WO2011070831A1 - 生活パターン分類装置及び生活パターン分類システム - Google Patents
生活パターン分類装置及び生活パターン分類システム Download PDFInfo
- Publication number
- WO2011070831A1 WO2011070831A1 PCT/JP2010/065242 JP2010065242W WO2011070831A1 WO 2011070831 A1 WO2011070831 A1 WO 2011070831A1 JP 2010065242 W JP2010065242 W JP 2010065242W WO 2011070831 A1 WO2011070831 A1 WO 2011070831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- life pattern
- clusters
- cluster
- feature
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
Definitions
- the present invention relates to a system for analyzing a life pattern from a record of behavior data and classifying a target group.
- a convenience store collects the customer's “age” and “gender” together with the product information sold at the time of liquidation, and displays the products in the customer base for each store at an appropriate time zone. It is used to improve the convenience of the store.
- Patent Document 1 discloses a technique for estimating a lifestyle pattern of a target household from a change in daily power consumption and classifying the target household based on this.
- the subject can be classified using the state of personal life.
- Patent Document 1 classifies target households based on the life patterns of the target households, but information indicating behavior pattern analysis results and predetermined target person behavior patterns (for example, day-life patterns, night-type patterns).
- the target person is classified by matching with life patterns.
- the average of the power consumption for a plurality of days in each target household is calculated, and each action time (wake-up time, (Going out time, going home time, bedtime, peak time). In other words, it is trying to see the long-term trend of the target household by averaging, but here it is assumed that each household sends a similar pattern every day.
- the present inventors are advancing research to classify people by analyzing various human life patterns and analyzing human life patterns.
- the subject is classified as a subject who repeats the same daily life. In that case, even if the average of the power consumption of a plurality of days is taken as in Patent Document 1, the problem does not surface.
- a subject group including various patterns of days it depends largely on what kind of life you actually live, and often repeats the same life every day. It arises that it is not appropriate to classify life patterns. For example, if you repeat a work day and a holiday alternately and live a regular life, but you categorize a subject whose wake-up time etc. is not constant as something that repeats the same daily life, what is the lifestyle pattern that you originally want to classify? It will be different.
- FIG. 26A shows a pattern that the user 1 and the user 2 spend.
- the horizontal axis indicates time, and the vertical axis indicates power consumption.
- the user 1 repeats the pattern of getting up around 5:00, going out around 13:00, returning home around 19:00, and going to bed around 23:30.
- the lifestyle pattern of the user 1 is classified from the transition of the average power consumption, it is sufficient to indicate the lifestyle pattern of the user 1.
- it is considered to be classified into a life pattern such as “family faction” characterized by a long stay at home.
- the user 2 wakes up at about 5:00, goes out at about 7:00, goes home at about 19:00, goes to bed at about 22:00 (for example, gets up early on a workday on a weekday, goes to the office, and returns home early) Life pattern that seems to go to bed early) and get up around 6:45, go out around 13:00, return home around 21:00, go to bed around 23:30 (for example, get up at normal time on holidays and go to noon) Life pattern, such as staying at home, going home late at night and going to sleep).
- the average power consumption is as shown in the user 2 (after averaging) in FIG. Based on this, when the wake-up time, the going-out time, the return time, and the bedtime are calculated, both users are classified into the same life pattern even though the life patterns of the user 1 and the user 2 are far from each other. That is, it can be said that the actual life cannot be expressed when the subject group including the subject whose life pattern is composed of various types of days is an analysis target.
- the subject is not treated as a person who repeats the same life every day as in the conventional life pattern classification, but treats "one day” as including various patterns of days.
- “one day” indicates a period divided by a specific time, and is not necessarily a period divided by 24 hours.
- two-stage classification is performed. In other words, as a first step, the “common day” is detected from the days of all the subjects, and the “common day” to which each subject's day corresponds is detected. Classify.
- the appearance pattern such as the transition / distribution of the day classified as the second stage is calculated as an index indicating the life pattern of the target person, and “common life” is detected from the index indicating the calculated life pattern,
- the target person is classified by detecting which "common life” the target person corresponds to.
- a network interface connected to the network, a processor connected to the network interface, and a recording device connected to the processor.
- the processor receives the sensing data acquired by the terminal through the network interface, stores the sensing data in the sensing data table of the recording device, determines a division time for dividing each user's activity period, and records the activity history of the recording device
- a first feature amount is calculated from the sensing data acquired in the period divided by the division time stored in the division time table, and stored in the activity history division time table, and stored in the feature amount table of the recording device.
- a cluster group is generated using a plurality of first feature quantities stored in the quantity table, and a cluster is allocated from the cluster group during a period divided by a division time based on the first feature quantity, and is assigned to each of a plurality of users.
- the second feature is stored in the corresponding feature value table and indicates the cluster appearance pattern from the clusters stored in the feature value table.
- the amount is calculated and stored in the life pattern table of the recording device, a life pattern group is generated using the plurality of second feature amounts stored in the life pattern table, and a plurality of the plurality of second feature amounts are generated based on the second feature amount.
- a life pattern is assigned to each user from the life pattern group and stored in a life pattern table corresponding to each of the plurality of users.
- the present invention is a lifestyle pattern classification system comprising a terminal attached to each of a plurality of users, a base station that communicates with the terminal, and a lifestyle pattern classification device connected to the base station via a network.
- the terminal includes a sensor that acquires sensing data, a processing device that processes the sensing data, and a wireless device that transmits the processed sensing data to the base station.
- the life pattern classification device includes a network interface connected to a network, a processor connected to the network interface, and a recording device connected to the processor.
- the processor receives the sensing data acquired by the terminal through the network interface, stores the sensing data in the sensing data table of the recording device, determines a division time for dividing each user's activity period, and records the activity history of the recording device
- a first feature amount is calculated from the sensing data acquired in the period divided by the division time stored in the division time table, and stored in the activity history division time table, and stored in the feature amount table of the recording device.
- a cluster group is generated using a plurality of first feature quantities stored in the quantity table, and a cluster is allocated from the cluster group during a period divided by a division time based on the first feature quantity, and is assigned to each of a plurality of users.
- the second feature is stored in the corresponding feature value table and indicates the cluster appearance pattern from the clusters stored in the feature value table.
- the amount is calculated and stored in the life pattern table of the recording device, a life pattern group is generated using the plurality of second feature amounts stored in the life pattern table, and a plurality of the plurality of second feature amounts are generated based on the second feature amount.
- a life pattern is assigned to each user from the life pattern group and stored in a life pattern table corresponding to each of the plurality of users.
- FIG. 1 is an example of a configuration diagram of an entire system of Example 1.
- FIG. It is a figure which shows an example of a wristwatch-type sensor node, (a) is the schematic which looked at the wristwatch-type sensor node 1 from the front, (b) is sectional drawing which looked at the wristwatch-type sensor node from the side.
- (A) is an example of the day of the pattern which the user 1 and the user 2 spend
- (b) is an example which shows the result at the time of applying the method by a present Example.
- a life pattern is estimated from sensing data measured by a sensor attached to a person (user), a user group is classified by the life pattern, and then the service provider is classified.
- the life pattern classification system to present is shown.
- FIG. 1 is a block diagram showing an example of the configuration of a lifestyle pattern classification system to which the present invention is applied.
- the life pattern classification system of the present embodiment uses a bracelet type sensor node 1 equipped with an acceleration sensor as a sensor for detecting the operation (or state) of the user of the system, and detects the acceleration of the arm as biological information. Indicates.
- the bracelet type sensor node 1 is worn on the user's (or participant's) arm and detects acceleration, and wirelessly transmits the detected acceleration data as sensing data to the base station 102 via the antenna 101. . If wired communication is possible, the data is transmitted to the client computer (PC) 103 via a USB connection or the like.
- PC client computer
- a base station 102 or a PC 103 communicates with a plurality of bracelet type sensor nodes 1, receives sensing data corresponding to the movement of the user from each bracelet type sensor node 1, and sends it to the server 104 via the network 105. Forward.
- the server 104 stores the received sensing data.
- the server 104 analyzes the sensing data received from the base station 102 or the PC 103, generates a life pattern feature amount of the user as will be described later, and generates and stores a classification of the user group.
- the classification of the user group generated by the server 104 can be viewed on a client computer (PC) 103 operated by the service provider.
- PC client computer
- FIG. 2 is a diagram showing an example of the bracelet type sensor node 1 constituting the lifestyle pattern classification system of the present embodiment
- FIG. 2A is a schematic view seen from the front of the bracelet type sensor node 1
- FIG. b) is a cross-sectional view of the bracelet type sensor node 1 as viewed from the side.
- This bracelet type sensor node 1 mainly measures the movement of the user.
- the bracelet type sensor node 1 includes a case 11 for storing a sensor and a control device, and a band 12 for mounting the case 11 on an arm of a human body.
- a substrate 10 provided with a microcomputer 3, a sensor 6, etc. is stored as shown in FIG.
- the sensor 6 for measuring the movement of the human body (living body) an example is shown in which an acceleration sensor for measuring each of the three-axis accelerations XYZ in the figure is employed.
- the bracelet type sensor node 1 includes a temperature sensor and a pulse sensor (not shown), measures the body temperature and pulse of the user, and outputs it as sensing data together with the acceleration.
- FIG. 3 shows a block diagram of an electronic circuit attached to the substrate 10 of the bracelet type sensor node 1.
- the board 10 controls a wireless communication unit (RF) 2 including an antenna 5 for communicating with the base station 102, a USB communication unit 39 wired to the PC 103, the sensor 6, and the wireless communication unit 2.
- RF wireless communication unit
- a microcomputer 3 that operates, a real-time clock (RTC) 4 that functions as a timer for intermittently starting the microcomputer 3, a battery 7 that supplies power to each unit, and a switch that controls the supply of power to the sensor 6 8 is arranged.
- a bypass capacitor C1 is connected between the switch 8 and the sensor 6 to prevent unnecessary power consumption by removing noise and reducing charge / discharge speed.
- the microcomputer 3 includes a CPU 34 that executes arithmetic processing, a ROM 33 that stores programs executed by the CPU 34, a RAM 32 that stores data and the like, and an interrupt that interrupts the CPU 34 based on a signal (timer interrupt) from the RTC 4.
- a serial communication interface (SCI) 36 that transmits and receives signals as serial signals between the control unit 35, an A / D converter 31 that converts an analog signal output from the sensor 6 into a digital signal, and the wireless communication unit 2.
- a parallel interface (PIO) 37 that controls the wireless communication unit 2 and USB communication unit 39 and the switch 8, and an oscillation unit (OSC) 30 that supplies a clock to each of the units in the microcomputer 3.
- the above-described units in the microcomputer 3 are connected via a system bus 38.
- the RTC 4 outputs an interrupt signal (timer interrupt) at a predetermined period set in advance to the interrupt control unit 35 of the microcomputer 3 and outputs a reference clock to the SCI 36.
- the PIO 37 controls ON / OFF of the switch 8 in accordance with a command from the CPU 34 and controls power supply to the sensor 6.
- the bracelet type sensor node 1 activates the microcomputer 3 at a predetermined cycle (for example, 1 second), acquires sensing data from the sensor 6, and an identifier for identifying the bracelet type sensor node 1 in the acquired sensing data. A time stamp is given and transmitted to the base station 102.
- the details of the control of the bracelet type sensor node 1 can be made the same as, for example, Japanese Patent Laid-Open No. 2008-59058. Note that the bracelet type sensor node 1 may periodically transmit the acquired sensing data to the base station 102 periodically.
- FIG. 4 is a block diagram showing components of the lifestyle pattern classification system to which the present invention shown in FIG. 1 is applied. Sensing data transmitted from the bracelet type sensor node 1 is accumulated in the sensing data table 1150 of the recording device 1100 of the server 104 via the base station 102.
- the client (PC) 103 includes a display device 1031 that displays various types of information and an input device 1032 that allows various information to be input by the operation of the service provider.
- the server 104 includes a network interface 106, a processor 107, a memory 108, and a recording device 1100.
- the network interface 106 is an interface for connecting to the network 105.
- the recording device records various programs and various data tables described later, and is, for example, a hard disk drive, a CD-ROM drive, or a flash memory. Various programs and various data tables may be divided and recorded on a plurality of recording devices.
- the processor 107 implements various functions by reading various programs recorded in the recording device 1100 into the memory 108 and executing them. Specifically, by executing the data totaling program 200, the sensing data measured by the acceleration sensor of the user's arm is totaled, a total value for each unit time (for example, one minute) is calculated, and the recording device 1100 is stored in the aggregate data table 250. In addition, the total value calculated for each unit time calculated by executing the sleep analysis program 300 is analyzed, and all sleep states are detected and stored in the sleep analysis data table 350 of the recording device 1100.
- the activity history division time of the recording device 1100 is selected by selecting the main sleep from the sleep state detected for each user by executing the activity history division program 400 and using these wake-up times as activity history division time groups representing the boundaries of the day. Store in table 450.
- the feature quantity is extracted for each day divided by the activity history division time group calculated by executing the daily feature quantity extraction program 500 and stored in the daily feature quantity table 550 of the recording apparatus 1100.
- a day cluster is generated by clustering all the dates of all users whose feature values have been extracted by executing the day cluster generation program 600 and stored in the day cluster table 650 of the recording device 1100.
- An optimal day cluster is assigned from the daily cluster group generated for each day of each user whose feature quantity is extracted by executing the daily cluster assignment program 700, and the allocation information is stored in the daily feature quantity table 550 of the recording device 1100.
- the daily cluster group assigned to each user is converted into a feature amount, and a life pattern is extracted and stored in the life pattern table 850 of the recording device 1100.
- the life pattern segment generation program 900 is executed to classify the life pattern groups extracted for all users, thereby generating user classifications and storing them in the life pattern segment table 950 of the recording device 1100.
- An optimal life pattern segment is allocated from the generated life pattern segment group to all users who have extracted life patterns by executing the life pattern segment allocation program 1000, and the allocation information is stored in the life pattern table 850 of the recording device 1100. Store.
- the server 104 includes the data aggregation program 200, the sleep analysis program 300, the activity history division program 400, the daily feature amount extraction program 500, the daily cluster generation program 600, the daily cluster allocation program 700, and the life pattern extraction program 800.
- An example in which the life pattern segment generation program 900 and the life pattern segment assignment program 1000 are executed every predetermined period (for example, 5 minutes) is shown.
- FIG. 5 is a diagram showing an overall flow of data processing performed in the lifestyle pattern classification system to which the present invention is applied.
- step S1 the base station 102 transfers the sensing data transmitted from the bracelet type sensor node 1 to the server 104, and the sensing data is stored in the sensing data table 1150 of the server 104.
- the identifier for identifying the sensor node and the time information indicating the time when the sensing data is acquired are also stored in the sensing data table.
- the data totaling program 200 is executed to calculate the exercise frequency and the number of walks per unit time from the sensing data stored in the recording device 1100, and the total data table 250 of the recording device 1100. To store.
- the server 104 executes the sleep analysis program 300 to detect an area in which the user is estimated to be in a sleep state from the aggregate data stored in the aggregate data table 250, and the start time and end of all sleep areas The time is stored as a set in the sleep analysis data table 350.
- step S2 the server 104 executes the activity history division program 400 to select main sleeps excluding nap and nap from each sleep area accumulated in the recording device 1100 for each user, and these end
- the time group is stored in the recording device 1100 as the division time of the activity history.
- the server 104 executes the daily feature quantity extraction program 500, and for each period divided by the calculated activity history division time, a predetermined feature quantity group (total number of steps and time of going out) from the unit time total data and sleep analysis data. And the like (to be described later) are calculated and stored in the daily feature table 550 as a daily feature vector.
- step S3 the server 104 executes the daily cluster generation program 600 to classify the calculated feature vector groups for all users by a clustering method. Is created and stored in the day cluster table 650. Further, the server 104 executes the daily cluster allocation program 700 to allocate the optimal daily cluster from the generated daily cluster group to each calculated daily feature quantity vector, and associate the daily cluster with each user's daily day. Are stored in the daily feature table 550.
- step S4 the server 104 executes the life pattern extraction program 800, and the distribution and transition of predetermined day clusters to be described later with respect to the optimum day cluster group corresponding to each day calculated for each user.
- the feature amount is calculated, and the feature amount is stored in the life pattern table 850 as a life pattern vector representing the life pattern of the user.
- step S5 the server 104 executes the life pattern segment generation program 900 and classifies the calculated life pattern vector groups of all users by a clustering method, thereby “life pattern segment” which is a life pattern classification. Are generated and stored in the life pattern segment table 950.
- the server 104 executes the life pattern segment assignment program 1000 to assign an optimal life pattern segment to each user, and stores this association in the life pattern table 850.
- step S 6 the allocation of each user's life pattern segment stored in the recording device is presented on the display device 1031 of the client computer 103.
- the day feature vector group is classified to generate a day cluster group, and the day of each user is classified by assigning the optimum day cluster to each day of each user. Furthermore, a user group is classified by generating a life pattern segment group from the feature amounts related to the transition and distribution of each day and assigning an optimal life pattern segment to each user. By performing such two-stage classification, even if the user includes various patterns of days, the transition and distribution of each classified day can be reflected. Classification is possible.
- FIG. 8 is a flowchart illustrating an example of processing performed by the data totaling program 200 of the server 104.
- sensing data corresponding to a user identifier is read from the sensing data table 1150 (step S11).
