Nothing Special   »   [go: up one dir, main page]

WO2011070153A2 - Dimensionally stable polyurethane molded foam bodies - Google Patents

Dimensionally stable polyurethane molded foam bodies Download PDF

Info

Publication number
WO2011070153A2
WO2011070153A2 PCT/EP2010/069376 EP2010069376W WO2011070153A2 WO 2011070153 A2 WO2011070153 A2 WO 2011070153A2 EP 2010069376 W EP2010069376 W EP 2010069376W WO 2011070153 A2 WO2011070153 A2 WO 2011070153A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
acid
polyols
polyurethane foam
molded foam
Prior art date
Application number
PCT/EP2010/069376
Other languages
German (de)
French (fr)
Other versions
WO2011070153A3 (en
Inventor
Andre Kamm
Michele Lorusso
Erhan Cubukcu
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to BR112012013911-8A priority Critical patent/BR112012013911B1/en
Priority to EP10787789.6A priority patent/EP2510028B1/en
Priority to ES10787789.6T priority patent/ES2544886T3/en
Priority to JP2012542560A priority patent/JP5654038B2/en
Priority to CN201080056052.0A priority patent/CN102666625B/en
Publication of WO2011070153A2 publication Critical patent/WO2011070153A2/en
Publication of WO2011070153A3 publication Critical patent/WO2011070153A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/631Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polyesters and/or polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/632Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/6552Compounds of group C08G18/63
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0066≥ 150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2410/00Soles

Definitions

  • the present invention relates to a process for the preparation of polyurethane foam moldings in which a) organic polyisocyanates having b) polyols containing b1) polyesterols and b2) polymer polyetherols having a primary OH content of less than 50%, c) blowing agents, and optionally d) chain extenders and / or crosslinking agents, e) catalysts and f) other auxiliaries and / or additives, mixed into a reaction mixture, placed in a mold and allowed to react to form a polyurethane foam molding. Furthermore, the present invention relates to the use of polymer polyetherols and polymer polyesterols for the production of polyurethane foam moldings and the use of such polyurethane foam moldings as a shoe sole.
  • DE 2402734 describes the preparation of integral polyurethane foams in which a prepolymer based on polyesterol is mixed with a polyol component based on polyetherols.
  • a disadvantage of polyurethane systems produced in this way is that the incompatibility of the polyester and polyetherols suffers from the mechanical properties and shrinkage of the integral polyurethane foams can not be prevented.
  • Another possibility described in the literature is the use of graft or polymer polyols.
  • EP 1 042 384 describes the preparation of low-density, dimensionally stable soles based on polyetherol by the use of large amounts of polyether graft polyols. Disadvantages of this process are the markedly poorer mechanical properties in comparison with polyester sol-based shoe soles. Furthermore, the high proportion of polymer polyetherols has a disadvantage on the viscosity of the polyol component.
  • EP 1 790 675 and EP 1 756 187 describe the use of polymer polyols based on polyesterols in a polyester polyurethane. Due to the higher viscosity of the large amounts of polyester polymer polyol, these systems are much more difficult to process. Further, EP 1 790 675 and EP 1 756 187 disclose the use of polyetherol-based polymer polyols in polyesterol polyurethane system. The writings show in the comparative example that he use of Polymerpolyetherolen leads to an integral foam with insufficient surface and coarse cell structure.
  • Object of the present invention was to provide a polyurethane foam molding, in particular a polyurethane integral foam, which does not shrink even in density ranges of less than 500 g / L and has an excellent surface finish.
  • a polyurethane foam molding obtainable by a process comprising a) organic polyisocyanates with b) polyols containing b1) polyesterols and b2) polymer polyetherols having a proportion of primary OH groups of less than 50%, c) blowing agents, and optionally d) chain extenders and / or crosslinking agents, e) catalysts and f) other auxiliaries and / or additives, mixed into a reaction mixture, placed in a mold and allowed to react to form a polyurethane moldings.
  • Polyurethane foam moldings in the context of the invention are polyurethane foams which are produced in a mold.
  • Polyurethane integral foams in the context of the invention are polyurethane foams according to DIN 7726 with a marginal zone, which due to the shaping process has a higher density than the core understood.
  • the total raw density averaged over the core and the edge zone is preferably above 80 g / L to 500 g / L, more preferably from 150 g / L to 450 g / L. Since integral polyurethane foams are also produced in one mold, polyurethane foam moldings also include polyurethane integral foams.
  • the organic and / or modified polyisocyanates (a) used for producing the polyurethane foam moldings according to the invention comprise the known from the prior art aliphatic, cycloaliphatic and aromatic di- or polyfunctional isocyanates (component a-1) and any mixtures thereof.
  • Examples are 4,4 '-Metandiphenyldiisocyanat, 2,4' -Metandiphenyldiisocyanat, the mixtures of monomeric Metandiphenyldiisocyanaten and higher-nuclear homologues of Metandiphenyldiisocyanats (polymeric MDI), tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 2,4- or 2 , 6-tolylene diisocyanate (TDI) or mixtures of said isocyanates.
  • polymeric MDI polymeric MDI
  • tetramethylene diisocyanate tetramethylene diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • TDI 6-tolylene diisocyanate
  • 4,4'-MDI is used.
  • the preferred 4,4'-MDI can contain from 0 to 20% by weight of 2,4'-MDI and small amounts, to about 10% by weight, of allophanate- or uro-amino-modified polyisocyanates. It is also possible to use small amounts of polyphenylene polymethylene polyisocyanate (polymeric MDI). The total amount of these high-functionality polyisocyanates should not exceed 5% by weight of the isocyanate used.
  • the polyisocyanate component (a) is preferably used in the form of polyisocyanate prepolymers.
  • polyisocyanate prepolymers are obtainable by reacting polyisocyanates (a-1) described above, for example at temperatures of 30 to 100 ° C., preferably at about 80 ° C., with polyols (a-2) to give the prepolymer.
  • Polyols (a-2) are known to the person skilled in the art and described, for example, in "Kunststoffhandbuch, Volume 7, Polyurethanes", Carl Hanser Verlag, 3rd edition 1993, Chapter 3.1.
  • the polyols (a-2) used are preferably the polyesterols described under b1).
  • customary chain extenders or crosslinking agents are added to the said polyols in the preparation of the isocyanate prepolymers. Such substances are described below under d).
  • Polyols b) contain polyesterols b1) and polymer polyetherols b2) with a proportion of primary OH groups of less than 50% and optionally polymer polyesterols b3) and / or further polyols, for example polyetherols b4).
  • polyesterols commonly used in polyurethane chemistry can be used.
  • Polyesterols b1) can be prepared, for example, from organic dicarboxylic acids having 2 to 12 carbon atoms, preferably aliphatic dicarboxylic acids having 4 to 6 carbon atoms and polyhydric alcohols, preferably diols having 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms.
  • Suitable dicarboxylic acids are, for example: succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid and terephthalic acid.
  • the dicarboxylic acids can be used both individually and as a mixture with one another. Instead of the free dicarboxylic acids, it is also possible to use the corresponding dicarboxylic acid derivatives, for example dicarboxylic acid esters of alcohols having 1 to 4 carbon atoms or dicarboxylic acid anhydrides.
  • dicarboxylic acid mixtures of succinic, glutaric and adipic acid in proportions of, for example, 20 to 35: 35 to 50: 20 to 32 parts by weight, and in particular adipic acid.
  • dihydric and polyhydric alcohols are: ethanediol, diethylene glycol, 1,2- or 1,3-propanediol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1, 10 Decanediol, glycerol and trimethylolpropane.
  • ethanediol diethylene glycol, 1, 4-butanediol, 1, 5-pentanediol and 1, 6-hexanediol.
  • polyester polyols from lactones, for example ⁇ -caprolactone or hydroxycarboxylic acids, for example ⁇ -hydroxycaproic acid.
  • the organic, for example aromatic and preferably aliphatic polycarboxylic acids and / or derivatives and polyhydric alcohols catalyst-free or preferably in the presence of esterification catalysts conveniently in an atmosphere of inert gas, such as nitrogen, carbon monoxide, helium, argon, inter alia the melt at temperatures of 150 to 250 ° C, preferably 180 to 220 ° C, optionally under reduced pressure, to the desired acid number, which is preferably less than 10, more preferably less than 2, polycondensed.
  • the esterification mixture at the abovementioned temperatures up to an acid number of 80 to 30, preferably 40 to 30, under normal pressure and then under a pressure of less than 500 mbar, preferably 50 to 150 mbar, polycondensed.
  • Suitable esterification catalysts are, for example, iron, cadmium, cobalt, lead, zinc, antimony, magnesium, titanium and tin catalysts in the form of metals, metal oxides or metal salts.
  • the polycondensation can also be carried out in the liquid phase in the presence of diluents and / or entrainers, such as benzene, toluene, xylene or chlorobenzene for the azeotropic distillation of the condensation water.
  • the organic polycarboxylic acids and / or derivatives and polyhydric alcohols are advantageously polycondensed in a molar ratio of 1: 1 to 1, 8, preferably 1: 1, 05 to 1, 2 polycondensed.
  • the polyesterpolyols obtained preferably have a functionality of 2 to 4, in particular of 2 to 3, and a number average molecular weight of 480 to 3000, preferably 1000 to 3000 g / mol.
  • polyetherphenyl b4) In addition to polyesterols b1), it is also possible to use further polyols, for example polyetherphenyl b4).
  • polyetherols b4) it is possible to use all polyetherols customarily used in polyurethane chemistry.
  • Polyetherols b4) can be prepared by known processes, for example by anionic polymerization with alkali metal hydroxides or alkali metal alkoxides as catalysts and with the addition of at least one starter molecule which contains 2 to 3 reactive hydrogen atoms bonded or by cationic polymerization with Lewis acids, such as antimony pentane. tachloride or borofluoride etherate from one or more alkylene oxides having 2 to 4 carbon atoms in the alkylene radical.
  • Suitable alkylene oxides are, for example, tetrahydrofuran, 1, 3-propylene oxide, 1, 2 or 2,3-butylene oxide and preferably ethylene oxide and 1, 2-propylene oxide. Furthermore, it is also possible to use as catalysts multimetal cyanide compounds, so-called DMC catalysts.
  • the alkylene oxides can be used individually, alternately in succession or as mixtures. Preference is given to mixtures of 1, 2-propylene oxide and ethylene oxide.
  • Suitable starter molecule are water or dihydric and trihydric alcohols, such as ethylene glycol, 1, 2- and 1, 3-propanediol, diethylene glycol, dipropylene glycol, 1, 4-butanediol, glycerol or trimethylolpropane into consideration.
  • the polyether polyols preferably polyoxypropylene polyoxyethylene polyols, preferably have a functionality of from 2 to 3 and number average molecular weights of from 1, 000 to 8,000, preferably from 2,000 to 6,000, g / mol.
  • polymer polyols are known and commercially available.
  • Polymer polyols are prepared by free-radical polymerization of the monomers, preferably acrylonitrile, styrene and optionally further monomers, a macromer and, if appropriate, a moderator using a free-radical initiator, usually azo or peroxide compounds, in a polyetherol or polyesterol as the continuous phase.
  • polymer polyols which have been prepared in a polyetherol as the continuous phase are referred to as polymer polyetherols and polymer polyols which have been prepared in a polyesterol as continuous phase, as Polymerpolyestero- le b3).
  • polyetherol or polyesterol which is the continuous phase and thus the dispersant, is often referred to as a carrier polyol.
  • a carrier polyol Exemplary of the preparation of polymer polyols are the patents US 4568705, US 5830944, EP 163188, EP 365986, EP 439755, EP 664306,
  • This is usually an in situ polymerization of acrylonitrile, styrene or preferably mixtures of styrene and acrylonitrile, for example in a weight ratio of 90:10 to 10:90, preferably 70:30 to 30:70.
  • Suitable carrier polyols are all polyols described under b1) and b4).
  • the polyetherols for the preparation of the polymer polyetherols have a content of primary OH groups of less than 50% by weight, more preferably less than 30% and in particular less than 10%.
  • Macromers also referred to as stabilizers, are linear or branched polyetherols or polyester polyols having molecular weights> 1000 g / mol and containing at least one terminal, reactive ethylenically unsaturated group.
  • the ethylenically unsaturated group can be synthesized by reaction with carboxylic acids such as acrylic acid, carboxylic acid halides such as acryloyl chloride, carboxylic acid anhydrides such as maleic anhydride, fumaric acid, acrylate and methacrylate derivatives, ethylenically unsaturated epoxides such as 1-vinylcyclohexene-3, 4-epoxide, 1-butadiene monoxide, vinyl glycidyl ether, glycidyl methacrylate and allyl glycidyl ether and isocyanate derivatives, such as 3-iso propenyl 1, 1-dimethylbenzyl isocyanate, isocyanato-ethyl methacrylate, are added to an already existing polyol.
  • carboxylic acids such as acrylic acid, carboxylic acid halides such as acryloyl chloride, carboxylic acid anhydrides such as maleic anhydride, fuma
  • the macromers are incorporated into the polymer chain. This forms copolymers with polyether or polyester and a poly-acrylonitrile-styrene blocks which act as phase mediators in the interface of continuous phase and dispersed phase and suppress the agglomeration of the polymer polyol particles.
  • the proportion of macromers can be up to more than 90% by weight and is usually from 1 to 60% by weight, preferably from 1 to 40% by weight and more preferably from 1 to 15% by weight, based in each case on the total Weight of the monomers used to prepare the polymer polyol.
  • moderators also referred to as chain transfer agents
  • the moderators reduce the molecular weight of the forming copolymers by chain transfer of the growing radical, thereby reducing cross-linking between the polymer molecules, which affects the viscosity and dispersion stability as well as the filterability of the polymer polyols.
  • the proportion of moderators is usually 0.5 to 25 wt .-%, based on the total weight of the monomers used to prepare the polymer polyol.
  • Moderators which are customarily used for the preparation of polymer polyols are alcohols, such as 1-butanol, 2-butanol, isopropanol, ethanol, methanol, cyclohexane, toluene, mercaptans, such as ethanethiol, 1-heptanethiol, 2-octanethiol, 1 -dodecanethiol, thiophenol, 2-ethylhexyl thioglycolates, methylthio glycolates, cyclohexyl mercaptan and enol ether compounds, morpholines and ⁇ - (benzoyloxy) styrene.
  • alkylmercaptan is used.
  • peroxide or azo compounds such as dibenzoyl peroxides, lauroyl peroxides, t-amyl peroxy-2-ethyl hexanoates, di-t-butyl peroxides, diisopropyl peroxide carbonate, t-butyl peroxy-2-ethyl hexanoates, t-butyl perpivalates, t-butyl perneo decanoates, t-butyl perbenzoates, t-butyl percrotonates, t-butyl perisobutyrates, t-butyl peroxy-1-methylpropanoates, t-butyl peroxy-2-ethyl pentanoates, t-butyl peroxyoctanoates and di-t-butyl butyl perphthalate, 2,2'-azobis (2,4-dimethyl-valeronitrile), 2,2'
  • the proportion of initiators is usually 0.1 to 6 wt .-%, based on the total weight of the monomers used to prepare the polymer polyol.
  • the radical polymerization for the preparation of polymer polyols is usually carried out at temperatures of 70 to 150 ° C and a pressure of up to 20 bar due to the reaction rate of the monomers and the half-life of the initiators.
  • Preferred reaction conditions for the preparation of polymer polyols are temperatures of 80 to 140 ° C at a pressure of atmospheric pressure to 15 bar.
  • Polymer polyols are made in continuous processes using continuous feed and off-stream stirred tanks, stirred tank cascades, tubular reactors and loop reactors with continuous feed and drain, or in batch processes by means of a batch reactor or a semi-batch reactor.
  • the reaction for producing the polymer polyols can also be carried out in the presence of an inert solvent.
  • solvents may be used for example: benzene, toluene, xylene, acetonitrile, hexane, heptane, dioxane, ethyl acetate, N, N-dimethylformamide, ⁇ , ⁇ -dimethylacetamide, etc. Preference is given to benzene, xylene and toluene.
  • Suitable ethylenically unsaturated monomers for the preparation of the solids content of the polymer polyol are, for example, butadiene, isoprene, 1,4-pentadiene, 1,6-hexadiene, 1,7-octadiene, styrene, alpha-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4 - Methylstyrene, 2,4-dimethylstyrene, ethylstyrene, I so propyl styrene, butylstyrene, phenylstyrene, cyclohexylstyrene, benzylstyrene and similar derivatives; substituted styrenes such as cyanostyrene, nitrostyrene, ⁇ , ⁇ -dimethylaminostyrene, acetoxystyrene, methyl 4-
  • Preferred ethylenically unsaturated monomers are styrene, acrylonitrile, acrylates and acrylamides.
  • acrylonitrile, styrene, in particular styrene and acrylonitrile in the ratio between 1: 3 to 3: 1 are used as ethylenically unsaturated monomers.
  • a macromer is further added to the polymerization.
  • the polymerization is further carried out using a moderator and using a radical initiator.
  • the solids content of acrylonitrile, styrene and macromer wherein the proportion of acrylonitrile 10 to 75 wt .-% and preferably 25 to 35 wt .-%, the proportion of styrene 30 to 90 wt .-%, preferably 55 to 70 wt .-% and the proportion of macromer 1 to 10 wt .-%, preferably 3 to 6 wt .-%, based on the total weight of the solids content of the polymer polyol is.
  • the polymer polyol has a solids content of 10 to 90 wt .-%, particularly preferably 15 to 60 and in particular 20 to
  • the solids content, based on the total weight of the polyol component b) is preferably 1 to 10 wt .-%, particularly preferably 2 to 7 wt .-% and in particular 2.5 to 6 wt .-%.
  • the solids content of polymer polyols is calculated from the percentage ratio of the monomers used and of the macromers to the carrier polyols used and is usually determined gravimetrically on the finished polymer polyol from the percentage ratio of the solids mass to the total mass of the polymer polyol.
  • the proportion of polymer polyetherol b2) in the total weight of the polyol component b) is preferably 0.5 to 20 wt .-%.
  • the proportion of polymer polyesterol b3) in the total weight of the polyol component b) is preferably 0 to 30 wt .-%, more preferably 1 to 10 wt .-%. If polymer polyetherol b2) and polymer polyesterol b3) are used together, the ratio of polymer polyetherol b2) to polymer polyesterol b3) is preferably 1:20 to 20: 1, more preferably 1: 5 to 5: 1.
  • a combination of polymer polyetherol b2) and polymer polyesterol b3) is preferably used for the production of polyurethane foam moldings having a height of at least 1.5 cm, more preferably of at least 5 cm.
  • the term "height" of the polyurethane foam molding is understood to mean the greatest distance in the mold for producing the polyurethane foam molding according to the invention in the direction of rise of the foam
  • blowing agents c) are present in the production of polyurethane foam moldings
  • These blowing agents c) can contain water in addition to water additionally generally known chemically and / or physically kende compounds are used.
  • Chemical blowing agents are compounds which form gaseous products by reaction with isocyanate, such as, for example, water or formic acid.
  • blowing agents are understood as compounds which are dissolved or emulsified in the starting materials of polyurethane production and evaporate under the conditions of polyurethane formation. These are, for example, hydrocarbons, halogenated hydrocarbons, and other compounds, such as perfluorinated alkanes, such as perfluorohexane, chlorofluorocarbons, and ethers, esters, ketones, acetals or mixtures thereof, for example (cyclo) aliphatic hydrocarbons having 4 to 8 Carbon atoms, or fluorocarbons, such as Solkane ® 365 mfc Solvay Fluorides LLC.
  • the blowing agent employed is a mixture containing at least one of these blowing agents and water, in particular water as the sole blowing agent. If no water is used as blowing agent, preferably only physical blowing agents are used.
  • the content of water in a preferred embodiment is from 0.1 to 2 wt .-%, preferably 0.2 to 1, 5 wt .-%, particularly preferably 0.3 to 1, 2 wt .-%, based on the total weight of components a) to f).
  • microbubbles containing physical blowing agent are added to the reaction of components a) to f) as additional blowing agent.
  • the hollow microspheres can also be used in admixture with the abovementioned propellants.
  • the hollow microspheres usually consist of a shell of thermoplastic polymer and are filled in the core with a liquid, low-boiling substance based on alkanes. The production of such hollow microspheres is described, for example, in US Pat. No. 3,615,972.
  • the hollow microspheres generally have a diameter of 5 to 50 ⁇ m. Examples of suitable hollow microspheres are available from Akzo Nobel under the trade name Expancell® ®.
  • the hollow microspheres are generally added in an amount of 0.5 to 5 wt .-%, based on the total weight of components b), c) and d).
  • chain extenders and / or crosslinking agents d) substances having a molecular weight of preferably less than 500 g / mol, particularly preferably from 60 to 400 g / mol are used, chain extenders having 2 isocyanate-reactive hydrogen atoms and crosslinking agent 3 isocyanate-reactive hydrogen atoms. These can preferably be used individually or in the form of mixtures. Preference is given to using diols and / or triols having molecular weights of less than 400, more preferably from 60 to 300 and in particular from 60 to 150.
  • aliphatic, cycloaliphatic and / or araliphatic diols having 2 to 14, preferably 2 to 10 carbon atoms, such as ethylene glycol, 1, 3-propanediol, 1, 10-decanediol, 1, 2, 1, 3, 1, 4-dihydroxycyclohexane, diethylene glycol, dipropylene glycol and 1,4-butanediol, 1,6-hexanediol and bis (2-hydroxyethyl) hydroquinone, triols such as 1,2,4-, 1,3,5-trihydroxycyclohexane, glycerol and trimethylolpropane , and low molecular weight hydroxyl-containing polyalkylene oxides based on ethylene and / or 1, 2-propylene oxide and the aforementioned diols and / or triols as starter molecules.
  • chain extenders (d) are monoethylene glycol, 1,4-butanediol, glycerol or mixtures thereof. If chain extenders, crosslinking agents or mixtures thereof are used, these are expediently used in amounts of from 1 to 60% by weight, preferably from 1.5 to 50% by weight and in particular from 2 to 40% by weight, based on the weight of the components b) and d) are used.
  • catalysts e) for the preparation of the polyurethane foams preference is given to using compounds which greatly accelerate the reaction of the polyols b) and optionally chain extenders and crosslinking agents d) with the organic, optionally modified polyisocyanates a).
  • amidines such as 2,3-dimethyl-3,4,5,6-tetrahydropyrimidine
  • tertiary amines such as triethylamine, tributylamine, dimethylbenzylamine, N-methyl-, N-ethyl-, N-cyclohexylmorpholine,
  • organic metal compounds preferably organic tin compounds such as stannous salts of organic carboxylic acids, e.g. Tin (II) acetate, stannous octoate, stannous (II) ethylhexanoate, and stannous (II) laurate and the dialkyltin (IV) salts of organic carboxylic acids, e.g.
  • organic tin compounds such as stannous salts of organic carboxylic acids, e.g. Tin (II) acetate, stannous octoate, stannous (II) ethylhexanoate, and stannous (II) laurate and the dialkyltin (IV) salts of organic carboxylic acids, e.g.
  • the organic metal compounds can be used alone or preferably in combination with strongly basic amines.
  • component (b) is an ester, it is preferred to use only amine catalysts.
  • Preferably used are 0.001 to 5 wt .-%, in particular 0.05 to 2 wt .-% catalyst or catalyst combination, based on the weight of component b).
  • auxiliaries and / or additives f may also be added to the reaction mixture for the preparation of the polyurethane foams. Mentioned For example, surface-active substances, foam stabilizers, cell regulators, other release agents, fillers, dyes, pigments, hydrolysis, odor-absorbing substances and fungistatic and / or bacteriostatic substances.
  • surface-active substances are e.g. Compounds which serve to assist the homogenization of the starting materials and, if appropriate, are also suitable for regulating the cell structure.
  • emulsifiers such as the sodium salts of castor oil sulfates or fatty acids, and salts of fatty acids with amines, e.g. diethylamine, stearic acid diethanolamine, diethanolamine ricinoleic acid, salts of sulfonic acids, e.g.
  • Foam stabilizers such as siloxane-oxalkylene copolymers and other organopolysiloxanes, ethoxylated alkylphenols, ethoxylated fatty alcohols, paraffin oils, castor oil or ricinoleic acid esters, Turkish red oil and peanut oil, and cell regulators, such as paraffins, fatty alcohols and dimethylpolysiloxanes.
  • oligomeric acrylates having polyoxyalkylene and fluoroalkane radicals as side groups are also suitable.
  • the surface-active substances are usually used in amounts of from 0.01 to 5 parts by weight, based on 100 parts by weight of component b).
  • Suitable further release agents are: reaction products of fatty acid esters with polyisocyanates, salts of polysiloxanes containing amino groups and fatty acids, salts of saturated or unsaturated (cyclo) aliphatic carboxylic acids having at least 8 carbon atoms and tertiary amines and in particular internal release agents such as carboxylic acid esters and / or amides prepared by esterification or amidation of a mixture of montanic acid and at least one aliphatic carboxylic acid having at least 10 carbon atoms with at least difunctional alkanolamines, polyols and / or polyamines having molecular weights of 60 to 400 g / mol, such as in EP 153 639 discloses mixtures of organic amines, metal salts of stearic acid and organic mono- and / or dicarboxylic acids or their anhydrides, as disclosed for example in DE-A-3 607 447, or mixtures of an imino compound, the metal salt of a carboxy
  • Fillers are the conventional, customary organic and inorganic fillers, reinforcing agents, weighting agents, coating compositions, etc., to be understood.
  • inorganic fillers such as silicate minerals, for example phyllosilicates, such as antigorite, bentonite, serpentine, hornblende, amphiboles, chrysotile and talc, metal oxides, such as kaolin, aluminum oxides, titanium oxides, zinc oxide and iron oxides, Metal salts such as chalk and barite, and inorganic pigments such as Cadmiumsul- fid, zinc sulfide and glass, etc.
  • silicate minerals for example phyllosilicates, such as antigorite, bentonite, serpentine, hornblende, amphiboles, chrysotile and talc
  • metal oxides such as kaolin, aluminum oxides, titanium oxides, zinc oxide and iron oxides
  • Metal salts such as chalk and barite
  • kaolin China Clay
  • aluminum silicate and coprecipitates of barium sulfate and aluminum silicate.
  • Suitable organic fillers are, for example, carbon black, melamine, rosin, cyclopentadienyl resins and graft polymers and also cellulose fibers, polyamide, polyacrylonitrile, polyurethane and polyester fibers based on aromatic and / or aliphatic dicarboxylic acid esters and in particular carbon fibers.
  • the inorganic and organic fillers can be used individually or as mixtures and are advantageously added to the reaction mixture in amounts of from 0.5 to 50% by weight, preferably from 1 to 40% by weight, based on the weight of components a) to d), added.
  • the present invention further provides a process for producing a polyurethane foam molding, in particular an integral polyurethane foam in which the components a) to c) and optionally d), e) and / or f) are mixed together in amounts such that the equivalence ratio of NCO- Groups of polyisocyanates (a) to the sum of the reactive hydrogen atoms of components (b), (c) and (d) 1: 0.8 to 1: 1, 25, preferably 1: 0.9 to 1: 1, 15.
  • the polyurethane foam moldings according to the invention are preferably prepared by the one-shot process with the aid of the low-pressure or high-pressure technique in closed, suitably tempered molds.
  • the molds are usually made of metal, e.g. Aluminum or steel.
  • the starting components a) to f) are preferably mixed at a temperature of 15 to 90 ° C, more preferably from 25 to 55 ° C and optionally introduced the reaction mixture under elevated pressure in the mold.
  • the mixing can be carried out mechanically by means of a stirrer or a stirring screw or under high pressure in the so-called countercurrent injection method.
  • the mold temperature is expediently from 20 to 160.degree. C., preferably from 30 to 120.degree. C., particularly preferably from 30 to 60.degree.
  • the mixture of components a) to f) is referred to as reaction mixture at reaction conversions of less than 90%, based on the isocyanate groups.
  • the amount of the reaction mixture introduced into the mold is so determined that the shaped bodies obtained, in particular integral foam, have a
  • the degrees of compaction for the production of the poly- Urethane integral foams are in the range of 1, 1 to 8.5, preferably from 1, 7 to 7.0.
  • the polyurethane foam molded articles according to the invention are preferably used as a shoe sole and particularly preferably as an (intermediate) sole, for example for street shoes, sports shoes, sandals and boots.
  • the integral polyurethane foams according to the invention are used as a midsole for sports shoes or as sole material for high-heeled women's shoes.
  • the thickness of the sole at the thickest point is preferably more than 3 cm, more preferably more than 5 cm.
  • polyurethane foams according to the invention can be used in the interior of transport vehicles, for example in cars, as steering wheels, headrests or control buttons or as chair armrests. Other uses are as an armrest for chairs or as motorcycle seats. In the following, the invention will be illustrated by means of examples. Examples
  • Polyol 1 polyesterol based on adipic acid, monoethylene glycol, diethylene glycol and glycerol with an OH number of 91 mg KOH / g and a viscosity of
  • Polyol 2 Polyesterol based on a mixture of succinic acid, glutaric acid and
  • Adipic acid, monoethylene glycol and glycerol with an OH number of 58 mg KOH / g and a viscosity of 430 mPas at 100 ° C.
  • Polyol 3 Polyesterol based on a mixture of succinic acid, glutaric acid, adipic acid and monoethylene glycol having an OH number of 56 mg KOH / g and a viscosity of 650 mPas at 75 ° C.
  • Polyol 4 graft polyol based on a polyetherol based on glycerol, propylene oxide and ethylene oxide with an ethylene oxide cap, a solids content of 45 wt .-%, an OH number of 20 mg KOH / g and a
  • Polyol 5 polyetherol based on glycerol, propylene oxide and ethylene oxide with one
  • Ethylene / propylene oxide Mischcap an OH number of 56 mg KOH / g and a viscosity of 460 mPas at 25 ° C.
  • Polyol 6 graft polyol based on polyol 5 with a solids content of 45 wt .-% of an OH number of 30 mg KOH / g and a viscosity of 4500 mPas at 25 ° C.
  • Polyol 7 Graftpolyol PM 245® from Synthesia based on polyesterol having an OH number of 60 mg KOH / g
  • V1 triethanolamine
  • V2 glycerin
  • inventive examples E1 to E4 and the comparative examples V1 to V4 were carried out.
  • the components indicated in Table 1 (in parts by weight) were mixed with the labeled isocyanate prepolymers at specified isocyanate index and foamed once each free and once in a sole mold with the heights specified in the table height in cm (HH), so moldings with a density of 380 g / L emerged.
  • the density of the free-foamed polyurethane foam in g / L (density fr) is also given in Table 1.
  • both the foam-free foam and the molded body according to Comparative Examples V 1 to V4 showed a significant shrinkage or local shrinkage on the surface of the free-foamed foam and the moldings according to the inventive examples E1 to E4 showed no signs of shrinkage. Furthermore, the moldings were characterized by a good surface quality.
  • the shaped body according to Example E3 had a coarse, inhomogeneous cell structure in the upper third of the sole, which could be compressed under load (human body) and thus had a negative effect on the stability of the shoe.
  • the combination of polymer polyetherol and polymer polyesterol according to Example E4 this disadvantage could be eliminated.
  • the polyurethane integral foam according to Example E4 showed a homogeneous microcellular foam structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

