WO2011058728A1 - Liquid crystal display - Google Patents
Liquid crystal display Download PDFInfo
- Publication number
- WO2011058728A1 WO2011058728A1 PCT/JP2010/006552 JP2010006552W WO2011058728A1 WO 2011058728 A1 WO2011058728 A1 WO 2011058728A1 JP 2010006552 W JP2010006552 W JP 2010006552W WO 2011058728 A1 WO2011058728 A1 WO 2011058728A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- crystal display
- light
- display panel
- backlight
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3406—Control of illumination source
- G09G3/3413—Details of control of colour illumination sources
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/22—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
- G02B30/24—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3406—Control of illumination source
- G09G3/342—Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0045—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
- G02B6/0046—Tapered light guide, e.g. wedge-shaped light guide
- G02B6/0048—Tapered light guide, e.g. wedge-shaped light guide with stepwise taper
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133603—Direct backlight with LEDs
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133613—Direct backlight characterized by the sequence of light sources
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133615—Edge-illuminating devices, i.e. illuminating from the side
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133621—Illuminating devices providing coloured light
- G02F1/133622—Colour sequential illumination
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0235—Field-sequential colour display
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0237—Switching ON and OFF the backlight within one frame
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/024—Scrolling of light from the illumination source over the display in combination with the scanning of the display screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0297—Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/08—Details of timing specific for flat panels, other than clock recovery
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0242—Compensation of deficiencies in the appearance of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0252—Improving the response speed
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/04—Maintaining the quality of display appearance
- G09G2320/041—Temperature compensation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0606—Manual adjustment
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0626—Adjustment of display parameters for control of overall brightness
- G09G2320/064—Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/14—Detecting light within display terminals, e.g. using a single or a plurality of photosensors
- G09G2360/144—Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2007—Display of intermediate tones
- G09G3/2018—Display of intermediate tones by time modulation using two or more time intervals
- G09G3/2022—Display of intermediate tones by time modulation using two or more time intervals using sub-frames
- G09G3/2025—Display of intermediate tones by time modulation using two or more time intervals using sub-frames the sub-frames having all the same time duration
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/2007—Display of intermediate tones
- G09G3/2077—Display of intermediate tones by a combination of two or more gradation control methods
- G09G3/2081—Display of intermediate tones by a combination of two or more gradation control methods with combination of amplitude modulation and time modulation
Definitions
- the present invention relates to a field sequential type liquid crystal display device.
- the liquid crystal display device generally uses a fluorescent lamp such as a cold cathode fluorescent lamp (hereinafter referred to as “CCFL”) as a light source, and directly illuminates the liquid crystal display panel from the back side.
- CCFL cold cathode fluorescent lamp
- each pixel is composed of sub-pixels composed of red, blue, and green color filters.
- red Light can pass through the red sub-pixel, but the blue and green sub-pixels are absorbed by the color filters and do not contribute to image formation and are lost.
- the same can be said for blue light and green light, so that 2/3 of the light emitted from the CCFL is absorbed and lost in the sub-pixels of the liquid crystal display panel.
- a liquid crystal display device includes a liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data, and applying the voltage to the liquid crystal display panel to apply the liquid crystal
- a drive circuit that drives the display panel, a backlight that irradiates the liquid crystal display panel with light of a plurality of colors from the back surface, a drive control unit that controls the drive circuit, and control of light irradiation from the backlight
- a backlight control unit that divides one frame into a plurality of subframes, and further subdivides each subframe into a plurality of fields respectively corresponding to the plurality of colors of light.
- a backlight control unit for controlling, one frame is divided into a plurality of subframes, and each subframe is further divided into a plurality of fields respectively corresponding to the light of the plurality of colors, and in each field, the image Based on the data, the liquid crystal display panel is driven, and light of a color corresponding to the field is transmitted from the backlight to the liquid crystal display panel.
- the liquid crystal display device forms the image by irradiating the liquid crystal display panel, and the liquid crystal display panel includes a liquid crystal layer inside and a transparent electrode for applying a voltage to the liquid crystal layer by the driving circuit.
- the light emitted from the backlight includes infrared light or ultraviolet light
- the transparent electrode is formed of a material that generates heat by absorbing infrared light or ultraviolet light.
- FIG. 6 is an explanatory diagram of a liquid crystal response waveform and a light source lighting timing according to the first embodiment, in which (a) shows a case where zero is set at the end of each field, and (b) is continuously driven without being set to zero at the end of each field. Indicates when to do.
- FIG. 3 is a control block diagram of the liquid crystal display device according to the first embodiment.
- FIG. 7 is an explanatory diagram of scroll illumination of a liquid crystal display device according to a second embodiment, where (a) shows a cross-sectional view and a control block of the liquid crystal display device, and (b) shows liquid crystal drive timing and light source lighting timing.
- FIG. 6 is an explanatory diagram of light source lighting timing with an adjacent illumination block of the liquid crystal display device according to the second embodiment.
- FIG. 7 is a schematic configuration diagram of another liquid crystal display device according to the second exemplary embodiment, where (a) is a plan view of the liquid crystal display device and (b) is a side view of the liquid crystal display device as viewed from the direction of an arrow 21A.
- FIG. 7 is a schematic configuration diagram of another liquid crystal display device according to the second exemplary embodiment, where (a) is a plan view of the liquid crystal display device and (b) is a side view of the liquid crystal display device as viewed from the direction of an arrow 21A.
- FIG. 6 is a diagram when the liquid crystal display device according to the second embodiment is applied to three-dimensional display, in which (a) is a schematic configuration diagram, and (b) is an explanatory diagram of display timings of a right eye image and a left eye image.
- FIG. 3 is a schematic configuration diagram of a liquid crystal display device according to a second embodiment, where (a) is a plan view of the liquid crystal display device, (b) is a side view of the liquid crystal display device viewed from the direction of an arrow 21A, and (c) is a laser light source.
- the block diagram which shows the form provided with a superluminescent diode (SLD) instead of.
- SLD superluminescent diode
- FIG. 6 is a diagram illustrating a liquid crystal display device according to a fourth exemplary embodiment, where (a) is a schematic configuration diagram, (b) is a cross-sectional view taken along line 100A-100A in (a), and (c) is 100B-100B in (a). Sectional view with a line.
- FIG. 6 is a diagram illustrating a drive circuit of a liquid crystal display device according to a fourth embodiment.
- FIG. 10 is a diagram illustrating another drive circuit of the liquid crystal display device according to the fourth embodiment;
- FIG. 17 is a diagram illustrating the control timing of each pixel of the liquid crystal display device according to the fourth embodiment, where (a) shows the case of the drive circuit shown in FIG. 16 and (b) shows the case of the drive circuit shown in FIG.
- FIG. 1 is a schematic configuration diagram of a field sequential type liquid crystal display device.
- 1A is a plan view of the liquid crystal display device
- FIG. 1B is a cross-sectional view of the liquid crystal display device of FIG. 1A taken along the line 10A-10A.
- FIG. 2 is a circuit configuration diagram of the liquid crystal display panel.
- the liquid crystal display device 10 includes a liquid crystal display panel 11, a plurality of light sources 12 arranged on the side opposite to the viewing side of the liquid crystal display panel 11, that is, the back side, a reflection unit 13, a backlight control unit 141, and drive control.
- the control part 14 which has the part 142, and the drive circuit 7 are provided.
- the light source 12 includes a red light source 12r, a green light source 12g, and a blue light source 12b, and functions as a backlight with respect to the liquid crystal display panel 11 together with the reflection unit 13.
- An LED can be used as the light source 12.
- the red light source 12r, the green light source 12g, and the blue light source 12b constituting the light source 12 are alternately arranged between the liquid crystal display panel 11 and the reflection unit 13 so as to be uniform white by color mixing as shown in FIG. Deploy.
- Each light source 12 is connected to a backlight control unit 141 of the control unit 14, and the backlight control unit 141 controls lighting, extinguishing timing, and light quantity of each light source 12.
- the light emitted from each light source 12 and emitted in the direction opposite to the liquid crystal display panel 11 is also reflected by the reflection unit 13 so as to irradiate the liquid crystal display panel 11 uniformly without waste.
- the liquid crystal display panel 11 is connected to the drive control unit 142 of the control unit 14 via the drive circuit 7, and the drive control unit 142 uses the liquid crystal of each pixel constituting the liquid crystal display panel 11 via the drive circuit 7.
- the transmittance is controlled by applying a voltage to and driving.
- signal lines DL1, DL2,..., DLm
- scanning lines GL1, GL2,..., GLn
- a subpixel is formed by connecting to the drain electrode and the gate electrode.
- the source electrode is connected to a transparent electrode (not shown), and a voltage is applied to the liquid crystal having the capacitance Clc with the common electrode Vcom.
- the signal lines DL1, DL2,..., DLm are connected to the source driver 15, and the scanning lines GL1, GL2,..., GLn are connected to the gate driver 16, and the gate driver 16 turns on the desired scanning line.
- the voltage of each signal line is adjusted by the source driver 15 so that the liquid crystal of the subpixel connected to each signal line has a desired transmittance. Applied to both ends.
- the gate driver 16 sequentially applies ON signals (scanning signals) to the scanning lines in order from the top (GL1, GL2,..., GLn), and the source driver 15 synchronizes with this. Since a desired voltage is applied to the signal line, the image displayed from the top to the bottom of the liquid crystal display panel 11 is updated.
- the drive circuit 7 includes a source driver 15, a gate driver 16, a TFT, a signal line, a scanning line, a transparent electrode, a common electrode Vcom, and the like.
- FIG. 3 is an explanatory diagram of the scanning timing and light source lighting timing of the liquid crystal display panel.
- a red light source, a green light source, and a blue light source are sequentially turned on every time Tf of one field, and one subframe (time Tsf) is configured by three fields.
- a signal is applied to each liquid crystal from the top to the bottom of the liquid crystal display panel 11, and after waiting for a predetermined time for the liquid crystal to be aligned, the corresponding color light source is turned on simultaneously. By doing so, an image of that color can be displayed.
- the liquid crystal display panel 11 is scanned from the top to the bottom, data is set for each pixel (time Ts), the liquid crystal is oriented (time Td), and the light source is turned on. It is necessary to light (time Tl).
- the corresponding area is determined.
- the waiting time due to the time Ts for scanning each pixel of the liquid crystal display panel 11 from the top to the bottom basically disappears. Therefore, the time Tf per field is set to the liquid crystal orientation (time Td) and the light source.
- time Td can be divided into only lighting (time Tl). Therefore, if the lighting time (Tl) of the light source is the same, the time (Td) required for the alignment of the liquid crystal may be longer. That is, it is understood that the response speed required for the liquid crystal is reduced by performing the scroll illumination.
- one frame is divided into a plurality of, for example, two subframes. This is because if one frame is simply composed of three fields, there is a risk that color braking will occur in which the edge of the image being viewed is divided into rainbow colors due to movement of the eyeball or the like.
- Tsf per subframe the number of seconds Tsf per subframe is 8.3 milliseconds, and field sequential display is performed in three colors such as red, green, and blue.
- the time Tf per field is 2.8 milliseconds.
- the response speed of the liquid crystal is limited to about 4 milliseconds at the fastest in the VA (Vertical Alignment) mode and IPS (In Plane Switching) mode.
- VA Vertical Alignment
- IPS In Plane Switching
- FIG. 4 is a diagram showing the relationship between the response waveform of the liquid crystal in a pixel at a certain position and the lighting timing of the light source, and the response waveform of the liquid crystal corresponds to a change in transmittance with time.
- the backlight control unit 141 can adjust the elapsed time Ton from the field start time (voltage application start time to the liquid crystal) to the light source lighting start time. That is, the backlight control unit 141 accelerates the irradiation start timing of the light from the light source 12 to the liquid crystal display panel 11 in each field (shortens the elapsed time Ton) or delays the irradiation start timing (longens the elapsed time Ton). Adjust the irradiation start timing. In this case, the following effects are obtained.
- each light source 12 when the elapsed time Ton is shortened and each light source 12 is turned on for a long time, it is possible to display a bright image because the lighting time of the light source 12 is long.
- the elapsed time Ton is lengthened and the lighting time of each light source 12 is relatively shortened, the light source 12 is turned on only at a desired transmittance, so that a high-quality image with a wide color reproduction range can be obtained. It becomes possible to provide.
- a high-brightness image is desired in a bright environment (for example, in the daytime or under high illumination), so an image with excellent visibility can be provided by shortening the elapsed time Ton and increasing the brightness. I can do it.
- a movie in a dark environment for example, at night or under low illumination
- time zone during the day is not limited to 6 hours from 9:00 to 15:00 as described above, and may be, for example, 8 hours from 8:00 to 16:00. In short, it may be a bright time zone such as a predetermined time including noon. Further, for example, the time zone may be changed depending on the season.
- the tuner 19 is connected to the backlight control unit 141 of the control unit 14, and the backlight control unit 141 determines that the program being viewed is a movie, for example. If it is determined that the elapsed time Ton is lengthened and the luminance is suppressed to provide a high-quality image with a wide color reproduction range, and it is judged as variety, news, etc., the elapsed time Ton is shortened to increase the luminance image. It is also possible to provide
- the setting unit 6 when the setting unit 6 is configured to be operable by the user, for example, when the cinema mode is set, the color reproduction range is set while increasing the elapsed time Ton and suppressing the luminance. Wide and high-quality images may be provided.
- the setting unit 6 when the setting unit 6 is set to a mode for viewing, for example, variety or news, the elapsed time Ton may be shortened to provide a high brightness image.
- an illuminance sensor 18 (illuminance detection unit) is attached to the liquid crystal display panel 11, and the measured ambient brightness is determined by the backlight control unit 141. You may set to time Ton sequentially.
- the illuminance sensor 18 is attached to the liquid crystal display panel 11, but is not limited thereto. For example, you may attach to the television main body 8, and you may attach to the remote control (illustration omitted) attached to the television main body 8.
- FIG. it is only necessary to detect the brightness of a region that influences when the user visually recognizes the liquid crystal display panel 11, such as the brightness of the room in which the liquid crystal display panel 11 is installed.
- a temperature sensor 17 for measuring the ambient temperature may be attached to the liquid crystal display panel 11, and the elapsed time Ton may be sequentially set according to the measured temperature. I do not care.
- the driving speed (response speed) of the liquid crystal is slow at low temperatures. Therefore, as the temperature detected by the temperature sensor 17 decreases, the backlight control unit 141 can provide an image that maintains the color reproduction range by increasing the elapsed time Ton. On the other hand, when the temperature detected by the temperature sensor 17 increases, the backlight control unit 141 can provide a high-luminance image while maintaining the color reproduction range by gradually shortening the elapsed time Ton.
- the elapsed time Ton and the light quantity of the light source 12 may be adjusted and switched by means other than the above examples, such as date information, sensor information, and user settings, or a plurality of means may be combined.
- FIG. 6A is a cross-sectional view taken along the line 10A-10A (FIG. 1A) of the liquid crystal display device 10 as in FIG. 1B, and the light source 12 is divided into four illumination blocks 20a to 20d according to illumination timing.
- Each of the illumination blocks 20a to 20d includes a red light source 12r, a blue light source 12b, and a green light source 12g.
- FIG. 6B indicates the vertical pixel position of the liquid crystal display panel 11, and this figure shows the timing of turning on the liquid crystal of each pixel of the liquid crystal display panel 11 in the vertical direction and the light source 12. The timing of lighting is shown.
- illustration of the drive circuit 7 is abbreviate
- the backlight control unit 141 turns on the bottom row at the position corresponding to each of the illumination blocks 20a to 20d on the liquid crystal display panel 11 and sets the corresponding illumination block after the elapsed time Ton seconds.
- the light source 12 is turned on.
- the backlight control unit 141 turns off the light source 12 of the corresponding illumination block immediately before the top row of the next field at the position corresponding to each illumination block on the liquid crystal display panel 11 is turned on.
- the above lighting and extinction are repeated for the red field, the green field, and the blue field in three colors to form one subframe, and this is repeated a predetermined number of times to form one frame. That is, one frame is divided into a predetermined number of subframes, and each subframe is composed of three fields corresponding to each color.
- the red light source of the illumination block 20b is turned on at times t1 and t2, and the red light source of the illumination block 20b is also turned on. It can be seen that it is lit at time t3 to t4.
- the illumination blocks 20a and 20b are divided as light sources, even if the liquid crystal display panel 11 is directly above the illumination block 20a, part of the light from the illumination block 20b reaches. In particular, a region near the boundary between the illumination blocks 20a and 20b receives light from the illumination blocks 20a and 20b on both sides.
- the amount of red light transmitted through this pixel is obtained by multiplying the amount of red light emitted from the illumination block 20a to reach this pixel by the liquid crystal transmittance (that is, the liquid crystal response waveform) at each time, and The sum of the amount of light integrated up to t2 and the amount of light that reaches the main pixel in the red light emitted from the illumination block 20b is multiplied by the liquid crystal transmittance at each time to integrate the light from time t3 to t4. .
- the liquid crystal transmittance that is, the liquid crystal response waveform
- the drive control unit 142 calculates the light amount reaching the main pixel from the adjacent illumination block 20b from the distance from the adjacent illumination block 20b to the main pixel. This can be achieved by correcting the image data of this pixel in advance so that the amount of light transmitted from this pixel becomes the desired amount of light.
- the liquid crystal response waveform at time t4 is the next field, green. Depends on the image data in the field.
- the drive control unit 142 uses the image data in the red field and the image data in the green field, which is the next field, to determine the amount of light reaching the main pixel from the adjacent illumination block 20b, and the amount of light transmitted from the main pixel.
- the image data of the main pixel By correcting the image data of the main pixel in advance so that the desired light amount is obtained, the light amount of red light transmitted from the main pixel can be corrected to be the desired light amount. In this way, even in the scroll illumination, it is possible to correct the gradation due to the difference in the light emission timing of the adjacent illumination blocks and provide a high-quality image faithful to the original image.
- 255 is arranged in the green field Fg1 of the front subframe SF1, but it goes without saying that 255 is arranged in the green field Fg2 of the rear subframe SF2 as shown in FIG. 8C. I do not care.
- FIG. 8 illustrates the case where one frame is divided into two subframes
- the present invention is not limited to this.
- one frame may be divided into four subframes.
- the applied voltage may be set by decomposing in the order of high gradation, low gradation, high gradation, and low gradation, or in the order of high gradation, low gradation, low gradation, and high gradation.
- the applied voltage may be set by decomposing, or the applied voltage may be set by decomposing in the order of high gradation, high gradation, low gradation, and low gradation.
- the image data may be decomposed so that one frame is formed by combining two subframes to which a voltage corresponding to high gradation image data and a voltage corresponding to low gradation image data are respectively applied. . That is, in this case, one frame needs to be divided into even-numbered subframes.