- the amount of sensing data to be read may be set to a predetermined period (for example, 3 minutes) which is a totaling period of sensing data.
- a total value is calculated every predetermined time interval (for example, 1 minute).
- predetermined time interval for example, 1 minute.
- the number of zero crosses indicating the frequency of exercise of the wearer (user) of the bracelet type sensor node 1 within a predetermined time interval is used as the total value.
- a predetermined threshold for example, 0.05 G
- the appearance frequency is output as an exercise frequency at a predetermined time interval (1 minute) (step S14).
- the calculation result of the exercise frequency is data obtained by sorting the exercise frequency for each unit time in time series.
- the motion frequency may be summed by counting the number of times that the acceleration value in each direction of X, Y, and Z vibrates positively and negatively (frequency) within a predetermined time in each direction. Since the calculation can be simplified, a method of calculating the number of zero crossings is employed.
- the integrated value of the scalar values of the X, Y, and Z3 axis accelerations within a predetermined time interval is obtained from the number of zero crossings and the scalar amount, and this integrated value is used as the exercise intensity (step S15). Further, for the temperature included in the sensing data, an average temperature within a predetermined time interval is obtained (step S16).
- the number of steps that appear within a predetermined time interval is output as the number of steps (step S17).
- the method of detecting walking is that the acceleration in the vertical direction changes periodically (landing for each step), and the acceleration in the front-rear direction regularly repeats the forward and backward directions in synchronization with the acceleration in the vertical direction. Waveforms such as (velocity change at each landing), and the acceleration in the left and right direction are repeated in synchronization with the acceleration in the up and down direction (swing of the body to the left and right at each step) can be observed, and the swing of the arm overlaps Therefore, it is possible to determine whether or not the user is in a walking state within the corresponding time interval.
- a method for detecting the walking state from the acceleration sensor attached to the human body and a method for calculating the number of steps a known method may be used.
- “human walking using an acceleration / angular velocity sensor attached to the arm” may be used. ⁇ Analysis of Traveling Motion ”(S.-W.Lee and K.Mase,“ Recognition of Walking Behaviors for Pedestrian Navigation ”, Proc. IEEE Conf. Control Applications (CCA01), IEEE Control Systems Soc., NJ, NJ, 2001 , Pp.1152-1155.).
- the execution of the data totaling program 200 obtains the exercise frequency, average temperature, exercise intensity, and the number of walks for each predetermined time interval, and generates total data for each predetermined time interval as shown in FIG. It accumulates in the aggregate data table 250 of 1100 (step S18).
- FIG. 10 is an explanatory diagram showing the format of the aggregate data table 250.
- the user ID 251 stores the identifier of the wearer of the bracelet type sensor node 1 (user of the life pattern classification system), and the bracelet type sensor included in the sensing data.
- Sensor data ID 252 that stores the identifier of the node 1
- measurement date and time 253 that stores the start time (measurement date and time) of a predetermined time interval
- temperature 254 that stores the average temperature calculated by the execution of the data totaling program 200
- data The exercise frequency 255 for storing the exercise frequency calculated by the execution of the totaling program 200
- the exercise intensity 256 for storing the exercise intensity determined by the execution of the data totaling program 200
- the number of steps of walking determined by the execution of the data totaling program 200 One entry is constructed from the number of walks 257 that store To.
- the user identifier may be referred to from a table (not shown) set in advance based on the identifier of the bracelet type sensor node 1.
- FIG. 11 is a flowchart illustrating an example of processing performed by the sleep analysis program 300 of the server 104.
- the unit time aggregate data aggregated by the execution of the data aggregation program 200 is read from the aggregate data table 250 (step S21).
- the amount of total data to be read may be set to, for example, all after the end time of the last sleep already stored by the execution of the sleep analysis program 300 in the past.
- a region group estimated to be in a sleep state is detected from the aggregate data read by the execution of the sleep analysis program 300.
- the frequency of exercise during sleep is extremely low, but the human body does exercise such as turning over during sleep, so the frequency of exercise does not become zero.
- Several methods are known for determining sleep, such as the Cole method (Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC. Automatic sleep / wake identification from wrist activity. Sleep 1992; 15: 491-469 ) Etc. may be applied.
- the start time and end time of each area detected by such a method are stored as a sleep area candidate group in a temporary storage (not shown) or the like.
- step S23 adjacent sleep region candidates are combined.
- the sleep region candidates are divided at the time of the temporary wakeup.
- the next sleep area candidate starts within a predetermined time (for example, 30 minutes) after the end of the sleep area candidate, the two sleep area candidates are combined and treated as one large sleep area.
- a predetermined time for example, 30 minutes
- step S24 those that are incompatible as sleep region candidates are excluded.
- sleep regions whose duration is less than a predetermined time for example, 10 minutes are excluded. If the end time of the last sleep area candidate in the candidate group is within a predetermined time (in the example, 30 minutes) from the latest measurement time of the aggregate data read by execution of the sleep analysis program 300, the next sleep analysis program 300 This is also excluded because there is a possibility that it will be combined with a sleep area that is newly listed as a candidate in the execution of.
- the sleep region candidate group processed as described above is determined as a sleep region group.
- the sleep region group determined last is accumulated in the sleep analysis data table 350 of the recording device 1100 (step S25).
- sleep region groups are obtained at predetermined time intervals, and each sleep region is accumulated in the sleep analysis data table 350 of the recording device 1100 as shown in FIG.
- FIG. 12 is an explanatory diagram showing the format of the sleep analysis data table 350, which stores the user ID 351 for storing the identifier of the wearer of the bracelet type sensor node 1 (user of the life pattern classification system) and the start time of the sleep area.
- One entry is made up of the measurement date and time 352 and the end time 353 storing the end time of the sleep area.
- FIG. 13 is a flowchart showing an example of processing performed by the execution of the activity history division program 400 of the server 104.
- sleep area data generated by the execution of the sleep analysis program 300 is read from the sleep analysis data table 350 (step S31).
- the range of the sleep analysis data to be read may be set to all after the last activity history division time already stored by the execution of the past activity history division program 400, for example.
- the calendar date to which each sleep area belongs is calculated (step S32). If the end time of the sleep area is a predetermined time, for example, from 0:00 to 20:00, it belongs to the same day, and if it is from 20:00 to 24:00, it belongs to the next day. For example, a sleep region that starts at 16:30 on July 23 and ends at 20:30 belongs to July 24. From the earliest calendar date calculated in this way to the latest calendar date, the longest belonging sleep region in each calendar day is derived, and these are set as the main sleep of the calendar date (step S33).
- the actual end time of the sleep region is treated as the main sleep of the calendar day.
- the sleep region starting at 16:30 on July 23 and ending at 20:30 is the longest among the sleep regions belonging to July 24, the end time of main sleep on July 24 Is 20:30 on July 23rd.
- the end time of main sleep calculated as described above, that is, the wake-up time is confirmed as an activity history division time group and stored in the activity history division time table 450 (step S34).
- FIG. 14 is an explanatory diagram showing the format of the activity history division time table 450.
- the user ID 451 for storing the identifier of the wearer of the bracelet sensor node 1 (user of the life pattern classification system) and the date and time of the activity history division time One entry is configured from the division time 452 for storing.
- FIG. 15 is a flowchart illustrating an example of processing performed by executing the daily feature amount extraction program 500 of the server 104.
- the activity history division time data generated by the execution of the activity history division program 400 is read from the activity history division time table 450 (step S41).
- the range of activity history division time data to be read is, for example, past daily feature extraction What is necessary is just to set all after the representative time of the last day feature-value vector data already stored by execution of the program 500, etc.
- all activity history division times read in step 41 are initialized as “unprocessed”.
- step S42 it is determined whether there is any unprocessed activity history division time group read in step S41, and if not, execution is terminated. If there is an unprocessed time, this is processed in the next step S421.
- step S421 an arbitrary one of the unprocessed activity history division times is selected as the period start time, and a time corresponding to the activity history division time next to the period start time is searched and selected as the period end time.
- aggregate data aggregated by executing the data aggregation program 200 for the period (one day) divided by the period start time and period end time is acquired from the aggregate data table 250.
- step S422 the bedtime is detected from the acquired target period. Since the end time of the target period is guaranteed to be the end time (that is, the wake-up time) of any sleep area included in the sleep analysis data table 350, the sleep area is searched and the start time is set as the bedtime. Confirm as
- step S423 the time of going out is detected from the acquired period total data.
- walking for the first 5 minutes or more after getting up is regarded as going out. That is, an area where the number of walks is 1 or more and continues for 5 or more consecutive times is searched from the acquired period total data, and this start time is determined as the going-out time.
- step S424 the return time is detected from the acquired period total data.
- the last walk of 5 minutes or more before going to bed is regarded as returning home. That is, the last time before the bedtime is searched for in the area where the number of walks is 1 or more and the unit time continues continuously 5 times or more from the acquired period total data, and the end time of this is determined as the return time.
- step S425 the total number of steps is calculated from the acquired period total data. This is obtained by integrating the number of walks in the acquired period total data and determining the total number of steps.
- step S426 the amount of activity while going out is calculated from the acquired period total data. This determines the average of the exercise frequency of the total data of the area from the acquired going-out time to the acquired return time as the amount of activity while going out.
- step S427 the outing time ratio is calculated from the acquired period total data.
- the elapsed time from the period start time (that is, the wake-up time) to the bedtime is set as the awakening time
- the elapsed time from the going-out time to the return time is set as the going-out time
- (outing time / wake-up time) is determined as the going-out time ratio.
- FIG. 16 is an explanatory diagram showing the format of the daily feature table 550, which stores the user ID 551 for storing the identifier of the wearer of the bracelet type sensor node 1 (user of the life pattern classification system) and the start time of the day.
- One entry is configured from the ratio 559 and the day cluster ID 560 that stores the identifier of the day cluster corresponding to the division time.
- the corresponding day cluster ID 560 is initialized with a blank when the daily feature quantity extraction program 500 is executed, and is updated by
- FIG. 17 is a flowchart showing an example of processing performed by the execution of the daily cluster generation program 600 of the server 104.
- all-day feature vector data of all users generated by the daily feature vector generation unit 500 is read from the daily feature table 550 (step S51).
- Each data acquired here is a vector expressed in seven dimensions (wake-up time, bedtime, going-out time, time to go home, total number of steps, amount of activity during going-out, ratio of going-out time).
- the acquired daily feature vector group is grouped by using a clustering method.
- Each generated group is called a day cluster, and one day cluster represents a frequently occurring day (period divided by a specific time) in the lives of all users, that is, a “common day”.
- it is not necessary to use all of the wake-up time, bedtime, outing time, return time, total number of steps, outing activity amount, outing time ratio as parameters of the daily feature vector, and weighting can be performed. At least one of them may be used.
- a general non-hierarchical clustering method such as a k-means method, a fuzzy C average method, or an entropy method may be applied.
- step S53 the calculated representative value of each day cluster is calculated.
- the representative value of the day cluster refers to a vector that is an average value of all the day feature amount vectors included in the group.
- FIG. 7 illustrates an example in which the daily feature amount vector is represented only by two parameters of the wake-up time and the total number of steps.
- a black dot is a daily feature vector representing one day of one user, and this is displayed for all users for all days.
- the daily feature vector can be classified into three groups is shown, and the representative value of each daily cluster is represented by x.
- step S54 as shown in FIG. 18, the representative value of each day cluster is stored in the day cluster table 650.
- FIG. 18 is an explanatory diagram showing the format of the day cluster table 650.
- the day cluster ID 651 for storing an identifier for identifying the day cluster, the wake-up time 652 for storing the wake-up time of the representative value, and the bedtime of the representative value are stored.
- One entry is made up of an out-of-going activity amount 657 for storing the amount of activity and an outing time ratio 658 for storing a representative outing time ratio.
- the identifier for identifying the day cluster may be any unique value that can identify each day cluster. For example, an “unused ID” list (not shown) is held, selected from here when stored in the table, and deleted from the list. Confirm it.
- FIG. 19 is a flowchart illustrating an example of processing performed by the execution of the daily cluster allocation program 700 of the server 104.
- the all-day feature vector data of all users generated by the daily feature vector generation unit 500 is read from the daily feature table 550 (step S61).
- step S62 if there is no acquired day feature vector group to which no day cluster has been assigned yet, the execution of the day cluster assignment program 700 is terminated. Otherwise, the following steps are performed for each unprocessed daily feature vector.
- step S621 an unprocessed daily feature vector is selected, and an optimal daily cluster is assigned to this vector.
- the optimal daily cluster for the daily feature vector is determined by searching for the shortest Euclidean distance from the representative value in the generated daily cluster group.
- step S622 the identifier of the determined optimal date cluster is stored in the day cluster ID 560 of the day feature vector in the daily feature vector table 550.
- FIG. 20 is a flowchart illustrating an example of processing performed by executing the life pattern extraction program 800 of the server 104.
- step S71 when there is no user who has not extracted the life pattern, the execution of the life pattern extraction program 800 is terminated. Otherwise, the following steps are performed for each unprocessed user.
- step S711 an unprocessed user is selected, and all the daily feature amount vectors calculated for this user are associated with the day clusters, that is, the division time 552 and the date included in the daily feature amount table 550.
- Cluster ID 560 pairs are acquired as a time-series enumeration sorted by division time. By calculating the feature amount regarding the enumeration, the life pattern of the user is converted into a feature amount.
- step S712 the number of day clusters (core clusters) that occur particularly frequently in the user's life is calculated.
- the appearance frequency of each day cluster is calculated from the list of acquired day clusters, and the number of day clusters whose appearance frequency is a predetermined ratio (for example, 10%) or more is determined as the “core cluster number” of this user. .
- the number of core clusters is effective as an index representing the “diversity” of the way people spend their lives.
- step S713 the ratio of the number of day clusters appearing on weekdays and the number of day clusters appearing on weekends is calculated.
- an entry for only weekdays is obtained from the list of obtained day clusters, and the appearance frequency of each day cluster is calculated from this.
- the number of daily clusters whose appearance frequency is a predetermined ratio (for example, 5%) or more is determined as the number of weekday clusters of this user.
- only the weekend entry is acquired from the list of acquired day clusters, and the appearance frequency of each day cluster is calculated from this.
- the number of daily clusters whose appearance frequency is a predetermined ratio or more is determined as the number of weekend clusters for this user.
- (weekday cluster number / weekend cluster number) is determined as the “weekday weekend cluster ratio” of this user.
- statistically for example, the daily clusters that have a significantly high frequency of occurrence on weekends of each day cluster.
- the number of day clusters corresponding to the calculation may be set as the number of weekend clusters.
- the statistical test method may indicate that the appearance frequency at the weekend is significantly higher than 2/7 by using, for example, interval estimation of the population ratio.
- the holidays specified by the user and the dates of legal holidays entered in advance are stored in a table (not shown). It may be classified into “normal day cluster” and “holiday cluster” from the appearance frequency characteristics of “day” and “holiday”, and a comparison between “normal day” and “holiday” may be calculated.
- the weekday weekend cluster ratio is an effective index for knowing the consciousness of the target person to the private by grasping the difference in the diversity of the work day and the private day.
- step S714 the number of day clusters having a high probability of transitioning to the same day cluster on the next day is calculated. From the list of acquired day clusters, count the number of times that the next day of appearance of each day cluster was the same day cluster again, and divide this by the frequency of appearance of the day cluster. Calculate the probability of returning to yourself each day.
- the number of daily clusters whose probability is equal to or greater than a predetermined threshold (for example, 50%) is determined as the “number of diagonal clusters” of this user.
- the number of diagonal clusters is effective as an index for measuring the “monotony” of how to spend life. At this time, instead of counting the number of times the same day cluster appears on the next day, the number of times the same day cluster appears within the next two days or an arbitrary number of days may be counted.
- step S715 the calculated index group related to the user's life pattern is stored in the life pattern table 850 as a life pattern.
- FIG. 21 is an explanatory diagram showing the format of the life pattern table 850.
- the user ID 851 for storing the identifier of the wearer of the bracelet type sensor node 1 (user of the life pattern classification system) and the daily cluster frequently appearing in the life
- the number of core clusters 852 for storing the number of clusters
- the weekday weekend cluster ratio 853 for storing the ratio of the number of clusters on weekdays and weekends
- the number of diagonal clusters 854 for storing the number of day clusters with a high probability of returning to itself
- One entry is configured from the life pattern segment ID 855 that stores the identifier of the life pattern segment assigned to the user.
- the life pattern segment ID 855 is initialized with a blank when the life pattern extraction program 800 is executed, and is updated by execution of the life pattern segment assignment program 1000 described later.
- the life pattern is expressed using three indexes of “number of core clusters”, “weekday weekend cluster ratio”, and “number of diagonal clusters”.
- an index that captures the characteristics of a life pattern that can be calculated using a list of daily clusters may be used.
- the center vector of the day cluster and the Euclidean distance of each day feature vector are calculated, and all the distances are averaged May be calculated as the “cluster density” of the daily cluster, and the average cluster density of the acquired all-day clusters may be stored as a “cluster density average” in a field (not shown) in the life pattern table 850.
- the cluster density average is effective as one index representing the irregularity of the subject's life.
- the number of weekday clusters and the number of weekend clusters exemplified above may be stored in a field (not shown) in the life pattern table 850 as “weekday cluster number” and “weekend cluster number”.
- the frequency of appearance of each day cluster on each day of the week is calculated, and using the statistical test method described above, the day of the week on which the day cluster appears at a significantly high frequency is calculated.