The invention relates to a method for producing polyurethane molded foam bodies, wherein a) organic polyisocyanates are mixed with b) polyols, containing b1) polyesterols and b2) polymer polyetherols having a fraction of primary OH groups of less than 50%, c) expanding agents, and optionally d) chain lengthening agents and/or cross-linking agents, e) catalysts and f) other auxiliary agents and/or additives, to form a reaction mixture, introduced in a mold and allowed to fully cure to form a polyurethane molded foam body. The invention further relates to the use of polymer polyetherols and polymer polyesterols for producing polyurethane molded foam bodies and to the use of such polyurethane molded foam bodies as a shoe sole.

Description

Dimensionsstabile Polyurethanschaumstoffformkörper Beschreibung Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyurethanschaumstoffformkörpern bei dem man a) organische Polyisocyanate mit b) Polyole, enthaltend b1 ) Polyesterole und b2) Polymerpolyetherole mit einem Anteil an primären OH-Gruppen von kleiner 50 %, c) Treibmitteln, und gegebenenfalls d) Kettenverlängerungsmitteln und/oder Vernetzungsmitteln, e) Katalysatoren und f) sonstigen Hilfsmit- teln und/oder Zusatzstoffen, zu einer Reaktionsmischung vermischt, in eine Form gibt und zu einem Polyurethanschaumstoffformkörper ausreagieren lässt. Weiter betrifft die vorliegende Erfindung die Verwendung von Polymerpolyetherolen und Polymerpoly- esterolen zur Herstellung von Polyurethanschaumstoffformkörpern sowie die Verwendung von solchen Polyurethanschaumstoffformkörpern als Schuhsohle.  Description: The present invention relates to a process for the preparation of polyurethane foam moldings in which a) organic polyisocyanates having b) polyols containing b1) polyesterols and b2) polymer polyetherols having a primary OH content of less than 50%, c) blowing agents, and optionally d) chain extenders and / or crosslinking agents, e) catalysts and f) other auxiliaries and / or additives, mixed into a reaction mixture, placed in a mold and allowed to react to form a polyurethane foam molding. Furthermore, the present invention relates to the use of polymer polyetherols and polymer polyesterols for the production of polyurethane foam moldings and the use of such polyurethane foam moldings as a shoe sole.
Innerhalb der letzten Jahre ist ein Trend zu leichteren Schuhsohlen festzustellen. Die Reduktion der Dichte bei Polyurethanschuhsohlen führt allerdings zu Problemen mit der Dimensionsstabilität der Formkörper. Dies bedeutet, dass die gesamte Sohle kleiner wird oder aber die Oberflächengüte der Schuhsohlen durch geschrumpfte Stellen leidet. There has been a trend towards lighter shoe soles in recent years. The reduction in the density of polyurethane shoe soles, however, leads to problems with the dimensional stability of the moldings. This means that the entire sole becomes smaller or the surface quality of the shoe soles suffers from shrunken areas.
Um die Dimensionsstabilität der Polyurethane zu verbessern werden in der Literatur verschiedene Möglichkeiten diskutiert. Beispielsweise beschreibt DE 2402734 die Herstellung von Polyurethanintegralschäumen bei denen ein Prepolymer auf Polyesterol- basis mit einer Polyolkomponente auf Basis von Polyetherolen vermischt wird. Nachteilig bei so hergestellten Polyurethansystemen ist, dass durch die Unverträglichkeit der Polyester- und Polyetherole die mechanischen Eigenschaften leiden und ein Schrumpfen der Polyurethanintegralschaumstoffe nicht verhindert werden kann. Eine weitere in der Literatur beschriebene Möglichkeit ist der Einsatz von Graft- oder Polymerpolyolen. So beschreibt EP 1 042 384 die Herstellung von niederdichten, di- mensionstabilien Schuhsohlen auf Polyetherol Basis durch den Einsatz großen Mengen an Polyether-Graftpolyolen. Nachteilig an diesem Verfahren sind die deutlich schlechteren mechanischen Eigenschaften im Vergleich zu Schuhsohlen auf Polyeste- rol Basis. Ferner wirkt sich der hohe Anteil an Polymerpolyetherolen Nachteilig auf die Viskosität der Polyolkomponente aus. In order to improve the dimensional stability of the polyurethanes, various possibilities are discussed in the literature. For example, DE 2402734 describes the preparation of integral polyurethane foams in which a prepolymer based on polyesterol is mixed with a polyol component based on polyetherols. A disadvantage of polyurethane systems produced in this way is that the incompatibility of the polyester and polyetherols suffers from the mechanical properties and shrinkage of the integral polyurethane foams can not be prevented. Another possibility described in the literature is the use of graft or polymer polyols. Thus, EP 1 042 384 describes the preparation of low-density, dimensionally stable soles based on polyetherol by the use of large amounts of polyether graft polyols. Disadvantages of this process are the markedly poorer mechanical properties in comparison with polyester sol-based shoe soles. Furthermore, the high proportion of polymer polyetherols has a disadvantage on the viscosity of the polyol component.
In EP 1 790 675 und EP 1 756 187 wird der Einsatz von Polymerpolyolen auf Basis von Polyesterolen in einen Polyesterpolyurethan beschrieben. Durch die höhere Visko- sität der großen Mengen an Polyester-Polymerpolyol sind diese Systeme deutlich schwieriger zu verarbeiten. Ferner offenbaren EP 1 790 675 und EP 1 756 187 den Einsatz von Polymerpolyolen auf Polyetherolbasis in Polyesterolpolyurethansystem. Die Schriften zeigen im Vergleichsbeispiel, dass er Einsatz von Polymerpolyetherolen zu einem Integralschaumstoff mit unzureichender Oberfläche und grober Zellstruktur führt. EP 1 790 675 and EP 1 756 187 describe the use of polymer polyols based on polyesterols in a polyester polyurethane. Due to the higher viscosity of the large amounts of polyester polymer polyol, these systems are much more difficult to process. Further, EP 1 790 675 and EP 1 756 187 disclose the use of polyetherol-based polymer polyols in polyesterol polyurethane system. The writings show in the comparative example that he use of Polymerpolyetherolen leads to an integral foam with insufficient surface and coarse cell structure.
Aufgabe der vorliegenden Erfindung war es einen Polyurethanschaumstoffformkörper, insbesondere einen Polyurethanintegralschaumstoff zu liefern, der auch in Dichtebereichen von kleiner 500 g/L nicht schrumpft und eine hervorragende Oberflächenbeschaffenheit aufweist. Object of the present invention was to provide a polyurethane foam molding, in particular a polyurethane integral foam, which does not shrink even in density ranges of less than 500 g / L and has an excellent surface finish.
Diese Aufgabe wird gelöst durch einen Polyurethanschaumstoffformkörper, erhältlich durch ein Verfahren, bei dem man a) organische Polyisocyanate mit b) Polyole, enthaltend b1 ) Polyesterole und b2) Polymerpolyetherole mit einem Anteil an primären OH- Gruppen von kleiner 50 %, c) Treibmitteln, und gegebenenfalls d) Kettenverlängerungsmitteln und/oder Vernetzungsmitteln, e) Katalysatoren und f) sonstigen Hilfsmitteln und/oder Zusatzstoffen, zu einer Reaktionsmischung vermischt, in eine Form gibt und zu einem Polyurethanschumstoffformkörper ausreagieren lässt. This object is achieved by a polyurethane foam molding obtainable by a process comprising a) organic polyisocyanates with b) polyols containing b1) polyesterols and b2) polymer polyetherols having a proportion of primary OH groups of less than 50%, c) blowing agents, and optionally d) chain extenders and / or crosslinking agents, e) catalysts and f) other auxiliaries and / or additives, mixed into a reaction mixture, placed in a mold and allowed to react to form a polyurethane moldings.
Als Polyurethanschaumstoffformkörper werden im Rahmen der Erfindung Polyurethanschaumstoffe bezeichnet, die in einer Form hergestellt werden. Als Polyurethanintegralschaumstoffe im Sinn der Erfindung werden Polyurethan-Schaumstoffe nach DIN 7726 mit einer Randzone, die bedingt durch den Formgebungsprozess eine höhere Dichte als der Kern aufweist, verstanden. Die über den Kern und die Randzone gemit- telte Gesamtrohdichte liegt dabei vorzugsweise über 80 g/L bis 500 g/L besonders bevorzugt von 150 g/L bis 450 g/L. Da auch Polyurethanintegralschaumstoffe in einer Form hergestellt werden, umfassen Polyurethanschaumstoffformkörper auch Polyu- rethanintegralschaumstoffe. Polyurethane foam moldings in the context of the invention are polyurethane foams which are produced in a mold. Polyurethane integral foams in the context of the invention are polyurethane foams according to DIN 7726 with a marginal zone, which due to the shaping process has a higher density than the core understood. The total raw density averaged over the core and the edge zone is preferably above 80 g / L to 500 g / L, more preferably from 150 g / L to 450 g / L. Since integral polyurethane foams are also produced in one mold, polyurethane foam moldings also include polyurethane integral foams.
Die zur Herstellung der erfindungsgemäßen Polyurethanschaumstoffformkörper verwendeten organischen und/oder modifizierten Polyisocyanate (a) umfassen die aus dem Stand der Technik bekannten aliphatischen, cycloaliphatischen und aromatischen zwei- oder mehrwertigen Isocyanate (Bestandteil a-1 ) sowie beliebige Mischungen daraus. Beispiele sind 4,4'-Metandiphenyldiisocyanat, 2,4'-Metandiphenyldiisocyanat, die Mischungen aus monomeren Metandiphenyldiisocyanaten und höherkernigen Homologen des Metandiphenyldiisocyanats (Polymer-MDI), Tetramethylendiisocyanat, Hexamethylendiisocyanat (HDI), Isophorondiisocyanat (IPDI), 2,4- oder 2,6-Toluylen- diisocyanat (TDI) oder Mischungen der genannten Isocyanate. The organic and / or modified polyisocyanates (a) used for producing the polyurethane foam moldings according to the invention comprise the known from the prior art aliphatic, cycloaliphatic and aromatic di- or polyfunctional isocyanates (component a-1) and any mixtures thereof. Examples are 4,4 '-Metandiphenyldiisocyanat, 2,4' -Metandiphenyldiisocyanat, the mixtures of monomeric Metandiphenyldiisocyanaten and higher-nuclear homologues of Metandiphenyldiisocyanats (polymeric MDI), tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 2,4- or 2 , 6-tolylene diisocyanate (TDI) or mixtures of said isocyanates.
Bevorzugt wird 4,4'-MDI verwendet. Das bevorzugt verwendete 4,4'-MDI kann 0 bis 20 Gew.-% 2,4' MDI und geringe Mengen, bis etwa 10 Gew.-%, allophanat- oder ureto- niminmodifizierte Polyisocyanate enthalten. Es können auch geringe Mengen Polyphe- nylenpolymethylenpolyisocyanat (Polymer-MDI) eingesetzt werden. Die Gesamtmenge dieser hochfunktionellen Polyisocyanate sollte 5 Gew.-% des eingesetzten Isocyanats nicht überschreiten. Die Polyisocyanatkomponente (a) wird bevorzugt in Form von Polyisocyanatprepoly- meren eingesetzt. Diese Polyisocyanatprepolymere sind erhältlich, indem vorstehend beschriebene Polyisocyanate (a-1 ), beispielsweise bei Temperaturen von 30 bis 100 °C, bevorzugt bei etwa 80 °C, mit Polyolen (a-2), zum Prepolymer umgesetzt werden. Preferably, 4,4'-MDI is used. The preferred 4,4'-MDI can contain from 0 to 20% by weight of 2,4'-MDI and small amounts, to about 10% by weight, of allophanate- or uro-amino-modified polyisocyanates. It is also possible to use small amounts of polyphenylene polymethylene polyisocyanate (polymeric MDI). The total amount of these high-functionality polyisocyanates should not exceed 5% by weight of the isocyanate used. The polyisocyanate component (a) is preferably used in the form of polyisocyanate prepolymers. These polyisocyanate prepolymers are obtainable by reacting polyisocyanates (a-1) described above, for example at temperatures of 30 to 100 ° C., preferably at about 80 ° C., with polyols (a-2) to give the prepolymer.
Polyole (a-2) sind dem Fachmann bekannt und beispielsweise beschrieben im "Kunststoffhandbuch, Band 7, Polyurethane", Carl Hanser Verlag, 3. Auflage 1993, Kapitel 3.1 . Vorzugsweise werden dabei als Polyole (a-2) die unter b1 ) beschriebenen Polyesterole eingesetzt. Polyols (a-2) are known to the person skilled in the art and described, for example, in "Kunststoffhandbuch, Volume 7, Polyurethanes", Carl Hanser Verlag, 3rd edition 1993, Chapter 3.1. The polyols (a-2) used are preferably the polyesterols described under b1).
Gegebenenfalls werden den genannten Polyolen bei der Herstellung der Isocyanatpre- polymere übliche Kettenverlängerer oder Vernetzungsmittel zugegeben. Solche Sub- stanzen sind im Folgenden unter d) beschrieben. If appropriate, customary chain extenders or crosslinking agents are added to the said polyols in the preparation of the isocyanate prepolymers. Such substances are described below under d).
Polyole b) enthalten Polyesterole b1 ) und Polymerpolyetherole b2) mit einem Anteil an primären OH-Gruppen von kleiner 50 % sowie gegebenenfalls Polymerpolyesterole b3) und/oder weitere Polyole, beispielsweise Polyetherole b4). Polyols b) contain polyesterols b1) and polymer polyetherols b2) with a proportion of primary OH groups of less than 50% and optionally polymer polyesterols b3) and / or further polyols, for example polyetherols b4).
