ガラス板の表面および前記中心位置まで連続的に減少するように成形される、ことを特徴とするガラス板の製造方法。
    Melting glass raw materials,
    Using a downdraw method to form a glass ribbon from molten glass;
    Cutting the glass ribbon to form a glass plate, and
    The glass ribbon has a high Si concentration region in which the concentration ratio of the Si atomic concentration (atomic%) to the Si atomic concentration (atomic%) at the center position in the thickness direction of the glass plate is 5% or more from the glass surface. The Si high concentration region is formed in a depth range of greater than 0 and 30 nm or less along the thickness direction, and the Si high concentration region has a maximum peak of Si atom concentration, and the Si atom concentration along the thickness direction of the glass plate Is formed so as to continuously decrease from the maximum peak position to the surface of the glass plate and the center position.
  10.  前記ガラスリボンを成形するとき、前記溶融したガラスおよび前記ガラスリボンの少なくとも一方の表面に面する雰囲気における前記揮発成分の分圧と前記揮発成分の飽和蒸気圧の差を大きくすることにより、前記溶融したガラスおよび前記ガラスリボンの少なくとも一方の表面からの揮発成分の揮発を促進させて、前記ガラスリボンを形成する、請求項9に記載のガラス板の製造方法。 When forming the glass ribbon, the melting is performed by increasing the difference between the partial pressure of the volatile component and the saturated vapor pressure of the volatile component in an atmosphere facing at least one surface of the molten glass and the glass ribbon. The manufacturing method of the glass plate of Claim 9 which promotes volatilization of the volatile component from the surface of at least one of the glass and the said glass ribbon, and forms the said glass ribbon.
  11.  前記ガラスリボンを成形するとき、前記溶融したガラスにおいてSiO2に比べて飽和蒸気圧の高い揮発成分の揮発を促進するように、前記ガラスリボンを成形する空間内の圧力および温度の少なくとも一方を調整する、請求項10に記載のガラス板の製造方法。 When forming the glass ribbon, at least one of the pressure and temperature in the space for forming the glass ribbon is adjusted so as to promote volatilization of volatile components having a higher saturated vapor pressure than SiO 2 in the molten glass. The manufacturing method of the glass plate of Claim 10.
  12.  前記ガラスリボンを成形するとき、前記ガラスリボンを成形する空間に、前記ガラスリボンに沿って気体の流れを形成する、請求項10に記載のガラス板の製造方法。 The method for producing a glass sheet according to claim 10, wherein when the glass ribbon is formed, a gas flow is formed along the glass ribbon in a space for forming the glass ribbon.
  13.  前記ガラスリボンを成形するとき、前記溶融したガラスにおいてSiO2に比べて飽和蒸気圧の高い揮発成分の揮発量を増やすように、前記ガラスリボンを成形する空間内のガラスリボンの通過時間を調整する、請求項9に記載のガラス板の製造方法。 When forming the glass ribbon, the passage time of the glass ribbon in the space for forming the glass ribbon is adjusted so as to increase the volatilization amount of the volatile component having a higher saturated vapor pressure than the SiO 2 in the molten glass. The manufacturing method of the glass plate of Claim 9.
  14.  請求項9~13のいずれか1項に記載のガラス板の製造方法の3つの工程と、
     さらに、前記ガラス板の製造方法により製造される前記ガラス板の表面をイオン交換によって化学強化する工程を有する、カバーガラスの製造方法。
    Three steps of the method for producing a glass plate according to any one of claims 9 to 13,
    Furthermore, the manufacturing method of a cover glass which has the process of chemically strengthening the surface of the said glass plate manufactured by the manufacturing method of the said glass plate by ion exchange.
  15.  ガラス原料を溶融する工程と、
     ダウンドロー法を用いて、溶融したガラスからガラスリボンを成形する工程と、
     前記ガラスリボンを切断し、ガラス板を形成する工程と、を備え、
     前記ガラスリボンの表面から前記ガラスリボンの厚さ方向に沿った10μmより大きく50μm以下の深さの範囲に形成される圧縮応力層であって、前記ガラスリボンの厚さの13分の1未満の厚さを有し、圧縮応力値の絶対値が4MPa以下である2つの圧縮応力層と、前記2つの圧縮応力層に挟まれ、引っ張り応力値の絶対値が0.4MPa以下である引っ張り応力層と、を有するように、前記ガラスリボンは成形される、ことを特徴とするガラス板の製造方法。
    Melting glass raw materials,
    Using a downdraw method to form a glass ribbon from molten glass;
    Cutting the glass ribbon to form a glass plate, and
    A compressive stress layer formed in a depth range from 10 μm to 50 μm or less along the thickness direction of the glass ribbon from the surface of the glass ribbon, the compression stress layer being less than one-third of the thickness of the glass ribbon Two compressive stress layers having a thickness and an absolute value of the compressive stress value of 4 MPa or less, and a tensile stress layer sandwiched between the two compressive stress layers and having an absolute value of the tensile stress value of 0.4 MPa or less The glass ribbon is molded so as to have the following. A method for producing a glass plate.
