WO2011063336A2 - Site secondaire de stimulation d'antigène pour vaccination thérapeutique - Google Patents
Site secondaire de stimulation d'antigène pour vaccination thérapeutique Download PDFInfo
- Publication number
- WO2011063336A2 WO2011063336A2 PCT/US2010/057630 US2010057630W WO2011063336A2 WO 2011063336 A2 WO2011063336 A2 WO 2011063336A2 US 2010057630 W US2010057630 W US 2010057630W WO 2011063336 A2 WO2011063336 A2 WO 2011063336A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antigen
- tumor
- cells
- days
- plg
- Prior art date
Links
- 239000000427 antigen Substances 0.000 title claims abstract description 133
- 108091007433 antigens Proteins 0.000 title claims abstract description 133
- 102000036639 antigens Human genes 0.000 title claims abstract description 133
- 238000002255 vaccination Methods 0.000 title description 75
- 230000000638 stimulation Effects 0.000 title description 17
- 230000001225 therapeutic effect Effects 0.000 title description 17
- 238000000034 method Methods 0.000 claims abstract description 56
- 230000015788 innate immune response Effects 0.000 claims abstract description 36
- 239000012620 biological material Substances 0.000 claims abstract description 26
- 230000033289 adaptive immune response Effects 0.000 claims abstract description 15
- 230000005975 antitumor immune response Effects 0.000 claims abstract description 10
- 206010028980 Neoplasm Diseases 0.000 claims description 228
- 210000004443 dendritic cell Anatomy 0.000 claims description 203
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 122
- 210000004027 cell Anatomy 0.000 claims description 121
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 claims description 93
- 238000002513 implantation Methods 0.000 claims description 64
- 239000000203 mixture Substances 0.000 claims description 40
- 201000001441 melanoma Diseases 0.000 claims description 35
- 108010065805 Interleukin-12 Proteins 0.000 claims description 33
- 102000013462 Interleukin-12 Human genes 0.000 claims description 33
- 229940117681 interleukin-12 Drugs 0.000 claims description 32
- 230000007115 recruitment Effects 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 210000004881 tumor cell Anatomy 0.000 claims description 23
- 230000008595 infiltration Effects 0.000 claims description 20
- 238000001764 infiltration Methods 0.000 claims description 20
- 108010074328 Interferon-gamma Proteins 0.000 claims description 18
- 210000005134 plasmacytoid dendritic cell Anatomy 0.000 claims description 18
- 229940046166 oligodeoxynucleotide Drugs 0.000 claims description 14
- 210000002540 macrophage Anatomy 0.000 claims description 10
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 claims description 9
- 210000003169 central nervous system Anatomy 0.000 claims description 8
- 239000002671 adjuvant Substances 0.000 claims description 6
- 239000013592 cell lysate Substances 0.000 claims description 6
- 229940029575 guanosine Drugs 0.000 claims description 5
- 206010006187 Breast cancer Diseases 0.000 claims description 4
- 208000026310 Breast neoplasm Diseases 0.000 claims description 4
- 206010018338 Glioma Diseases 0.000 claims description 4
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 4
- 208000034578 Multiple myelomas Diseases 0.000 claims description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 4
- 206010038389 Renal cancer Diseases 0.000 claims description 4
- 208000029824 high grade glioma Diseases 0.000 claims description 4
- 201000010982 kidney cancer Diseases 0.000 claims description 4
- 208000032839 leukemia Diseases 0.000 claims description 4
- 201000005202 lung cancer Diseases 0.000 claims description 4
- 208000020816 lung neoplasm Diseases 0.000 claims description 4
- 201000011614 malignant glioma Diseases 0.000 claims description 4
- 208000000172 Medulloblastoma Diseases 0.000 claims description 3
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 claims description 3
- 102000008070 Interferon-gamma Human genes 0.000 claims description 2
- 229960003130 interferon gamma Drugs 0.000 claims description 2
- 229960005486 vaccine Drugs 0.000 abstract description 166
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 159
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 159
- 239000006166 lysate Substances 0.000 description 78
- 230000004044 response Effects 0.000 description 69
- 210000001744 T-lymphocyte Anatomy 0.000 description 64
- 229940046168 CpG oligodeoxynucleotide Drugs 0.000 description 57
- 241000699670 Mus sp. Species 0.000 description 48
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 47
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 36
- 230000000694 effects Effects 0.000 description 30
- 230000004083 survival effect Effects 0.000 description 30
- 230000004913 activation Effects 0.000 description 28
- 102000004127 Cytokines Human genes 0.000 description 27
- 230000005867 T cell response Effects 0.000 description 27
- 239000011159 matrix material Substances 0.000 description 27
- 239000012636 effector Substances 0.000 description 26
- 238000011065 in-situ storage Methods 0.000 description 26
- 108090000695 Cytokines Proteins 0.000 description 25
- 230000030741 antigen processing and presentation Effects 0.000 description 24
- 238000001727 in vivo Methods 0.000 description 24
- 201000011510 cancer Diseases 0.000 description 23
- 239000000463 material Substances 0.000 description 23
- 210000001519 tissue Anatomy 0.000 description 23
- 210000000612 antigen-presenting cell Anatomy 0.000 description 19
- 210000002865 immune cell Anatomy 0.000 description 19
- 210000001165 lymph node Anatomy 0.000 description 19
- -1 e.g. Substances 0.000 description 18
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 18
- 229920000615 alginic acid Polymers 0.000 description 17
- 235000010443 alginic acid Nutrition 0.000 description 17
- 201000010099 disease Diseases 0.000 description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 17
- 230000028993 immune response Effects 0.000 description 17
- 229920000642 polymer Polymers 0.000 description 17
- 230000003389 potentiating effect Effects 0.000 description 17
- 102100037850 Interferon gamma Human genes 0.000 description 16
- 241001465754 Metazoa Species 0.000 description 16
- 238000011161 development Methods 0.000 description 16
- 230000018109 developmental process Effects 0.000 description 16
- 238000009566 cancer vaccine Methods 0.000 description 15
- 229940022399 cancer vaccine Drugs 0.000 description 15
- 239000007943 implant Substances 0.000 description 15
- 230000002459 sustained effect Effects 0.000 description 15
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 14
- 230000003308 immunostimulating effect Effects 0.000 description 14
- 208000015181 infectious disease Diseases 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 230000004614 tumor growth Effects 0.000 description 14
- 238000011746 C57BL/6J (JAX™ mouse strain) Methods 0.000 description 13
- 239000011148 porous material Substances 0.000 description 13
- 108090000623 proteins and genes Proteins 0.000 description 13
- 102000004169 proteins and genes Human genes 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 102100034256 Mucin-1 Human genes 0.000 description 12
- 230000000975 bioactive effect Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 239000004005 microsphere Substances 0.000 description 12
- 230000000069 prophylactic effect Effects 0.000 description 12
- 229940072056 alginate Drugs 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 238000009472 formulation Methods 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 210000003289 regulatory T cell Anatomy 0.000 description 11
- 230000011664 signaling Effects 0.000 description 11
- 108010050904 Interferons Proteins 0.000 description 10
- 102000014150 Interferons Human genes 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 10
- 229930006000 Sucrose Natural products 0.000 description 10
- 230000033228 biological regulation Effects 0.000 description 10
- 210000003162 effector t lymphocyte Anatomy 0.000 description 10
- 239000005720 sucrose Substances 0.000 description 10
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 9
- 241000282414 Homo sapiens Species 0.000 description 9
- 241000124008 Mammalia Species 0.000 description 9
- 229920002873 Polyethylenimine Polymers 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 230000001506 immunosuppresive effect Effects 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 230000009885 systemic effect Effects 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 102000003814 Interleukin-10 Human genes 0.000 description 8
- 108090000174 Interleukin-10 Proteins 0.000 description 8
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 8
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 8
- 206010061309 Neoplasm progression Diseases 0.000 description 8
- 108010004729 Phycoerythrin Proteins 0.000 description 8
- 150000004676 glycans Chemical class 0.000 description 8
- 210000000987 immune system Anatomy 0.000 description 8
- 230000006698 induction Effects 0.000 description 8
- 229940076144 interleukin-10 Drugs 0.000 description 8
- 230000001404 mediated effect Effects 0.000 description 8
- 230000002085 persistent effect Effects 0.000 description 8
- 229920001282 polysaccharide Polymers 0.000 description 8
- 239000005017 polysaccharide Substances 0.000 description 8
- 230000002035 prolonged effect Effects 0.000 description 8
- 230000005751 tumor progression Effects 0.000 description 8
- 208000001382 Experimental Melanoma Diseases 0.000 description 7
- 229920001503 Glucan Polymers 0.000 description 7
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 239000006285 cell suspension Substances 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 7
- 239000000017 hydrogel Substances 0.000 description 7
- 230000036039 immunity Effects 0.000 description 7
- 229940047124 interferons Drugs 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 7
- 244000052769 pathogen Species 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- 230000004936 stimulating effect Effects 0.000 description 7
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 6
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- 230000003044 adaptive effect Effects 0.000 description 6
- 230000000259 anti-tumor effect Effects 0.000 description 6
- 230000002596 correlated effect Effects 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- 230000002757 inflammatory effect Effects 0.000 description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 6
- 230000007774 longterm Effects 0.000 description 6
- 238000007920 subcutaneous administration Methods 0.000 description 6
- 238000002054 transplantation Methods 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 208000036142 Viral infection Diseases 0.000 description 5
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 5
- 230000014102 antigen processing and presentation of exogenous peptide antigen via MHC class I Effects 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 230000010261 cell growth Effects 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 238000005187 foaming Methods 0.000 description 5
- 238000009169 immunotherapy Methods 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 108010088201 squamous cell carcinoma-related antigen Proteins 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 102100036301 C-C chemokine receptor type 7 Human genes 0.000 description 4
- 102000029816 Collagenase Human genes 0.000 description 4
- 108060005980 Collagenase Proteins 0.000 description 4
- 101000716065 Homo sapiens C-C chemokine receptor type 7 Proteins 0.000 description 4
- 102000015696 Interleukins Human genes 0.000 description 4
- 108010063738 Interleukins Proteins 0.000 description 4
- 108010008707 Mucin-1 Proteins 0.000 description 4
- 241001529936 Murinae Species 0.000 description 4
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 4
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 4
- 230000004721 adaptive immunity Effects 0.000 description 4
- 230000006023 anti-tumor response Effects 0.000 description 4
- 238000002619 cancer immunotherapy Methods 0.000 description 4
- 229960002424 collagenase Drugs 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 229940029030 dendritic cell vaccine Drugs 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000019734 interleukin-12 production Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 4
- 239000003970 toll like receptor agonist Substances 0.000 description 4
- 230000009385 viral infection Effects 0.000 description 4
- 229920000936 Agarose Polymers 0.000 description 3
- 108010012236 Chemokines Proteins 0.000 description 3
- 102000019034 Chemokines Human genes 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 3
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 102100036383 Serpin B3 Human genes 0.000 description 3
- 238000000692 Student's t-test Methods 0.000 description 3
- 102000002689 Toll-like receptor Human genes 0.000 description 3
- 108020000411 Toll-like receptor Proteins 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 230000008649 adaptation response Effects 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000002659 cell therapy Methods 0.000 description 3
- 230000036755 cellular response Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 230000000139 costimulatory effect Effects 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 3
- 230000008029 eradication Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 229940079322 interferon Drugs 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 238000010172 mouse model Methods 0.000 description 3
- VQWNELVFHZRFIB-UHFFFAOYSA-N odn 1826 Chemical compound O=C1NC(=O)C(C)=CN1C(O1)CC(O)C1COP(O)(=O)OC1CC(N2C(NC(=O)C(C)=C2)=O)OC1COP(O)(=O)OC1CC(N2C3=C(C(NC(N)=N3)=O)N=C2)OC1COP(O)(=O)OC1CC(N2C(N=C(N)C=C2)=O)OC1COP(O)(=O)OC1CC(N2C3=NC=NC(N)=C3N=C2)OC1COP(O)(=O)OC1CC(N2C3=C(C(NC(N)=N3)=O)N=C2)OC1COP(O)(=O)OC1CC(N2C(NC(=O)C(C)=C2)=O)OC1COP(O)(=O)OC1CC(N2C(N=C(N)C=C2)=O)OC1COP(O)(=O)OC1CC(N2C(N=C(N)C=C2)=O)OC1COP(O)(=O)OC1CC(N2C(NC(=O)C(C)=C2)=O)OC1COP(O)(=O)OC(C(O1)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(O)=O)CC1N1C=C(C)C(=O)NC1=O VQWNELVFHZRFIB-UHFFFAOYSA-N 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 210000001539 phagocyte Anatomy 0.000 description 3
- 230000037452 priming Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 238000010254 subcutaneous injection Methods 0.000 description 3
- 239000007929 subcutaneous injection Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229940021747 therapeutic vaccine Drugs 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 2
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 2
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 2
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 2
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 2
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 102100020715 Fms-related tyrosine kinase 3 ligand protein Human genes 0.000 description 2
- 101710162577 Fms-related tyrosine kinase 3 ligand protein Proteins 0.000 description 2
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 description 2
- 101001036688 Homo sapiens Melanoma-associated antigen B1 Proteins 0.000 description 2
- 101001036686 Homo sapiens Melanoma-associated antigen B2 Proteins 0.000 description 2
- 101001036406 Homo sapiens Melanoma-associated antigen C1 Proteins 0.000 description 2
- 101001024605 Homo sapiens Next to BRCA1 gene 1 protein Proteins 0.000 description 2
- 101000604116 Homo sapiens RNA-binding protein Nova-2 Proteins 0.000 description 2
- 108010002352 Interleukin-1 Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 102100039477 Melanoma-associated antigen B1 Human genes 0.000 description 2
- 102100039479 Melanoma-associated antigen B2 Human genes 0.000 description 2
- 102100039447 Melanoma-associated antigen C1 Human genes 0.000 description 2
- 101100335081 Mus musculus Flt3 gene Proteins 0.000 description 2
- 108010008211 N-Formylmethionine Leucyl-Phenylalanine Proteins 0.000 description 2
- 102100037001 Next to BRCA1 gene 1 protein Human genes 0.000 description 2