Als Polyesterole b1 ) können in der Polyurethanchemie üblicherweise verwendete Polyesterole eingesetzt werden. Polyesterole b1 ) können beispielsweise aus organischen Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen, vorzugsweise aliphatischen Dicarbon- säuren mit 4 bis 6 Kohlenstoffatomen und mehrwertigen Alkoholen, vorzugsweise Dio- len, mit 2 bis 12 Kohlenstoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatomen, hergestellt werden. Als Dicarbonsäuren kommen beispielsweise in Betracht: Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Decandicarbonsäu- re, Maleinsäure, Fumarsäure, Phthalsäure, Isophthalsäure und Terephthalsäure. Die Dicarbonsäuren können dabei sowohl einzeln als auch im Gemisch untereinander ver- wendet werden. Anstelle der freien Dicarbonsäuren können auch die entsprechenden Dicarbonsäurederivate, wie z.B. Dicarbonsäureester von Alkoholen mit 1 bis 4 Kohlenstoffatomen oder Dicarbonsäureanhydride eingesetzt werden. Vorzugsweise verwendet werden Dicarbonsäuregemische aus Bernstein-, Glutar- und Adipinsäure in Mengenverhältnissen von beispielsweise 20 bis 35 : 35 bis 50 : 20 bis 32 Gew.-Teilen, und insbesondere Adipinsäure. Beispiele für zwei und mehrwertige Alkohole, insbesondere Diole sind: Ethandiol, Diethylenglykol, 1 ,2- bzw. 1 ,3-Propandiol, Dipropylenglykol, 1 ,4- Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexandiol, 1 ,10-Decandiol, Glycerin und Trimethylolpro- pan. Vorzugsweise verwendet werden Ethandiol, Diethylenglykol, 1 ,4-Butandiol, 1 ,5- Pentandiol und 1 ,6-Hexandiol. Eingesetzt werden können ferner Polyesterpolyole aus Lactonen, z.B. ε-Caprolacton oder Hydroxycarbonsäuren, z.B. ω-Hydroxycapronsäure. Zur Herstellung der Polyesterpolyole können die organischen, z.B. aromatischen und vorzugsweise aliphatischen Polycarbonsäuren und/oder -derivate und mehrwertigen Alkohole katalysatorfrei oder vorzugsweise in Gegenwart von Veresterungskatalysatoren, zweckmäßigerweise in einer Atmosphäre aus Inertgas, wie z.B. Stickstoff, Koh- lenmonoxid, Helium, Argon u.a. in der Schmelze bei Temperaturen von 150 bis 250°C, vorzugsweise 180 bis 220°C, gegebenenfalls unter vermindertem Druck, bis zu der gewünschten Säurezahl, die vorzugsweise kleiner als 10, besonders bevorzugt kleiner als 2 ist, polykondensiert werden. Nach einer bevorzugten Ausführungsform wird als Veresterungsgemisch bei den oben genannten Temperaturen bis zu einer Säurezahl von 80 bis 30, vorzugsweise 40 bis 30, unter Normaldruck und anschließend unter einem Druck von kleiner als 500 mbar, vorzugsweise 50 bis 150 mbar, polykondensiert. Als Veresterungskatalysatoren kommen beispielsweise Eisen-, Cadmium-, Kobalt-, Blei-, Zink-, Antimon-, Magnesium-, Titan- und Zinnkatalysatoren in Form von Metallen, Metalloxiden oder Metallsalzen in Betracht. Die Polykondensation kann jedoch auch in flüssiger Phase in Gegenwart von Verdünnungs- und/oder Schleppmitteln, wie z.B. Benzol, Toluol, Xylol oder Chlorbenzol zur azeotropen Abdestillation des Kondensationswassers durchgeführt werden. Zur Herstellung der Polyesterpolyole werden die organischen Polycarbonsäuren und/oder -derivate und mehrwertigen Alkohole vorteilhafterweise im Molverhältnis von 1 :1 bis 1 ,8, vorzugsweise 1 :1 ,05 bis 1 ,2 polykon- densiert. As polyester b1) polyesterols commonly used in polyurethane chemistry can be used. Polyesterols b1) can be prepared, for example, from organic dicarboxylic acids having 2 to 12 carbon atoms, preferably aliphatic dicarboxylic acids having 4 to 6 carbon atoms and polyhydric alcohols, preferably diols having 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms. Suitable dicarboxylic acids are, for example: succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid and terephthalic acid. The dicarboxylic acids can be used both individually and as a mixture with one another. Instead of the free dicarboxylic acids, it is also possible to use the corresponding dicarboxylic acid derivatives, for example dicarboxylic acid esters of alcohols having 1 to 4 carbon atoms or dicarboxylic acid anhydrides. Preferably used dicarboxylic acid mixtures of succinic, glutaric and adipic acid in proportions of, for example, 20 to 35: 35 to 50: 20 to 32 parts by weight, and in particular adipic acid. Examples of dihydric and polyhydric alcohols, especially diols, are: ethanediol, diethylene glycol, 1,2- or 1,3-propanediol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1, 10 Decanediol, glycerol and trimethylolpropane. Preferably used are ethanediol, diethylene glycol, 1, 4-butanediol, 1, 5-pentanediol and 1, 6-hexanediol. It is also possible to use polyester polyols from lactones, for example ε-caprolactone or hydroxycarboxylic acids, for example ω-hydroxycaproic acid. For the preparation of the polyester polyols, the organic, for example aromatic and preferably aliphatic polycarboxylic acids and / or derivatives and polyhydric alcohols catalyst-free or preferably in the presence of esterification catalysts, conveniently in an atmosphere of inert gas, such as nitrogen, carbon monoxide, helium, argon, inter alia the melt at temperatures of 150 to 250 ° C, preferably 180 to 220 ° C, optionally under reduced pressure, to the desired acid number, which is preferably less than 10, more preferably less than 2, polycondensed. According to a preferred embodiment, the esterification mixture at the abovementioned temperatures up to an acid number of 80 to 30, preferably 40 to 30, under normal pressure and then under a pressure of less than 500 mbar, preferably 50 to 150 mbar, polycondensed. Suitable esterification catalysts are, for example, iron, cadmium, cobalt, lead, zinc, antimony, magnesium, titanium and tin catalysts in the form of metals, metal oxides or metal salts. However, the polycondensation can also be carried out in the liquid phase in the presence of diluents and / or entrainers, such as benzene, toluene, xylene or chlorobenzene for the azeotropic distillation of the condensation water. For the preparation of the polyester polyols, the organic polycarboxylic acids and / or derivatives and polyhydric alcohols are advantageously polycondensed in a molar ratio of 1: 1 to 1, 8, preferably 1: 1, 05 to 1, 2 polycondensed.
Die erhaltenen Polyesterpolyole besitzen vorzugsweise eine Funktionalität von 2 bis 4, insbesondere von 2 bis 3, und ein zahlenmittleres Molekulargewicht von 480 bis 3000, vorzugsweise 1000 bis 3000 g/mol. The polyesterpolyols obtained preferably have a functionality of 2 to 4, in particular of 2 to 3, and a number average molecular weight of 480 to 3000, preferably 1000 to 3000 g / mol.
Neben Polyesterolen b1 ) können auch noch weitere Polyole, beispielsweise Polyethe- role b4) eingesetzt werden. Als Polyetherole b4) können alle in der Polyurethanchemie üblicherweise verwendeten Polyetherole eingesetzt werden. Polyetherole b4) können nach bekannten Verfahren hergestellt werden, beispielsweise durch anionische Poly- merisation mit Alkalihydroxiden oder Alkalialkoholaten als Katalysatoren und unter Zusatz mindestens eines Startermoleküls, das 2 bis 3 reaktive Wasserstoffatome gebunden enthält, oder durch kationische Polymerisation mit Lewis-Säuren, wie Antimonpen- tachlorid oder Borfluorid-Etherat aus einem oder mehreren Alkylenoxiden mit 2 bis 4 Kohlenstoffatomen im Alkylenrest. Geeignete Alkylenoxide sind beispielsweise Tetra- hydrofuran, 1 ,3-Propylenoxid, 1 ,2- bzw. 2,3-Butylenoxid und vorzugsweise Ethylenoxid und 1 ,2-Propylenoxid. Weiter können als Katalysatoren auch Multimetallcyanidverbin- dungen, sogenannte DMC-Katalysatoren, eingesetzt werden. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden. Bevorzugt werden Mischungen aus 1 ,2-Propylenoxid und Ethylenoxid. Als Startermolekül kommen Wasser oder 2- und 3-wertige Alkohole, wie Ethylenglykol, 1 ,2- und 1 ,3-Propandiol, Diethylenglykol, Dipropylenglykol, 1 ,4-Butandiol, Glycerin oder Trimethylolpropan in Betracht. Die Polyetherpolyole, vorzugsweise Polyoxypropylen-polyoxyethylen-polyole, besitzen vorzugsweise eine Funktionalität von 2 bis 3 und zahlenmittlere Molekulargewichte von 1 .000 bis 8.000, vorzugsweise von 2.000 bis 6.000 g/mol. Vorzugsweise werden, bezogen auf das Gewicht des Polyesterols b1 ), weniger als 50 Gew.-%, besonders bevorzugt weniger als 20 %, ganz besonders bevorzugt weniger als 5 Gew.-% und insbe- sondere kein Polyetherol eingesetzt. In addition to polyesterols b1), it is also possible to use further polyols, for example polyetherphenyl b4). As polyetherols b4) it is possible to use all polyetherols customarily used in polyurethane chemistry. Polyetherols b4) can be prepared by known processes, for example by anionic polymerization with alkali metal hydroxides or alkali metal alkoxides as catalysts and with the addition of at least one starter molecule which contains 2 to 3 reactive hydrogen atoms bonded or by cationic polymerization with Lewis acids, such as antimony pentane. tachloride or borofluoride etherate from one or more alkylene oxides having 2 to 4 carbon atoms in the alkylene radical. Suitable alkylene oxides are, for example, tetrahydrofuran, 1, 3-propylene oxide, 1, 2 or 2,3-butylene oxide and preferably ethylene oxide and 1, 2-propylene oxide. Furthermore, it is also possible to use as catalysts multimetal cyanide compounds, so-called DMC catalysts. The alkylene oxides can be used individually, alternately in succession or as mixtures. Preference is given to mixtures of 1, 2-propylene oxide and ethylene oxide. Suitable starter molecule are water or dihydric and trihydric alcohols, such as ethylene glycol, 1, 2- and 1, 3-propanediol, diethylene glycol, dipropylene glycol, 1, 4-butanediol, glycerol or trimethylolpropane into consideration. The polyether polyols, preferably polyoxypropylene polyoxyethylene polyols, preferably have a functionality of from 2 to 3 and number average molecular weights of from 1, 000 to 8,000, preferably from 2,000 to 6,000, g / mol. Preferably, based on the weight of the polyesterol b1), less than 50 wt .-%, more preferably less than 20%, most preferably less than 5 wt .-% and in particular no polyetherol used.
Im Allgemeinen sind Polymerpolyole bekannt und kommerziell erhältlich. Polymerpolyole werden durch radikalische Polymerisation der Monomere, vorzugsweise Acryl- niltril, Styrol sowie gegebenenfalls weiterer Monomerer, eines Makromers und gegebe- nenfalls eines Moderators unter Einsatz eines Radikal-Initiators, meist Azo- oder Peroxidverbindungen, in einem Polyetherol beziehungsweise Polyesterol als kontinuierliche Phase hergestellt. Dabei werden Polymerpolyole, die in einem Polyetherol als kontinuierliche Phase hergestellt wurden, als Polymerpolyetherole und Polymerpolyole, die in einem Polyesterol als kontinuierliche Phase hergestellt wurden, als Polymerpolyestero- le b3) bezeichnet. Das Polyetherol oder das Polyesterol, das die kontinuierliche Phase und damit das Dispersionsmittel darstellt, wird häufig auch als Trägerpolyol bezeichnet. Beispielhaft für die Herstellung von Polymerpolyolen sind hier die Patentschriften US 4568705, US 5830944, EP 163188, EP 365986, EP 439755, EP 664306, In general, polymer polyols are known and commercially available. Polymer polyols are prepared by free-radical polymerization of the monomers, preferably acrylonitrile, styrene and optionally further monomers, a macromer and, if appropriate, a moderator using a free-radical initiator, usually azo or peroxide compounds, in a polyetherol or polyesterol as the continuous phase. In this case, polymer polyols which have been prepared in a polyetherol as the continuous phase are referred to as polymer polyetherols and polymer polyols which have been prepared in a polyesterol as continuous phase, as Polymerpolyestero- le b3). The polyetherol or polyesterol, which is the continuous phase and thus the dispersant, is often referred to as a carrier polyol. Exemplary of the preparation of polymer polyols are the patents US 4568705, US 5830944, EP 163188, EP 365986, EP 439755, EP 664306,
EP 622384, EP 894812 und WO 00/59971 zu nennen. EP 622384, EP 894812 and WO 00/59971.
Üblicherweise ist das eine in situ Polymerisation von Acrylnitril, Styrol oder vorzugsweise Mischungen aus Styrol und Acrylnitril, z.B. im Gewichtsverhältnis 90:10 bis 10:90 vorzugsweise 70:30 bis 30:70. Als Trägerpolyole kommen alle unter b1 ) und b4) beschriebenen Polyole in Frage. Dabei weisen die Polyetherole zur Herstellung der Polymerpolyetherole einen Gehalt an primären OH-Gruppen von kleiner 50 Gew.-%, besonders bevorzugt kleiner 30 % und insbesondere kleiner 10 % auf. Makromere, auch als Stabilisatoren bezeichnet, sind lineare oder verzweigte Polyetherole bzw. Polyesterpolyole mit Molekulargewichten > 1000 g/mol, die mindestens eine endständige, reaktionsfähige ethylenische ungesättigte Gruppe enthalten. Die ethyle- nisch ungesättigte Gruppe kann über Reaktion mit Carbonsäuren wie Acrylsäure, Car- bonsäurehalogeniden wie Acrylsäurechlorid, Carbonsäure-Anhydriden, wie Maleinsäu- reanhydrid, Fumarsäure, Acrylat- und Methacrylat-derivaten, ethylenisch ungesättigten Epoxiden wie 1 -Vinyl-cyclohexen-3,4-expoxid, 1 -Butadienmonoxid, Vinylglycidylether, Glycidylmethacrylat und Allylglycidylether sowie Isocyanat-Derivaten, wie 3-lso- propenyl-1 ,1 -dimethylbenzyl-lsocyanat, Isocyanato-ethylmethacrylat, an ein bereits bestehendes Polyol angefügt werden. Ein weiterer Weg ist die Herstellung eines Poly- ols durch Alkoxydation von Propylenoxid und Ethylenoxid unter Verwendung von Startmolekülen mit Hydroxylgruppen und einer ethylenischen Ungesättigtheit. Beispiele für solche Makromere sind in den Dokumenten US 4390645, US 5364906, EP 0461800, US 4997857, US 5358984, US 5990232, WO 01/04178 und US 6013731 beschrieben. This is usually an in situ polymerization of acrylonitrile, styrene or preferably mixtures of styrene and acrylonitrile, for example in a weight ratio of 90:10 to 10:90, preferably 70:30 to 30:70. Suitable carrier polyols are all polyols described under b1) and b4). The polyetherols for the preparation of the polymer polyetherols have a content of primary OH groups of less than 50% by weight, more preferably less than 30% and in particular less than 10%. Macromers, also referred to as stabilizers, are linear or branched polyetherols or polyester polyols having molecular weights> 1000 g / mol and containing at least one terminal, reactive ethylenically unsaturated group. The ethylenically unsaturated group can be synthesized by reaction with carboxylic acids such as acrylic acid, carboxylic acid halides such as acryloyl chloride, carboxylic acid anhydrides such as maleic anhydride, fumaric acid, acrylate and methacrylate derivatives, ethylenically unsaturated epoxides such as 1-vinylcyclohexene-3, 4-epoxide, 1-butadiene monoxide, vinyl glycidyl ether, glycidyl methacrylate and allyl glycidyl ether and isocyanate derivatives, such as 3-iso propenyl 1, 1-dimethylbenzyl isocyanate, isocyanato-ethyl methacrylate, are added to an already existing polyol. Another approach is the preparation of a polyol by alkoxydation of propylene oxide and ethylene oxide using starting molecules having hydroxyl groups and ethylenic unsaturation. Examples of such macromers are described in US 4390645, US 5364906, EP 0461800, US 4997857, US 5358984, US 5990232, WO 01/04178 and US 6013731.
Während der radikalischen Polymerisation werden die Makromere mit in die Polymerkette eingebaut. Dadurch bilden sich Copolymere mit Polyether- bzw. Polyester- und einem Poly-Acrylnitril-Styrol-Blöcken, welche in der Grenzfläche von kontinuierlicher Phase und dispergierter Phase als Phasenvermittler wirken und das Agglomerieren der Polymerpolyolpartikel unterdrücken. Der Anteil der Makromere kann bis zu größer 90 Gew.-% betragen und beträgt üblicherweise 1 bis 60 Gew.-% , bevorzugt 1 bis 40 Gew.-% und besonders bevorzugt 1 bis 15 Gew.-%, jeweils bezogen auf das Gesamt- gewicht der zur Herstellung des Polymerpolyols eingesetzten Monomere. During radical polymerization, the macromers are incorporated into the polymer chain. This forms copolymers with polyether or polyester and a poly-acrylonitrile-styrene blocks which act as phase mediators in the interface of continuous phase and dispersed phase and suppress the agglomeration of the polymer polyol particles. The proportion of macromers can be up to more than 90% by weight and is usually from 1 to 60% by weight, preferably from 1 to 40% by weight and more preferably from 1 to 15% by weight, based in each case on the total Weight of the monomers used to prepare the polymer polyol.
Zur Herstellung von Polymerpolyolen werden üblicherweise Moderatoren, auch als Kettenüberträger bezeichnet, eingesetzt. Die Moderatoren verringern durch Kettenübertragung des wachsenden Radikals das Molekulargewicht der sich bildenden Co- polymere, wodurch die Vernetzung zwischen den Polymermolekülen verringert wird, was die Viskosität und die Dispersionsstabilität sowie die Filtrierbarkeit der Polymerpolyole beeinflusst. Der Anteil der Moderatoren beträgt üblicherweise 0,5 bis 25 Gew.-%, bezogen auf das Gesamtgewicht der zur Herstellung des Polymerpolyols eingesetzten Monomere. Moderatoren, die üblicherweise zur Herstellung von Polymer- polyolen eingesetzt werden, sind Alkohole, wie 1 -Butanol, 2-Butanol, Isopropanol, E- thanol, Methanol, Cyclohexan, Toluene, Mercaptane, wie Ethanthiol, 1 -Heptanthiol, 2-Octanethiol, 1 -Dodecanthiol, Thiophenol, 2-Ethylhexylthioglycolate, Methylthio- glycolate, Cyclohexylmercaptan sowie Enoletherverbindungen, Morpholine und a-(Benzoyloxy)styren. Bevorzugt wird Alkylmercaptan verwendet. To prepare polymer polyols, moderators, also referred to as chain transfer agents, are usually used. The moderators reduce the molecular weight of the forming copolymers by chain transfer of the growing radical, thereby reducing cross-linking between the polymer molecules, which affects the viscosity and dispersion stability as well as the filterability of the polymer polyols. The proportion of moderators is usually 0.5 to 25 wt .-%, based on the total weight of the monomers used to prepare the polymer polyol. Moderators which are customarily used for the preparation of polymer polyols are alcohols, such as 1-butanol, 2-butanol, isopropanol, ethanol, methanol, cyclohexane, toluene, mercaptans, such as ethanethiol, 1-heptanethiol, 2-octanethiol, 1 -dodecanethiol, thiophenol, 2-ethylhexyl thioglycolates, methylthio glycolates, cyclohexyl mercaptan and enol ether compounds, morpholines and α- (benzoyloxy) styrene. Preferably, alkylmercaptan is used.