  16.  溶融した前記ガラスから前記ガラスリボンを成形するとき、前記溶融したガラスおよび前記ガラスリボンの少なくとも一方の表面に面する雰囲気における前記揮発成分の分圧と前記揮発成分の飽和蒸気圧の差を大きくすることにより、前記溶融したガラスおよび前記ガラスリボンの少なくとも一方の表面からの揮発成分の揮発を促進させて、前記ガラスリボンを成形する、請求項15に記載のガラス板の製造方法。 When forming the glass ribbon from the molten glass, the difference between the partial pressure of the volatile component and the saturated vapor pressure of the volatile component in an atmosphere facing at least one surface of the molten glass and the glass ribbon is increased. The manufacturing method of the glass plate of Claim 15 which promotes volatilization of the volatile component from the surface of at least one of the said melted glass and the said glass ribbon, and shape | molds the said glass ribbon.
  17.  前記ガラスリボンを成形するとき、前記溶融したガラスにおいてSiO2に比べて飽和蒸気圧の高い揮発成分の揮発を促進するように、前記空間内の圧力および温度の少なくとも一方を調整する、請求項16に記載のガラス板の製造方法。 When molding the glass ribbon, at least one of the pressure and temperature in the space is adjusted so as to promote volatilization of a volatile component having a higher saturated vapor pressure than SiO 2 in the molten glass. The manufacturing method of the glass plate of description.
  18.  前記ガラスリボンを成形するとき、前記ガラスリボンを成形する空間に、前記ガラスリボンに沿って気体の流れを形成する、請求項16に記載のガラス板の製造方法。 The method for producing a glass plate according to claim 16, wherein when the glass ribbon is formed, a gas flow is formed along the glass ribbon in a space for forming the glass ribbon.
  19.  前記ガラスリボンを成形するとき、前記溶融したガラスにおいてSiO2に比べて飽和蒸気圧の高い揮発成分の揮発量を増やすように、前記ガラスリボンを成形する空間内のガラスリボンの通過時間を調整する、請求項15に記載のガラス板の製造方法。 When forming the glass ribbon, the passage time of the glass ribbon in the space for forming the glass ribbon is adjusted so as to increase the volatilization amount of the volatile component having a higher saturated vapor pressure than the SiO 2 in the molten glass. The manufacturing method of the glass plate of Claim 15.
  20.  請求項9~13のいずれか1項に記載のガラス板の製造方法の3つの工程と、
     さらに、前記ガラス板の製造方法により製造される前記ガラス板の表面をイオン交換によって化学強化する工程を有する、カバーガラスの製造方法。
    Three steps of the method for producing a glass plate according to any one of claims 9 to 13,
    Furthermore, the manufacturing method of a cover glass which has the process of chemically strengthening the surface of the said glass plate manufactured by the manufacturing method of the said glass plate by ion exchange.
  21.  ダウンドロー法によりガラス板を製造する装置であって、
     溶融ガラスを溝の両側からオーバーフローさせ、そのオーバーフローした溶融ガラス同士を壁面で誘導して融合させることによりガラスリボンを形成する成形装置と、
     前記成形装置を取り囲むとともに前記成形装置によって形成された前記ガラスリボンを通過させるゲートを有する断熱構造体と、を備え、
     前記断熱構造体には、前記断熱構造体外から前記断熱構造体内に導入され、前記成形装置の壁面上を流下する溶融ガラスに沿って上昇した気体を前記断熱構造体外に排出する排出口が設けられている、
    ガラス板製造装置。
    An apparatus for producing a glass plate by a downdraw method,
    A molding apparatus that overflows molten glass from both sides of the groove and forms a glass ribbon by inducing and fusing the overflowed molten glass with each other on the wall surface;
    A heat insulating structure that includes a gate that surrounds the molding apparatus and allows the glass ribbon formed by the molding apparatus to pass therethrough, and
    The heat insulating structure is provided with a discharge port for discharging the gas introduced along the molten glass flowing from the outside of the heat insulating structure into the heat insulating structure and flowing down the wall surface of the molding apparatus to the outside of the heat insulating structure. ing,
    Glass plate manufacturing equipment.
  22.  ダウンドロー法によりガラス板を製造する方法であって、
     断熱構造体で取り囲まれる成形装置の溝の両側から溶融ガラスをオーバーフローさせながら、前記断熱構造体外から前記断熱構造体内に導入した気体を前記成形装置の壁面上を流下する溶融ガラスに沿って上昇させた後に前記断熱構造体外に排出する工程を含む、
    ガラス板製造方法。
    A method for producing a glass plate by a downdraw method,
    While the molten glass overflows from both sides of the groove of the molding apparatus surrounded by the heat insulating structure, the gas introduced into the heat insulating structure from outside the heat insulating structure is raised along the molten glass flowing down on the wall surface of the molding apparatus. And a step of discharging outside the heat insulating structure after
    Glass plate manufacturing method.
  23.  請求項22に記載のガラス板製造方法により得られたガラス板であって、
     表裏両面に圧縮応力層を有するガラス板。
    A glass plate obtained by the glass plate manufacturing method according to claim 22,
    A glass plate having compressive stress layers on both front and back surfaces.
PCT/JP2010/007529 2009-12-24 2010-12-24 Glass plate and method for manufacturing glass plate WO2011077756A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080058710.XA CN102958855B (en) 2009-12-24 2010-12-24 Glass plate and method for manufacturing glass plate
KR1020137021278A KR101541631B1 (en) 2009-12-24 2010-12-24 Glass plate and method for manufacturing glass plate
KR1020127016363A KR101346930B1 (en) 2009-12-24 2010-12-24 Glass plate and method for manufacturing glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-292091 2009-12-24
JP2009292091 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011077756A1 true WO2011077756A1 (en) 2011-06-30

