Nothing Special   »   [go: up one dir, main page]

WO2011059145A1 - Structure using steel pile - Google Patents

Structure using steel pile Download PDF

Info

Publication number
WO2011059145A1
WO2011059145A1 PCT/KR2010/001001 KR2010001001W WO2011059145A1 WO 2011059145 A1 WO2011059145 A1 WO 2011059145A1 KR 2010001001 W KR2010001001 W KR 2010001001W WO 2011059145 A1 WO2011059145 A1 WO 2011059145A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
pipe pile
ground
fixed
concrete
Prior art date
Application number
PCT/KR2010/001001
Other languages
French (fr)
Korean (ko)
Inventor
임철
Original Assignee
Lim Cheol
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090109327A external-priority patent/KR20110052338A/en
Priority claimed from KR2020090014734U external-priority patent/KR200459851Y1/en
Priority claimed from KR1020090109316A external-priority patent/KR101111079B1/en
Priority claimed from KR1020090109308A external-priority patent/KR20110052321A/en
Priority claimed from KR1020100007274A external-priority patent/KR101136945B1/en
Application filed by Lim Cheol filed Critical Lim Cheol
Publication of WO2011059145A1 publication Critical patent/WO2011059145A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/10Deep foundations
    • E02D27/12Pile foundations
    • E02D27/14Pile framings, i.e. piles assembled to form the substructure
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls

