Nothing Special   »   [go: up one dir, main page]

WO2011061363A1 - Un tren de potencia de un aerogenerador accionado directamente - Google Patents

Un tren de potencia de un aerogenerador accionado directamente Download PDF

Info

Publication number
WO2011061363A1
WO2011061363A1 PCT/ES2010/000468 ES2010000468W WO2011061363A1 WO 2011061363 A1 WO2011061363 A1 WO 2011061363A1 ES 2010000468 W ES2010000468 W ES 2010000468W WO 2011061363 A1 WO2011061363 A1 WO 2011061363A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
rotor
shaft
wind turbine
bearing
Prior art date
Application number
PCT/ES2010/000468
Other languages
English (en)
French (fr)
Inventor
Ulrik Steffensen
Original Assignee
Gamesa Innovation & Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Innovation & Technology, S.L. filed Critical Gamesa Innovation & Technology, S.L.
Priority to US13/510,005 priority Critical patent/US20120243999A1/en
Priority to EP10831172.1A priority patent/EP2503147A4/en
Publication of WO2011061363A1 publication Critical patent/WO2011061363A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/20Gearless transmission, i.e. direct-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7068Application in combination with an electrical generator equipped with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/60Shafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This invention relates to a wind turbine and, in particular, to a wind turbine with a directly driven power train.
  • Wind turbines are devices that convert mechanical energy into electrical energy.
  • a typical wind turbine includes a gondola mounted on a tower that houses a power train to transmit the rotation of a rotor to an electric generator and other components such as the orientation motors through which the wind turbine is rotated, various controllers and a brake.
  • the rotor supports several blades that extend radially to capture the kinetic energy of the wind and cause a rotational movement of the power train.
  • the rotor blades have an aerodynamic shape so that when the wind passes through the surface of the blade an ascending force is created that causes the rotation of an axis to which it is connected - directly or through a multiplication device - a Electric generator.
  • the amount of energy produced by the wind turbines depends on the scanning surface of the blade rotor that receives the wind energy and, consequently, the increase in the length of the blades normally implies an increase in the wind turbine's energy production.
  • the generator In a first basic concept the generator is located between the rotor and the support structure.
  • One of its problems is that the air gap between the generator rotor and the generator stator is influenced by the rotor loads. Rotation and tilting moments of the rotor cause deflections to the main shaft that move the generator rotor towards the generator stator.
  • the generator In a second basic concept, the generator is located in front of the rotor. The air gap between the generator rotor and the generator stator is then less influenced by the rotor loads since both the generator stator and the generator rotor move together with the main shaft deflections.
  • the internal clearance of the main bearings can still cause variations in the air gap as a result of rotor loads.
  • the generator is located behind the tower and connected to the wind rotor by a main shaft.
  • a problem posed by this concept is that the main shaft can flect under high rotor loads causing variations in the air gap between the generator rotor and the generator stator.
  • WO 01/94779 A1 describes a connecting structure between the rotor hub and the generator consisting of a shaft divided into two parts and supported by two bearing units.
  • the connecting structure between the rotor hub and the generator is a main shaft supported by two bearings arranged above a base located on top of the tower.
  • the deformations of the generator are avoided by means of a non-rotary coupling between the generator stator and the base of the wind turbine.
  • the connecting structure between the rotor hub and the generator is a main shaft supported by two bearings arranged above a base located on top of the tower.