Family

ID=44195287

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/007466 WO2011077734A1 (en) 2009-12-24 2010-12-24 Glass plate manufacturing method and glass plate manufacturing apparatus
PCT/JP2010/007529 WO2011077756A1 (en) 2009-12-24 2010-12-24 Glass plate and method for manufacturing glass plate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007466 WO2011077734A1 (en) 2009-12-24 2010-12-24 Glass plate manufacturing method and glass plate manufacturing apparatus

Country Status (5)

Country Link
JP (4) JP5624453B2 (en)
KR (3) KR101276494B1 (en)
CN (2) CN102574720B (en)
TW (2) TWI401219B (en)
WO (2) WO2011077734A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140069066A (en) * 2011-08-29 2014-06-09 코닝 인코포레이티드 Apparatus and Method for Forming Glass Sheets
US9296635B2 (en) 2009-11-30 2016-03-29 Corning Incorporated Method and apparatus for pressure control of glass-making thickness-control zone
US9487434B2 (en) 2014-02-24 2016-11-08 Corning Incorporated Strengthened glass with deep depth of compression
US10150698B2 (en) 2014-10-31 2018-12-11 Corning Incorporated Strengthened glass with ultra deep depth of compression
US10239784B2 (en) 2014-11-04 2019-03-26 Corning Incorporated Deep non-frangible stress profiles and methods of making
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US11174197B2 (en) 2016-04-08 2021-11-16 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11220456B2 (en) 2014-10-08 2022-01-11 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11267228B2 (en) 2015-07-21 2022-03-08 Corning Incorporated Glass articles exhibiting improved fracture performance
US11472734B2 (en) 2015-12-11 2022-10-18 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
US11492291B2 (en) 2012-02-29 2022-11-08 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US11878941B2 (en) 2014-06-19 2024-01-23 Corning Incorporated Glasses having non-frangible stress profiles
US11963320B2 (en) 2016-04-08 2024-04-16 Corning Incorporated Glass-based articles including a stress profile comprising two regions