- the number of day-specific clusters in the all-day cluster may be stored as a “day-of-day cluster number” in a field (not shown) in the life pattern table 850.
- the number of day-of-week clusters is an effective index for seeing the degree to which the subject is living in a “week”.
- each day cluster may be arranged in the order of appearance frequency, and the number of day clusters occupying the top 80% may be stored in a field (not shown) in the life pattern table 850 as “the number of top 80% day clusters”.
- the top 80% daily cluster number is effective as an index representing the diversity of the life of the subject.
- the rate fitting parameter ” may be stored in a field (not shown) in the life pattern table 850. This is effective as an index representing the feature of the appearance pattern of the day cluster in the life of the subject.
- the number of times that the day cluster B appears on the next day when the day cluster A appears is calculated, and the combination with the characteristic frequency among them is referred to as “feature transition”.
- the number of feature transitions calculated as described above may be stored as a “number of feature transitions” in a field (not shown) in the life pattern table 850.
- the number of feature transitions is effective as an index representing “regularity of how to connect the days” in the life of the subject. For example, in the case of a person who has a lot of rules in his life such as “sleep next day after sleeping late”, the number of feature transitions is high.
- autocorrelation R ( ⁇ ) is calculated with ⁇ being a value between 1 and an arbitrary maximum value (for example, 100).
- ⁇ a value between 1 and an arbitrary maximum value (for example, 100).
- the number of “periodic day clusters” among all day clusters may be stored in a field (not shown) in the life pattern table 850 as “periodic day cluster number”. Further, the ratio of days belonging to the “periodic day cluster” among all the days may be stored as a “periodic ratio” in a field (not shown) in the life pattern table 850. These two values are effective as an index representing the periodicity of life.
- the minimum autocorrelation value may be stored as a “minimum autocorrelation” in a field (not shown) in the life pattern table 850.
- FIG. 22 is a flowchart illustrating an example of processing performed by executing the life pattern segment generation program 900 of the server 104.
- the life pattern vectors of all users generated by the execution of the life pattern extraction program 800 are read from the life pattern table 850 (step S81).
- Each data acquired here is a vector expressed in three dimensions (number of core clusters, weekday weekend cluster ratio, number of diagonal clusters). In addition to these three indicators, any or all of the above life pattern indicators may be used.
- the acquired life pattern vector group is grouped by using a clustering method.
- Each generated group is called a life pattern segment, and one life pattern segment represents a life that frequently appears among all users, that is, a “common life”. Further, it is not necessary to use all of the number of core clusters, the weekday weekend cluster ratio, and the number of diagonal clusters as parameters of the life pattern vector, and weighting can be performed, and at least one of them may be used. Good.
- a general non-hierarchical clustering method such as a k-means method, a fuzzy C average method, an entropy method, or the like may be applied.
- step S83 the calculated representative value of each life pattern segment is calculated.
- the representative value of the life pattern segment refers to a vector that is an average value of all the life pattern vectors included in the segment.
- FIG. 31 illustrates an example in which the life pattern vector is represented only by two parameters, the number of core clusters and the weekday weekend cluster ratio.
- a black dot is a life pattern vector representing one user, which is displayed for all users.
- life pattern vectors can be classified into three segments is shown, and the representative value of each life pattern segment is represented by x.
- step S84 as shown in FIG. 23, the representative value of each day cluster is accumulated in the life pattern segment table 950.
- FIG. 23 is an explanatory diagram showing a format of the life pattern segment table 950, a life pattern segment ID 951 for identifying a unique life pattern segment, a core cluster number 952 for storing the core cluster number of representative values of the life pattern segment, One entry is made up of a weekday weekend cluster ratio 953 for storing the weekday weekend cluster ratio of the representative value of the life pattern segment and a diagonal cluster number 954 for storing the diagonal cluster number of the representative value of the life pattern segment.
- the identifier for identifying the life pattern segment may be any unique value that can identify each life pattern segment. For example, an “unused ID” list (not shown) is held, selected from here when stored in the table, and deleted from the list. This can be confirmed.
- FIG. 24 is a flowchart showing an example of processing performed by executing the life pattern segment assignment program 1000 of the server 104.
- the life pattern data of all users generated by the execution of the life pattern extraction program 800 is read from the life pattern table 850 (step S91).
- step S92 if there is no user to whom no life pattern segment is assigned in the acquired life pattern vector group, the execution of the life pattern segment assignment program 1000 is terminated. Otherwise, the following steps are performed for each unprocessed user's life pattern vector.
- step S921 a life pattern vector of an unprocessed user is selected, and an optimal life pattern segment is assigned to the vector.
- the optimum lifestyle pattern segment for the lifestyle pattern vector is determined by searching for a lifestyle pattern segment group that has the shortest Euclidean distance from the representative value.
- step S922 the identifier of the determined optimal life pattern segment is stored in the life pattern segment ID 855 of the life pattern vector in the life pattern table 850.
- FIG. 25 is a screen image of the life pattern classification monitor screen 1300 displayed on the display device 1031 of the client computer 103.
- the server 104 receives a display request from the client computer 103 and displays a life pattern classification monitor screen 1300. Note that a browser can be adopted as an application running on the client computer 103.
- the life pattern classification monitor screen 1300 includes a life pattern segment ID 951 of life pattern segment data 950, the number of core clusters 952, a weekday weekend cluster ratio 953, and a text display 1301 showing the number of diagonal clusters 954, and each life pattern segment.
- a text display 1302 for displaying a user identifier and a transition display unit 1303 for displaying a user day cluster transition diagram are provided.
- the daily cluster transition diagram is generated from the daily cluster group allocated by executing the daily cluster allocation program 700 for each day of the user, and the daily cluster that appears in a predetermined ratio or more in the user's life is a circle. And the day cluster identifier displayed in the circle. In addition, the circle representing each day's cluster has the size of the circle and the density of the background determined according to the proportion of appearance in the user's life.
- a predetermined threshold When the probability of transition to the day cluster B on the next day is equal to or greater than a predetermined threshold, an arrow is displayed from the day cluster A to the day cluster B, and the thickness of this arrow is increased in proportion to the transition probability. Yes.
- FIG. 32 is a screen image of the life pattern monitor screen 1400 displayed on the display device 1031 of the client computer 103.
- the server 104 receives a display request from the client computer 103 and displays a life pattern monitor screen 1400. Note that a browser can be adopted as an application running on the client 103.
- the life pattern monitor screen 1400 includes a display month selection means (not shown) for selecting a month to be displayed and a display user selection means (not shown) for selecting a user to be displayed.
- the display month of the selected user is displayed on the calendar 1403.
- the day cluster assigned to this user for each day is obtained by referring to the day cluster ID 560 of the day feature vector table 550, and for example, identifiers (A, B, C%) Representing the day cluster are obtained. You may display.
- This identifier may be assigned a random character string when the day cluster is generated. Alternatively, numbers (1, 2, 3%) Or alphabets (A, B, C%) May be assigned in the order in which the day clusters are generated.
- the name of the day cluster assigned by the user himself / herself on the day cluster name input screen may be displayed.
- the display color of the day cluster set by the user himself / herself on the day cluster background color selection screen may be displayed as the day background color.
- the date and the day cluster may be vertically displayed as a list.
- FIG. 26A When two users, user 1 and user 2 illustrated in FIG. 26A, are used to generate a day cluster group with four parameters of “wake-up time”, “going-out time”, “home time”, and “sleeping time”, for example, FIG. Three day clusters as shown in the “day cluster definition” of 26 (b) are born.
- the day cluster A represents the day sent by the user 1 every day
- the day cluster B represents the pattern 1 indicating the work day of the user 2 on weekdays
- the day cluster C represents the pattern 2 indicating the holiday of the user 2.
- the user's exercise state is measured by the acceleration sensor of the bracelet type sensor node 1 and stored in the server 104, and the measured exercise state is analyzed to frequently appear in the life of the user group.
- the acceleration sensor of the bracelet type sensor node 1 is used to detect the movement state of the user (human body) as the lifestyle pattern classification system.
- the movement state of the human body can be detected.
- pulse information, the number of steps, and the like may be used, or the motion state of the human body may be detected from a combination of these pieces of biological information.
- position information such as GPS or a portable terminal.
- the present invention not only the data of the acceleration sensor but also the usage (recording behavior) such as communication and charging necessary for the user to leave the sensor data from the sensor usage history (for example, the communication status and the remaining battery level history). It is also possible to quantify the life pattern using the time of the measurement) as a parameter and send a notification that prompts the recording behavior of the sensor to the user. For example, as shown in FIG. 33, the variation in the maximum number of data stored per week for each user who uses the wristwatch-type sensor node 1 for one year and the number of missing data are significantly correlated. When the recording action is taken, the use efficiency of the sensor is increased. Therefore, the user can be notified when a tendency to deviate from the state of the regular recording behavior appears based on the result of the life pattern generated based on the sensor usage history.
- life pattern feature amounts are calculated from sensing data measured by a sensor worn by a person (user), and attribute information (for example, gender) acquired by another input means is used.
- attribute information for example, gender
- An attribute information estimation system that generates an attribute information discriminator and discriminates the attribute of the user from the life pattern of the user whose attribute information is unknown is shown. In the description of the present embodiment, only portions different from the first embodiment will be described.
- FIG. 27 is a block diagram showing components of the attribute information estimation system.
- the processor 107 implements various functions by reading various programs recorded in the recording device 1100 into the memory 108 and executing them. Specifically, by executing the attribute information discrimination program 1200, an attribute information discriminator capable of estimating the attribute information from the life pattern data is generated, the attribute information of the user whose attribute information is unknown is estimated, and the attribute table 1250 is stored.
- the server 104 executes the attribute information determination program every predetermined period (for example, 5 minutes).
- FIG. 28 is a diagram showing an overall flow of data processing performed in the attribute information estimation system to which the present invention is applied. As in the first embodiment, steps 1 to 4 are performed.
- step S5 the server 104 executes the attribute information determination program 1200 to acquire the calculated life pattern vectors of all users, and for each attribute category (for example, “gender”, “profession”, etc.) of the same user.
- An attribute value for example, “male”, “teacher”
- a discriminator that outputs the attribute value with the life pattern vector as an input is calculated.
- the attribute value is estimated by applying this discriminator to a user who does not have an attribute value, and is stored in the attribute table 1250.
- the attribute value can be estimated even for a user whose attribute value is unknown.
- FIG. 29 is a flowchart illustrating an example of processing performed by executing the attribute information determination program 1200 of the server 104.
- step S1201 the life pattern data of all users is read from the life pattern table 850.
- step S1202 the attribute value (eg, “female” and “police officer”) of each attribute category (eg, “gender” and “occupation”) and the accuracy of the attribute value (eg, “80”) for all users. % "" 47% ").
- the accuracy value of the attribute value includes a value stored by the past execution of the attribute information determination program 1200 and a value input by another input means (not shown).
- the accuracy of the attribute value represents the reliability of the attribute value. For example, in the case of the value input by the person, it may be set to 100%. Further, when there is no input for the attribute category and no estimation is performed, it is empty and it is understood that the value is unknown.
- an attribute discriminator eg, gender discriminator
- the life pattern vectors of all users whose attribute values of the attribute category are not empty are read from the life pattern table 850, the attribute values of the attribute category are used as target variables, and general machine learning is used as teacher data.
- the classifier is learned by the method. For example, a decision tree may be learned using the ID3 algorithm disclosed in (JR Quinlan, “Induction of decision trees”, “Machine learning,” 1986). At this time, using the accuracy of the attribute value, weighting may be performed so that the influence of highly reliable data is increased during learning.
- the classifier learned here is determined as the classifier of the attribute category.
- step S1204 the attribute value of the user whose attribute value is unknown is estimated for each attribute category.
- a user whose attribute category attribute value is empty is acquired, a life pattern vector is input for each user, the attribute category discriminator calculated above is used to estimate an attribute value, and this is used as an estimated attribute value. Determine.
- the attribute category discriminator is provided with means for calculating the accuracy of estimation, this is determined as the estimation accuracy.
- an arbitrary value for example, 50%
- the calculated estimated attribute value and estimated accuracy are stored in an attribute table 1250 described later. For example, when the value calculated for the attribute category “gender” of a certain user is “female” “78%”, the “sex” field 1252 and the “gender accuracy” field 1253 of the user's record. Respectively.
- FIG. 30 is an explanatory diagram showing the format of the attribute table 1250.
- the user ID 1251 for storing the identifier of the user of the attribute information estimation system, the gender 1252 for storing the attribute value of the gender attribute category, and the estimation accuracy of the gender attribute category 1 is constructed from the gender accuracy 1253 for storing the attribute, the occupation 1254 for storing the attribute value of the occupation attribute category, and the occupation accuracy 1255 for storing the attribute value of the occupation attribute category.
- the user's exercise state is measured by the acceleration sensor of the bracelet type sensor node 1 and stored in the server 104, and the measured exercise state is analyzed to frequently appear in the life of the user group.
- the acceleration sensor of the bracelet type sensor node 1 is used to detect the movement state of the user (human body) as the lifestyle pattern classification system.
- the movement state of the human body can be detected.
- pulse information, the number of steps, and the like may be used, or the motion state of the human body may be detected from a combination of these pieces of biological information.
- position information such as GPS or a portable terminal.
- the user's exercise state is measured by the acceleration sensor of the bracelet type sensor node 1 and stored in the server 104, and the attribute value such as gender or occupation is unknown using the calculated life pattern feature amount.
- These attribute values can be estimated. Thereby, even if all users do not input their own attribute information, it is possible to estimate and present an unknown attribute value if there is a user to input.