Zur Initiierung der radikalischen Polymerisation werden üblicherweise Peroxid- oder Azo-Verbindungen, wie Dibenzoyl-peroxide, Lauroylperoxide, t-Amylperoxy-2-ethyl- hexanoate, Di-t-butylperoxide, Diisopropyl peroxide carbonate, t-Butyl peroxy-2-ethyl- hexanoate, t-Butylperpivalate, t-Butylperneo-decanoate, t-Butylperbenzoate, t-Butyl percrotonate, t-Butyl perisobutyrate, t-Butylperoxy-1 -methylpropanoate, t-Butylperoxy- 2-ethylpentanoate, t-Butylperoxyoctanoate und Di-t-butylperphthalate, 2,2'-Azobis(2,4- dimethyl-valeronitrile), 2,2'-Azobisisobutyronitrile (AI BN), Dimethyl-2,2'-azobisiso- butyrate, 2,2'-Azobis(2-methylbutyronitrile) (AMBN), 1 ,1 '-Azobis(1 -cyclohexane- carbonitrile), eingesetzt. Der Anteil der Initiatoren beträgt üblicherweise 0,1 bis 6 Gew.-%, bezogen auf das Gesamtgewicht der zur Herstellung des Polymerpolyols eingesetzten Monomere. Die radikalische Polymerisation zur Herstellung von Polymerpolyolen wird aufgrund der Reaktionsgeschwindigkeit der Monomere sowie der Halbwertszeit der Initiatoren üblicherweise bei Temperaturen von 70 bis 150°C und einem Druck bis zu 20 bar durchgeführt. Bevorzugte Reaktionsbedingungen zur Herstellung von Polymerpolyolen sind Temperaturen von 80 bis 140°C bei einem Druck von Atmosphärendruck bis 15 bar. To initiate the radical polymerization are usually peroxide or azo compounds such as dibenzoyl peroxides, lauroyl peroxides, t-amyl peroxy-2-ethyl hexanoates, di-t-butyl peroxides, diisopropyl peroxide carbonate, t-butyl peroxy-2-ethyl hexanoates, t-butyl perpivalates, t-butyl perneo decanoates, t-butyl perbenzoates, t-butyl percrotonates, t-butyl perisobutyrates, t-butyl peroxy-1-methylpropanoates, t-butyl peroxy-2-ethyl pentanoates, t-butyl peroxyoctanoates and di-t-butyl butyl perphthalate, 2,2'-azobis (2,4-dimethyl-valeronitrile), 2,2'-azobisisobutyronitrile (AI BN), dimethyl-2,2'-azobisisobutyrate, 2,2'-azobis (2-methylbutyronitrile ) (AMBN), 1,1'-azobis (1-cyclohexane-carbonitrile). The proportion of initiators is usually 0.1 to 6 wt .-%, based on the total weight of the monomers used to prepare the polymer polyol. The radical polymerization for the preparation of polymer polyols is usually carried out at temperatures of 70 to 150 ° C and a pressure of up to 20 bar due to the reaction rate of the monomers and the half-life of the initiators. Preferred reaction conditions for the preparation of polymer polyols are temperatures of 80 to 140 ° C at a pressure of atmospheric pressure to 15 bar.
Polymerpolyole werden in kontinuierlichen Verfahren, unter Einsatz von Rührkesseln mit kontinuierlichem Zu- und Ablauf, Rührkesselkaskaden, Rohrreaktoren und Loopreaktoren mit kontinuierlichem Zu- und Ablauf, oder in diskontinuierlichen Verfahren, mittels eines Batch Reaktors oder eines Semi-Batch Reaktors, hergestellt. Polymer polyols are made in continuous processes using continuous feed and off-stream stirred tanks, stirred tank cascades, tubular reactors and loop reactors with continuous feed and drain, or in batch processes by means of a batch reactor or a semi-batch reactor.
Die Reaktion zur Herstellung der Polymerpolyole kann auch in Gegenwart eines inerten Lösungsmittels durchgeführt werden. Als Lösungsmittel können beispielsweise eingesetzt werden: Benzol, Toluol, Xylol, Acetonitril, Hexan, Heptan, Dioxan, Ethylace- tat, N,N-Dimethylformamid, Ν,Ν-Dimethylacetamid, etc. Bevorzugt sind Benzol, Xylol und Toluol. The reaction for producing the polymer polyols can also be carried out in the presence of an inert solvent. The following solvents may be used for example: benzene, toluene, xylene, acetonitrile, hexane, heptane, dioxane, ethyl acetate, N, N-dimethylformamide, Ν, Ν-dimethylacetamide, etc. Preference is given to benzene, xylene and toluene.
Geeignete ethylenisch ungesättigte Monomere für die Herstellung des Feststoffanteils des Polymerpolyols sind beispielsweise Butadien, Isopren, 1 ,4-Pentadien, 1 ,6- Hexadien, 1 ,7-Octadien, Styrol, Alpha-Methylstyrol, 2-Methylstyrol, 3-Methylstyrol, 4- Methylstyrol, 2,4-Dimethylstyrol, Ethylstyrol, I so propyl styrol, Butylstyrol, Phenylstyrol, Cyclohexylstyrol, Benzylstyrol und ähnlichen Derivate; substituierte Styrole wie Cya- nostyrol, Nitrostyrol, Ν,Ν-Dimethylaminostyrol, Acetoxystyrol, Methyl-4-Vinylbenzoat, Phenoxystyrol, p-Vinylphenyoxid und ähnliche Derivate; Acrylate und substituierte Ac- rylate wie Acrylnitril, Acrylsäure, Methacrylsäure, Methacrylacrylat, 2-Hydroxyethyl- acrylat, Methylmethacylat, Cyclohexylmethacrylat, Benyzylmethacrylat, Isopropyl- methacrylat, Octylmethacrylat, Methacrylnitril, Ethyl-alpha-ethoxyacrylat, Methyl-alpha- acetaminoacrylate, Butylacrylat, 2-Ethylhexylacrylat, Phenylacrylat, Phenylmethacrylat, Acrylamid, N,N-Dimethylacrylamid, Ν,Ν-Dibenzylacrylamid, N-Butylacrylamid, Methac- ryloylformamid und ähnliche Derivate; Vinylester, Vinylether, Vinylketone, etc. wie Vi- nylacetat, Vinylbutyrat, Isopropenylacetat, Vinylformiat, Vinylacrylate, Vinylmethacrylat, Vinylmethoxyacetat, Vinylbenzoat, Vinyltoluol, Vinylnaphtalin, Vinylmethylether, Vinyl- propylether, Vinylbutylether, Vinyl-2-ethylhexylether, Vinylphenylether, Vinyl-2-metho- xyethylether, Methoxybutadien, Vinyl-2-butoxyethylether, 2,4-Dihydro-1 ,2-Pyran, 2- Butoxy-2'-Vinyloxydiethylether, Vinylmethylketon, Vinylethylketon, Vinylphenyketon, Vinylethylsulfon, N-methyl-N-vinylacetamid, N-vinylpyrrolidon, vinylimidazol, Dinvinyl- sulfoxid, Divinylsulfon, Natrium-vinylsulfonat, Methylvinylsulfonat, N-Vinylpyrrol, Vi- nylphosphonat, und ähnliche Derivate; Dimethylfumarat, Dimethylmaleat, Maleinsäure, Crotonsäure, Fumarsäure, Itaconsäure, Monomethylitaconat, t-Butylaminoethyl- methacrylat, Dimethylaminoethyl-methacrylat, Glycidylacrylat, Allylalkohol, Glycolmo- noester von Itaconsäure, Vinylpyridin und ähnlichen Derivaten. Bevorzugte ethylenisch ungesättigte Monomere sind Styrol, Acrylnitril, Acrylate und Acrylamide. In einer bevorzugten Ausführungsform werden als ethylenisch ungesättigte Monomere Acrylnitril, Styrol, insbesondere Styrol und Acrylnitril im Verhältnis zwischen 1 :3 bis 3:1 verwendet. Bevorzugt wird weiterhin zur Polymerisation ein Makromer zugegeben. Gegebenenfalls wird die Polymerisation ferner unter Einsatz eines Moderators und unter Einsatz eines Radikal-Initiators durchgeführt. Suitable ethylenically unsaturated monomers for the preparation of the solids content of the polymer polyol are, for example, butadiene, isoprene, 1,4-pentadiene, 1,6-hexadiene, 1,7-octadiene, styrene, alpha-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4 - Methylstyrene, 2,4-dimethylstyrene, ethylstyrene, I so propyl styrene, butylstyrene, phenylstyrene, cyclohexylstyrene, benzylstyrene and similar derivatives; substituted styrenes such as cyanostyrene, nitrostyrene, Ν, Ν-dimethylaminostyrene, acetoxystyrene, methyl 4-vinylbenzoate, phenoxystyrene, p-vinylphenyoxide and similar derivatives; Acrylates and substituted acrylates such as acrylonitrile, acrylic acid, methacrylic acid, methacrylic acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, isopropyl methacrylate, octyl methacrylate, methacrylonitrile, ethyl-alpha-ethoxy acrylate, methyl-alpha-aceto-amino acrylate, butyl acrylate, 2 Ethylhexyl acrylate, phenyl acrylate, phenyl methacrylate, acrylamide, N, N-dimethylacrylamide, Ν, Ν-dibenzylacrylamide, N-butylacrylamide, methacryloylformamide and like derivatives; Vinyl esters, vinyl ethers, vinyl ketones, etc., such as vinyl acetate, vinyl butyrate, isopropenyl acetate, vinyl formate, vinyl acrylates, vinyl methacrylate, vinyl methoxyacetate, vinyl benzoate, vinyltoluene, vinylnaphthalene, vinyl methyl ether, vinyl propyl ether, vinyl butyl ether, vinyl 2-ethylhexyl ether, vinyl phenyl ether, vinyl-2 -methoxyethyl ether, methoxybutadiene, vinyl-2-butoxyethyl ether, 2,4-dihydro-1,2-pyran, 2-butoxy-2'-vinyloxydiethyl ether, vinyl methyl ketone, vinyl ethyl ketone, vinyl phenyl ketone, vinyl ethyl sulfone, N-methyl-N-vinyl acetamide, N-vinylpyrrolidone, vinylimidazole, din-vinylsulfoxide, divinylsulfone, sodium vinylsulfonate, methylvinylsulfonate, N-vinylpyrrole, vinylphosphonate, and similar derivatives; Dimethyl fumarate, dimethyl maleate, maleic acid, crotonic acid, fumaric acid, itaconic acid, monomethyl itaconate, t-butylaminoethyl methacrylate, dimethylaminoethyl methacrylate, glycidyl acrylate, allyl alcohol, glycol monoester of itaconic acid, vinylpyridine and similar derivatives. Preferred ethylenically unsaturated monomers are styrene, acrylonitrile, acrylates and acrylamides. In a preferred embodiment, acrylonitrile, styrene, in particular styrene and acrylonitrile in the ratio between 1: 3 to 3: 1 are used as ethylenically unsaturated monomers. Preferably, a macromer is further added to the polymerization. Optionally, the polymerization is further carried out using a moderator and using a radical initiator.
In einer bevorzugten Ausführungsform enthält der Feststoffanteil Acrylnitril, Styrol und Makromer, wobei der Anteil an Acrylnitril 10 bis 75 Gew.-% und bevorzugt 25 bis 35 Gew.-%, der Anteil an Styrol 30 bis 90 Gew.-%, bevorzugt 55 bis 70 Gew.-% und der Anteil an Makromer 1 bis 10 Gew.-%, bevorzugt 3 bis 6 Gew.-%, bezogen auf das Gesamtgewicht des Feststoffanteils des Polymerpolyols, beträgt. In a preferred embodiment, the solids content of acrylonitrile, styrene and macromer, wherein the proportion of acrylonitrile 10 to 75 wt .-% and preferably 25 to 35 wt .-%, the proportion of styrene 30 to 90 wt .-%, preferably 55 to 70 wt .-% and the proportion of macromer 1 to 10 wt .-%, preferably 3 to 6 wt .-%, based on the total weight of the solids content of the polymer polyol is.
In einer bevorzugten Ausführungsform weist das Polymerpolyol einen Feststoffanteil von 10 bis 90 Gew.-%, besonders bevorzugt 15 bis 60 und insbesondere 20 bisIn a preferred embodiment, the polymer polyol has a solids content of 10 to 90 wt .-%, particularly preferably 15 to 60 and in particular 20 to
55 Gew.-%, bezogen auf das Gesamtgewicht des Polymerpolyols, auf. Dabei beträgt der Feststoffanteil, bezogen auf das Gesamtgewicht der Polyolkomponente b) vorzugsweise 1 bis 10 Gew.-%, besonders bevorzugt 2 bis 7 Gew.-% und insbesondere 2,5 bis 6 Gew.-%. 55 wt .-%, based on the total weight of the polymer polyol on. In this case, the solids content, based on the total weight of the polyol component b) is preferably 1 to 10 wt .-%, particularly preferably 2 to 7 wt .-% and in particular 2.5 to 6 wt .-%.
Der Feststoffgehalt von Polymerpolyolen errechnet sich aus dem prozentualen Verhältnis der eingesetzten Monomeren und des Makromeren, zu den eingesetzten Trä- gerpolyolen und wird am fertigen Polymerpolyol üblicherweise gravimetrisch aus dem prozentualen Verhältnis der Feststoffmasse zu Gesamtmasse des Polymerpolyols be- stimmt. The solids content of polymer polyols is calculated from the percentage ratio of the monomers used and of the macromers to the carrier polyols used and is usually determined gravimetrically on the finished polymer polyol from the percentage ratio of the solids mass to the total mass of the polymer polyol.
Der Anteil an Polymerpolyetherol b2) am Gesamtgewicht der Polyolkomponente b) beträgt vorzugsweise 0,5 bis 20 Gew.-%. Der Anteil an Polymerpolyesterol b3) am Gesamtgewicht der Polyolkomponente b) beträgt vorzugsweise 0 bis 30 Gew.-%, beson- ders bevorzugt 1 bis 10 Gew.-%. Werden Polymerpolyetherol b2) und Polymerpolyesterol b3) gemeinsam eingesetzt beträgt das Verhältnis von Polymerpolyetherol b2) zu Polymerpolyesterol b3) vorzugsweise 1 : 20 bis 20 : 1 , besonders bevorzugt 1 : 5 bis 5 : 1 . Dabei wird eine Kombination aus Polymerpolyetherol b2) und Polymerpolyesterol b3) vorzugsweise zur Herstellung von Polyurethanschaumstoffformkörper mit einer Höhe von mindestens 1 ,5 cm, besonders bevorzugt von mindestens 5 cm, verwendet. Dabei wird unter„Höhe" des Polyurethanschaumstoffformkörpers die größte Distanz in der Form zur Herstellung des erfindungsgemäßen Polyurethanschaumstoffformkörpers in Steigrichtung des Schaums verstanden. Ferner sind bei der Herstellung von Polyurethanschaumstoffformkörpern Treibmittel c) zugegen. Diese Treibmittel c) können Wasser enthalten. Als Treibmittel c) können neben Wasser noch zusätzlich allgemein bekannte chemisch und/oder physikalisch wir- kende Verbindungen eingesetzt werden. Unter chemischen Treibmitteln versteht man Verbindungen, die durch Reaktion mit Isocyanat gasförmige Produkte bilden, wie beispielsweise Wasser oder Ameisensäure. Unter physikalischen Treibmitteln versteht man Verbindungen, die in den Einsatzstoffen der Polyurethan-Herstellung gelöst oder emulgiert sind und unter den Bedingungen der Polyurethanbildung verdampfen. Dabei handelt es sich beispielsweise um Kohlenwasserstoffe, halogenierte Kohlenwasserstoffe, und andere Verbindungen, wie zum Beispiel perfluorierte Alkane, wie Perfluorhe- xan, Fluorchlorkohlenwasserstoffe, und Ether, Ester, Ketone, Acetale oder Mischungen daraus, beispielsweise (cyclo)aliphatische Kohlenwasserstoffe mit 4 bis 8 Kohlenstoff- atomen, oder Fluorkohlenwasserstoffe, wie Solkane® 365 mfc der Firma Solvay Fluorides LLC. In einer bevorzugten Ausführungsform wird als Treibmittel eine Mischung enthaltend mindestens eines dieser Treibmittel und Wasser eingesetzt, insbesondere Wasser als alleiniges Treibmittel. Wird kein Wasser als Treibmittel eingesetzt, werden vorzugsweise ausschließlich physikalische Treibmittel verwendet. The proportion of polymer polyetherol b2) in the total weight of the polyol component b) is preferably 0.5 to 20 wt .-%. The proportion of polymer polyesterol b3) in the total weight of the polyol component b) is preferably 0 to 30 wt .-%, more preferably 1 to 10 wt .-%. If polymer polyetherol b2) and polymer polyesterol b3) are used together, the ratio of polymer polyetherol b2) to polymer polyesterol b3) is preferably 1:20 to 20: 1, more preferably 1: 5 to 5: 1. In this case, a combination of polymer polyetherol b2) and polymer polyesterol b3) is preferably used for the production of polyurethane foam moldings having a height of at least 1.5 cm, more preferably of at least 5 cm. The term "height" of the polyurethane foam molding is understood to mean the greatest distance in the mold for producing the polyurethane foam molding according to the invention in the direction of rise of the foam Further, blowing agents c) are present in the production of polyurethane foam moldings These blowing agents c) can contain water in addition to water additionally generally known chemically and / or physically kende compounds are used. Chemical blowing agents are compounds which form gaseous products by reaction with isocyanate, such as, for example, water or formic acid. Physical blowing agents are understood as compounds which are dissolved or emulsified in the starting materials of polyurethane production and evaporate under the conditions of polyurethane formation. These are, for example, hydrocarbons, halogenated hydrocarbons, and other compounds, such as perfluorinated alkanes, such as perfluorohexane, chlorofluorocarbons, and ethers, esters, ketones, acetals or mixtures thereof, for example (cyclo) aliphatic hydrocarbons having 4 to 8 Carbon atoms, or fluorocarbons, such as Solkane ® 365 mfc Solvay Fluorides LLC. In a preferred embodiment, the blowing agent employed is a mixture containing at least one of these blowing agents and water, in particular water as the sole blowing agent. If no water is used as blowing agent, preferably only physical blowing agents are used.