  • the deformations of the generator are avoided by means of a coupling between the generator housing and the wind turbine support structure.
  • a wind turbine comprising a tower, a support structure mounted on the tower, a power train including a permanent magnet generator that is directly driven by a wind rotor, comprising a rotor bushing and at least a blade, through a generator shaft rigidly connected to the main shaft, the wind rotor and the generator being located on opposite sides with respect to the tower, the generator being supported by the generator shaft by a bearing unit, the bushing being of the rotor supported by the support structure by a main bearing, preferably a double-row tapered roller bearing, which does not allow the transmission of bending moments; the connections between the main bearing, the main shaft and the generator shaft being adapted to transmit the wind rotor torque to the generator shaft without bending movements.
  • the generator bearing unit comprises two bearings, preferably single row tapered roller bearings, and the main shaft is connected to said main bearing by means of a first coupling arrangement and to the generator shaft by a second coupling arrangement, both coupling arrangements being configured to keep the main shaft and the generator shaft aligned.
  • the generator bearing unit comprises a bearing, preferably a spherical bearing, and the main shaft is connected to said main bearing by means of a first coupling arrangement configured to keep the main shaft and the generator shaft aligned.
  • Figure 1 is a cross-sectional view of a wind turbine known in the art.
  • Figure 2 is a schematic view of a first embodiment of a power train of a wind turbine according to the present invention.
  • Figure 3 is a schematic view of a second embodiment of a power train of a wind turbine according to the present invention.
  • This invention relates to a power train directly driven being the generator located behind the tower, that is to say following the third basic concept mentioned in the background, and, for your best understanding, we will briefly describe firstly those characteristics of the configuration described in WO 2009/05664 that are present in a wind turbine according to the present invention.
  • the configuration of the power train is based on a main shaft 29 that extends over the tower 11 from the rotor bushing 17 to the generator PM 41.
  • the power train comprises a rotating rotor bushing 17 to which one or more blades 18, a main shaft 29 and a PM generator 41 comprising a generator rotor 55 and a generator stator 57 are attached.
  • the main shaft 29 is connected to the rotor hub 17 and to the generator shaft 43 to carry out the direct transfer of the torque to the generator rotor 55.
  • the generator 41 is connected to the rotor bushing 17 through the main shaft 29 which is a pure transmitter shaft because the rotor bushing 17 is attached to a main bearing 27, such as a double-row tapered roller bearing, which is capable of withstanding the moment load of the wind rotor 15. Therefore, the main bearing 27 does not allow the transmission of bending moments by the main shaft 29.
  • the main bearing 27 is attached to the support structure 13.
  • the generator 41 is realized as an independent unit with internal bearings 45, 47 which ensure that there is no variation of the air gap between the rotor of the generator 55 and the stator of the generator 57.
  • Couplings 31, 33 are used in the connections between the main bearing 27 and the main shaft 29 and between the main shaft 29 and the generator shaft 43. These couplings 31, 33 absorb the misalignments between the main bearing 27 and the positions of Generator assembly 41. They also absorb the angular deflections of the main bearing 27 due to momentum loads.
  • the dimensions of the rotor bushing 17 and the main bearing 27 can be optimized according to the rotor loads (there is no shaft between them). Therefore, a low weight of the rotor bushing 17 and the main bearing 27 is maintained, which also affects the rest of the wind turbine structure. This minimizes the total cost of the wind turbine.
  • Main shaft 29 does not need to be sized for moment loads, only for torque transmission loads. The weight and cost of the main shaft 29 is therefore minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