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401219B (en) * 2009-12-24 2013-07-11 Avanstrate Inc Glass plate manufacturing method and glass plate manufacturing apparatus
US8397536B2 (en) * 2010-05-26 2013-03-19 Corning Incorporated Apparatus and method for controlling thickness of a flowing ribbon of molten glass
JP5896338B2 (en) * 2011-01-18 2016-03-30 日本電気硝子株式会社 Method for producing tempered glass and method for producing tempered glass plate
TWI572480B (en) 2011-07-25 2017-03-01 康寧公司 Laminated and ion-exchanged strengthened glass laminates
JP2013043795A (en) * 2011-08-23 2013-03-04 Nippon Electric Glass Co Ltd Tempered glass and method of manufacturing the same
WO2013031547A1 (en) * 2011-08-29 2013-03-07 旭硝子株式会社 Glass plate and glass plate manufacturing method
WO2013088988A1 (en) * 2011-12-12 2013-06-20 コニカミノルタ株式会社 Cover glass and method for producing same
US20130255314A1 (en) * 2012-03-27 2013-10-03 Douglas C. Allan Method for fusion drawing ion-exchangeable glass
JP2014205604A (en) * 2012-06-25 2014-10-30 日本電気硝子株式会社 Tempered glass substrate and method for producing the same
KR101370596B1 (en) * 2012-12-04 2014-03-06 (주)포인트엔지니어링 Method for manufacturing a tempered glass
TWI627141B (en) * 2013-04-30 2018-06-21 康寧公司 Apparatus and method for molten glass flow control along an isopipe weir
JP2015020930A (en) * 2013-07-19 2015-02-02 日本電気硝子株式会社 Cover glass of medical treatment apparatus
US10941071B2 (en) * 2013-08-02 2021-03-09 Corning Incorporated Hybrid soda-lime silicate and aluminosilicate glass articles
CN103395985B (en) * 2013-08-15 2015-09-16 蚌埠玻璃工业设计研究院 A kind of amber alumina silicate glass
EP3124446B1 (en) * 2014-03-28 2019-07-31 AGC Inc. Glass for chemical strengthening, chemically strengthened glass, and method for manufacturing chemically strengthened glass
CN106660856A (en) * 2014-07-18 2017-05-10 旭硝子株式会社 Glass for anti-glare processing and anti-glare glass using same
WO2016048956A1 (en) * 2014-09-24 2016-03-31 Corning Incorporated Volatile filtration systems for fusion draw machines
KR20170066580A (en) 2014-10-07 2017-06-14 코닝 인코포레이티드 Glass article with determined stress profile and method of producing the same
KR20160076036A (en) * 2014-12-22 2016-06-30 코닝정밀소재 주식회사 Cover substrate for display unit
WO2017034975A1 (en) * 2015-08-21 2017-03-02 Corning Incorporated Methods and apparatus for processing glass
EP3362417A1 (en) * 2015-10-14 2018-08-22 Corning Incorporated Laminated glass article with determined stress profile and method for forming the same
US9758418B1 (en) * 2016-04-06 2017-09-12 Corning Incorporated Methods of producing glass ribbon
JP6465416B2 (en) * 2017-07-19 2019-02-06 日本電気硝子株式会社 Endoscope
CN109949871B (en) * 2017-10-30 2022-12-23 清远南玻节能新材料有限公司 Calculation method for chemical strengthening expansion rate of aluminosilicate glass and preparation method of aluminosilicate glass product
KR102179884B1 (en) * 2017-12-26 2020-11-18 아반스트레이트 가부시키가이샤 Method for manufacturing glass substrate and glass substrate manufacturing apparatus
CN112566874A (en) * 2018-08-13 2021-03-26 Agc株式会社 Glass plate manufacturing device and molding member used in glass plate manufacturing device
CN109052934B (en) * 2018-10-16 2020-06-19 四川旭虹光电科技有限公司 Protective glass plate with impact stress resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112665A (en) * 2005-10-20 2007-05-10 Nippon Electric Glass Co Ltd Heating apparatus for liquid crystal sheet glass, furnace for liquid crystal sheet glass, and method of manufacturing liquid crystal sheet glass
WO2008050605A1 (en) * 2006-10-24 2008-05-02 Nippon Electric Glass Co., Ltd. Glass ribbon producing apparatus and process for producing the same
JP2008195602A (en) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091307A (en) * 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd Method for producing glass
JP4209316B2 (en) 2003-12-12 2009-01-14 Hoya株式会社 Manufacturing method of glass substrate for information recording medium
JP5201519B2 (en) * 2004-10-01 2013-06-05 日本電気硝子株式会社 Display board
KR101334019B1 (en) * 2005-12-15 2013-12-02 브루스 테크놀로지 엘엘씨 Overflow downdraw glass forming method and apparatus
JP5605736B2 (en) * 2006-05-25 2014-10-15 日本電気硝子株式会社 Tempered glass and manufacturing method thereof
CN100572310C (en) * 2006-08-10 2009-12-23 河南安彩高科股份有限公司 Be used for reducing the glass manufacturing equipment and the method for glass impurities