Der Gehalt an Wasser beträgt in einer bevorzugten Ausführungsform von 0,1 bis 2 Gew.-%, bevorzugt 0,2 bis 1 ,5 Gew.-%, besonders bevorzugt 0,3 bis 1 ,2 Gew.-%, , bezogen auf das Gesamtgewicht der Komponenten a) bis f). In einer weiteren bevorzugten Ausführungsform werden der Umsetzung der Komponenten a) bis f) als zusätzliches Treibmittel Mikrohohlkugeln, die physikalisches Treibmittel enthalten, zugegeben. Die Mikrohohlkugeln können auch im Gemisch mit den vorstehend genannten Treibmitteln eingesetzt werden. Die Mikrohohlkugeln bestehen üblicherweise aus einer Hülle aus thermoplastischem Polymer und sind im Kern mit einer flüssigen, niedrig siedenden Substanz auf Basis von Alkanen gefüllt. Die Herstellung solcher Mikrohohlkugeln ist beispielsweise in US 3 615 972 beschrieben. Die Mikrohohlkugeln weisen im Allgemeinen einen Durchmesser von 5 bis 50 μηη auf. Beispiele für geeignete Mikrohohlkugeln sind unter dem Handelsnamen Expancell® der Firma Akzo Nobel erhältlich. The content of water in a preferred embodiment is from 0.1 to 2 wt .-%, preferably 0.2 to 1, 5 wt .-%, particularly preferably 0.3 to 1, 2 wt .-%, based on the total weight of components a) to f). In a further preferred embodiment, microbubbles containing physical blowing agent are added to the reaction of components a) to f) as additional blowing agent. The hollow microspheres can also be used in admixture with the abovementioned propellants. The hollow microspheres usually consist of a shell of thermoplastic polymer and are filled in the core with a liquid, low-boiling substance based on alkanes. The production of such hollow microspheres is described, for example, in US Pat. No. 3,615,972. The hollow microspheres generally have a diameter of 5 to 50 μm. Examples of suitable hollow microspheres are available from Akzo Nobel under the trade name Expancell® ®.
Die Mikrohohlkugeln werden im Allgemeinen in einer Menge von 0,5 bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten b), c) und d) zugesetzt. Als Kettenverlängerungsmittel und/oder Vernetzungsmittel d) werden Substanzen mit einem Molekulargewicht von vorzugsweise kleiner 500 g/mol, besonders bevorzugt von 60 bis 400 g/mol eingesetzt, wobei Kettenverlängerer 2 gegenüber Isocyanaten reaktive Wasserstoffatome und Vernetzungsmittel 3 gegenüber Isocyanat reaktive Wasserstoffatome aufweisen. Diese können bevorzugt einzeln oder in Form von Mischungen eingesetzt werden. Vorzugsweise werden Diole und/oder Triole mit Molekulargewichten kleiner als 400, besonders bevorzugt von 60 bis 300 und insbesondere 60 bis 150 eingesetzt. In Betracht kommen beispielsweise aliphatische, cycloaliphatische und/oder araliphatische Diole mit 2 bis 14, vorzugsweise 2 bis 10 Kohlenstoffatomen, wie Ethylenglykol, 1 ,3-Propandiol, 1 ,10-Decandiol, 1 ,2-, 1 ,3-, 1 ,4-Dihydroxycyclohexan, Diethylenglykol, Dipropylenglykol und 1 ,4-Butandiol, 1 ,6-Hexandiol und Bis-(2-hydroxy- ethyl)-hydrochinon, Triole, wie 1 ,2,4-, 1 ,3,5-Trihydroxy-cyclohexan, Glycerin und Tri- methylolpropan, und niedermolekulare hydroxylgruppenhaltige Polyalkylenoxide auf Basis Ethylen- und/oder 1 ,2-Propylenoxid und den vorgenannten Diolen und/oder Trio- len als Startermoleküle. Besonders bevorzugt werden als Kettenverlängerer (d) Mono- ethylenglycol, 1 ,4-Butandiol, Glycerin oder Mischungen davon eingesetzt. Sofern Kettenverlängerungsmittel, Vernetzungsmittel oder Mischungen davon Anwendung finden, kommen diese zweckmäßigerweise in Mengen von 1 bis 60 Gew.-%, vorzugsweise 1 ,5 bis 50 Gew.-% und insbesondere 2 bis 40 Gew.-%, bezogen auf das Gewicht der Komponenten b) und d), zum Einsatz. Als Katalysatoren e) zur Herstellung der Polyurethanschaumstoffe werden bevorzugt Verbindungen verwendet, welche die Reaktion der Polyole b) und gegebenenfalls Ket- tenverlängerungs- und Vernetzungsmittel d) mit den organischen, gegebenenfalls modifizierten Polyisocyanaten a) stark beschleunigen. Genannt seien beispielsweise Ami- dine, wie 2,3-Dimethyl-3,4,5,6-tetrahydropyrimidin, tertiäre Amine, wie Triethylamin, Tributylamin, Dimethylbenzylamin, N-Methyl-, N-Ethyl-, N-Cyclohexylmorpholin,The hollow microspheres are generally added in an amount of 0.5 to 5 wt .-%, based on the total weight of components b), c) and d). As chain extenders and / or crosslinking agents d) substances having a molecular weight of preferably less than 500 g / mol, particularly preferably from 60 to 400 g / mol are used, chain extenders having 2 isocyanate-reactive hydrogen atoms and crosslinking agent 3 isocyanate-reactive hydrogen atoms. These can preferably be used individually or in the form of mixtures. Preference is given to using diols and / or triols having molecular weights of less than 400, more preferably from 60 to 300 and in particular from 60 to 150. For example, aliphatic, cycloaliphatic and / or araliphatic diols having 2 to 14, preferably 2 to 10 carbon atoms, such as ethylene glycol, 1, 3-propanediol, 1, 10-decanediol, 1, 2, 1, 3, 1, 4-dihydroxycyclohexane, diethylene glycol, dipropylene glycol and 1,4-butanediol, 1,6-hexanediol and bis (2-hydroxyethyl) hydroquinone, triols such as 1,2,4-, 1,3,5-trihydroxycyclohexane, glycerol and trimethylolpropane , and low molecular weight hydroxyl-containing polyalkylene oxides based on ethylene and / or 1, 2-propylene oxide and the aforementioned diols and / or triols as starter molecules. Particularly preferred chain extenders (d) are monoethylene glycol, 1,4-butanediol, glycerol or mixtures thereof. If chain extenders, crosslinking agents or mixtures thereof are used, these are expediently used in amounts of from 1 to 60% by weight, preferably from 1.5 to 50% by weight and in particular from 2 to 40% by weight, based on the weight of the components b) and d) are used. As catalysts e) for the preparation of the polyurethane foams, preference is given to using compounds which greatly accelerate the reaction of the polyols b) and optionally chain extenders and crosslinking agents d) with the organic, optionally modified polyisocyanates a). Examples which may be mentioned are amidines, such as 2,3-dimethyl-3,4,5,6-tetrahydropyrimidine, tertiary amines, such as triethylamine, tributylamine, dimethylbenzylamine, N-methyl-, N-ethyl-, N-cyclohexylmorpholine,
Ν,Ν,Ν',Ν'-Tetramethylethylendiamin, Ν,Ν,Ν',Ν'-Tetramethyl-butandiamin, Ν,Ν,Ν',Ν'- Tetramethyl-hexandiamin, Pentamethyl-diethylentriamin, Tetramethyl-diaminoethyl- ether, Bis-(dimethylaminopropyl)-harnstoff, Dimethylpiperazin, 1 ,2-Dimethylimidazol, 1 - Aza-bicyclo-(3,3,0)-octan und vorzugsweise 1 ,4-Diaza-bicyclo-(2,2,2)-octan und Alka- nolaminverbindungen, wie Triethanolamin, Triisopropanolamin, N-Methyl- und N-Ethyl- diethanolamin und Dimethylethanolamin. Ebenso kommen in Betracht organische Metallverbindungen, vorzugsweise organische Zinnverbindungen, wie Zinn-(ll)-salze von organischen Carbonsäuren, z.B. Zinn-(ll)-acetat, Zinn-(ll)-octoat, Zinn-(ll)-ethylhexoat und Zinn-(ll)-laurat und die Dialkylzinn-(IV)-salze von organischen Carbonsäuren, z.B. Dibutyl-zinndiacetat, Dibutylzinndilaurat, Dibutylzinn-maleat und Dioctylzinn-diacetat, sowie Bismutcarboxylate, wie Bismut(lll)-neodecanoat, Bismut-2-ethylhexanoat und Bismut-octanoat oder Mischungen davon. Die organischen Metallverbindungen können allein oder vorzugsweise in Kombination mit stark basischen Aminen eingesetzt werden. Handelt es sich bei der Komponente (b) um einen Ester, werden vorzugsweise ausschließlich Aminkatalysatoren eingesetzt. Ν, Ν, Ν ', Ν'-tetramethylethylenediamine, Ν, Ν, Ν', Ν'-tetramethyl-butanediamine, Ν, Ν, Ν ', Ν'-tetramethyl-hexanediamine, pentamethyl-diethylenetriamine, tetramethyl-diaminoethyl ether, Bis (dimethylaminopropyl) urea, dimethylpiperazine, 1, 2-dimethylimidazole, 1-azabicyclo- (3,3,0) -octane and preferably 1,4-diazabicyclo- (2,2,2) -octane and alkanolamine compounds such as triethanolamine, triisopropanolamine, N-methyl- and N-ethyldiethanolamine and dimethylethanolamine. Also contemplated are organic metal compounds, preferably organic tin compounds such as stannous salts of organic carboxylic acids, e.g. Tin (II) acetate, stannous octoate, stannous (II) ethylhexanoate, and stannous (II) laurate and the dialkyltin (IV) salts of organic carboxylic acids, e.g. Dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate and dioctyltin diacetate; and bismuth carboxylates such as bismuth (III) neodecanoate, bismuth 2-ethylhexanoate and bismuth octanoate or mixtures thereof. The organic metal compounds can be used alone or preferably in combination with strongly basic amines. When component (b) is an ester, it is preferred to use only amine catalysts.
Vorzugsweise verwendet werden 0,001 bis 5 Gew.-%, insbesondere 0,05 bis 2 Gew.- % Katalysator bzw. Katalysatorkombination, bezogen auf das Gewicht der Komponente b). Preferably used are 0.001 to 5 wt .-%, in particular 0.05 to 2 wt .-% catalyst or catalyst combination, based on the weight of component b).
Der Reaktionsmischung zur Herstellung der Polyurethanschäume können gegebenenfalls auch noch Hilfsmittel und/oder Zusatzstoffe f) zugegeben werden. Genannt seien beispielsweise oberflächenaktive Substanzen, Schaumstabilisatoren, Zellregler, weitere Trennmittel, Füllstoffe, Farbstoffe, Pigmente, Hydrolyseschutzmittel, geruchsabsorbierende Substanzen und fungistatische und/oder bakteriostatisch wirkende Substanzen. If appropriate, auxiliaries and / or additives f) may also be added to the reaction mixture for the preparation of the polyurethane foams. Mentioned For example, surface-active substances, foam stabilizers, cell regulators, other release agents, fillers, dyes, pigments, hydrolysis, odor-absorbing substances and fungistatic and / or bacteriostatic substances.
Als oberflächenaktive Substanzen kommen z.B. Verbindungen in Betracht, welche zur Unterstützung der Homogenisierung der Ausgangsstoffe dienen und gegebenenfalls auch geeignet sind, die Zellstruktur zu regulieren. Genannt seien beispielsweise Emul- gatoren, wie die Natriumsalze von Ricinusölsulfaten oder von Fettsäuren, sowie Salze von Fettsäuren mit Aminen, z.B. ölsaures Diethylamin, stearinsaures Diethanolamin, ricinolsaures Diethanolamin, Salze von Sulfonsäuren, z.B. Alkali- oder Ammoniumsalze von Dodecylbenzol- oder Dinaphthylmethandisulfonsäure, und Ricinolsäure; Schaumstabilisatoren, wie Siloxan-Oxalkylen-Mischpolymerisate und andere Organopolysilo- xane, oxethylierte Alkylphenole, oxethylierte Fettalkohole, Paraffinöle, Ricinusöl- bzw. Ricinolsäureester, Türkischrotöl und Erdnussöl, und Zellregler, wie Paraffine, Fettalkohole und Dimethylpolysiloxane. Zur Verbesserung der Emulgierwirkung, der Zellstruktur und/oder Stabilisierung des Schaumes eignen sich ferner oligomere Acrylate mit Polyoxyalkylen- und Fluoralkanresten als Seitengruppen. Die oberflächenaktiven Substanzen werden üblicherweise in Mengen von 0,01 bis 5 Gew.-Teilen, bezogen auf 100 Gew.-Teile der Komponente b), eingesetzt. As surface-active substances are e.g. Compounds which serve to assist the homogenization of the starting materials and, if appropriate, are also suitable for regulating the cell structure. Mention may be made, for example, of emulsifiers, such as the sodium salts of castor oil sulfates or fatty acids, and salts of fatty acids with amines, e.g. diethylamine, stearic acid diethanolamine, diethanolamine ricinoleic acid, salts of sulfonic acids, e.g. Alkali or ammonium salts of dodecylbenzene or dinaphthylmethanedisulfonic acid, and ricinoleic acid; Foam stabilizers, such as siloxane-oxalkylene copolymers and other organopolysiloxanes, ethoxylated alkylphenols, ethoxylated fatty alcohols, paraffin oils, castor oil or ricinoleic acid esters, Turkish red oil and peanut oil, and cell regulators, such as paraffins, fatty alcohols and dimethylpolysiloxanes. To improve the emulsifying effect, the cell structure and / or stabilization of the foam, oligomeric acrylates having polyoxyalkylene and fluoroalkane radicals as side groups are also suitable. The surface-active substances are usually used in amounts of from 0.01 to 5 parts by weight, based on 100 parts by weight of component b).
Als geeignete weitere Trennmittel seien beispielhaft genannt: Umsetzungsprodukte von Fettsäureestern mit Polyisocyanaten, Salze aus Aminogruppen enthaltenden Polysilo- xanen und Fettsäuren, Salze aus gesättigten oder ungesättigten (cyclo)aliphatischen Carbonsäuren mit mindestens 8 C-Atomen und tertiären Aminen sowie insbesondere innere Trennmittel, wie Carbonsäureester und/oder -amide, hergestellt durch Veresterung oder Amidierung einer Mischung aus Montansäure und mindestens einer aliphatischen Carbonsäure mit mindestens 10 C-Atomen mit mindestens difunktionellen Alka- nolaminen, Polyolen und/oder Polyaminen mit Molekulargewichten von 60 bis 400 g/mol, wie beispielsweise in EP 153 639 offenbart, Gemischen aus organischen Aminen, Metallsalzen der Stearinsäure und organischen Mono- und/oder Dicarbonsäuren oder deren Anhydride, wie beispielsweise in DE-A-3 607 447 offenbart, oder Gemischen aus einer Iminoverbindung, dem Metallsalz einer Carbonsäure und gegebenenfalls einer Carbonsäure, wie beispielsweise in US 4 764 537 offenbart. Vorzugsweise enthalten erfindungsgemäße Reaktionsmischungen keine weiteren Trennmittel. Examples of suitable further release agents are: reaction products of fatty acid esters with polyisocyanates, salts of polysiloxanes containing amino groups and fatty acids, salts of saturated or unsaturated (cyclo) aliphatic carboxylic acids having at least 8 carbon atoms and tertiary amines and in particular internal release agents such as carboxylic acid esters and / or amides prepared by esterification or amidation of a mixture of montanic acid and at least one aliphatic carboxylic acid having at least 10 carbon atoms with at least difunctional alkanolamines, polyols and / or polyamines having molecular weights of 60 to 400 g / mol, such as in EP 153 639 discloses mixtures of organic amines, metal salts of stearic acid and organic mono- and / or dicarboxylic acids or their anhydrides, as disclosed for example in DE-A-3 607 447, or mixtures of an imino compound, the metal salt of a carboxylic acid and optionally a ca hydrobromic acid, as disclosed, for example, in US Pat. No. 4,764,537. Preferably, reaction mixtures according to the invention contain no further release agents.