- 208000037581 Persistent Infection Diseases 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 102400001018 Proadrenomedullin N-20 terminal peptide Human genes 0.000 description 2
- 101800000795 Proadrenomedullin N-20 terminal peptide Proteins 0.000 description 2
- 102100038461 RNA-binding protein Nova-2 Human genes 0.000 description 2
- 102100030326 Serpin B4 Human genes 0.000 description 2
- 230000006044 T cell activation Effects 0.000 description 2
- 210000000662 T-lymphocyte subset Anatomy 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 230000005809 anti-tumor immunity Effects 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000005784 autoimmunity Effects 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 238000009172 cell transfer therapy Methods 0.000 description 2
- 230000007969 cellular immunity Effects 0.000 description 2
- 201000010353 central nervous system germ cell tumor Diseases 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 108010057085 cytokine receptors Proteins 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 230000008713 feedback mechanism Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 230000003394 haemopoietic effect Effects 0.000 description 2
- 230000002607 hemopoietic effect Effects 0.000 description 2
- 238000010562 histological examination Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 230000005931 immune cell recruitment Effects 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000008073 immune recognition Effects 0.000 description 2
- 230000003832 immune regulation Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 230000001926 lymphatic effect Effects 0.000 description 2
- 238000013227 male C57BL/6J mice Methods 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 244000000010 microbial pathogen Species 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000007764 o/w emulsion Substances 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 229960005030 other vaccine in atc Drugs 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920001432 poly(L-lactide) Polymers 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 239000003361 porogen Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 238000000751 protein extraction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229930182490 saponin Natural products 0.000 description 2
- 150000007949 saponins Chemical class 0.000 description 2
- 235000017709 saponins Nutrition 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 238000009097 single-agent therapy Methods 0.000 description 2
- 210000004988 splenocyte Anatomy 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 229940044655 toll-like receptor 9 agonist Drugs 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 229940030325 tumor cell vaccine Drugs 0.000 description 2
- 239000012646 vaccine adjuvant Substances 0.000 description 2
- 229940124931 vaccine adjuvant Drugs 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-SYJWYVCOSA-N (2s,3s,4s,5s,6r)-3,4,5,6-tetrahydroxyoxane-2-carboxylic acid Chemical compound O[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H]1O AEMOLEFTQBMNLQ-SYJWYVCOSA-N 0.000 description 1
- FEBUJFMRSBAMES-UHFFFAOYSA-N 2-[(2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-phosphanyloxan-4-yl]oxy}-3,5-dihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-4-yl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl phosphinite Chemical compound OC1C(O)C(O)C(CO)OC1OCC1C(O)C(OC2C(C(OP)C(O)C(CO)O2)O)C(O)C(OC2C(C(CO)OC(P)C2O)O)O1 FEBUJFMRSBAMES-UHFFFAOYSA-N 0.000 description 1
- 101150044980 Akap1 gene Proteins 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- 206010001935 American trypanosomiasis Diseases 0.000 description 1
- 102100034609 Ankyrin repeat domain-containing protein 17 Human genes 0.000 description 1
- 108010083359 Antigen Receptors Proteins 0.000 description 1
- 108020000946 Bacterial DNA Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 102100036842 C-C motif chemokine 19 Human genes 0.000 description 1
- 102100036846 C-C motif chemokine 21 Human genes 0.000 description 1
- 102100036850 C-C motif chemokine 23 Human genes 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- 210000001239 CD8-positive, alpha-beta cytotoxic T lymphocyte Anatomy 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 101100507655 Canis lupus familiaris HSPA1 gene Proteins 0.000 description 1
- 108010039939 Cell Wall Skeleton Proteins 0.000 description 1
- 102100035444 Centrosomal protein of 85 kDa-like Human genes 0.000 description 1
- 208000024699 Chagas disease Diseases 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 108010038447 Chromogranin A Proteins 0.000 description 1
- 102000010792 Chromogranin A Human genes 0.000 description 1
- 102100031186 Chromogranin-A Human genes 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 108091029430 CpG site Proteins 0.000 description 1
- 229920002558 Curdlan Polymers 0.000 description 1
- 239000001879 Curdlan Substances 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- AEMOLEFTQBMNLQ-BZINKQHNSA-N D-Guluronic Acid Chemical compound OC1O[C@H](C(O)=O)[C@H](O)[C@@H](O)[C@H]1O AEMOLEFTQBMNLQ-BZINKQHNSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-VANFPWTGSA-N D-mannopyranuronic acid Chemical group OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H]1O AEMOLEFTQBMNLQ-VANFPWTGSA-N 0.000 description 1
- YVGGHNCTFXOJCH-UHFFFAOYSA-N DDT Chemical compound C1=CC(Cl)=CC=C1C(C(Cl)(Cl)Cl)C1=CC=C(Cl)C=C1 YVGGHNCTFXOJCH-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102100037957 Dixin Human genes 0.000 description 1
- 206010063045 Effusion Diseases 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 208000006442 Gastroschisis Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 241001441571 Hiodontidae Species 0.000 description 1
- 101000924481 Homo sapiens Ankyrin repeat domain-containing protein 17 Proteins 0.000 description 1
- 101000713106 Homo sapiens C-C motif chemokine 19 Proteins 0.000 description 1
- 101000713085 Homo sapiens C-C motif chemokine 21 Proteins 0.000 description 1
- 101000713081 Homo sapiens C-C motif chemokine 23 Proteins 0.000 description 1
- 101000737643 Homo sapiens Centrosomal protein of 85 kDa-like Proteins 0.000 description 1
- 101000993094 Homo sapiens Chromogranin-A Proteins 0.000 description 1
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 1
- 101000951250 Homo sapiens Dixin Proteins 0.000 description 1
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 1
- 101001005718 Homo sapiens Melanoma-associated antigen 2 Proteins 0.000 description 1
- 101001005720 Homo sapiens Melanoma-associated antigen 4 Proteins 0.000 description 1
- 101000623901 Homo sapiens Mucin-16 Proteins 0.000 description 1
- 101001094820 Homo sapiens Paraneoplastic antigen Ma2 Proteins 0.000 description 1
- 101000743264 Homo sapiens RNA-binding protein 6 Proteins 0.000 description 1
- 101000973629 Homo sapiens Ribosome quality control complex subunit NEMF Proteins 0.000 description 1
- 101000628514 Homo sapiens STAGA complex 65 subunit gamma Proteins 0.000 description 1
- 101000652133 Homo sapiens STE20-like serine/threonine-protein kinase Proteins 0.000 description 1
- 101000847107 Homo sapiens Tetraspanin-8 Proteins 0.000 description 1
- 101000835790 Homo sapiens Tudor domain-containing protein 6 Proteins 0.000 description 1
- 241001502974 Human gammaherpesvirus 8 Species 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 108010066302 Keratin-19 Proteins 0.000 description 1
- 102000018317 Keratin-19 Human genes 0.000 description 1
- IAJILQKETJEXLJ-SQOUGZDYSA-N L-guluronic acid Chemical compound O=C[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O IAJILQKETJEXLJ-SQOUGZDYSA-N 0.000 description 1
- 101710191666 Lactadherin Proteins 0.000 description 1
- 102100039648 Lactadherin Human genes 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 102100035304 Lymphotactin Human genes 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 102000043131 MHC class II family Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 1
- 241001480504 Mammalian orthoreovirus 1 Species 0.000 description 1
- 229920000057 Mannan Polymers 0.000 description 1
- 102100025081 Melanoma-associated antigen 2 Human genes 0.000 description 1
- 102100025077 Melanoma-associated antigen 4 Human genes 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 102100023123 Mucin-16 Human genes 0.000 description 1
- 101100222220 Mus musculus Ctla4 gene Proteins 0.000 description 1
- 241000187481 Mycobacterium phlei Species 0.000 description 1
- PRQROPMIIGLWRP-UHFFFAOYSA-N N-formyl-methionyl-leucyl-phenylalanin Chemical compound CSCCC(NC=O)C(=O)NC(CC(C)C)C(=O)NC(C(O)=O)CC1=CC=CC=C1 PRQROPMIIGLWRP-UHFFFAOYSA-N 0.000 description 1
- 101100380548 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) apg-2 gene Proteins 0.000 description 1
- GOWLTLODGKPXMN-MEKRSRHXSA-N OM-174 Chemical compound O1[C@H](OP(O)(O)=O)[C@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](O)[C@H](O)[C@H]1CO[C@H]1[C@H](NC(=O)C[C@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H](O)[C@H](OP(O)(O)=O)[C@@H](CO)O1 GOWLTLODGKPXMN-MEKRSRHXSA-N 0.000 description 1
- 102100035467 Paraneoplastic antigen Ma2 Human genes 0.000 description 1
- 108010030678 Phosphatidylethanolamine N-Methyltransferase Proteins 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102100037686 Protein SSX2 Human genes 0.000 description 1
- 101710149284 Protein SSX2 Proteins 0.000 description 1
- 102100027584 Protein c-Fos Human genes 0.000 description 1
- 101710090875 Protein c-Fos Proteins 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 102100038150 RNA-binding protein 6 Human genes 0.000 description 1
- 102100022213 Ribosome quality control complex subunit NEMF Human genes 0.000 description 1
- 102100026710 STAGA complex 65 subunit gamma Human genes 0.000 description 1
- 102100030571 STE20-like serine/threonine-protein kinase Human genes 0.000 description 1
- 229920002305 Schizophyllan Polymers 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 230000006043 T cell recruitment Effects 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 102100032802 Tetraspanin-8 Human genes 0.000 description 1
- 210000000447 Th1 cell Anatomy 0.000 description 1
- 238000012338 Therapeutic targeting Methods 0.000 description 1
- 102100033579 Trophoblast glycoprotein Human genes 0.000 description 1
- 101710190034 Trophoblast glycoprotein Proteins 0.000 description 1
- 102100026366 Tudor domain-containing protein 6 Human genes 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 1
- 108050002568 Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 1
- LRQOQMWIEDQCHM-XCJASTIHSA-N Urobiose Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@@H]1O[C@@]1(O)[C@H](CO)O[C@H](O[C@@]2(O)[C@@H](O[C@H](O)[C@@H](O)[C@@H]2O)CO)[C@@H](O)[C@@H]1O LRQOQMWIEDQCHM-XCJASTIHSA-N 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 210000003815 abdominal wall Anatomy 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 210000005006 adaptive immune system Anatomy 0.000 description 1
- 230000000240 adjuvant effect Effects 0.000 description 1
- 208000037844 advanced solid tumor Diseases 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- AEMOLEFTQBMNLQ-WAXACMCWSA-N alpha-D-glucuronic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-WAXACMCWSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 229940001007 aluminium phosphate Drugs 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000003127 anti-melanomic effect Effects 0.000 description 1
- 108010036226 antigen CYFRA21.1 Proteins 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000005667 attractant Substances 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 238000012925 biological evaluation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000009924 canning Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 239000002771 cell marker Substances 0.000 description 1
- 230000006041 cell recruitment Effects 0.000 description 1
- 230000009134 cell regulation Effects 0.000 description 1
- 229940030156 cell vaccine Drugs 0.000 description 1
- 210000004520 cell wall skeleton Anatomy 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000031902 chemoattractant activity Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000007012 clinical effect Effects 0.000 description 1
- 229960005188 collagen Drugs 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000011220 combination immunotherapy Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000024203 complement activation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 235000019316 curdlan Nutrition 0.000 description 1
- 229940078035 curdlan Drugs 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000035614 depigmentation Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 125000005614 guluronate group Chemical group 0.000 description 1
- 208000024963 hair loss Diseases 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000007236 host immunity Effects 0.000 description 1
- 102000046157 human CSF2 Human genes 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000006450 immune cell response Effects 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 230000007188 immune regulating pathway Effects 0.000 description 1
- 230000006058 immune tolerance Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- AIHDCSAXVMAMJH-GFBKWZILSA-N levan Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@@H]1[C@@H](O)[C@H](O)[C@](CO)(CO[C@@H]2[C@H]([C@H](O)[C@@](O)(CO)O2)O)O1 AIHDCSAXVMAMJH-GFBKWZILSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical class O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000011469 lymphodepleting chemotherapy Methods 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 108010019677 lymphotactin Proteins 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 238000007734 materials engineering Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229940031348 multivalent vaccine Drugs 0.000 description 1
- 230000001400 myeloablative effect Effects 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000000174 oncolytic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000003024 peritoneal macrophage Anatomy 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920002851 polycationic polymer Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 102000033506 protein kinase C binding proteins Human genes 0.000 description 1
- 108091009576 protein kinase C binding proteins Proteins 0.000 description 1
- 230000012743 protein tagging Effects 0.000 description 1
- 229940023143 protein vaccine Drugs 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 229940044551 receptor antagonist Drugs 0.000 description 1
- 239000002464 receptor antagonist Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 125000003011 styrenyl group Chemical class [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000009121 systemic therapy Methods 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000009258 tissue cross reactivity Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 210000005167 vascular cell Anatomy 0.000 description 1
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 244000052613 viral pathogen Species 0.000 description 1
- 239000000277 virosome Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/193—Colony stimulating factors [CSF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4615—Dendritic cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/462—Cellular immunotherapy characterized by the effect or the function of the cells
- A61K39/4622—Antigen presenting cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/46449—Melanoma antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/54—Medicinal preparations containing antigens or antibodies characterised by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55522—Cytokines; Lymphokines; Interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55561—CpG containing adjuvants; Oligonucleotide containing adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
- A61K2239/57—Skin; melanoma
Definitions
- This invention relates generally to the field of immunology.