Definitions

  • the present invention relates to a structure using a steel pipe pile, and more particularly, a steel pipe pile in which various kinds of structures such as bridges, retaining walls, water buildings, and houses are stably constructed on the ground based on the seismic steel pipe piles embedded in the ground. It relates to a ground structure using.
  • the bearing capacity of the ground is increased by injecting various piles into the ground so that the structure can obtain sufficient support from the ground.
  • the construction method of the pile to support the various structures as described above there is a type pile method, on-site casting pile method and embedded pile method, and the type pile method is a method of excavation by hitting the steel pipe
  • the site casting pile method is a casing It is a method of constructing piles at the site by excavating the inside of the casing and placing concrete in the casing.
  • the embedding pile method is a method to secure bearing capacity by laying steel pipe piles after excavating the ground in advance.
  • the embedded pile method is a construction method of injecting piles while digging the ground using excavation equipment such as Earth Auger, and filling the concrete at the tip of the pile. There is an advantage that can greatly improve the ground vibration problem.
  • the conventional buried pile construction method first excavating the ground using an auger (a), and then filling the tip fixed liquid (concrete grout) from the bottom of the excavation hole to a predetermined height (typically 60 cm) b) If the tip fixed liquid layer is cured to some extent, fill the fixed surface (concrete grout) on the upper side (c), and insert the steel pipe into the excavation hole so that the tip of the steel pipe is seated on the tip fixed liquid layer (d) (e). This completes the construction process of the purchase pile.
  • the bearing force of the tip portion due to the load acting in the lateral direction is inevitably weak. That is, when a gap is formed between the lower end of the steel pipe and the side wall of the excavation hole, the steel pipe may flow as much as the gap when a load is applied in the lateral direction.
  • the space between the excavation side wall and the steel pipe may be narrowed by using a steel pipe having a diameter ⁇ close to the diameter of the excavation hole to ensure sufficient rigidity.
  • a steel pipe having a diameter ⁇ close to the diameter of the excavation hole to ensure sufficient rigidity.
  • the steel pipe according to the prior art has a problem in that the material is separated from the concrete and the steel pipe due to the allowable stress difference in the pile front end, the rigidity is lowered, the end occlusion effect is uncertain, and the bearing capacity is weakened.
  • the pile according to the prior art is not able to guarantee a sufficient bearing force when a strong load is applied from the upper side, in particular, there is a fear that the lower front end portion of the pile by the load acting in the lateral direction.
  • the present invention has been proposed to solve the above problems, it is possible to ensure a sufficient space between the steel pipe pile and the excavation side wall can be made easily such as concrete pouring, at the same time of the steel pipe pile It is an object of the present invention to provide a seismic resistant steel pipe pile and a construction method thereof that are provided with a support force expanding device at the distal end to secure a solid support force even in loads in the vertical and lateral directions.
  • Bridge structure for achieving the above object is at least two ribs are radially fixed to the outside of the hollow cylindrical steel pipe tip portion, the bottom of the rib has a donut having a larger diameter than the steel pipe Steel pipe pile to which the expansion plate of the mold is fixed; Mold support beam stacked on top of the steel pipe pile; A composite beam stacked on the mold support, the composite beam including a first beam, a second beam stacked on top of the first beam, and a padding plate attached to upper and lower ends of the first beam and lower ends of the second beam; And a porous plate stacked on top of the composite beam, wherein the steel pipe pile is fixed and supported by concrete mixed with an antirust admixture in an excavation hole of the ground, and the composite beam is provided with the first beam, the second beam, and the splice plate. It is characterized by being fastened by a bolt passing through.
  • At least two or more ribs are radially fixed to the outside of the hollow cylindrical steel pipe tip, and a donut type expansion plate having a diameter larger than the steel pipe is fixed to the bottom of the rib.
  • a donut type expansion plate having a diameter larger than the steel pipe is fixed to the bottom of the rib.
  • ribs are radially fixed to the outside of the hollow cylindrical steel pipe tip, and a donut type expansion plate having a diameter larger than that of the steel pipe is fixed to the bottom of the rib.
  • a steel pipe pile in which ' ⁇ '-shaped guide rails are symmetrically fixed to each other outside of the steel pipe, and the lower buried portion of the steel pipe to which the ribs and the expansion plate are fixed is fixed by a concrete layer in the ground, and the guide rail
  • the earth plate is sequentially inserted sliding, characterized in that the plurality of steel pipe top is configured to be connected to each other by a connecting member.
  • At least two or more ribs are radially fixed to the outside of the hollow cylindrical steel pipe tip, and the bottom surface of the rib is a donut-type expansion plate having a larger diameter than the steel pipe is fixed.
  • Steel pipe piles ; And a water base member configured to be in contact with the water surface and having a flat base portion for supporting various constructions on the top, and a support portion inserted into the steel pipe to support the base portion, and fastened to an upper end of the steel pipe pile.
  • the lower end of the steel pipe pile is embedded in an excavation hole of the underwater ground, and is fixedly supported on the ground by a concrete layer placed in the excavation hole, and the upper end of the steel pipe pile is configured to protrude above the surface of the water to fasten the water member. It is characterized by.
  • the base portion is configured to flow up and down according to the height of the water surface by buoyancy It features.
  • the seismic housing structure according to the embodiment of the present invention is a seismic housing structure in which the foundation slabs, interlayer slabs and roof slabs are formed on the ground with a plurality of steel pipe piles introduced into the ground, wherein the steel pipe piles are hollow. At least two ribs are radially fixed to the outside of the lower end of the cylindrical steel pipe, and the tip of the donut-shaped expansion plate is fixed to the bottom of the rib, and the concrete is poured by injecting underground drilling holes, and the foundation slab protrudes to the ground surface.
  • the steel pipe pile is formed by a reinforced concrete method to form a foundation floor based on the axis.
  • a rubber or silicon shock absorbing pad is interposed between the steel pipe pile and the foundation slab to impart earthquake resistance by earthquakes. It is characterized in that the configuration.
  • the support shaft on the upper side of the foundation slab is formed by connecting a steel box of a rectangular shape (Steel Box) integrally with the upper end of the steel pipe pile, or concrete is poured in a square shape along the outer peripheral surface of the steel pipe pile Characterized in that the steel pipe is made of concrete (SRC).
  • Step Box steel box of a rectangular shape
  • SRC concrete
  • Steel pipe pile of the present invention is secured enough space between the steel pipe and the excavation side wall to facilitate the construction, such as concrete placing, at the same time the front end of the steel pipe pile is inserted into the ground is provided with a support force expansion device vertical and lateral direction It is possible to secure a solid supporting force against the load of the furnace.
  • Figure 2 is a cross-sectional view showing in detail the tip of the penetration pile according to the prior art
  • FIG. 3 is a perspective view showing a steel pipe pile according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing in detail the front end of the steel pipe pile according to the first embodiment of the present invention
  • FIG. 6 is a side view showing a bridge structure according to a second embodiment of the present invention.
  • FIG. 7 is a front view showing the bridge structure according to the embodiment of FIG.
  • FIG. 8 is a perspective view showing a composite beam of the bridge structure according to the embodiment of FIG.
  • FIG. 9 is a side cross-sectional view showing a cut retaining wall according to a third embodiment of the present invention.
  • FIG. 10 is a front sectional view showing the cut retaining wall according to the embodiment of FIG.
  • FIG. 11 is a perspective view showing a retaining wall according to a fourth embodiment of the present invention.
  • FIG. 12 is a perspective view showing the steel pipe pile of the retaining wall according to the embodiment of FIG.
  • FIG. 13 is a front view showing the water structure according to the fifth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing the water member according to the embodiment of FIG. 13,
  • 15 is a process chart showing the construction process of the steel pipe pile according to the embodiment of FIG.
  • FIG. 16 is a front sectional view showing a seismic housing according to a sixth embodiment of the present invention.
  • FIG. 17 is a cross-sectional view illustrating a slab fixing state of the seismic housing according to the embodiment of FIG. 16;
  • FIG. 18 is a cross-sectional view showing the steel pipe pile structure of the seismic housing according to the embodiment of FIG.
  • Civil construction according to an embodiment of the present invention is to be constructed on the upper side of the earthquake-resistant steel pipe piles in the ground, bridges for bicycle roads or bridge construction for subway construction, incision site or underground trench construction
  • Various structures can be constructed, such as retaining wall structures for earthquake barriers, water structures installed on the surface of the sea or river, and earthquake-resistant houses with seismic resistance.
  • the first embodiment of the present invention relates to a steel pipe pile and a construction method thereof.
  • FIG 3 is a perspective view showing the steel pipe pile according to the first embodiment of the present invention
  • Figure 4 is a cross-sectional view showing in detail the front end of the steel pipe pile according to the first embodiment of the present invention
  • Figure 5 is a first embodiment of the present invention Process diagram showing the process of constructing the steel pipe pile according to the example.
  • the steel pipe pile 100 is a rib 120, the bottom surface of the rib 120 is fixed to the outer end of the circular column-shaped steel pipe 110 It includes an expansion plate 130 fixed to.
  • the above-described steel pipe 110 is a configuration for supporting the load on the upper side, is formed in a hollow cylindrical shape having a predetermined diameter ( ⁇ 1).
  • the steel pipe pile according to the prior art is composed of a steel pipe of a diameter smaller than the diameter of the excavation hole (2)
  • the steel pipe pile according to an embodiment of the present invention is a big difference from the diameter of the excavation hole (2)
  • Consisting of a relatively small diameter ( ⁇ 1) of steel pipe Consisting of a relatively small diameter ( ⁇ 1) of steel pipe, the gap between the steel pipe 110 and the excavation hole wall can be inserted into the tremi tube can be easily placed in concrete.
  • it is possible to reduce the construction cost by reducing the amount of raw materials used in the production of the steel pipe by a relatively small diameter steel pipe.
  • the above-described rib 120 is provided with a plurality of fixed to the outside of the tip of the steel pipe 110 by welding, and is fixed radially with respect to the steel pipe 110 and its bottom surface is consistent with the bottom surface of the steel pipe 110. .
  • the rib 120 supports the expansion plate 130 with respect to the steel pipe 110, and is embedded in the concrete layer (3) that is poured in the lower portion of the excavation hole during the embedded pile process.
  • the above-described expansion plate 130 is a donut-shaped disk, which is fixed by welding to the bottom surface of the rib 120 and its inner diameter matches the inner diameter of the steel pipe 110, and the outer diameter ⁇ 2 is the outer diameter of the steel pipe 110. It is larger than ⁇ 1) and is formed with a smaller difference than the inner diameter of the excavation hole (2).
  • the expansion plate 130 is firmly fixed to the front end of the steel pipe 110 and the outer diameter is formed larger than the outer diameter of the steel pipe serves to enlarge the diameter of the front end of the steel pipe 110.
  • the gap formed between the steel pipe 110 and the side wall of the excavation hole 2 at the tip when the steel pipe pile 100 is inserted into the excavation hole is much narrower than when the expansion plate 130 is not provided. As it loses, the bearing capacity of the tip of the steel pipe is increased accordingly.
  • the steel pipe pile 100 having the structure as described above is a steel pipe 110 of a relatively small diameter ( ⁇ 1) by the rib 120 and the expansion plate 130 provided at the front end of the steel pipe 110, compared to the prior art. Even if it is configured, it can exhibit the same rigidity, and at the same time, it is possible to solve the problem of increase in construction cost due to the increase in the raw material price of metal materials.
  • the steel pipes of ⁇ 406 and ⁇ 812 diameters according to the first embodiment of the present invention may exhibit the same or more rigidity than those of the steel pipes of ⁇ 506 and ⁇ 1500 diameters according to the prior art, respectively.
  • to the inside of the front end of the steel pipe 110 may be further coupled to the reinforcing bar member on the mesh in order to increase the coupling force of the concrete (3) and the steel pipe (110).
  • Steel pipe pile 100 having the structure as described above is constructed by the embedding method, looking at the construction process with reference to Figure 5, first, to excavate the ground using the auger (1) to form an excavation hole (a) ). At this time, the case 4 is inserted at the same time as the excavation to prevent the side wall of the excavation hole 2 from collapsing (b).
  • the steel pipe pile 100 according to the first embodiment of the present invention is introduced into the excavation hole 2 (c), and the concrete 3 is poured so that the steel pipe pile 100 in the ground is embedded in the concrete 3. do.
  • the process of drawing out the case 4 at the same time as placing the concrete 3 is made (d).
  • the concrete 3 may be poured concrete by the concrete concrete both inside the steel pipe and between the steel pipe and the excavation wall, but when the gap between the steel pipe and the excavation wall is narrow, cement mortar may be filled between the steel pipe and the excavation wall. have.
  • the concrete (3) is mixed with a rust preventing admixture for preventing corrosion of the steel pipe.
  • Concrete poured into steel pipe piles is the separation of concrete and steel pipe at the stress concentration portion of the tip so that the bearing capacity of the steel pipe pile is dependent only on the rigidity of the steel pipe pile itself.
  • the concrete 3 coupled to the front end of the steel pipe does not have material separation, so that the rigidity of the concrete is converted into steel pipe piles, thereby contributing to raising the rigidity of the steel pipe piles.
  • the concrete filled in and out of the steel pipe increases the period of eigenvalues and the seismic load capacity is greatly improved.
  • the steel pipe piles having a diameter of ⁇ 406 and ⁇ 812 according to the first embodiment of the present invention may exhibit cross-sectional forces equal to or greater than those of the steel pipe piles having diameters of 506 and ⁇ 1500 according to the prior art, respectively.
  • the second embodiment of the present invention relates to a bridge structure and a construction method using the seismic resistant steel pipe piles according to the first embodiment.
  • Figure 6 is a side view showing a bridge structure according to a second embodiment of the present invention
  • Figure 7 is a front view showing a bridge structure according to a second embodiment of the present invention
  • Figure 8 is a second embodiment of the present invention.
  • the mold support 210 is installed on the upper portion of the steel pipe pile 100, the The composite beam 200 is formed on the upper portion.
  • the composite beam 200 is arranged to approximately 2M, the upper portion of the composite beam 200 is provided with a perforated plate 240 in contact.
  • the perforated plate 240 is mounted so that both ends of the composite beam 200 over the upper surface, it is fixed to the composite beam 200 by welding or lever.
  • the steel pipe pile 100 is constructed according to the first embodiment of the present invention, by sequentially forming the mold support beam 210, the composite beam 200, the perforated plate 240 on the top of the steel pipe pile 100, When constructing a subway, it can be usefully applied to the construction of temporary bridge structures for general vehicles or pedestrian traffic, or bridge structures for walkways or bicycle paths along beaches or riversides.
  • the composite beam includes a first beam 220 supported on the mold support 210 and the first beam 220.
  • the second beam 230 and the first beam 220 and the second beam 230 which are stacked on the first beam 220 and are positioned on the bottom surface of the porous plate 240 to support the porous plate 240 are supported. It comprises a connecting means 250 for connecting to each other.
  • the size of the first beam 220 and the second beam 230 may vary depending on the width of the road, the height (H) X width (B) X thickness (t1) when the road width of the temporary construction is 16 to 30M
  • the first beam is 800 ⁇ 300 ⁇ 14 ⁇ 16
  • the second beam is 300 ⁇ 300 ⁇ 10 ⁇ 15 to 800 ⁇ 800 ⁇ 14 ⁇ 16.
  • the first beam 220 is 800 X 300 X 14 X 16
  • the second beam 230 is set to 600 ⁇ 300 ⁇ 12 ⁇ 17.
  • the specifications of the second beam 230 should be adjusted upward.
  • HXB 800X300
  • A 2674mm 2
  • second moment (Iy) 2,920,000,000 mm 4
  • section modulus (Zy) 7,300,000mm 3
  • secondary moment (Iy) 8,678,000,000 mm 4
  • section modulus (Zy) 12,205,344 mm 3 .
  • the composite beam 100 has a structure in which the first beam 220 and the second beam 230 are stacked, and simply values the values of the first beam 220 and the second beam 230. It can be seen that the cross-sectional area, second moment, and section modulus items are significantly improved.
  • the connecting means 250 is spot welded 251 at both ends of the first beam 220 and the second beam 230, or the first beam 220 and the second beam 230 of the second beam 230.
  • An additional joint plate 252 may be padded at both ends, and the bolt 253 may pass through the second beam 230, the additional joint plate 252, and the first beam 220.
  • the composite beam 200 can be used by simply connecting a plurality of common mold beams in the field as the connecting means 250, while reducing the construction period and cost, and at the same time Excellent performance.
  • a third embodiment of the present invention relates to a retaining wall constructed in an incision site using a seismic resistant steel pipe pile according to the first embodiment, and a construction method thereof.
  • Figure 10 is a front sectional view showing a cut retaining wall according to a third embodiment of the present invention.
  • the cut retaining wall 300 is formed of a concrete retaining wall 300 that is supported by a plurality of steel pipe piles 100, the tip of which is embedded in the ground deep.
  • the reinforcing member 310 is constructed along the plurality of steel pipe piles 100 which are constructed to protrude to the ground according to the first embodiment of the present invention, and the retaining wall 300 to the outside of the reinforcing member 310. Construct a formwork (not shown) to form the shape of.
  • the retaining wall 300 is formed by pouring concrete 320 into the formwork, and after the casted concrete 320 is properly cured, the formwork is removed, and the retaining wall 300 is completed by the exterior treatment. Thereafter, the space between the retaining wall 300 and the cutout may be filled with the earth and sand 30, and the upper portion of the filled earth and sand 30 may be covered with a nonwoven fabric 40, or may be boiled with vegetation.
  • Retaining wall according to the prior art is a structure that must be connected to the left and right processing stone with a connecting pin, the anchor and the connecting wire, ground reinforcement to each other while stacking the processing stone, one by one, the process is difficult and complicated.
  • the bearing capacity was weak and cracked in the retaining wall or the ground subsided by load.
  • the retaining wall according to the third embodiment of the present invention can be simply constructed by placing concrete, and is able to stably withstand the pressure of the incision soil due to being buried to a predetermined depth of the ground and supported by a firmly fixed steel pipe pile. do.
  • the fourth embodiment of the present invention relates to an earth block structure for underground excavation construction using the seismic resistant steel pipe piles according to the first embodiment, and a construction method thereof.
  • FIG 11 is a perspective view showing a retaining wall according to a fourth embodiment of the present invention
  • Figure 12 is a perspective view showing a steel pipe pile of the retaining wall according to a fourth embodiment of the present invention.
  • the construction of the retaining wall 400 according to the fourth embodiment of the present invention purchases a plurality of earthquake-resistant steel pipe piles 100 in accordance with the first embodiment of the present invention to a depth deep in the ground.
  • the earth plate 410 is inserted into the guide rail 140 of the steel pipe pile 100 in accordance with the excavation construction.
  • the steel pipe pile 100 is purchased at regular intervals in the same process as in the first embodiment of the present invention along the edge of the predetermined area where the excavation work is to be carried out, and after a predetermined time that the concrete 3 is sufficiently cured, Proceed with the excavation. Simultaneously inserting the earth plate 410 along the guide rail 140 of the steel pipe pile 100 at the same time as the digging process to prevent the soil from falling down, the digging work can proceed smoothly.
  • the excavation work up to a predetermined depth may be performed.
  • the top of the plurality of steel pipe pile 100 may be configured to be connected to each other by a connecting member 420 using H-shaped steel, etc. in order to improve the bearing capacity for the earth and sand pressure.
  • the steel pipe pile of the retaining wall 400 has a lower pile A, which is buried and fixed in the ground, and an upper pile installed with a digging construction. It is divided into (B). A guide rail 140 is formed in the upper pile B, and the earth plate 410 is inserted along the guide rail 140 to prevent the soil wall from falling down.
  • the guide rail 140 is configured to be inserted while the earth plate 410 is slid, the earth plate 410 is easily slid into a ' ⁇ ' shaped sliding piece to prevent the forward movement by the earth pressure Is formed.
  • the guide rail 140 of the structure as described above is the steel pipe 110 in the upper end, that is, the trench is performed in the entire length of the steel pipe pile 100, except for the portion where the steel pipe 110 is embedded into the ground (10) Are formed symmetrically on both sides.
  • the soil retaining wall 400 according to the fourth embodiment of the present invention having the above-described configuration uses a seismic resistant steel pipe pile 100, the steel pipe pile 100 embedded in the ground is stably supported and supported, and thus, separate sides. Since the brace reinforcement is not constructed, the construction can proceed safely and efficiently.
  • the fifth embodiment of the present invention relates to a water structure and its construction method that is constructed on the surface of the sea or river using the steel pipe pile according to the first embodiment.
  • FIG. 13 is a front view illustrating a water structure according to a fifth embodiment of the present invention
  • FIG. 14 is a cross-sectional view illustrating a water member according to the embodiment of FIG. 13
  • FIG. 15 is a construction of a steel pipe pile according to the embodiment of FIG. 13. Process diagram showing the process.
  • the water structure according to the fifth embodiment of the present invention is a structure in which the water member 500 is constructed on the surface of the steel pipe pile 100 with the support shaft, as shown in FIG. 13, according to the first embodiment of the present invention.
  • the mooring pile is constructed using the steel pipe pile 100, and various water structures are constructed on the top thereof.
  • the process of constructing the steel pipe pile according to the fifth embodiment of the present invention is performed in the same manner as the process of constructing the steel pipe pile according to the first embodiment.
  • according to the fifth embodiment is made in the sea or the water of the river, as shown in Figure 15 is inserted into the upper end of the steel pipe pile 100 protrudes above the water surface (20).
  • the water member 500 according to the fifth embodiment of the present invention is connected to the upper end of the support portion 510 and the support portion 510 fastened to the plurality of steel pipe piles 100, as shown in FIG.
  • the base portion 520 is mounted. That is, the upper end of the plurality of steel pipe pile 100 is connected along the edge of the base portion 520 of the flat panel shape, which is connected to the steel pipe 110 and the base portion 520 through the support 510.
  • the base portion 520 may be made of a material that can float on the surface by buoyancy, or may be provided with floating means (not shown) such as expanded poly-styrene (EPS) or hollow floating balls. .
  • floating means such as expanded poly-styrene (EPS) or hollow floating balls.
  • EPS expanded poly-styrene
  • FIG. 13 Various types of water structures as shown in FIG. 13 may be installed on the base 520.
  • the support part 510 is configured to support the base part from the lower side of the base part 520 and is inserted into each of the plurality of steel pipes 110 to support the base part 520.
  • the receiving member 500 flows along the water surface, so that the support member 510 can be flowed up and down together in accordance with the vertical flow of the water surface, ) Is configured to slide in the vertical direction in the steel pipe pile (100). That is, a sliding member 150 such as a ball is provided between the inner wall of the steel pipe 110 and the outer wall of the support part 510 so that the base part 520 may be raised or lowered as the surface of the steel pipe 110 rises or falls. The support 510 is slid up and down on the inner wall of the steel pipe 110 so as to.
  • a sixth embodiment of the present invention relates to a seismic-proof house and a construction method thereof which are constructed to be safe from earthquakes using the steel pipe pile according to the first embodiment.
  • FIG. 16 is a front sectional view showing a seismic housing according to a sixth embodiment of the present invention
  • Figure 17 is a cross-sectional view showing a slab fixed state of the seismic housing according to the sixth embodiment of the present invention
  • Figure 18 is 6 is a cross-sectional view showing a steel pipe pile structure of a seismic house according to the sixth embodiment.
  • the seismic housing 600 has a plurality of steel pipe piles 100 penetrated into the ground 10 to a predetermined depth with a supporting shaft on the ground surface thereof.
  • the slab 610 is formed, and the interlayer 620 and the roof slab 630 are formed along the outer wall (not shown) at predetermined intervals.
  • the steel pipe pile 100 is used the steel pipe pile 100 according to the first embodiment of the present invention.
  • the slab includes a foundation slab 610 which forms a foundation floor of a building based on the steel pipe pile 100 protruding to the ground surface, and at least one interlayer slab 620 and a roof slab 630 formed at a predetermined height of the foundation slab. ),
  • the slabs are constructed by a general reinforced concrete method. That is, the steel pipe pile 100 is constructed as a reinforcing bar of the mesh structure, the concrete is poured between the slabs are formed.
  • the slab is attached to and fixed to the steel pipe pile, but the foundation slab 610 according to the embodiment of the present invention is spaced apart from the steel pipe pile 100, there is a buffer pad 640 for the buffering action therebetween.
  • a rubber or silicone elastic pad 640 is wound around the steel pipe pile 100 to a predetermined thickness, and concrete is poured along the outer circumference thereof to form the foundation slab 610. Form.
  • the ground (10) is a steel pipe pile according to the first embodiment of the present invention is inserted into the earthquake-resistant support shaft, and in the ground in a rectangular steel box (steel box) or steel pipe concrete (SRC: Steel Reinforced Concrete) Can be configured.
  • (A) is composed of a steel pipe pile of a shock-resistant, or as shown in (B) a predetermined height of the foundation slab 610
  • Square steel box 160 is fastened to the end of the steel pipe pile 100 that protrudes to form a pillar on the ground, as shown in (C) square along the outer circumferential surface of the steel pipe pile 100
  • Steel pipe concrete on which the concrete concrete 170 is poured may form a pillar on the ground.
  • the steel box 160 may be fixed to the end of the steel pipe pile 100 by means of bolting or the like on the upper side of the foundation slab 610.
  • the seismic housing structure as described above is simpler in construction than the conventional structure and can significantly reduce the construction cost, has a primary shock resistance by the steel pipe piles, the secondary pads by inserting a buffer pad between the steel pipe piles and the foundation slabs As it has a seismic resistance can be secured excellent earthquake resistance.
  • the steel pipe pile is used as the steel pipe pile according to the first embodiment, a general steel pipe pile may be used that is not provided with a tip expansion device in the front end portion.
  • the steel pipe pile according to the first embodiment of the present invention as a support shaft, various structures such as bridges, retaining walls, water floating structures, and seismic housing can be stably constructed at a low cost.
  • various structures such as bridges, retaining walls, water floating structures, and seismic housing can be stably constructed at a low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Foundations (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

The present invention relates to a ground structure using steel piles for stably constructing various kinds of structures such as bridges and retaining walls on the ground, buildings on the water and housings, wherein steel piles having resistance to vibration are buried underground as shafts. A bridge structure according to an embodiment of the present invention includes: a steel pile fixed with at least two or more ribs in the radial direction outside the front end portion of a steel pipe, which is in the hollow cylindrical shape, and an extension plate in the doughnut shape with a diameter larger than the steel pipe on the bottom surfaces of the ribs; a main girder supporting beam stacked on top of the steel pile; a composite beam stacked on the main girder supporting beam and formed of a first beam, a second beam stacked on top of the first beam, and overlapping connection plates overlapping the both lower end portions of the first beam and the both upper end portions of the second beam; and a deck plate stacked on top of the composite beam. The steel pile is fixed and supported by concrete, which is mixed with a corrosion inhibiting admixture, in the bore hole in the ground. The composite beam is coupled by bolts which penetrate the first beam, the second beam and the overlapping connection plates.