Landscapes
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Engineering & Computer Science (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Economics (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Telephonic Communication Services (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
センサデータにより利用者の多様な日々の過ごし方に対応した生活パターン表現を提供し、これにより人を分類する手段を提供する。 利用者の生活を記録したセンサデータから、「よくある一日」を表す「日クラスタ」群をクラスタリングにより抽出し、これら日クラスタの出現パターンを特徴量化することにより生活パターンを表現し、このようにして抽出した生活パターンを軸に利用者をクラスタリングし利用者の分類を生成する。
Description
本発明は、行動データの記録から生活パターンを分析し、対象者群を分類するシステムに関するものである。
健康管理やマーケティングの分野では患者や顧客を理解するための手段として対象群の分類を行う事が多い。
身近な例としてコンビニエンスストアでは清算時に、販売した商品情報と共に客の「年代」と「性別」を収集することにより、店舗毎に客層にあった商品を適切な時間帯に陳列して客にとっての店舗の利便性を改善することに役立てられている。
別の例として健康管理では、患者を「喫煙有無」「家族の病歴」などのアンケート項目により分類し、心疾患の精密検査が必要な患者を洗い出すということが一般的に行われている。
また、例えば特許文献1では一日の電力使用量の推移から対象世帯の生活パターンを推定し、これにより対象世帯を分類する技術が開示されている。
アンケートを用いて性別や病歴のような個人の状態を表すパラメータを取得して、対象群を分類することも可能であるが、健康や購買はむしろ個人の生活スタイルの影響を受けやすいため、個人の生活の状態を用いて分類することにより、より効果的な健康管理やマーケティングが可能である。
一方で、アンケートではなく何らかの客観的データを利用して対象者の生活を記録することにより、個人の生活の状態を用いて対象者の分類を行うことができる。
特許文献1は、対象世帯の生活パターンに基づいて対象世帯を分類するものであるが、行動パターンの分析結果と予め決められた対象者の行動パターンを表す情報(例えば昼型生活パターン、夜型生活パターンなど)とのマッチングにより対象者の分類を行う。また、対象者の行動パターンの分析にあたっては、各対象世帯における複数日の電力消費量の平均を算出し、その平均電力使用量の推移から所定のルールに従って対象者の各行動時刻(起床時刻、外出時刻、帰宅時刻、就寝時刻、ピーク時刻)を算出している。つまり、平均化することにより対象世帯の長期的な傾向を見ようとしているが、ここには暗に各家庭がそれぞれ毎日似たパターンの一日を送るという仮定がある。
これに対して、本発明者らは、様々な人を分析対象にし、人の生活パターンを分析して人を分類する研究を進めている。この中で、各対象者には様々なパターンの日が含まれることが、人の分類に大きな影響を与えることに着目した。
すなわち、一般的には対象者は日々同じような生活を繰り返すものとして、対象者を分類する。その場合、特許文献1のように複数日の電力消費量の平均を取ったとしても、問題は表面化しない。これに対して、様々なパターンの日が含まれる対象者群を分析対象とする場合、実際にどのような生活を送っているのかに大きく依存し、往々にして日々同様の生活を繰り返すものとして生活パターンを分類することが適切でないことが生じる。例えば、仕事日と休日を交互に繰り返し、規則的な生活を送っているが起床時刻等が一定でないような対象者を、日々同様の生活を繰り返すものとして分類すると、本来分類したい生活パターンとは異なるものとなってしまう。
例えば、図26(a)は、ユーザ1とユーザ2が過ごすパターンを示している。横軸は時間を示し、縦軸は電力消費量を示す。ユーザ1は、5:00頃起床、13:00頃外出、19:00頃帰宅、23:30頃就寝というパターンの生活を繰り返しているものとする。この場合、平均電力消費量の推移からユーザ1の生活パターンを分類しても、ユーザ1の生活パターンを示すものとして十分である。この場合、例えば在宅時間が長いことを特徴する「家派」のような生活パターンに分類されると考えられる。
一方、ユーザ2は、5:00頃起床、7:00頃外出、19:00頃帰宅、22:00頃就寝というパターン1(例えば、平日の仕事日で早朝起きて会社に行き、早めに帰宅して早寝するような生活パターン)と、6:45頃起床、13:00頃外出、21:00頃帰宅、23:30頃就寝というパターン2(例えば、休日で通常の時間に起床して昼過ぎまで在宅し、夜遅く帰宅して就寝するような生活パターン)の生活を交互に繰り返しているとする。
ここで、ユーザ2が日々同様の生活を繰り返すものとして、電力使用量の平均をとると、図26(a)のユーザ2(平均化後)に示すようになる。これに基づいて、起床時刻、外出時刻、帰宅時刻、就寝時刻を算出すると、ユーザ1とユーザ2の生活パターンが程遠いにもかかわらず、両ユーザは同じ生活パターンに分類されることになる。つまり、生活パターンが様々な種類の日から構成されている対象者を含む対象者群を分析対象とする場合、実際の生活を表現できないといえる。
本発明では、従来の生活パターン分類のように対象者が日々同様の生活を繰り返すものとして扱うのではなく、様々なパターンの日が含まれているものとして「一日」を扱う。ここで「一日」とは、特定時刻で区切られた期間を示し、必ずしも24時間単位で区切られる期間ではない。そして、2段階の分類を行う。すなわち、第1段階として全対象者の日から「よくある日」を検出して、各対象者の一日がどの「よくある日」に該当するかを検出して各対象者の一日を分類する。第2段階として分類された一日の遷移・分布などの出現パターンを対象者の生活パターンを示す指標として算出し、その算出した生活パターンを表す指標から「よくある生活」を検出して、各対象者がどの「よくある生活」に該当するかを検出して対象者を分類する。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記の通りである。
複数の利用者それぞれに装着される端末と通信を行う基地局にネットワークを介して接続される生活パターン分類装置である。ネットワークに接続されるネットワークインタフェースと、ネットワークインタフェースに接続されるプロセッサと、プロセッサに接続される記録装置と、を備える。プロセッサは、ネットワークインタフェースを介して、端末が取得するセンシングデータを受けて記録装置のセンシングデータテーブルに格納し、利用者それぞれの活動期間を分割するための分割時刻を決定して記録装置の活動履歴分割時刻テーブルに格納し、活動履歴分割時刻テーブルに格納される分割時刻で区切られる期間に取得されたセンシングデータから第1の特徴量を算出して、記録装置の特徴量テーブルに格納し、特徴量テーブルに格納される複数の第1の特徴量を用いてクラスタ群を生成し、第1の特徴量に基づいて分割時刻で区切られる期間にクラスタ群からクラスタを割り当てて複数の利用者それぞれに対応する特徴量テーブルに格納し、特徴量テーブルに格納されるクラスタからクラスタの出現パターンを示す第2の特徴量を算出して、記録装置の生活パターンテーブルに格納し、生活パターンテーブルに格納される複数の第2の特徴量を用いて生活パターン群を生成し、第2の特徴量に基づいて複数の利用者それぞれに生活パターン群から生活パターンを割り当てて複数の利用者それぞれに対応する生活パターンテーブルに格納する。
また、複数の利用者それぞれに装着される端末と、端末と通信を行う基地局と、基地局とネットワークを介して接続される生活パターン分類装置と、を備える生活パターン分類システムである。端末は、センシングデータを取得するセンサと、センシングデータを処理する処理装置と、処理されたセンシングデータを基地局に送信する無線装置と、を備える。生活パターン分類装置は、ネットワークに接続されるネットワークインタフェースと、ネットワークインタフェースに接続されるプロセッサと、プロセッサに接続される記録装置と、を備える。プロセッサは、ネットワークインタフェースを介して、端末が取得するセンシングデータを受けて記録装置のセンシングデータテーブルに格納し、利用者それぞれの活動期間を分割するための分割時刻を決定して記録装置の活動履歴分割時刻テーブルに格納し、活動履歴分割時刻テーブルに格納される分割時刻で区切られる期間に取得されたセンシングデータから第1の特徴量を算出して、記録装置の特徴量テーブルに格納し、特徴量テーブルに格納される複数の第1の特徴量を用いてクラスタ群を生成し、第1の特徴量に基づいて分割時刻で区切られる期間にクラスタ群からクラスタを割り当てて複数の利用者それぞれに対応する特徴量テーブルに格納し、特徴量テーブルに格納されるクラスタからクラスタの出現パターンを示す第2の特徴量を算出して、記録装置の生活パターンテーブルに格納し、生活パターンテーブルに格納される複数の第2の特徴量を用いて生活パターン群を生成し、第2の特徴量に基づいて複数の利用者それぞれに生活パターン群から生活パターンを割り当てて複数の利用者それぞれに対応する生活パターンテーブルに格納する。
本発明によれば、様々なパターンの一日を送る対象者の実際の生活パターンを反映した分類が可能となる。
以下、本発明の実施の形態を、図面に基づき説明する。
本発明を適用する第1の実施例として、人(利用者)に装着したセンサによって測定したセンシングデータから生活パターンを推定し、生活パターンにより利用者群を分類した後、サービス提供者に分類を提示する生活パターン分類システムを示す。
図1は、本発明を適用する生活パターン分類システムの構成の一例を示すブロック図である。本実施例の生活パターン分類システムは、当該システムの利用者の動作(または状態)を検出するセンサとして、加速度センサを備えた腕輪型センサノード1を用い、生体情報として腕の加速度を検出する例を示す。腕輪型センサノード1は、利用者(または参加者)の腕に装着されて加速度を検出し、所定の周期で検出した加速度データをセンシングデータとして、アンテナ101を介して基地局102へ無線送信する。また、有線通信が可能な場合はUSB接続などを介してクライアント計算機(PC)103へ送信する。
図1において、基地局102又はPC103は複数の腕輪型センサノード1と通信を行い、各腕輪型センサノード1から利用者の動きに応じたセンシングデータを受信し、ネットワーク105を介してサーバ104へ転送する。サーバ104は受信したセンシングデータを格納する。サーバ104は、基地局102又はPC103から受信したセンシングデータを解析し、後述するように利用者の生活パターン特徴量を生成し、また利用者群の分類を生成して格納する。
サーバ104が生成した利用者群の分類は、サービス提供者が操作するクライアント計算機(PC)103で閲覧することができる。
図2は、本実施例の生活パターン分類システムを構成する腕輪型センサノード1の一例を示す図で、図2(a)は腕輪型センサノード1の正面から見た概略図で、図2(b)は腕輪型センサノード1を側方から見た断面図である。この腕輪型センサノード1は主に利用者の動きを測定する。
腕輪型センサノード1は、センサや制御装置を格納するケース11と、ケース11を人体の腕に装着するバンド12を備える。
ケース11の内部には、図2(b)のようにマイクロコンピュータ3やセンサ6等を備えた基板10が格納される。そして、人体(生体)の動きを測定するセンサ6としては、図中X-Y-Zの3軸の加速度をそれぞれ測定する加速度センサを採用した例を示す。なお、本実施形態では、腕輪型センサノード1には図示しない温度センサ、脈拍センサを備え、利用者の体温、脈拍を測定し、加速度とともにセンシングデータとして出力するものとする。
図3は、腕輪型センサノード1の基板10に取り付けられた電子回路のブロック図を示す。図3において、基板10には、基地局102と通信を行うアンテナ5を備えた無線通信部(RF)2と、PC103と有線接続するUSB通信部39と、センサ6及び無線通信部2を制御するマイクロコンピュータ3と、マイクロコンピュータ3を間欠的に起動するためのタイマとして機能するリアルタイムクロック(RTC)4と、各部に電力を供給する電池7と、センサ6への電力の供給を制御するスイッチ8が配置される。また、スイッチ8とセンサ6の間には、バイパスコンデンサC1が接続されてノイズの除去や、充放電の速度を低減して無駄な電力消費を防ぐ。バイパスコンデンサC1への充放電回数を減らすようにスイッチ8を制御することによって、無駄な電力消費を抑えることが可能になる。
マイクロコンピュータ3は、演算処理を実行するCPU34と、CPU34で実行するプログラムなどを格納するROM33と、データなどを格納するRAM32と、RTC4からの信号(タイマ割り込み)に基づいてCPU34に割り込みをかける割り込み制御部35と、センサ6から出力されたアナログ信号をデジタル信号に変換するA/Dコンバータ31と、無線通信部2との間でシリアル信号にて信号の送受を行うシリアルコミュニケーションインターフェース(SCI)36と、無線通信部2及びUSB通信部39とスイッチ8を制御するパラレルインターフェース(PIO)37と、マイクロコンピュータ3内の上記各部へクロックを供給する発振部(OSC)30とを含んで構成される。そして、マイクロコンピュータ3内の上記各部はシステムバス38を介して接続される。RTC4は、マイクロコンピュータ3の割り込み制御部35に予め設定されている所定の周期で割り込み信号(タイマ割り込み)を出力し、また、SCI36へ基準クロックを出力する。PIO37はCPU34からの指令に応じてスイッチ8のON/OFFを制御し、センサ6への電力供給を制御する。
マイクロコンピュータ3は、演算処理を実行するCPU34と、CPU34で実行するプログラムなどを格納するROM33と、データなどを格納するRAM32と、RTC4からの信号(タイマ割り込み)に基づいてCPU34に割り込みをかける割り込み制御部35と、センサ6から出力されたアナログ信号をデジタル信号に変換するA/Dコンバータ31と、無線通信部2との間でシリアル信号にて信号の送受を行うシリアルコミュニケーションインターフェース(SCI)36と、無線通信部2及びUSB通信部39とスイッチ8を制御するパラレルインターフェース(PIO)37と、マイクロコンピュータ3内の上記各部へクロックを供給する発振部(OSC)30とを含んで構成される。そして、マイクロコンピュータ3内の上記各部はシステムバス38を介して接続される。RTC4は、マイクロコンピュータ3の割り込み制御部35に予め設定されている所定の周期で割り込み信号(タイマ割り込み)を出力し、また、SCI36へ基準クロックを出力する。PIO37はCPU34からの指令に応じてスイッチ8のON/OFFを制御し、センサ6への電力供給を制御する。
腕輪型センサノード1は、所定の周期(例えば、1秒等)でマイクロコンピュータ3を起動して、センサ6からセンシングデータを取得し、取得したセンシングデータに腕輪型センサノード1を特定する識別子とタイムスタンプを付与して基地局102へ送信する。なお、腕輪型センサノード1の制御の詳細は、例えば、特開2008-59058号公報等と同様にすることができる。なお、腕輪型センサノード1は、連続的に取得したセンシングデータを、周期的に基地局102へ送信するようにしても良い。
図4は、図1に示した本発明を適用する生活パターン分類システムの構成要素を示すブロック図である。腕輪型センサノード1が送信したセンシングデータは、基地局102を介してサーバ104の記録装置1100のセンシングデータテーブル1150に蓄積される。
クライアント(PC)103は、各種情報を表示する表示装置1031とサービス提供者の操作によって様々な情報の入力を可能とする入力装置1032を具備する。
サーバ104は、ネットワークインタフェース106と、プロセッサ107と、メモリ108及び記録装置1100を備える。ネットワークインタフェース106は、ネットワーク105に接続するためのインタフェースである。記録装置は、後述する各種プログラム、各種データテーブルを記録するものであり、例えば、ハードディスクドライブやCD-ROMドライブ、フラッシュメモリなどである。なお、複数の記録装置に各種プログラム、各種データテーブルを分割して記録するようにしてもよい。
プロセッサ107は、記録装置1100に記録されている各種プログラムをメモリ108に読み出して実行することにより各種機能を実現する。具体的には、データ集計プログラム200を実行することにより、利用者の腕の加速度センサで測定されたセンシングデータを集計し、単位時間(例えば、1分間)毎の集計値を算出し、記録装置1100の集計データテーブル250に格納する。また、睡眠分析プログラム300を実行することにより算出した単位時間毎の集計値を解析し、全ての睡眠状態を検知し、記録装置1100の睡眠分析データテーブル350に格納する。活動履歴分割プログラム400を実行することにより利用者毎に検知した睡眠状態から主睡眠を選別し、これらの起床時刻を一日の境目を表す活動履歴分割時刻群として記録装置1100の活動履歴分割時刻テーブル450に格納する。日特徴量抽出プログラム500を実行することにより算出した活動履歴分割時刻群により分割された各日に対して特徴量を抽出し記録装置1100の日特徴量テーブル550に格納する。日クラスタ生成プログラム600を実行することにより特徴量抽出した全利用者の全日をクラスタリングすることにより日クラスタを生成し、これを記録装置1100の日クラスタテーブル650に格納する。日クラスタ割り当てプログラム700を実行することにより特徴量を抽出した各利用者の各日に生成した日クラスタ群から最適な日クラスタを割り当て、割り当ての情報を記録装置1100の日特徴量テーブル550に格納する。生活パターン抽出プログラム800を実行することにより各利用者に対して割り当てられた日クラスタ群を特徴量化して生活パターンを抽出し記録装置1100の生活パターンテーブル850に格納する。生活パターンセグメント生成プログラム900を実行することにより全利用者に対して抽出された生活パターン群を分類することにより利用者の分類を生成し、これを記録装置1100の生活パターンセグメントテーブル950に格納する。生活パターンセグメント割り当てプログラム1000を実行することにより生活パターンを抽出した全利用者に対して生成した生活パターンセグメント群から最適な生活パターンセグメントを割り当て、割り当ての情報を記録装置1100の生活パターンテーブル850に格納する。
なお、以下では、サーバ104が、データ集計プログラム200と睡眠分析プログラム300と活動履歴分割プログラム400と日特徴量抽出プログラム500と日クラスタ生成プログラム600と日クラスタ割り当てプログラム700と生活パターン抽出プログラム800と生活パターンセグメント生成プログラム900と生活パターンセグメント割り当てプログラム1000を所定の周期(例えば、5分間)毎に実行する例を示す。
図5は、本発明を適用する生活パターン分類システムで行われるデータ処理の全体的な流れを示す図である。
まず、ステップS1では、腕輪型センサノード1が送信したセンシングデータを基地局102がサーバ104へ転送し、サーバ104のセンシングデータテーブル1150にセンシングデータを蓄積する。また、センシングデータに付与されている、センサノードを特定するための識別子と当該センシングデータを取得した時刻を示す時刻情報もセンシングデータテーブルに蓄積する。さらに、サーバ104が所定の周期になるとデータ集計プログラム200を実行して、記録装置1100に蓄積されたセンシングデータから単位時間毎の運動頻度と歩行数を算出し、記録装置1100の集計データテーブル250に格納する。さらに、サーバ104は睡眠分析プログラム300を実行して、集計データテーブル250に格納された集計データから利用者が睡眠状態にあると推定される領域を検出し、全ての睡眠領域の開始時刻と終了時刻を組みとして睡眠分析データテーブル350に格納する。