- Vaccines are largely ineffective for patients with established disease, as advanced pathology requires potent and sustained activation of CD8(+), cytotoxic T lymphocyte (CTL) mediated responses.
- Established diseases such as cancer, normally suppress responses by the immune system leading to immune tolerance to foreign antigen and the disease. As such, there is a pressing need for new strategies to activate the immune system in patients with established disease.
- a method for eliciting and sustaining an anti-tumor immune response is carried out by administering a device containing an amount of antigen sufficient to stimulate an innate immune response and an adaptive immune response.
- a method for eliciting and sustaining an anti-tumor immune response is carried out by administering to a first anatomical site a first antigen-loaded acellular biomaterial device (polyactide-co-glycolide (PLG) vaccine) at a first time point to elicit an innate immune response and administering to a second anatomical site at a second time point a second antigen loaded acellular biomaterial device to sustain an adaptive immune response.
- PLG polyactide-co-glycolide
- the antigen comprises a tumor cell lysate, granulocyte-macrophage colony- stimulating factor (GM-CSF), and/or cytosine-guanosine (CpG)-oligodeoxynucleotides (ODN).
- GM-CSF granulocyte-macrophage colony- stimulating factor
- CpG cytosine-guanosine-oligodeoxynucleotides
- Suitable tumor cells include those from, e.g., central nervous system (CNS) cancers, lung cancer, breast cancer, Leukemia, Multiple Myeloma, Renal Cancer, Malignant Glioma, MeduUoblastoma, and Melanoma.
- purified tumor antigen e.g. , those listed below is used instead of or together with tumor lysate as the antigen.
- the methods described herein are suitable for any mammal in need of treatment to elicit or boost an immune response.
- the mammal can be, e.g., any mammal, e.g., a human, a primate, a mouse, a rat, a dog, a cat, a cow, a horse, or a pig.
- the mammal is a human.
- Each implant stimulates both innate and adaptive immune responses.
- the device After implantation, the device first recruits antigen presenting cells (dendritic cells (DCs) and macrophages), and then at a later time (at the same implant) cells of the adaptive immune system (T cells) are stimulated. Stimulation of innate immunity followed by adaptive immunity occurs after administration of a single device, provided that antigen is present in the device longer than the onset of innate immunity, i.e., antigen is not depleted from the device during the first 3 days after implantation.
- DCs dendritic cells
- T cells adaptive immune system
- an improved device contains enough antigen to be make the antigen available for continued presentation to endogenous cells for at least 3 days, 7 days, 12 days, 16 days, 30 days, 45 days, 90 days, 120 days, or more to prolong the adaptive immune response.
- a second (and subsequent administrations/implantations of the device) are made to prolong the stimulation of the immune response to generate adaptive immune cells. Multiple rounds of vaccinations increase and extend an anti-tumor response.
- Vaccination requires stimulation for at least 3 days, e.g., at least 4 days, 5 days, 6 days, or 7 days) to induce the onset of innate immunity (i.e., DC responses) and effector cytotoxic T lymphocyte (CTL) responses are maintained until antigen is depleted from the vaccine site.
- innate immunity i.e., DC responses
- CTL cytotoxic T lymphocyte
- the innate immune response which is initially induced by the first device during the first time period (days following the first time point) is characterized by an infiltration of dendritic cells and macrophages, i.e., antigen-presenting cells.
- the innate immune response is characterized by an increase in plasmacytoid dendritic cells (pDCs).
- the vaccine induces persistent interleukin-12 (IL-12) and interferon- ⁇ (IFN- ⁇ ) production consistent with DC and T cell infiltration into the vaccine site.
- the adaptive immune response is characterized by cytotoxic T cells (CTLs).
- CTLs cytotoxic T cells
- the second time point occurs after onset of the innate immune response and before depletion of antigen in the biomaterial device.
- a plurality of devices is administered to elicit and sustain an anti-tumor immune response for an extended period of time.
- the first and second time points are sequential or simultaneous (or closely spaced, e.g., within minutes or hours of one another).
- the second time point is between 1-120 days, e.g., 1-5 days, 1-10 days, 1-15 days, 1-20 days, 1-30 days, 1-60 days, or 3-38 days, after the first time point.
- An exemplary vaccination protocol is characterized by a first vaccination followed by a second vaccination that is 10 days after said first time point (first vaccination).
- implantation of a plurality of devices occurs at or about the same time.
- the secondary antigen site is provided using a single device containing an ample amount of antigen to span the time during which both innate and adaptive immunity is developed or by a plurality of devices that are temporally spaced and/or geographically spaced such that multiple devices provide a continuing source of antigen to sustain the adaptive immune response to reduce and eliminate tumors.
- the vaccine devices and methods described herein are useful to reduce tumor burden, e.g., tumor mass of solid tumors, and eradicate such tumors.
- Types of cancers to be treated include central nervous system (CNS) cancers, CNS germ cell tumors, lung cancer, breast cancer, prostate cancer, liver cancer, Leukemia, Multiple Myeloma, renal cancer, Malignant Glioma, Medulloblastoma, and Melanoma.
- CNS central nervous system
- the methods and devices are also useful to treat infections, e.g., at discrete anatomical sites caused by microbial pathogens such as bacteria, viruses, fungi.
- a primary antigen (device) site is at or near a target tumor site, and a secondary antigen site or sites (device(s)) are implanted at, near, or at a distant site relative to the location of the tumor.
- device(s) are implanted at a distance of 1, 3, 5, 10, 15, 20, 25, 40 mm from a tumor site or site of excision, e.g., 16-21 mm away from a tumor mass.
- the second or subsequent implant(s) are optionally placed anywhere in the body. For microbial infections, a similar device location strategy is employed.
- An adjuvant is optionally included in the secondary antigen site to boost adaptive responses.
- exemplary adjuvants are listed as follows: mineral salts, e.g., aluminium hydroxide and aluminium or calcium phosphate gels; oil emulsions and surfactant based formulations, e.g., MF59 (microfiuidised detergent stabilised oil-in-water emulsion), QS21 (purified saponin), AS02 [SBAS2] (oil-in-water emulsion + MPL + QS-21), Montanide ISA- 51 and IS A-720 (stabilised water-in-oil emulsion); particulate adjuvants, e.g.
- virosomes unilamellar liposomal vehicles incorporating influenza haemagglutinin
- AS04 [SBAS4] Al salt with MPL
- ISCOMS structured complex of saponins and lipids
- PLG polylactide co- glycolide
- microbial derivatives naturally and synthetic, e.g., monophosphoryl lipid A (MPL), Detox (MPL + M.
- Phlei cell wall skeleton Phlei cell wall skeleton
- AGP RC-529
- DC Chol lipoidal immunostimulators able to self organize into liposomes
- OM-174 lipid A derivative
- modified LT and CT genetically modified bacterial toxins to provide non-toxic adjuvant effects
- immunomodulators e.g., hGM-CSF or hIL-12 (cytokines that can be administered either as protein or plasmid encoded), Immudaptin (C3d tandem array); inert vehicles, such as gold particles.
- hGM-CSF or hIL-12 cytokines that can be administered either as protein or plasmid encoded
- Immudaptin C3d tandem array
- inert vehicles such as gold particles.
- the invention includes a method for progressively reducing tumor burden by successively administering an antigen-loaded acellular biomaterial device.
- functionalized biomaterials incorporating various combinations of an inflammatory cytokine, immune danger signal, and tumor lysates are administered to control the activation and localization of host dendritic populations in situ.
- the methods include the steps of identifying a subject with an established disease (at a defined location) and implementing a successive administration schedule until the disease, e.g. , tumor or infection, is substantially reduced or eradicated.
- the schedule comprises a first implantation and a second implantation of an antigen- loaded acellular biomaterial device ⁇ e.g., PLG vaccine device) and a second implantation occurring at least 24 hours prior to antigen depletion of first device.
- This schedule, first and second implantations, are repeated successively for as many cycles as required to progressively reduce (or eliminate) tumor burden.
- the invention therefore features methods for treating established pathologies using vaccines that contain secondary immunostimulatory sites of sustained antigen presentation.
- Effective vaccination against established tumors was dramatically enhanced with sustained presentation of tumor associated antigens at a secondary site during the clearance of the disease.
- Secondary sites include immunostimulatory signals to amplify immune responses.
- Vaccination is enhanced by sustained antigen stimulation to immune cells that are maintained longer than the onset of innate immunity (i.e., infiltration of macrophages, DCs - typically 24 hours).
- Multiple vaccinations (at least two rounds of administration) are better than one vaccination to sustain antigen presentation. Appropriate timing between multiple vaccinations.
- vaccinations is between 3-28 days to effectively sustain antigen presentation, i.e., vaccines are administered between days 3-28 after administration of the previous vaccine.
- the device recruit cells in vivo, modifies these cells, and then promotes their migration to another site in the body.
- This approach is exemplified herein in the context of immune cells and cancer vaccine development, but is also useful to other vaccines such as those against microbial pathogens as well as cell therapies in general.
- Figure 1 is a series of panels illustrating that granulocyte-macrophage colony- stimulating factor (GM-CSF) delivery from polyactide-co-glycolide (PLG) matrices promotes CD1 lb+ DC recruitment and activation.
- GM-CSF granulocyte-macrophage colony- stimulating factor
- PLG polyactide-co-glycolide
- A H&E staining of sectioned PLG scaffolds explanted from subcutaneous pockets in the backs of C57BL/6J mice after 14 days: Blank scaffolds (BLANK), and GM-CSF (3000 ng) loaded scaffolds (GM-CSF).
- B The number of CD1 lc(+) DCs isolated from PLG scaffolds at day 14 after implantation in response to doses of 0, 1000, 3000 and 7000 ng of GM-CSF.
- C Fluorescence-activated cell sorting (FACS) plots of cells isolated from explanted scaffolds and stained for CD1 lc and CD1 lb. Cells were isolated from PLG matrices incorporating 3,000 ng of GM-CSF at day 10 post- implantation. Numbers in FACS plots indicate the percentage of the cell population positive for CD1 lc and CD1 lb, or for both markers.
- D The number of CD1 lc(+)CD86(+),
- Figure 2 is a series of panels demonstrating that cytosine-guanosine (CpG)- oligodeoxynucleotides (ODN) and GM-CSF delivery from PLG matrices promotes plasmacytoid DC generation and the production of anti-tumor cytokines.
- CpG cytosine-guanosine
- ODN oligodeoxynucleotides
- GM-CSF delivery from PLG matrices promotes plasmacytoid DC generation and the production of anti-tumor cytokines.
- A FACS plots of cells isolated from explanted scaffolds and stained for the plasmacytoid DC markers, CDl lc and PDCA-1. Cells were isolated from PLG matrices incorporating 0, 1, 10, and 100 ⁇ g of CpG-ODN at day 10 post-implantation. Numbers in FACS plots indicate the percentage of the cell population positive for CDl lc only or for both markers.
- GM-CSF in combination with 10 (10+GM), or 100 ⁇ g (100+GM) of CpG-ODN.
- Figure 3 is a series of panels showing that tumor lysate, CpG-ODN, and GM-CSF co- delivery from PLG matrices stimulates CD8+ DC generation and IL-12 production.
- A FACS density plots of CDl lc and CD8 staining of cells infiltrating Blank PLG matrices (blank) or matrices loaded with 3000 ng GM-CSF and 100 ⁇ g CpG-ODN without
- CpG+GM or with tumor lysates (CpG+GM+Ant) at day 10. Numbers in FACS plots indicate the percentage of the cell population positive for CDl lc and CD8 or for both markers.
- B-D The number of (B) CD 11 c(+)CD8(+) cDCs, (C) plasmacytoid DCs, and (D) CDl lc(+)CDl lb(+)cDCs at day 10 after implantation in blank matrices (Blank) and in response to 3000ng GMCSF (GM) or 100 ⁇ g CpG-ODN (CpG) alone or in combination (CpG+GM) or co-presented with tumor lysates (GM+Ant, CpG+Ant and CpG+GM+Ant).
- E-G The in vivo concentration of (E) IL-12, (F) IFN-a, and (G) IFN- ⁇ at day 10 after implantation in blank matrices (Blank) and in response to doses of 3000 ng GM-CSF (GM) or 100 ⁇ g CpG-ODN (CpG) alone or in combination (CpG+GM) or co-presented with tumor lysates (GM+Ant, CpG+Ant and CpG+GM+Ant).
- Figure 4 is a series of panels illustrating that tumor lysate, CpG-ODN, and GM-CSF co-delivery in PLG matrices stimulates potent local and systemic CD8+ cytoxic T cells.
- A FACS plots of cells isolated from explanted matrices and stained for the cytotoxic T cell markers, CD3 and CD8a. Cells were isolated from PLG matrices with 3000 ng GM-CSF, 100 ⁇ g CpG-ODN and tumor lysates at days 1, 5, 12 and 21 after implantation.
- C The number of CD8 T cells at day 12 after implantation in blank scaffolds (Blank) or in response to lysate alone (Lys) or in combination with CpG-ODN (CpG+Lys) or GM-CSF (GM+Lys) or both factors (GM+Lys+CpG).