Description

강관 말뚝을 이용한 구조물Structure using steel pipe pile
본 발명은 강관 말뚝을 이용한 구조물에 관한 것으로, 더욱 상세하게는 지중에 매입되는 내진성의 강관 말뚝을 축으로 지상에는 교량, 옹벽, 수상 건물 및 주택과 같은 다양한 종류의 구조물이 안정적으로 시공되는 강관 말뚝을 이용한 지상 구조물에 관한 것이다.The present invention relates to a structure using a steel pipe pile, and more particularly, a steel pipe pile in which various kinds of structures such as bridges, retaining walls, water buildings, and houses are stably constructed on the ground based on the seismic steel pipe piles embedded in the ground. It relates to a ground structure using.
일반적으로 지하 구조물을 구축하거나 지상에서 가교, 수상 구조물, 옹벽 등과 같은 구조물을 시공하기 위해서는 그 구조물이 지반으로부터 충분한 지지력을 얻을 수 있도록 지중에 각종 말뚝을 관입시켜 지반의 지지력을 증대시킨다.In general, in order to construct an underground structure or to construct a structure such as a bridge, a water structure, a retaining wall, and the like, the bearing capacity of the ground is increased by injecting various piles into the ground so that the structure can obtain sufficient support from the ground.
상기와 같은 다양한 구조물을 지지하기 위한 말뚝의 시공 방법으로는 타입말뚝공법, 현장타설말뚝공법 및 매입말뚝공법 등이 있으며, 타입말뚝공법은 강관을 타격하여 굴착하는 공법이고, 현장타설말뚝공법은 케이싱을 항타하여 근입시킨 후 케이싱 내를 굴착하고 케이싱 내에 콘크리트를 타설하여 현장에서 말뚝을 조성하는 공법이며, 매입말뚝공법은 미리 지반을 굴착한 후 강관 말뚝을 매설하여 지지력을 확보토록 하는 공법이다.The construction method of the pile to support the various structures as described above, there is a type pile method, on-site casting pile method and embedded pile method, and the type pile method is a method of excavation by hitting the steel pipe, the site casting pile method is a casing It is a method of constructing piles at the site by excavating the inside of the casing and placing concrete in the casing. The embedding pile method is a method to secure bearing capacity by laying steel pipe piles after excavating the ground in advance.
상기와 같은 말뚝의 시공 방법 중 매입말뚝공법은 어스 오거(Earth Auger) 등의 굴착 장비를 이용하여 지반을 굴착하면서 말뚝을 관입시키고, 말뚝의 선단부에는 콘크리트를 충진시키는 공정으로 이루어지는 공법으로, 소음과 지반 진동 문제를 크게 개선 시킬 수 있는 장점이 있다.Among the construction methods of the pile construction method, the embedded pile method is a construction method of injecting piles while digging the ground using excavation equipment such as Earth Auger, and filling the concrete at the tip of the pile. There is an advantage that can greatly improve the ground vibration problem.
전술한 말뚝의 시공방법 중 매입말뚝공법에 의한 종래의 말뚝시공과정이 도 1에 도시되어 있다.The conventional pile construction process by the embedded pile construction method of the above-described pile construction method is shown in FIG.
도시된 바와 같이 종래의 매입말뚝 시공방법에 따르면, 먼저 오거를 이용해 지반을 굴착한 후(a), 굴착공의 최하부로부터 소정높이(통상 60㎝)까지 선단고정액(콘크리트 그라우트)을 채워 타설하며(b), 선단고정액층이 어느 정도 양생되면 그 상측에 주면고정액(콘크리트 그라우트)을 채운 다음(c), 강관을 굴착공 내로 삽입하여 강관의 선단이 선단고정액층에 안착 되도록(d)(e) 함으로써 매입말뚝의 시공과정이 모두 완료된다.According to the conventional buried pile construction method as shown, first excavating the ground using an auger (a), and then filling the tip fixed liquid (concrete grout) from the bottom of the excavation hole to a predetermined height (typically 60 cm) b) If the tip fixed liquid layer is cured to some extent, fill the fixed surface (concrete grout) on the upper side (c), and insert the steel pipe into the excavation hole so that the tip of the steel pipe is seated on the tip fixed liquid layer (d) (e). This completes the construction process of the purchase pile.
그러나 전술한 바와 같은 종래의 매입말뚝 시공방법의 경우, 굴착공의 직경에 비하여 상대적으로 강관의 직경이 작기 때문에 측 방향으로 작용하는 하중에 의한 선단부의 지지력이 약할 수밖에 없다. 즉, 강관의 하단과 굴착공의 측벽 사이에 간극이 형성되어 측 방향으로 하중이 작용하는 경우 간극만큼 강관이 유동할 염려가 있다.However, in the conventional buried pile construction method as described above, since the diameter of the steel pipe is relatively small compared to the diameter of the excavation hole, the bearing force of the tip portion due to the load acting in the lateral direction is inevitably weak. That is, when a gap is formed between the lower end of the steel pipe and the side wall of the excavation hole, the steel pipe may flow as much as the gap when a load is applied in the lateral direction.
이를 방지하기 위한 방법으로 도 2에 도시된 바와 같이 충분한 강성을 보장하기 위하여 굴착공의 직경에 가까운 직경(Φ)의 강관을 사용하여 굴착공 측벽과 강관 사이의 공간을 좁힐 수 있으나, 이 경우 좁은 공간으로 콘크리트 타설시 트레미관의 삽입이 어려워 시공성이 저하되며, 특히 상대적으로 굵은 직경의 강관 사용으로 높은 원자재 비용에 의한 시공 비용이 증가하는 문제점이 있다.In order to prevent this, as shown in FIG. 2, the space between the excavation side wall and the steel pipe may be narrowed by using a steel pipe having a diameter Φ close to the diameter of the excavation hole to ensure sufficient rigidity. When the concrete is poured into the space, it is difficult to insert the tremi tube, and thus the construction property is degraded. In particular, the construction cost is increased due to the high raw material cost due to the use of relatively large diameter steel pipes.
또한, 종래의 기술에 따른 강관은 말뚝 선단부에는 허용 응력차에 의한 콘크리트와 강관의 재료 분리가 발생하여 강성이 저하되고, 선단 폐색 효과가 불확실하며, 지지력이 약화되는 문제점이 존재한다.In addition, the steel pipe according to the prior art has a problem in that the material is separated from the concrete and the steel pipe due to the allowable stress difference in the pile front end, the rigidity is lowered, the end occlusion effect is uncertain, and the bearing capacity is weakened.
즉, 종래의 기술에 따른 말뚝은 상측에서 강한 하중이 작용하는 경우 충분한 지지력을 보장할 수 없으며, 특히 측 방향으로 작용하는 하중에 의하여 말뚝의 하측 선단부가 유동될 염려가 있다.That is, the pile according to the prior art is not able to guarantee a sufficient bearing force when a strong load is applied from the upper side, in particular, there is a fear that the lower front end portion of the pile by the load acting in the lateral direction.
따라서 본 발명은 상기와 같은 제반 문제점들을 해결하기 위하여 제안된 것으로, 강관 말뚝과 굴착공 측벽 사이에 충분한 공간이 확보되어 콘크리트 타설과 같은 시공이 용이하게 이루어질 수 있고, 동시에 지중에 관입되는 강관 말뚝의 선단부에는 지지력 확대장치가 구비되어 수직 및 측 방향으로의 하중에 대해서도 견고한 지지력을 확보할 수 있는 내진성의 강관 말뚝 및 그 시공 방법을 제공하는 것을 목적으로 한다.Therefore, the present invention has been proposed to solve the above problems, it is possible to ensure a sufficient space between the steel pipe pile and the excavation side wall can be made easily such as concrete pouring, at the same time of the steel pipe pile It is an object of the present invention to provide a seismic resistant steel pipe pile and a construction method thereof that are provided with a support force expanding device at the distal end to secure a solid support force even in loads in the vertical and lateral directions.
또한, 상기와 같은 내진성의 강관 말뚝을 축으로 간편하게 시공할 수 있으면서 안정적으로 지지되는 다양한 토목 구조물과 그 시공방법을 제공하는 것을 목적으로 한다.In addition, it is an object of the present invention to provide a variety of civil engineering structures and construction methods that can be stably supported while being able to easily install the earthquake-resistant steel pipe pile as described above.
상기와 같은 목적을 달성하기 위한 본 발명의 실시예에 따른 교량 구조물은 중공의 원통 형상의 강관 선단부 외측에 적어도 두 개 이상의 리브가 방사상으로 고정되고, 상기 리브의 저면에는 상기 강관보다 큰 직경을 가지는 도넛형의 확장판이 고정되는 강관 말뚝; 상기 강관 말뚝의 상부에 적층되는 주형지지보; 상기 주형지지보 상부에 적층되며, 제1빔, 상기 제1빔의 상부에 적층되는 제2빔 및 상기 제1빔의 상측 양단부와 제2빔의 하측 양단부에 덧대어지는 덧댐 이음판으로 이루어지는 합성보; 및 상기 합성보의 상부에 적층되는 복공판;을 포함하되, 상기 강관 말뚝은 지반의 굴착공에서 방청혼화제가 혼합된 콘크리트에 의하여 고정 지지되고, 상기 합성보는 상기 제1빔, 제2빔 및 덧댐 이음판을 관통하는 볼트에 의해 체결되는 것을 특징으로 한다.Bridge structure according to an embodiment of the present invention for achieving the above object is at least two ribs are radially fixed to the outside of the hollow cylindrical steel pipe tip portion, the bottom of the rib has a donut having a larger diameter than the steel pipe Steel pipe pile to which the expansion plate of the mold is fixed; Mold support beam stacked on top of the steel pipe pile; A composite beam stacked on the mold support, the composite beam including a first beam, a second beam stacked on top of the first beam, and a padding plate attached to upper and lower ends of the first beam and lower ends of the second beam; And a porous plate stacked on top of the composite beam, wherein the steel pipe pile is fixed and supported by concrete mixed with an antirust admixture in an excavation hole of the ground, and the composite beam is provided with the first beam, the second beam, and the splice plate. It is characterized by being fastened by a bolt passing through.
또한, 본 발명의 실시예에 따른 절개지 옹벽 구조물은 중공의 원통 형상의 강관 선단부 외측에 적어도 두 개 이상의 리브가 방사상으로 고정되고, 상기 리브의 저면에는 상기 강관보다 큰 직경을 가지는 도넛형의 확장판이 고정되는 강관 말뚝으로서, 상기 강관 말뚝의 하단부는 지중에 관입되어 콘크리트에 의해 고정되고, 상기 강관 말뚝의 상단부는 철근부재와 콘크리트층에 의해 다수개가 서로 연결되는 것을 특징으로 한다.In addition, in the cut retaining wall structure according to the embodiment of the present invention, at least two or more ribs are radially fixed to the outside of the hollow cylindrical steel pipe tip, and a donut type expansion plate having a diameter larger than the steel pipe is fixed to the bottom of the rib. As the steel pipe pile, the lower end of the steel pipe pile is inserted into the ground is fixed by concrete, the upper end of the steel pipe pile is characterized in that a plurality of reinforcing members and concrete layers are connected to each other.
또한, 본 발명의 실시예에 따른 흙막이 옹벽 구조물은 중공의 원통 형상의 강관 선단부 외측에 적어도 두 개 이상의 리브가 방사상으로 고정되고, 상기 리브의 저면에는 상기 강관보다 큰 직경을 가지는 도넛형의 확장판이 고정되며, 상기 강관의 외측에서 '⊂'형상의 가이드레일이 서로 대칭적으로 고정되는 강관 말뚝으로서, 상기 리브, 확장판이 고정된 상기 강관의 하측 매입부는 지중에서 콘크리트층에 의해 고정되고, 상기 가이드레일에는 토류판이 순차적으로 슬라이딩 삽입되며, 다수개의 상기 강관 상단은 연결부재에 의해 서로 연결되도록 구성되는 것을 특징으로 한다.In addition, in the retaining wall structure according to an embodiment of the present invention, at least two or more ribs are radially fixed to the outside of the hollow cylindrical steel pipe tip, and a donut type expansion plate having a diameter larger than that of the steel pipe is fixed to the bottom of the rib. And a steel pipe pile in which '⊂'-shaped guide rails are symmetrically fixed to each other outside of the steel pipe, and the lower buried portion of the steel pipe to which the ribs and the expansion plate are fixed is fixed by a concrete layer in the ground, and the guide rail The earth plate is sequentially inserted sliding, characterized in that the plurality of steel pipe top is configured to be connected to each other by a connecting member.
또한, 본 발명의 실시예에 따른 수상 구조물은 중공의 원통 형상의 강관 선단부 외측에 적어도 두 개 이상의 리브가 방사상으로 고정되고, 상기 리브의 저면에는 상기 강관보다 큰 직경을 가지는 도넛형의 확장판이 고정되는 강관 말뚝; 및 수면에서 접촉되어 상부에 다양한 구조물이 시공되기 위한 평판형의 베이스부와 상기 강관의 내측에 삽입되어 상기 베이스부를 지지하는 지지부로 구성되어, 상기 강관 말뚝의 상단부에 체결되는 수상 부재;를 포함하며, 상기 강관 말뚝의 하단부는 수중 지반의 굴착공에 매입되어, 상기 굴착공에 타설되는 콘크리트층에 의해 지반에서 고정 지지되고, 상기 강관 말뚝의 상단부는 수면 위로 돌출되어 상기 수상 부재가 체결되도록 구성되는 것을 특징으로 한다.In addition, in the water phase structure according to the embodiment of the present invention, at least two or more ribs are radially fixed to the outside of the hollow cylindrical steel pipe tip, and the bottom surface of the rib is a donut-type expansion plate having a larger diameter than the steel pipe is fixed. Steel pipe piles; And a water base member configured to be in contact with the water surface and having a flat base portion for supporting various constructions on the top, and a support portion inserted into the steel pipe to support the base portion, and fastened to an upper end of the steel pipe pile. The lower end of the steel pipe pile is embedded in an excavation hole of the underwater ground, and is fixedly supported on the ground by a concrete layer placed in the excavation hole, and the upper end of the steel pipe pile is configured to protrude above the surface of the water to fasten the water member. It is characterized by.
전술한 구성에 있어서, 상기 강관의 내벽과 상기 지지부의 외벽 사이에는 상기 지지부를 상하로 유동 가능하도록 하는 슬라이딩 부재가 구비되어, 부력에 의해 상기 베이스부가 수면의 높이에 따라 상하로 유동되도록 구성되는 것을 특징으로 한다.In the above-described configuration, between the inner wall of the steel pipe and the outer wall of the support portion is provided with a sliding member for allowing the support portion to move up and down, the base portion is configured to flow up and down according to the height of the water surface by buoyancy It features.
또한, 본 발명의 실시예에 따른 내진 주택 구조물은 지반에 관입되는 다수개의 강관 말뚝을 지지축으로 지상에 기초 슬라브, 층간 슬라브 및 지붕 슬라브가 형성되는 내진 주택 구조물에 있어서, 상기 강관 말뚝은 중공의 원통 형상의 강관 하단부 외측에 적어도 두 개 이상의 리브가 방사상으로 고정되며, 상기 리브의 저면에는 도넛 형상의 확장판이 고정된 선단부가 지중의 굴착공으로 관입되어 콘크리트가 타설되고, 상기 기초 슬라브는 지표면으로 돌출된 상기 강관 말뚝을 축으로 기초 바닥을 이루기 위하여 철근 콘크리트 공법으로 형성되며, 상기 강관 말뚝과 기초 슬라브 사이에는 충격을 완화시키기 위하여 고무 또는 실리콘 재질의 충격 완화 패드가 개입되어, 지진에 의한 내진성이 부여되도록 구성되는 것을 특징으로 한다.In addition, the seismic housing structure according to the embodiment of the present invention is a seismic housing structure in which the foundation slabs, interlayer slabs and roof slabs are formed on the ground with a plurality of steel pipe piles introduced into the ground, wherein the steel pipe piles are hollow. At least two ribs are radially fixed to the outside of the lower end of the cylindrical steel pipe, and the tip of the donut-shaped expansion plate is fixed to the bottom of the rib, and the concrete is poured by injecting underground drilling holes, and the foundation slab protrudes to the ground surface. The steel pipe pile is formed by a reinforced concrete method to form a foundation floor based on the axis. A rubber or silicon shock absorbing pad is interposed between the steel pipe pile and the foundation slab to impart earthquake resistance by earthquakes. It is characterized in that the configuration.
전술한 구성에 있어서, 상기 기초 슬라브 상측에서의 지지축은 사각 형상의 스틸 박스(Steel Box)가 상기 강관 말뚝의 상단부와 일체로 연결되어 구성되거나, 상기 강관 말뚝의 외주면을 따라 사각 형상으로 콘크리트가 타설된 강관 콘크리트(SRC)로 구성되는 것을 특징으로 한다.In the above-described configuration, the support shaft on the upper side of the foundation slab is formed by connecting a steel box of a rectangular shape (Steel Box) integrally with the upper end of the steel pipe pile, or concrete is poured in a square shape along the outer peripheral surface of the steel pipe pile Characterized in that the steel pipe is made of concrete (SRC).