- a high gradation close to 255 is arranged in a front subframe SF1 in a predetermined pixel and close to 0 in a rear subframe SF2.
- a low gradation is disposed near the front subframe SF1
- a low gradation close to 0 is disposed near the rear subframe SF2, as shown in FIG. 8C.
- High gradations may be arranged.
- a voltage corresponding to high gradation image data close to 255 is applied to a predetermined target pixel, as shown in FIG. 8B, to the green field Fg1 of the front subframe SF1.
- a voltage corresponding to low gradation image data close to 0 is applied to the green field Fg2 of SF2.
- a voltage corresponding to low gradation image data close to 0 is applied to the green field Fg1 of the front subframe SF1, as shown in FIG.
- a voltage corresponding to high gradation image data close to 255 is applied to the green field Fg2 of the rear subframe SF2.
- the light source 12 is disposed on the back surface of the liquid crystal display panel 11 to directly illuminate the liquid crystal display panel 11 (direct type).
- FIG. 9A is a front view of the liquid crystal display device 21, and FIG. 9B is a side view seen from the direction of the arrow 21A in FIG. 9A.
- illustration of the drive circuit 7 and the control unit 14 is omitted.
- the illumination area of the light source 12 is divided into illumination blocks 20a to 20d, and light guide plates 22a to 22d are assigned to the blocks 20a to 20d, respectively. Further, a red light source 12r, a green light source 12g, and a blue light source 12b are arranged on the left and right of the respective light guide plates 22a to 22d. Each light source 12r, 12g, 12b can use LED.
- the light sources 12r, 12g, and 12b are arranged in the vicinity of the side surfaces of the light guide plates 22a to 22d.
- the light sources 12r, 12g, and 12b are emitted.
- the light is directly incident on the light guide plate 22a.
- each light source 12r, 12g, and 12b is covered with a side reflector 24, and light that has not directly entered the light guide plate 22a is also reflected by the side reflector 24.
- the light enters the light guide plate 22a.
- Each of the light guide plates 22a to 22d has, for example, minute diffusion particles therein, and light incident on each of the light guide plates 22a to 22d is scattered by the minute diffusion particles in the light guide plates 22a to 22d, and the light guide plate 22a.
- the light emitted from each of the light guide plates 22a to 22d in the direction opposite to the liquid crystal display panel 11 is reflected by the bottom reflector 23 and is scattered again in the light guide plates 22a to 22d. Contributes to lighting.
- the luminance in the left and right directions of the light guide plates 22a to 22d can be made uniform.
- the light sources 12r, 12g, and 12b arranged on the left and right of the respective illumination blocks 20a to 20d are made to correspond to the respective illumination blocks of the liquid crystal display panel 11 as in the liquid crystal display device 10 shown in FIG.
- Each of the areas corresponding to 20a to 20d is illuminated.
- the illumination of the front subframe SF1 is on the left side of each of the light guide plates 22a to 22d.
- the arranged light sources 12r, 12g, 12b may be turned on, and the illumination of the rear subframe SF2 may be turned on by illuminating the light sources 12r, 12g, 12b arranged on the right side of the respective light guide plates 22a-22d.
- the right light sources 12r, 12g, and 12b may be turned on in the front subframe SF1
- the left light sources 12r, 12g, and 12b may be turned on in the rear subframe SF2.
- the illumination block 20a turns on the left light sources 12r, 12g, and 12b
- the illumination block 20b turns on the right light sources 12r, 12g, and 12b
- the illumination block 20c turns on the left light sources 12r, 12g, and 12b.
- the lighting block 20d lights the right light sources 12r, 12g, and 12b.
- the lighting block 20a lights the right light sources 12r, 12g, and 12b
- the lighting block 20b The light sources 12r, 12g, and 12b are turned on
- the illumination block 20c is turned on for the right light sources 12r, 12g, and 12b
- the illumination block 20d is turned on for the left light sources 12r, 12g, and 12b. You may make it light up. In this way, the color braking is further suppressed.
- the liquid crystal display device 10 is a liquid crystal display device capable of three-dimensional display
- the 3D display device displays the right eye image and the left eye image captured with parallax for the viewer's eyes, shows the right eye image only to the right eye, and shows the left eye image only to the left eye. There is a need.
- a shutter is provided for each of the right eye and the left eye, shutter glasses 25 connected to the control device 26 are prepared, and the control device 26 is connected to the liquid crystal display device 10.
- the control device 26 closes the left eye shutter of the shutter glasses 25 at the timing when the liquid crystal display device 10 displays the right eye image, and closes the right eye shutter of the shutter glasses 25 at the timing when the liquid crystal display device 10 displays the left eye image.
- the person recognizes the displayed image as a three-dimensional image.
- FIG. 11 a configuration diagram of the liquid crystal display device 30 is shown as an example when a laser is used as a light source.
- 11A is a top view of the liquid crystal display device 30, and FIG. 11B is a side view of FIG. 11A viewed from the direction of the arrow 30A.
- the liquid crystal display device 30 includes a red laser light source 32r that emits red laser light 34r, a green laser light source 32g that emits green laser light 34g, a blue laser light source 32b that emits blue laser light 34b, a collimator lens 33, and a rotating polygon mirror 35. , Fresnel lenses 36 and 37, and a light guide plate 38.
- the red laser light 34r emitted from the red laser light source 32r is converted into substantially parallel light by the collimator lens 33 on the optical axis and then enters the rotary polygon mirror 35. Since the rotary polygon mirror 35 rotates in the direction of the arrow, the red laser light 34r is deflected and scanned in the direction of arrow 30B in the figure while being reflected by the rotary polygon mirror 35.
- the Fresnel lens 36 has a curvature in the width direction of the light guide plate 38 (vertical direction in FIG. 11A), and the Fresnel lens 37 has a curvature in the thickness direction of the light guide plate 38 (vertical direction in FIG. 11B).
- the red laser light 34 r incident on the Fresnel lens 36 is converted so that the traveling direction of the light beam becomes substantially horizontal after passing through the Fresnel lens 36, and further spread in the thickness direction of the light guide plate 38 by the Fresnel lens 37.
- the light enters the light guide plate 38 from the light incident surface 38a.
- the light guide plate 38 is molded from an optical resin such as acrylic, and incident light propagates while repeating total reflection in the light guide plate 38. Further, as shown in FIG. 11B, the bottom surface 38b of the light guide plate 38 has a shape in which planes parallel to the main surface 38c of the light guide plate 38 are periodically connected by a triangular prism. Therefore, the red laser beam 34 r incident on the triangular prism is totally reflected by the triangular prism without loss, and is uniformly emitted from the main surface 38 c of the light guide plate 38 toward the liquid crystal display panel 11.
- the red laser light 34r is scanned in the light guide plate 38 from the upper side to the lower side in FIG. 11A, and the red laser light 34r incident on the light guide plate 38 is in the width direction (FIG. 11). It does not diffuse in the vertical direction (a). Accordingly, since the inside of the light guide plate 38 is linearly scanned from top to bottom in FIG. 11A, the liquid crystal display panel 11 is also linearly lined from top to bottom in FIG. 10A by the red laser light 34r. Will be scanned.
- the red laser light 34r illuminates the liquid crystal display panel 11 in synchronization with the scanning timing of the image data in the liquid crystal display panel 11. Accordingly, the present liquid crystal display device 30 has a large number of illumination blocks in FIG. 6A, for example, and the light from each illumination block illuminates the liquid crystal display panel 11 substantially vertically. Can be considered.
- the red laser beam 34r is incident on the detector 39, the scanning of the red laser beam 34r is completed, and the green laser beam 34g and the blue laser beam 34b are sequentially emitted, in the same manner as the red laser beam 34r.
- the collimator lens 33 After being converted into substantially parallel light by the collimator lens 33, it is deflected and scanned by the rotary polygon mirror 35 and is raised by the light guide plate 38 to illuminate the liquid crystal display panel 11.
- the red laser beam 34r, the green laser beam 34g, and the blue laser beam 34b have different incident angles with respect to the rotary polygon mirror 35, but the same region of the incident surface 38a of the light guide plate 38 is scanned by changing the incident position. I can do it. In this manner, field sequential illumination can be performed even using a laser light source.
- the liquid crystal display panel 11 is not limited to the optical system of the liquid crystal display device 30 as long as the liquid crystal display panel 11 can be scanned and illuminated uniformly. Absent.
- a laser light source is used as a light source, but the present invention is not limited to this as long as the light source has similar performance.
- super luminescent diodes (SLD) 320r, 320g, and 320b may be used.
- SLDs 320r, 320g, and 320b it becomes possible to configure a high-quality liquid crystal display device in which speckles are more difficult to visually recognize.
- FIG. 12A and 12B are cross-sectional views corresponding to FIG. 1B of the first embodiment.
- the drive circuit 7 is not shown.
- the liquid crystal display device 40 is similar to the liquid crystal display device 10, but differs in terms of heat dissipation. As shown in FIG. 12A, in the liquid crystal display device 40, each light source 12 is connected to a heat conductor 41, and each heat conductor 41 is connected to a panel holding body 42 that holds the liquid crystal display panel 11. Has been. By doing so, the heat generated from each light source 12 is transmitted to the panel holding body 42 via the heat conductor 41 and finally transmitted to the liquid crystal display panel 11.
- the response speed of liquid crystal increases as the temperature increases. Therefore, the response speed is increased by heating the liquid crystal.
- a liquid crystal display device that requires a high-speed response of several milliseconds for the liquid crystal response speed like the field sequential method, a bright and high-quality liquid crystal display device faithful to the input image data is configured. It becomes possible to do.
- liquid crystal display device 40 of the third embodiment by using the heat generated by the light source 12, energy that is originally lost as heat loss is used without loss.
- the control unit 14 and the power source 43 where heat loss occurs are brought into contact with the panel holding body 42, similarly to the heat generated from each light source 12.
- the heat generated by the control unit 14 and the power source 43 may also be transmitted to the liquid crystal display panel 11. By doing so, the liquid crystal display panel 11 can be further heated, and a bright and high-quality liquid crystal display device that is faithful to the input image data can be configured.
- the liquid crystal display panel 11 has a thickness of 1.2 mm in about 3 minutes. It will increase by 10 ° C.
- the liquid crystal display device 40 may include the temperature sensor 17 inside. If the temperature when the power source 43 is turned on is lower than a predetermined temperature by the backlight control unit 141 (see FIG. 1) of the control unit 14, each light source 12 is lit as brightly as possible in each field (that is, FIG. 1). By shortening the elapsed time Ton in 4 (b), the liquid crystal display panel 11 can be heated early. As a result, a bright and high-quality liquid crystal display device that is faithful to the input image data can be configured.
- the metal wiring 44 is directly wound around the liquid crystal display panel 11 from the control unit 14, and the metal wiring 44 is formed as necessary.
- the liquid crystal display panel 11 may be heated by flowing current to cause the metal wiring 44 to generate heat.
- the metal wiring 44 can be heated without obstructing the transmitted light by rolling around a place other than the opening of each liquid crystal pixel, such as the vicinity of each signal line DLm and the scanning line GLn.
- the material is not limited to metal, and it does not matter whether the shape is linear or not.
- FIG. 13A is an enlarged view of the liquid crystal display panel 11 as viewed from the direction of the arrow 10Y in FIG. 1B, and is surrounded by scanning lines (GLn-2 to GLn) and signal lines (DLm-2 to DLm). The region that corresponds to each pixel.
- a TFT thin film transistor
- the scanning line GLn-2 is connected to the gate electrode of the TFT
- the signal line DLm-2 is connected to the drain electrode.
- a transparent electrode 46 is connected to the source electrode of the TFT as shown in FIG. 13A.
- a wide gap semiconductor film is usually used.
- an ITO (indium tin oxide) film in which 5 to 10% of tin oxide is added to indium oxide is often manufactured by a method such as sputtering.
- each light source 12 is absorbed by the transparent electrode 46.
- a wide gap semiconductor such as ITO has an electromagnetic wave absorption edge in an ultraviolet region near 400 nm, and thus most of ultraviolet rays corresponding to about 400 nm or less are absorbed.
- an ultraviolet light source 12uv that emits ultraviolet light may be included. According to this configuration, when the transparent electrode 46 absorbs the ultraviolet light emitted from the ultraviolet light source 12uv, the transparent electrode 46 generates heat and the liquid crystal can be heated.
- a temperature sensor 17 is provided in the liquid crystal display device 30, and when the measured temperature is low by the control unit 14, the built-in ultraviolet light source 12uv is driven. By absorbing the emitted ultraviolet light by the transparent electrode 46, the liquid crystal can be heated and the response speed of the liquid crystal can be accelerated.
- the ultraviolet light source 12uv does not contribute to image formation, it may be constantly lit regardless of the period of each field.
- an LED light source in which a phosphor is excited by ultraviolet rays to emit visible light such as red, blue, and green may be used as one of the light sources 12.
- the light source 12 is a red LED 120r, a blue LED 120b, and an ultraviolet-excited green LED 120g that is excited by ultraviolet rays to emit green light
- the transparent electrode 46 generates heat by absorbing the remaining ultraviolet rays and contributes to heating the liquid crystal.
- the liquid crystal display device 40 can be configured without providing a dedicated ultraviolet light source, and thus the field sequential type liquid crystal display device as described above can be configured at low cost.
- the conversion efficiency of an LED near a wavelength of 400 nm exceeds 50% in external quantum efficiency, but the external quantum efficiency of a green LED is as low as 20% or less. Therefore, obtaining green light from the ultraviolet-excited green LED 120g having a high external quantum efficiency has an advantage in terms of conversion efficiency.
- the red laser light source 121r, the blue laser light source 121b, and the infrared laser light from the infrared laser light source 1211 are converted into wavelength converters.
- the green laser light source 121g that obtains green laser light by wavelength conversion by 1212 the infrared laser light remaining without wavelength conversion is configured to be emitted from the backlight.
- the liquid crystal can also be heated by absorbing the laser light into the transparent electrode 46.
- a YAG laser 1064 nm laser light source is used as the infrared laser light source 1211, and the emitted infrared laser light is incident on a wavelength conversion element 1212 such as lithium niobate (LiNbO 3 ) as a fundamental wave.
- a wavelength conversion element 1212 such as lithium niobate (LiNbO 3 ) as a fundamental wave.
- LiNbO 3 lithium niobate
- the fundamental wave of 1064 nm remaining without wavelength conversion is absorbed by the transparent electrode 46.
- the transparent electrode 46 such as ITO has an absorption edge at about 400 nm.
- oxygen-deficient or colored transition metal ions such as titanium, chromium, and iron
- an absorption band is generated in the visible region and the infrared region. It becomes possible to do.
- the transparent ion 46 can absorb light even in the infrared region by using an iron ion-introduced transparent electrode 46 into which iron ions are introduced. Therefore, the transparent wave 46 can absorb the fundamental wave of 1064 nm by emitting the fundamental wave of 1064 nm that has not been wavelength-converted in the same manner as other visible light that contributes to image formation.
- the liquid crystal can be heated without providing a dedicated light source. Therefore, even in a liquid crystal display device that requires a high response speed of several milliseconds for the response speed of the liquid crystal like the field sequential method, a high-quality liquid crystal display device that is bright and faithful to the input image data is inexpensively configured. It becomes possible to do.
- an example is shown in which the wavelength of 1064 nm YAG laser light is converted, but the third embodiment is not limited to this, and the light source that contributes to image formation by converting the wavelength of infrared light. If it is, it can be used similarly.
- an infrared light source may be prepared exclusively for heating.
- the liquid crystal display device 40 that does not have a dedicated light source that emits light to be absorbed by the transparent electrode 46
- visible light used for image formation can be absorbed by the transparent electrode 46.
- the transparent electrode 46 For example, as in the case where infrared light is absorbed by introducing iron ions in the above, as shown in FIG. 13 (f), by using the titanium ion-introduced transparent electrode 46 into which titanium ions are introduced, the blue color is obtained. It can be colored. That is, since it has absorption in the yellow region that is the complementary color of blue, it absorbs green and red light.
- the liquid crystal display device 40 is configured without providing a dedicated light source that emits light to be absorbed by the transparent electrode 46 by causing the transparent electrode 46 to absorb part of the light used for image formation.
- the liquid crystal display device having a high response speed and high image quality can be provided at low cost.
- a liquid crystal display device with a 37-inch screen size (diagonal length) described above can be heated at about 10 ° C. in about 20 minutes. Can be warmed and desirable. If color correction is performed according to the color of the colored transparent electrode 46, an image faithful to the input image data can be formed.
- the liquid crystal can be heated by a method different from the above.
- 14 is a cross-sectional view of the liquid crystal display panel 11 taken along the line 40B-40B in FIG.
- signal lines (DLm-2 to DLm) are arranged on a lower glass plate 48, a common electrode 47 is provided under the upper glass plate 49, and a liquid crystal layer having a thickness of several micrometers is provided therebetween.
- the structure which sandwiches 50 is taken. Further, the spacer 51 is introduced into the liquid crystal layer 50 so that the thickness of the liquid crystal layer 50 is several micrometers.
- silica silicon dioxide, SiO 2
- SiO 2 silica
- a part of visible light that contributes to image formation emitted from each light source 12 is absorbed in the same manner as the colored transparent electrode described above. Can be made.
- the spacer 51 since the spacer 51 generates heat by absorbing light, the liquid crystal can be heated. As a result, it is possible to increase the response speed of the liquid crystal, and it is possible to provide a liquid crystal display device with a high response speed and high image quality.
- silica is transparent including the ultraviolet region
- acrylic is transparent in the visible region but has absorption in the ultraviolet region. Therefore, acrylic may be used as the spacer 51 instead of silica.
- a light source that emits ultraviolet light for example, the ultraviolet light source 12uv shown in FIG. 13B
- a light source for example, ultraviolet-excited green LED 120g shown in FIG. 13C
- the spacer 51 generates heat by absorbing the ultraviolet light, and the liquid crystal Can be heated.
- the spacer 51 can also be made of a material having absorption in the ultraviolet region such as acrylic, so that the liquid crystal can be heated and the response speed of the liquid crystal can be increased.
- the liquid crystal display device having an image quality can be provided.
- the liquid crystal display device having the above-described screen size (diagonal length) of 37 inches can take 20 minutes.
- the liquid crystal panel can be heated by about 10 ° C., which is desirable.
- the displayable color range is 84% of the NTSC ratio.
- the liquid crystal display panel 11 can be heated to increase the response speed of the liquid crystal.
- the liquid crystal display device having an image quality can be provided.
- the light absorption in the transparent electrode 46 and the spacer 51 was shown as an example in the above, this Embodiment 3 is not limited to it, and another structure may be used as long as it has the same effect.