次に、ステップS2では、サーバ104が活動履歴分割プログラム400を実行して、各利用者に関して記録装置1100に蓄積された各睡眠領域から昼寝やうたた寝を除いた主睡眠を選別し、これらの終了時刻群を活動履歴の分割時刻として記録装置1100に格納する。さらに、サーバ104は日特徴量抽出プログラム500を実行して、算出した活動履歴の分割時刻で切り分けられる期間毎に対し単位時間集計データと睡眠分析データから所定の特徴量群(総歩数や外出時刻など、後述の特徴量)を算出し、日特徴量ベクトルとして日特徴量テーブル550に格納する。
次に、ステップS3では、サーバ104が日クラスタ生成プログラム600を実行して、算出された全利用者全日の特徴量ベクトル群をクラスタリング手法により分類し、利用者群の中で「よくある日」を表す「日クラスタ」群を生成し、これを日クラスタテーブル650に格納する。さらに、サーバ104が日クラスタ割り当てプログラム700を実行して、算出した各日特徴量ベクトルに対し、生成した日クラスタ群から最適な日クラスタを割り当て、各利用者の各日に対する日クラスタの対応付けを日特徴量テーブル550に格納する。
次に、ステップS4では、サーバ104が生活パターン抽出プログラム800を実行して、各利用者に対して算出された各日に対応する最適日クラスタ群に関して、後述する所定の日クラスタの分布や遷移に関する特徴量を算出し、これら特徴量を利用者の生活パターンを表す生活パターンベクトルとして生活パターンテーブル850に格納する。
次に、ステップS5では、サーバ104が生活パターンセグメント生成プログラム900を実行して、算出した全利用者の生活パターンベクトル群をクラスタリング手法により分類することで、生活パターンの分類である「生活パターンセグメント」群を生成し、これを生活パターンセグメントテーブル950に格納する。次に、サーバ104が生活パターンセグメント割り当てプログラム1000を実行して、各利用者に対して最適の生活パターンセグメントを割り当て、この対応付けを生活パターンテーブル850に格納する。
次に、ステップS6では、記録装置に格納された各利用者の生活パターンセグメントの割り当てをクライアント計算機103の表示装置1031に提示する。
このように、日特徴量ベクトル群を分類して日クラスタ群を生成し、最適な日クラスタを各利用者の各日に対して割り当てることにより、各利用者の各日を分類する。さらに、分類された各日の遷移や分布に関する特徴量から生活パターンセグメント群を生成し、各利用者に対して最適な生活パターンセグメントを割り当てることにより、利用者群を分類する。このような2段階の分類を行うことにより、利用者に様々なパターンの日が含まれていたとしても、分類された各日の遷移や分布を反映できるため、実際の生活に即した人の分類が可能となる。
図8は、サーバ104のデータ集計プログラム200で行われる処理の一例を示すフローチャートである。まず、利用者の識別子に対応するセンシングデータをセンシングデータテーブル1150から読み込む(ステップS11)。ここで、読み込むセンシングデータの量は、センシングデータの集計周期である所定の周期(例えば、3分間)等に設定すればよい。
次に、読み込んだセンシングデータの加速度データについて所定の時間間隔(例えば、1分)毎の集計値を算出する。本実施形態では、所定の時間間隔内での腕輪型センサノード1の装着者(利用者)の運動の頻度を示すゼロクロス回数を集計値として用いる。
腕輪型センサノード1が検出したセンシングデータにはX、Y、Z軸の加速度データが含まれているので、X、Y、Zの3軸の加速度のスカラー量=√(Xg^2+Yg^2+Zg^2)を算出し(ステップS12)、求めたスカラー量をフィルタ(バンドパスフィルタ)処理することで所定の周波数帯域(例えば、0.1Hz~5Hz)のみを抽出しノイズ成分を除去する(ステップS13)。そして、図9に示すように求めたスカラー量が所定の閾値(例えば、0.05G)を通過する値をゼロクロス回数として算出し、ゼロクロス回数が所定時間間隔内に出現する頻度を算出し、この出現頻度を、所定の時間間隔(1分間)の運動頻度として出力する(ステップS14)。この運動頻度の算出結果は図6で示すように単位時間毎の運動頻度を時系列的にソートしたデータとなる。なお、運動頻度は、X、Y、Zの各方向の加速度の値が正と負に振動した回数(振動数)を各方向の所定時間内に数えて合計してもよいが、本実施例では、計算を簡略化することができるため、ゼロクロス回数を算出する方法を採用している。
また、所定の時間間隔内のX、Y、Z3軸加速度のスカラー値の積算値をゼロクロス回数とスカラー量から求めて、この積分値を運動強度とする(ステップS15)。またセンシングデータに含まれる温度についても所定の時間間隔内の平均温度を求める(ステップS16)。
さらに、所定時間間隔内に出現する歩行のステップ数を歩行数として出力する(ステップS17)。ここで、歩行を検知する手法は、上下方向の加速度が周期的に変化する(一歩ごとの着地)、前後方向の加速度が上下方向の加速度と同期して規則的に前方向と後ろ方向を繰り返す(着地するごとの速度変化)、左右方向の加速度が上下方向の加速度に同期して規則的に繰り返す(一歩ごとの体の左右へのゆれ)、といった波形が観測でき、さらに腕の振りが重なった波形として観測できるので、これらにより、該当する時間間隔内に歩行状態であるか否かを判定できる。また、ゼロクロスの周期の逆数を歩数として検知することも可能である。これらの人体に装着した加速度センサから歩行状態を検知する手法、及びステップ数を算出する手法は、公知の手法を用いれば良く、例えば、「腕に装着した加速度・角速度センサを用いた人間の歩行・走行運動の解析」(S.-W.Lee and K.Mase,「Recognition of Walking Behaviors for Pedestrian Navigation」, Proc. IEEE Conf. Control Applications (CCA01), IEEE Control Systems Soc., Piscataway, N.J., 2001, pp.1152-1155.)などが知られている。
データ集計プログラム200の実行は、所定の時間間隔毎に、運動頻度、平均温度、運動強度、歩行数を求め、図10に示すように、所定の時間間隔毎の集計データを生成し、記録装置1100の集計データテーブル250へ蓄積する(ステップS18)。図10は、集計データテーブル250のフォーマットを示す説明図で、腕輪型センサノード1の装着者(生活パターン分類システムの利用者)の識別子を格納するユーザID251と、センシングデータに含まれる腕輪型センサノード1の識別子を格納するセンサデータID252と、所定の時間間隔の開始時刻(測定日時)を格納する測定日時253と、データ集計プログラム200の実行により演算した平均温度を格納する温度254と、データ集計プログラム200の実行により演算した運動頻度を格納する運動頻度255と、データ集計プログラム200の実行により求めた運動強度を格納する運動強度256と、データ集計プログラム200の実行により求めた歩行のステップ数を格納する歩行数257からひとつのエントリを構成する。なお、利用者の識別子は、腕輪型センサノード1の識別子に基づいて予め設定した図示しないテーブルから参照すればよい。
図11は、サーバ104の睡眠分析プログラム300で行われる処理の一例を示すフローチャートである。まず、データ集計プログラム200の実行により集計した単位時間集計データを集計データテーブル250から読み込む(ステップS21)。ここで、読み込む集計データの量は、例えば過去の睡眠分析プログラム300の実行によって既に格納されている最後の睡眠の終了時刻以降全て、等に設定すればよい。
次に、ステップS22では、睡眠分析プログラム300の実行により読み込んだ集計データから睡眠状態であると推定される領域群を検出する。睡眠中の運動頻度は極めて低いが、睡眠中でも人体は寝返りなどの運動を行うため、運動頻度はゼロにはならない。睡眠を判定する手法はいくつか知られており、例えば、Cole法(Cole RJ,Kripke DF, Gruen W, Mullaney DJ, Gillin JC. Automatic sleep/wake identification from wrist activity. Sleep 1992; 15: 491-469)などを適用すればよい。このような手法により検出された各領域の開始時刻と終了時刻を睡眠領域の候補群として、図示しない一時ストレージ等に保持する。
次に、ステップS23では、睡眠領域の候補の中で近接するもの同士を結合する。睡眠検出の手法によっては、例えば目覚まし時計を止めるために一時的に起床し、再び睡眠に入った場合でも一時的に起きた時刻で睡眠領域候補が区切れてしまう。しかし、生理活動としての睡眠は確かにそこで区切れているが、生活行動としての睡眠を考える場合そこで区切れることは望ましくない。そのため、睡眠領域候補の終了後、所定時間(例えば30分)以内に次の睡眠領域候補が開始している場合、二つの睡眠領域候補を結合し、一つの大きな睡眠領域として扱う。このようにして睡眠領域候補群の中で結合できるものを探索し、結合する。
次に、ステップS24では、睡眠領域の候補として不適合であるものを排除する。まず継続時間が所定時間(例えば10分)以下の睡眠領域は排除する。候補群の中の最後の睡眠領域候補の終了時刻がもし睡眠分析プログラム300の実行により読み込んだ集計データの最新測定時刻から所定時間(例では30分)以内である場合、次回の睡眠分析プログラム300の実行で新しく候補に挙がる睡眠領域と結合される可能性があるため、これも排除する。以上のように処理した睡眠領域候補群を睡眠領域群として確定する。
最後に確定した睡眠領域群を記録装置1100の睡眠分析データテーブル350に蓄積する(ステップS25)。
睡眠分析プログラム300の実行により、所定の時間間隔毎に、睡眠領域群を求め、図12に示すように、各睡眠領域を記録装置1100の睡眠分析データテーブル350へ蓄積する。
図12は、睡眠分析データテーブル350のフォーマットを示す説明図で、腕輪型センサノード1の装着者(生活パターン分類システムの利用者)の識別子を格納するユーザID351と、睡眠領域の開始時刻を格納する測定日時352と、睡眠領域の終了時刻を格納する終了時刻353からひとつのエントリを構成する。
図13は、サーバ104の活動履歴分割プログラム400の実行により行われる処理の一例を示すフローチャートである。まず、睡眠分析プログラム300の実行により生成した睡眠領域データを睡眠分析データテーブル350から読み込む(ステップS31)。ここで、読み込む睡眠分析データの範囲は、例えば過去の活動履歴分割プログラム400の実行によって既に格納されている最後の活動履歴分割時刻以降全て、等に設定すればよい。
次に、活動履歴分割プログラム400の実行により読み込んだ睡眠領域データからうたた寝や昼寝を除いた主睡眠だけを選別する。まず各睡眠領域の所属するカレンダー日を算出する(ステップS32)。これは、睡眠領域の終了時刻が所定時刻、例えば0時から20時までであるならば同日、20時から24時までであるならば次の日に所属するものとする。例えば7月23日の16時半に開始し20時半に終了する睡眠領域は、7月24日に属する。こうして算出したカレンダー日の最古のカレンダー日から最新のカレンダー日まで、各カレンダー日において最長の所属睡眠領域を導き、これらをそのカレンダー日の主睡眠とする(ステップS33)。つまり、実際の睡眠領域の終了時刻をカレンダー日の主睡眠として取り扱う。例えば、7月23日の16時半に開始し20時半に終了する睡眠領域が、7月24日に属する睡眠領域の中で最長であった場合、7月24日の主睡眠の終了時刻を、7月23日の20時半とする。以上で算出した主睡眠の終了時刻、即ち起床時刻を、活動履歴分割時刻群として確定し、活動履歴分割時刻テーブル450に格納する(ステップS34)。
活動履歴分割プログラム400の実行により、所定の時間間隔毎に、活動履歴分割時刻群を求め、図14に示すように、各活動履歴分割時刻を活動履歴分割時刻テーブル450へ蓄積する。図14は、活動履歴分割時刻テーブル450のフォーマットを示す説明図で、腕輪型センサノード1の装着者(生活パターン分類システムの利用者)の識別子を格納するユーザID451と、活動履歴分割時刻の日時を格納する分割時刻452からひとつのエントリを構成する。
図15は、サーバ104の日特徴量抽出プログラム500の実行により行われる処理の一例を示すフローチャートである。まず、活動履歴分割プログラム400の実行により生成した活動履歴分割時刻データを活動履歴分割時刻テーブル450から読み込む(ステップS41)ここで、読み込む活動履歴分割時刻データの範囲は、例えば過去の日特徴量抽出プログラム500の実行によって既に格納されている最後の日特徴量ベクトルデータの代表時刻以降全て、等に設定すればよい。またステップ41で読み込んだ全ての活動履歴分割時刻を「未処理」として初期化する。
次に、ステップS42では、ステップS41で読み込んだ活動履歴分割時刻群の中でまだ未処理のものがあるかどうか判断し、ない場合は実行を終了する。未処理の時刻がある場合はこれを次のステップS421以降で処理する。
ステップS421では、未処理の活動履歴分割時刻のうち任意の一つを期間開始時刻として選択し、この期間開始時刻の次の活動履歴分割時刻にあたる時刻を検索し、期間終了時刻として選択する。次に、この期間開始時刻と期間終了時刻で区切られる期間(一日)に関してデータ集計プログラム200の実行により集計された集計データを集計データテーブル250から取得する。
ステップS422では、取得された対象期間から就寝時刻を検出する。対象期間の終了時刻は睡眠分析データテーブル350に含まれるどれかの睡眠領域の終了時刻(即ち起床時刻)であることが保障されているため、睡眠領域を検索し、これの開始時刻を就寝時刻として確定する。
ステップS423では、取得された期間集計データから外出時刻を検出する。ここでは簡易的な方法として、起床後初の5分以上の歩行を外出とみなす例を挙げる。即ち、取得された期間集計データの中から歩行数が1以上である単位時間が5回以上連続で続く領域を探索し、この開始時刻を外出時刻と確定する。
ステップS424では、取得された期間集計データから帰宅時刻を検出する。ここでは簡易的な例として、就寝前の最後の5分以上の歩行を帰宅とみなす例を挙げる。即ち、取得された期間集計データの中から歩行数が1以上である単位時間が5回以上連続で続く領域の中で、就寝時刻前の最後のものを探索し、これの終了時刻を帰宅時刻として確定する。
ステップS425では、取得された期間集計データから総歩数を算出する。これは、取得された期間集計データの歩行数を積算し、総歩数として確定する。
ステップS426では、取得された期間集計データから外出中の活動量を算出する。これは、取得された外出時刻から取得された帰宅時刻までの領域の集計データの、運動頻度の平均を外出中の活動量として確定する。
ステップS427では、取得された期間集計データから外出時間割合を算出する。まず期間開始時刻(即ち起床時刻)から就寝時刻までの経過時間を覚醒時間とし、外出時刻から帰宅時刻までの経過時間を外出時間とし、(外出時間/覚醒時間)を外出時間割合として確定する。
ステップS428では、図16に示すように、以上算出した一日に関する指標を特徴量ベクトルとして日特徴量テーブル550へ蓄積する。
図16は、日特徴量テーブル550のフォーマットを示す説明図で、腕輪型センサノード1の装着者(生活パターン分類システムの利用者)の識別子を格納するユーザID551と、一日の開始時刻を格納する分割時刻552と、分割時刻と同じ時刻を格納する起床時刻553と、検出した就寝時刻を格納する就寝時刻554と、検出した外出時刻を格納する外出時刻555と、検出した帰宅時刻を格納する帰宅時刻556と、一日の中の総歩数を格納する総歩数557と、外出中の運動頻度の平均値を格納する外出中活動量558と、覚醒期間中の外出時間の割合を表す外出時間割合559と、分割時刻に対応する日クラスタの識別子を格納する日クラスタID560からひとつのエントリを構成する。対応する日クラスタID560は、日特徴量抽出プログラム500の実行時には空欄で初期化され、後述の日クラスタ割り当てプログラム700の実行により更新される。
図17は、サーバ104の日クラスタ生成プログラム600の実行により行われる処理の一例を示すフローチャートである。まず、日特徴量ベクトル生成部500が生成した全利用者の全日特徴量ベクトルデータを日特徴量テーブル550から読み込む(ステップS51)。ここで取得した各データは(起床時刻、就寝時刻、外出時刻、帰宅時刻、総歩数、外出中活動量、外出時間割合)の7次元で表されるベクトルである。
ステップS52では、取得した日特徴量ベクトル群をクラスタリング手法の利用により、グループ化する。生成された各グループを日クラスタと呼び、一つの日クラスタは全利用者の生活の中で頻出する日(特定時刻で区切られた期間)、すなわち「よくある日」を表す。また、日特徴量ベクトルのパラメータとして、起床時刻、就寝時刻、外出時刻、帰宅時刻、総歩数、外出中活動量、外出時間割合のすべてを用いる必要はなく、重み付けを行うことも可能であり、少なくとも何れか1つを用いるようにしてもよい。なお、日特徴量ベクトル群のクラスタリングは一般的な非階層型クラスタリング手法、例えばk-means法、ファジィC平均法やエントロピー法などを適用すれば良い。
ステップS53では、算出した各日クラスタの代表値を算出する。日クラスタの代表値とはグループに含まれる全ての日特徴量ベクトルの平均値であるベクトルを指す。図7には、日特徴量ベクトルが起床時刻と総歩数の2パラメータによってのみ表されている例を図示している。黒点は一人の利用者の一日を表す日特徴量ベクトルで、これが全利用者分全日分表示されている。ここでは日特徴量ベクトルが3グループに分類できる例を示し、各日クラスタの代表値が×で表されている。ステップS54では、図18に示すように、各日クラスタの代表値を日クラスタテーブル650へ蓄積する。
図18は、日クラスタテーブル650のフォーマットを示す説明図で、日クラスタを識別する識別子を格納する日クラスタID651と、代表値の起床時刻を格納する起床時刻652と、代表値の就寝時刻を格納する就寝時刻653と、代表値の外出時刻を格納する外出時刻654と、代表値の帰宅時刻を格納する帰宅時刻655と、代表値の総歩数を格納する総歩数656と、代表値の外出中活動量を格納する外出中活動量657と、代表値の外出時間割合を格納する外出時間割合658からひとつのエントリを構成する。日クラスタを識別する識別子は、各日クラスタを識別できる固有の値なら何でもよく、例えば図示しない「未使用ID」リストを保持し、テーブルに格納する際ここから選択し、リストから消去することで確定すれば良い。
図19は、サーバ104の日クラスタ割り当てプログラム700の実行により行われる処理の一例を示すフローチャートである。まず、日特徴量ベクトル生成部500が生成した全利用者の全日特徴量ベクトルデータを日特徴量テーブル550から読み込む(ステップS61)。
ステップS62では、取得した日特徴量ベクトル群で、未だ日クラスタを割り当てていないものが存在しない場合、日クラスタ割り当てプログラム700の実行を終了する。それ以外の場合は各未処理の日特徴量ベクトルに対し、以降のステップを行う。
ステップS621では、未処理の日特徴量ベクトルを選択し、これに最適な日クラスタを割り当てる。日特徴量ベクトルに対して最適な日クラスタは、生成した日クラスタ群の中で代表値とのユークリッド距離が最短のものを探索することにより確定する。
ステップS622では、確定した最適日クラスタの識別子を日特徴量ベクトルテーブル550における日特徴量ベクトルの日クラスタID560に格納する。
図20は、サーバ104の生活パターン抽出プログラム800の実行により行われる処理の一例を示すフローチャートである。
ステップS71では、生活パターンを抽出していない利用者が存在しない場合、生活パターン抽出プログラム800の実行を終了する。それ以外の場合は各未処理の利用者に対し、以降のステップを行う。