본 발명의 강관 말뚝은 강관과 굴착공 측벽 사이에 충분한 공간이 확보되어 콘크리트 타설과 같은 시공이 용이하게 이루어질 수 있고, 동시에 지중에 관입되는 강관 말뚝의 선단부에는 지지력 확대장치가 구비되어 수직 및 측 방향으로의 하중에 대해서도 견고한 지지력을 확보할 수 있다.Steel pipe pile of the present invention is secured enough space between the steel pipe and the excavation side wall to facilitate the construction, such as concrete placing, at the same time the front end of the steel pipe pile is inserted into the ground is provided with a support force expansion device vertical and lateral direction It is possible to secure a solid supporting force against the load of the furnace.
또한, 상기와 같은 내진성의 강관 말뚝을 축으로 안정적으로 지지되는 다양한 구조물을 간편하고 저렴한 비용으로 시공할 수 있다.In addition, it is possible to construct a variety of structures that are stably supported by the earthquake-resistant steel pipe pile as described above simple and low cost.
도 1은 종래의 기술에 따른 강관 말뚝의 시공 과정을 나타낸 공정도,1 is a process chart showing the construction process of the steel pipe pile according to the prior art,
도 2는 종래의 기술에 따른 관입된 말뚝의 선단부를 상세히 나타낸 단면도,Figure 2 is a cross-sectional view showing in detail the tip of the penetration pile according to the prior art,
도 3은 본 발명의 제1실시예에 따른 강관 말뚝을 나타낸 사시도,3 is a perspective view showing a steel pipe pile according to the first embodiment of the present invention,
도 4는 본 발명의 제1실시예에 따른 강관 말뚝의 선단부를 상세히 나타낸 단면도,4 is a cross-sectional view showing in detail the front end of the steel pipe pile according to the first embodiment of the present invention;
도 5는 본 발명의 제1실시예에 따른 강관 말뚝의 시공 과정을 나타낸 공정도,5 is a process chart showing the construction process of the steel pipe pile according to the first embodiment of the present invention,
도 6은 본 발명의 제2실시예에 따른 교량 구조물을 나타낸 측면도,6 is a side view showing a bridge structure according to a second embodiment of the present invention;
도 7은 도 6의 실시예에 따른 교량 구조물을 나타낸 정면도,7 is a front view showing the bridge structure according to the embodiment of FIG.
도 8은 도 6의 실시예에 따른 교량 구조물의 합성보를 나타낸 사시도,8 is a perspective view showing a composite beam of the bridge structure according to the embodiment of FIG.
도 9는 본 발명의 제3실시예에 따른 절개지 옹벽을 나타낸 측단면도,9 is a side cross-sectional view showing a cut retaining wall according to a third embodiment of the present invention;
도 10은 도 9의 실시예에 따른 절개지 옹벽을 나타낸 정단면도,10 is a front sectional view showing the cut retaining wall according to the embodiment of FIG.
도 11은 본 발명의 제4실시예에 따른 흙막이 옹벽을 나타낸 사시도,11 is a perspective view showing a retaining wall according to a fourth embodiment of the present invention;
도 12는 도 11의 실시예에 따른 흙막이 옹벽의 강관 말뚝을 나타낸 사시도,12 is a perspective view showing the steel pipe pile of the retaining wall according to the embodiment of FIG.
도 13은 본 발명의 제5실시예에 따른 수상 구조물을 나타낸 정면도,13 is a front view showing the water structure according to the fifth embodiment of the present invention;
도 14는 도 13의 실시예에 따른 수상 부재를 나타낸 단면도,14 is a cross-sectional view showing the water member according to the embodiment of FIG. 13,
도 15는 도 13의 실시예에 따른 강관 말뚝의 시공 과정을 나타낸 공정도,15 is a process chart showing the construction process of the steel pipe pile according to the embodiment of FIG.
도 16은 본 발명의 제6실시예에 따른 내진 주택을 나타낸 정단면도,16 is a front sectional view showing a seismic housing according to a sixth embodiment of the present invention;
도 17은 도 16의 실시예에 따른 내진 주택의 슬라브 고정 상태를 나타낸 단면도,17 is a cross-sectional view illustrating a slab fixing state of the seismic housing according to the embodiment of FIG. 16;
도 18은 도 16의 실시예에 따른 내진 주택의 강관 말뚝 구조를 나타낸 횡단면도.18 is a cross-sectional view showing the steel pipe pile structure of the seismic housing according to the embodiment of FIG.
*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
100 : 강관 말뚝 110 : 강관100: steel pipe pile 110: steel pipe
120: 리브 130 : 확장판120: rib 130: expansion
200 : 합성보 220 : 제1빔200: composite beam 220: first beam
230 : 제2빔 250 : 연결수단230: second beam 250: connection means
300 : 절개지 옹벽 400 : 흙막이 옹벽300: incision retaining wall 400: earth retaining wall
500 : 수상 부재 600 : 내진 주택500: water member 600: earthquake-resistant housing
본 발명과 본 발명의 실시에 의해 달성되는 기술적 과제는 다음에서 설명하는 본 발명의 바람직한 실시예들에 의하여 보다 명확해질 것이다. 다음의 실시예들은 단지 본 발명을 설명하기 위하여 예시된 것에 불과하며, 본 발명의 범위를 제한하기 위한 것은 아니다. 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 구체적으로 살펴보기로 한다.The technical problems achieved by the present invention and the practice of the present invention will be more clearly understood by the preferred embodiments of the present invention described below. The following examples are merely illustrated to illustrate the present invention and are not intended to limit the scope of the present invention. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예에 따른 토목 구조물은 지중에 관입되는 내진성의 강관 말뚝을 축으로 하여 그 상측에 시공되는 것으로, 자전거 전용도로를 위한 교량이나 지하철 공사를 위한 가교 구조물, 절개지나 지하 터파기 공사에서의 흙막이를 위한 옹벽 구조물, 바다나 강의 수면에 시공되는 수상 구조물, 내진성이 확보된 내진 주택과 같은 다양한 구조물들이 시공될 수 있다.Civil construction according to an embodiment of the present invention is to be constructed on the upper side of the earthquake-resistant steel pipe piles in the ground, bridges for bicycle roads or bridge construction for subway construction, incision site or underground trench construction Various structures can be constructed, such as retaining wall structures for earthquake barriers, water structures installed on the surface of the sea or river, and earthquake-resistant houses with seismic resistance.
이하에서, 본 발명의 실시예에 따른 강관 말뚝과 상기 강관 말뚝을 지지축으로 시공되는 다양한 구조물을 각 실시예에 따라 구체적으로 살펴본다.Hereinafter, the steel pipe pile according to an embodiment of the present invention and the various structures that are constructed as a support shaft of the steel pipe pile in detail look at according to each embodiment.
[제1실시예][First Embodiment]
본 발명의 제1실시예는 내진성의 강관 말뚝과 그 시공방법에 관한 것이다.The first embodiment of the present invention relates to a steel pipe pile and a construction method thereof.
도 3은 본 발명의 제1실시예에 따른 강관 말뚝을 나타낸 사시도이고, 도 4는 본 발명의 제1실시예에 따른 강관 말뚝의 선단부를 상세히 나타낸 단면도이며, 도 5는 본 발명의 제1실시예에 따른 강관 말뚝을 시공하는 과정을 나타낸 공정도이다.3 is a perspective view showing the steel pipe pile according to the first embodiment of the present invention, Figure 4 is a cross-sectional view showing in detail the front end of the steel pipe pile according to the first embodiment of the present invention, Figure 5 is a first embodiment of the present invention Process diagram showing the process of constructing the steel pipe pile according to the example.
도 3 및 도 4에 도시된 바와 같이, 본 발명의 제1실시예에 따른 강관 말뚝(100)은 원 기둥 형상의 강관(110) 선단부 외측에 고정되는 리브(120), 리브(120)의 저면에 고정되는 확장판(130)을 포함하여 이루어진다.3 and 4, the steel pipe pile 100 according to the first embodiment of the present invention is a rib 120, the bottom surface of the rib 120 is fixed to the outer end of the circular column-shaped steel pipe 110 It includes an expansion plate 130 fixed to.
이를 더욱 구체적으로 살펴보면, 전술한 강관(110)은 상측에서의 하중을 지지하기 위한 구성으로, 소정의 직경(Φ1)을 가지는 중공의 원통 형상으로 형성된다. 특히, 종래의 기술에 따른 강관 말뚝은 굴착공(2)의 직경보다 미세하게 작은 직경의 강관으로 구성되었으나, 본 발명의 실시예에 따른 강관 말뚝은 굴착공(2)의 직경과 큰 차이가 나는 상대적으로 작은 직경(Φ1)의 강관으로 구성되어, 강관(110)과 굴착공벽과의 간격이 넓어 트레미관의 삽입이 가능하여 콘크리트 타설이 용이하게 이루어질 수 있다. 또한, 상대적으로 작은 직경의 강관에 의하여 강관의 제조에 사용되는 원재료의 양을 줄여 시공비를 절감시킬 수 있다. Looking at this in more detail, the above-described steel pipe 110 is a configuration for supporting the load on the upper side, is formed in a hollow cylindrical shape having a predetermined diameter (Φ 1). In particular, the steel pipe pile according to the prior art is composed of a steel pipe of a diameter smaller than the diameter of the excavation hole (2), the steel pipe pile according to an embodiment of the present invention is a big difference from the diameter of the excavation hole (2) Consisting of a relatively small diameter (Φ1) of steel pipe, the gap between the steel pipe 110 and the excavation hole wall can be inserted into the tremi tube can be easily placed in concrete. In addition, it is possible to reduce the construction cost by reducing the amount of raw materials used in the production of the steel pipe by a relatively small diameter steel pipe.
전술한 리브(120)는 복수개가 구비되어 강관(110)의 선단부 외측에 용접에 의해 고정되는 것으로, 강관(110)에 대하여 방사상으로 고정되며 그 하단면이 강관(110)의 하단면과 일치된다.The above-described rib 120 is provided with a plurality of fixed to the outside of the tip of the steel pipe 110 by welding, and is fixed radially with respect to the steel pipe 110 and its bottom surface is consistent with the bottom surface of the steel pipe 110. .
이러한 리브(120)는 강관(110)에 대하여 확장판(130)을 지지해주며, 매입말뚝 공정시 굴착공의 하부에 타설되는 콘크리트층(3)에 매설된다.The rib 120 supports the expansion plate 130 with respect to the steel pipe 110, and is embedded in the concrete layer (3) that is poured in the lower portion of the excavation hole during the embedded pile process.
전술한 확장판(130)은 도넛형의 원판으로서, 리브(120)의 하단면에 용접에 의해 고정되며 그 내경이 강관(110)의 내경과 일치하고 외경(Φ2)은 강관(110)의 외경(Φ1)보다 크며 굴착공(2)의 내경보다 미세한 차이로 작게 형성된다.The above-described expansion plate 130 is a donut-shaped disk, which is fixed by welding to the bottom surface of the rib 120 and its inner diameter matches the inner diameter of the steel pipe 110, and the outer diameter Φ 2 is the outer diameter of the steel pipe 110. It is larger than Φ1) and is formed with a smaller difference than the inner diameter of the excavation hole (2).
이처럼, 확장판(130)은 강관(110)의 선단부에 견고히 고정되고 그 외경이 강관의 외경보다 크게 형성됨으로써 강관(110)의 선단부 직경을 확대시키는 역할을 한다.As such, the expansion plate 130 is firmly fixed to the front end of the steel pipe 110 and the outer diameter is formed larger than the outer diameter of the steel pipe serves to enlarge the diameter of the front end of the steel pipe 110.
따라서, 강관 말뚝(100)을 굴착공에 삽입 시공할 때 선단부에서의 강관(110)과 굴착공(2)의 측벽 사이에 형성되는 간극이 확장판(130)이 구비되지 않는 경우와 비교하여 훨씬 좁아지기 때문에 그만큼 강관의 선단부 지지력이 증대된다.Therefore, the gap formed between the steel pipe 110 and the side wall of the excavation hole 2 at the tip when the steel pipe pile 100 is inserted into the excavation hole is much narrower than when the expansion plate 130 is not provided. As it loses, the bearing capacity of the tip of the steel pipe is increased accordingly.
또한, 상기와 같은 구조의 강관 말뚝(100)은 강관(110)의 선단에 구비되는 리브(120)와 확장판(130)에 의하여, 종래에 비하여 상대적으로 작은 직경(Φ1)의 강관(110)으로 구성되더라도 동일한 강성을 나타낼 수 있으며, 동시에 금속재료의 원자재 가격 상승에 따른 시공 비용의 증가 문제를 해결할 수 있다.In addition, the steel pipe pile 100 having the structure as described above is a steel pipe 110 of a relatively small diameter (Φ1) by the rib 120 and the expansion plate 130 provided at the front end of the steel pipe 110, compared to the prior art. Even if it is configured, it can exhibit the same rigidity, and at the same time, it is possible to solve the problem of increase in construction cost due to the increase in the raw material price of metal materials.
즉, 본 발명의 제1실시예에 따른 Φ406, Φ812 직경의 강관은 각각 종래의 기술에 따른 Φ506, Φ1500 직경의 강관에서 나타나는 강성과 동일하거나 그 이상의 강성을 나타낼 수 있다.That is, the steel pipes of Φ 406 and Φ 812 diameters according to the first embodiment of the present invention may exhibit the same or more rigidity than those of the steel pipes of Φ 506 and Φ 1500 diameters according to the prior art, respectively.
한편, 도시되지는 않았지만, 강관(110)의 선단부 내측에는 콘크리트(3)와 강관(110)의 결합력을 증대시키기 위하여 망 상의 철근 부재가 더 결합될 수 있다.On the other hand, although not shown, to the inside of the front end of the steel pipe 110 may be further coupled to the reinforcing bar member on the mesh in order to increase the coupling force of the concrete (3) and the steel pipe (110).
상기와 같은 구조의 강관 말뚝(100)은 매입 공법으로 시공되는데, 그 시공 과정을 도 5를 참조하여 살펴보면, 먼저, 오거(1)를 이용해 지반을 굴착하여 굴착공(2)을 형성한다(a). 이때, 굴착공(2)의 측벽이 무너지는 것을 방지하기 위하여 굴착과 동시에 케이스(4)를 삽입한다(b). Steel pipe pile 100 having the structure as described above is constructed by the embedding method, looking at the construction process with reference to Figure 5, first, to excavate the ground using the auger (1) to form an excavation hole (a) ). At this time, the case 4 is inserted at the same time as the excavation to prevent the side wall of the excavation hole 2 from collapsing (b).
이어서 본 발명의 제1실시예에 따른 강관 말뚝(100)을 굴착공(2) 내로 관입시키고(c), 콘크리트(3)를 타설하여 지반 내의 강관 말뚝(100)이 콘크리트(3)에 매립되도록 한다. 이때, 콘크리트(3)의 타설과 동시에 케이스(4)를 인출시키는 공정이 이루어진다(d).Subsequently, the steel pipe pile 100 according to the first embodiment of the present invention is introduced into the excavation hole 2 (c), and the concrete 3 is poured so that the steel pipe pile 100 in the ground is embedded in the concrete 3. do. At this time, the process of drawing out the case 4 at the same time as placing the concrete 3 is made (d).
상기 콘크리트(3)는 강관 내부와 강관과 굴착공벽 사이 모두에 레미콘에 의한 콘크리트가 타설될 수 있으나, 강관과 굴착공벽 사이의 간격이 좁을 경우에는 상기 강관과 굴착공벽 사이에는 시멘트 몰탈이 충진될 수도 있다. 또한, 상기 콘크리트(3)에는 강관의 부식을 방지하기 위한 방청혼화제가 혼합된다.The concrete 3 may be poured concrete by the concrete concrete both inside the steel pipe and between the steel pipe and the excavation wall, but when the gap between the steel pipe and the excavation wall is narrow, cement mortar may be filled between the steel pipe and the excavation wall. have. In addition, the concrete (3) is mixed with a rust preventing admixture for preventing corrosion of the steel pipe.