- the liquid crystal itself may absorb light or may be absorbed by a glass plate or the like.
- each of the above-described embodiments has been described with respect to a field sequential type liquid crystal display device, the other types are also effective in the case of driving the liquid crystal at high speed.
- the other types are also effective in the case of driving the liquid crystal at high speed.
- an image 1 is used to improve moving image response.
- This is also effective in a liquid crystal display device that is driven at a high speed of 2 ⁇ or more, in which a frame is divided into a plurality of subframes.
- FIGS. 15A is a schematic configuration diagram of the liquid crystal display device according to the fourth embodiment
- FIG. 15B is a cross-sectional view taken along the line 100A-100A in FIG. 15A
- FIG. It is sectional drawing in the 100B-100B line of (a).
- the liquid crystal display device 100 includes a side illumination light source 101 and a panel assembly 102 as schematically shown in FIG.
- the side illumination light source 101 includes a white light source 101b and a side reflector 101a that covers three sides of the white light source 101b.
- the panel assembly 102 includes a light guide plate 102a, a liquid crystal display panel 102b, and a reflection plate 102c.
- the liquid crystal display panel 102b includes a front polarizing plate 102d, a front glass plate 102e, a reflective color filter 102f, a liquid crystal layer 102g, a rear glass plate 102h, and a rear polarizing plate 102i.
- the white light source 101b may be a fluorescent lamp such as CCFL or HCFL (hot-cathode-fluorescent-lamp), may be a white LED, or may be a combination of a plurality of LEDs that are white by mixing red, blue, and green LEDs.
- CCFL CCFL
- HCFL hot-cathode-fluorescent-lamp
- white LED white LED
- other light sources may be used, and the type is not limited here.
- White light 103W emitted from the white light source 101b is incident on the light guide plate 102a from the side surface of the light guide plate 102a while being partially reflected by the side reflector 101a.
- the white light 103W incident on the light guide plate 102a travels while being totally reflected in the light guide plate 102a.
- the light guide plate 102a is provided with a large number of prisms 102j as shown in FIG.
- the white light 103W incident on the prism 102j rises in a substantially vertical direction as shown in FIG. 15B, is emitted from the light guide plate 102a, and enters the liquid crystal display panel 102b.
- the reflective color filter 102f in the liquid crystal display panel 102b includes a red transmission filter 104r, a green transmission filter 104g, and a blue transmission filter 104b.
- the red transmission filter 104r transmits only the red light 103r included in the white light 103W, and has a characteristic of reflecting the green light 103g and the blue light 103b other than the red light 103r included in the white light 103W.
- the green transmission filter 104g has a characteristic of transmitting only the green light 103g and reflecting the red light 103r and the blue light 103b
- the blue transmission filter 104b transmits only the blue light 103b and transmits the red light 103r and the green light 103g. It has the property of reflecting.
- Such a reflective color filter 102f can be obtained, for example, by coating a plurality of dielectric multilayer films. In this case, coats having different film thicknesses are applied to the red transmission filter 104r, the green transmission filter 104g, and the blue transmission filter 104b on a substrate such as glass by a plurality of layers.
- This coating is generally performed by alternately laminating a high refractive index film and a low refractive index film.
- the film-forming material is not limited to the above-described materials as long as desired characteristics can be obtained, and the film-forming method can be continuously applied by, for example, coating other than vapor deposition. Application makes it possible to coat a long distance at a time, which is convenient for coating a certain large area. Of course, any method other than coating may be used. For example, a desired performance can be obtained by laminating sub-wavelength gratings, and the manufacturing method is not limited here.
- the white light 103W emitted upward from the light guide plate 102a is aligned in the polarization direction by the front polarizing plate 102d as shown in FIG. 15C, and then passes through the front glass plate 102e to become a reflective color filter 102f. To reach.
- the white light 103W reaches the red transmission filter 104r of the reflective color filter 102f as shown in FIG. 15C, only the red light 103r is transmitted among the light included in the white light 103W, and the remaining light is left.
- the green light 103g and the blue light 103b are reflected.
- the reflected green light 103g and blue light 103b pass through the light guide plate 102a, are reflected upward by the reflection plate 102c, and enter the reflection type color filter 102f again.
- the red light 103r is subjected to multiple reflections between the reflective color filter 102f and the reflection plate 102c until reaching the red transmission filter 104r.
- the green light 103g and the blue light 103b are also subjected to multiple reflections between the reflective color filter 102f and the reflection plate 102c until reaching the green transmission filter 104g and the blue transmission filter 104b, respectively. .
- This method is called a color separation method.
- the light incident on the light guide plate 102a is used without loss, so that a highly efficient liquid crystal display device 100 can be configured. .
- FIG. 18 is a diagram showing the control timing of each pixel of the liquid crystal display device 100.
- (a) shows the case of the drive circuit shown in FIG. 16, and (b) shows the case of the drive circuit shown in FIG. Show.
- one pixel is formed by three sub-pixels of red, green, and blue.
- the pixels are arranged in a matrix in the first direction (horizontal direction in FIG. 16) and the second direction (vertical direction in FIG. 16).
- the red subpixel Sr (n) is arranged nth from the left end
- the green subpixel Sg (n) is arranged nth from the left end
- the blue subpixel Sb (n) is arranged nth from the left end.
- the pixel P (n) is arranged nth from the left end.
- a scanning line GLm is arranged in the m-th column from the top.
- the signal line DLr (n) is connected to the red subpixel Sr (n) of the nth pixel from the left
- the signal line DLg (n) is connected to the green subpixel Sg (n) of the nth pixel from the left.
- the signal line DLb (n) is connected to the blue subpixel Sb (n) of the nth pixel from the left.
- each subpixel has a TFT (thin film transistor) gate electrode connected to a scanning line (GL1,..., GLm,...) And a drain electrode connected to a signal line (. (N), DLg (n), DLb (n), etc).
- the source electrode of the TFT is connected to a transparent electrode (not shown), and further connected to the common electrode Vcom via a liquid crystal having a capacitance Clc.
- the signal lines DLr (n) and the like are connected to the source driver 105, and the scanning lines GLm and the like are connected to the gate driver 106.
- a drive circuit is constituted by the source driver 105, the gate driver 106, the TFT, the transparent electrode, the common electrode Vcom, and the like.
- the gate driver 106 and the source driver 105 are controlled by the drive control unit 107 of the control unit 109, and each signal is synchronized with the timing when the ON signal (scanning signal) is applied to a desired scanning line (GLm or the like).
- the voltage of each signal line is applied across the liquid crystal so that the liquid crystal of the subpixel connected to the line (DLr (n), etc.) has a desired transmittance.
- the drive control unit 107 controls the gate driver 106 and the source driver 105, and normally is sequentially turned on in order from the top of the scanning line (GL1,..., GLm-1, Glm, GLm + 1,). Since a signal (scanning signal) is applied and a desired voltage is applied to the liquid crystal via the signal line (a driving signal is supplied) in synchronization therewith, an image displayed from the top to the bottom of the liquid crystal display panel 102b is displayed. Will be updated. Note that the backlight control unit 108 of the control unit 109 controls light emission of the white light source 101b.
- the red subpixel, the green subpixel, and the blue subpixel in the same pixel are usually given signals simultaneously, and the liquid crystal is driven.
- the ON timing and OFF timing of the red subpixel Sr (n), the green subpixel Sg (n), and the blue subpixel Sb (n) are the same.
- the driving circuit shown in FIG. Since several ⁇ 3 pieces are required, the number of parts has increased.
- the red switch Kr (n), the green switch Kg (n), and the blue switch Kb (n) are connected in parallel to the nth signal line DL (n) from the left end. .
- the red switch Kr (n) is provided on the signal line DLr (n) connected to the red subpixel Sr (n)
- the green switch Kg (n) is a signal line connected to the green subpixel Sg (n).
- the blue switch Kb (n) is provided on the signal line DLb (n) connected to the blue subpixel Sb (n).
- the switches Kg (n), Kb (n), and Kr (n) are connected to the source driver 105 through control lines L11, L12, and L13, respectively, and are turned on and off by the drive control unit 107. Is controlled.
- the colors of the sub-pixels connected to the control lines L11, L12, and L13 are different in adjacent pixels. That is, to the control line L11, the green switch Kg (n) is connected to the nth pixel P (n) from the left end, and in the pixel P (n ⁇ 1) adjacent to the left side in FIG. A red switch provided on a signal line connected to the pixel Sr (n ⁇ 1) is connected, and in the pixel P (n + 1) adjacent to the right side in FIG. 17, it is connected to the blue subpixel Sb (n + 1). A blue switch provided on the signal line is connected.
- the blue line Kb (n) is connected to the control line L12 in the nth pixel P (n) from the left end, and in the pixel P (n ⁇ 1) adjacent to the left side in FIG.
- a green switch provided on a signal line connected to the sub-pixel Sg (n ⁇ 1) is connected.
- the pixel P (n + 1) adjacent to the right side is connected to the red sub-pixel Sr (n + 1).
- a red switch provided on the signal line is connected.
- a red switch Kr (n) is connected to the control line L13 in the nth pixel P (n) from the left end, and in the pixel P (n ⁇ 1) adjacent to the left side in FIG.
- a blue switch provided on a signal line connected to the pixel Sb (n ⁇ 1) is connected, and a signal connected to the green subpixel Sg (n + 1) in the pixel P (n + 1) adjacent to the right side in FIG. 17 is connected.
- a green switch provided on the line is connected.
- a configuration for heating the liquid crystal shown in the third embodiment may be further provided.
- an ultraviolet light source shown in FIG. 13 (b) an infrared light source and an iron ion introduction transparent electrode shown in FIG. 13 (e), or a titanium ion introduction transparent electrode shown in FIG. 13 (f) are provided.
- the spacer shown in FIG. 14 and an ultraviolet light source can be provided.
- the optical system using the light guide plate 102a as shown in FIG. 15 is described as an example of the optical system that illuminates the panel assembly 102 with the white light 103W.
- the present invention is of course limited to this. Instead, other optical systems may be used.
- a liquid crystal display device includes a liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data, and applying the voltage to the liquid crystal display panel to provide the liquid crystal display.
- a driving circuit for driving the panel; a backlight for irradiating the liquid crystal display panel with light of a plurality of colors from the back; a drive control unit for controlling the driving circuit; and controlling the irradiation of light from the backlight.
- a backlight control unit wherein one frame is divided into a plurality of sub-frames, and each sub-frame is further divided into a plurality of fields respectively corresponding to the light of the plurality of colors.
- the drive control unit does not make the voltage applied to the liquid crystal display panel in each field zero near the end of each field.
- the drive circuit is controlled so as to continue the voltage application until the end of each field, and the backlight control unit adjusts the irradiation start timing of the light from the backlight in each field.
- the drive control unit controls the drive circuit so that the voltage application is continued until the end of each field without resetting the voltage applied to the liquid crystal display panel in the vicinity of the end of each field to zero. Therefore, it is possible to ensure a long time for the alignment of the liquid crystal and to bring the transmittance of the liquid crystal near the end of each field close to a desired value.
- the backlight control unit adjusts the light irradiation start timing from the backlight in each field, for example, a high brightness image is obtained by increasing the light irradiation time by increasing the irradiation start timing.
- the backlight control unit may continue the irradiation of light of a color corresponding to the field until the end of the field in each field. According to this configuration, since the backlight control unit continues to irradiate light of the color corresponding to the field until the end of the field in each field, light irradiation is performed by adjusting the irradiation start timing. The time can also be adjusted.
- the liquid crystal display device may further include an illuminance detection unit that detects illuminance, and the backlight control unit may adjust the irradiation start timing according to the detected illuminance detected by the illuminance detection unit. I do not care. According to this configuration, since the irradiation start timing is adjusted by the backlight control unit according to the detected illuminance detected by the illuminance detection unit, it is possible to obtain image quality according to the brightness of the detected area. it can.
- the area for detecting the illuminance may be, for example, the vicinity of the display surface side of the liquid crystal display panel, or the room where the liquid crystal display panel is arranged.
- the backlight control unit may advance the irradiation start timing as the detected illuminance increases, and delay the irradiation start timing as the detected illuminance decreases.
- the irradiation start timing is advanced as the detected illuminance increases, the light irradiation time becomes longer by the backlight control unit, so that a brighter image can be formed as the illuminance detection region becomes brighter. it can.
- the irradiation start timing is delayed as the detected illuminance decreases, light is emitted when the transmittance of the liquid crystal approaches the desired value, so an image with higher color reproducibility becomes darker as the illuminance detection region becomes darker. Can be formed. Therefore, an image having a quality suitable for the brightness of the illuminance detection region can be obtained.
- the liquid crystal display device may further include a time measuring unit that measures time, and the backlight control unit may adjust the irradiation start timing based on the time measured by the time measuring unit.
- the backlight control unit may adjust the irradiation start timing based on the time measured by the time measuring unit.
- the backlight control unit may advance the irradiation start timing when the time measured by the time measuring unit is included in a predetermined time including noon, and otherwise.
- the irradiation start timing may be delayed.
- the backlight control unit makes the irradiation start timing earlier and the light irradiation time becomes longer. Can be formed.
- the time is other than that, since the irradiation start timing is delayed, light is emitted when the transmittance of the liquid crystal approaches the desired value, so an image with high color reproducibility when the periphery is dark Can be formed. Therefore, it is possible to obtain an image having a quality suitable for the surrounding brightness.
- the predetermined time including noon may be, for example, 8 hours from 8 am to 4 pm, or 6 hours from 9 am to 3 pm.
- the liquid crystal display device may further include a temperature detection unit that detects an ambient temperature of the liquid crystal display panel, and the backlight control unit may perform the irradiation according to the detected temperature detected by the temperature detection unit.
- the start timing may be adjusted. According to this configuration, since the irradiation control timing is adjusted by the backlight control unit according to the detected temperature detected by the temperature detection unit, the response speed of the liquid crystal changes depending on the temperature, so the response of the liquid crystal The irradiation start timing suitable for the speed can be set.
- the backlight control unit may advance the irradiation start timing as the detection temperature becomes higher, and delay the irradiation start timing as the detection temperature becomes lower.
- a liquid crystal display device includes a liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data, and applying the voltage to the liquid crystal display panel to apply the liquid crystal
- a drive circuit that drives the display panel, a backlight that irradiates the liquid crystal display panel with light of a plurality of colors from the back surface, a drive control unit that controls the drive circuit, and control of light irradiation from the backlight
- a backlight control unit that divides one frame into a plurality of subframes, and further subdivides each subframe into a plurality of fields respectively corresponding to the plurality of colors of light.
- a liquid crystal display device that forms the image by irradiating the image, wherein the drive control unit applies to the liquid crystal display panel based on the image data in each field corresponding to light of the same color included in the one frame.
- the drive circuit is controlled so that the voltage to be applied is different between at least two of the subframes.
- driving is performed so that the voltage applied to the liquid crystal display panel based on the image data in each field corresponding to the same color light included in one frame has a different value between at least two subframes.
- the drive circuit is controlled by the control unit.
- the applied voltage in at least two subframes is decomposed into different values, so that the voltage value corresponding to the intermediate gradation can be prevented.
- the response speed of the liquid crystal decreases when a voltage corresponding to an intermediate gradation is applied. Therefore, according to this configuration, since the drive control unit controls the drive circuit so that the voltage value does not correspond to the intermediate gradation, the liquid crystal can be driven at a high speed, and thus it is faithful to the image data. High quality images can be provided.
- the gradation of the same color is different between at least two subframes, there is an effect of suppressing color braking when an image is viewed.
- the drive control unit may perform high gradation in each field corresponding to light of the color included in the one frame when one color of the image data is intermediate gradation.
- the drive circuit is controlled so that the one frame is formed by combining two subframes that apply a voltage corresponding to image data and a voltage corresponding to low gradation image data to the liquid crystal display panel, respectively.
- the color may be set to an intermediate gradation.
- the drive control unit controls the drive circuit so that two frames applied to the liquid crystal display panel are combined to form one frame, so that the color is set to an intermediate gradation. Therefore, even if one color of the image data is an intermediate gradation, a voltage corresponding to the intermediate gradation is not applied, so that it is possible to prevent a decrease in the response speed of the liquid crystal. Therefore, it is possible to provide a high quality image faithful to the image data.
- the intermediate gradation image data can be a predetermined range including 128, for example, 85 to 170, for example, when gradation is expressed by 8 bits. Then, gradations above this range may be used as high gradation image data, and gradations below this range may be used as low gradation image data.
- the drive control unit may be a pixel of interest in at least one color with respect to a voltage applied to the liquid crystal display panel based on the image data in each field included in the one frame. Even if the applied voltage in the subpixel is different between two consecutive subframes, the magnitude relationship of the applied voltage between the two subframes in the adjacent pixels adjacent to the target pixel may be reversed from the magnitude relationship in the target pixel. I do not care.
- the applied voltage at a certain target pixel in at least one color is between two consecutive subframes.
- the magnitude relationship of the applied voltages between the two subframes in the adjacent pixel adjacent to the pixel of interest is reversed from the magnitude relationship of the pixel of interest. That is, the magnitude relationship of the applied voltage between the two subframes is reversed between the target pixel and the adjacent pixel. Therefore, since the gradation of the same color is different in the same subframe in adjacent pixels, there is an effect of further suppressing color braking when an image is viewed.
- a liquid crystal display device includes a liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data, and applying a voltage to the liquid crystal display panel to A driving circuit that drives the liquid crystal display panel; a backlight that irradiates the liquid crystal display panel with light of a plurality of colors from the back; a drive control unit that controls the driving circuit; and illumination of light from the backlight.
- a backlight control unit for controlling, one frame is divided into a plurality of subframes, and each subframe is further divided into a plurality of fields respectively corresponding to the light of the plurality of colors, and in each field, the image Based on the data, the liquid crystal display panel is driven, and light of a color corresponding to the field is transmitted from the backlight to the liquid crystal display panel.
- the liquid crystal display device forms the image by irradiating the liquid crystal display panel, and the liquid crystal display panel includes a liquid crystal layer inside and a transparent electrode for applying a voltage to the liquid crystal layer by the driving circuit.
- the light emitted from the backlight includes infrared light or ultraviolet light
- the transparent electrode is formed of a material that generates heat by absorbing infrared light or ultraviolet light.
- the transparent electrode is formed of a material that absorbs infrared light or ultraviolet light and generates heat
- the transparent electrode absorbs infrared light or ultraviolet light included in the light emitted from the backlight. Since the transparent electrode generates heat, the liquid crystal display panel can be heated.
- the response speed of the liquid crystal decreases when the temperature is low.
- the liquid crystal display panel can be heated, it is possible to prevent the response speed of the liquid crystal from being lowered, and as a result, it is possible to obtain a high-quality image.