Als Füllstoffe, insbesondere verstärkend wirkende Füllstoffe, sind die an sich bekannten, üblichen organischen und anorganischen Füllstoffe, Verstärkungsmittel, Beschwerungsmittel, Beschichtungsmittel usw. zu verstehen. Im einzelnen seien beispielhaft genannt: anorganische Füllstoffe, wie silikatische Mineralien, beispielsweise Schichtsilikate, wie Antigorit, Bentonit, Serpentin, Hornblenden, Amphibole, Chrisotil und Talkum, Metalloxide, wie Kaolin, Aluminiumoxide, Titanoxide, Zinkoxid und Eisenoxide, Metallsalze wie Kreide und Schwerspat, und anorganische Pigmente, wie Cadmiumsul- fid, Zinksulfid sowie Glas u.a. Vorzugsweise verwendet werden Kaolin (China Clay), Aluminiumsilikat und Copräzipitate aus Bariumsulfat und Aluminiumsilikat. Als organische Füllstoffe kommen beispielsweise in Betracht: Ruß, Melamin, Kollophonium, Cyc- lopentadienylharze und Pfropfpolymerisate sowie Cellulosefasern, Polyamid-, Polyac- rylnitril-, Polyurethan-, Polyesterfasern auf der Grundlage von aromatischen und/oder aliphatischen Dicarbonsäureestern und insbesondere Kohlenstofffasern. Fillers, in particular reinforcing fillers, are the conventional, customary organic and inorganic fillers, reinforcing agents, weighting agents, coating compositions, etc., to be understood. Specific examples are: inorganic fillers, such as silicate minerals, for example phyllosilicates, such as antigorite, bentonite, serpentine, hornblende, amphiboles, chrysotile and talc, metal oxides, such as kaolin, aluminum oxides, titanium oxides, zinc oxide and iron oxides, Metal salts such as chalk and barite, and inorganic pigments such as Cadmiumsul- fid, zinc sulfide and glass, etc. Preferably used are kaolin (China Clay), aluminum silicate and coprecipitates of barium sulfate and aluminum silicate. Suitable organic fillers are, for example, carbon black, melamine, rosin, cyclopentadienyl resins and graft polymers and also cellulose fibers, polyamide, polyacrylonitrile, polyurethane and polyester fibers based on aromatic and / or aliphatic dicarboxylic acid esters and in particular carbon fibers.
Die anorganischen und organischen Füllstoffe können einzeln oder als Gemische ver- wendet werden und werden der Reaktionsmischung vorteilhafterweise in Mengen von 0,5 bis 50 Gew.-%, vorzugsweise 1 bis 40 Gew.-%, bezogen auf das Gewicht der Komponenten a) bis d), zugegeben. The inorganic and organic fillers can be used individually or as mixtures and are advantageously added to the reaction mixture in amounts of from 0.5 to 50% by weight, preferably from 1 to 40% by weight, based on the weight of components a) to d), added.
Weiter ist Gegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung eines Polyurethanschaumstoffformkörpers, insbesondere eines Polyurethanintegralschaumstoffs bei dem die Komponenten a) bis c) und gegebenenfalls d), e) und/oder f) in solchen Mengen miteinander vermischt werden, dass das Äquivalenzverhältnis von NCO- Gruppen der Polyisocyanate (a) zur Summe der reaktiven Wasserstoffatome der Komponenten (b), (c) und (d) 1 : 0,8 bis 1 : 1 ,25, vorzugsweise 1 : 0,9 bis 1 : 1 ,15 beträgt. The present invention further provides a process for producing a polyurethane foam molding, in particular an integral polyurethane foam in which the components a) to c) and optionally d), e) and / or f) are mixed together in amounts such that the equivalence ratio of NCO- Groups of polyisocyanates (a) to the sum of the reactive hydrogen atoms of components (b), (c) and (d) 1: 0.8 to 1: 1, 25, preferably 1: 0.9 to 1: 1, 15.
Die erfindungsgemäßen Polyurethanschaumstoffformkörper werden vorzugsweise nach dem one-shot-Verfahren mit Hilfe der Niederdruck- oder Hochdrucktechnik in geschlossenen, zweckmäßigerweise temperierten Formwerkzeugen hergestellt. Die Formwerkzeuge bestehen gewöhnlich aus Metall, z.B. Aluminium oder Stahl. Diese Verfahrensweisen werden beispielsweise beschrieben von Piechota und Röhr in "Integralschaumstoff", Carl-Hanser-Verlag, München, Wien, 1975, oder im„Kunststoffhandbuch", Band 7, Polyurethane, 3. Auflage, 1993, Kapitel 7. The polyurethane foam moldings according to the invention are preferably prepared by the one-shot process with the aid of the low-pressure or high-pressure technique in closed, suitably tempered molds. The molds are usually made of metal, e.g. Aluminum or steel. These procedures are described for example by Piechota and Röhr in "integral foam", Carl Hanser Verlag, Munich, Vienna, 1975, or in the "Plastics Handbook", Volume 7, Polyurethane, 3rd edition, 1993, Chapter 7.
Die Ausgangskomponenten a) bis f) werden dazu vorzugsweise bei einer Temperatur von 15 bis 90 °C, besonders bevorzugt von 25 bis 55 °C gemischt und die Reaktionsmischung gegebenenfalls unter erhöhtem Druck in das Formwerkzeug eingebracht. Die Vermischung kann mechanisch mittels eines Rührers oder einer Rührschnecke oder unter hohem Druck im sogenannten Gegenstrominjektionsverfahren durchgeführt werden. Die Formwerkzeugtemperatur beträgt zweckmäßigerweise 20 bis 160 °C, vor- zugsweise 30 bis 120 °C, besonders bevorzugt 30 bis 60 °C. Dabei wird im Rahmen der Erfindung die Mischung der Komponenten a) bis f) bei Reaktionsumsätzen kleiner 90 %, bezogen auf die Isocyanatgruppen, als Reaktionsmischung bezeichnet. The starting components a) to f) are preferably mixed at a temperature of 15 to 90 ° C, more preferably from 25 to 55 ° C and optionally introduced the reaction mixture under elevated pressure in the mold. The mixing can be carried out mechanically by means of a stirrer or a stirring screw or under high pressure in the so-called countercurrent injection method. The mold temperature is expediently from 20 to 160.degree. C., preferably from 30 to 120.degree. C., particularly preferably from 30 to 60.degree. In the context of the invention, the mixture of components a) to f) is referred to as reaction mixture at reaction conversions of less than 90%, based on the isocyanate groups.
Die Menge der in das Formwerkzeug eingebrachten Reaktionsmischung wird so be- messen, dass die erhaltenen Formkörper, insbesondere Integralschaumstoff eineThe amount of the reaction mixture introduced into the mold is so determined that the shaped bodies obtained, in particular integral foam, have a
Dichte von vorzugsweise 80 g/L bis 500 g/L besonders bevorzugt von 150 g/L bis 450 g/L. aufweisen. Die Verdichtungsgrade zur Herstellung der erfindungsgemäßen Poly- urethanintegralschaumstoffe liegen im Bereich von 1 ,1 bis 8,5, vorzugsweise von 1 ,7 bis 7,0. Density of preferably 80 g / L to 500 g / L, more preferably from 150 g / L to 450 g / L. exhibit. The degrees of compaction for the production of the poly- Urethane integral foams are in the range of 1, 1 to 8.5, preferably from 1, 7 to 7.0.
Die erfindungsgemäßen Polyurethanschaumstofffformkörper werden vorzugsweise als Schuhsohle und besonders bevorzugt als (Zwischen-)Sohle, zum Beispiel für Straßenschuhe, Sportschuhe, Sandalen und Stiefel eingesetzt. Insbesondere werden die erfindungsgemäßen Polyurethanintegralschaumstoffe als Zwischensohle für Sportschuhe oder als Sohlenmaterial hochhackige Damenschuhe eingesetzt. Dabei beträgt die Dicke der Sohle an der dicksten Stelle vorzugsweise mehr als 3 cm, besonders bevor- zugt von mehr als 5 cm. Weiter können erfindungsgemäße Polyurethanschaumstoffe im Innenbereich von Verkehrsmitteln beispielsweise in Autos als Lenkräder, Kopfstützen oder Schaltknöpfe oder als Stuhlarmlehnen verwendet. Weitere Verwendungsmöglichkeiten sind als Armlehne für Stühle oder als Motorradsitze. Im Folgenden soll die Erfindung anhand von Beispielen verdeutlicht werden. Beispiele The polyurethane foam molded articles according to the invention are preferably used as a shoe sole and particularly preferably as an (intermediate) sole, for example for street shoes, sports shoes, sandals and boots. In particular, the integral polyurethane foams according to the invention are used as a midsole for sports shoes or as sole material for high-heeled women's shoes. The thickness of the sole at the thickest point is preferably more than 3 cm, more preferably more than 5 cm. Furthermore, polyurethane foams according to the invention can be used in the interior of transport vehicles, for example in cars, as steering wheels, headrests or control buttons or as chair armrests. Other uses are as an armrest for chairs or as motorcycle seats. In the following, the invention will be illustrated by means of examples. Examples
Verwendete Einsatzstoffe  Used feedstocks
Polyol 1 : Polyesterol auf Basis von Adipinsäure, Monoethylenglycol, Diethylenglycol und Glycerin mit einer OH-Zahl von 91 mg KOH/g und einer Viskosität vonPolyol 1: polyesterol based on adipic acid, monoethylene glycol, diethylene glycol and glycerol with an OH number of 91 mg KOH / g and a viscosity of
261 mPas bei 75°C 261 mPas at 75 ° C
Polyol 2: Polyesterol auf Basis einer Mischung von Bernsteinsäure, Glutarsäure und  Polyol 2: Polyesterol based on a mixture of succinic acid, glutaric acid and
Adipinsäure, Monoethylenglycol und Glycerin mit einer OH-Zahl von 58 mg KOH/g und einer Viskosität von 430 mPas bei 100°C  Adipic acid, monoethylene glycol and glycerol with an OH number of 58 mg KOH / g and a viscosity of 430 mPas at 100 ° C.
Polyol 3: Polyesterol auf Basis einer Mischung von Bernsteinsäure, Glutarsäure, Adipinsäure und Monoethylenglycol mit einer OH-Zahl von 56 mg KOH/g und einer Viskosität von 650 mPas bei 75°C Polyol 3: Polyesterol based on a mixture of succinic acid, glutaric acid, adipic acid and monoethylene glycol having an OH number of 56 mg KOH / g and a viscosity of 650 mPas at 75 ° C.
Polyol 4: Graftpolyol basierend auf einen Polyetherol auf Basis von Glycerin, Propy- lenoxid und Ethylenoxid mit einem Ethylenoxid-Endcap, einen Feststoffan- teil von 45 Gew.-%, einer OH-Zahl von 20 mg KOH/g und einerPolyol 4: graft polyol based on a polyetherol based on glycerol, propylene oxide and ethylene oxide with an ethylene oxide cap, a solids content of 45 wt .-%, an OH number of 20 mg KOH / g and a
Viskosität von 7500 mPas bei 25°C Viscosity of 7500 mPas at 25 ° C
Polyol 5: Polyetherol auf Basis von Glycerin, Propylenoxid und Ethylenoxid mit einen Polyol 5: polyetherol based on glycerol, propylene oxide and ethylene oxide with one
Ethylen-/Propylenoxid Mischcap, einer OH-Zahl von 56 mg KOH/g und einer Viskosität von 460 mPas bei 25°C  Ethylene / propylene oxide Mischcap, an OH number of 56 mg KOH / g and a viscosity of 460 mPas at 25 ° C.
Polyol 6: Graftpolyol auf Basis von Polyol 5 mit einem Feststoffanteil von 45 Gew.-% einer OH-Zahl von 30 mg KOH/g und einer Viskosität von 4500 mPas bei 25°C Polyol 6: graft polyol based on polyol 5 with a solids content of 45 wt .-% of an OH number of 30 mg KOH / g and a viscosity of 4500 mPas at 25 ° C.
Polyol 7: Graftpolyol PM 245® der Firma Synthesia basierend auf Polyesterol mit einer OH-Zahl von 60 mg KOH/g  Polyol 7: Graftpolyol PM 245® from Synthesia based on polyesterol having an OH number of 60 mg KOH / g
KV1 : Monethylenglycol KV1: Monethylene glycol
V1 : Triethanolamin V2: Glycerin V1: triethanolamine V2: glycerin
Kat 1 Dabco gelöst in Monoethylenegylcol  Cat 1 Dabco dissolved in monoethylene glycol
Kat 2 Niax A1® der Firma Air Products  Cat 2 Niax A1® from Air Products
Stabi Dabco DC 193® der Firma Air Products  Stabi Dabco DC 193® from Air Products
IS0 1 : Monomer-MDI IS0 1: monomer MDI
ISO 2: Monomer-MDI, enthaltend ca. 25 Gew.-% carbodiimidmodifiziert.es Monomer-MDI  ISO 2: monomeric MDI containing about 25 weight percent carbodiimide modified monomeric MDI
DI BIS: Diglycol-bis-chlorformiat  DI BIS: Diglycol-bis-chloroformate
FP: Farbpaste  FP: color paste
Prepolymerherstellung: Prepolymer 1 (Prepol ): Prepolymer Preparation: Prepolymer 1 (Prepol):
In einem 2 L 4-Halskolben mit Stickstoffeinleitung, Rührer, Kühler und Tropftrichter wurden 927,9g ISO 1 , 75g ISO 2 und 0,15g DI BIS vorgelegt und auf etwa 60°C erwärmt. Bei 60°C wurden 496,95g des Polyols 1 langsam über einen Zeitraum von 30 Minuten zugegeben und 2 Stunden bei 80°C nachgerührt. Das erhaltene Prepolymere hatte einen NCO-Gehalt von 20,0 % Prepolymer 2 (Prepo 2):  In a 2 L 4-necked flask with nitrogen inlet, stirrer, condenser and dropping funnel, 927.9 g of ISO 1, 75 g of ISO 2 and 0.15 g of DI BIS were initially charged and heated to about 60 ° C. At 60 ° C 496.95 g of the polyol 1 were added slowly over a period of 30 minutes and stirred at 80 ° C for 2 hours. The prepolymer obtained had an NCO content of 20.0% prepolymer 2 (Prepo 2):
In einem 2 L 4-Halskolben mit Stickstoffeinleitung, Rührer, Kühler und Tropftrichter wurden 884,85g ISO 1 , 180g ISO 2 und 0,15g DI BIS vorgelegt und auf etwa 60°C erwärmt. Bei 60°C wurden 435g des Polyols 2 langsam über einen Zeitraum von 30 Minuten zugegeben und 2 Stunden bei 80°C nachgerührt. Das erhaltene Prepolymere hatte einen NCO-Gehalt von 21 ,8 %  In a 2 L 4-necked flask with nitrogen inlet, stirrer, condenser and dropping funnel, 884.85 g of ISO 1, 180 g of ISO 2 and 0.15 g of DI BIS were initially charged and heated to about 60 ° C. At 60 ° C 435g of the polyol 2 were added slowly over a period of 30 minutes and stirred at 80 ° C for 2 hours. The prepolymer obtained had an NCO content of 21, 8%
Es wurden die erfindungsgemäßen Beispiele E1 bis E4 sowie die Vergleichsbeispiele V1 bis V4 durchgeführt. Dazu wurden die in Tabelle 1 angegebenen Komponenten (Angaben in Gewichtteile) mit den markierten Isocyanatprepolymeren bei angegebe- nen Isocyanatindex vermischt und jeweils einmal frei verschäumt und einmal in eine Sohlenform mit der in der Tabelle angegebenen Hackenhöhe in cm (HH) gegeben, so Formkörper mit einer Dichte von 380 g/L entstanden. Die Dichte des frei verschäumte Polyurethanschaumstoffs in g/L (Dichte fr) ist ebenfalls in Tabelle 1 angegeben. Tabelle 1: The inventive examples E1 to E4 and the comparative examples V1 to V4 were carried out. For this purpose, the components indicated in Table 1 (in parts by weight) were mixed with the labeled isocyanate prepolymers at specified isocyanate index and foamed once each free and once in a sole mold with the heights specified in the table height in cm (HH), so moldings with a density of 380 g / L emerged. The density of the free-foamed polyurethane foam in g / L (density fr) is also given in Table 1. Table 1:
Figure imgf000016_0001
Figure imgf000016_0001
24 Stunden nach Herstellung wurden die Formkörper begutachtet. Dabei zeigten sowohl der freigeschaumte Schaum als auch der Formkörper gemäß Vergleichsbeispiele V 1 bis V4 einen deutlichen Schrumpf bzw. lokalen Schrumpf auf der Oberfläche Der freigeschäumte Schaum als auch der Formkörper gemäß den erfindungsgemäßen Beispielen E1 bis E4 zeigten keinerlei Anzeichen von Schrumpf. Ferner zeichneten sich die Formkörper durch eine gute Oberflächengüte aus. Der Formkörper nach Beispiel E3 wies im oberen Drittel der Sohle eine grobe, inhomogene Zellstruktur auf, die sich unter Last (menschlicher Körper) komprimieren ließ und damit sich negativ auf die Stabilität des Schuhs auswirkte. Durch die Kombination aus Polymerpolyetherol und Polymerpolyesterol gemäß Beispiel E4 konnte dieser Nachteil behoben werden. Der Polyurethanintegralschaumstoff nach Beispiel E4 zeigte eine homogene mikrozelluläre Schaumstruktur. 24 hours after preparation, the moldings were examined. In this case, both the foam-free foam and the molded body according to Comparative Examples V 1 to V4 showed a significant shrinkage or local shrinkage on the surface of the free-foamed foam and the moldings according to the inventive examples E1 to E4 showed no signs of shrinkage. Furthermore, the moldings were characterized by a good surface quality. The shaped body according to Example E3 had a coarse, inhomogeneous cell structure in the upper third of the sole, which could be compressed under load (human body) and thus had a negative effect on the stability of the shoe. The combination of polymer polyetherol and polymer polyesterol according to Example E4, this disadvantage could be eliminated. The polyurethane integral foam according to Example E4 showed a homogeneous microcellular foam structure.