종래의 기술에 따른 강관 말뚝에 타설되는 콘크리트는 선단의 응력집중부에서 콘크리트와 강관의 분리가 발생되어 강관 말뚝의 지지력은 강관 말뚝 자체의 강성에만 의존하게 된다. 그러나 본 발명의 제1실시예에서는 강관의 선단부에 결합되는 콘크리트(3)는 재료 분리가 없어, 콘크리트의 강성이 강관 말뚝으로 환산되어 강관 말뚝의 강성을 상승시키는데 기여하게 된다. 또한, 강관의 내외부에 충전되는 상기 콘크리트에 의해 고유치 주기의 증가 및 지진 내하력이 크게 향상된다.Concrete poured into steel pipe piles according to the prior art is the separation of concrete and steel pipe at the stress concentration portion of the tip so that the bearing capacity of the steel pipe pile is dependent only on the rigidity of the steel pipe pile itself. However, in the first embodiment of the present invention, the concrete 3 coupled to the front end of the steel pipe does not have material separation, so that the rigidity of the concrete is converted into steel pipe piles, thereby contributing to raising the rigidity of the steel pipe piles. In addition, the concrete filled in and out of the steel pipe increases the period of eigenvalues and the seismic load capacity is greatly improved.
즉, 강관(110)의 선단부에 고정된 리브(120), 확장판(130)이 콘크리트(3)에 완전 매립되어 결합되고, 강관의 내외부는 콘크리트가 충진됨으로써, 콘크리트의 강성이 강관 말뚝으로 환산되어 전체적으로 강성이 상승된다. 이로 인하여 본 발명의 제1실시예에 따른 Φ406, Φ812 직경의 강관 말뚝은 각각 종래의 기술에 따른 Φ506, Φ1500 직경의 강관 말뚝과 동일하거나 그 이상의 단면력을 나타낼 수 있는 것이다.That is, the ribs 120 and the expansion plate 130 fixed to the front end of the steel pipe 110 is completely embedded in the concrete (3), and the inside and outside of the steel pipe is filled with concrete, the rigidity of the concrete is converted into steel pipe pile Overall rigidity is raised. For this reason, the steel pipe piles having a diameter of Φ 406 and Φ 812 according to the first embodiment of the present invention may exhibit cross-sectional forces equal to or greater than those of the steel pipe piles having diameters of 506 and Φ 1500 according to the prior art, respectively.
[제2실시예]Second Embodiment
본 발명의 제2실시예는 제1실시예에 따른 내진성의 강관 말뚝을 이용한 교량 구조물과 그 시공 방법에 관한 것이다.The second embodiment of the present invention relates to a bridge structure and a construction method using the seismic resistant steel pipe piles according to the first embodiment.
도 6은 본 발명의 제2실시예에 따른 교량 구조물을 나타낸 측면도이고, 도 7은 본 발명의 제2실시예에 따른 교량 구조물을 나타낸 정면도이며, 도 8은 본 발명의 제2실시예에 따른 교량 구조물의 합성보를 나타낸 사시도이다.Figure 6 is a side view showing a bridge structure according to a second embodiment of the present invention, Figure 7 is a front view showing a bridge structure according to a second embodiment of the present invention, Figure 8 is a second embodiment of the present invention. A perspective view showing a composite beam of a bridge structure.
먼저, 본 발명의 제2실시예에 따른 가교 또는 교량 구조물은 도 6에 도시된 바와 같이, 강관 말뚝(100)의 상부에 주형지지보(210)가 설치되고, 상기 주형지지보(210)의 상부에 합성보(200)가 설치되는 구조를 이룬다. 여기서 상기 합성보(200)는 대략 2M 정도로 배열되고, 상기 합성보(200)의 상부에는 복공판(240)이 연접하여 설치된다. 여기서 상기 복공판(240)은 양 단부가 상기 합성보(200)의 상면에 걸치도록 얹혀지고, 용접 또는 레버에 의해 상기 합성보(200)에 고정된다.First, the bridge or bridge structure according to the second embodiment of the present invention, as shown in Figure 6, the mold support 210 is installed on the upper portion of the steel pipe pile 100, the The composite beam 200 is formed on the upper portion. Here, the composite beam 200 is arranged to approximately 2M, the upper portion of the composite beam 200 is provided with a perforated plate 240 in contact. Here, the perforated plate 240 is mounted so that both ends of the composite beam 200 over the upper surface, it is fixed to the composite beam 200 by welding or lever.
상기 강관 말뚝(100)은 본 발명의 제1실시예에 따라 시공되며, 강관 말뚝(100)의 상단에 주형지지보(210), 합성보(200), 복공판(240) 등을 순차로 시공함으로써, 지하철 공사시 일반 차량이나 보행자의 통행을 위한 임시 교량 구조물이나, 해변이나 하천변을 따른 산책로나 자전거 전용 도로를 위한 교량 구조물의 시공에 유용하게 적용될 수 있다.The steel pipe pile 100 is constructed according to the first embodiment of the present invention, by sequentially forming the mold support beam 210, the composite beam 200, the perforated plate 240 on the top of the steel pipe pile 100, When constructing a subway, it can be usefully applied to the construction of temporary bridge structures for general vehicles or pedestrian traffic, or bridge structures for walkways or bicycle paths along beaches or riversides.
특히, 본 발명의 제2실시예에 따른 합성보의 구조를 도 7 및 도 8을 참조하여 구체적으로 살펴보면, 상기 합성보는 주형지지보(210)의 상부에 지지되는 제1빔(220), 상기 제1빔(220)의 상부에 적층되며 복공판(240)의 저면에 위치하여 상기 복공판(240)을 지지하는 제2빔(230) 및 상기 제1빔(220)과 상기 제2빔(230)을 서로 연결하는 연결수단(250)을 포함한다.In particular, the structure of the composite beam according to the second embodiment of the present invention will be described in detail with reference to FIGS. 7 and 8, wherein the composite beam includes a first beam 220 supported on the mold support 210 and the first beam 220. The second beam 230 and the first beam 220 and the second beam 230 which are stacked on the first beam 220 and are positioned on the bottom surface of the porous plate 240 to support the porous plate 240 are supported. It comprises a connecting means 250 for connecting to each other.
상기 제1빔(220) 및 제2빔(230)은 도로 폭에 따라 크기가 달라질 수 있는 것으로, 가설공사의 도로폭이 16 내지 30M 일 때 높이(H) X 폭(B) X 두께(t1) X 두께(t2)에 대하여 상기 제1빔은 800 X 300 X 14 X 16이고, 상기 제2빔은 300 X 300 X 10 X 15 내지 800 X 800 X 14 X 16으로 한다.The size of the first beam 220 and the second beam 230 may vary depending on the width of the road, the height (H) X width (B) X thickness (t1) when the road width of the temporary construction is 16 to 30M For the X thickness t2, the first beam is 800 × 300 × 14 × 16, and the second beam is 300 × 300 × 10 × 15 to 800 × 800 × 14 × 16.
가설공사의 도로폭이 예를 들어, 20M일 때 높이(H) X 폭(B) X 두께(t1) X 두께(t2)에 대하여 상기 제1빔(220)은 800 X 300 X 14 X 16이고, 상기 제2빔(230)은 600 X 300 X 12 X 17로 하는 것이 바람직하다. 또한 가설공사의 도로폭이 20M 이상일 경우 상기 제2빔(230)의 규격이 상향 조정되어야 함은 자명한 것이다.For example, when the road width of the temporary construction is 20M, for the height (H) X width (B) X thickness (t1) X thickness (t2), the first beam 220 is 800 X 300 X 14 X 16 Preferably, the second beam 230 is set to 600 × 300 × 12 × 17. In addition, when the road width of the temporary construction is more than 20M it is obvious that the specifications of the second beam 230 should be adjusted upward.
제1빔(220)(HXB=600 X 300)은 단면적(A)=1745mm2, 2차 모멘트(Iy)=1,030,000,000mm4, 단면계수(Zy)=3,539,518mm3이고, 제2빔(230)(HXB=800X300)은 단면적(A)=2674mm2, 2차 모멘트(Iy)=2,920,000,000 mm4, 단면계수(Zy)=7,300,000mm3인 경우, 합성보(100)(HXB=1400X300)는 단면적(A)=4285mm2, 2차 모멘트(Iy)=8,678,000,000mm4, 단면계수(Zy)=12,205,344mm3로 측정되었다.The first beam 220 (HXB = 600 × 300) has a cross-sectional area A = 1745 mm 2 , a second moment Iy = 1,030,000,000 mm 4 , a cross-sectional coefficient Zy = 3,539,518 mm 3 , and the second beam 230. (HXB = 800X300) is the cross-sectional area (A) = 2674mm 2 , the second moment (Iy) = 2,920,000,000 mm 4 , and the section modulus (Zy) = 7,300,000mm 3 , the composite beam 100 (HXB = 1400X300) is the cross-sectional area (A ), 4285 mm 2 , secondary moment (Iy) = 8,678,000,000 mm 4 , and section modulus (Zy) = 12,205,344 mm 3 .
위에서 확인할 수 있는 바와 같이, 상기 합성보(100)는 제1빔(220)과 제2빔(230)이 적층된 구조로서, 단순히 제1빔(220)과 제2빔(230)의 값을 단순히 더한 값보다 단면적, 2차 모멘트 그리고 단면계수 항목이 대폭 향상됨을 알 수 있다.As can be seen above, the composite beam 100 has a structure in which the first beam 220 and the second beam 230 are stacked, and simply values the values of the first beam 220 and the second beam 230. It can be seen that the cross-sectional area, second moment, and section modulus items are significantly improved.
여기서 상기 연결수단(250)은 상기 제1빔(220)과 상기 제2빔(230)의 양단부를 점 용접(251)하거나, 또는 상기 제1빔(220)과 상기 제2빔(230)의 양단부에 덧댐 이음 판(252)이 덧대지고, 상기 제2빔(230)과 덧댐 이음 판(252)과 상기 제1빔(220)을 볼트(253)가 관통할 수도 있다.In this case, the connecting means 250 is spot welded 251 at both ends of the first beam 220 and the second beam 230, or the first beam 220 and the second beam 230 of the second beam 230. An additional joint plate 252 may be padded at both ends, and the bolt 253 may pass through the second beam 230, the additional joint plate 252, and the first beam 220.
즉, 본 발명의 제2실시예에 따른 교량 구조물에 있어서, 합성보(200)는 일반적인 복수개의 주형보를 연결수단(250)으로 현장에서 간단히 연결하여 사용함으로써, 시공 기간과 비용을 줄일 수 있으면서, 동시에 우수한 성능을 나타낸다.That is, in the bridge structure according to the second embodiment of the present invention, the composite beam 200 can be used by simply connecting a plurality of common mold beams in the field as the connecting means 250, while reducing the construction period and cost, and at the same time Excellent performance.
[실시예3]Example 3
본 발명의 제3실시예는 제1실시예에 따른 내진성의 강관 말뚝을 이용하여 절개지에 시공되는 옹벽 및 그 시공 방법에 관한 것이다.A third embodiment of the present invention relates to a retaining wall constructed in an incision site using a seismic resistant steel pipe pile according to the first embodiment, and a construction method thereof.
도 9는 본 발명의 제3실시예에 따른 절개지 옹벽을 나타낸 측단면도이고, 도 10은 본 발명의 제3실시예에 따른 절개지 옹벽을 나타낸 정단면도이다.9 is a side cross-sectional view showing a cut retaining wall according to a third embodiment of the present invention, Figure 10 is a front sectional view showing a cut retaining wall according to a third embodiment of the present invention.
도시된 바와 같이, 본 발명의 제3실시예에 따른 절개지 옹벽(300)은 선단부가 지중 깊숙히 매입되어 고정된 다수개의 강관 말뚝(100)에 의해 지지되는 콘크리트 옹벽(300)으로 형성된다.As shown, the cut retaining wall 300 according to the third embodiment of the present invention is formed of a concrete retaining wall 300 that is supported by a plurality of steel pipe piles 100, the tip of which is embedded in the ground deep.
구체적으로 살펴보면, 본 발명의 제1실시예에 따라 지상으로 돌출되도록 시공되는 다수개의 강관 말뚝(100)을 따라서 철근부재(310)를 시공하고, 철근부재(310)의 외측으로는 옹벽(300)의 형상을 형성하기 위한 거푸집(미도시)을 시공한다. 거푸집 내부로 콘크리트(320)를 타설하여 옹벽(300)을 형성하며, 타설된 콘크리트(320)가 적당히 양생된 후 거푸집을 제거하고, 외관 처리를 하여 옹벽(300)을 완성한다. 이후, 옹벽(300)과 절개지 사이의 공간에는 토사(30)를 채우고, 채워진 토사(30)의 상부에는 부직포(40) 등을 덮거나 식생을 조림할 수 있다.Specifically, the reinforcing member 310 is constructed along the plurality of steel pipe piles 100 which are constructed to protrude to the ground according to the first embodiment of the present invention, and the retaining wall 300 to the outside of the reinforcing member 310. Construct a formwork (not shown) to form the shape of. The retaining wall 300 is formed by pouring concrete 320 into the formwork, and after the casted concrete 320 is properly cured, the formwork is removed, and the retaining wall 300 is completed by the exterior treatment. Thereafter, the space between the retaining wall 300 and the cutout may be filled with the earth and sand 30, and the upper portion of the filled earth and sand 30 may be covered with a nonwoven fabric 40, or may be boiled with vegetation.
종래의 기술에 따른 옹벽은 가공 다듬돌을 하나씩 쌓으면서, 연결핀으로 좌우의 가공 다듬돌을 연결하고, 앵커와 연결와이어, 지반보강재를 서로 연결시켜야 하는 구조로, 공정이 어렵고 복잡해지는 문제점이 있으며, 지지력이 약하여 옹벽에 균열이 생기거나 하중에 의하여 지반이 침하되는 결점이 있었다.Retaining wall according to the prior art is a structure that must be connected to the left and right processing stone with a connecting pin, the anchor and the connecting wire, ground reinforcement to each other while stacking the processing stone, one by one, the process is difficult and complicated. However, there was a defect that the bearing capacity was weak and cracked in the retaining wall or the ground subsided by load.
그러나 본 발명의 제3실시예에 따른 옹벽은 단지 콘크리트의 타설에 의해 간단히 시공될 수 있으며, 지중의 소정 깊이까지 매립되어 견고히 고정된 강관 말뚝에 지지됨으로 인하여 절개지 토사의 압력에도 안정적으로 견딜 수 있게 된다.However, the retaining wall according to the third embodiment of the present invention can be simply constructed by placing concrete, and is able to stably withstand the pressure of the incision soil due to being buried to a predetermined depth of the ground and supported by a firmly fixed steel pipe pile. do.
[실시예4]Example 4
본 발명의 제4실시예는 제1실시예에 따른 내진성의 강관 말뚝을 이용한 지하 터파기 공사를 위한 흙막이 구조물 및 그 시공 방법에 관한 것이다.The fourth embodiment of the present invention relates to an earth block structure for underground excavation construction using the seismic resistant steel pipe piles according to the first embodiment, and a construction method thereof.
도 11은 본 발명의 제4실시예에 따른 흙막이 옹벽을 나타낸 사시도이고, 도 12는 본 발명의 제4실시예에 따른 흙막이 옹벽의 강관 말뚝을 나타낸 사시도이다.11 is a perspective view showing a retaining wall according to a fourth embodiment of the present invention, Figure 12 is a perspective view showing a steel pipe pile of the retaining wall according to a fourth embodiment of the present invention.
본 발명의 제4실시예에 따른 흙막이 옹벽(400) 공사는 도 11에 도시된 바와 같이, 본 발명의 제1실시예에 따른 다수개의 내진성의 강관 말뚝(100) 선단부를 지중 깊숙한 곳까지 매입하고, 터파기 공사에 따라 토류판(410)을 상기 강관 말뚝(100)의 가이드레일(140)로 삽입시키는 공정으로 이루어진다.As shown in FIG. 11, the construction of the retaining wall 400 according to the fourth embodiment of the present invention purchases a plurality of earthquake-resistant steel pipe piles 100 in accordance with the first embodiment of the present invention to a depth deep in the ground. , The earth plate 410 is inserted into the guide rail 140 of the steel pipe pile 100 in accordance with the excavation construction.
즉, 터파기 공사를 진행할 일정 영역의 가장자리를 따라 본 발명의 제1실시예와 같은 공정으로 일정 간격으로 강관 말뚝(100)을 매입하고, 콘크리트(3)가 충분히 양생되는 소정의 시간 경과 후, 터파기를 진행한다. 터파기 진행과 동시에 강관 말뚝(100)의 가이드레일(140)을 따라 토류판(410)을 순차적으로 삽입시켜 토사가 무너져 내리는 것을 방지하여, 터파기 공사가 원활히 진행될 수 있다.That is, the steel pipe pile 100 is purchased at regular intervals in the same process as in the first embodiment of the present invention along the edge of the predetermined area where the excavation work is to be carried out, and after a predetermined time that the concrete 3 is sufficiently cured, Proceed with the excavation. Simultaneously inserting the earth plate 410 along the guide rail 140 of the steel pipe pile 100 at the same time as the digging process to prevent the soil from falling down, the digging work can proceed smoothly.