Un tren de potencia de un aerogenerador accionado directamente que comprende un rotor eólico (15), comprendiendo un buje de rotor (17) y al menos una pala (18), un generador (41) de imanes permanentes accionado directamente a través de un eje de generador (43) rígidamente conectado al eje principal (29), estando el rotor eólico (15) y el generador (41) situados en lados opuestos respecto a Ia torre (11), estando soportado el generador (41) por el eje del generador (43) mediante una unidad de cojinetes; estando soportado el buje del rotor (17) por la estructura de soporte (13) del aerogenerador mediante un cojinete principal (27) que no permite la transmisión de momentos flectores; estando adaptadas las conexiones entre el cojinete principal (27), el eje principal (29) y el eje del generador (43) para transmitir el par del rotor eólico al eje de generador (43) sin movimientos de flexión.

Description

UN TREN DE POTENCIA DE UN AEROGENERADOR ACCIONADO DIRECTAMENTE
CAMPO DE LA INVENCION
Esta invención se refiere a un aerogenerador y, en particular, a un aerogenerador con un tren de potencia accionado directamente.
ANTECEDENTES
Los aerogeneradores son dispositivos que convierten energía mecánica en energía eléctrica. Un aerogenerador típico incluye una góndola montada sobre una torre que alberga un tren de potencia para transmitir la rotación de un rotor a un generador eléctrico y otros componentes tal como los motores de orientación mediante los que se gira el aerogenerador, varios controladores y un freno. El rotor soporta varias palas que se extienden radialmente para capturar la energía cinética del viento y causan un movimiento rotatorio del tren de potencia. Las palas del rotor tienen una forma aerodinámica de manera que cuando el viento pasa a través de la superficie de la pala se crea una fuerza ascensional que causa la rotación de un eje al que está conectado - directamente o a través de un dispositivo de multiplicación- un generador eléctrico. La cantidad de energía producida por los aerogeneradores depende de la superficie de barrido del rotor de palas que recibe la energía del viento y, consecuentemente, el incremento de la longitud de las palas implica normalmente un incremento de la producción de energía del aerogenerador.
En la técnica anterior se conocen tres conceptos básicos del tren de potencia de un aerogenerador.
En un primer concepto básico el generador está situado entre el rotor y la estructura de soporte. Uno de sus problemas es que el entrehierro entre el rotor del generador y el estator del generador está influenciado por las cargas del rotor. Los momentos de giro y basculación del rotor causan deflexiones al eje principal que mueven el rotor del generador hacia el estator del generador. En un segundo concepto básico, el generador está situado delante del rotor. El entrehierro entre el rotor del generador y el estator del generador está entonces menos influenciado por las cargas del rotor ya que tanto el estator del generador como el rotor del generador se mueven conjuntamente con las deflexiones del eje principal. Ahora bien, la holgura interna de los cojinetes principales aún puede causar variaciones en el entrehierro como consecuencia de las cargas del rotor.
En un tercer concepto básico, el generador está situado detrás de la torre y conectado al rotor eólico por un eje principal. Un problema planteado por este concepto es que el eje principal puede flectar bajo altas cargas del rotor causando variaciones en el entrehierro entre el rotor del generador y el estator del generador. Se conocen varias propuestas que se ocupan de este problema.
En WO 01/94779 A1 se describe una estructura conectora entre el buje del rotor y el generador constituida por eje dividido en dos partes y soportado por dos unidades de cojinetes.
En WO 02/33254 A1 la estructura conectora entre el buje del rotor y el generador es un eje principal soportado por dos cojinetes dispuestos encima de una base situada en lo alto de la torre. Las deformaciones del generador se evitan por medio de un acoplamiento no-rotatorio entre el estator del generador y la base del aerogenerador.
En WO 2009/05664 la estructura conectora entre el buje del rotor y el generador es un eje principal soportado por dos cojinetes dispuestos encima de una base situada en lo alto de la torre. Las deformaciones del generador se evitan por medio de un acoplamiento entre el alojamiento del generador y la estructura de soporte del aerogenerador.
Las propuestas conocidas no resuelven satisfactoriamente el problema de evitar variaciones del entrehierro del generador y esta invención está orientada a la solución de ese inconveniente. SUMARIO DE LA INVENCIÓN
Es un objeto de la presente invención proporcionar un aerogenerador con un tren de potencia accionado directamente, con el generador situado detrás de la torre y conectado con el rotor eólico por medio de un eje principal, que mantiene sin variaciones significativas el entrehierro entre el rotor del generador y el estator del generador.
Es otro objeto de la presente invención proporcionar un aerogenerador con un tren de potencia accionado directamente, con el generador situado detrás de la torre y conectado con el rotor eólico por medio de un eje principal, que minimiza el peso del buje del rotor y del cojinete principal.
Es otro objeto de la presente invención proporcionar un aerogenerador con un tren de potencia accionado directamente, con el generador situado detrás de la torre y conectado con el rotor eólico por medio de un eje principal, que minimiza el peso del eje principal.
Estos y otros objetos se consiguen proporcionando un aerogenerador que comprende una torre, una estructura de soporte montada sobre la torre, un tren de potencia incluyendo un generador de imanes permanentes que está accionado directamente por un rotor eólico, comprendiendo un buje de rotor y al menos una pala, a través de un eje de generador rígidamente conectado al eje principal, estando el rotor eólico y el generador situados en lados opuestos respecto a la torre, estando el generador soportado por el eje del generador mediante una unidad de cojinetes, estando el buje del rotor soportado por la estructura de soporte mediante un cojinete principal, preferentemente un cojinete de doble hilera de rodillos cónicos, que no permite la transmisión de momentos flectores; estando adaptadas las conexiones entre el cojinete principal, el eje principal y el eje del generador para transmitir el par del rotor eólico al eje de generador sin movimientos de flexión.