ステップS711では、未処理の利用者を選択し、この利用者に対し算出した全ての日特徴量ベクトルと、それらに対する日クラスタの対応付け、即ち日特徴量テーブル550に含まれる分割時刻552と日クラスタID560のペアを、分割時刻でソートされた時系列的な羅列として取得する。この羅列に関して特徴量を算出することで、この利用者の生活パターンを特徴量化する。
ステップS712では、この利用者の生活の中で特に頻出する日クラスタ(コアクラスタ)の数を算出する。まず取得した日クラスタの羅列から、各日クラスタの出現頻度を算出し、出現頻度が所定の割合(例えば10%)以上の日クラスタの数を、この利用者の『コアクラスタ数』として確定する。コアクラスタ数は、その人の生活の過ごし方の「多様性」を表す指標として有効である。
ステップS713では、平日に出現する日クラスタ数と週末に出現する日クラスタ数の比を算出する。まず取得した日クラスタの羅列から平日のみのエントリを取得し、これから各日クラスタの出現頻度を算出する。この中で出現頻度が所定の割合(例えば5%)以上の日クラスタ数を、この利用者の平日クラスタ数として確定する。更に、取得した日クラスタの羅列から週末のみのエントリを取得し、これから各日クラスタの出現頻度を算出する。この中で出現頻度が所定の割合以上の日クラスタ数を、この利用者の週末クラスタ数として確定する。最後に(平日クラスタ数/週末クラスタ数)をこの利用者の『平日週末クラスタ比』として確定する。この時、週末での出現頻度が所定の割合以上である日クラスタの数を週末クラスタ数とするのではなく、例えば各日クラスタのうち、週末での出現頻度が有意に高い日クラスタを統計的検定手法で算出し、これに該当する日クラスタの数を週末クラスタ数としても良い。ここで統計的検定手法とは、例えば母比率の区間推定を用いて、週末での出現頻度が2/7より有意に高いということを示しても良い。また、「週末」と「平日」を比較するのではなく、利用者が指定した休日や予め入力した法定休日の日にちを図示しないテーブルに保管し、これを読みだすことで日クラスタを「通常の日」と「休日」における出現頻度の特徴から「通常日クラスタ」と「休日クラスタ」に分類し、「通常日」と「休日」の比較を算出しても良い。何れの場合も、平日週末クラスタ比は、仕事のある日とプライベートの日の多様性の違いを把握することで、対象者のプライベートに対する意識を知るために有効な指標である。
ステップS714では、次の日に同一の日クラスタに遷移する確率が高い日クラスタの数を算出する。取得した日クラスタの羅列から、各日クラスタの、出現の次の日が再び同じ日クラスタであった回数を数え、これを算出した日クラスタの出現頻度で割ることで、各日クラスタが次の日自分自身に戻る確率を算出する。この確率が所定閾値(例えば50%)以上である日クラスタの数を、この利用者の『対角クラスタ数』として確定する。対角クラスタ数は、生活の過ごし方の「単調さ」を測るための指標として有効である。この時、次の日に同じ日クラスタが出現する回数を数えるのではなく、次の2日間、または任意の日数以内に同じ日クラスタが出現する回数を数えるのでも良い。
ステップS715では、図21に示すように、以上算出した利用者の生活パターンに関する指標群を生活パターンとして生活パターンテーブル850へ蓄積する。
図21は、生活パターンテーブル850のフォーマットを示す説明図で、腕輪型センサノード1の装着者(生活パターン分類システムの利用者)の識別子を格納するユーザID851と、生活の中で頻出する日クラスタの数を格納するコアクラスタ数852と、平日と週末のクラスタ数の比を格納する平日週末クラスタ比853と、自分自身に戻る確率が高い日クラスタの数を格納する対角クラスタ数854と、この利用者に割り当てられた生活パターンセグメントの識別子を格納する生活パターンセグメントID855からひとつのエントリを構成する。生活パターンセグメントID855は、生活パターン抽出プログラム800の実行時には空欄で初期化され、後述の生活パターンセグメント割り当てプログラム1000の実行により更新される。
以上の説明においては、生活パターンを「コアクラスタ数」「平日週末クラスタ比」「対角クラスタ数」の3指標を用いて表す例を示した。しかしこれ以外の、日クラスタの羅列を用いて算出できる生活パターンの特徴を捉える指標を用いても良い。
例えば、各日クラスタにつき、その日クラスタが属する日の日特徴量ベクトルを全て取得し、該日クラスタの中心ベクトルと、各日特徴量ベクトルのユークリッド距離を算出し、全ての距離を平均化したものを、該日クラスタの「クラスタ密度」として算出し、上記取得した全日クラスタのクラスタ密度の平均を、『クラスタ密度平均』として、生活パターンテーブル850内の図示しないフィールドに格納しても良い。クラスタ密度平均は、対象者の生活の不規則さを表す一つの指標として有効である。
また、上記で例示した平日クラスタ数、週末クラスタ数を、『平日クラスタ数』、『週末クラスタ数』として、生活パターンテーブル850内の図示しないフィールドに格納しても良い。
また、各日クラスタの各曜日における出現頻度を算出し、上記した統計的検定手法を用いて、該日クラスタが有意に高い頻度で出現する曜日を算出し、これを「曜日固有日クラスタ」とし、全日クラスタの中で曜日固有日クラスタの数を『曜日クラスタ数』として、生活パターンテーブル850内の図示しないフィールドに格納しても良い。曜日クラスタ数は、対象者が「週」にしばられた生活を送っている度合いを見る事に有効な指標である。
また、各日クラスタを出現頻度の多い順に並べ、上位80%を占める日クラスタの数を『トップ80%日クラスタ数』として、生活パターンテーブル850内の図示しないフィールドに格納しても良い。トップ80%日クラスタ数は、対象の生活の多様性を表す指標として有効である。
また、各日クラスタの出現頻度をヒストグラムとして少ない順に並べ、任意の関数(例えば指数関数y=a*b^x)をフィッティングした時のパラメータ(例えばこの場合a,b)を、『日クラスタ出現率フィッティングパラメータ』として、生活パターンテーブル850内の図示しないフィールドに格納しても良い。これは対象者の生活における日クラスタの出現パターンの特徴を表す一つの指標として有効である。
また、各日クラスタの組み合わせ(A,B)につき、日クラスタAが出現した次の日に日クラスタBが出現した回数を算出し、この中で頻度が特徴的である組み合わせを「特徴遷移」と呼ぶ。特徴的な組み合わせを算出する方法を以下に例示する。例えば7種類の日クラスタが存在する場合、組み合わせの数は7×7=49であるため、もし一様分布に従って日クラスタが出現するとすると各組み合わせが出現する確率は1/49である。そのため1/49よりも有意に高い、もしくは少ない頻度で出現する組み合わせを特徴的な組み合わせと呼ぶことができる。更に、以上のように算出した特徴遷移の数を『特徴遷移数』として生活パターンテーブル850内の図示しないフィールドに格納しても良い。特徴遷移数は、該対象者の生活における「日の繋がり方の規則性」を表す指標として有効である。例えば「遅く寝た日の次の日は寝坊する」といったルールが生活に沢山存在している人の場合、特徴遷移数は高い値になる。
また、各日クラスタの組み合わせにつき出現頻度が所定の値以上であるものだけを「有効遷移」として採用し、日クラスタをノードとし、有効遷移をエッジとして表す状態遷移図を「日クラスタ遷移グラフ」として算出する。この時、ある日クラスタAから別の日クラスタBに到達するまでに経由する遷移の数を日クラスタAから日クラスタBまでの到達ステップ数とした場合、全ての日クラスタ組み合わせの到達ステップ数のうち最大のものを『グラフ直径』として生活パターンテーブル850内の図示しないフィールドに格納しても良い。グラフ直径は、該対象者の生活の多様性を表す一つの指標として有効である。
また、各日クラスタにつき、1から任意の最大値(例えば100)までの間の値をτとして自己相関R(τ)を算出する。例えばτ=7の時に日クラスタAの自己相関を算出するには、全日クラスタ羅列を、自分自身を7日間未来にずらした羅列と比較し、両方の羅列が日クラスタAとなる回数を算出し、また全日クラスタ羅列に出現する日クラスタAの数を算出し、前者から後者を割ったものを自己相関として確定する。更に、各τにつき自己相関を算出した後最大の値が所定の値以上(例えば0.3)である日クラスタを、「周期的日クラスタ」として確定する。更に、全ての日クラスタの中で「周期的日クラスタ」である数を『周期的日クラスタ数』として生活パターンテーブル850内の図示しないフィールドに格納しても良い。また、全ての日の中で「周期的日クラスタ」に属する日の割合を『周期性割合』としてとして生活パターンテーブル850内の図示しないフィールドに格納しても良い。この二つの値は、生活の周期性を表す指標として有効である。
また、1から任意の最大値(例えば100)までの間の値をτとして、日クラスタ羅列の自己相関R(τ)を算出する。例えばτ=7の時に自己相関を算出するには、全日クラスタ羅列を、自分自身を7日間未来にずらした羅列と比較し、両方の羅列の日クラスタが一致する割合を自己相関として確定する。更に、各τにつき自己相関を算出した後の最大の値を『最大自己相関』として生活パターンテーブル850内の図示しないフィールドに格納しても良い。また最小の自己相関値を『最小自己相関』として生活パターンテーブル850内の図示しないフィールドに格納しても良い。またτ=7の自己相関値を『自己相関(w=7)』として生活パターンテーブル850内の図示しないフィールドに格納しても良い。これらの指標は、生活の周期性を表す指標として有効である。
また、日クラスタ羅列をマルコフプロセスとして扱うことで、隣り合う日クラスタの出現パターンのエントロピーを算出する。即ち、全ての日クラスタの組み合わせ(A,B)につき、Aの出現した日の次のうちBが次に出現した事例の割合を算出し、Pa(b)として確定する。更に、各日クラスタAが出現する割合P(a)を算出し、エントロピー H(S)=-Σ[a].p(a)*(Σ[b].(Pa(b)*log Pa(b) )を算出し、『連続性エントロピー』として生活パターンテーブル850内の図示しないフィールドに格納しても良い。これは、対象者の生活において、ある日の過ごし方が前日の過ごし方のみに依存している度合を表すために有効であり、生活の規則性を定量化する一つの指標である。
図22は、サーバ104の生活パターンセグメント生成プログラム900の実行により行われる処理の一例を示すフローチャートである。まず、生活パターン抽出プログラム800の実行により生成した全利用者の生活パターンベクトルを生活パターンテーブル850から読み込む(ステップS81)。ここで取得した各データは(コアクラスタ数、平日週末クラスタ比、対角クラスタ数)の3次元で表されるベクトルである。また、この3指標だけではなく、上記した生活パターン指標の何れか、もしくは全てを用いても良い。
ステップS82では、取得した生活パターンベクトル群をクラスタリング手法の利用により、グループ化する。生成された各グループを生活パターンセグメントと呼び、一つの生活パターンセグメントは全利用者の中で頻出する生活、すなわち「よくある生活」を表す。また、生活パターンベクトルのパラメータとして、コアクラスタ数、平日週末クラスタ比、対角クラスタ数のすべてを用いる必要はなく、重み付けを行うことも可能であり、少なくとも何れか1つを用いるようにしてもよい。なお、生活パターンベクトル群のクラスタリングは一般的な非階層型クラスタリング手法、例えばk-means法、ファジィC平均法やエントロピー法などを適用すれば良い。
ステップS83では、算出した各生活パターンセグメントの代表値を算出する。生活パターンセグメントの代表値とはセグメントに含まれる全ての生活パターンベクトルの平均値であるベクトルを指す。図31には、生活パターンベクトルがコアクラスタ数と平日週末クラスタ比の2パラメータによってのみ表されている例を図示している。黒点は一人の利用者を表す生活パターンベクトルで、これが全利用者分表示されている。ここでは生活パターンベクトルが3セグメントに分類できる例を示し、各生活パターンセグメントの代表値が×で表されている。
ステップS84では、図23に示すように、各日クラスタの代表値を生活パターンセグメントテーブル950へ蓄積する。
図23は、生活パターンセグメントテーブル950のフォーマットを示す説明図で、固有の生活パターンセグメントを識別する生活パターンセグメントID951と、生活パターンセグメントの代表値のコアクラスタ数を格納するコアクラスタ数952と、生活パターンセグメントの代表値の平日週末クラスタ比を格納する平日週末クラスタ比953と、生活パターンセグメントの代表値の対角クラスタ数を格納する対角クラスタ数954からひとつのエントリを構成する。生活パターンセグメントを識別する識別子は、各生活パターンセグメントを識別できる固有の値なら何でもよく、例えば図示しない「未使用ID」リストを保持し、テーブルに格納する際ここから選択し、リストから消去することで確定すれば良い。
図24は、サーバ104の生活パターンセグメント割り当てプログラム1000の実行により行われる処理の一例を示すフローチャートである。まず、生活パターン抽出プログラム800の実行により生成した全利用者の生活パターンデータを生活パターンテーブル850から読み込む(ステップS91)。
ステップS92では、取得した生活パターンベクトル群で、生活パターンセグメントを割り当てていない利用者が存在しない場合、生活パターンセグメント割り当てプログラム1000の実行を終了する。それ以外の場合は各未処理の利用者の生活パターンベクトルに対し、以降のステップを行う。
ステップS921では、未処理の利用者の生活パターンベクトルを選択し、これに最適な生活パターンセグメントを割り当てる。生活パターンベクトルに対して最適な生活パターンセグメントは、生成した生活パターンセグメント群の中の、代表値とのユークリッド距離が最短のものを探索することにより確定する。
ステップS922では、確定した最適生活パターンセグメントの識別子を生活パターンテーブル850における生活パターンベクトルの生活パターンセグメントID855に格納する。
図25は、クライアント計算機103の表示装置1031に表示される生活パターン分類モニタ画面1300の画面イメージである。サーバ104は、クライアント計算機103からの表示要求を受け付けて、生活パターン分類モニタ画面1300を表示させる。なお、クライアント計算機103で稼動するアプリケーションとしては、ブラウザを採用することができる。
生活パターン分類モニタ画面1300は、生活パターンセグメントデータ950の生活パターンセグメントID951とコアクラスタ数952と平日週末クラスタ比953と対角クラスタ数954を表示するテキスト表示1301と、各生活パターンセグメントに含まれる利用者の識別子を表示するテキスト表示1302と、利用者の日クラスタ遷移図を表示する遷移表示部1303を備える。
日クラスタ遷移図は、利用者の各日に対して日クラスタ割り当てプログラム700の実行により割り当てた日クラスタ群から生成されており、利用者の生活の中で所定の割合以上出現する日クラスタが円と円内に表示される日クラスタ識別子により表示する。また、各日クラスタを表す円は、利用者の生活の中で出現する割合に応じて円の大小と背景の濃淡が決定されており、また利用者の生活の中で、ある日クラスタAの次の日に日クラスタBに遷移する確率が所定の閾値以上の場合、日クラスタAから日クラスタBに矢印が表示されており、またこの矢印の太さは遷移確率に比例して太くされている。
図32は、クライアント計算機103の表示装置1031に表示される生活パターンモニタ画面1400の画面イメージである。サーバ104は、クライアント計算機103からの表示要求を受け付けて、生活パターンモニタ画面1400を表示させる。なお、クライアント103で稼働するアプリケーションとしては、ブラウザを採用することができる。
生活パターンモニタ画面1400は、表示する月を選択するための、図示しない表示月選択手段と、表示する利用者を選択するための、図示しない表示ユーザ選択手段を備えており、これらの選択を起因として、選択された利用者の表示月をカレンダー1403に表示する。このカレンダーにおいて、各日におけるこの利用者に割り当てられた日クラスタを日特徴量ベクトルテーブル550の日クラスタID560を参照することで取得し、例えば日クラスタを表す識別子(A,B,C…)を表示しても良い。この識別子は、日クラスタが生成された時にランダムの文字列を割り当てたものでも良い。または日クラスタが生成された順番で数字(1,2,3…)またはアルファベット(A,B,C…)が割り当てられたものでも良い。または利用者自らが、図示しない日クラスタ名称入力画面により自ら割り当てた日クラスタの名称を表示しても良い。または利用者が自らが、図示しない日クラスタ背景色選択画面により設定した日クラスタの表示色を、日の背景色として表示しても良い。このように、一人の利用者に対して割り当てられた日クラスタをカレンダーで表示することにより、利用者本人もしくは第三者にとって日クラスタの意味を理解しやすいものとして提示できる。即ち、例えば図32の例では日クラスタ「B」が土曜や日曜に多く出現していることから、休日の過ごし方を表すものとして理解しやすくなる。またカレンダーではなく、日付と、その日クラスタを縦にリスト表示しても良い。
次に、ここで示した本実施例がいかにして前述の課題を解決しているかを示す。図26(a)で図示されるユーザ1とユーザ2の二人を利用して「起床時刻」「外出時刻」「帰宅時刻」「就寝時刻」の4パラメータで日クラスタ群を生成すると、例えば図26(b)の「日クラスタ定義」に表されるような3つの日クラスタが生まれる。日クラスタAはユーザ1が毎日送る日、日クラスタBはユーザ2の平日の仕事日を示すパターン1、日クラスタCはユーザ2の休日を示すパターン2を表す。これらの日クラスタ遷移図を利用し各ユーザの生活パターンを可視化すると、ユーザ1は日クラスタAを毎日続ける日を送り、ユーザ2は基本的に日クラスタBに居続け、時々日クラスタCに移るという生活パターンを持つということが見えてくる。すなわち、ユーザ1とユーザ2の生活パターンを明確に区別することができる。更に各ユーザに対して「コアクラスタ」などのパラメータを算出すると、二つのユーザの生活パターンの違いを定量化でき、最終的な分類にも反映できる。
本実施例では、利用者の運動状態を腕輪型センサノード1の加速度センサで測定してサーバ104に格納し、測定した運動状態を解析して、利用者群の生活の中に頻出する一日を抽出し、これの遷移や分布を特徴量化することで個々の利用者の生活パターンを表す指標を抽出し、抽出した生活パターン特徴量により利用者の分類を生成することで、利用者の生活の中の多様な日々の過ごし方に対応した生活パターンによる分類を行うことが出来る。
なお、上記実施形態では、生活パターン分類システムとして利用者(人体)の運動状態を検出するために、腕輪型センサノード1の加速度センサを用いた例を示したが、人体の運動状態を検知可能な生体情報であればよく、例えば、脈拍や歩数などを用いることができ、あるいは、これらの複数の生体情報の組合せから人体の運動状態を検知しても良い。また、生体情報だけではなく、人体の位置をGPSや携帯端末等の位置情報を用いるようにしても良い。
また本発明では、加速度センサのデータだけではなく、センサの利用履歴(例えば通信状態や電池残量の履歴)から、ユーザがセンサのデータを残すために必要な通信や充電などの行動(記録行動と呼ぶ)の時間をパラメータとして、生活パターンを定量化し、センサの記録行動を促す通知をユーザに発信することも可能である。例えば、図33に示されるように、腕時計型センサノード1を1年間利用した各ユーザの週毎の最大データ蓄積数のばらつきと、データ欠損数は有意に相関していることから、ユーザが規則正しい記録行動をとった場合に、センサの利用効率が高まる。そこで、センサの利用履歴をもとに生成される生活パターンの結果をもとに、規則正しい記録行動の状態から逸脱する傾向が現れた際に、ユーザに通知することができる。
本発明を適用する第2の実施例として、人(利用者)に装着したセンサによって測定したセンシングデータから生活パターン特徴量を算出し、別の入力手段により取得した属性情報(例えば性別)を用いて属性情報判別機を生成し、属性情報が不明な利用者の生活パターンからその利用者の属性を判別する、属性情報推定システムを示す。尚、本実施例の説明においては第1の実施例と異なる箇所のみの説明を行う。