- D FACS plots of splenocytes of naive mice and mice vaccinated with PLG vaccines containing 3000 ng GM- CSF, 100 ⁇ gCpG-ODN, and tumor lysates at day 16 post-implantation. Cells were stained with anti-CD8-PE Ab, and Kb/TRP2 pentamers.
- the gates represent the TRP2-specific, CD8(+) T cells and numbers provide the percentage of gated cells.
- Figure 5 is a series of graphs demonstrating that tumor protection stimulated by engineered PLG matrices is correlated with DC subsets and IL-12 production. Survival times of mice vaccinated with PLG vaccines 14 days prior to B16-F10 melanoma tumor challenge (10 5 cells).
- (A) A comparison of survival times in mice treated with blank PLG matrices or with PLG matrices loaded with tumor lysates and 1, 10, 50 or 100 ⁇ g of CpG-ODN.
- B A comparison of survival times in mice vaccinated with PLG matrices loaded with tumor lysates, 3000 ng GM-CSF and either 1, 10, 50 or 100 ⁇ g of CpG-ODN.
- CD1 lc(+) DC population consisting of CD1 lb(+) cDCs (white bar), PDCA-1(+) pDCs (black bar), and CD8(+) cDCs (striped bar) generated at the PLG vaccine site at day 10.
- Vaccines were loaded with either 3000 ng GM-CSF, or 100 ⁇ g of CpG-ODN alone or in combination. Survival percentages recorded at day 100 after tumor challenge.
- Figure 6 is a series of charts showing that engineered PLG matrices attenuate FoxP3+ Tregs and immunosuppressive cytokines.
- A The total number of CD3(+)CD4(+) T cells isolated from PLG matrices loaded with GMCSF, CpG-ODN and tumor lysates as a function of time after implantation.
- B The number of CD4 T cells at day 12 after implantation in blank scaffolds (Blank) or in response to lysate alone (Lys) or in combination with CpG- ODN (CpG+Lys) or GM-CSF (GM+Lys) or both factors (GM+Lys+CpG).
- Cells were isolated from PLG matrices incorporating GM-CSF and lysates without (GM+Lys) or with GM-CSF, lysates and CpGODN (GM+Lys+CpG) at day 12 after implantation. Numbers in FACS plots indicate the percentage of the cell population positive for both markers.
- F The number of FoxP3(+) Tregs at day 12 post-implantation in blank scaffolds (Blank) or in response to lysate alone (Lys) or in combination with CpG-ODN (CpG+Lys) or GM-CSF (GM+Lys) or both factors (GM+Lys +CpG).
- Figure 7 is a series of graphs demonstrating that Engineered PLG matrices stimulate the regression of established melanomas
- mice were also treated once (Vax, lx; at day 9) or twice (Vax, 2x; at days 9 and 19) with PLG matrices incorporating GM-CSF, CpG-ODN and tumor lysates (Vax). Mice were also vaccinated with 5 10 5 irradiated, GM-CSF transduced B 16-F 10 cells.
- C The individual tumor growth curves for each mouse surviving tumor challenge (5 ⁇ 10 5 cells) after a two-time treatment with PLG vaccines at days 9 and 19.
- Figure 8 is a series of FACS plots of cells isolated from explanted scaffolds and stained for the DC marker, CDl lc, and for activation markers MHCII and CCR7.
- Cells were isolated from blank PLG matrices or matrices incorporating either 3 or 7 ⁇ g of GM-CSF at day 28 post-implantation. Numbers in FACS plots indicate the percentage of the cell population positive for CDl lc only or positive for both CDl lc and either MHCII or CCR7.
- Figure 9 shows the effect of PLG vaccine duration on efficacy in B16 melanoma tumor models.
- A Photomicrograph of surface of macroporous, PLG-based vaccine loaded with GM-CSF, tumor lysates and CpG-ODN.
- B SEM micrograph of cross section of macroporous, PLG vaccine. Scale bar - 200 ⁇ .
- C Schematic of PLG vaccine regimen for both prophylactic and therapeutic B16 models in mice. [Prophylactic] Vaccine duration is varied from 0, 1, 3, 7, 12, and 16 days.
- D A comparison of the survival time and
- E the survival percentage at day 100 in mice treated with blank PLG scaffolds, and PLG vaccines for a duration of 1, 3, 7, 12, 16 days or indefinitely (>16).
- mice were challenged with 10 4 B16-F10 melanoma tumor cells at day 14 after the start of vaccination.
- F Effect of vaccine duration on therapeutic efficacy [Therapeutic]. Tumor growth curves for mice vaccinated at day 9 after tumor challenge (10 5 B16 melanoma cells), with PLG vaccines for a duration of 1, 3, 7, 12, 16 days or indefinitely (>16). The total GM-CSF dose was 3000 ng, and CpG-ODN dose was 100 ⁇ g. Values in E represent mean and standard error.
- Figure 10 demonstrates the kinetics of DC and T cell infiltration into PLG vaccine site.
- A Hematoxylin & Eosin staining of sectioned PLG vaccines explanted from
- Figure 11 illustrates the kinetics of IL-12 and IFN- ⁇ production at vaccine site.
- A The concentrations of IL-12 at the implant site of PLG vaccines as a function of time post- implantation.
- B The in vivo concentration of IL-12 at the implant site of blank matrices (Blanks), PLG vaccines (GM+CpG+LYS) or matrices loaded with either Lysate alone (Lys) or Lysate with 3000 ng of GM-CSF (GM+Lys) or Lysate withlOO ⁇ g PEI-CpG-ODN (CpG+Lys) or the combination of GM-CSF and PEI-CpG-ODN (GM+CpG) at Day 12 after implantation into the backs of C57BL/6J mice.
- (C) The concentration of IFN- ⁇ at the implant site of PLG vaccines as a function of time post-implantation.
- D The in vivo concentration of IFN- ⁇ at the implant site of blank matrices (Blanks), PLG vaccines (GM+CpG+LYS) or matrices loaded with either Lysate alone (Lys) or Lysate with 3000 ng of GM-CSF
- GM+Lys Lysate withlOO ⁇ g PEI-CpG-ODN (CpG+Lys) or the combination of GM-CSF and PEI-CpG-ODN (GM+CpG) at Day 12 after implantation into the backs of C57BL/6J mice.
- Figure 12 demonstrates the effects of PLG vaccination on cells in draining lymph nodes (A & B) The number of phagocytic cells: CDl lb(+)CDl lc(-) macrophages, CDl lc(+) DCs, and PDCA-1(+)CD1 lc(+) plasmacytoid DCs, in the draining inguinal lymph nodes of mice at (A) day 3 and at (B) day 10 after implantation of blank matrices (Blank) or PLG matrices containing GM-CSF and Lysate (GMCSF+LYS) only or PLG vaccines
- T cells CD3(+) T cells, CD3(+)CD8(+) T cells, and CD3(+)CD4(+) T cells, in the draining inguinal lymph nodes of mice at day 10 after implantation of blank matrices (Blank) or PLG matrices containing GM-CSF and Lysate (GMCSF+LYS) only or with CpG-ODN (GMCSF+Lys+CpG).
- Figure 13 shows the sustained tumor antigen presentation by PLG vaccines.
- the invention described herein is based on the discovery that recruitment and activation of multiple dendritic cell (DC) and T cell subsets provide therapeutic vaccination against established tumors.
- DC dendritic cell
- the methods described herein are utilized to treat established pathologies using vaccines containing secondary and immunostimulatory sites of antigen presentation during immune clearance of disease.
- secondary and stimulatory sites of antigen presentation are required to maintain effector T cell responses until the primary site of established disease has cleared.
- one implant single administration of vaccine
- the vaccine is sufficient to both stimulate innate immunity and provide the secondary site of antigen stimulation required to further stimulate an adaptive response.
- the vaccine is fabricated to persist for longer than the onset of innate immunity, it also provides a secondary site of antigen presentation.
- the methods described herein are suitable for any mammal in need of treatment.
- the mammal can be, e.g., any mammal, e.g., a human, a primate, a mouse, a rat, a dog, a cat, a cow, a horse, or a pig.
- the mammal is a human.
- DCs Dendritic cells
- DCs Dendritic cells
- PAMPs unique to invading pathogens
- PAMPs including lipopolysacharides and cytosine-guanosine (CpG) sequences in bacterial deoxyribonucleic acid (DNA), trigger a particular toll-like receptor (TLR), that allows DCs to classify the pathogen and induce their expression of T cell-activating molecules
- TLR toll-like receptor
- Activated DCs then migrate to draining lymph nodes (LNs) where they prime the appropriate T cell response, via the presentation of antigen, costimulatory molecules and the appropriate cytokines.
- T regulatory (Treg) cells allows solid tumors to develop by dysregulating DC activity and the cytotoxic T lymphocyte (CTL) responses required to kill tumor cells
- CTL cytotoxic T lymphocyte
- Cancer vaccines are frequently developed with easily accessible, patient- derived blood monocytes that are transformed into DCs ex vivo with cytokine mixtures and pulsed with tumor antigens to promote antigen presentation (R. M.
- TGF-b transforming growth factor-b
- IL-10 interleukin-10
- Hematopoietic precursor cells of both the myeloid and lymphoid lineage have the capacity to differentiate into two main categories of DCs: conventional DCs (cDCs) and plasmacytoid DCs (pDCs) (S. H. Naik, P. Sathe, H. Y. Park, D. Metcalf, A. I. Proietto, A. Dakic, S. Carotta, M. O'Keeffe, M. Bahlo, A. Papenfuss, J. Y. Kwak, L. Wu, K. Shortman, Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8, 1217-1226 (2007); A. O'Garra, G.
- cDCs include CD1 lc+CDl lb+ and CD1 lc+CD8+ cells and exhibit classic DC morphology, protruding dendrites that make these cells especially adept at antigen processing and antigen presentation to T cells (S. H. Naik, P. Sathe, H. Y. Park, D. Metcalf, A. I. Proietto, A. Dakic, S. Carotta, M. O'Keeffe, M. Bahlo, A. Papenfuss, J. Y. Kwak, L. Wu, K. Shortman,
- Plasmacytoid DCs exhibit a spherical morphology and can produce large amounts of type 1 interferons (IFNs) in response to "danger signals," such as unmethylated CpG dinucleotide sequences found in bacterial or viral DNA (A. M. Krieg, Development of TLR9 agonists for cancer therapy. J. Clin. Invest.
- IFNs type 1 interferons
- Plasmacytoid DC-derived type 1 IFNs link innate and adaptive immunity to viral infection by directly inducing naive T cell differentiation to TH1 cells (J. J. O'Shea, R.
- biomaterials are utilized to extend the duration of immunostimulation, and act as adjuvants and to enable controlled presentation of antigens to the immune system (Hubbell JA, Thomas SN, Swartz MA. Materials engineering for immunomodulation. Nature. 462, 449-60. (2009); Uchida M, Natsume H, Kishino T, Seki T, Ogihara M, Juni K, Kimura M, Morimoto Y. Immunization by particle bombardment of antigen-loaded poly-(DL- lactide-co-glycolide) microspheres in mice. Vaccine. 12, 2120-30. (2006)).
- Material-based particulate systems control antigen localizaton in tissue or to target host DCs specifically via antibody or ligand conjugation (Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnol. 25, 1159-1164 (2007); Kwon YJ, et al. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles, Proc. Natl. Acad. Sci. U. S. A. 102 18264-18268. (2005)).
- biomaterial-based vaccines prior to the invention described herein could enhance antigen loading to DCs, leading to antigen specific T cell activation, they lacked concurrent regulation of effector T cell activity.
- therapeutic vaccination against an established disease including solid tumors, requires methods that stimulate not only innate immunity and DCs, but also persistent cytotoxic T lymphocyte (CTL) responses, which kill tumor cells, until the disease has cleared. Therefore, the natural kinetics of innate and adaptive immune responses and the coordination of these responses by vaccines impact vaccine design and application.
- CTL cytotoxic T lymphocyte
- Described herein is the in situ generation of a heterogeneous DC network capable of CTL induction to activate robust CD8+ T cell effector responses to established tumors, by providing a secondary immunostimulatory site of tumor antigen presentation.
- the results presented herein describe the kinetics of innate DC responses and adaptive T cell responses and illustrate their fundamental relationship to potent tumor rejection when implanted subcutaneously in a mouse B16 model of late-stage melanoma.
- Also described in detail below is the relationship between vaccine duration and efficacy in melanoma models and its correlation to local kinetics of DC and T-cell responses to infection-mimicking polymers.
- Implantable, synthetic polylactide-co-glycolide (PLG) matrices that spatially and temporally control the in vivo presentation of cytokines, tumor antigens and TLR-activating, danger signals have been described (Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ. Infection-mimicking materials to program dendritic cells in situ. Nat Mater 2, 151-158 (2009); Ali OA, Emerich D, Dranoff G, and Mooney DJ. In situ Regulation of DC Subsets and T Cells Mediates Tumor Regression in Mice Sci Transl Med. 1, 8-19. (2009)).
- GM-CSF granulocyte-macrophage colony-stimulating factor
- CpG-ODN CpG-rich oligonucleotides
- antigen tumor lysates
- the vaccination systems described herein cause immune-mediated eradication of distant and established B16 melanoma tumors in mice. As described below, the duration of vaccination was varied to determine the impact on vaccine efficacy. Also described herein is the kinetics of innate (DCs) and adaptive cellular responses (cytotoxic T cells) to these vaccines, and the inflection point when innate responses transition to effective anti-tumor immune responses after vaccination. Because the cytokines interleukin (IL)-12 and interferon (IFN)-y are important mediators of cytotoxic T cell responses to viruses and tumors (O'Shea JJ, and Visconti R. Type 1 IFNs and regulation of TH1 responses: enigmas both resolved and emerge.