- the light source that emits at least one of the light of the plurality of colors emitted from the backlight includes a light emitting unit that emits infrared light or ultraviolet light, and the infrared light.
- a light emitting unit that emits infrared light or ultraviolet light
- the infrared light may have a wavelength conversion unit that converts the wavelength of the ultraviolet light, and the light that remains without being wavelength-converted by the wavelength conversion unit may be emitted from the backlight.
- the light source that emits at least one of the light of the plurality of colors emitted from the backlight includes the light emitting unit that emits infrared light or ultraviolet light, and the wavelength of the infrared light or ultraviolet light.
- a wavelength conversion unit that converts the wavelength of the light of at least one of a plurality of colors that is converted from infrared light or ultraviolet light emitted from the light-emitting unit by the wavelength conversion unit. Generated by. Since the light remaining without being wavelength-converted, that is, infrared light or ultraviolet light is emitted from the backlight, the transparent electrode generates heat due to the infrared light or ultraviolet light. . Therefore, since the liquid crystal display panel can be heated, it is possible to prevent the response speed of the liquid crystal from being lowered, and as a result, a high-quality image can be obtained.
- the light source that emits the light of the plurality of colors from the backlight may include a light emitting diode (LED) that emits red light, blue light, and green light, respectively.
- LED light emitting diode
- the first signal line is provided corresponding to the pixel.
- the source driver supplies a drive signal for turning on the switches to the switches, and the source driver includes the second signal lines and the switches.
- a drive signal is supplied to each of the sub-pixels via each of the first signal lines that is turned on, and the drive control unit is connected to three sub-pixels included in the pixel for each of the pixels.
- the on-timing of the respective switches of the first signal lines thus made is made different from the source driver at different timings with respect to the sub-pixels of the respective colors included in the respective pixels arranged in the second direction.
- the drive signal is supplied.
- the number of second signal lines connected to the source driver is 1/3 of that of the first signal line, the number of circuits in the source driver can be reduced as compared with the configuration in which each first signal line is connected to the source driver. Can be reduced. Therefore, the number of parts constituting the source driver can be reduced.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Disclosed is a liquid crystal display which comprises a liquid crystal display panel (11), a driving circuit (7) that drives the liquid crystal display panel, and a backlight (12) that illuminates the liquid crystal display panel with lights of a plurality of colors from the rear side of the panel. One frame is divided into a plurality of subframes (Tsf), and each of the subframes is divided into a plurality of fields (Tf) each corresponding to one of the lights of the plurality of colors. The liquid crystal display forms images by driving the liquid crystal display panel on the basis of image data in each field and by emitting the lights of the colors corresponding to the fields from the backlight to the liquid crystal display panel. The liquid crystal display further comprises a drive control unit (142) that controls a driving circuit such that voltage application continues to the end of each field without reducing the voltage applied to the liquid crystal display panel in each field to zero in proximity to the end of each field, and a backlight control unit (141) that adjusts emission start timings (Ton) of the lights from the backlight in each field.
Description
本発明は、フィールドシーケンシャル方式の液晶表示装置に関する。
The present invention relates to a field sequential type liquid crystal display device.
液晶表示装置は、一般に光源として冷陰極管蛍光ランプ(以下、「CCFL」とする)の様な蛍光ランプを用いて、液晶表示パネルを背面から直接照明する構成が用いられている。その場合、液晶表示パネルとして、個々の画素が赤、青、緑のカラーフィルタからなるサブピクセルで構成されたパネルを用いるのが一般的であるが、CCFLから出射された光の内、例えば赤色光は赤のサブピクセルを透過することが出来るが、青、緑のサブピクセルにおいては各カラーフィルタにて吸収され、画像形成に寄与せずロスとなる。同様のことは青色光、緑色光に関しても言えるため、CCFLから出射した光の内、2/3は液晶表示パネルのサブピクセルにおいて吸収されてロスすることになる。
The liquid crystal display device generally uses a fluorescent lamp such as a cold cathode fluorescent lamp (hereinafter referred to as “CCFL”) as a light source, and directly illuminates the liquid crystal display panel from the back side. In that case, as a liquid crystal display panel, it is common to use a panel in which each pixel is composed of sub-pixels composed of red, blue, and green color filters. Of the light emitted from the CCFL, for example, red Light can pass through the red sub-pixel, but the blue and green sub-pixels are absorbed by the color filters and do not contribute to image formation and are lost. The same can be said for blue light and green light, so that 2/3 of the light emitted from the CCFL is absorbed and lost in the sub-pixels of the liquid crystal display panel.
一方近年、環境問題への配慮から、テレビ等の電気製品においても低消費電力化の要請が強く、活発な低消費電力化開発が続けられている。その中で、液晶表示装置における低消費電力化の方式として、フィールドシーケンシャル方式がある。この方式は、上述のCCFLの様な赤色光、青色光、緑色光を同時に出射する白色光源ではなく、赤色用光源、青色用光源、緑色用光源を別々に用意し、液晶パネルに各色に対応する画像を時分割で順次表示し、その表示タイミングにあわせて各色光を順次点灯させることで、眼球の残像現象を利用して画像を形成する方式である。この方式では、先に述べたような液晶表示パネルのカラーフィルタにおける光の吸収が原理的に存在しないため、光の利用効率を単純には3倍高めることが可能になる。また、液晶表示パネルは上述の様な赤、青、緑のサブ画素を含む必要はなく、モノクロの液晶表示パネルを用いることができるため、開口率が高く高効率、かつカラーフィルタが不要になるため安価に構成できるといった利点もある。
On the other hand, in recent years, due to consideration for environmental problems, there is a strong demand for lower power consumption in electric products such as televisions, and active development of lower power consumption has been continued. Among them, there is a field sequential method as a method for reducing power consumption in a liquid crystal display device. This method is not a white light source that emits red light, blue light, and green light at the same time as the CCFL described above, but a red light source, a blue light source, and a green light source are prepared separately, and the liquid crystal panel supports each color. In this method, images to be displayed are sequentially displayed in a time-sharing manner, and light of each color is sequentially turned on in accordance with the display timing, thereby forming an image using the afterimage phenomenon of the eyeball. In this method, since light absorption in the color filter of the liquid crystal display panel as described above does not exist in principle, it is possible to simply increase the light use efficiency three times. Further, the liquid crystal display panel does not need to include the red, blue, and green sub-pixels as described above, and a monochrome liquid crystal display panel can be used. Therefore, the aperture ratio is high and the color filter is unnecessary. Therefore, there is an advantage that it can be configured at low cost.
一方、このフィールドシーケンシャル方式の液晶表示装置において画像1フレームを赤、青、緑の3つのフィールドで順次表示させる場合、液晶を従来の3倍の速度で駆動する必要がある。その場合、液晶自体の応答速度が追随せず、所望の画像を形成することが困難であるという課題があった。
On the other hand, when one frame of an image is sequentially displayed in three fields of red, blue, and green in this field sequential type liquid crystal display device, it is necessary to drive the liquid crystal at a speed three times that of the prior art. In that case, there is a problem that the response speed of the liquid crystal itself does not follow and it is difficult to form a desired image.
それに対して、特許文献1においては、液晶の駆動電圧と透過率の関係を求め、応答速度の遅い中間階調での透過率を補正することで、液晶の応答速度が各フィールドの時間よりも長い場合であっても、正確な階調を表現できるとしている。
On the other hand, in Patent Document 1, the relationship between the driving voltage and the transmittance of the liquid crystal is obtained, and the transmittance at the intermediate gradation with a slow response speed is corrected so that the response speed of the liquid crystal is higher than the time of each field. It is said that accurate gradation can be expressed even in a long case.
また、特許文献2において、各フィールドの終端部で液晶への印加電圧をゼロにすることなく連続的に駆動する方式も提案されており、必要とされる液晶の応答時間を少しでも緩和できる。
Also, in Patent Document 2, a method of continuously driving without terminating the applied voltage to the liquid crystal at the terminal portion of each field is proposed, and the required response time of the liquid crystal can be alleviated even a little.
しかしながら、上記で説明した従来の技術において、例えば特許文献2の様に終端部で液晶への印加電圧をゼロに戻さない場合でも、例えば温度などの周囲環境に応じて最適な画質の画像を得ることは困難であるという課題を有していた。
However, in the conventional technology described above, for example, even when the applied voltage to the liquid crystal is not returned to zero at the terminal portion as in Patent Document 2, for example, an image with optimum image quality is obtained according to the surrounding environment such as temperature. It had the problem that it was difficult.
本発明は、主に上記従来の課題を解決するものであり、フィールドシーケンシャル方式の液晶表示装置において、例えば周囲環境に応じて最適な画質が得られる液晶表示装置を提供することを目的とする。
The present invention mainly solves the above-described conventional problems, and an object of the present invention is to provide a liquid crystal display device capable of obtaining an optimum image quality according to, for example, a surrounding environment in a field sequential type liquid crystal display device.
本発明の一局面に従う液晶表示装置は、複数の画素を有し、入力される画像データに対応する画像を表示する液晶表示パネルと、前記液晶表示パネルに電圧を印加して前記液晶表示パネルを駆動する駆動回路と、複数色の光を前記液晶表示パネルに対して背面から照射するバックライトと、前記駆動回路を制御する駆動制御部と、前記バックライトからの光の照射を制御するバックライト制御部とを備え、1フレームは複数のサブフレームに分割され、さらに前記各サブフレームは前記複数色の光にそれぞれ対応する複数のフィールドに分割され、前記各フィールドにおいて、前記画像データに基づき、前記液晶表示パネルを駆動するとともに当該フィールドに対応する色の光を前記バックライトから前記液晶表示パネルに対して照射することで前記画像を形成する液晶表示装置であって、前記駆動制御部は、前記各フィールドにおいて前記液晶表示パネルに印加される電圧を前記各フィールドの終端近傍にてゼロにすることなく前記各フィールドの終端まで電圧印加を継続するように前記駆動回路を制御し、前記バックライト制御部は、前記各フィールドにおける前記バックライトからの光の照射開始タイミングを調整する。
A liquid crystal display device according to one aspect of the present invention includes a liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data, and applying the voltage to the liquid crystal display panel to A driving circuit for driving; a backlight for irradiating the liquid crystal display panel with light of a plurality of colors from the back; a drive control unit for controlling the driving circuit; and a backlight for controlling light irradiation from the backlight. And a control unit, wherein one frame is divided into a plurality of subframes, each subframe is further divided into a plurality of fields respectively corresponding to the light of the plurality of colors, and in each field, based on the image data, Driving the liquid crystal display panel and irradiating the liquid crystal display panel with light of a color corresponding to the field from the backlight In the liquid crystal display device for forming the image, the drive control unit does not set the voltage applied to the liquid crystal display panel in each field to zero near the end of each field. The drive circuit is controlled so as to continue the voltage application until the end of the backlight, and the backlight control unit adjusts the irradiation start timing of the light from the backlight in each field.
この構成によれば、駆動制御部により、各フィールドの終端近傍にて液晶表示パネルに印加される電圧をゼロにリセットせずに各フィールドの終端まで電圧印加を継続するように駆動回路を制御しているため、液晶の配向に掛けることの出来る時間を長く確保することができ、各フィールドの終端近傍における液晶の透過率を所望の値に近づけることが出来る。また、バックライト制御部により、各フィールドにおけるバックライトからの光の照射開始タイミングを調整しているため、例えば照射開始タイミングを早くして光の照射時間を長くすることにより高輝度の画像を得ることが可能になり、例えば照射開始タイミングを遅くして各フィールドの終端近傍で光を照射することにより、所望の透過率に近い状態で光を照射することが可能になる。したがって、照射開始タイミングを調整することにより最適な画質を得ることができる。
According to this configuration, the drive control unit controls the drive circuit so that the voltage application is continued until the end of each field without resetting the voltage applied to the liquid crystal display panel in the vicinity of the end of each field to zero. Therefore, it is possible to ensure a long time for the alignment of the liquid crystal and to bring the transmittance of the liquid crystal near the end of each field close to a desired value. In addition, since the backlight control unit adjusts the light irradiation start timing from the backlight in each field, for example, a high brightness image is obtained by increasing the light irradiation time by increasing the irradiation start timing. For example, by irradiating light near the end of each field by delaying the irradiation start timing, it is possible to irradiate light in a state close to a desired transmittance. Therefore, an optimal image quality can be obtained by adjusting the irradiation start timing.
また、本発明の他の局面に従う液晶表示装置は、複数の画素を有し、入力される画像データに対応する画像を表示する液晶表示パネルと、前記液晶表示パネルに電圧を印加して前記液晶表示パネルを駆動する駆動回路と、複数色の光を前記液晶表示パネルに対して背面から照射するバックライトと、前記駆動回路を制御する駆動制御部と、前記バックライトからの光の照射を制御するバックライト制御部とを備え、1フレームは複数のサブフレームに分割され、さらに前記各サブフレームは前記複数色の光にそれぞれ対応する複数のフィールドに分割され、前記各フィールドにおいて、前記画像データに基づき、前記液晶表示パネルを駆動するとともに当該フィールドに対応する色の光を前記バックライトから前記液晶表示パネルに対して照射することで前記画像を形成する液晶表示装置であって、前記駆動制御部は、前記1フレームに含まれる同じ色の光に対応する前記各フィールドにおいて前記画像データに基づき前記液晶表示パネルに印加される電圧が、少なくとも2つの前記サブフレーム間で異なる値となるように前記駆動回路を制御する。
In addition, a liquid crystal display device according to another aspect of the present invention includes a liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data, and applying the voltage to the liquid crystal display panel to apply the liquid crystal A drive circuit that drives the display panel, a backlight that irradiates the liquid crystal display panel with light of a plurality of colors from the back surface, a drive control unit that controls the drive circuit, and control of light irradiation from the backlight A backlight control unit that divides one frame into a plurality of subframes, and further subdivides each subframe into a plurality of fields respectively corresponding to the plurality of colors of light. And driving the liquid crystal display panel and transmitting the color light corresponding to the field from the backlight to the liquid crystal display panel. A liquid crystal display device that forms the image by irradiating the image, wherein the drive control unit applies to the liquid crystal display panel based on the image data in each field corresponding to light of the same color included in the one frame. The drive circuit is controlled so that the voltage to be applied is different between at least two of the subframes.
この構成によれば、1フレームに含まれる同じ色の光に対応する各フィールドにおいて画像データに基づき液晶表示パネルに印加される電圧が、少なくとも2つのサブフレーム間で異なる値となるように、駆動制御部によって駆動回路が制御される。このように、同じ色のフィールドにおいて少なくとも2つのサブフレームにおける印加電圧を異なる値に分解することにより、中間階調に対応する電圧値とならないようにすることが可能となっている。ここで、液晶は、中間階調に対応する電圧が印加されると、その応答速度が低下することが知られている。そこで、この構成によれば、駆動制御部によって、中間階調に対応する電圧値とならないように駆動回路を制御することにより、液晶を高速に駆動することが可能になるため、画像データに忠実な高品質の画像を提供することが出来る。また、少なくとも2つのサブフレーム間で同じ色の階調が異なるため、画像を視認したときのカラーブレーキングを抑制する効果も有する。
According to this configuration, driving is performed so that the voltage applied to the liquid crystal display panel based on the image data in each field corresponding to the same color light included in one frame has a different value between at least two subframes. The drive circuit is controlled by the control unit. As described above, in the same color field, the applied voltage in at least two subframes is decomposed into different values, so that the voltage value corresponding to the intermediate gradation can be prevented. Here, it is known that the response speed of the liquid crystal decreases when a voltage corresponding to an intermediate gradation is applied. Therefore, according to this configuration, since the drive control unit controls the drive circuit so that the voltage value does not correspond to the intermediate gradation, the liquid crystal can be driven at a high speed, and thus it is faithful to the image data. High quality images can be provided. In addition, since the gradation of the same color is different between at least two subframes, there is an effect of suppressing color braking when an image is viewed.
また、本発明のさらに他の局面に従う液晶表示装置は、複数の画素を有し、入力される画像データに対応する画像を表示する液晶表示パネルと、前記液晶表示パネルに電圧を印加して前記液晶表示パネルを駆動する駆動回路と、複数色の光を前記液晶表示パネルに対して背面から照射するバックライトと、前記駆動回路を制御する駆動制御部と、前記バックライトからの光の照射を制御するバックライト制御部とを備え、1フレームは複数のサブフレームに分割され、さらに前記各サブフレームは前記複数色の光にそれぞれ対応する複数のフィールドに分割され、前記各フィールドにおいて、前記画像データに基づき、前記液晶表示パネルを駆動するとともに当該フィールドに対応する色の光を前記バックライトから前記液晶表示パネルに対して照射することで前記画像を形成する液晶表示装置であって、前記液晶表示パネルは、内部に液晶層と、前記駆動回路により前記液晶層に電圧を印加するための透明電極とを有し、前記バックライトから出射される光は、赤外光もしくは紫外光を含み、前記透明電極は、赤外光もしくは紫外光を吸収して発熱する材質で形成されている。
Further, a liquid crystal display device according to still another aspect of the present invention includes a liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data, and applying a voltage to the liquid crystal display panel to A driving circuit that drives the liquid crystal display panel; a backlight that irradiates the liquid crystal display panel with light of a plurality of colors from the back; a drive control unit that controls the driving circuit; and illumination of light from the backlight. A backlight control unit for controlling, one frame is divided into a plurality of subframes, and each subframe is further divided into a plurality of fields respectively corresponding to the light of the plurality of colors, and in each field, the image Based on the data, the liquid crystal display panel is driven, and light of a color corresponding to the field is transmitted from the backlight to the liquid crystal display panel. The liquid crystal display device forms the image by irradiating the liquid crystal display panel, and the liquid crystal display panel includes a liquid crystal layer inside and a transparent electrode for applying a voltage to the liquid crystal layer by the driving circuit. The light emitted from the backlight includes infrared light or ultraviolet light, and the transparent electrode is formed of a material that generates heat by absorbing infrared light or ultraviolet light.
この構成によれば、透明電極は、赤外光もしくは紫外光を吸収して発熱する材質で形成されているため、バックライトから出射される光に含まれる赤外光もしくは紫外光を吸収して透明電極が発熱することから、液晶表示パネルを加温することができる。ここで、液晶は、低温のときに応答速度が低下することが知られている。しかし、この構成によれば、液晶表示パネルを加温することができるため、液晶の応答速度が低下するのを防止することができ、その結果、高品質の画像を得ることが可能となる。
According to this configuration, since the transparent electrode is formed of a material that absorbs infrared light or ultraviolet light and generates heat, the transparent electrode absorbs infrared light or ultraviolet light included in the light emitted from the backlight. Since the transparent electrode generates heat, the liquid crystal display panel can be heated. Here, it is known that the response speed of the liquid crystal decreases when the temperature is low. However, according to this configuration, since the liquid crystal display panel can be heated, it is possible to prevent the response speed of the liquid crystal from being lowered, and as a result, it is possible to obtain a high-quality image.