WO2009081740A1 (en) * 2007-12-25 2009-07-02 Nippon Electric Glass Co., Ltd. Process and apparatus for producing glass plate
TWI401219B (en) * 2009-12-24 2013-07-11 Avanstrate Inc Glass plate manufacturing method and glass plate manufacturing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112665A (en) * 2005-10-20 2007-05-10 Nippon Electric Glass Co Ltd Heating apparatus for liquid crystal sheet glass, furnace for liquid crystal sheet glass, and method of manufacturing liquid crystal sheet glass
WO2008050605A1 (en) * 2006-10-24 2008-05-02 Nippon Electric Glass Co., Ltd. Glass ribbon producing apparatus and process for producing the same
JP2008195602A (en) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9296635B2 (en) 2009-11-30 2016-03-29 Corning Incorporated Method and apparatus for pressure control of glass-making thickness-control zone
KR101968363B1 (en) * 2011-08-29 2019-04-11 코닝 인코포레이티드 Apparatus and Method for Forming Glass Sheets
KR20140069066A (en) * 2011-08-29 2014-06-09 코닝 인코포레이티드 Apparatus and Method for Forming Glass Sheets
US11492291B2 (en) 2012-02-29 2022-11-08 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US10118858B2 (en) 2014-02-24 2018-11-06 Corning Incorporated Strengthened glass with deep depth of compression
US9902648B2 (en) 2014-02-24 2018-02-27 Corning Incorporated Strengthened glass with deep depth of compression
US9908810B2 (en) 2014-02-24 2018-03-06 Corning Incorporated Strengthened glass with deep depth of compression
US11634359B2 (en) 2014-02-24 2023-04-25 Corning Incorporated Strengthened glass with deep depth of compression
US9676663B2 (en) 2014-02-24 2017-06-13 Corning Incorporated Strengthened glass with deep depth of compression
US10556825B2 (en) 2014-02-24 2020-02-11 Corning Incorporated Strengthened glass with deep depth of compression
US9567254B2 (en) 2014-02-24 2017-02-14 Corning Incorporated Strengthened glass with deep depth of compression
US9517968B2 (en) 2014-02-24 2016-12-13 Corning Incorporated Strengthened glass with deep depth of compression
US9487434B2 (en) 2014-02-24 2016-11-08 Corning Incorporated Strengthened glass with deep depth of compression
US11878941B2 (en) 2014-06-19 2024-01-23 Corning Incorporated Glasses having non-frangible stress profiles
US11220456B2 (en) 2014-10-08 2022-01-11 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11465937B2 (en) 2014-10-08 2022-10-11 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11459270B2 (en) 2014-10-08 2022-10-04 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11084756B2 (en) 2014-10-31 2021-08-10 Corning Incorporated Strengthened glass with ultra deep depth of compression
US11746046B2 (en) 2014-10-31 2023-09-05 Corning Incorporated Strengthened glass with ultra deep depth of compression
US10640420B2 (en) 2014-10-31 2020-05-05 Corning Incorporated Strengthened glass with ultra deep depth of compression
US10150698B2 (en) 2014-10-31 2018-12-11 Corning Incorporated Strengthened glass with ultra deep depth of compression
US11377388B2 (en) 2014-11-04 2022-07-05 Corning Incorporated Deep non-frangible stress profiles and methods of making
US11021393B2 (en) 2014-11-04 2021-06-01 Corning Incorporated Deep non-frangible stress profiles and methods of making
US10239784B2 (en) 2014-11-04 2019-03-26 Corning Incorporated Deep non-frangible stress profiles and methods of making
US11267228B2 (en) 2015-07-21 2022-03-08 Corning Incorporated Glass articles exhibiting improved fracture performance
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US11878936B2 (en) 2015-12-11 2024-01-23 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
US11472734B2 (en) 2015-12-11 2022-10-18 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
US11174197B2 (en) 2016-04-08 2021-11-16 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11691913B2 (en) 2016-04-08 2023-07-04 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11279652B2 (en) 2016-04-08 2022-03-22 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11963320B2 (en) 2016-04-08 2024-04-16 Corning Incorporated Glass-based articles including a stress profile comprising two regions
US12116311B2 (en) 2016-04-08 2024-10-15 Corning Incorporated Glass-based articles including a metal oxide concentration gradient