상기와 같은 반복적인 공정에 의하여 도시된 바와 같이 일정 깊이까지의 터파기 공사가 진행될 수 있다. 또한, 토사의 압력에 대한 지지력을 향상시키기 위하여 다수개의 강관 말뚝(100) 상단은 H 형강 등을 이용한 연결부재(420)에 의해 서로 연결되도록 구성될 수 있다.As shown in the above repetitive process, the excavation work up to a predetermined depth may be performed. In addition, the top of the plurality of steel pipe pile 100 may be configured to be connected to each other by a connecting member 420 using H-shaped steel, etc. in order to improve the bearing capacity for the earth and sand pressure.
본 발명의 제4실시예에 따른 흙막이 옹벽(400)의 강관 말뚝은 도 12에 도시된 바와 같이, 지중에 매입되어 고정지지 되는 하부 말뚝(A)과 터파기 공사에 따라 토류판이 설치되는 상부 말뚝(B)으로 구분이 된다. 상부 말뚝(B)에는 가이드레일(140)이 형성되고, 상기 가이드레일(140)을 따라 토류판(410)이 삽입되어 흙벽이 무너지는 것이 방지된다.As shown in FIG. 12, the steel pipe pile of the retaining wall 400 according to the fourth embodiment of the present invention has a lower pile A, which is buried and fixed in the ground, and an upper pile installed with a digging construction. It is divided into (B). A guide rail 140 is formed in the upper pile B, and the earth plate 410 is inserted along the guide rail 140 to prevent the soil wall from falling down.
상기 가이드레일(140)은 토류판(410)이 슬라이딩 되면서 삽입되기 위한 구성으로, 토류판(410)이 용이하게 슬라이딩 되고 토사의 압력에 의해 전방으로 밀려나는 것을 방지하기 위하여 '⊂'형상의 슬라이딩 편으로 형성된다. 상기와 같은 구조의 가이드레일(140)은 강관 말뚝(100)의 전체 길이에 있어서, 강관(110)이 지중(10)으로 매입되는 부분이 제외된 상단, 즉 터파기가 행하여 지는 부분에서 강관 (110)의 양측에 대칭적으로 형성된다.The guide rail 140 is configured to be inserted while the earth plate 410 is slid, the earth plate 410 is easily slid into a '⊂' shaped sliding piece to prevent the forward movement by the earth pressure Is formed. The guide rail 140 of the structure as described above is the steel pipe 110 in the upper end, that is, the trench is performed in the entire length of the steel pipe pile 100, except for the portion where the steel pipe 110 is embedded into the ground (10) Are formed symmetrically on both sides.
상기와 같은 구성의 본 발명의 제4실시예에 따른 흙막이 옹벽(400)은 내진성의 강관 말뚝(100)을 사용함으로써, 지중에 매입된 강관 말뚝(100)이 안정적으로 고정 지지되므로, 별도의 측방 버팀 보강재가 시공되지 않아 공사가 안전하고 효율적으로 진행될 수 있다.As the soil retaining wall 400 according to the fourth embodiment of the present invention having the above-described configuration uses a seismic resistant steel pipe pile 100, the steel pipe pile 100 embedded in the ground is stably supported and supported, and thus, separate sides. Since the brace reinforcement is not constructed, the construction can proceed safely and efficiently.
[실시예5]Example 5
본 발명의 제5실시예는 제1실시예에 따른 강관 말뚝을 이용하여 바다나 강의 수면에 시공되는 수상 구조물 및 그 시공 방법에 관한 것이다.The fifth embodiment of the present invention relates to a water structure and its construction method that is constructed on the surface of the sea or river using the steel pipe pile according to the first embodiment.
도 13은 본 발명의 제5실시예에 따른 수상 구조물을 나타낸 정면도이고, 도 14는 도 13의 실시예에 따른 수상 부재를 나타낸 단면도이며, 도 15는 도 13의 실시예에 따른 강관 말뚝의 시공 과정을 나타낸 공정도이다.FIG. 13 is a front view illustrating a water structure according to a fifth embodiment of the present invention, FIG. 14 is a cross-sectional view illustrating a water member according to the embodiment of FIG. 13, and FIG. 15 is a construction of a steel pipe pile according to the embodiment of FIG. 13. Process diagram showing the process.
본 발명의 제5실시예에 따른 수상 구조물은 강관 말뚝(100)을 지지축으로 수면 위에 수상 부재(500)가 시공되는 구조물로서, 도 13에 도시된 바와 같이 본 발명의 제1실시예에 따른 강관 말뚝(100)을 이용한 계류 말뚝이 시공되고, 그 상단에 다양한 수상 구조물이 시공된다.The water structure according to the fifth embodiment of the present invention is a structure in which the water member 500 is constructed on the surface of the steel pipe pile 100 with the support shaft, as shown in FIG. 13, according to the first embodiment of the present invention. The mooring pile is constructed using the steel pipe pile 100, and various water structures are constructed on the top thereof.
본 발명의 제5실시예에 따른 강관 말뚝을 시공하는 공정은, 제1실시예에 따른 강관 말뚝을 시공하는 공정과 동일하게 이루어진다. 다만, 제5실시예에 따른 경우 바다나 강의 수중에서 이루어지는 것으로, 도 15에 도시된 바와 같이 강관 말뚝(100)의 상단부가 수면(20) 위로 돌출되도록 관입된다.The process of constructing the steel pipe pile according to the fifth embodiment of the present invention is performed in the same manner as the process of constructing the steel pipe pile according to the first embodiment. However, according to the fifth embodiment is made in the sea or the water of the river, as shown in Figure 15 is inserted into the upper end of the steel pipe pile 100 protrudes above the water surface (20).
또한, 본 발명의 제5실시예에 따른 수상 부재(500)는 도 14에 도시된 바와 같이, 다수개의 강관 말뚝(100)에 체결되는 지지부(510)와 상기 지지부(510)의 상단부에 연접되어 얹혀지는 베이스부(520)로 구성된다. 즉, 평판 패널 형상의 베이스부(520) 가장자리를 따라 다수개의 강관 말뚝(100) 상단부가 연결되는데, 이는 지지부(510)를 매개로 하여 강관(110)과 베이스부(520)가 연결된다.In addition, the water member 500 according to the fifth embodiment of the present invention is connected to the upper end of the support portion 510 and the support portion 510 fastened to the plurality of steel pipe piles 100, as shown in FIG. The base portion 520 is mounted. That is, the upper end of the plurality of steel pipe pile 100 is connected along the edge of the base portion 520 of the flat panel shape, which is connected to the steel pipe 110 and the base portion 520 through the support 510.
여기서, 상기 베이스부(520)는 부력에 의하여 수면 위로 뜰 수 있는 재질로 구성되거나, EPS(expended poly-styrene) 혹은 중공의 부구(floating ball) 등의 부유 수단(미도시)이 구비될 수 있다. 베이스부(520)의 상부에는 도 13에 도시된 바와 같은 다양한 종류의 수상 구조물이 시공될 수 있다.Here, the base portion 520 may be made of a material that can float on the surface by buoyancy, or may be provided with floating means (not shown) such as expanded poly-styrene (EPS) or hollow floating balls. . Various types of water structures as shown in FIG. 13 may be installed on the base 520.
상기 지지부(510)는 상기 베이스부(520)의 하측에서 베이스부를 지지하기 위한 구성으로, 다수개의 각 강관(110) 내부에 삽입되어 베이스부(520)를 떠받치게 된다.The support part 510 is configured to support the base part from the lower side of the base part 520 and is inserted into each of the plurality of steel pipes 110 to support the base part 520.
한편, 상기 강관 말뚝(100)은 지반에 고정됨에 반하여, 수상 부재(500)는 수면을 따라 유동 되므로, 수면의 상하 유동에 따라 수상 부재(500)가 함께 상하 유동될 수 있도록, 상기 지지부(510)는 상기 강관 말뚝(100) 내부에서 상하 방향으로 슬라이딩될 수 있도록 구성된다. 즉, 상기 강관(110)의 내벽과 상기 지지부(510)의 외벽 사이에는 볼과 같은 슬라이딩 부재(150)가 구비되어, 수면의 상승 또는 하강에 따라 베이스부(520)가 같이 상승 또는 하강될 수 있도록, 지지부(510)가 강관(110)의 내벽에서 상하로 슬라이딩 된다.On the other hand, while the steel pipe pile 100 is fixed to the ground, the receiving member 500 flows along the water surface, so that the support member 510 can be flowed up and down together in accordance with the vertical flow of the water surface, ) Is configured to slide in the vertical direction in the steel pipe pile (100). That is, a sliding member 150 such as a ball is provided between the inner wall of the steel pipe 110 and the outer wall of the support part 510 so that the base part 520 may be raised or lowered as the surface of the steel pipe 110 rises or falls. The support 510 is slid up and down on the inner wall of the steel pipe 110 so as to.
상기와 같은 구조의 수상 구조물은 강관 말뚝(100)이 수중(20)의 지반(10)에 견고히 고정되어 있으므로, 수상 구조물의 안정성도 충분히 확보될 수 있다.Since the steel pipe pile 100 is firmly fixed to the ground 10 of the water 20 in the above water structure, the stability of the water structure can be sufficiently secured.
[실시예6]Example 6
본 발명의 제6실시예는 제1실시예에 따른 강관 말뚝을 이용하여 지진으로부터 안전하도록 시공되는 내진 주택 및 그 시공 방법에 관한 것이다.A sixth embodiment of the present invention relates to a seismic-proof house and a construction method thereof which are constructed to be safe from earthquakes using the steel pipe pile according to the first embodiment.
도 16은 본 발명의 제6실시예에 따른 내진 주택을 나타낸 정단면도이고, 도 17은 본 발명의 제6실시예에 따른 내진 주택의 슬라브 고정 상태를 나타낸 단면도이고, 도 18은 본 발명의 제6실시예에 따른 내진 주택의 강관 말뚝 구조를 나타낸 횡단면도이다.16 is a front sectional view showing a seismic housing according to a sixth embodiment of the present invention, Figure 17 is a cross-sectional view showing a slab fixed state of the seismic housing according to the sixth embodiment of the present invention, Figure 18 is 6 is a cross-sectional view showing a steel pipe pile structure of a seismic house according to the sixth embodiment.
본 발명의 제6실시예에 따른 내진 주택(600)은 도 16에 도시된 바와 같이, 소정의 깊이까지 지중(10)에 관입되는 다수개의 강관 말뚝(100)을 지지축으로 지표면에는 기초 슬라브(slab, 610)가 형성되고, 외벽(미도시)과 함께 상측으로는 소정의 간격을 두고 층간(620) 및 지붕 슬라브(630)가 형성되는 구조를 이룬다.As illustrated in FIG. 16, the seismic housing 600 according to the sixth embodiment of the present invention has a plurality of steel pipe piles 100 penetrated into the ground 10 to a predetermined depth with a supporting shaft on the ground surface thereof. The slab 610 is formed, and the interlayer 620 and the roof slab 630 are formed along the outer wall (not shown) at predetermined intervals.
여기서 상기 강관 말뚝(100)은 본 발명의 제1실시예에 따른 강관 말뚝(100)이 이용된다.Here, the steel pipe pile 100 is used the steel pipe pile 100 according to the first embodiment of the present invention.
상기 슬라브는 지표면으로 돌출된 상기 강관 말뚝(100)을 축으로 건축물의 기초 바닥을 이루는 기초 슬라브(610)와 상기 기초 슬라브의 소정의 높이에서 형성되는 하나 이상의 층간 슬라브(620) 및 지붕 슬라브(630)로 이루어지며, 상기 슬라브들은 일반적인 철근 콘크리트 공법으로 시공된다. 즉, 상기 강관 말뚝(100)을 지지축으로 메쉬 구조의 철근이 시공되고, 그 사이로 콘크리트가 타설되어 슬라브로 형성된다.The slab includes a foundation slab 610 which forms a foundation floor of a building based on the steel pipe pile 100 protruding to the ground surface, and at least one interlayer slab 620 and a roof slab 630 formed at a predetermined height of the foundation slab. ), The slabs are constructed by a general reinforced concrete method. That is, the steel pipe pile 100 is constructed as a reinforcing bar of the mesh structure, the concrete is poured between the slabs are formed.
이러한 슬라브는 강관 말뚝에 부착되어 고정되지만, 본 발명의 실시예에 따른 기초 슬라브(610)는 강관 말뚝(100)과 이격되고, 그 사이에 완충 작용을 위한 완충 패드(640)가 개입된다.The slab is attached to and fixed to the steel pipe pile, but the foundation slab 610 according to the embodiment of the present invention is spaced apart from the steel pipe pile 100, there is a buffer pad 640 for the buffering action therebetween.
즉, 도 17에 도시된 바와 같이 각 강관 말뚝(100)의 둘레에는 고무 또는 실리콘 재질의 탄성 패드(640)가 소정의 두께로 감겨지고, 그 외주를 따라 콘크리트가 타설되어 기초 슬라브(610)를 형성한다. 상기와 같은 구조에 의하여 지진으로 발생되는 기초 슬라브(610)와 강관 말뚝(100) 사이의 충격 전달을 완화시킬 수 있다.That is, as shown in FIG. 17, a rubber or silicone elastic pad 640 is wound around the steel pipe pile 100 to a predetermined thickness, and concrete is poured along the outer circumference thereof to form the foundation slab 610. Form. By such a structure, it is possible to alleviate the shock transmission between the foundation slab 610 and the steel pipe pile 100 generated by the earthquake.
한편, 지중(10)으로는 본 발명의 제1실시예에 따른 강관 말뚝이 관입되어 내진성의 지지축을 제공하고, 지상에서는 사각 형상의 스틸 박스(steel box) 혹은 강관 콘크리트(SRC:Steel Reinforced Concrete)로 구성될 수 있다.On the other hand, the ground (10) is a steel pipe pile according to the first embodiment of the present invention is inserted into the earthquake-resistant support shaft, and in the ground in a rectangular steel box (steel box) or steel pipe concrete (SRC: Steel Reinforced Concrete) Can be configured.
즉, 도 18을 참조하여 지지축을 이루는 지상에서의 기둥 단면을 살펴보면, (A)에 도시된 바와 같이 내진성의 강관 말뚝만으로 구성되거나, (B)에 도시된 바와 같이 기초 슬라브(610)의 소정 높이까지 돌출되는 강관 말뚝(100)의 단부에 사각 형상의 스틸 박스(160)가 체결되어 지상에서의 기둥을 형성할 수 있으며, (C)에 도시된 바와 같이 강관 말뚝(100)의 외주면을 따라 사각 형상의 콘크리트(170)가 타설되는 강관 콘크리트가 지상에서의 기둥을 형성할 수 있다. 여기서 상기 스틸 박스(160)는 기초 슬라브(610)의 상측에서 볼트 체결 등의 수단으로 강관 말뚝(100)의 단부에 고정시킬 수 있다. That is, referring to the column cross-section on the ground forming the support shaft with reference to Figure 18, as shown in (A) is composed of a steel pipe pile of a shock-resistant, or as shown in (B) a predetermined height of the foundation slab 610 Square steel box 160 is fastened to the end of the steel pipe pile 100 that protrudes to form a pillar on the ground, as shown in (C) square along the outer circumferential surface of the steel pipe pile 100 Steel pipe concrete on which the concrete concrete 170 is poured may form a pillar on the ground. Here, the steel box 160 may be fixed to the end of the steel pipe pile 100 by means of bolting or the like on the upper side of the foundation slab 610.
상기와 같은 내진 주택 구조물은 종래의 구조물에 비하여 시공이 간단하고 시공 비용을 현저히 절감시킬 수 있으며, 강관 말뚝에 의해 1차적으로 내진성을 가지고, 강관 말뚝과 기초 슬라브 사이에 완충 패드가 삽입되어 2차적으로 내진성을 가지게 되어 지진에 대한 우수한 내진성이 확보될 수 있다.The seismic housing structure as described above is simpler in construction than the conventional structure and can significantly reduce the construction cost, has a primary shock resistance by the steel pipe piles, the secondary pads by inserting a buffer pad between the steel pipe piles and the foundation slabs As it has a seismic resistance can be secured excellent earthquake resistance.
한편, 본 발명의 제6실시예에 따른 상기 내진 주택에 있어서, 강관 말뚝은 제1실시예에 따른 강관 말뚝이 이용되었으나, 선단부에 선단 확대 장치가 구비되지않은 일반적인 강관 말뚝이 이용될 수도 있다.On the other hand, in the seismic housing according to the sixth embodiment of the present invention, the steel pipe pile is used as the steel pipe pile according to the first embodiment, a general steel pipe pile may be used that is not provided with a tip expansion device in the front end portion.
이상에서 살펴본 바와 같이, 본 발명의 제1실시예에 따른 강관 말뚝을 지지축으로 하여 그 상부에는 교량, 옹벽, 수상 부유 구조물 및 내진 주택 등과 같은 다양한 구조물이 저렴한 비용으로 안정적으로 시공될 수 있다. 또한, 본 발명에 있어서 실시예를 참고로 설명되었으나, 본 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.As described above, the steel pipe pile according to the first embodiment of the present invention as a support shaft, various structures such as bridges, retaining walls, water floating structures, and seismic housing can be stably constructed at a low cost. In addition, although described with reference to the embodiments in the present invention, those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom.