以下、本発明の実施の形態について、図面を参照しながら説明する。図面は、理解しやすくするために模式的に示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The drawings are schematically shown for easy understanding.
(実施の形態1)
図1はフィールドシーケンシャル方式の液晶表示装置の概略構成図である。図1(a)は液晶表示装置の平面図であり、図1(b)は図1(a)の液晶表示装置の10A-10A線における断面図である。また、図2は液晶表示パネルの回路構成図である。 (Embodiment 1)
FIG. 1 is a schematic configuration diagram of a field sequential type liquid crystal display device. 1A is a plan view of the liquid crystal display device, and FIG. 1B is a cross-sectional view of the liquid crystal display device of FIG. 1A taken along theline 10A-10A. FIG. 2 is a circuit configuration diagram of the liquid crystal display panel.
図1はフィールドシーケンシャル方式の液晶表示装置の概略構成図である。図1(a)は液晶表示装置の平面図であり、図1(b)は図1(a)の液晶表示装置の10A-10A線における断面図である。また、図2は液晶表示パネルの回路構成図である。 (Embodiment 1)
FIG. 1 is a schematic configuration diagram of a field sequential type liquid crystal display device. 1A is a plan view of the liquid crystal display device, and FIG. 1B is a cross-sectional view of the liquid crystal display device of FIG. 1A taken along the
液晶表示装置10は、液晶表示パネル11と、液晶表示パネル11の視認側とは逆側、つまり背面側に複数個配列された光源12と、反射部13と、バックライト制御部141および駆動制御部142を有する制御部14と、駆動回路7とを備える。光源12は赤色光源12r、緑色光源12g、青色光源12bを有し、反射部13と共に液晶表示パネル11に対してバックライトとして機能する。光源12はLEDを用いることができる。
The liquid crystal display device 10 includes a liquid crystal display panel 11, a plurality of light sources 12 arranged on the side opposite to the viewing side of the liquid crystal display panel 11, that is, the back side, a reflection unit 13, a backlight control unit 141, and drive control. The control part 14 which has the part 142, and the drive circuit 7 are provided. The light source 12 includes a red light source 12r, a green light source 12g, and a blue light source 12b, and functions as a backlight with respect to the liquid crystal display panel 11 together with the reflection unit 13. An LED can be used as the light source 12.
まず、図1と図2を用いて、フィールドシーケンシャル方式の液晶表示装置10に関して説明する。光源12を構成する赤色光源12r、緑色光源12g、青色光源12bは、液晶表示パネル11と反射部13との間に、例えば図1(a)の様に混色により均一白色になる様に交互に配置する。各光源12は制御部14のバックライト制御部141に接続されており、バックライト制御部141は、各光源12の点灯、消灯タイミング、光量を制御する。各光源12から出射して液晶表示パネル11とは逆向きに出射した光も、反射部13で反射されて、無駄なく均一に液晶表示パネル11を照射するように配置されている。
First, the field sequential type liquid crystal display device 10 will be described with reference to FIGS. 1 and 2. The red light source 12r, the green light source 12g, and the blue light source 12b constituting the light source 12 are alternately arranged between the liquid crystal display panel 11 and the reflection unit 13 so as to be uniform white by color mixing as shown in FIG. Deploy. Each light source 12 is connected to a backlight control unit 141 of the control unit 14, and the backlight control unit 141 controls lighting, extinguishing timing, and light quantity of each light source 12. The light emitted from each light source 12 and emitted in the direction opposite to the liquid crystal display panel 11 is also reflected by the reflection unit 13 so as to irradiate the liquid crystal display panel 11 uniformly without waste.
液晶表示パネル11は、駆動回路7を介して、制御部14の駆動制御部142に接続されており、駆動制御部142は、駆動回路7を介して液晶表示パネル11を構成する各画素の液晶に電圧を印加して駆動することにより透過率を制御する。また、図2に示す様に、液晶表示パネル11内では、信号線(DL1、DL2、・・・、DLm)と走査線(GL1、GL2、・・・、GLn)を、各TFT(薄膜トランジスタ)のドレイン電極、ゲート電極に接続することでサブピクセルを形成する。さらにソース電極は透明電極(図示省略)に接続され、共通電極Vcomとの間で容量Clcの液晶に対して電圧を印加する。
The liquid crystal display panel 11 is connected to the drive control unit 142 of the control unit 14 via the drive circuit 7, and the drive control unit 142 uses the liquid crystal of each pixel constituting the liquid crystal display panel 11 via the drive circuit 7. The transmittance is controlled by applying a voltage to and driving. Further, as shown in FIG. 2, in the liquid crystal display panel 11, signal lines (DL1, DL2,..., DLm) and scanning lines (GL1, GL2,..., GLn) are connected to each TFT (thin film transistor). A subpixel is formed by connecting to the drain electrode and the gate electrode. Further, the source electrode is connected to a transparent electrode (not shown), and a voltage is applied to the liquid crystal having the capacitance Clc with the common electrode Vcom.
信号線DL1、DL2、・・・、DLmはソースドライバ15に接続され、走査線GL1、GL2、・・・、GLnはゲートドライバ16に接続されており、ゲートドライバ16によって所望の走査線にON信号(走査信号)が印加されたタイミングに同期して、各信号線に接続されているサブピクセルの液晶が所望の透過率になる様に、ソースドライバ15によって個々の信号線の電圧が液晶の両端に印加される。
The signal lines DL1, DL2,..., DLm are connected to the source driver 15, and the scanning lines GL1, GL2,..., GLn are connected to the gate driver 16, and the gate driver 16 turns on the desired scanning line. In synchronism with the timing at which the signal (scanning signal) is applied, the voltage of each signal line is adjusted by the source driver 15 so that the liquid crystal of the subpixel connected to each signal line has a desired transmittance. Applied to both ends.
一般には、ゲートドライバ16は、走査線に対して、上から順(GL1、GL2、・・・、GLn、の順)に順次ON信号(走査信号)を印加し、それに同期してソースドライバ15が信号線に所望の電圧を印加するため、液晶表示パネル11の上から下にむけて表示する画像が更新されることになる。駆動回路7は、ソースドライバ15、ゲートドライバ16、TFT、信号線、走査線、透明電極、共通電極Vcomなどによって構成されている。
In general, the gate driver 16 sequentially applies ON signals (scanning signals) to the scanning lines in order from the top (GL1, GL2,..., GLn), and the source driver 15 synchronizes with this. Since a desired voltage is applied to the signal line, the image displayed from the top to the bottom of the liquid crystal display panel 11 is updated. The drive circuit 7 includes a source driver 15, a gate driver 16, a TFT, a signal line, a scanning line, a transparent electrode, a common electrode Vcom, and the like.
図3は、液晶表示パネルの走査タイミングと光源点灯タイミングの説明図である。図3では、1フィールドの時間Tfごとに赤色光源、緑色光源、青色光源を順次点灯し、3つのフィールドで1つのサブフレーム(時間Tsf)を構成している。図3(a)に示す様に、液晶表示パネル11の上から下まで個々の液晶に信号を印加し、液晶が配向されるのを所定の時間待ってから該当する色の光源を全面同時に点灯させることで、その色の画像を表示することができる。この場合、1フィールドに要する時間Tf内で、液晶表示パネル11を上から下まで走査してデータを各画素に画像データをセットし(時間Ts)、液晶を配向させ(時間Td)、光源を点灯させる(時間Tl)必要があることになる。
FIG. 3 is an explanatory diagram of the scanning timing and light source lighting timing of the liquid crystal display panel. In FIG. 3, a red light source, a green light source, and a blue light source are sequentially turned on every time Tf of one field, and one subframe (time Tsf) is configured by three fields. As shown in FIG. 3 (a), a signal is applied to each liquid crystal from the top to the bottom of the liquid crystal display panel 11, and after waiting for a predetermined time for the liquid crystal to be aligned, the corresponding color light source is turned on simultaneously. By doing so, an image of that color can be displayed. In this case, within the time Tf required for one field, the liquid crystal display panel 11 is scanned from the top to the bottom, data is set for each pixel (time Ts), the liquid crystal is oriented (time Td), and the light source is turned on. It is necessary to light (time Tl).
これに対して、図3(b)に示す様に、上から下まで液晶に信号を印加し終えるのを待たずに、所望の走査線がONされて所定の時間待った後に、その領域を該当する色の光で同期して照明する方式(スクロール照明)がある。こうすることにより、液晶表示パネル11の各画素を上から下まで走査する時間Tsによる待ち時間の発生が基本的になくなるため、1フィールドあたりの時間Tfを、液晶の配向(時間Td)と光源の点灯(時間Tl)のみに割くことができる。したがって、光源の点灯時間(Tl)が同じであるとすると、液晶の配向に要する時間(Td)はより長くても良いことになる。すなわち、スクロール照明を行うことにより、液晶に求められる応答速度は緩和されることになることが分かる。
On the other hand, as shown in FIG. 3B, after waiting for a predetermined time after a desired scanning line is turned on without waiting for a signal to be applied to the liquid crystal from the top to the bottom, the corresponding area is determined. There is a method (scroll lighting) in which illumination is performed synchronously with light of the color to be used. By doing so, the waiting time due to the time Ts for scanning each pixel of the liquid crystal display panel 11 from the top to the bottom basically disappears. Therefore, the time Tf per field is set to the liquid crystal orientation (time Td) and the light source. Can be divided into only lighting (time Tl). Therefore, if the lighting time (Tl) of the light source is the same, the time (Td) required for the alignment of the liquid crystal may be longer. That is, it is understood that the response speed required for the liquid crystal is reduced by performing the scroll illumination.
一方、1フレームを複数、例えば2つのサブフレームに分割することが行われる。これは、1フレームを単純に3フィールドで構成すると、眼球の移動等により、視認している画像のエッジが虹色に分かれて見えるカラーブレーキングが生じる虞があるからである。1秒あたり60フレームの画像において1フレームを2つのサブフレームに分割する場合、1サブフレームあたりの秒数Tsfは8.3ミリ秒となり、赤色、緑色、青色等3色でフィールドシーケンシャル表示する場合1フィールドあたりの時間Tfは2.8ミリ秒となる。
On the other hand, one frame is divided into a plurality of, for example, two subframes. This is because if one frame is simply composed of three fields, there is a risk that color braking will occur in which the edge of the image being viewed is divided into rainbow colors due to movement of the eyeball or the like. When one frame is divided into two subframes in an image of 60 frames per second, the number of seconds Tsf per subframe is 8.3 milliseconds, and field sequential display is performed in three colors such as red, green, and blue. The time Tf per field is 2.8 milliseconds.
しかし、液晶の応答速度はVA(Vertical Alignment)モート゛やIPS(In Plane Switching)モードでは速くても4ミリ秒程度が限界である。上記の様に、例えばカラーブレーキングを緩和するために2つのサブフレームに分割して、赤色、緑色、青色の3フィールドで駆動する場合、図4(a)に示す様に、1フィールドあたりの時間Tfよりも液晶の応答時間の方が長くなる。
However, the response speed of the liquid crystal is limited to about 4 milliseconds at the fastest in the VA (Vertical Alignment) mode and IPS (In Plane Switching) mode. As described above, for example, when driving in three fields of red, green, and blue by dividing into two subframes in order to alleviate color braking, as shown in FIG. The response time of the liquid crystal becomes longer than the time Tf.
したがって、液晶が所望の透過率まで到達せずにオフされることになり、光源12は、液晶が所望の透過率に到達する前に点灯、消灯することになる。また、液晶の透過率が最高に達する前に液晶をOFFすることになるため透過率が低く、光の利用効率が低下する。その結果、所望の輝度を表示するための消費電力も高くなってしまう。ここで図4はある位置の画素における液晶の応答波形と光源の点灯タイミングの関係を表す図であり、液晶の応答波形は、透過率の時間変化に該当する。
Therefore, the liquid crystal is turned off without reaching the desired transmittance, and the light source 12 is turned on and off before the liquid crystal reaches the desired transmittance. Further, since the liquid crystal is turned off before the transmittance of the liquid crystal reaches the maximum, the transmittance is low, and the light utilization efficiency is lowered. As a result, power consumption for displaying a desired luminance is also increased. Here, FIG. 4 is a diagram showing the relationship between the response waveform of the liquid crystal in a pixel at a certain position and the lighting timing of the light source, and the response waveform of the liquid crystal corresponds to a change in transmittance with time.
これに対し、本実施の形態1に示す液晶表示装置10においては、図4(b)に示す様に、各フィールドの終端において液晶への印加電圧をゼロにリセットせず、フィールドの終端まで電圧印加を継続した後、次のフィールドの電圧値に向けて液晶を駆動している。また、本実施の形態1では、フィールドの開始時点(液晶への電圧印加開始時点)から光源の点灯開始時点までの経過時間Tonをバックライト制御部141により調整可能としている。つまり、バックライト制御部141は、各フィールドにおける液晶表示パネル11に対する光源12からの光の照射開始タイミングを早く(経過時間Tonを短く)したり、照射開始タイミングを遅く(経過時間Tonを長く)したりするなど、その照射開始タイミングを調整する。この場合、次の様な効果を有する。
On the other hand, in the liquid crystal display device 10 shown in the first embodiment, the voltage applied to the liquid crystal is not reset to zero at the end of each field, as shown in FIG. After the application is continued, the liquid crystal is driven toward the voltage value of the next field. Further, in the first embodiment, the backlight control unit 141 can adjust the elapsed time Ton from the field start time (voltage application start time to the liquid crystal) to the light source lighting start time. That is, the backlight control unit 141 accelerates the irradiation start timing of the light from the light source 12 to the liquid crystal display panel 11 in each field (shortens the elapsed time Ton) or delays the irradiation start timing (longens the elapsed time Ton). Adjust the irradiation start timing. In this case, the following effects are obtained.
例えば、経過時間Tonを短くして各光源12を長く点灯させると、光源12の点灯時間が長いために明るい画像を表示することが可能になる。一方で、経過時間Tonを長くして各光源12の点灯時間を相対的に短くすると、所望の透過率の時のみ光源12を点灯することになるため、色再現範囲が広い高画質の画像を提供することが可能になる。
For example, when the elapsed time Ton is shortened and each light source 12 is turned on for a long time, it is possible to display a bright image because the lighting time of the light source 12 is long. On the other hand, if the elapsed time Ton is lengthened and the lighting time of each light source 12 is relatively shortened, the light source 12 is turned on only at a desired transmittance, so that a high-quality image with a wide color reproduction range can be obtained. It becomes possible to provide.
そこで、例えば周囲が明るい環境下(例えば日中や高照度の照明下)では高輝度画像が望まれるため、経過時間Tonを短くして輝度を高くすることで、視認性に優れた画像を提供することが出来る。一方で、周囲が暗い環境下(例えば夜間や低照度の照明下)で例えば映画等を視聴する際は、経過時間Tonを長くすることで輝度を抑えて高画質な画像を提供することが出来る。
For this reason, for example, a high-brightness image is desired in a bright environment (for example, in the daytime or under high illumination), so an image with excellent visibility can be provided by shortening the elapsed time Ton and increasing the brightness. I can do it. On the other hand, when watching, for example, a movie in a dark environment (for example, at night or under low illumination), it is possible to provide a high-quality image with a reduced luminance by increasing the elapsed time Ton. .
これらの切り替えは、例えば図5に示すように、テレビ本体8に内蔵されている時計9(計時部)からの時刻データに基づきバックライト制御部141により切り替えることが考えられる。即ち、日中の時間帯(例えば9時から15時等)は経過時間Tonを短くすることで、高輝度の画像を提供し、15時を過ぎると徐々に経過時間Tonを所定の値に近づけてゆくことで、視聴上違和感無く切り替えることが可能になる。
For example, as shown in FIG. 5, it is conceivable that the switching is performed by the backlight control unit 141 based on time data from a clock 9 (clocking unit) built in the television body 8. That is, during the daytime period (for example, from 9:00 to 15:00), the elapsed time Ton is shortened to provide a high-luminance image, and after 15:00, the elapsed time Ton gradually approaches a predetermined value. By doing so, it becomes possible to switch without a sense of incongruity in viewing.
なお、日中の時間帯としては、上記のように9時から15時までの6時間に限られず、例えば8時から16時までの8時間としてもよい。要は、正午を含む所定時間などのように、明るい時間帯であればよい。また、例えば季節によって、上記時間帯を変更するようにしてもよい。
Note that the time zone during the day is not limited to 6 hours from 9:00 to 15:00 as described above, and may be, for example, 8 hours from 8:00 to 16:00. In short, it may be a bright time zone such as a predetermined time including noon. Further, for example, the time zone may be changed depending on the season.
他にも例えば、図5に示す様に、制御部14のバックライト制御部141に対してチューナ19を接続しておき、バックライト制御部141により例えば視聴している番組が映画であると判断された場合、経過時間Tonを長くして輝度を抑えつつ色再現範囲の広い高画質な画像を提供し、バラエティやニュース等と判断された場合、経過時間Tonを短くすることで高輝度な画像を提供するといったことも可能である。
In addition, for example, as shown in FIG. 5, the tuner 19 is connected to the backlight control unit 141 of the control unit 14, and the backlight control unit 141 determines that the program being viewed is a movie, for example. If it is determined that the elapsed time Ton is lengthened and the luminance is suppressed to provide a high-quality image with a wide color reproduction range, and it is judged as variety, news, etc., the elapsed time Ton is shortened to increase the luminance image. It is also possible to provide
勿論これらのことは、ユーザー設定でも可能であり、ユーザーが操作可能に構成された設定部6によって、例えばシネマモードに設定された場合は、経過時間Tonを長くして輝度を抑えつつ色再現範囲の広い高画質な画像を提供してもよい。一方、設定部6によって、例えばバラエティやニュース等を視聴するモードに設定された場合は、経過時間Tonを短くして高輝度な画像を提供することでも構わない。
Of course, these can also be set by the user, and when the setting unit 6 is configured to be operable by the user, for example, when the cinema mode is set, the color reproduction range is set while increasing the elapsed time Ton and suppressing the luminance. Wide and high-quality images may be provided. On the other hand, when the setting unit 6 is set to a mode for viewing, for example, variety or news, the elapsed time Ton may be shortened to provide a high brightness image.