図27は、属性情報推定システムの構成要素を示すブロック図である。プロセッサ107は、記録装置1100に記録されている各種プログラムをメモリ108に読み出して実行することにより各種機能を実現する。具体的には、属性情報判別プログラム1200を実行することにより、生活パターンデータから属性情報を推定できる属性情報判別機を生成し、属性情報が不明である利用者の属性情報を推定し、属性テーブル1250に格納する。
なお、以下では、サーバ104が、属性情報判別プログラムを所定の周期(例えば、5分間)毎に実行する例を示す。
図28は、本発明を適用する属性情報推定システムで行われるデータ処理の全体的な流れを示す図である。第1の実施例同様ステップ1から4を行う。
ステップS5では、サーバ104が属性情報判別プログラム1200を実行して、算出した全利用者の生活パターンベクトルを取得し、同じ利用者の各属性カテゴリ(例えば「性別」、「職業」、など)の属性値(例えば「男性」、「教師」)を取得し、各属性カテゴリにつき、生活パターンベクトルを入力として属性値を出力する判別機を算出する。更に、属性値が存在しない利用者に対してこの判別機を適用することで属性値を推定し、属性テーブル1250に格納する。
これにより、生活パターンの情報と属性値が判明している利用者が存在していれば、属性値が不明である利用者についても属性値を推定することが可能となる。
図29は、サーバ104の属性情報判別プログラム1200の実行により行われる処理の一例を示すフローチャートである。
まず、ステップS1201では、全ての利用者の生活パターンデータを生活パターンテーブル850から読み込む。
次にステップS1202では、全ての利用者の、各属性カテゴリ(例:「性別」「職業」)の属性値(例:「女性」「警察官」)と、属性値の精度(例:「80%」「47%」)を取得する。属性値の精度の値は、過去の属性情報判別プログラム1200の実行により格納された値や、別の図示しない入力手段により入力された値が含まれている。属性値の精度とは属性値の信頼性を表しており、例えば本人が入力した値の場合は100%と設定しても良い。また属性カテゴリに対して入力がなく、推定も行われていない場合は空となっており、不明値であることが分かる。
次に、ステップS1203では、各属性カテゴリ(例えば「性別」)につき、属性判別機(例えば性別判別機)を学習する。まず、該属性カテゴリの属性値が空ではない全ての利用者の生活パターンベクトルを生活パターンテーブル850から読み込み、該属性カテゴリの属性値を目標変数として用い、合わせて教師データとして一般的な機械学習手法で判別機を学習する。例えば(JR Quinlan, “Induction of decision trees”, Machine learning, 1986)で開示されるID3アルゴリズムを用いて決定木を学習しても良い。この時、属性値の精度を用いて、学習の際、信頼性の高いデータの影響力が高くなるよう重みづけを行っても良い。ここで学習した判別機を、該属性カテゴリの判別機として決定する。
次に、ステップS1204では、各属性カテゴリにつき、属性値が不明である利用者の属性値を推定する。該属性カテゴリの属性値が空である利用者を取得し、各利用者につき生活パターンベクトルを入力とし、上記算出した該属性カテゴリ判別機を用い、属性値を推定し、これを推定属性値として確定する。更に、該属性カテゴリ判別機が推定の精度を算出する手段を備えている場合、これを推定精度として確定する。精度の算出手段が無い場合は、任意の値(例えば50%)に設定する。更に、算出した推定属性値と推定精度を後述する属性テーブル1250に格納する。例えば、ある利用者の属性カテゴリ「性別」に対して算出された値が「女性」「78%」であった場合、該利用者のレコードの「性別」フィールド1252と、「性別精度」フィールド1253にそれぞれ格納する。
図30は、属性テーブル1250のフォーマットを示す説明図で、属性情報推定システムの利用者の識別子を格納するユーザID1251と、性別属性カテゴリの属性値を格納する性別1252と、性別属性カテゴリの推定精度を格納する性別精度1253と、職業属性カテゴリの属性値を格納する職業1254と、職業属性カテゴリの属性値を格納する職業精度1255からひとつのエントリを構成する。
本実施例では、利用者の運動状態を腕輪型センサノード1の加速度センサで測定してサーバ104に格納し、測定した運動状態を解析して、利用者群の生活の中に頻出する一日を抽出し、これの遷移や分布を特徴量化することで個々の利用者の生活パターンを表す指標を抽出し、抽出した生活パターン特徴量により利用者の分類を生成することで、利用者の生活の中の多様な日々の過ごし方に対応した生活パターンによる分類を行うことが出来る。
なお、上記実施形態では、生活パターン分類システムとして利用者(人体)の運動状態を検出するために、腕輪型センサノード1の加速度センサを用いた例を示したが、人体の運動状態を検知可能な生体情報であればよく、例えば、脈拍や歩数などを用いることができ、あるいは、これらの複数の生体情報の組合せから人体の運動状態を検知しても良い。また、生体情報だけではなく、人体の位置をGPSや携帯端末等の位置情報を用いるようにしても良い。
本実施例では、利用者の運動状態を腕輪型センサノード1の加速度センサで測定してサーバ104に格納し、算出した生活パターン特徴量を用いて性別や職業等の属性値が不明の利用者に対してこれらの属性値を推定することが出来る。これにより、全ての利用者が自分の属性情報を入力しないでも、入力する利用者が存在すれば、不明な属性値を推定し、提示することが可能となる。
なお、上記実施形態では属性カテゴリを「性別」と「職業」の2カテゴリを例として挙げたが、これに限るものではなく、例えば「年代」や、「所在地」、更に「体重」等の連続値を属性カテゴリとして用いても良い。
1 センサノード
102 基地局
103 クライアント計算機
104 サーバ
105 ネットワーク
106 ネットワークインタフェース
107 プロセッサ
108 メモリ
1031 表示装置
1032 入力装置
1100 記録装置。
102 基地局
103 クライアント計算機
104 サーバ
105 ネットワーク
106 ネットワークインタフェース
107 プロセッサ
108 メモリ
1031 表示装置
1032 入力装置
1100 記録装置。
Claims (16)
- 複数の利用者それぞれに装着される端末と通信を行う基地局にネットワークを介して接続される生活パターン分類装置であって、
上記ネットワークに接続されるネットワークインタフェースと、
上記ネットワークインタフェースに接続されるプロセッサと、
上記プロセッサに接続される記録装置と、を備え、
上記プロセッサは、
上記ネットワークインタフェースを介して、上記端末が取得するセンシングデータを受けて上記記録装置のセンシングデータテーブルに格納し、
上記利用者それぞれの活動期間を分割するための分割時刻を決定して上記記録装置の活動履歴分割時刻テーブルに格納し、
上記活動履歴分割時刻テーブルに格納される上記分割時刻で区切られる期間に取得された上記センシングデータから第1の特徴量を算出して、上記記録装置の特徴量テーブルに格納し、
上記特徴量テーブルに格納される複数の上記第1の特徴量を用いてクラスタ群を生成し、上記第1の特徴量に基づいて上記分割時刻で区切られる期間に上記クラスタ群からクラスタを割り当てて上記複数の利用者それぞれに対応する上記特徴量テーブルに格納し、
上記特徴量テーブルに格納されるクラスタから上記クラスタの出現パターンを示す第2の特徴量を算出して、上記記録装置の生活パターンテーブルに格納し、
上記生活パターンテーブルに格納される複数の上記第2の特徴量を用いて生活パターン群を生成し、上記第2の特徴量に基づいて上記複数の利用者それぞれに上記生活パターン群から生活パターンを割り当てて上記複数の利用者それぞれに対応する上記生活パターンテーブルに格納する生活パターン分類装置。 - 請求項1に記載の生活パターン分類装置において、
上記センシングデータは、上記端末の加速度センサにより取得される加速度データであって、
上記プロセッサは、
所定時間内に上記加速度データの大きさが所定の閾値を超える回数を運動頻度として算出し、
上記運動頻度に基づいて上記利用者が睡眠していること示す睡眠領域を検出し、
上記睡眠領域の終了時刻と所定時刻とを比較して上記睡眠領域の属する日を決定し、かつ、上記睡眠領域が属する日の中で最も長い睡眠領域を主睡眠とし、
上記主睡眠の終了時刻を上記分割時刻として決定する生活パターン分類装置。 - 請求項2に記載の生活パターン分類装置において、
上記プロセッサは、
上記分割時刻で区切られる期間の上記主睡眠の開始時刻を検出して上記利用者の就寝時刻とし、かつ、上記主睡眠の終了時刻を検出して上記利用者の起床時刻とし、
上記加速度データの周期的な変化に基づいて上記利用者の歩行状態を検出して上記歩行状態における上記加速度データの周期から上記利用者の歩行数を算出し、
上記起床時刻以後で所定時間以上の上記歩行状態を検出して外出時刻を算出し、
上記就寝時刻以前で所定時間以上の上記歩行状態を検出して帰宅時刻を算出し、
上記外出時刻から上記帰宅時刻までの上記運動頻度の平均値を外出中活動量として算出し、
上記起床時刻から上記就寝時刻までの経過時間と上記外出時刻から上記帰宅時間までの経過時間から外出時間割合を算出し、
上記起床時刻、上記就寝時刻、上記外出時刻、上記帰宅時刻、上記歩行数、上記外出中活動量、及び上記外出時間割合を、上記第1の特徴量として上記特徴量テーブルに格納する生活パターン分類装置。 - 請求項3に記載の生活パターン分類装置において、
上記プロセッサは、上記起床時刻、上記就寝時刻、上記外出時刻、上記帰宅時刻、上記歩行数、上記外出中活動量、及び上記外出時間割合の少なくとも何れか1つを上記第1の特徴量として用いて、上記クラスタ群を生成する生活パターン分類装置。 - 請求項2に記載の生活パターン分類装置において、
上記プロセッサは、
上記特徴量テーブルに格納されるクラスタから所定の割合以上のクラスタの数をコアクラスタ数として算出し、
上記特徴量テーブルに格納されるクラスタから、平日のクラスタ数と週末のクラスタ数の比を平日週末クラスタ比として算出し、
上記特徴量テーブルに格納されるクラスタから、所定確率以上で同一のクラスタに遷移するクラスタ数を対角クラスタ数として算出し、
上記コアクラスタ数、上記平日週末クラスタ比、及び上記対角クラスタ数を上記第2の特徴量として上記生活パターンテーブルに格納する生活パターン分類装置。 - 請求項5に記載の生活パターン分類装置において、
上記プロセッサは、上記コアクラスタ数、上記平日週末クラスタ比、及び上記対角クラスタ数の少なくとも何れか1つを上記第2の特徴量として用いて、上記生活パターン群を生成する生活パターン分類装置。 - 請求項1に記載の生活パターン分類装置において、
上記プロセッサは、
上記複数の第1の特徴量に対して非階層型クラスタリング手法により上記複数の第1の特徴量を分類して上記クラスタ群を生成し、
上記複数の第2の特徴量に対して非階層型クラスタリング手法により上記複数の第2の特徴量を分類して上記生活パターン群を生成する生活パターン分類装置。 - 請求項1に記載の生活パターン分類装置において、
上記プロセッサは、
上記第1の特徴量を示すベクトルと上記クラスタ群のクラスタに含まれる第1の特徴量の平均値を示すベクトルとのユークリッド距離が最短となるクラスタを、上記第1の特徴量に対応する上記分割時刻で区切られる期間に割り当て、
上記第2の特徴量を示すベクトルと上記生活パターン群の生活パターンに含まれる第2の特徴量の平均値を示すベクトルとのユークリッド距離が最短となる生活パターンを、上記第2の特徴量に対応する上記複数の利用者それぞれに割り当てる生活パターン分類装置。 - 請求項1に記載の生活パターン分類装置において、
上記プロセッサは、上記複数の利用者それぞれに割り当てられた上記生活パターンの識別子と上記複数の利用者それぞれとを対応づけて、接続される表示装置に表示する生活パターン分類装置。 - 複数の利用者それぞれに装着される端末と、上記端末と通信を行う基地局と、上記基地局とネットワークを介して接続される生活パターン分類装置と、を備える生活パターン分類システムであって、
上記端末は、センシングデータを取得するセンサと、上記センシングデータを処理する処理装置と、上記処理されたセンシングデータを上記基地局に送信する無線装置と、を備え、
上記生活パターン分類装置は、上記ネットワークに接続されるネットワークインタフェースと、上記ネットワークインタフェースに接続されるプロセッサと、上記プロセッサに接続される記録装置と、を備え、
上記プロセッサは、
上記ネットワークインタフェースを介して、上記端末が取得するセンシングデータを受けて上記記録装置のセンシングデータテーブルに格納し、
上記利用者それぞれの活動期間を分割するための分割時刻を決定して上記記録装置の活動履歴分割時刻テーブルに格納し、
上記活動履歴分割時刻テーブルに格納される上記分割時刻で区切られる期間に取得された上記センシングデータから第1の特徴量を算出して、上記記録装置の特徴量テーブルに格納し、
上記特徴量テーブルに格納される複数の上記第1の特徴量を用いてクラスタ群を生成し、上記第1の特徴量に基づいて上記分割時刻で区切られる期間に上記クラスタ群からクラスタを割り当てて上記複数の利用者それぞれに対応する上記特徴量テーブルに格納し、
上記特徴量テーブルに格納されるクラスタから上記クラスタの出現パターンを示す第2の特徴量を算出して、上記記録装置の生活パターンテーブルに格納し、
上記生活パターンテーブルに格納される複数の上記第2の特徴量を用いて生活パターン群を生成し、上記第2の特徴量に基づいて上記複数の利用者それぞれに上記生活パターン群から生活パターンを割り当てて上記複数の利用者それぞれに対応する上記生活パターンテーブルに格納する生活パターン分類システム。 - 請求項10に記載の生活パターン分類システムにおいて、
上記センシングデータは、上記端末の加速度センサにより取得される加速度データであって、
上記プロセッサは、
所定時間内に上記加速度データの大きさが所定の閾値を超える回数を運動頻度として算出し、
上記運動頻度に基づいて上記利用者が睡眠していること示す睡眠領域を検出し、
上記睡眠領域の終了時刻と所定時刻とを比較して上記睡眠領域の属する日を決定し、かつ、上記睡眠領域が属する日の中で最も長い睡眠領域を主睡眠とし、
上記主睡眠の終了時刻を上記分割時刻として決定する生活パターン分類システム。 - 請求項11に記載の生活パターン分類システムにおいて、
上記プロセッサは、
上記分割時刻で区切られる期間の上記主睡眠の開始時刻を検出して上記利用者の就寝時刻とし、かつ、上記主睡眠の終了時刻を検出して上記利用者の起床時刻とし、
上記加速度データの周期的な変化に基づいて上記利用者の歩行状態を検出して上記歩行状態における上記加速度データの周期から上記利用者の歩行数を算出し、
上記起床時刻以後で所定時間以上の上記歩行状態を検出して外出時刻を算出し、
上記就寝時刻以前で所定時間以上の上記歩行状態を検出して帰宅時刻を算出し、
上記外出時刻から上記帰宅時刻までの上記運動頻度の平均値を外出中活動量として算出し、
上記起床時刻から上記就寝時刻までの経過時間と上記外出時刻から上記帰宅時間までの経過時間から外出時間割合を算出し、
上記起床時刻、上記就寝時刻、上記外出時刻、上記帰宅時刻、上記歩行数、上記外出中活動量、及び上記外出時間割合を、上記第1の特徴量として上記特徴量テーブルに格納する生活パターン分類システム。 - 請求項12に記載の生活パターン分類システムにおいて、
上記プロセッサは、上記起床時刻、上記就寝時刻、上記外出時刻、上記帰宅時刻、上記歩行数、上記外出中活動量、及び上記外出時間割合の少なくとも何れか1つを上記第1の特徴量として用いて、上記クラスタ群を生成する生活パターン分類システム。 - 請求項11に記載の生活パターン分類システムにおいて、
上記プロセッサは、
上記特徴量テーブルに格納されるクラスタから所定の割合以上のクラスタの数をコアクラスタ数として算出し、
上記特徴量テーブルに格納されるクラスタから、平日のクラスタ数と週末のクラスタ数の比を平日週末クラスタ比として算出し、
上記特徴量テーブルに格納されるクラスタから、所定確率以上で同一のクラスタに遷移するクラスタ数を対角クラスタ数として算出し、
上記コアクラスタ数、上記平日週末クラスタ比、及び上記対角クラスタ数を上記第2の特徴量として上記生活パターンテーブルに格納する生活パターン分類システム。 - 請求項14に記載の生活パターン分類システムにおいて、
上記プロセッサは、上記コアクラスタ数、上記平日週末クラスタ比、及び上記対角クラスタ数の少なくとも何れか1つを上記第2の特徴量として用いて、上記生活パターン群を生成する生活パターン分類システム。 - 請求項10に記載の生活パターン分類システムにおいて、
上記プロセッサは、上記複数の利用者それぞれに割り当てられた上記生活パターンの識別子と上記複数の利用者それぞれとを対応づけて、接続される表示装置に表示する生活パターン分類システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011545110A JP5466713B2 (ja) | 2009-12-11 | 2010-09-06 | 生活パターン分類装置及び生活パターン分類システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-281115 | 2009-12-11 | ||
JP2009281115 | 2009-12-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011070831A1 true WO2011070831A1 (ja) | 2011-06-16 |
Family
ID=44145385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/065242 WO2011070831A1 (ja) | 2009-12-11 | 2010-09-06 | 生活パターン分類装置及び生活パターン分類システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5466713B2 (ja) |
WO (1) | WO2011070831A1 (ja) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6358516A (ja) * | 1986-08-29 | 1988-03-14 | Canon Inc | 電位制御方式 |
JP2013101449A (ja) * | 2011-11-08 | 2013-05-23 | Kddi Corp | 携帯端末を所持したユーザの生活パターンを推定する装置、プログラム及び方法 |
WO2013094426A1 (ja) * | 2011-12-22 | 2013-06-27 | 株式会社日立製作所 | 行動属性分析方法および装置 |
JP2014071654A (ja) * | 2012-09-28 | 2014-04-21 | Kddi Corp | ユーザ属性を考慮した電力消費関連支援装置、携帯端末、プログラム及び方法 |
JP2014167715A (ja) * | 2013-02-28 | 2014-09-11 | Kddi Corp | 生活関連量の決定木を用いてユーザ属性を推定するユーザ属性推定プログラム、装置及び方法 |
JP2014182611A (ja) * | 2013-03-19 | 2014-09-29 | Univ Of Tokyo | 情報処理装置、情報処理方法及びプログラム |
WO2014175242A1 (ja) * | 2013-04-26 | 2014-10-30 | シャープ株式会社 | 情報処理装置、情報処理方法、情報処理システム、情報提供装置、および、それらのプログラム |
JP2014228877A (ja) * | 2013-05-17 | 2014-12-08 | Kddi株式会社 | ユーザ分類装置 |
WO2014208070A1 (ja) * | 2013-06-24 | 2014-12-31 | 株式会社東芝 | コミュニケーション管理システム |