- IL interleukin
- IFN interferon
- the vaccine's induction of systemic cellular responses were monitored at the inguinal LN draining the site of vaccination, as these are points where naive T cells interact with antigen presenting cells (APCs; DCs and macrophages) and are important locations where CD8+ CTL cells are primed.
- APCs antigen presenting cells
- vaccines Prior to the invention described herein, vaccines were unable to monitor and trigger the T effector profile described here, but instead induced at least partially dysfunctional T cells that are more likely to undergo exhaustion within the immunosuppressive
- PLG Antigen-laden, macroporous poly (lactide-co-glycolide) (PLG) scaffolds induce potent dendritic cell (DC) and cytotoxic T-lymphocyte (CTL) responses that maintain a "danger" microenvironment via the controlled signaling of inflammatory cytokines and tolllike receptor agonists (PLG vaccines).
- DC dendritic cell
- CTL cytotoxic T-lymphocyte
- Scaffolds for cell transplantation are generally described in US 2008-0044900 Al and PCT Publication WO 2009/102465, both of which are incorporated herein by reference in their entirety.
- Components of the scaffolds are organized in a variety of geometric shapes (e.g., beads, pellets), niches, planar layers (e.g., thin sheets).
- multicomponent scaffolds are constructed in concentric layers each of which is characterized by different physical qualities (% polymer, % crosslinking of polymer, chemical composition of scaffold, pore size, porosity, and pore architecture, stiffness, toughness, ductility, viscoelasticity, and or composition of bioactive substances such as growth factors, homing/migration factors, differentiation factors.
- Each niche has a specific effect on a cell population, e.g., promoting or inhibiting a specific cellular function, proliferation, differentiation, elaboration of secreted factors or enzymes, or migration.
- Cells incubated in the scaffold are educated and induced to migrate out of the scaffold to directly affect a target tissue, e.g., and injured tissue site.
- stromal vascular cells and smooth muscle cells are useful in sheetlike structures are used for repair of vessel-like structures such as blood vessels or layers of the body cavity.
- vessel-like structures such as blood vessels or layers of the body cavity.
- such structures are used to repair abdominal wall injuries or defects such as gastroschisis.
- sheetlike scaffolds seeded with dermal stem cells and/or keratinocytes are used in bandages or wound dressings for regeneration of dermal tissue.
- the device is placed or transplanted on or next to a target tissue, in a protected location in the body, next to blood vessels, or outside the body as in the case of an external wound dressing.
- Devices are introduced into or onto a bodily tissue using a variety of known methods and tools, e.g., spoon, tweezers or graspers, hypodermic needle, endoscopic manipulator, endo- or trans-vascular- catheter, stereotaxic needle, snake device, organ-surface-crawling robot (United States Patent Application
- a scaffold or scaffold device is the physical structure upon which or into which cells associate or attach
- a scaffold composition is the material from which the structure is made.
- scaffold compositions include biodegradable or permanent materials such as those listed below.
- the mechanical characteristics of the scaffold vary according to the application or tissue type for which regeneration is sought. It is biodegradable ⁇ e.g., collagen, alginates, polysaccharides, polyethylene glycol (PEG), poly(glycolide) (PGA), poly(L-lactide) (PLA), or poly(lactide-co-glycolide) (PLGA) or permanent ⁇ e.g., silk).
- the composition is degraded by physical or chemical action, e.g., level of hydration, heat or ion exchange or by cellular action, e.g., elaboration of enzyme, peptides, or other compounds by nearby or resident cells.
- the consistency varies from a soft/pliable ⁇ e.g., a gel) to glassy, rubbery, brittle, tough, elastic, stiff.
- the structures contain pores, which are nanoporous, microporous, or macroporous, and the pattern of the pores is optionally homogeneous, heterogenous, aligned, repeating, or random.
- Alginates are versatile polysaccharide based polymers that may be formulated for specific applications by controlling the molecular weight, rate of degradation and method of scaffold formation. Coupling reactions can be used to covalently attach bioactive epitopes, such as the cell adhesion sequence RGD to the polymer backbone.
- Alginate polymers are formed into a variety of scaffold types. Injectable hydrogels can be formed from low MW alginate solutions upon addition of a cross-linking agents, such as calcium ions, while macroporous scaffolds are formed by lyophilization of high MW alginate discs. Differences in scaffold formulation control the kinetics of scaffold degradation.
- Release rates of morphogens or other bioactive substances from alginate scaffolds is controlled by scaffold formulation to present morphogens in a spatially and temporally controlled manner. This controlled release not only eliminates systemic side effects and the need for multiple injections, but can be used to create a microenvironment that activates host cells at the implant site and transplanted cells seeded onto a scaffold.
- the scaffold comprises a biocompatible polymer matrix that is optionally
- a hydrogel is one example of a suitable polymer matrix material.
- materials which can form hydrogels include polylactic acid, polyglycolic acid, PLGA polymers, alginates and alginate derivatives, gelatin, collagen, agarose, natural and synthetic polysaccharides, polyamino acids such as polypeptides particularly poly(lysine), polyesters such as polyhydroxybutyrate and poly-epsilon.- caprolactone, polyanhydrides; polyphosphazines, poly( vinyl alcohols), poly(alkylene oxides) particularly poly(ethylene oxides), poly(allylamines)(PAM), poly(acrylates), modified styrene polymers such as poly(4-aminomethylstyrene), pluronic polyols, polyoxamers, poly(uronic acids), poly(vinylpyrrolidone) and copolymers of the above, including graft copolymers.
- the scaffolds are fabricated from a variety of synthetic polymers and naturally- occurring polymers such as, but not limited to, collagen, fibrin, hyaluronic acid, agarose, and laminin-rich gels.
- One preferred material for the hydrogel is alginate or modified alginate material.
- Alginate molecules are comprised of (l-4)-linked ⁇ -D-mannuronic acid (M units) and a L-guluronic acid (G units) monomers, which can vary in proportion and sequential distribution along the polymer chain.
- Alginate polysaccharides are polyelectrolyte systems which have a strong affinity for divalent cations (e.g. Ca +2 , Mg +2 , Ba +2 ) and form stable hydrogels when exposed to these molecules.
- calcium cross-linked alginate hydrogels are useful for dental applications, wound dressings chondrocyte transplantation and as a matrix for other cell types.
- An exemplary device utilizes an alginate or other polysaccharide of a relatively low molecular weight, preferably of size which, after dissolution, is at the renal threshold for clearance by humans, e.g., the alginate or polysaccharide is reduced to a molecular weight of 1000 to 80,000 daltons. Prefereably, the molecular mass is 1000 to 60,000 daltons, particularly preferably 1000 to 50,000 daltons. It is also useful to use an alginate material of high guluronate content since the guluronate units, as opposed to the mannuronate units, provide sites for ionic crosslinking through divalent cations to gel the polymer.
- U.S. Patent Number 6,642,363, incorporated herein by reference discloses methods for making and using polymers containing polysachharides such as alginates or modified alginates that are particularly useful for cell transplantation and tissue engineering applications.
- Useful polysaccharides other than alginates include agarose and microbial polysaccharides such as those listed in the table below.
- Xanthan gum (A) 1,4- ⁇ .-D-Glucan with D-mannose;
- Curdlan (N) 1.3- ⁇ .-D-Glucan (with branching)
- the scaffolds of the invention are porous or non-porous.
- the scaffolds are nanoporous having a diameter of less than about 10 nm; microporous wherein the diameter of the pores are preferably in the range of about 100 nm-20 ⁇ ; or macroporous wherein the diameter of the pores are greater than about 20 ⁇ , more preferably greater than about 100 ⁇ and even more preferably greater than about 400 ⁇ .
- the scaffold is macroporous with aligned pores of about 400-500 ⁇ in diameter.
- the preparation of polymer matrices having the desired pore sizes and pore alignments are described in the Examples. Other methods of preparing porous hydrogel products are known in the art. (U.S. Pat. No. 6,511 ,650 incorporated herein by reference).
- the device includes one or more bioactive compositions.
- Bioactive compositions are purified naturally-occurring, synthetically produced, or recombinant compounds, e.g., polypeptides, nucleic acids, small molecules, or other agents.
- the compositions described herein are purified. Purified compounds are at least 60% by weight (dry weight) the compound of interest. Preferably, the preparation is at least 75%, more preferably at least 90%), and most preferably at least 99%, by weight the compound of interest. Purity is measured by any appropriate standard method, for example, by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.
- Exemplary bioactive composition includes tumor antigens, tumor cell lysates, or tumor cells.
- the bioactive composition includes tumor cell lysate, GM-CSF, and CpG-ODN.
- the biocompatible scaffolds are useful as delivery vehicles for cancer vaccines.
- the cancer vaccine stimulates an endogenous immune response against cancer cells.
- vaccines Prior to the invention described herein, vaccines predominantly activated the humoral immune system (i.e., the antibody dependent immune response).
- Other vaccines focused on activating the cell-mediated immune system including cytotoxic T lymphocytes which are capable of killing tumor cells.
- Cancer vaccines generally enhance the presentation of cancer antigens to both antigen presenting cells (e.g., macrophages and dendritic cells) and/or to other immune cells such as T cells, B cells, and NK cells.
- cancer vaccines may take one of several forms, their purpose is to deliver cancer antigens and/or cancer associated antigens to antigen presenting cells (APC) in order to facilitate the endogenous processing of such antigens by APC and the ultimate presentation of antigen presentation on the cell surface in the context of MHC class I molecules.
- APC antigen presenting cells
- One form of cancer vaccine is a whole cell vaccine which is a preparation of cancer cells which have been removed from a subject, treated ex vivo and then reintroduced as whole cells in the subject. These treatments optionally involve cytokine exposure to activate the cells, genetic manipulation to overexpress cytokines from the cells, or priming with tumor specific antigens or cocktails of antigens, and expansion in culture.
- Dendritic cell vaccines activate antigen presenting cells directly, and their proliferation, activation and migration to lymph nodes is regulated by scaffold compositions to enhance their ability to elicit an immune response.
- Types of cancers to be treated include central nervous system (CNS) cancers, CNS Germ Cell tumor, lung cancer, Leukemia, Multiple Myeloma, Renal Cancer, Malignant Glioma, Medulloblastoma, and Melanoma.
- CNS central nervous system
- a scaffold device is implanted into a mammal.
- the device is tailored to activate immune cells and prime the cells with a specific antigen thereby enhancing immune defenses and destruction of undesired tissues and targeted microorganisms such as bacterial or viral pathogens.
- the device attracts appropriate immune cells, such as macrophages, T cells, B cells, NK cells, and dendritic cells, by containing and/or releasing signaling substances such as GM-CSF.
- signaling substances are incorporated in the scaffold composition in such a way as to control their release spatially and temporally using the same techniques used to integrate other bioactive compounds in the scaffold composition.
- the device programs the immune cells to attack or cause other aspects of the immune system to attack undesired tissues (e.g., cancer, adipose deposits, or virus-infected or otherwise diseased cells) or microorganisms.
- Immune cell activation is accomplished by exposing the resident immune cells to preparations of target-specific compositions, e.g., ligands found on the surface of the undesired tissues or organisms, such as cancer cell surface markers, viral proteins, oligonucleatides, peptide sequences or other specific antigens.
- target-specific compositions e.g., ligands found on the surface of the undesired tissues or organisms, such as cancer cell surface markers, viral proteins, oligonucleatides, peptide sequences or other specific antigens.
- useful cancer cell-specific antigens and other tissue or organism-specific proteins are listed in the table below.
- the device optionally contains multiple ligands or antigens in order to create a multivalent vaccine.
- the compositions are embedded in or coated on the surface of one or more compartments of the scaffold composition such that immune cells migrating through the device are exposed to the compositions in their traverse through the device. Antigens or other immune stimulatory molecules are exposed or become exposed to the cells as the scaffold composition degrades.
- the device may also contain vaccine adjuvants that program the immune cells to recognize ligands and enhance antigen presentation.
- Exemplary vaccine adjuvants include chemokines/cytokines, CpG rich oligonucleotides, or antibodies that are exposed concurrently with target cell-specific antigens or ligands.
- the device attracts immune cells to migrate into a scaffold where they are educated in an antigen-specific manner and activated.
- the programmed immune cells are then induced to egress towards lymph nodes in a number of ways.
- the recruitment composition and deployment signal/composition e.g., a lymph node migration inducing substance, is released in one or more bursts, programmed by the method of incorporation and/or release from the scaffold material, or controlled by the sequential degradation of scaffold compartments which contain the attractant. When a burst dissipates, the cells migrate away. Compartments containing repulsive substances are designed to degrade and release the repulsive substance in one or more bursts or steadily over time.
- Relative concentration of the repulsive substances cause the immune cells to migrate out of the device.
- cells which have been placed in or have migrated into the device are programmed to release repulsive substances or to change their own behavior.
- localized gene therapy is carried out by cell exposure to plasmid DNA attached to the scaffold.
- Useful repulsive substances include chemokines and cytokines.
- the device may cause immune cells to egress by degrading and releasing them.
- LPS Lipopolysacharides
- telomerase ferment hTRT
- MUCIN 1 TUMOR-ASSOCIATED MUCIN
- CARCINOMA-ASSOCIATED MUCIN POLYMORPHIC EPITHELIAL MUCIN
- PEM EPITHELIAL MEMBRANE ANTIGEN
- EEMBRANE ANTIGEN EPITHELIAL MEMBRANE ANTIGEN
- EMA EMB
- H23 AG H23 AG
- PEANUT-REACTIVE URINARY MUCIN PUM
- PUM BREAST CARCINOMA- ASSOCIATED ANTIGEN DF3
- MAGE-C1 (cancer/testis antigen CT7)
- MAGE-B1 ANTIGEN MAGE-XP ANTIGEN
- Adenocarcinoma antigen ART1 28.