他にも、図5に示すように、例えば液晶表示パネル11に照度センサ18(照度検出部)を付けておき、測定された周囲の明るさをバックライト制御部141において判断し、適切な経過時間Tonに逐次設定しても構わない。なお、図5では、照度センサ18を液晶表示パネル11に取り付けているが、これに限られない。例えばテレビ本体8に取り付けてもよいし、テレビ本体8に付属のリモコン(図示省略)に取り付けてもよい。要は、液晶表示パネル11が設置された室内の明るさなど、ユーザーが液晶表示パネル11を視認する際に影響を及ぼす領域の明るさが検出できればよい。
In addition, as shown in FIG. 5, for example, an illuminance sensor 18 (illuminance detection unit) is attached to the liquid crystal display panel 11, and the measured ambient brightness is determined by the backlight control unit 141. You may set to time Ton sequentially. In FIG. 5, the illuminance sensor 18 is attached to the liquid crystal display panel 11, but is not limited thereto. For example, you may attach to the television main body 8, and you may attach to the remote control (illustration omitted) attached to the television main body 8. FIG. In short, it is only necessary to detect the brightness of a region that influences when the user visually recognizes the liquid crystal display panel 11, such as the brightness of the room in which the liquid crystal display panel 11 is installed.
その他、図5に示すように、例えば液晶表示パネル11に周囲温度を測定するための温度センサ17(温度検出部)を付けておき、測定された温度によって、経過時間Tonを逐次設定しても構わない。一般に、低温下では液晶の駆動速度(応答速度)が遅くなる。そこで、温度センサ17による検出温度が低くなるほど、バックライト制御部141は、経過時間Tonを長くすることで、色再現範囲を維持した画像を提供することが可能になる。一方、バックライト制御部141は、温度センサ17による検出温度が高くなると、徐々に経過時間Tonを短くすることで、色再現範囲を維持したまま高輝度な画像を提供することが可能になる。
In addition, as shown in FIG. 5, for example, a temperature sensor 17 (temperature detection unit) for measuring the ambient temperature may be attached to the liquid crystal display panel 11, and the elapsed time Ton may be sequentially set according to the measured temperature. I do not care. In general, the driving speed (response speed) of the liquid crystal is slow at low temperatures. Therefore, as the temperature detected by the temperature sensor 17 decreases, the backlight control unit 141 can provide an image that maintains the color reproduction range by increasing the elapsed time Ton. On the other hand, when the temperature detected by the temperature sensor 17 increases, the backlight control unit 141 can provide a high-luminance image while maintaining the color reproduction range by gradually shortening the elapsed time Ton.
もちろん測定された温度に応じて点灯する光源12の光量を調整することで、温度に関わらず色再現範囲が高く高輝度な画像を提供することも可能である。もちろん、日付等の情報やセンサ情報やユーザーによる設定等、上記例以外の手段にて経過時間Tonや光源12の光量を調整、切り替えても構わないし、複数の手段を組み合わせても構わない。
Of course, by adjusting the light amount of the light source 12 that is turned on according to the measured temperature, it is possible to provide a high-luminance image with a high color reproduction range regardless of the temperature. Of course, the elapsed time Ton and the light quantity of the light source 12 may be adjusted and switched by means other than the above examples, such as date information, sensor information, and user settings, or a plurality of means may be combined.
(実施の形態2)
次に、本実施の形態2におけるフィールドシーケンシャル方式の液晶表示装置に関して説明する。まず、図6を用いて、一般的なスクロール照明の方法に関して説明する。図6(a)は図1(b)と同じく液晶表示装置10の10A―10A線(図1(a))における断面図であり、光源12を照明タイミング別に4つの照明ブロック20a~20dに分割してあり、各照明ブロック20a~20dはそれぞれ赤色光源12r、青色光源12b、緑色光源12gを含んでいる。図6(b)の縦軸は液晶表示パネル11の垂直方向の画素位置を示しており、この図は液晶表示パネル11の各画素の液晶を垂直方向に走査してONするタイミングと光源12を点灯させるタイミングを示している。なお、図6(a)では、駆動回路7の図示を省略している。 (Embodiment 2)
Next, a field sequential liquid crystal display device according to the second embodiment will be described. First, a general scroll illumination method will be described with reference to FIG. 6A is a cross-sectional view taken along theline 10A-10A (FIG. 1A) of the liquid crystal display device 10 as in FIG. 1B, and the light source 12 is divided into four illumination blocks 20a to 20d according to illumination timing. Each of the illumination blocks 20a to 20d includes a red light source 12r, a blue light source 12b, and a green light source 12g. The vertical axis in FIG. 6B indicates the vertical pixel position of the liquid crystal display panel 11, and this figure shows the timing of turning on the liquid crystal of each pixel of the liquid crystal display panel 11 in the vertical direction and the light source 12. The timing of lighting is shown. In addition, illustration of the drive circuit 7 is abbreviate | omitted in Fig.6 (a).
次に、本実施の形態2におけるフィールドシーケンシャル方式の液晶表示装置に関して説明する。まず、図6を用いて、一般的なスクロール照明の方法に関して説明する。図6(a)は図1(b)と同じく液晶表示装置10の10A―10A線(図1(a))における断面図であり、光源12を照明タイミング別に4つの照明ブロック20a~20dに分割してあり、各照明ブロック20a~20dはそれぞれ赤色光源12r、青色光源12b、緑色光源12gを含んでいる。図6(b)の縦軸は液晶表示パネル11の垂直方向の画素位置を示しており、この図は液晶表示パネル11の各画素の液晶を垂直方向に走査してONするタイミングと光源12を点灯させるタイミングを示している。なお、図6(a)では、駆動回路7の図示を省略している。 (Embodiment 2)
Next, a field sequential liquid crystal display device according to the second embodiment will be described. First, a general scroll illumination method will be described with reference to FIG. 6A is a cross-sectional view taken along the
図6(b)に示すように、バックライト制御部141は、液晶表示パネル11上の各照明ブロック20a~20dに該当する位置の最下行をONして経過時間Ton秒後に該当する照明ブロックの光源12を点灯する。また、バックライト制御部141は、液晶表示パネル11上の各照明ブロックに該当する位置の、次のフィールドの最上行がONされる直前に該当する照明ブロックの光源12を消灯する。
As shown in FIG. 6 (b), the backlight control unit 141 turns on the bottom row at the position corresponding to each of the illumination blocks 20a to 20d on the liquid crystal display panel 11 and sets the corresponding illumination block after the elapsed time Ton seconds. The light source 12 is turned on. In addition, the backlight control unit 141 turns off the light source 12 of the corresponding illumination block immediately before the top row of the next field at the position corresponding to each illumination block on the liquid crystal display panel 11 is turned on.
上記の点灯及び消灯を赤色フィールド、緑色フィールド、青色フィールドと3色繰り返すことで1サブフレームを成し、これをさらに所定回数行うことで1フレームを成す。つまり、1フレームは所定数のサブフレームに分割され、各サブフレームは、それぞれ各色に対応する3つのフィールドで構成されている。
The above lighting and extinction are repeated for the red field, the green field, and the blue field in three colors to form one subframe, and this is repeated a predetermined number of times to form one frame. That is, one frame is divided into a predetermined number of subframes, and each subframe is composed of three fields corresponding to each color.
このスクロール照明において、例えば液晶表示パネル11上の照明ブロック20a内に存在する所定の行L1(図6(b))内のある画素において、液晶の応答波形と照明ブロック20aの点灯タイミングと照明ブロック20bの点灯タイミングを図7に示す。
In this scroll illumination, for example, in a certain pixel in a predetermined row L1 (FIG. 6B) existing in the illumination block 20a on the liquid crystal display panel 11, the response waveform of the liquid crystal, the lighting timing of the illumination block 20a, and the illumination block The lighting timing of 20b is shown in FIG.
この図7からわかる様に、赤色画像用のデータがセットされている時間Tfの間で、照明ブロック20aの赤色光源が時刻t1~t2で点灯されている以外に、照明ブロック20bの赤色光源も時刻t3~t4で点灯されていることが分かる。
As can be seen from FIG. 7, during the time Tf when the data for the red image is set, the red light source of the illumination block 20b is turned on at times t1 and t2, and the red light source of the illumination block 20b is also turned on. It can be seen that it is lit at time t3 to t4.
照明ブロック20a、20bは光源としては分割しているが、液晶表示パネル11は照明ブロック20aの直上であっても、照明ブロック20bからの光の一部が到達する。特に照明ブロック20aと20bの境界近傍の領域は、両側の照明ブロック20a、20bからの光を受けることになる。
Although the illumination blocks 20a and 20b are divided as light sources, even if the liquid crystal display panel 11 is directly above the illumination block 20a, part of the light from the illumination block 20b reaches. In particular, a region near the boundary between the illumination blocks 20a and 20b receives light from the illumination blocks 20a and 20b on both sides.
よって、この画素を透過する赤色光量は、照明ブロック20aから出射される赤色光のうち本画素に到達する光量に、各時刻の液晶の透過率(即ち液晶応答波形)を掛けて、時刻t1~t2まで積分した光量と、照明ブロック20bから出射される赤色光のうち本画素に到達する光量に、各時刻の液晶の透過率を掛けて、時刻t3~t4まで積分した光量との和になる。
Therefore, the amount of red light transmitted through this pixel is obtained by multiplying the amount of red light emitted from the illumination block 20a to reach this pixel by the liquid crystal transmittance (that is, the liquid crystal response waveform) at each time, and The sum of the amount of light integrated up to t2 and the amount of light that reaches the main pixel in the red light emitted from the illumination block 20b is multiplied by the liquid crystal transmittance at each time to integrate the light from time t3 to t4. .
この光量の和が所望の光量になる様にするためには、駆動制御部142によって、隣接する照明ブロック20bから本画素までの距離から、隣接する照明ブロック20bから本画素に到達する光量を割り出し、本画素から透過する光量が所望の光量になる様に、事前に本画素の画像データを補正しておくことで、達成することが出来る。
In order for the sum of the light amounts to be a desired light amount, the drive control unit 142 calculates the light amount reaching the main pixel from the adjacent illumination block 20b from the distance from the adjacent illumination block 20b to the main pixel. This can be achieved by correcting the image data of this pixel in advance so that the amount of light transmitted from this pixel becomes the desired amount of light.
また、図7の様に、隣接する照明ブロック20bからの赤色光が、行L1において次のフィールド(図7においては緑色フィールド)にずれ込む場合、時刻t4の液晶応答波形は次のフィールドである緑色フィールドにおける画像データに依存する。
Further, as shown in FIG. 7, when the red light from the adjacent illumination block 20b is shifted to the next field (green field in FIG. 7) in the row L1, the liquid crystal response waveform at time t4 is the next field, green. Depends on the image data in the field.
よって、駆動制御部142により、赤色フィールドにおける画像データを、直後のフィールドである緑色フィールドにおける画像データを用いて、隣接する照明ブロック20bから本画素に到達する光量を割り出し、本画素から透過する光量が所望の光量になる様に、事前に本画素の画像データを補正しておくことで、本画素から透過する赤色光の光量を所望の光量になる様に補正することが出来る。この様にすることで、スクロール照明においても、隣接する照明ブロックの発光タイミングの相違による階調を補正し、元画像に忠実な高画質な画像を提供することが出来る。
Therefore, the drive control unit 142 uses the image data in the red field and the image data in the green field, which is the next field, to determine the amount of light reaching the main pixel from the adjacent illumination block 20b, and the amount of light transmitted from the main pixel. By correcting the image data of the main pixel in advance so that the desired light amount is obtained, the light amount of red light transmitted from the main pixel can be corrected to be the desired light amount. In this way, even in the scroll illumination, it is possible to correct the gradation due to the difference in the light emission timing of the adjacent illumination blocks and provide a high-quality image faithful to the original image.
次に、上記とは別に、画像1フレームを複数のサブフレームに分割した場合の色割れ対策に関して、例えば画像1フレームを2つのサブフレームに分割した場合の例を、図8を用いて説明する。
Next, separately from the above, with respect to measures against color breakup when one image frame is divided into a plurality of subframes, an example in which one image frame is divided into two subframes will be described with reference to FIG. .
図8に示すように、画像1フレームFPを、前側サブフレームSF1と、後側サブフレームSF2との2つのサブフレームに分割している。さらに各サブフレームを構成するフィールドを赤色、緑色、青色の順としている。すなわち、前側サブフレームSF1は、赤色フィールドFr1、緑色フィールドFg1、青色フィールドFb1により構成され、後側サブフレームSF2は、赤色フィールドFr2、緑色フィールドFg2、青色フィールドFb2により構成されている。
As shown in FIG. 8, the image 1 frame FP is divided into two subframes, a front subframe SF1 and a rear subframe SF2. Furthermore, the fields constituting each subframe are in the order of red, green, and blue. That is, the front subframe SF1 is configured by a red field Fr1, a green field Fg1, and a blue field Fb1, and the rear subframe SF2 is configured by a red field Fr2, a green field Fg2, and a blue field Fb2.
通常、1フレームを複数のサブフレームに分割する場合、その画像データは各サブフレームに等しく与える。例えば、ある画像1フレームの赤色、緑色、青色に8ビットでそれぞれ255、130、20の画像データが与えられた場合、図8(a)に示す様に、赤色フィールドFr1、Fr2に255、緑色フィールドFg1、Fg2に130、青色フィールドFb1、Fb2に20の画像データが与えられ、それに応じた電圧が駆動制御部142により液晶に印加され液晶が駆動される。
Usually, when one frame is divided into a plurality of subframes, the image data is given equally to each subframe. For example, when image data of 255, 130, and 20 is given in 8 bits for red, green, and blue, respectively, in one frame of an image, as shown in FIG. 8A, 255 and green are displayed in red fields Fr1 and Fr2. Image data of 130 is applied to the fields Fg1 and Fg2, and 20 image data is applied to the blue fields Fb1 and Fb2. A voltage corresponding to the image data is applied to the liquid crystal by the drive control unit 142 to drive the liquid crystal.
しかしながら、一般に液晶は中間階調(例えば8ビットでは128近傍)において応答速度が遅くなることが分かっている。よって図8(a)においては、緑色フィールドFg1、Fg2の応答速度が遅くなり、入力された画像に忠実な画像を再現できないことになる。
However, it is generally known that the response speed of the liquid crystal becomes slow at an intermediate gradation (for example, around 128 for 8 bits). Therefore, in FIG. 8A, the response speed of the green fields Fg1 and Fg2 is slow, and an image faithful to the input image cannot be reproduced.
それに対して、図8(b)に示す様に、緑色フィールドFg1、Fg2において、本来与えられる130という値に対し、緑色フィールドFg1において255を、緑色フィールドFg2において5(=130×2-255)を与える。つまり、駆動制御部142により、前側サブフレームSF1の緑色フィールドFg1において画像データ255に対応する電圧を印加し、後側サブフレームSF2の緑色フィールドFg2において画像データ5(=130×2-255)に対応する電圧を印加する。
On the other hand, as shown in FIG. 8 (b), in the green fields Fg1 and Fg2, the value of 130 given originally is 255 in the green field Fg1 and 5 (= 130 × 2-255) in the green field Fg2. give. That is, the drive control unit 142 applies a voltage corresponding to the image data 255 in the green field Fg1 of the front subframe SF1, and applies the image data 5 (= 130 × 2-255) in the green field Fg2 of the rear subframe SF2. Apply the corresponding voltage.
1フレーム内の所定の色に関し、各サブフレーム内での値の和が同じであれば、人間の目には同じ明るさとして認識されるため、このように、緑色フィールドFg1とFg2の合計が260になれば、任意の値に分解しても問題ない。
With respect to a predetermined color in one frame, if the sum of the values in each subframe is the same, it is recognized as the same brightness by human eyes, and thus the sum of the green fields Fg1 and Fg2 is If it becomes 260, it is satisfactory even if it decomposes | disassembles into arbitrary values.
よって、上述の様に前側サブフレームSF1の緑色フィールドFg1を255に、後側サブフレームSF2の緑色フィールドFg2を5に分解した場合、合計260(=255+5=130×2)を維持しつつ、緑色フィールドFg1、Fg2において中間階調に対応する電圧以外の電圧に設定することができるため、高速に駆動することが可能になる。また、こうすることで、サブフレーム間で同じ色の階調が異なるため、画像を視認したときのカラーブレーキングを抑制する効果も有する。
Therefore, when the green field Fg1 of the front subframe SF1 is decomposed into 255 and the green field Fg2 of the rear subframe SF2 is decomposed into 5 as described above, the total 260 (= 255 + 5 = 130 × 2) is maintained and green is maintained. In the fields Fg1 and Fg2, the voltage can be set to a voltage other than the voltage corresponding to the intermediate gradation, so that it can be driven at high speed. Moreover, since the gradation of the same color differs between sub-frames by doing in this way, it also has the effect of suppressing color braking when visually recognizing an image.
尚、上では、画像データが130の場合に関して説明したが、もちろんそれ以外の値でも構わない。ただし、赤色フィールドFr1、Fr2や青色フィールドFb1、Fb2の様に、元々の画像データが255や20といった8ビットにおける上限もしくは下限に近いデータであれば、上述の様にサブフィールド間で異なる値に分割する必要はない。例えば8ビットにおいて特に85~170といった中間階調に対して効果を有する。
In the above description, the case where the image data is 130 has been described. Of course, other values may be used. However, if the original image data is close to the upper limit or lower limit of 8 bits such as 255 and 20 as in the red fields Fr1 and Fr2 and the blue fields Fb1 and Fb2, the values differ between the subfields as described above. There is no need to split. For example, in the case of 8 bits, there is an effect particularly on an intermediate gradation of 85 to 170.
また、図8(b)においては、前側サブフレームSF1の緑色フィールドFg1に255を配置したが、もちろん図8(c)の様に後側サブフレームSF2の緑色フィールドFg2に255を配置しても構わない。
In FIG. 8B, 255 is arranged in the green field Fg1 of the front subframe SF1, but it goes without saying that 255 is arranged in the green field Fg2 of the rear subframe SF2 as shown in FIG. 8C. I do not care.
また、図8では1フレームを2つのサブフレームに分割した場合について説明したが、これに限られず、例えば1フレームを4つのサブフレームに分割しても構わない。この場合には、例えば、高階調、低階調、高階調、低階調の順に分解して印加電圧を設定してもよく、あるいは高階調、低階調、低階調、高階調の順に分解して印加電圧を設定してもよく、あるいはまた、高階調、高階調、低階調、低階調の順に分解して印加電圧を設定してもよい。要は、高階調画像データに対応する電圧および低階調画像データに対応する電圧をそれぞれ印加する2つのサブフレームが組み合わされて、1フレームが構成されるように、画像データを分解すればよい。すなわち、この場合には、1フレームは偶数のサブフレームに分割されることが必要になる。
Further, although FIG. 8 illustrates the case where one frame is divided into two subframes, the present invention is not limited to this. For example, one frame may be divided into four subframes. In this case, for example, the applied voltage may be set by decomposing in the order of high gradation, low gradation, high gradation, and low gradation, or in the order of high gradation, low gradation, low gradation, and high gradation. The applied voltage may be set by decomposing, or the applied voltage may be set by decomposing in the order of high gradation, high gradation, low gradation, and low gradation. In short, the image data may be decomposed so that one frame is formed by combining two subframes to which a voltage corresponding to high gradation image data and a voltage corresponding to low gradation image data are respectively applied. . That is, in this case, one frame needs to be divided into even-numbered subframes.