JP2015197741A (ja) * | 2014-03-31 | 2015-11-09 | Kddi株式会社 | 消費電力量に基づいて生活パターンを推定する装置、プログラム及び方法 |
JP2016085635A (ja) * | 2014-10-27 | 2016-05-19 | Kddi株式会社 | 健康データ分析補助装置 |
JP2016103187A (ja) * | 2014-11-28 | 2016-06-02 | ローム株式会社 | センサネットワークシステムおよびその動作方法 |
KR20160115546A (ko) * | 2015-03-27 | 2016-10-06 | 삼성전자주식회사 | 가속도 센서를 이용하여 사용자의 활동을 인식하는 방법 및 장치 |
JP2017531233A (ja) * | 2014-08-11 | 2017-10-19 | クアルコム,インコーポレイテッド | 複数のデータソースによって複数の周波数において生成されたデータ入力を同期させるための方法および装置 |
JPWO2017150225A1 (ja) * | 2016-03-02 | 2018-12-27 | 東洋紡株式会社 | 活動リズム判定方法および活動リズム判定装置 |
JP2019503020A (ja) * | 2015-11-24 | 2019-01-31 | ダカドー エージー | 自動健康データ取得、処理および通信システムならびに方法 |
JP2019047982A (ja) * | 2017-09-12 | 2019-03-28 | 東洋紡株式会社 | 睡眠障害を判別する指標の作成方法および作成装置ならびに睡眠障害を判別する方法 |
JP2019047980A (ja) * | 2017-09-12 | 2019-03-28 | 東洋紡株式会社 | 精神神経状態を判別する指標の作成方法および作成装置 |
WO2020100319A1 (ja) * | 2018-11-14 | 2020-05-22 | オムロン株式会社 | 習慣改善装置、方法及びプログラム |
WO2020100318A1 (ja) * | 2018-11-14 | 2020-05-22 | オムロン株式会社 | 習慣改善装置、方法及びプログラム |
US10762119B2 (en) | 2014-04-21 | 2020-09-01 | Samsung Electronics Co., Ltd. | Semantic labeling apparatus and method thereof |
US10831755B2 (en) | 2016-10-26 | 2020-11-10 | Seiko Epson Corporation | Data processing apparatus and data processing method |
JP2021189973A (ja) * | 2020-06-03 | 2021-12-13 | ヤフー株式会社 | 情報処理装置、情報処理方法および情報処理プログラム |
US11462327B2 (en) | 2014-05-23 | 2022-10-04 | Dacadoo Ag | Automated health data acquisition, processing and communication system |
JP7490445B2 (ja) | 2020-05-11 | 2024-05-27 | 株式会社東光高岳 | 情報処理方法、プログラム、情報処理装置及び情報処理システム |
JP7527158B2 (ja) | 2020-08-26 | 2024-08-02 | エヌ・ティ・ティ・コムウェア株式会社 | 人流予測システム、人流予測方法、およびプログラム |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007249922A (ja) * | 2006-03-20 | 2007-09-27 | Sanyo Electric Co Ltd | 非日常行動検知システム |
JP2009028312A (ja) * | 2007-07-27 | 2009-02-12 | Omron Healthcare Co Ltd | 活動量計 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5160818B2 (ja) * | 2007-01-31 | 2013-03-13 | 株式会社日立製作所 | ビジネス顕微鏡システム |
-
2010
- 2010-09-06 JP JP2011545110A patent/JP5466713B2/ja active Active
- 2010-09-06 WO PCT/JP2010/065242 patent/WO2011070831A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007249922A (ja) * | 2006-03-20 | 2007-09-27 | Sanyo Electric Co Ltd | 非日常行動検知システム |
JP2009028312A (ja) * | 2007-07-27 | 2009-02-12 | Omron Healthcare Co Ltd | 活動量計 |
Non-Patent Citations (2)
Title |
---|
KAZUO NISHII ET AL.: "Activity Chosa ni Motozuku Jikan Riyo Pattern no Tahenryo Kaiseki Shuho o Mochiita Ruikeika", KOTSU KOGAKU KENKYU HAPPYOKAI RONBUN HOKOKUSHU, October 2002 (2002-10-01), pages 149 - 152 * |
MAKOTO CHIKARAISHI ET AL.: "A Method of Activity Classification based on Behavioral Similarity and its Accuracy Verification : A Case Study of Activity Start Time", JOURNAL OF THE CIGY PLANNING INSTITUTE OF JAPAN, 25 October 2009 (2009-10-25), pages 481 - 486 * |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6358516A (ja) * | 1986-08-29 | 1988-03-14 | Canon Inc | 電位制御方式 |
JP2013101449A (ja) * | 2011-11-08 | 2013-05-23 | Kddi Corp | 携帯端末を所持したユーザの生活パターンを推定する装置、プログラム及び方法 |
WO2013094426A1 (ja) * | 2011-12-22 | 2013-06-27 | 株式会社日立製作所 | 行動属性分析方法および装置 |
JP2013131170A (ja) * | 2011-12-22 | 2013-07-04 | Hitachi Ltd | 行動属性分析方法および装置 |
JP2014071654A (ja) * | 2012-09-28 | 2014-04-21 | Kddi Corp | ユーザ属性を考慮した電力消費関連支援装置、携帯端末、プログラム及び方法 |
JP2014167715A (ja) * | 2013-02-28 | 2014-09-11 | Kddi Corp | 生活関連量の決定木を用いてユーザ属性を推定するユーザ属性推定プログラム、装置及び方法 |
JP2014182611A (ja) * | 2013-03-19 | 2014-09-29 | Univ Of Tokyo | 情報処理装置、情報処理方法及びプログラム |
WO2014175242A1 (ja) * | 2013-04-26 | 2014-10-30 | シャープ株式会社 | 情報処理装置、情報処理方法、情報処理システム、情報提供装置、および、それらのプログラム |
JP2014215889A (ja) * | 2013-04-26 | 2014-11-17 | シャープ株式会社 | 情報処理装置、および情報提供方法 |
JP2014228877A (ja) * | 2013-05-17 | 2014-12-08 | Kddi株式会社 | ユーザ分類装置 |
WO2014208070A1 (ja) * | 2013-06-24 | 2014-12-31 | 株式会社東芝 | コミュニケーション管理システム |
JP2015005259A (ja) * | 2013-06-24 | 2015-01-08 | 株式会社東芝 | コミュニケーション管理システム |
JP2015197741A (ja) * | 2014-03-31 | 2015-11-09 | Kddi株式会社 | 消費電力量に基づいて生活パターンを推定する装置、プログラム及び方法 |
US10762119B2 (en) | 2014-04-21 | 2020-09-01 | Samsung Electronics Co., Ltd. | Semantic labeling apparatus and method thereof |
US11462327B2 (en) | 2014-05-23 | 2022-10-04 | Dacadoo Ag | Automated health data acquisition, processing and communication system |
JP2017531233A (ja) * | 2014-08-11 | 2017-10-19 | クアルコム,インコーポレイテッド | 複数のデータソースによって複数の周波数において生成されたデータ入力を同期させるための方法および装置 |
JP2016085635A (ja) * | 2014-10-27 | 2016-05-19 | Kddi株式会社 | 健康データ分析補助装置 |
JP2016103187A (ja) * | 2014-11-28 | 2016-06-02 | ローム株式会社 | センサネットワークシステムおよびその動作方法 |
KR20160115546A (ko) * | 2015-03-27 | 2016-10-06 | 삼성전자주식회사 | 가속도 센서를 이용하여 사용자의 활동을 인식하는 방법 및 장치 |
WO2016159515A1 (en) * | 2015-03-27 | 2016-10-06 | Samsung Electronics Co., Ltd. | Method and apparatus for recognizing user's activity using accelerometer |
US9723383B2 (en) | 2015-03-27 | 2017-08-01 | Samsung Electronics Co., Ltd. | Method and apparatus for recognizing user's activity using accelerometer |
KR102390876B1 (ko) * | 2015-03-27 | 2022-04-26 | 삼성전자주식회사 | 가속도 센서를 이용하여 사용자의 활동을 인식하는 방법 및 장치 |
JP2019503020A (ja) * | 2015-11-24 | 2019-01-31 | ダカドー エージー | 自動健康データ取得、処理および通信システムならびに方法 |
US11158407B2 (en) | 2015-11-24 | 2021-10-26 | Dacadoo Ag | Automated health data acquisition, processing and communication system and method |
JP7400000B2 (ja) | 2015-11-24 | 2023-12-18 | ダカドー エージー | 自動健康データ取得、処理および通信システムならびに方法 |
JP2022095887A (ja) * | 2015-11-24 | 2022-06-28 | ダカドー エージー | 自動健康データ取得、処理および通信システムならびに方法 |
JPWO2017150225A1 (ja) * | 2016-03-02 | 2018-12-27 | 東洋紡株式会社 | 活動リズム判定方法および活動リズム判定装置 |
US10831755B2 (en) | 2016-10-26 | 2020-11-10 | Seiko Epson Corporation | Data processing apparatus and data processing method |
JP2019047980A (ja) * | 2017-09-12 | 2019-03-28 | 東洋紡株式会社 | 精神神経状態を判別する指標の作成方法および作成装置 |
JP2019047982A (ja) * | 2017-09-12 | 2019-03-28 | 東洋紡株式会社 | 睡眠障害を判別する指標の作成方法および作成装置ならびに睡眠障害を判別する方法 |
JP2020080125A (ja) * | 2018-11-14 | 2020-05-28 | オムロン株式会社 | 習慣改善装置、方法及びプログラム |
CN112567467A (zh) * | 2018-11-14 | 2021-03-26 | 欧姆龙株式会社 | 习惯改善装置、方法及程序 |
CN112534509A (zh) * | 2018-11-14 | 2021-03-19 | 欧姆龙株式会社 | 习惯改善装置、方法及程序 |
WO2020100319A1 (ja) * | 2018-11-14 | 2020-05-22 | オムロン株式会社 | 習慣改善装置、方法及びプログラム |
JP2020080123A (ja) * | 2018-11-14 | 2020-05-28 | オムロン株式会社 | 習慣改善装置、方法及びプログラム |
JP7351078B2 (ja) | 2018-11-14 | 2023-09-27 | オムロン株式会社 | 習慣改善装置、方法及びプログラム |
WO2020100318A1 (ja) * | 2018-11-14 | 2020-05-22 | オムロン株式会社 | 習慣改善装置、方法及びプログラム |
CN112534509B (zh) * | 2018-11-14 | 2024-02-23 | 欧姆龙株式会社 | 习惯改善装置、方法及计算机可读存储介质 |
CN112567467B (zh) * | 2018-11-14 | 2024-02-27 | 欧姆龙株式会社 | 习惯改善装置、方法及计算机可读存储介质 |
JP7490445B2 (ja) | 2020-05-11 | 2024-05-27 | 株式会社東光高岳 | 情報処理方法、プログラム、情報処理装置及び情報処理システム |
JP2021189973A (ja) * | 2020-06-03 | 2021-12-13 | ヤフー株式会社 | 情報処理装置、情報処理方法および情報処理プログラム |
JP7244458B2 (ja) | 2020-06-03 | 2023-03-22 | ヤフー株式会社 | 情報処理装置、情報処理方法および情報処理プログラム |
JP7527158B2 (ja) | 2020-08-26 | 2024-08-02 | エヌ・ティ・ティ・コムウェア株式会社 | 人流予測システム、人流予測方法、およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP5466713B2 (ja) | 2014-04-09 |
JPWO2011070831A1 (ja) | 2013-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5466713B2 (ja) | 生活パターン分類装置及び生活パターン分類システム | |
JP5250827B2 (ja) | 行動履歴の生成方法及び行動履歴の生成システム | |
US10548513B2 (en) | Activity recognition | |
Candás et al. | An automatic data mining method to detect abnormal human behaviour using physical activity measurements | |
JP5199152B2 (ja) | 行動予測方法及び行動予測システム | |
Min et al. | Toss'n'turn: smartphone as sleep and sleep quality detector | |
JP5372487B2 (ja) | 行動記録入力支援システム、及びサーバ | |
JP5428039B2 (ja) | 目標運動量達成予測システム及びセンサデバイス | |
WO2010146811A1 (ja) | 行動提案装置、及びその方法 | |
JP5767833B2 (ja) | 臥位推定装置、臥位推定システム及び臥位推定方法 | |
JP6423017B2 (ja) | 心理状態計測システム | |
JP5805169B2 (ja) | 行動パターン分析装置および行動パターン分析方法 | |
Kim et al. | IoT-based unobtrusive sensing for sleep quality monitoring and assessment | |
JP2010146223A (ja) | 行動抽出システム、行動抽出方法、及びサーバ | |
US10226177B2 (en) | Mobility aid monitoring system with motion sensor and transceiver | |
Kusserow et al. | Modeling arousal phases in daily living using wearable sensors | |
KR102470148B1 (ko) | 멀티모달 센서 데이터를 이용하여 수면 관련행위 패턴을 분석하는 시스템, 컴퓨팅 디바이스 및 방법 | |
Schinle et al. | Personalization of monitoring system parameters to support ambulatory care for dementia patients | |
CN114073493B (zh) | 生理数据采集方法、装置及可穿戴设备 | |
CN110811583B (zh) | 心率监控方法、装置、电子设备和计算机可读存储介质 | |
EP4224373A1 (en) | System for forecasting a mental state of a subject and method | |
CN113546396B (zh) | 一种基于大数据的数据处理系统及方法 | |
CN111681761B (zh) | 一种面向情境的健康风险识别方法及系统 | |
US11457875B2 (en) | Event prediction system, sensor signal processing system, event prediction method, and non-transitory storage medium | |
JP6594512B2 (ja) | 心理状態計測システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10835753 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011545110 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10835753 Country of ref document: EP Kind code of ref document: A1 |