Claims

Patentansprüche claims
Verfahren zur Herstellung von Polyurethanschaumstoffformkörper bei dem man a) organische Polyisocyanate mit Process for the preparation of polyurethane foam moldings in which a) organic polyisocyanates with
b) Polyole, enthaltend  b) Polyols containing
b1 ) Polyesterole  b1) polyesterols
b2) Polymerpolyetherole mit einem Anteil an primären OH-Gruppen von kleiner 50 %,  b2) polymer polyetherols with a proportion of primary OH groups of less than 50%,
c) Treibmitteln, und gegebenenfalls  c) propellants, and optionally
d) Kettenverlängerungsmitteln und/oder Vernetzungsmitteln,  d) chain extenders and / or crosslinking agents,
e) Katalysatoren und  e) catalysts and
f) sonstigen Hilfsmitteln und/oder Zusatzstoffen,  f) other aids and / or additives,
zu einer Reaktionsmischung vermischt, in eine Form gibt und zu einem Polyurethanschaumstoffformkörper ausreagieren lässt.  is mixed into a reaction mixture, placed in a mold and allowed to react to a polyurethane foam molding.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Komponente b) als Komponente b3) ein Polymerpolyesterol enthält. A method according to claim 1, characterized in that component b) as component b3) contains a polymer polyesterol.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Dichte 80 bis 500 g/L beträgt. A method according to claim 1 or 2, characterized in that the density is 80 to 500 g / L.
Verwendung einer Mischung aus Polymerpolyetherolen und Polymerpolyeste- rolen zur Herstellung von Polyurethanschaumstoffformkörpern. Use of a mixture of polymer polyetherols and polymer polyesterols for the production of polyurethane foam moldings.
Polyurethanschaumstoffformkörper, erhältlich nach einem der Ansprüche 1 bis 3. Polyurethane foam molding obtainable according to one of claims 1 to 3.
6. Verwendung eines Polyurethanschaumstoffformkörpers nach Anspruch 5 als Schuhsohle. 6. Use of a polyurethane foam molding according to claim 5 as a shoe sole.
PCT/EP2010/069376 2009-12-11 2010-12-10 Dimensionally stable polyurethane molded foam bodies WO2011070153A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112012013911-8A BR112012013911B1 (en) 2009-12-11 2010-12-10 process for producing a molded polyurethane foam, molded polyurethane foam, and use of a molded polyurethane foam
EP10787789.6A EP2510028B1 (en) 2009-12-11 2010-12-10 Dimensionally stable polyurethane molded foam bodies
ES10787789.6T ES2544886T3 (en) 2009-12-11 2010-12-10 Molded polyurethane foam bodies with dimensional stability
JP2012542560A JP5654038B2 (en) 2009-12-11 2010-12-10 Polyurethane foam molding with excellent dimensional stability
CN201080056052.0A CN102666625B (en) 2009-12-11 2010-12-10 Dimensionally stable polyurethane foam moldings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09178861 2009-12-11
EP09178861.2 2009-12-11