En una realización preferente, la unidad de cojinetes del generador comprende dos cojinetes, preferentemente cojinetes de una hilera de rodillos cónicos, y el eje principal está conectado con dicho cojinete principal por medio de una primera disposición de acoplamiento y al eje del generador por una segunda disposición de acoplamiento, estando ambas disposiciones de acoplamiento configuradas para mantener alineados el eje principal y el eje del generador. Se consigue con ello una configuración de aerogenerador que asegura que no haya variaciones del entrehierro entre el rotor del generador y el estator del generador.
En otra realización preferente, la unidad de cojinetes del generador comprende un cojinete, preferentemente un cojinete esférico, y el eje principal está conectado con dicho cojinete principal por medio de una primera disposición de acoplamiento configurada para mantener alineados el eje principal y el eje del generador. Se consigue con ello un aerogenerador con un tren de potencia simplificado en el que el entrehierro entre el rotor del generador y el estator del generador puede tener lugar una pequeña y limitada variación.
Otras características y ventajas de la presente invención se desprenderán de la siguiente descripción detallada de una realización ilustrativa y no limitativa de su objeto en relación con la figura que se acompaña.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 es una vista en sección transversal de un aerogenerador conocido en la técnica.
La Figura 2 es una vista esquemática de una primera realización de un tren de potencia de un aerogenerador según la presente invención.
La Figura 3 es una vista esquemática de una segunda realización de un tren de potencia de un aerogenerador según la presente invención.
DESCRIPCION DETALLADA DE REALIZACIONES PREFERENTES
Esta invención se refiere a un tren de potencia accionado directamente estando el generador situado detrás de la torre, es decir siguiendo el tercer concepto básico mencionado en los antecedentes, y, para su mejor comprensión, describiremos brevemente en primer término aquellas características de la configuración descrita en WO 2009/05664 que están presentes en un aerogenerador según la presente invención.
Siguiendo la Figura 1 puede verse que la configuración del tren de potencia está basado en un eje principal 29 que se extiende sobre la torre 11 desde el buje del rotor 17 hasta el generador PM 41.
El tren de potencia comprende un buje de rotor 17 rotatorio al que están unidas una o más palas 18, un eje principal 29 y un generador PM 41 que comprende un rotor de generador 55 y un estator de generador 57.
El eje principal 29 está conectado al buje del rotor 17 y al eje del generador 43 para llevar a cabo la transferencia directa del par motor al rotor del generador 55.
Según una primera realización de esta invención mostrada en la Figura 2, destacando las diferencias respecto a la configuración conocida en la técnica, el generador 41 está conectado con el buje del rotor 17 a través del eje principal 29 que es un puro eje transmisor porque el buje del rotor 17 está unido a un cojinete principal 27, tal como un cojinete de doble hilera de rodillos cónicos, que es capaz de soportar las cargas de momentos del rotor eóiico 15. Por tanto el cojinete principal 27 no permite la transmisión de momentos flectores por parte del eje principal 29. El cojinete principal 27 está unido a la estructura de soporte 13.
Por otra parte, el generador 41 está realizado como una unidad independiente con cojinetes internos 45, 47 que aseguran que haya ninguna variación del entrehierro entre el rotor del generador 55 y el estator del generador 57.
Se usan unos acoplamientos 31 , 33 en las conexiones entre el cojinete principal 27 y el eje principal 29 y entre el eje principal 29 y el eje del generador 43. Estos acoplamientos 31 , 33 absorben las desalineaciones entre el cojinete principal 27 y las posiciones de montaje del generador 41. También absorben las deflexiones angulares del cojinete principal 27 debidas a cargas de momentos.
En la segunda realización de la invención mostrada en la Figura 3 destacando las diferencias con respecto a la configuración conocida en la técnica, en lugar de usar dos cojinetes en el generador 41 solo se usa un cojinete esférico 49. Esto permite deflexiones angulares del rotor del generador 55 y por tanto solo se requiere un acoplamiento 31 entre el cojinete principal 27 y el eje principal 29. En esta realización el entrehierro entre el rotor del generador 55 y el estator del generador 57 puede tener lugar alguna pequeña variación porque el eje principal 29 puede estar sometido a alguna carga de momentos y el cojinete esférico 49 puede causar alguna variación del entrehierro, aunque debido a la longitud del eje principal, la variación será mínima.
Entre las ventajas de la invención, se pueden encontrar las siguientes:
- Las dimensiones del buje del rotor 17 y del cojinete principal 27 pueden ser optimizadas de acuerdo con las cargas del rotor (no existe ningún eje entre ellos). Se mantiene por ello un peso bajo del buje del rotor 17 y del cojinete principal 27 lo que también afecta al resto de la estructura del aerogenerador. Se minimiza con ello el coste total del aerogenerador.
- El eje principal 29 no necesita ser dimensionado para cargas de momentos, solo para cargas de transmisión del par. Se minimiza por consiguiente el peso y coste del eje principal 29.
Aunque la presente invención se ha descrito enteramente en conexión con realizaciones preferidas, es evidente que se pueden introducir aquellas modificaciones dentro del alcance de, no considerando éste como limitado por las anteriores realizaciones, sino por el contenido de las reivindicaciones siguientes.