- Paraneoplastic associated brain-testis-cancer antigen onconeuronal antigen MA2; paraneoplastic neuronal antigen
- Chromogranin A parathyroid secretory protein 1
- CEA Carcinoembryonic antigen
- Vaccines are largely ineffective for patients with established cancer, as advanced disease requires potent and sustained activation of CD8 + cytotoxic T lymphocytes (CTLs) to kill tumor cells and clear the disease.
- CTLs cytotoxic T lymphocytes
- DCs dendritic cells
- cytokines which regulate both CTLs and T regulatory (Treg) cells that shut down effector T cell responses.
- Treg T regulatory
- pDCs plasmacytoid DCs
- CD8 + DCs enhances host immunity in mice.
- Functionalized biomaterials incorporating various combinations of an inflammatory cytokine, immune danger signal, and tumor lysates were used to control the activation and localization of host DC populations in situ.
- GM- CSF cytokine granulocyte-macrophage colony-stimulating factor
- Implantable synthetic polymer matrices (antigen-loaded acellular biomaterial device) that spatially and temporally control the in vivo presentation of cytokines, tumor antigens, and danger signals were utilized herein.
- GM-CSF is released from these polylactide-co- glycolide (PLG) [a Food and Drug Administration (FDA)-approved biomaterial] matrices into the surrounding tissue to recruit DC precursors and DCs.
- PLG polylactide-co- glycolide
- FDA Food and Drug Administration
- CpG-rich oligonucleotides are immobilized on the matrices as danger signals, and antigen (tumor lysates) is released to matrix -resident DCs to program DC development and maturation.
- These matrices quantitatively regulate DC activation and trafficking in situ and induce prophylactic immunity against inoculations of murine B16-F10 melanoma cells (P. Schnorrer, G. M.
- the biopsies of B16-F10 tumors that had grown subcutaneous ly in the backs of C57BL/6J mice were digested in collagenase (250 U/ml) (Worthington) and suspended at a concentration equivalent to 10 7 cells per milliliter after filtration through 40- ⁇ cell strainers.
- the tumor cell suspension was subjected to four cycles of rapid freeze in liquid nitrogen and thaw (37°C) and then centrifuged at 400 rpm for 10 min.
- microspheres to make PLG cancer vaccines are microspheres to make PLG cancer vaccines.
- Blank PLG matrices and matrices containing 3000 ng of GM-CSF alone or in combination with either 1, 10, 50, or 100 ⁇ g of CpG-ODN (studies were also performed with tumor lysates copresented with either 3000 ng of GM-CSF or 100 ⁇ g of CpG-ODN alone or in combination) were implanted into subcutaneous pockets on the back of 7- to 9-week-old male C57BL/6J mice.
- scaffolds were excised and fixed in Z- fix solution (Anatech), embedded in paraffin, and stained with hematoxylin and eosin (H&E).
- H&E hematoxylin and eosin
- APC- conjugated CD1 lc, fluorescein isothiocyanate (FITC)-conjugated CCR7, and PE-conjugated MHCII stains were conducted for DC programming analysis.
- FITC fluorescein isothiocyanate
- MHCII PE-conjugated MHCII stains
- cells were stained with APC-conjugated CD1 lc and PE- conjugated PDCA-1 (pDC marker), APC-conjugated CD1 lc and PE-conjugated CD8 (CD8 DCs), or APC-conjugated CD1 lc and FITC-conjugated CD1 lb (CD1 lb DCs).
- PE-Cy7-conjugated CD3 stains were performed in conjunction with APC- conjugated CD8a (CD8 T cells), FITC-conjugated CD4 (CD4 T cells), and PE-conjugated FoxP3 (Treg) and analyzed with flow cytometry.
- Cells were gated according to positive FITC, APC, and PE with isotype controls, and the percentage of cells staining positive for each surface antigen was recorded.
- PLG scaffolds with melanoma tumor lysates and various dosages of GM-CSF and/or various quantities of PEI-CpG-ODN condensates were implanted subcutaneously into the lower left flank of C57BL/6J mice.
- animals were challenged 14 days later with a subcutaneous injection of 10 5 B16-F10 melanoma cells [American Type Culture Collection (ATCC)] in the back of the neck. Animals were monitored for the onset of tumor growth ( ⁇ 1 mm ) and killed for humane reasons when tumors grew to 20 to 25 mm (longest diameter).
- C57BL/6J mice were challenged with a subcutaneous injection of 5 x 10 5 B16-F10 melanoma cells (ATCC) in the back of the neck.
- ATC B16-F10 melanoma cells
- PLG vaccines loaded with 3000 ng of GM-CSF, 100 ⁇ g of CpG-ODN, and tumor lysates were implanted
- mice subcutaneously into the lower left flank of C57BL/6J mice. A subset of mice was vaccinated again at 10 days after the initial vaccination (days 19 and 23).
- IFN-a, IFN- ⁇ , and TGF- ⁇ concentrations at the matrix implant site the adjacent tissue was excised and digested with tissue protein extraction reagent (Pierce). After centrifugation, the concentrations of IL-12, IFN- a, IFN- ⁇ , and TGF- ⁇ in the supernatant were then analyzed with enzyme-linked immunosorbent assay (R&D Systems) according to the manufacturer's instructions.
- single-cell suspensions were prepared from the spleens of mice immunized with PLG vaccines (lysate + 3000 ng of GM- CSF + 100 ⁇ g of CpG) at various time points. These cells were initially stained with APC-H- 2Kb-TRP2 pentamers (Proimmune) and subsequently stained with PE-conjugated
- Macroporous PLG matrices were fabricated for GM-CSF release to recruit DCs and with an interconnected porous structure facilitates cell infiltration. Matrices were loaded with 0, 3000, and 7000 ng of GM-CSF and implanted into the subcutaneous pockets of C57BL/6J mice. Histological analysis at day 14 after implantation of PLG matrices loaded with 3000 ng of GM-CSF revealed enhanced cellular infiltration when compared to blank controls ( Figure 1A). Fluorescence-activated cell sorting (FACS) analysis for CD1 lc DCs showed that GM-CSF delivery recruited significantly more DCs (a factor of ⁇ 8 increase) than blank PLG matrices ( Figure IB).
- FACS Fluorescence-activated cell sorting
- the matrix -resident DCs were almost exclusively CD1 lb + (-87%), in accordance with other studies of GM-CSF effects on DC recruitment in vivo (N. Mach, S. Gillessen, S. B. Wilson, C. Sheehan, M. Mihm, G. Dranoff, Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage
- GM-CSF delivery promoted greater cellular penetration into and association with the PLG material, as indicated by histological analysis ( Figure 8) and measurement of DC numbers ( Figure 1, B and D), allowing for the subsequent programming of resident DC precursors and DCs.
- In situ delivery of CpG-oligodeoxynucleotide promotes pDC recruitment and IFN production
- CpG-ODN The dose of CpG-ODN presented in combination with 3000 ng of GM-CSF was altered to regulate the numbers of resident pDCs, resulting in 190,000, 520,000, and 1,200,000 cells at doses of 0, 10, and 100 ⁇ g of CpG-ODN, respectively ( Figure 2B). Copresentation of CpG-ODN had little effect on the ability of GM-CSF to enhance CD1 lc + -CDl lb + cDCs ( Figure 2C). High doses of CpG-ODN promoted the local production of IFN-a (-1010 pg/ml) and IFN- ⁇ (-600 pg/ml)
- Tumor lysate co-delivery with CpG-ODN and GM-CSF stimulates CD8+ generation and IL-12 production
- necrotic tumor cells may be particularly immunostimulatory, as they release a variety of endogenous mediators (for example, heat shock proteins and damaged nucleic acids) that trigger innate immune recognition (C.
- CD8 + CD1 lc + cDCs are especially efficient at cross-presenting exogenous antigen on MHCII molecules (J. D. Farrar, H. Asnagli, K. M. Murphy, T helper subset development: Roles of instruction, selection, and transcription. J. Clin. Invest. 109, 431-435 (2002); D. Skokos, M. C. Nussenzweig, CD8 DCs induce IL-12-independent Thl
- tumor lysate in combination with GM-CSF and CpG enhanced the numbers of recruited pDCs at day 10 after implantation by a factor of 2 over matrices without lysate and by a factor of 10 over blank controls (Figure 3C).
- No significant difference in pDC numbers was observed with tumor lysate in combination with only GM-CSF or CpG signaling.
- the CD1 lc + CDl lb + DC population at the vaccine site depended on GM-CSF alone ( Figure 3D), as tumor lysate or CpG signaling alone or in combination had no significant effect on the recruitment and expansion of these DCs (Figure 3D).
- TRP2 MHCII-tyrosinase-related protein 2
- This system is capable of generating prophylactic immunity against poorly
- mice unvaccinated mice were killed by day 23 due to tumor burden.
- GM-CSF-mediated DC recruitment was combined with lysate and CpG-ODN delivery, the mice showed significant protection from tumor-induced lethality.
- CpG-ODN doses of 10, 50, and 100 ⁇ g resulted in 50%, 60%, and 90%> survival rates, respectively (Figure 5B).
- melanoma tumors were established for 13 days and then mice were vaccinated.
- Onetime (day 13) and two-time (days 13 and 23) vaccination decreased tumor progression (Figure 7D).
- engineered PLG vaccines evoke a coordinated response of multiple DC subtypes, which together trigger sustained and potent antitumor CD8 + CTLs while inhibiting immunoregulatory pathways.
- the combination of tumor cell lysates, GM- CSF, and CpG-ODN in the vaccine matrix was required for optimal tumor protection, which was strongly associated with the recruitment of pDCs and CD8 + DCs and the local production of IL-12.
- the accumulation of CD8 + DCs at the vaccine site is a notable feature of this vaccination strategy because this DC subset is typically localized to secondary lymphoid structures. Plasmacytoid DC numbers were closely linked with the generation of type I IFNs (H. Kanzler, F. J. Barrat, E. M. Hessel, R. L.
- the findings suggest that a minimum number of DCs are required to induce high concentrations of protective immunity.
- Vaccines that generated about 1,200,000 pDCs and 600,000 CD8 + DCs (-43% of total DCs) in a total population of -4.2 million DCs resulted in 90% survival in a subsequent tumor challenge.
- the engineered matrices appear to program T cell responses efficiently by providing a site of sustained immunostimulatory tumor antigen presentation, which evokes robust CTLs, both locally and systemically, and attenuates immune regulation mediated through TGF- ⁇ , IL-10, and FoxP3 + Treg cells.
- the vaccine system described herein is useful to modulate DC and CTL responses for the control of other solid cancers and perhaps chronic infections.
- the approach also facilitates the study of DC subset development and the mechanisms through which these subsets are coordinated in vivo for the eradication of established diseases. It is striking that tumor regression induced by these PLG vaccines outperformed gene-modified tumor cell vaccines in direct comparison and outperformed ex vivo DC vaccines reported in literature.
- This acellular biomaterial system was designed with components that either are FDA approved (PLG and GM-CSF) or have been utilized clinically (CpG-ODN) and do not require the maintenance and modification of live cell cultures.
- PLG system has considerable advantages in terms of clinical application as compared to other approaches. Scaling to humans does not require significant modification of the size or structure of the material but simply require utilizing effective human analogs (for example, human GM-CSF and CpG-ODN sequences) that evoke human DC and CTL responses.
- Cancer vaccines are typically formulated for bolus injection and often produce shortlived immunostimulation resulting in poor temporal control over immune cell activation, and weak oncolytic activity.
- One means of overcoming these limitations utilizes
- Antigen-laden, macroporous PLG scaffolds induce potent dendritic cell (DC) and cytotoxic T-lymphocyte (CTL) responses via the controlled signaling of inflammatory cytokines, antigen and toll-like receptor agonists.
- DC dendritic cell
- CTL cytotoxic T-lymphocyte
- a seamless relationship was observed between the production of controlled CTL responses, tumor growth and long- term survival in both prophylactic and therapeutic models. Scaffolds must be implanted for >7 days to augment CTL responses via the prolonged presentation of tumor antigen, and the benefits included a notable regression of established tumors.
- PLG microspheres encapsulating GM-CSF were first made using a standard double emulsion process (Cohen S., Yoshioka T., Lucarelli, M., Hwang L.H., and Langer R. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm. Res. 8,713-720 (1991)).
- PLG microspheres were then mixed with 150 mg of the porogen, sucrose (sieved to a particle size between 250 ⁇ and 425 ⁇ ), and compression molded. The resulting disc was allowed to equilibrate within a high-pressure C0 2 environment, and a rapid reduction in pressure causes the polymer particles to expand and fuse into an interconnected structure. The sucrose was leached from the scaffolds by immersion in water yielding scaffolds that were 90% porous.
- biopsies of B16-F10 tumors that had grown subcutaneously in the backs of C57BL/6J mice (Jackson Laboratory, Bar Harbor Maine), were digested in collagenase (250 U/ml) (Worthington,
- CpG-ODN 1826 5 '-tec atg acg ttc ctg acg tt-3', (Oligofactory, Holliston, MA) was first condensed with
- PEI poly(ethylenimine)
- Mi -60,000 Sigma Aldrich
- Sigma Aldrich poly(ethylenimine)
- the charge ratio between PEI and CpG-ODN (NH3+:P04-) was kept constant at 7 during condensation.
- PEI-CpG-ODN condensate solutions were then vortexed with 60 ⁇ of 50% (wt/vol) sucrose solution, lyophilized and mixed with dry sucrose to a final weight of 150 mg.