また、上記はある画素においての振る舞いに関して説明したが、例えば所定の画素に図8(b)の様に前側サブフレームSF1に255に近い高階調を配置し、後側サブフレームSF2に0に近い低階調を配置し、さらに上記所定の画素に隣接する画素において、図8(c)の様に前側サブフレームSF1に0に近い低階調を配置し、後側サブフレームSF2に255に近い高階調を配置しても構わない。
Further, the above description has been made with respect to the behavior of a certain pixel. For example, as shown in FIG. 8B, a high gradation close to 255 is arranged in a front subframe SF1 in a predetermined pixel and close to 0 in a rear subframe SF2. In a pixel adjacent to the predetermined pixel, a low gradation is disposed near the front subframe SF1, and a low gradation close to 0 is disposed near the rear subframe SF2, as shown in FIG. 8C. High gradations may be arranged.
つまり、所定の注目画素には、図8(b)に示すように、前側サブフレームSF1の緑色フィールドFg1に対して、255に近い高階調画像データに対応する電圧を印加し、後側サブフレームSF2の緑色フィールドFg2に対して、0に近い低階調画像データに対応する電圧を印加する。
That is, as shown in FIG. 8B, a voltage corresponding to high gradation image data close to 255 is applied to a predetermined target pixel, as shown in FIG. 8B, to the green field Fg1 of the front subframe SF1. A voltage corresponding to low gradation image data close to 0 is applied to the green field Fg2 of SF2.
一方、上記注目画素に隣接する画素には、図8(c)に示すように、前側サブフレームSF1の緑色フィールドFg1に対して、0に近い低階調画像データに対応する電圧を印加し、後側サブフレームSF2の緑色フィールドFg2に対して、255に近い高階調画像データに対応する電圧を印加する。
On the other hand, as shown in FIG. 8C, a voltage corresponding to low gradation image data close to 0 is applied to the green field Fg1 of the front subframe SF1, as shown in FIG. A voltage corresponding to high gradation image data close to 255 is applied to the green field Fg2 of the rear subframe SF2.
このように、互いに隣接する画素において、同じ色のフィールドに対する印加電圧の連続する2つのサブフレーム間の大小関係を逆転させている。こうすることで、隣接する画素において同じ色の階調が異なるため、画像を視認したときのカラーブレーキングをさらに抑制する効果も有する。
As described above, the magnitude relationship between two subframes in which the applied voltage is continuously applied to the same color field in the pixels adjacent to each other is reversed. By doing so, since the gradation of the same color is different in adjacent pixels, there is an effect of further suppressing color braking when an image is viewed.
次に、液晶表示装置10では、液晶表示パネル11のパネル背面に光源12を配置して直接液晶表示パネル11を照明する形態(直下型)を用いたが、図9に示す様に、液晶表示パネル11の背面に導光板22a~22dを配置し、光源12を各導光板22a~22dの側面に配置する形態をとるエッジライト方式に関しても適用できる。その一例を示す。図9(a)は液晶表示装置21の正面図で、図9(b)は図9(a)の矢印21A方向から見た側面図である。なお、図9では、駆動回路7および制御部14の図示を省略している。
Next, in the liquid crystal display device 10, the light source 12 is disposed on the back surface of the liquid crystal display panel 11 to directly illuminate the liquid crystal display panel 11 (direct type). However, as shown in FIG. The present invention can also be applied to an edge light system in which the light guide plates 22a to 22d are disposed on the back surface of the panel 11 and the light source 12 is disposed on the side surfaces of the light guide plates 22a to 22d. An example is shown. FIG. 9A is a front view of the liquid crystal display device 21, and FIG. 9B is a side view seen from the direction of the arrow 21A in FIG. 9A. In FIG. 9, illustration of the drive circuit 7 and the control unit 14 is omitted.
本液晶表示装置21は図6(a)と同様に、光源12による照明領域が照明ブロック20a~20dに分割されており、各ブロック20a~20dにそれぞれ各導光板22a~22dが割り当てられており、さらに各導光板22a~22dの左右に赤色光源12r、緑色光源12g、青色光源12bが配置されている。各光源12r、12g、12bはLEDを用いることが出来る。
In the present liquid crystal display device 21, as in FIG. 6A, the illumination area of the light source 12 is divided into illumination blocks 20a to 20d, and light guide plates 22a to 22d are assigned to the blocks 20a to 20d, respectively. Further, a red light source 12r, a green light source 12g, and a blue light source 12b are arranged on the left and right of the respective light guide plates 22a to 22d. Each light source 12r, 12g, 12b can use LED.
図9(b)に示す様に、各光源12r、12g、12bは各導光板22a~22dの側面近傍に配列されているため、例えば照明ブロック20aにおいて、各光源12r、12g、12bから出射した光は直接導光板22aに入射することになる。また、各光源12r、12g、12bは図9(b)に示す通り、周囲を側面反射体24に覆われており、直接導光板22aに入射しなかった光も側面反射体24で反射することで、導光板22aに入射する。
As shown in FIG. 9B, the light sources 12r, 12g, and 12b are arranged in the vicinity of the side surfaces of the light guide plates 22a to 22d. For example, in the illumination block 20a, the light sources 12r, 12g, and 12b are emitted. The light is directly incident on the light guide plate 22a. Further, as shown in FIG. 9B, each light source 12r, 12g, and 12b is covered with a side reflector 24, and light that has not directly entered the light guide plate 22a is also reflected by the side reflector 24. Thus, the light enters the light guide plate 22a.
各導光板22a~22dは、例えば内部に微小な拡散粒子を有しており、各導光板22a~22dに入射した光は導光板22a~22d内の微小な拡散粒子により散乱され、導光板22a~22dから出射して液晶表示パネル11を照明することで画像形成に寄与する。各導光板22a~22dから液晶表示パネル11とは逆向きに出射した光は、底面反射体23で反射して、再度導光板22a~22d内で散乱されながら、最終的には液晶表示パネル11の照明に寄与する。
Each of the light guide plates 22a to 22d has, for example, minute diffusion particles therein, and light incident on each of the light guide plates 22a to 22d is scattered by the minute diffusion particles in the light guide plates 22a to 22d, and the light guide plate 22a. By illuminating the liquid crystal display panel 11 by emitting from ~ 22d, it contributes to image formation. The light emitted from each of the light guide plates 22a to 22d in the direction opposite to the liquid crystal display panel 11 is reflected by the bottom reflector 23 and is scattered again in the light guide plates 22a to 22d. Contributes to lighting.
また、導光板22a~22d内部の拡散粒子の密度を例えば中央部の密度を上げる等、場所によって調整することで、導光板22a~22dの左右方向の輝度を均一にすることが出来る。
Further, by adjusting the density of the diffusion particles inside the light guide plates 22a to 22d depending on the location, for example, by increasing the density of the central portion, the luminance in the left and right directions of the light guide plates 22a to 22d can be made uniform.
この様にすることで、図6(a)に示した液晶表示装置10と同様に、各照明ブロック20a~20dの左右に配置した光源12r、12g、12bが、液晶表示パネル11の各照明ブロック20a~20dに対応する領域をそれぞれ照明することになる。本液晶表示装置21においても、図6(a)の液晶表示パネル10と同様に、図6(b)に示すタイミングで、各照明ブロック20a~20dの両端に配置された光源12r、12g、12bを時分割で点灯させることで、フィールドシーケンシャル方式で画像を形成することが出来る。
By doing in this way, the light sources 12r, 12g, and 12b arranged on the left and right of the respective illumination blocks 20a to 20d are made to correspond to the respective illumination blocks of the liquid crystal display panel 11 as in the liquid crystal display device 10 shown in FIG. Each of the areas corresponding to 20a to 20d is illuminated. In the present liquid crystal display device 21 as well, as with the liquid crystal display panel 10 in FIG. 6A, the light sources 12r, 12g, and 12b disposed at both ends of each of the illumination blocks 20a to 20d at the timing shown in FIG. 6B. By lighting up in a time-sharing manner, an image can be formed by a field sequential method.
また、本液晶表示装置21において、例えば図8(a)に示す様に、1フレームを2つのサブフレームに分割した場合、例えば前側サブフレームSF1の照明は、各導光板22a~22dの左側に配置された光源12r、12g、12bを点灯させて、後側サブフレームSF2の照明は各導光板22a~22dの右側に配置された光源12r、12g、12bを点灯させても構わない。もちろん前側サブフレームSF1において右側の光源12r、12g、12bを点灯させ、後側サブフレームSF2において左側の光源12r、12g、12bを点灯させても構わない。
Further, in the present liquid crystal display device 21, for example, as shown in FIG. 8A, when one frame is divided into two subframes, for example, the illumination of the front subframe SF1 is on the left side of each of the light guide plates 22a to 22d. The arranged light sources 12r, 12g, 12b may be turned on, and the illumination of the rear subframe SF2 may be turned on by illuminating the light sources 12r, 12g, 12b arranged on the right side of the respective light guide plates 22a-22d. Of course, the right light sources 12r, 12g, and 12b may be turned on in the front subframe SF1, and the left light sources 12r, 12g, and 12b may be turned on in the rear subframe SF2.
さらに、前側サブフレームSF1において、照明ブロック20aは左側の光源12r、12g、12bを点灯させ、照明ブロック20bは右側の光源12r、12g、12bを、照明ブロック20cは左側の光源12r、12g、12bを点灯させ、照明ブロック20dは右側の光源12r、12g、12bを点灯させ、さらに後側サブフレームSF2において、照明ブロック20aは右側の光源12r、12g、12bを点灯させ、照明ブロック20bは左側の光源12r、12g、12bを点灯させ、照明ブロック20cは右側の光源12r、12g、12bを点灯させ、照明ブロック20dは左側の光源12r、12g、12bを点灯させるという様に、照明ブロック毎に交互に点灯させても構わない。こうすることで、さらにカラーブレーキングを抑制する効果を有する。
Further, in the front subframe SF1, the illumination block 20a turns on the left light sources 12r, 12g, and 12b, the illumination block 20b turns on the right light sources 12r, 12g, and 12b, and the illumination block 20c turns on the left light sources 12r, 12g, and 12b. The lighting block 20d lights the right light sources 12r, 12g, and 12b. In the rear subframe SF2, the lighting block 20a lights the right light sources 12r, 12g, and 12b, and the lighting block 20b The light sources 12r, 12g, and 12b are turned on, the illumination block 20c is turned on for the right light sources 12r, 12g, and 12b, and the illumination block 20d is turned on for the left light sources 12r, 12g, and 12b. You may make it light up. In this way, the color braking is further suppressed.
次に、液晶表示装置10を三次元表示可能な液晶表示装置とする場合の一例として、図10を用いて説明する。三次元表示装置は、原理的には視聴する人の目に対して、視差を設けて撮影された右目画像と左目画像を表示し、右目画像を右目のみに見せ、左目画像を左目のみに見せる必要がある。
Next, an example in which the liquid crystal display device 10 is a liquid crystal display device capable of three-dimensional display will be described with reference to FIG. In principle, the 3D display device displays the right eye image and the left eye image captured with parallax for the viewer's eyes, shows the right eye image only to the right eye, and shows the left eye image only to the left eye. There is a need.
一例としては、図10(a)に示す様に、右目、左目それぞれにシャッターを設け、制御装置26に接続されたシャッター眼鏡25を用意し、さらに制御装置26を液晶表示装置10に接続する。制御装置26は、液晶表示装置10が右目画像を表示するタイミングで、シャッター眼鏡25の左目シャッターを閉じ、さらに液晶表示装置10が左目画像を表示するタイミングで、シャッター眼鏡25の右目シャッターを閉じることで、表示された画像を人は三次元画像として認識する。
As an example, as shown in FIG. 10A, a shutter is provided for each of the right eye and the left eye, shutter glasses 25 connected to the control device 26 are prepared, and the control device 26 is connected to the liquid crystal display device 10. The control device 26 closes the left eye shutter of the shutter glasses 25 at the timing when the liquid crystal display device 10 displays the right eye image, and closes the right eye shutter of the shutter glasses 25 at the timing when the liquid crystal display device 10 displays the left eye image. Thus, the person recognizes the displayed image as a three-dimensional image.
この時、図10(b)に示す様に、画像1フレームを二つのサブフレームSF1、SF2に分割した場合、例えばサブフレームSF1に右目画像を、サブフレームSF2に左目画像を表示することで、三次元表示が可能になる。本実施の形態の液晶表示装置10の様に、液晶の印加電圧を各フィールドの終端においてゼロにすることなく駆動することで高速な応答をさせることが可能になり、図10に示すような三次元表示にも使用することが出来る。
At this time, as shown in FIG. 10B, when one image frame is divided into two subframes SF1 and SF2, for example, by displaying the right eye image in the subframe SF1 and the left eye image in the subframe SF2, 3D display is possible. Like the liquid crystal display device 10 of the present embodiment, it is possible to make a high-speed response by driving the applied voltage of the liquid crystal without making it zero at the end of each field, and the third order as shown in FIG. It can also be used for original display.
最後に図11において、光源としてレーザを用いた場合の一例として液晶表示装置30の構成図を示す。図11(a)は液晶表示装置30の上面図であり、図11(b)は図11(a)を矢印30Aの方向から見た側面図である。液晶表示装置30は、赤色レーザ光34rを出射する赤色レーザ光源32r、緑色レーザ光34gを出射する緑色レーザ光源32g、青色レーザ光34bを出射する青色レーザ光源32b、コリメータレンズ33、回転多面鏡35、フレネルレンズ36、37、導光板38を備える。
Finally, in FIG. 11, a configuration diagram of the liquid crystal display device 30 is shown as an example when a laser is used as a light source. 11A is a top view of the liquid crystal display device 30, and FIG. 11B is a side view of FIG. 11A viewed from the direction of the arrow 30A. The liquid crystal display device 30 includes a red laser light source 32r that emits red laser light 34r, a green laser light source 32g that emits green laser light 34g, a blue laser light source 32b that emits blue laser light 34b, a collimator lens 33, and a rotating polygon mirror 35. , Fresnel lenses 36 and 37, and a light guide plate 38.
赤色レーザ光源32rから出射された赤色レーザ光34rは、光軸上のコリメータレンズ33で略平行光に変換された後、回転多面鏡35に入射する。回転多面鏡35は矢印の方向に回転するため、赤色レーザ光34rは回転多面鏡35で反射されながら図中矢印30Bの方向に偏向走査される。
The red laser light 34r emitted from the red laser light source 32r is converted into substantially parallel light by the collimator lens 33 on the optical axis and then enters the rotary polygon mirror 35. Since the rotary polygon mirror 35 rotates in the direction of the arrow, the red laser light 34r is deflected and scanned in the direction of arrow 30B in the figure while being reflected by the rotary polygon mirror 35.
フレネルレンズ36は導光板38の幅方向(図11(a)の上下方向)に曲率を持ち、フレネルレンズ37は導光板38の厚み方向(図11(b)の上下方向)に曲率を持っている。フレネルレンズ36に入射した赤色レーザ光34rは、フレネルレンズ36を透過後に光線の進行方向が略水平になる様に変換され、さらにフレネルレンズ37により導光板38の厚み方向に広げられながら、導光板38の入射面38aから導光板38に入射する。
The Fresnel lens 36 has a curvature in the width direction of the light guide plate 38 (vertical direction in FIG. 11A), and the Fresnel lens 37 has a curvature in the thickness direction of the light guide plate 38 (vertical direction in FIG. 11B). Yes. The red laser light 34 r incident on the Fresnel lens 36 is converted so that the traveling direction of the light beam becomes substantially horizontal after passing through the Fresnel lens 36, and further spread in the thickness direction of the light guide plate 38 by the Fresnel lens 37. The light enters the light guide plate 38 from the light incident surface 38a.
導光板38はアクリル等の光学樹脂で成型されており、入射光は導光板38内で全反射を繰り返しながら伝播する。また、導光板38の底面38bは図11(b)に示す様に、導光板38の主面38cに平行な平面を、三角プリズムで周期的に接続した形状をしている。よって、三角プリズムに入射した赤色レーザ光34rは三角プリズムでロス無く全反射して、導光板38の主面38cより液晶表示パネル11に向けて均一に出射する。
The light guide plate 38 is molded from an optical resin such as acrylic, and incident light propagates while repeating total reflection in the light guide plate 38. Further, as shown in FIG. 11B, the bottom surface 38b of the light guide plate 38 has a shape in which planes parallel to the main surface 38c of the light guide plate 38 are periodically connected by a triangular prism. Therefore, the red laser beam 34 r incident on the triangular prism is totally reflected by the triangular prism without loss, and is uniformly emitted from the main surface 38 c of the light guide plate 38 toward the liquid crystal display panel 11.
また、赤色レーザ光34rは、導光板38内を図11(a)の上側から下側に向けて走査され、導光板38に入射した赤色レーザ光34rは導光板38内部では幅方向(図11(a)で上下方向)には拡散しない。したがって、導光板38内を図11(a)において上から下に線状に走査することになるため、液晶表示パネル11も赤色レーザ光34rにより図10(a)の上から下に線状に走査されることになる。
The red laser light 34r is scanned in the light guide plate 38 from the upper side to the lower side in FIG. 11A, and the red laser light 34r incident on the light guide plate 38 is in the width direction (FIG. 11). It does not diffuse in the vertical direction (a). Accordingly, since the inside of the light guide plate 38 is linearly scanned from top to bottom in FIG. 11A, the liquid crystal display panel 11 is also linearly lined from top to bottom in FIG. 10A by the red laser light 34r. Will be scanned.
液晶表示パネル11内での画像データの走査タイミングに同期して、赤色レーザ光34rが液晶表示パネル11を照明する。これによって、本液晶表示装置30は、例えば図6(a)において、非常に多数の照明ブロックが存在し、かつ各照明ブロックからの光が略垂直に液晶表示パネル11を照明している様にみなすことができる。
The red laser light 34r illuminates the liquid crystal display panel 11 in synchronization with the scanning timing of the image data in the liquid crystal display panel 11. Accordingly, the present liquid crystal display device 30 has a large number of illumination blocks in FIG. 6A, for example, and the light from each illumination block illuminates the liquid crystal display panel 11 substantially vertically. Can be considered.