Claims (7)

  1. 중공의 원통 형상의 강관 선단부 외측에 적어도 두 개 이상의 리브가 방사상으로 고정되고, 상기 리브의 저면에는 상기 강관보다 큰 직경을 가지는 도넛형의 확장판이 고정되는 강관 말뚝;A steel pipe pile in which at least two ribs are radially fixed to the outside of the hollow cylindrical steel pipe tip, and a donut-shaped expansion plate having a diameter larger than the steel pipe is fixed to the bottom of the rib;
    상기 강관 말뚝의 상부에 적층되는 주형지지보;Mold support beam stacked on top of the steel pipe pile;
    상기 주형지지보 상부에 적층되며, 제1빔, 상기 제1빔의 상부에 적층되는 제2빔 및 상기 제1빔의 상측 양단부와 제2빔의 하측 양단부에 덧대어지는 덧댐 이음판으로 이루어지는 합성보; 및A composite beam stacked on the mold support, the composite beam including a first beam, a second beam stacked on top of the first beam, and a padding plate attached to upper and lower ends of the first beam and lower ends of the second beam; And
    상기 합성보의 상부에 적층되는 복공판;을 포함하되,Including; a porous plate laminated on top of the composite beam;
    상기 강관 말뚝은 지반의 굴착공에서 방청혼화제가 혼합된 콘크리트에 의하여 고정 지지되고,The steel pipe pile is fixed and supported by the concrete mixed with the antirust admixture in the excavation hole of the ground,
    상기 합성보는 상기 제1빔, 제2빔 및 덧댐 이음판을 관통하는 볼트에 의해 체결되는 것을 특징으로 하는 교량 구조물.And the composite beam is fastened by bolts passing through the first beam, the second beam, and the additional joint plate.
  2. 중공의 원통 형상의 강관 선단부 외측에 적어도 두 개 이상의 리브가 방사상으로 고정되고, 상기 리브의 저면에는 상기 강관보다 큰 직경을 가지는 도넛형의 확장판이 고정되는 강관 말뚝으로서,At least two ribs are radially fixed to the outside of the hollow cylindrical steel pipe tip portion, the bottom of the rib is a steel pipe pile is fixed to the donut-shaped expansion plate having a diameter larger than the steel pipe,
    상기 강관 말뚝의 하단부는 지중에 관입되어 콘크리트에 의해 고정되고, The lower end of the steel pipe pile is inserted into the ground and fixed by concrete,
    상기 강관 말뚝의 상단부는 철근부재와 콘크리트층에 의해 다수개가 서로 연결되는 것을 특징으로 하는 절개지의 옹벽 구조물.Retaining wall structure of the incision, characterized in that the upper end of the steel pipe pile is connected to each other by a reinforcing member and the concrete layer.
  3. 중공의 원통 형상의 강관 선단부 외측에 적어도 두 개 이상의 리브가 방사상으로 고정되고, 상기 리브의 저면에는 상기 강관보다 큰 직경을 가지는 도넛형의 확장판이 고정되며, 상기 강관의 외측에서 '⊂'형상의 가이드레일이 서로 대칭적으로 고정되는 강관 말뚝으로서,At least two ribs are radially fixed to the outside of the end of the hollow cylindrical steel pipe, a donut-shaped expansion plate having a diameter larger than that of the steel pipe is fixed to the bottom of the rib, and the '⊂' shaped guide on the outside of the steel pipe Steel pipe piles with rails symmetrically fixed to each other,
    상기 리브, 확장판이 고정된 상기 강관의 하측 매입부는 지중에서 콘크리트층에 의해 고정되고,The bottom buried portion of the steel pipe to which the ribs and the expansion plate is fixed is fixed by a concrete layer in the ground,
    상기 가이드레일에는 토류판이 순차적으로 슬라이딩 삽입되며, 다수개의 상기 강관 상단은 연결부재에 의해 서로 연결되도록 구성되는 것을 특징으로 하는 흙막이 옹벽 구조물.An earth plate is sequentially inserted into the guide rail, and the top of the plurality of steel pipe retaining wall structures, characterized in that configured to be connected to each other by a connecting member.
  4. 중공의 원통 형상의 강관 선단부 외측에 적어도 두 개 이상의 리브가 방사상으로 고정되고, 상기 리브의 저면에는 상기 강관보다 큰 직경을 가지는 도넛형의 확장판이 고정되는 강관 말뚝; 및A steel pipe pile in which at least two ribs are radially fixed to the outside of the hollow cylindrical steel pipe tip, and a donut-shaped expansion plate having a diameter larger than the steel pipe is fixed to the bottom of the rib; And
    수면에서 접촉되어 상부에 다양한 구조물이 시공되기 위한 평판형의 베이스부와 상기 강관의 내측에 삽입되어 상기 베이스부를 지지하는 지지부로 구성되어, 상기 강관 말뚝의 상단부에 체결되는 수상 부재;를 포함하며,It comprises a plate-like base portion for contacting at the water surface and a variety of structures on the top and a support portion inserted into the inside of the steel pipe to support the base portion, the water receiving member is fastened to the upper end of the steel pipe pile;
    상기 강관 말뚝의 하단부는 수중 지반의 굴착공에 매입되어, 상기 굴착공에 타설되는 콘크리트층에 의해 지반에서 고정 지지되고,The lower end of the steel pipe pile is embedded in the excavation hole of the underwater ground, and is fixedly supported on the ground by the concrete layer placed in the excavation hole,
    상기 강관 말뚝의 상단부는 수면 위로 돌출되어 상기 수상 부재가 체결되도록 구성되는 것을 특징으로 하는 수상 구조물.An upper end portion of the steel pipe pile protrudes above the water surface, characterized in that the water member is configured to be fastened.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 강관의 내벽과 상기 지지부의 외벽 사이에는 상기 지지부를 상하로 유동 가능하도록 하는 슬라이딩 부재가 구비되어, 부력에 의해 상기 베이스부가 수면의 높이에 따라 상하로 유동되도록 구성되는 것을 특징으로 하는 수상 구조물.An aqueous structure is provided between the inner wall of the steel pipe and the outer wall of the support portion is provided with a sliding member to enable the support portion to flow up and down, so that the base portion flows up and down according to the height of the water surface by buoyancy.
  6. 지반에 관입되는 다수개의 강관 말뚝을 지지축으로 지상에 기초 슬라브, 층간 슬라브 및 지붕 슬라브가 형성되는 내진 주택 구조물에 있어서, In a seismic housing structure in which the foundation slabs, interlayer slabs and roof slabs are formed on the ground with a plurality of steel pipe piles introduced into the ground,
    상기 강관 말뚝은 중공의 원통 형상의 강관 하단부 외측에 적어도 두 개 이상의 리브가 방사상으로 고정되며, 상기 리브의 저면에는 도넛 형상의 확장판이 고정된 선단부가 지중의 굴착공으로 관입되어 콘크리트가 타설되고,The steel pipe pile is at least two ribs are radially fixed to the outer side of the bottom of the hollow cylindrical steel pipe, the end portion of the rib is inserted into the excavation hole in the base of the donut-shaped expansion plate is poured concrete,
    상기 기초 슬라브는 지표면으로 돌출된 상기 강관 말뚝을 축으로 기초 바닥을 이루기 위하여 철근 콘크리트 공법으로 형성되며,The foundation slab is formed by a reinforced concrete method to form a foundation floor based on the steel pipe pile protruding to the ground surface,
    상기 강관 말뚝과 기초 슬라브 사이에는 충격을 완화시키기 위하여 고무 또는 실리콘 재질의 충격 완화 패드가 개입되어,Between the steel pipe pile and the foundation slab is provided with a shock absorbing pad made of rubber or silicon to mitigate the impact,
    지진에 의한 내진성이 부여되도록 구성되는 것을 특징으로 하는 내진 주택 구조물.A seismic housing structure, characterized in that configured to be provided with earthquake resistance.
  7. 제6항에 있어서,The method of claim 6,
    상기 기초 슬라브 상측에서의 지지축은 사각 형상의 스틸 박스(Steel Box)가 상기 강관 말뚝의 상단부와 일체로 연결되어 구성되거나, 상기 강관 말뚝의 외주면을 따라 사각 형상으로 콘크리트가 타설된 강관 콘크리트(SRC)로 구성되는 것을 특징으로 하는 내진 주택 구조물.The support shaft on the upper side of the foundation slab is formed of a steel box (Steel Box) of the rectangular shape is integrally connected with the upper end of the steel pipe pile, or steel pipe concrete (SRC) in which concrete is poured in a square shape along the outer circumferential surface of the steel pipe pile Seismic housing structure, characterized in that consisting of.
PCT/KR2010/001001 2009-11-12 2010-02-18 Structure using steel pile WO2011059145A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR1020090109327A KR20110052338A (en) 2009-11-12 2009-11-12 Construction method of block of wall using steel pipe pile
KR10-2009-0109327 2009-11-12
KR10-2009-0109316 2009-11-12
KR10-2009-0109308 2009-11-12
KR2020090014734U KR200459851Y1 (en) 2009-11-12 2009-11-12 Bridge construction structure using steel pipe pile and composition beam for bicycle only
KR1020090109316A KR101111079B1 (en) 2009-11-12 2009-11-12 Floating structure using steel pipe pile
KR1020090109308A KR20110052321A (en) 2009-11-12 2009-11-12 Steel pipe pile for sheet pile wall and construction method using that
KR20-2009-0014734 2009-11-12
KR10-2010-0007274 2010-01-27
KR1020100007274A KR101136945B1 (en) 2010-01-27 2010-01-27 An earthquake-proof house and building