Claims

REIVINDICACIONES
1. - Aerogenerador que comprende una torre (11), una estructura de soporte (13) montada sobre la torre (11), un tren de potencia incluyendo un generador (41) de imanes permanentes que está accionado directamente por un rotor eólico (15), comprendiendo un buje de rotor (17) y al menos una pala (18), a través de un eje de generador (43) rígidamente conectado al eje principal (29), estando el rotor eólico (15) y el generador (41) situados en lados opuestos respecto a la torre (11), estando soportado el generador (41) por el eje del generador (43) mediante una unidad de cojinetes, caracterizado porque:
a) el buje del rotor (17) está soportado por la estructura de soporte (13) mediante un cojinete principal (27) que no permite la transmisión de momentos flectores;
b) las conexiones entre el cojinete principal (27), el eje principal (29) y el eje del generador (43) están adaptadas para transmitir el par del rotor eólico al eje de generador (43) sin movimientos de flexión.
2. - Aerogenerador según la reivindicación 1 , caracterizado porque el cojinete principal (27) es un cojinete de doble hilera de rodillos cónicos.
3. - Aerogenerador según cualquiera de las reivindicaciones 1-2, caracterizado porque la unidad de cojinetes del generador comprende dos cojinetes (45, 47) y porque el eje principal (29) está conectado con dicho cojinete principal (27) por medio de una primera disposición de acoplamiento (31) y al eje del generador (43) por una segunda disposición de acoplamiento (33), estando ambas disposiciones de acoplamiento (31 , 33) configuradas para mantener alineados el eje principal (29) y el eje del generador (43).
4. - Aerogenerador según la reivindicación 4, caracterizado porque dichos cojinetes (45, 47) son cojinetes de una hilera de rodillos cónicos.
5. - Aerogenerador según cualquiera de las reivindicaciones 1-2, caracterizado porque la unidad de cojinetes del generador comprende un cojinete (49) y porque el eje principal (29) está conectado con dicho cojinete principal (27) por medio de una primera disposición de acoplamiento (31) configurada para mantener alineados el eje principal (29) y el eje del generador (43).
6. - Aerogenerador según la reivindicación 5, caracterizado porque dicho cojinetes (49) es un cojinete esférico.
PCT/ES2010/000468 2009-11-20 2010-11-18 Un tren de potencia de un aerogenerador accionado directamente WO2011061363A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/510,005 US20120243999A1 (en) 2009-11-20 2010-11-18 Directly driven wind turbine drive train specification identification
EP10831172.1A EP2503147A4 (en) 2009-11-20 2010-11-18 DIRECTLY OPERATED DRIVE TRAIN FOR A WIND ENERGY SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200902201 2009-11-20
ES200902201A ES2360159B1 (es) 2009-11-20 2009-11-20 Un tren de potencia de un aerogenerador accionado directamente.

Publications (1)

Publication Number Publication Date
WO2011061363A1 true WO2011061363A1 (es) 2011-05-26

Family

ID=44013076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000468 WO2011061363A1 (es) 2009-11-20 2010-11-18 Un tren de potencia de un aerogenerador accionado directamente

Country Status (4)