Also Published As

Publication number Publication date
KR20120086733A (en) 2012-08-03
JP5186602B2 (en) 2013-04-17
CN102958855B (en) 2014-05-28
KR20120060847A (en) 2012-06-12
JP5624453B2 (en) 2014-11-12
CN102958855A (en) 2013-03-06
KR101346930B1 (en) 2014-01-03
CN102574720A (en) 2012-07-11
JP5281634B2 (en) 2013-09-04
JP2011148683A (en) 2011-08-04
JP2011148685A (en) 2011-08-04
KR20130108463A (en) 2013-10-02
CN102574720B (en) 2014-11-26
KR101276494B1 (en) 2013-06-18
JPWO2011077734A1 (en) 2013-05-02
TW201139303A (en) 2011-11-16
TW201136847A (en) 2011-11-01
JP5269870B2 (en) 2013-08-21
TWI401219B (en) 2013-07-11
TWI412499B (en) 2013-10-21
JP2011148684A (en) 2011-08-04
KR101541631B1 (en) 2015-08-03
WO2011077734A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5281634B2 (en) Glass plate and method for producing glass plate
JP6202353B2 (en) Alkali-free glass
JP5904426B2 (en) Tempered glass and method for producing the same
JP5582446B2 (en) Film glass manufacturing method and manufacturing apparatus
KR101210328B1 (en) Alkali-free glass and alkali-free glass substrate
JP6365826B2 (en) Glass
JP6256744B2 (en) Alkali-free glass plate
WO2007136054A1 (en) Alkali-free glass, alkali-free glass substrate, and process for producing the same
WO2012063643A1 (en) Alkali-free glass
JP4756856B2 (en) Glass composition and method for producing the same
JP2016113361A (en) Alkali-free glass
JP5071878B2 (en) Alkali-free glass and alkali-free glass substrate using the same
JP6631942B2 (en) Alkali-free glass plate
TW202426404A (en) Alkali-free glass plate
JP2018035068A (en) Alkali-free glass
JP2011105595A (en) Glass composition and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058710.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127016363

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838994

Country of ref document: EP

Kind code of ref document: A1