- the sucrose containing PEI-CpG-ODN condensate was then mixed with blank, GM-CSF and/or tumor lysate loaded PLG microspheres to make PLG cancer vaccines.
- scaffolds were excised at various time-points and the ingrown tissue was digested into single cell suspensions using a collagenase solution (Worthingtion, 250 U/ml) that was agitated at 37°C for 45 minutes. The cell suspensions were then poured through a 40 ⁇ cell strainer to isolate cells from scaffold particles and the cells were pelleted and washed with cold PBS and counted using a Z2 coulter counter (Beckman Coulter). To assess DC infiltration, subsets of the total cell population isolated from PLG matrices were then stained with primary antibodies (BD Pharmingen, San Diego, CA) conjugated to fluorescent markers to allow for analysis by flow cytometry.
- primary antibodies BD Pharmingen, San Diego, CA
- APC- conjugated CD1 lc (dendritic cell marker) stains were conducted for DC recruitment analysis.
- PE-Cy7 conjugated CD3 stains were performed in conjunction with APC-conjugated CD8a (CD8 T cells), FITC-conjugated CD4 (CD4 T cells) and analyzed with flow cytometry.
- Cells were gated according to positive FITC, APC and PE using isotype controls, and the percentage of cells staining positive for each surface antigen was recorded. Tumor growth assays, and in situ cytokine concentrations
- PLG-based vaccines were developed utilizing matrices incorporating melanoma tumor lysates, 3,000ng GM-CSF and 100 ⁇ g PEI-CpG-ODN condensates and were implanted subcutaneously into the lower left flank of C57BL/6J mice.
- animals were challenged 14 days later with a subcutaneous injection of 10 5 B16-F10 melanoma cells (ATCC, Manassas, NJ) in the back of the neck.
- B16-F10 melanoma cells ATCC, Manassas, NJ
- PLG vaccines were explanted at days, 1, 3, 7, 12, and 16 days after implantation. Animals were monitored for the onset of tumor growth (approximately 1mm ) and sacrificed for humane reasons when tumors grew to 20 - 25 mm (longest diameter).
- IFN- ⁇ concentrations at the matrix implant site excised tissue was digested with tissue protein extraction reagent (Pierce). After centrifugation, the concentration of GM-CSF, IL- 12p70, and IFN- ⁇ in the supernatant was then analyzed with ELISA (R&D systems), according to the manufacturers instructions.
- Macroporous PLG scaffolds were fabricated to control the presentation of GM-CSF, tumor lysate (B16 melanoma), and CpG-ODN to serve as vaccines (PLG vaccines) (Figure 9 A &B).
- the duration of vaccination using PLG vaccines was controlled by explanting the material system at various timepoints. The relationship between vaccine duration and efficacy was examined in prophylactic and therapeutic B16-F10 melanoma models.
- PLG vaccines were implanted subcutaneously into the backs of C57BL/6J mice and removed at days 1, 3, 7, 12 and 16 after implantation and these mice were challenged at day 14 with an otherwise lethal dose of B16-F10 cells (Figure 9C).
- the engineered PLG matrices were designed to release a pulse of GM-CSF to recruit host DCs. Histological analysis at day 14 post-implantation of PLG matrices loaded with 3000 ng of GM-CSF revealed enhanced cellular infiltration and penetration into the void volume of the material, relative to cell infiltration at 3 days after implantation ( Figure 10A).
- the T cell response to PLG vaccines is predominantly comprised of CD8(+) cytotoxic T cells (Figure 10D).
- Local cytotoxic T cell responses persisted at significant levels between days 7 and 28 after implantation.
- CD8(+) cytotoxic T-lymphocytes (CTLs) were detectable at day 5, peaked at day 12 and subsided at day 28.
- CTLs manifested potent effector function, as vaccination resulted in a prototypical activation phase that gradually plateaus, followed by a contraction phase as antigen is cleared.
- the data indicates that the CTL response also effectively terminated the innate response by day 12 as indicated by the sharp decline of antigen presenting DCs, likely via effector, CTL killing.
- IL-12 which is a T cell growth and stimulating factor and an activating factor for DCs, is produced by DCs and macrophages in response to intercellular pathogens and tumor cells.
- Local IL-12 concentrations peaked at 800 pg/ml after one day of vaccination, and then subsided to approximately 300 pg/ml between days 5-16 of vaccination (Figure 11A). All three components of the vaccine, GM-CSF, CpG-ODN and tumor lysates were required to promote and maintain high IL-12 concentrations, as blank controls and all other combinations of the vaccine's bioactive factors produced significantly lower IL-12 levels (Figure 1 IB).
- PLG vaccines sustained the induction of IL-12 and IFN- ⁇ from infiltrating immune cells for 16 days, which is likely to be important for Thl polarization and prolonged CD8(+) CTL responses to the tumor antigens embedded within the vaccine's matrix.
- PLG vaccines To determine the systemic effects of PLG vaccines, cellular populations in the draining LNs were monitored over time. Blank matrices and PLG matrices containing GM- CSF, lysate and CpG-ODN (PLG vaccines) were implanted subcutaneously into the backs of mice at a distance of approximately 9 mm from the inguinal LN. PLG vaccines resulted in a rapid enhancement in the numbers of phagocytic cells in the proximal inguinal LN, as 4 fold increases in resident DCs and plasmacytoid DCs numbers were observed at day 3 ( Figure 12A).
- the T cell expansion induced by PLG vaccines was mostly due to the expansion of the CD8(+) CTL subset, as their numbers in LNs increased similarly in scale from 2.8x10 5 CTLs (blank matrices) to 8.2xl0 5 CTLs (PLG vaccines) at day 10 of vaccination (Figure 12C).
- Provision of persistent CpG-ODN signaling alongside antigenic signals (tumor lysate) was required of the vaccines ability to induce polarization of LN T cells toward CD8(+) CTL expansion (Figure 12C), and to down-regulate FoxP3(+) T regulatory cell activity in LNs ( Figure 12D and E). FoxP3 T cells may suppress the cytotoxicity of CD8(+) T cells and extinguish vaccine activity.
- Vaccination utilizing melanoma vaccines fabricated into PLG matrices resulted in two distinct phases of immune responses in situ.
- innate responses and DC activation began at day 3, peaked at day 5 and subsided at day 12 post- vaccination ( Figure 10A & B).
- the second phase consisted of adaptive T cell responses consisting mostly of CD8(+) cytotoxic T- lymphocytes (CTLs) (Figure IOC), which began at day 5, peaked at day 12 and subsided at day 28 ( Figure 10A & B).
- CTL responses to the PLG matrix manifested potent effector function, with vaccination resulting in a prototypical activation phase that gradually plateaued, and was followed by a contraction phase as the antigen was cleared.
- the time lag associated with the onset of the effector response is likely the time required to induce sufficient DC recruitment and priming.
- the vaccine also induced persistent IL-12 and IFN- ⁇ production consistent with DC and T cell infiltration into the vaccine site; this is a hallmark of Thl and cytotoxic T cell responses against tumors.
- PLG vaccines induce CTLs expressing TCRs specific for the melanoma antigen, Trp-2, and the kinetics of cytotoxic T cell homing to the vaccine site is likely in response to prolonged antigen presentation (tumor lysates) by the PLG matrix.
- the data described herein demonstrates that the CTL response terminated the local innate responses as the significant drop in local DC numbers after day 7 was likely due to CD8(+)T- cell cytotoxicity against these antigen-presenting cells.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Oncology (AREA)
- Neurosurgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- Biomedical Technology (AREA)
- Inorganic Chemistry (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
La présente invention concerne un procédé qui permet de provoquer et de conserver une réponse immunitaire anti-tumorale et qui est mis en œuvre par l'administration d'un dispositif contenant une quantité d'antigènes suffisante pour stimuler une réponse immunitaire innée et une réponse immunitaire adaptative. Un procédé permettant de provoquer et de conserver une réponse immunitaire anti-tumorale est également mis en œuvre par l'administration d'une pluralité de dispositifs, par exemple un premier dispositif de biomatériau acellulaire chargé d'antigènes (vaccin PLG) à un premier instant, pour stimuler une réponse immunitaire innée et une réponse immunitaire adaptative, et l'administration d'un second dispositif sur un second site anatomique à un second instant pour prolonger la réponse immunitaire adaptative.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/741,271 US9370558B2 (en) | 2008-02-13 | 2013-01-14 | Controlled delivery of TLR agonists in structural polymeric devices |
US15/135,216 US9821045B2 (en) | 2008-02-13 | 2016-04-21 | Controlled delivery of TLR3 agonists in structural polymeric devices |
US15/818,509 US10568949B2 (en) | 2008-02-13 | 2017-11-20 | Method of eliciting an anti-tumor immune response with controlled delivery of TLR agonists in porous polymerlc devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28166309P | 2009-11-20 | 2009-11-20 | |
US61/281,663 | 2009-11-20 |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/867,426 Continuation-In-Part US10328133B2 (en) | 2008-02-13 | 2009-02-13 | Continuous cell programming devices |
PCT/US2009/000914 Continuation-In-Part WO2009102465A2 (fr) | 2008-02-13 | 2009-02-13 | Dispositifs de programmation cellulaire continue |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/867,426 Continuation-In-Part US10328133B2 (en) | 2008-02-13 | 2009-02-13 | Continuous cell programming devices |
PCT/US2009/000914 Continuation-In-Part WO2009102465A2 (fr) | 2008-02-13 | 2009-02-13 | Dispositifs de programmation cellulaire continue |
US201013510356A A-371-Of-International | 2008-02-13 | 2010-11-22 | |
US13/741,271 Continuation-In-Part US9370558B2 (en) | 2008-02-13 | 2013-01-14 | Controlled delivery of TLR agonists in structural polymeric devices |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011063336A2 true WO2011063336A2 (fr) | 2011-05-26 |
WO2011063336A3 WO2011063336A3 (fr) | 2011-12-01 |
Family
ID=44060394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/057630 WO2011063336A2 (fr) | 2008-02-13 | 2010-11-22 | Site secondaire de stimulation d'antigène pour vaccination thérapeutique |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011063336A2 (fr) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8728456B2 (en) | 2009-07-31 | 2014-05-20 | President And Fellows Of Harvard College | Programming of cells for tolerogenic therapies |
WO2014110591A1 (fr) | 2013-01-14 | 2014-07-17 | Fred Hutchinson Cancer Research Center | Compositions et procédés pour l'administration de cellules immunitaires pour traiter des cellules tumorales non résécables ou non réséquées et une récidive de tumeur |
US8932583B2 (en) | 2005-12-13 | 2015-01-13 | President And Fellows Of Harvard College | Scaffolds for cell transplantation |
US9012399B2 (en) | 2008-05-30 | 2015-04-21 | President And Fellows Of Harvard College | Controlled release of growth factors and signaling molecules for promoting angiogenesis |
WO2015139020A2 (fr) | 2014-03-14 | 2015-09-17 | Dana-Farber Cancer Institute, Inc. | Compositions vaccinales et méthodes pour rétablir la fonction de la voie nkg2d contre les cancers |
WO2015179627A1 (fr) | 2014-05-21 | 2015-11-26 | Dana-Farber Cancer Institute, Inc. | Procédés de traitement du cancer avec des anticorps anti bip ou anti mica |
US9297005B2 (en) | 2009-04-13 | 2016-03-29 | President And Fellows Of Harvard College | Harnessing cell dynamics to engineer materials |
US9370558B2 (en) | 2008-02-13 | 2016-06-21 | President And Fellows Of Harvard College | Controlled delivery of TLR agonists in structural polymeric devices |
US9486512B2 (en) | 2011-06-03 | 2016-11-08 | President And Fellows Of Harvard College | In situ antigen-generating cancer vaccine |
US9603894B2 (en) | 2010-11-08 | 2017-03-28 | President And Fellows Of Harvard College | Materials presenting notch signaling molecules to control cell behavior |
US9610328B2 (en) | 2010-03-05 | 2017-04-04 | President And Fellows Of Harvard College | Enhancement of skeletal muscle stem cell engraftment by dual delivery of VEGF and IGF-1 |
US9675561B2 (en) | 2011-04-28 | 2017-06-13 | President And Fellows Of Harvard College | Injectable cryogel vaccine devices and methods of use thereof |
US9693954B2 (en) | 2010-06-25 | 2017-07-04 | President And Fellows Of Harvard College | Co-delivery of stimulatory and inhibitory factors to create temporally stable and spatially restricted zones |
US9770535B2 (en) | 2007-06-21 | 2017-09-26 | President And Fellows Of Harvard College | Scaffolds for cell collection or elimination |
US9821045B2 (en) | 2008-02-13 | 2017-11-21 | President And Fellows Of Harvard College | Controlled delivery of TLR3 agonists in structural polymeric devices |
US9937249B2 (en) | 2012-04-16 | 2018-04-10 | President And Fellows Of Harvard College | Mesoporous silica compositions for modulating immune responses |