Country Link
US (1) US20120243999A1 (es)
EP (1) EP2503147A4 (es)
ES (1) ES2360159B1 (es)
WO (1) WO2011061363A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2372150B1 (en) * 2010-03-29 2013-12-18 Alstom Renovables España, S.L. Wind turbine
EP2740933A1 (de) 2012-12-06 2014-06-11 Nordex Energy GmbH Windenergieanlage
EP2740932A1 (de) 2012-12-06 2014-06-11 Nordex Energy GmbH Windenergieanlage
EP2740934A1 (de) 2012-12-06 2014-06-11 Nordex Energy GmbH Windenergieanlage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871377B1 (en) * 2013-11-07 2017-01-25 Aktiebolaget SKF Bearing unit for fluid machinery application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059296A1 (en) * 2000-02-10 2001-08-16 Abb Ab Power generating device
WO2001094779A1 (en) 2000-06-06 2001-12-13 Abb Ab A power generating device
WO2002033254A1 (en) 2000-10-19 2002-04-25 Energiutvikling As Windmill
WO2009005664A1 (en) 2007-06-29 2009-01-08 Caterpillar Inc. Automated lost load response system
ES2322012A1 (es) * 2007-10-29 2009-06-15 GAMESA INNOVATION & TECHNOLOGY, S.L. Un tren de potencia mejorado de un aerogenerador.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10242707B3 (de) * 2002-09-13 2004-04-15 Aerodyn Engineering Gmbh Windenergieanlge mit konzentrischer Getriebe/Generator-Anordnung
KR100695012B1 (ko) * 2006-03-24 2007-03-14 유니슨 주식회사 풍력 발전기
EP2014917B1 (en) * 2007-07-10 2017-08-30 Siemens Aktiengesellschaft Minimising wind turbine generator air gap with a specific shaft bearing arrangement
ES2448574T3 (es) * 2008-12-02 2014-03-14 Vestas Wind Systems A/S Método para instalar una turbina eólica, una góndola para una turbina eólica, y método para transportar elementos de una turbina eólica
DE102009015926A1 (de) * 2009-04-01 2010-10-07 Schuler Pressen Gmbh & Co. Kg Gondel mit mehrteiliger Hauptwelle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059296A1 (en) * 2000-02-10 2001-08-16 Abb Ab Power generating device
WO2001094779A1 (en) 2000-06-06 2001-12-13 Abb Ab A power generating device
WO2002033254A1 (en) 2000-10-19 2002-04-25 Energiutvikling As Windmill
WO2009005664A1 (en) 2007-06-29 2009-01-08 Caterpillar Inc. Automated lost load response system
ES2322012A1 (es) * 2007-10-29 2009-06-15 GAMESA INNOVATION & TECHNOLOGY, S.L. Un tren de potencia mejorado de un aerogenerador.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2503147A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2372150B1 (en) * 2010-03-29 2013-12-18 Alstom Renovables España, S.L. Wind turbine
EP2740933A1 (de) 2012-12-06 2014-06-11 Nordex Energy GmbH Windenergieanlage
EP2740932A1 (de) 2012-12-06 2014-06-11 Nordex Energy GmbH Windenergieanlage
EP2740934A1 (de) 2012-12-06 2014-06-11 Nordex Energy GmbH Windenergieanlage

Also Published As

Publication number Publication date
ES2360159A1 (es) 2011-06-01
ES2360159B1 (es) 2012-04-10
US20120243999A1 (en) 2012-09-27
EP2503147A4 (en) 2014-06-04
EP2503147A1 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
ES2540783T3 (es) Conjunto de guiñada para uso en turbinas eólicas
ES2451000T3 (es) Aerogenerador
CN102639867B (zh) 风力机
ES2583637T3 (es) Instalación de energía eólica
WO2011061363A1 (es) Un tren de potencia de un aerogenerador accionado directamente
ES2619722T3 (es) Montaje de rotor de velocidad regulable para turbina eólica
JP2013534592A (ja) 垂直軸風車
ES2322012B1 (es) Un tren de potencia mejorado de un aerogenerador.
ES2400090B1 (es) Un modulo de anillos colectores para aerogeneradores accionados directamente
ES2953435T3 (es) Turbina eólica de accionamiento directo
JP5467424B2 (ja) 複合型風力発電装置
JP2012092651A (ja) 風力発電装置
ES2639649T3 (es) Turbina eólica con dos rotores
ES2277795B1 (es) Un tren de potencia de un aerogenerador.
KR20120034865A (ko) 풍력발전기용 풍차의 구조 및 동력전달방법
KR100680915B1 (ko) 풍력 발전기용 풍차구조
KR101045352B1 (ko) 보조블레이드를 갖는 풍력발전기
JP6836769B2 (ja) 流体機械および発電装置
JP2008255977A (ja) 風力発電装置
WO2011051524A2 (es) Tren de potencia mejorado de un aerogenerador.
KR102021575B1 (ko) 집풍식 풍력 발전장치
ES2820319T3 (es) Turbina eólica
JP5361026B1 (ja) 風車の風向制御装置2
US20180017037A1 (en) Hub and Rotor Assemby for Wind Turbines with Conjoined Turbine Blades
ES2315091B1 (es) Dispositivo para la generacion de energia electrica a partir de un fluido.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831172

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010831172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010831172

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13510005

Country of ref document: US