Publications (2)

Publication Number Publication Date
WO2011070153A2 true WO2011070153A2 (en) 2011-06-16
WO2011070153A3 WO2011070153A3 (en) 2012-01-05

Family

ID=43513954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/069376 WO2011070153A2 (en) 2009-12-11 2010-12-10 Dimensionally stable polyurethane molded foam bodies

Country Status (8)

Country Link
EP (1) EP2510028B1 (en)
JP (1) JP5654038B2 (en)
KR (1) KR20120103684A (en)
CN (1) CN102666625B (en)
BR (1) BR112012013911B1 (en)
ES (1) ES2544886T3 (en)
PT (1) PT2510028E (en)
WO (1) WO2011070153A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012016961A1 (en) * 2010-08-02 2012-02-09 Bayer Materialscience Ag A reaction system for preparing polyurethane microcellular foam, a polyurethane microcellular foam and the use thereof
CN104262574A (en) * 2014-10-11 2015-01-07 淄博德信联邦化学工业有限公司 Polyurethane toy and preparation method thereof
WO2017021439A1 (en) * 2015-08-04 2017-02-09 Covestro Deutschland Ag Method for producing flexible polyester urethane foams with increased compressive strength

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615972A (en) 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
DE2402734A1 (en) 1973-01-19 1974-07-25 Ici Ltd METHOD FOR MANUFACTURING CELLULAR POLYURETHANES
US4390645A (en) 1979-11-23 1983-06-28 The Dow Chemical Company Stable dispersions of polymers in polyfunctional compounds having a plurality of active hydrogens and polyurethanes therefrom
EP0153639A2 (en) 1984-02-18 1985-09-04 BASF Aktiengesellschaft Process for the preparation of cellular or compact polyurethane-polyurea mouldings having modified mould release properties, and internal mould release agents for the polyisocyanate-polyaddition process
EP0163188A2 (en) 1984-05-17 1985-12-04 BASF Corporation A graft polymer dispersion in a mixture of low molecular weight polyols and polyether polyols and polyurethane foams prepared therefrom
US4568705A (en) 1984-05-17 1986-02-04 Basf Wyandotte Corporation Graft polymer dispersion in a mixture of low molecular weight polyols and polyether polyols and polyurethane foams prepared therefrom
DE3607447A1 (en) 1986-03-07 1987-09-10 Basf Ag METHOD FOR PRODUCING MOLDED BODIES WITH A CELLED CORE AND A COMPRESSED EDGE ZONE WITH IMPROVED DEFORMING PROPERTIES
US4764537A (en) 1986-09-19 1988-08-16 Basf Aktiengesellschaft Internal mold release agents, their use for preparing molded articles using polyisocyanate-addition polymerization, and a process for preparing molded articles
EP0365986A2 (en) 1988-10-26 1990-05-02 BASF Corporation Method for the preparation of graft polymer dispersions having broad particle size distribution without wildly fluctuating viscosities
US4997857A (en) 1986-09-30 1991-03-05 Arco Chemical Technology, Inc. Stabilizers for polymer/polyols
EP0439755A2 (en) 1990-01-29 1991-08-07 BASF Corporation Process for preparing graft polyols and the polyols prepared thereby
EP0461800A1 (en) 1990-06-12 1991-12-18 ARCO Chemical Technology, L.P. Improved polymer/polyol and preformed stabilizer systems
US5358984A (en) 1991-10-11 1994-10-25 Arco Chemical Technology, L.P. Polymer polyol dispersants from polymers containing anhydride groups
EP0622384A2 (en) 1993-04-28 1994-11-02 BASF Aktiengesellschaft Process for the preparation of polymer-polyesterols
US5364906A (en) 1993-08-20 1994-11-15 Arco Chemical Technology, L.P. Low viscosity polymer polyols with improved dispersion stability
EP0664306A2 (en) 1994-01-21 1995-07-26 Basf Corporation A graft polymer dispersion having a third monomer and polyurethane foams having a reduced tendency to shrink once prepared thereby
US5830944A (en) 1994-03-31 1998-11-03 Basf Aktiengesellschaft Preparation of polymeric polyesterols
EP0894812A1 (en) 1997-07-29 1999-02-03 Basf Corporation Reinforcing graft polymers made in perfluorocarbon fluids
US5990232A (en) 1997-08-25 1999-11-23 Arco Chemical Technology, L.P. Stabilizers for polymer polyols
US6013731A (en) 1997-12-16 2000-01-11 Arco Chemical Technology L.P. Stabilizer based on high molecular weight polyols having low monol content for polymer polyol production
EP1042384A1 (en) 1997-12-26 2000-10-11 Kao Corporation Polyurethane foam for shoe soles
WO2000059971A1 (en) 1999-04-01 2000-10-12 Basf Corporation Process for making graft polyols using t-amyl peroxy free radical initiator
WO2001004178A1 (en) 1999-07-09 2001-01-18 The Dow Chemical Company Polymerization of alkylene oxides using metal cyanide catalysts and unsaturated initiator compounds
EP1756187A1 (en) 2004-05-31 2007-02-28 Basf Aktiengesellschaft Low-density polyurethane foam materials and their use in shoe soles
EP1790675A1 (en) 2005-11-25 2007-05-30 Basf Aktiengesellschaft Midsole for safety footwear from low density polyurethan foam

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3008590A1 (en) * 1980-03-06 1981-09-17 Bayer Ag, 5090 Leverkusen SOLUTIONS OF POLYURETHANES IN POLYOLS AND THE USE THEREOF IN A METHOD FOR PRODUCING POLYURETHANE PLASTICS
JP2612275B2 (en) * 1987-07-14 1997-05-21 旭硝子株式会社 Method for producing semi-rigid polyurethane foam molded article
JP3355619B2 (en) * 1995-11-09 2002-12-09 日本ポリウレタン工業株式会社 Method for producing skin-integrated flexible polyurethane foam
JP3930089B2 (en) * 1996-05-09 2007-06-13 株式会社イノアックコーポレーション Flexible polyurethane foam and speaker edge using the same
JPH1045864A (en) * 1996-08-02 1998-02-17 Dainippon Ink & Chem Inc Two-pack cellular polyurethane elastomer composition for shoe sole and shoe sole
JPH10218956A (en) * 1997-02-06 1998-08-18 Inoac Corp Flame-retardant polyurethane foam
DE10129062A1 (en) * 2001-06-15 2002-12-19 Basf Ag Process for the production of highly elastic polyurethane foams
DE10357895A1 (en) * 2003-12-11 2005-07-07 Bayer Materialscience Ag Polymer dispersions in polyester polyols
DE102008010753A1 (en) * 2008-02-23 2009-08-27 Bayer Materialscience Ag Elastomeric polyurethane molded parts, obtained by reacting polyol formulation consisting of e.g. polyol component and optionally organic tin catalyst, and an isocyanate component consisting of e.g. prepolymer, useful e.g. as shoe sole
CN101412798B (en) * 2008-11-21 2011-08-10 优洁(亚洲)有限公司 Soft polyurethane low-resilience foam and preparation thereof
CN101585901B (en) * 2009-06-25 2011-04-06 北京科聚化工新材料有限公司 Polyurethane foam material and preparing method and application thereof

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615972A (en) 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
DE2402734A1 (en) 1973-01-19 1974-07-25 Ici Ltd METHOD FOR MANUFACTURING CELLULAR POLYURETHANES
US4390645A (en) 1979-11-23 1983-06-28 The Dow Chemical Company Stable dispersions of polymers in polyfunctional compounds having a plurality of active hydrogens and polyurethanes therefrom
EP0153639A2 (en) 1984-02-18 1985-09-04 BASF Aktiengesellschaft Process for the preparation of cellular or compact polyurethane-polyurea mouldings having modified mould release properties, and internal mould release agents for the polyisocyanate-polyaddition process
EP0163188A2 (en) 1984-05-17 1985-12-04 BASF Corporation A graft polymer dispersion in a mixture of low molecular weight polyols and polyether polyols and polyurethane foams prepared therefrom
US4568705A (en) 1984-05-17 1986-02-04 Basf Wyandotte Corporation Graft polymer dispersion in a mixture of low molecular weight polyols and polyether polyols and polyurethane foams prepared therefrom
DE3607447A1 (en) 1986-03-07 1987-09-10 Basf Ag METHOD FOR PRODUCING MOLDED BODIES WITH A CELLED CORE AND A COMPRESSED EDGE ZONE WITH IMPROVED DEFORMING PROPERTIES
US4764537A (en) 1986-09-19 1988-08-16 Basf Aktiengesellschaft Internal mold release agents, their use for preparing molded articles using polyisocyanate-addition polymerization, and a process for preparing molded articles
US4997857A (en) 1986-09-30 1991-03-05 Arco Chemical Technology, Inc. Stabilizers for polymer/polyols
EP0365986A2 (en) 1988-10-26 1990-05-02 BASF Corporation Method for the preparation of graft polymer dispersions having broad particle size distribution without wildly fluctuating viscosities
EP0439755A2 (en) 1990-01-29 1991-08-07 BASF Corporation Process for preparing graft polyols and the polyols prepared thereby
EP0461800A1 (en) 1990-06-12 1991-12-18 ARCO Chemical Technology, L.P. Improved polymer/polyol and preformed stabilizer systems
US5358984A (en) 1991-10-11 1994-10-25 Arco Chemical Technology, L.P. Polymer polyol dispersants from polymers containing anhydride groups
EP0622384A2 (en) 1993-04-28 1994-11-02 BASF Aktiengesellschaft Process for the preparation of polymer-polyesterols
US5364906A (en) 1993-08-20 1994-11-15 Arco Chemical Technology, L.P. Low viscosity polymer polyols with improved dispersion stability
EP0664306A2 (en) 1994-01-21 1995-07-26 Basf Corporation A graft polymer dispersion having a third monomer and polyurethane foams having a reduced tendency to shrink once prepared thereby
US5830944A (en) 1994-03-31 1998-11-03 Basf Aktiengesellschaft Preparation of polymeric polyesterols
EP0894812A1 (en) 1997-07-29 1999-02-03 Basf Corporation Reinforcing graft polymers made in perfluorocarbon fluids
US5990232A (en) 1997-08-25 1999-11-23 Arco Chemical Technology, L.P. Stabilizers for polymer polyols
US6013731A (en) 1997-12-16 2000-01-11 Arco Chemical Technology L.P. Stabilizer based on high molecular weight polyols having low monol content for polymer polyol production
EP1042384A1 (en) 1997-12-26 2000-10-11 Kao Corporation Polyurethane foam for shoe soles
WO2000059971A1 (en) 1999-04-01 2000-10-12 Basf Corporation Process for making graft polyols using t-amyl peroxy free radical initiator
WO2001004178A1 (en) 1999-07-09 2001-01-18 The Dow Chemical Company Polymerization of alkylene oxides using metal cyanide catalysts and unsaturated initiator compounds
EP1756187A1 (en) 2004-05-31 2007-02-28 Basf Aktiengesellschaft Low-density polyurethane foam materials and their use in shoe soles
EP1790675A1 (en) 2005-11-25 2007-05-30 Basf Aktiengesellschaft Midsole for safety footwear from low density polyurethan foam

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Integralschaumstoff", 1975, CARL-HANSER-VERLAG
"Kunststoffhandbuch", vol. 7, 1993, article "Polyurethane"
"Kunststoffhandbuch, Band 7, Polyurethane", vol. 7, 1993, CARL HANSER VERLAG

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012016961A1 (en) * 2010-08-02 2012-02-09 Bayer Materialscience Ag A reaction system for preparing polyurethane microcellular foam, a polyurethane microcellular foam and the use thereof
CN104262574A (en) * 2014-10-11 2015-01-07 淄博德信联邦化学工业有限公司 Polyurethane toy and preparation method thereof
CN104262574B (en) * 2014-10-11 2016-08-17 淄博德信联邦化学工业有限公司 Polyurethane toy and preparation method thereof
WO2017021439A1 (en) * 2015-08-04 2017-02-09 Covestro Deutschland Ag Method for producing flexible polyester urethane foams with increased compressive strength

Also Published As

Publication number Publication date
EP2510028B1 (en) 2015-06-17
JP2013513684A (en) 2013-04-22
EP2510028A2 (en) 2012-10-17
WO2011070153A3 (en) 2012-01-05
CN102666625B (en) 2015-07-08
BR112012013911A2 (en) 2016-04-26
CN102666625A (en) 2012-09-12
JP5654038B2 (en) 2015-01-14
BR112012013911B1 (en) 2019-11-12
PT2510028E (en) 2015-09-09
KR20120103684A (en) 2012-09-19
ES2544886T3 (en) 2015-09-04

Similar Documents

Publication Publication Date Title
EP2209827B1 (en) Foamed polyurethanes having improved flexural endurance properties
EP2195363B1 (en) Low-density polyurethane foams and use thereof in shoe soles
EP2804884B1 (en) Low-density polyurethane shoe soles or sole parts with high rebound and low compression set.
WO2009065826A1 (en) Use of chlorinated hydrocarbons and chlorinated alkyl phosphates in the production of polyurethane integral foams
EP3013879B1 (en) Hydrolysis resistant pur molded parts.
EP2215138B1 (en) Polyurethane integral foams containing cyclohexane dicarboxylic acid dialkyl esters as an internal release agent
EP2510028B1 (en) Dimensionally stable polyurethane molded foam bodies
EP2640761B1 (en) Dimensionally stable polyurethane molded bodies having low density
DE69320109T2 (en) Energy absorbing, water-blown rigid polyurethane foam and process for its production
WO2010066598A1 (en) Polyurethane foams having improved flexural endurance properties
EP2580263B1 (en) Polyurethane integral foam materials having good dimensional stability
EP3268408A1 (en) Molded polyurethane bodies with excellent flexibility at low temperatures
WO2012098145A1 (en) Microcellular foams with improved mechanical properties
EP3596148B1 (en) Method for producing polyurethane boots
EP2408841B1 (en) Polyurethane molded body having improved tear propagation resistance and improved bending fatigue behavior
JP2003534417A (en) Method for producing slabstock polyurethane foam
EP2226344A1 (en) Friction-resistant polyurethane form body with improved long-term bend resistance
WO2024227678A1 (en) Low density polyurethane foam moldings with smooth skin
WO2010012736A1 (en) Process for producing polyurethane-based tennis balls
WO2012080400A1 (en) Process for producing low-density polyurethane mouldings

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056052.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10787789

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10787789

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010787789

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012542560

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127017528

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 6015/CHENP/2012

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012013911

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012013911

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120608