US10022486B2 (en) | 2011-06-24 | 2018-07-17 | Gearbox, Llc | Device, system, and method including micro-patterned cell treatment array |
US10045947B2 (en) | 2011-04-28 | 2018-08-14 | President And Fellows Of Harvard College | Injectable preformed macroscopic 3-dimensional scaffolds for minimally invasive administration |
US10106611B2 (en) | 2013-12-06 | 2018-10-23 | Dana-Farber Cancer Institute, Inc. | Antibodies that bind to MHC class I polypeptide-related sequence A |
CN109069874A (zh) * | 2016-01-07 | 2018-12-21 | 密歇根大学董事会 | 用于在体内捕获转移性乳腺癌细胞的植入式支架 |
US10647959B2 (en) | 2011-04-27 | 2020-05-12 | President And Fellows Of Harvard College | Cell-friendly inverse opal hydrogels for cell encapsulation, drug and protein delivery, and functional nanoparticle encapsulation |
US10682400B2 (en) | 2014-04-30 | 2020-06-16 | President And Fellows Of Harvard College | Combination vaccine devices and methods of killing cancer cells |
US10745483B2 (en) | 2013-03-15 | 2020-08-18 | Dana-Farber Cancer Institute, Inc. | Therapeutic peptides |
US10793633B2 (en) | 2011-09-30 | 2020-10-06 | Dana-Farber Cancer Institute, Inc. | Therapeutic peptides |
US11150242B2 (en) | 2015-04-10 | 2021-10-19 | President And Fellows Of Harvard College | Immune cell trapping devices and methods for making and using the same |
CN113521263A (zh) * | 2021-08-03 | 2021-10-22 | 苏州大学 | 一种3d打印的肿瘤疫苗组合物及其制备方法与应用 |
US11202759B2 (en) | 2010-10-06 | 2021-12-21 | President And Fellows Of Harvard College | Injectable, pore-forming hydrogels for materials-based cell therapies |
US11555177B2 (en) | 2016-07-13 | 2023-01-17 | President And Fellows Of Harvard College | Antigen-presenting cell-mimetic scaffolds and methods for making and using the same |
US11752238B2 (en) | 2016-02-06 | 2023-09-12 | President And Fellows Of Harvard College | Recapitulating the hematopoietic niche to reconstitute immunity |
US11786457B2 (en) | 2015-01-30 | 2023-10-17 | President And Fellows Of Harvard College | Peritumoral and intratumoral materials for cancer therapy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6429199B1 (en) * | 1994-07-15 | 2002-08-06 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
US20050053667A1 (en) * | 2003-07-09 | 2005-03-10 | Darrell Irvine | Programmed immune responses using a vaccination node |
US20070020232A1 (en) * | 2005-04-26 | 2007-01-25 | Eisai Co., Ltd. | Compositions and methods for cancer immunotherapy |
WO2009074341A1 (fr) * | 2007-12-12 | 2009-06-18 | Trimed Biotech Gmbh | Procédé de production de cellules dendritiques |
-
2010
- 2010-11-22 WO PCT/US2010/057630 patent/WO2011063336A2/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6429199B1 (en) * | 1994-07-15 | 2002-08-06 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
US20050053667A1 (en) * | 2003-07-09 | 2005-03-10 | Darrell Irvine | Programmed immune responses using a vaccination node |
US20070020232A1 (en) * | 2005-04-26 | 2007-01-25 | Eisai Co., Ltd. | Compositions and methods for cancer immunotherapy |
WO2009074341A1 (fr) * | 2007-12-12 | 2009-06-18 | Trimed Biotech Gmbh | Procédé de production de cellules dendritiques |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9446107B2 (en) | 2005-12-13 | 2016-09-20 | President And Fellows Of Harvard College | Scaffolds for cell transplantation |
US11096997B2 (en) | 2005-12-13 | 2021-08-24 | President And Fellows Of Harvard College | Scaffolds for cell transplantation |
US8932583B2 (en) | 2005-12-13 | 2015-01-13 | President And Fellows Of Harvard College | Scaffolds for cell transplantation |
US9132210B2 (en) | 2005-12-13 | 2015-09-15 | President And Fellows Of Harvard College | Scaffolds for cell transplantation |
US10137184B2 (en) | 2005-12-13 | 2018-11-27 | President And Fellows Of Harvard College | Scaffolds for cell transplantation |
US10149897B2 (en) | 2005-12-13 | 2018-12-11 | President And Fellows Of Harvard College | Scaffolds for cell transplantation |
US9770535B2 (en) | 2007-06-21 | 2017-09-26 | President And Fellows Of Harvard College | Scaffolds for cell collection or elimination |
US10695468B2 (en) | 2007-06-21 | 2020-06-30 | President And Fellows Of Harvard College | Scaffolds for cell collection or elimination |
US9370558B2 (en) | 2008-02-13 | 2016-06-21 | President And Fellows Of Harvard College | Controlled delivery of TLR agonists in structural polymeric devices |
US10328133B2 (en) | 2008-02-13 | 2019-06-25 | President And Fellows Of Harvard College | Continuous cell programming devices |
US10258677B2 (en) | 2008-02-13 | 2019-04-16 | President And Fellows Of Harvard College | Continuous cell programming devices |
US10568949B2 (en) | 2008-02-13 | 2020-02-25 | President And Fellows Of Harvard College | Method of eliciting an anti-tumor immune response with controlled delivery of TLR agonists in porous polymerlc devices |
US9821045B2 (en) | 2008-02-13 | 2017-11-21 | President And Fellows Of Harvard College | Controlled delivery of TLR3 agonists in structural polymeric devices |
US9539309B2 (en) | 2008-05-30 | 2017-01-10 | President And Fellows Of Harvard College | Controlled release of growth factors and signaling molecules for promoting angiogenesis |
US9012399B2 (en) | 2008-05-30 | 2015-04-21 | President And Fellows Of Harvard College | Controlled release of growth factors and signaling molecules for promoting angiogenesis |
US9297005B2 (en) | 2009-04-13 | 2016-03-29 | President And Fellows Of Harvard College | Harnessing cell dynamics to engineer materials |
US9381235B2 (en) | 2009-07-31 | 2016-07-05 | President And Fellows Of Harvard College | Programming of cells for tolerogenic therapies |
US10080789B2 (en) | 2009-07-31 | 2018-09-25 | President And Fellows Of Harvard College | Programming of cells for tolerogenic therapies |
US8728456B2 (en) | 2009-07-31 | 2014-05-20 | President And Fellows Of Harvard College | Programming of cells for tolerogenic therapies |
US9610328B2 (en) | 2010-03-05 | 2017-04-04 | President And Fellows Of Harvard College | Enhancement of skeletal muscle stem cell engraftment by dual delivery of VEGF and IGF-1 |
US9693954B2 (en) | 2010-06-25 | 2017-07-04 | President And Fellows Of Harvard College | Co-delivery of stimulatory and inhibitory factors to create temporally stable and spatially restricted zones |
US11202759B2 (en) | 2010-10-06 | 2021-12-21 | President And Fellows Of Harvard College | Injectable, pore-forming hydrogels for materials-based cell therapies |
US9603894B2 (en) | 2010-11-08 | 2017-03-28 | President And Fellows Of Harvard College | Materials presenting notch signaling molecules to control cell behavior |
US10647959B2 (en) | 2011-04-27 | 2020-05-12 | President And Fellows Of Harvard College | Cell-friendly inverse opal hydrogels for cell encapsulation, drug and protein delivery, and functional nanoparticle encapsulation |
US9675561B2 (en) | 2011-04-28 | 2017-06-13 | President And Fellows Of Harvard College | Injectable cryogel vaccine devices and methods of use thereof |
US10045947B2 (en) | 2011-04-28 | 2018-08-14 | President And Fellows Of Harvard College | Injectable preformed macroscopic 3-dimensional scaffolds for minimally invasive administration |
US10406216B2 (en) | 2011-06-03 | 2019-09-10 | President And Fellows Of Harvard College | In situ antigen-generating cancer vaccine |
US9486512B2 (en) | 2011-06-03 | 2016-11-08 | President And Fellows Of Harvard College | In situ antigen-generating cancer vaccine |
US10610635B2 (en) | 2011-06-24 | 2020-04-07 | Gearbox Llc | Device, system, and method including micro-patterned cell treatment array |
US10022486B2 (en) | 2011-06-24 | 2018-07-17 | Gearbox, Llc | Device, system, and method including micro-patterned cell treatment array |
US10793633B2 (en) | 2011-09-30 | 2020-10-06 | Dana-Farber Cancer Institute, Inc. | Therapeutic peptides |
US11278604B2 (en) | 2012-04-16 | 2022-03-22 | President And Fellows Of Harvard College | Mesoporous silica compositions comprising inflammatory cytokines comprising inflammatory cytokines for modulating immune responses |
US9937249B2 (en) | 2012-04-16 | 2018-04-10 | President And Fellows Of Harvard College | Mesoporous silica compositions for modulating immune responses |
US11890303B2 (en) | 2013-01-14 | 2024-02-06 | Fred Hutchinson Cancer Center | Compositions and methods for delivery of immune cells to treat un-resectable or non-resected tumor cells and tumor relapse |
WO2014110591A1 (fr) | 2013-01-14 | 2014-07-17 | Fred Hutchinson Cancer Research Center | Compositions et procédés pour l'administration de cellules immunitaires pour traiter des cellules tumorales non résécables ou non réséquées et une récidive de tumeur |
US10806756B2 (en) | 2013-01-14 | 2020-10-20 | Fred Hutchinson Cancer Research Center | Compositions and methods for delivery of immune cells to treat un-resectable or non-resected tumor cells and tumor relapse |
US10702551B2 (en) | 2013-01-14 | 2020-07-07 | Fred Hutchinson Cancer Research Center | Compositions and methods for delivery of immune cells to treat un-resectable or non-resected tumor cells and tumor relapse |
US10745483B2 (en) | 2013-03-15 | 2020-08-18 | Dana-Farber Cancer Institute, Inc. | Therapeutic peptides |
US10106611B2 (en) | 2013-12-06 | 2018-10-23 | Dana-Farber Cancer Institute, Inc. | Antibodies that bind to MHC class I polypeptide-related sequence A |
US10279021B2 (en) | 2014-03-14 | 2019-05-07 | Dana-Faber Cancer Institute, Inc. | Vaccine compositions and methods for restoring NKG2D pathway function against cancers |
WO2015139020A2 (fr) | 2014-03-14 | 2015-09-17 | Dana-Farber Cancer Institute, Inc. | Compositions vaccinales et méthodes pour rétablir la fonction de la voie nkg2d contre les cancers |
EP3925973A1 (fr) | 2014-03-14 | 2021-12-22 | Dana-Farber Cancer Institute, Inc. | Compositions vaccinales et méthodes pour rétablir la fonction de la voie nkg2d contre les cancers |
US10682400B2 (en) | 2014-04-30 | 2020-06-16 | President And Fellows Of Harvard College | Combination vaccine devices and methods of killing cancer cells |
US11998593B2 (en) | 2014-04-30 | 2024-06-04 | President And Fellows Of Harvard College | Combination vaccine devices and methods of killing cancer cells |
WO2015179627A1 (fr) | 2014-05-21 | 2015-11-26 | Dana-Farber Cancer Institute, Inc. | Procédés de traitement du cancer avec des anticorps anti bip ou anti mica |
US11786457B2 (en) | 2015-01-30 | 2023-10-17 | President And Fellows Of Harvard College | Peritumoral and intratumoral materials for cancer therapy |
US11150242B2 (en) | 2015-04-10 | 2021-10-19 | President And Fellows Of Harvard College | Immune cell trapping devices and methods for making and using the same |
EP3400073A4 (fr) * | 2016-01-07 | 2019-08-28 | The Regents of The University of Michigan | Échafaudages implantables pour capturer des cellules du cancer du sein in vivo |
CN109069874A (zh) * | 2016-01-07 | 2018-12-21 | 密歇根大学董事会 | 用于在体内捕获转移性乳腺癌细胞的植入式支架 |
US11752238B2 (en) | 2016-02-06 | 2023-09-12 | President And Fellows Of Harvard College | Recapitulating the hematopoietic niche to reconstitute immunity |
US11555177B2 (en) | 2016-07-13 | 2023-01-17 | President And Fellows Of Harvard College | Antigen-presenting cell-mimetic scaffolds and methods for making and using the same |
CN113521263A (zh) * | 2021-08-03 | 2021-10-22 | 苏州大学 | 一种3d打印的肿瘤疫苗组合物及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
WO2011063336A3 (fr) | 2011-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011063336A2 (fr) | Site secondaire de stimulation d'antigène pour vaccination thérapeutique | |
US10568949B2 (en) | Method of eliciting an anti-tumor immune response with controlled delivery of TLR agonists in porous polymerlc devices | |
AU2013207687B2 (en) | Controlled delivery of TLR agonists in structural polymeric devices | |
US9370558B2 (en) | Controlled delivery of TLR agonists in structural polymeric devices | |
JP7348708B2 (ja) | 組み合わせワクチン装置および癌細胞を殺滅する方法 | |
Ali et al. | In situ regulation of DC subsets and T cells mediates tumor regression in mice | |
Lahiri et al. | Engagement of TLR signaling as adjuvant: towards smarter vaccine and beyond | |
CN110418651A (zh) | 用于调节免疫应答的生物材料 | |
Goforth et al. | Immune stimulatory antigen loaded particles combined with depletion of regulatory T-cells induce potent tumor specific immunity in a mouse model of melanoma | |
JP2007530430A (ja) | パターン認識受容体−リガンド:脂質複合体を使用するワクチン | |
Hori et al. | Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy | |
Ali et al. | Relationship of vaccine efficacy to the kinetics of DC and T-cell responses induced by PLG-based cancer vaccines | |
KR102060858B1 (ko) | 효모 세포벽 입자를 사용하는 백신 전달 시스템 | |
WO2023201787A1 (fr) | Système cellulaire à base de lymphocytes t spécifique du cancer, médicament lymphocytaire et son utilisation | |
Brown et al. | Nucleic Acids as Adjuvants | |
Mooney et al. | Materials to Engineer the Immune System | |
Ali | Programming cells in situ | |
EP2861725A1 (fr) | Compositions, procédés et dispositifs pour l'activation d'une réponse immunitaire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10832321 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10832321 Country of ref document: EP Kind code of ref document: A2 |