Publications (1)

Publication Number Publication Date
WO2011059145A1 true WO2011059145A1 (en) 2011-05-19

Family

ID=43991790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001001 WO2011059145A1 (en) 2009-11-12 2010-02-18 Structure using steel pile

Country Status (1)

Country Link
WO (1) WO2011059145A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044978A1 (en) * 2011-09-30 2013-04-04 Seahorn Energy Holding ApS Method of building an offshore power storage facility and corresponding offshore power storage facility
CN109537431A (en) * 2018-11-19 2019-03-29 上海建工五建集团有限公司 Plank road structure and method waterborne
US20200040542A1 (en) * 2017-04-17 2020-02-06 Cccc First Harbor Engineering Co., Ltd. Foundation treatment method for piling foundation structure by penetrating hardpan layer
CN113323147A (en) * 2021-06-04 2021-08-31 广州市盾建建设有限公司 Construction method for replacing traditional tramcar protection shed by first-layer main body structure
CN113914340A (en) * 2021-11-17 2022-01-11 浙江竤伟集团有限公司 Green bridge construction equipment and construction process based on steel sheet pile cofferdam technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064978A (en) * 1999-08-25 2001-03-13 Daiwa House Ind Co Ltd Building foundation structure
US6427402B1 (en) * 2000-10-25 2002-08-06 American Piledriving Equipment, Inc. Pile systems and methods
KR20060012840A (en) * 2004-08-04 2006-02-09 백경재 Channelbar-attached steel
KR100869815B1 (en) * 2007-04-03 2008-11-21 임수용 Apparatus to upgrade end bearing capacity of pile and pile construction method
US7610728B1 (en) * 2008-05-20 2009-11-03 Manocchia Louis E Molded plastic system for use in constructing footings or supports for structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064978A (en) * 1999-08-25 2001-03-13 Daiwa House Ind Co Ltd Building foundation structure
US6427402B1 (en) * 2000-10-25 2002-08-06 American Piledriving Equipment, Inc. Pile systems and methods
KR20060012840A (en) * 2004-08-04 2006-02-09 백경재 Channelbar-attached steel
KR100869815B1 (en) * 2007-04-03 2008-11-21 임수용 Apparatus to upgrade end bearing capacity of pile and pile construction method
US7610728B1 (en) * 2008-05-20 2009-11-03 Manocchia Louis E Molded plastic system for use in constructing footings or supports for structures

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044978A1 (en) * 2011-09-30 2013-04-04 Seahorn Energy Holding ApS Method of building an offshore power storage facility and corresponding offshore power storage facility
US20200040542A1 (en) * 2017-04-17 2020-02-06 Cccc First Harbor Engineering Co., Ltd. Foundation treatment method for piling foundation structure by penetrating hardpan layer
US10781567B2 (en) * 2017-04-17 2020-09-22 Cccc First Harbor Engineering Co., Ltd. Foundation treatment method for piling foundation structure by penetrating hardpan layer
CN109537431A (en) * 2018-11-19 2019-03-29 上海建工五建集团有限公司 Plank road structure and method waterborne
CN113323147A (en) * 2021-06-04 2021-08-31 广州市盾建建设有限公司 Construction method for replacing traditional tramcar protection shed by first-layer main body structure
CN113914340A (en) * 2021-11-17 2022-01-11 浙江竤伟集团有限公司 Green bridge construction equipment and construction process based on steel sheet pile cofferdam technology

Similar Documents

Publication Publication Date Title
WO2010134731A9 (en) Top-down construction method using a branch-type steel frame with channels for the continuous construction of an underground retaining wall
WO2020197061A1 (en) Subterranean underwater structure using geotextile mold and method for constructing same
CN103510540B (en) Mortar flag stone retaining wall reinforcement construction method and structure thereof
WO2011059145A1 (en) Structure using steel pile
CN111519633A (en) Foundation pit supporting structure and construction process thereof
KR101507924B1 (en) Structure and method of constructing concrete footing structure of top structure
JP2001311314A (en) Method for realizing base isolation structure of existing building
WO2021187873A1 (en) Implant-type pile press-in apparatus in construction foundation system, and implant-type piling method using same
KR100756517B1 (en) Hollow type composite pier
KR20100001516A (en) Joint structure for connecting slant supporter and square steel strut for temporary soil sheathing work
JP2020070705A (en) Method for constructing lightweight fill retaining wall structure
KR100390369B1 (en) Construction method of arch structure of subway or common duct in excavating process
KR102184900B1 (en) Temporary retaining wall structure using circular steel pipe and construction method thereof
WO2024039010A1 (en) H-pile using guide bracket and ground anchor and method for constructing temporary earth retaining structure using same
KR20120122024A (en) Uniting Method of Temporary earth wall with basement exterior Wall using Couplers and Bolts.
JP2006083642A (en) Foundation structure of steel tower
JP2010077656A (en) Structure and method for seismically strengthening column
JP3899307B2 (en) Cast-in-place concrete filled steel pipe pile and method for constructing cast-in-place concrete filled steel pipe pile
KR200459851Y1 (en) Bridge construction structure using steel pipe pile and composition beam for bicycle only
JP5852475B2 (en) Pile foundation reconstruction method
JP2006316495A (en) Foundation structure of bridge pier and its construction method
US20220034058A1 (en) Multiple friction joint pile system
RU76029U1 (en) COMPOUND PILET JOINT
JPH1082057A (en) Method of earthquake-resisting pile foundation construction
JPH1082056A (en) Method of earthquake-resisting pile foundation construction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10830078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10830078

Country of ref document: EP

Kind code of ref document: A1