よって、他の照明ブロックからの照明の影響を受けにくく、元画像に忠実な高画質な画像を提供することが出来る。また、液晶表示パネル11上のある一点を照明している時間が非常に短くなるため、カラーブレーキングを視認しにくくする効果も有する。さらに液晶の配向に掛ける時間を長くすることができるため、所望の階調に忠実な高画質な画像を提供することが可能になる。
Therefore, it is possible to provide a high-quality image that is less affected by illumination from other illumination blocks and is faithful to the original image. Moreover, since the time which illuminates one point on the liquid crystal display panel 11 becomes very short, it also has the effect of making it difficult to visually recognize color braking. Further, since the time required for alignment of the liquid crystal can be lengthened, it is possible to provide a high-quality image faithful to a desired gradation.
次に、赤色レーザ光34rが検出器39に入射すると、赤色レーザ光34rの走査が終了したことになり、順次緑色レーザ光34g、青色レーザ光34bが出射され、赤色レーザ光34rと同じ様にコリメータレンズ33で略平行光に変換された後、回転多面鏡35で偏向走査され、導光板38で立ち上げられて液晶表示パネル11を照明する。
Next, when the red laser beam 34r is incident on the detector 39, the scanning of the red laser beam 34r is completed, and the green laser beam 34g and the blue laser beam 34b are sequentially emitted, in the same manner as the red laser beam 34r. After being converted into substantially parallel light by the collimator lens 33, it is deflected and scanned by the rotary polygon mirror 35 and is raised by the light guide plate 38 to illuminate the liquid crystal display panel 11.
赤色レーザ光34r、緑色レーザ光34g、青色レーザ光34bは回転多面鏡35に対して入射角度がそれぞれ異なるが、入射位置を違わせることで、導光板38の入射面38aの同じ領域を走査させることが出来る。この様にして、レーザ光源を用いても、フィールドシーケンシャル方式の照明を行うことが出来る。
The red laser beam 34r, the green laser beam 34g, and the blue laser beam 34b have different incident angles with respect to the rotary polygon mirror 35, but the same region of the incident surface 38a of the light guide plate 38 is scanned by changing the incident position. I can do it. In this manner, field sequential illumination can be performed even using a laser light source.
尚、本液晶表示装置30においては、回転多面鏡35を用いて走査したが、もちろん他の走査手段でも構わない。また本液晶表示装置30の光学系もあくまで一例であり、液晶表示パネル11を均一に走査照明できるのであれば、本液晶表示装置30の光学系に限定するものではなく、どのような形態でも構わない。
In the present liquid crystal display device 30, scanning is performed using the rotary polygon mirror 35, but other scanning means may be used. The optical system of the liquid crystal display device 30 is merely an example, and the liquid crystal display panel 11 is not limited to the optical system of the liquid crystal display device 30 as long as the liquid crystal display panel 11 can be scanned and illuminated uniformly. Absent.
また、本液晶表示装置30においては、光源にレーザ光源を用いたが、同様な性能を有する光源であればこれに限定するものではない。例えば図11(c)に示すように、スーパールミネッセントダイオード(SLD)320r,320g,320bを用いても構わない。SLD320r,320g,320bを用いることで、さらにスペックルが視認されにくい、高画質な液晶表示装置を構成することが可能になる。
In the present liquid crystal display device 30, a laser light source is used as a light source, but the present invention is not limited to this as long as the light source has similar performance. For example, as shown in FIG. 11C, super luminescent diodes (SLD) 320r, 320g, and 320b may be used. By using the SLDs 320r, 320g, and 320b, it becomes possible to configure a high-quality liquid crystal display device in which speckles are more difficult to visually recognize.
(実施の形態3)
本実施の形態3の液晶表示装置40に関して、図12を用いて説明する。図12(a)、(b)は実施の形態1の図1(b)に対応する断面図である。図12(a)、(b)では、駆動回路7の図示を省略している。 (Embodiment 3)
The liquidcrystal display device 40 according to the third embodiment will be described with reference to FIG. 12A and 12B are cross-sectional views corresponding to FIG. 1B of the first embodiment. In FIGS. 12A and 12B, the drive circuit 7 is not shown.
本実施の形態3の液晶表示装置40に関して、図12を用いて説明する。図12(a)、(b)は実施の形態1の図1(b)に対応する断面図である。図12(a)、(b)では、駆動回路7の図示を省略している。 (Embodiment 3)
The liquid
液晶表示装置40は、液晶表示装置10と類似であるが、放熱に関して異なる。図12(a)に示す様に、液晶表示装置40は、各光源12が熱伝導体41に接続されており、さらに各熱伝導体41が液晶表示パネル11を保持するパネル保持体42に接続されている。こうすることにより、各光源12から発した熱は、熱伝導体41を経由してパネル保持体42に伝わり、最終的に液晶表示パネル11に伝達される。
The liquid crystal display device 40 is similar to the liquid crystal display device 10, but differs in terms of heat dissipation. As shown in FIG. 12A, in the liquid crystal display device 40, each light source 12 is connected to a heat conductor 41, and each heat conductor 41 is connected to a panel holding body 42 that holds the liquid crystal display panel 11. Has been. By doing so, the heat generated from each light source 12 is transmitted to the panel holding body 42 via the heat conductor 41 and finally transmitted to the liquid crystal display panel 11.
一般に、液晶の応答速度は、温度が高くなるほど高速になることが知られている。よって、液晶を加熱することにより応答速度が高速になる。その結果、フィールドシーケンシャル方式の様に液晶の応答速度に数ミリ秒程度の高速な応答が要求される液晶表示装置においても、明るく、入力された画像データに忠実な高画質な液晶表示装置を構成することが可能になる。
Generally, it is known that the response speed of liquid crystal increases as the temperature increases. Therefore, the response speed is increased by heating the liquid crystal. As a result, even in a liquid crystal display device that requires a high-speed response of several milliseconds for the liquid crystal response speed like the field sequential method, a bright and high-quality liquid crystal display device faithful to the input image data is configured. It becomes possible to do.
本実施の形態3の液晶表示装置40においては、光源12で発生した熱を用いることで、本来熱損失としてロスになるエネルギーをロス無く用いている。もちろん、図12(a)に示す様に、各光源12だけでなく、熱損失の発生する制御部14や電源43もパネル保持体42に接触させて、各光源12から発生した熱と同様に、制御部14や電源43で発生した熱も液晶表示パネル11に伝えても構わない。そうすることで、液晶表示パネル11をさらに加温することができ、明るく、入力された画像データに忠実な高画質な液晶表示装置を構成することが可能になる。
In the liquid crystal display device 40 of the third embodiment, by using the heat generated by the light source 12, energy that is originally lost as heat loss is used without loss. Of course, as shown in FIG. 12 (a), not only each light source 12, but also the control unit 14 and the power source 43 where heat loss occurs are brought into contact with the panel holding body 42, similarly to the heat generated from each light source 12. The heat generated by the control unit 14 and the power source 43 may also be transmitted to the liquid crystal display panel 11. By doing so, the liquid crystal display panel 11 can be further heated, and a bright and high-quality liquid crystal display device that is faithful to the input image data can be configured.
また、上記とは別の構成例として、例えば光源12がLEDであった場合、発光した光量の倍程度が熱エネルギーとして発生することが知られており、仮に液晶表示装置40の画面サイズ(対角線長さ)が37インチで、定格電力が120Wで、仮に定格電力の半分に相当する60Wが熱損失として発生している場合、液晶表示パネル11が厚み1.2mmであれば、3分程度で10℃上昇することになる。
As another configuration example different from the above, for example, when the light source 12 is an LED, it is known that about twice the amount of emitted light is generated as thermal energy, and the screen size (diagonal line) of the liquid crystal display device 40 is assumed. If the length) is 37 inches, the rated power is 120 W, and 60 W corresponding to half of the rated power is generated as a heat loss, the liquid crystal display panel 11 has a thickness of 1.2 mm in about 3 minutes. It will increase by 10 ° C.
例えば図12(a)に示すように、液晶表示装置40が内部に温度センサ17を備えておけばよい。そして、制御部14のバックライト制御部141(図1参照)によって、電源43をONしたときの温度が所定の温度より低ければ、各光源12を各フィールドにおいて出来るだけ長く明るく点灯させる(即ち図4(b)における経過時間Tonを短くする)ことで、早期に液晶表示パネル11を加温することができる。その結果、明るく、入力された画像データに忠実な高画質な液晶表示装置を構成することが可能になる。
For example, as shown in FIG. 12A, the liquid crystal display device 40 may include the temperature sensor 17 inside. If the temperature when the power source 43 is turned on is lower than a predetermined temperature by the backlight control unit 141 (see FIG. 1) of the control unit 14, each light source 12 is lit as brightly as possible in each field (that is, FIG. 1). By shortening the elapsed time Ton in 4 (b), the liquid crystal display panel 11 can be heated early. As a result, a bright and high-quality liquid crystal display device that is faithful to the input image data can be configured.
もちろん、各光源12の廃熱を用いる以外にも、図12(b)に示す様に、液晶表示パネル11に制御部14から直接金属配線44を這い回して、必要に応じて金属配線44に電流を流して金属配線44を発熱させることで、液晶表示パネル11を加温しても構わない。この場合金属配線44は、各信号線DLmや走査線GLnの近傍等、各液晶画素の開口以外の場所を這い回すことで、透過する光を遮ることなく加温することが可能である。ここで、金属配線44は、ヒータとして機能すれば、その素材は金属に限定せず、さらに形状も線状か否かは問わない。
Of course, besides using the waste heat of each light source 12, as shown in FIG. 12B, the metal wiring 44 is directly wound around the liquid crystal display panel 11 from the control unit 14, and the metal wiring 44 is formed as necessary. The liquid crystal display panel 11 may be heated by flowing current to cause the metal wiring 44 to generate heat. In this case, the metal wiring 44 can be heated without obstructing the transmitted light by rolling around a place other than the opening of each liquid crystal pixel, such as the vicinity of each signal line DLm and the scanning line GLn. Here, as long as the metal wiring 44 functions as a heater, the material is not limited to metal, and it does not matter whether the shape is linear or not.
次に、液晶を加温する他の方法に関して、図13を用いて説明する。図13(a)は液晶表示パネル11を図1(b)の矢印10Yの方向から見た拡大図であり、走査線(GLn-2~GLn)と信号線(DLm-2~DLm)で囲まれた領域が個々の画素に該当する。
Next, another method for heating the liquid crystal will be described with reference to FIG. FIG. 13A is an enlarged view of the liquid crystal display panel 11 as viewed from the direction of the arrow 10Y in FIG. 1B, and is surrounded by scanning lines (GLn-2 to GLn) and signal lines (DLm-2 to DLm). The region that corresponds to each pixel.
画素45においては、走査線GLn-2と信号線DLm-2の交点近傍にTFT(薄膜トランジスタ)を配置し、TFTのゲート電極に走査線GLn-2が、ドレイン電極に信号線DLm-2が接続されている。さらにTFTのソース電極には、図13(a)に示す様に透明電極46が接続されており、信号印加時には図示を省略する共通電極との間で電位差を生じさせ、液晶に電圧を印加して液晶を駆動する。
In the pixel 45, a TFT (thin film transistor) is arranged near the intersection of the scanning line GLn-2 and the signal line DLm-2, the scanning line GLn-2 is connected to the gate electrode of the TFT, and the signal line DLm-2 is connected to the drain electrode. Has been. Further, a transparent electrode 46 is connected to the source electrode of the TFT as shown in FIG. 13A. When a signal is applied, a potential difference is generated between the common electrode (not shown) and a voltage is applied to the liquid crystal. Drive the LCD.
この透明電極46は通常はワイドギャップ半導体膜が使われ、例えば酸化インジウムに5~10%の酸化スズを添加したITO(indium tin oxide)膜をスパッタ等の方法で製作されることが多い。
For this transparent electrode 46, a wide gap semiconductor film is usually used. For example, an ITO (indium tin oxide) film in which 5 to 10% of tin oxide is added to indium oxide is often manufactured by a method such as sputtering.
ここで液晶を加温するためには、透明電極46において各光源12から出射された光が吸収されると良い。一般に、ITO等のワイドギャップ半導体は、電磁波の吸収端を400nm近傍の紫外線領域に有するため、約400nm以下に該当する紫外線はほとんどが吸収される。
Here, in order to heat the liquid crystal, it is preferable that the light emitted from each light source 12 is absorbed by the transparent electrode 46. In general, a wide gap semiconductor such as ITO has an electromagnetic wave absorption edge in an ultraviolet region near 400 nm, and thus most of ultraviolet rays corresponding to about 400 nm or less are absorbed.
よって、光源12のひとつとして、図13(b)に示すように、紫外線を発光する紫外線光源12uvを含むようにすればよい。この構成によれば、紫外線光源12uvから出射された紫外線を透明電極46が吸収することにより、透明電極46が発熱し液晶を加温することが出来る。
Therefore, as one of the light sources 12, as shown in FIG. 13B, an ultraviolet light source 12uv that emits ultraviolet light may be included. According to this configuration, when the transparent electrode 46 absorbs the ultraviolet light emitted from the ultraviolet light source 12uv, the transparent electrode 46 generates heat and the liquid crystal can be heated.
例えば、図13(b)に示すように、液晶表示装置30内に温度センサ17を設けておき、制御部14によって、測定された温度が低い時は、内蔵されている紫外線光源12uvを駆動し、出射した紫外線を透明電極46に吸収させることで、液晶を加温し、液晶の応答速度を加速することが出来る。
For example, as shown in FIG. 13B, a temperature sensor 17 is provided in the liquid crystal display device 30, and when the measured temperature is low by the control unit 14, the built-in ultraviolet light source 12uv is driven. By absorbing the emitted ultraviolet light by the transparent electrode 46, the liquid crystal can be heated and the response speed of the liquid crystal can be accelerated.
この様にすることで、フィールドシーケンシャル方式の様に液晶の応答速度に数ミリ秒程度の高速な応答が要求される液晶表示装置においても、明るく、入力された画像データに忠実な高画質な液晶表示装置を構成することが可能になる。尚、本紫外線光源12uvは、画像形成に寄与しないため、各フィールドの周期には関係せず、常時点灯させても構わない。
By doing so, even in a liquid crystal display device that requires a high-speed response of several milliseconds for the response speed of the liquid crystal like the field sequential method, a high-quality liquid crystal that is bright and faithful to the input image data A display device can be configured. Since the ultraviolet light source 12uv does not contribute to image formation, it may be constantly lit regardless of the period of each field.
また、上記とは別に、光源12のひとつに紫外線で蛍光体を励起して赤色、青色、緑色等の可視光をそれぞれ発光させたようなLED光源を用いても構わない。例えば、図13(c)に示すように、光源12として、赤色LED120rと、青色LED120bと、紫外線で励起して緑色を発光する紫外線励起型緑色LED120gとを用いた場合、励起に用いた紫外線のうち、蛍光体に吸収されて緑色に変換された紫外線の残りは、蛍光体を透過して液晶表示パネル11を照射することになる。よって透明電極46は残りの紫外線を吸収することで発熱し、液晶を加温することに加担する。
In addition to the above, an LED light source in which a phosphor is excited by ultraviolet rays to emit visible light such as red, blue, and green may be used as one of the light sources 12. For example, as shown in FIG. 13C, when the light source 12 is a red LED 120r, a blue LED 120b, and an ultraviolet-excited green LED 120g that is excited by ultraviolet rays to emit green light, Among these, the remainder of the ultraviolet rays that are absorbed by the phosphor and converted to green are transmitted through the phosphor and irradiate the liquid crystal display panel 11. Therefore, the transparent electrode 46 generates heat by absorbing the remaining ultraviolet rays and contributes to heating the liquid crystal.
こうすることで、紫外線光源を専用に設けることなく液晶表示装置40を構成することが出来るため、上に述べた様なフィールドシーケンシャル方式の液晶表示装置を安価に構成することが可能になる。また、一般に波長400nm近傍のLEDの変換効率は、外部量子効率で50%を越えているものもあるが、緑色LEDの外部量子効率は20%以下と低い。よって、緑色光を外部量子効率の高い紫外線励起型緑色LED120gから得ることは、変換効率的にも有利であるというメリットを有する。
In this way, the liquid crystal display device 40 can be configured without providing a dedicated ultraviolet light source, and thus the field sequential type liquid crystal display device as described above can be configured at low cost. In general, the conversion efficiency of an LED near a wavelength of 400 nm exceeds 50% in external quantum efficiency, but the external quantum efficiency of a green LED is as low as 20% or less. Therefore, obtaining green light from the ultraviolet-excited green LED 120g having a high external quantum efficiency has an advantage in terms of conversion efficiency.
また、上記とは別に、例えば、図13(d)に示すように、光源12として、赤色レーザ光源121rと、青色レーザ光源121bと、赤外レーザ光源1211からの赤外レーザ光を波長変換素子1212によって波長変換することで緑色レーザ光が得られる緑色レーザ光源121gとを用いた場合、波長変換されずに残った赤外レーザ光をバックライトから出射するように構成しておき、この赤外レーザ光を透明電極46に吸収させることでも、液晶を加温することが出来る。
In addition to the above, as shown in FIG. 13D, for example, as the light source 12, the red laser light source 121r, the blue laser light source 121b, and the infrared laser light from the infrared laser light source 1211 are converted into wavelength converters. In the case of using the green laser light source 121g that obtains green laser light by wavelength conversion by 1212, the infrared laser light remaining without wavelength conversion is configured to be emitted from the backlight. The liquid crystal can also be heated by absorbing the laser light into the transparent electrode 46.
例えば、赤外レーザ光源1211として、YAGレーザの1064nmのレーザ光源を用い、出射された赤外レーザ光を基本波としてニオブ酸リチウム(LiNbO3)等の波長変換素子1212に入射させることで、倍波に相当する532nmの緑色レーザ光を得ることができる。一方で波長変換されずに残った1064nmの基本波を透明電極46に吸収させる。
For example, a YAG laser 1064 nm laser light source is used as the infrared laser light source 1211, and the emitted infrared laser light is incident on a wavelength conversion element 1212 such as lithium niobate (LiNbO 3 ) as a fundamental wave. A 532 nm green laser beam corresponding to the wave can be obtained. On the other hand, the fundamental wave of 1064 nm remaining without wavelength conversion is absorbed by the transparent electrode 46.
ITO等の透明電極46は、吸収端は400nm程度に存在するが、酸素欠陥やチタンやクロム、鉄等の着色性の遷移金属イオンを導入することで、可視域や赤外域でも吸収帯を生成することが可能になる。透明電極46に例えば図13(e)に示すように鉄イオンを導入した鉄イオン導入透明電極46を用いることで、赤外域においても光を吸収させることが出来る。したがって、波長変換されずに残った1064nmの基本波を、画像形成に寄与する他の可視域の光と同様に出射させることで、透明電極46に1064nmの基本波を吸収させることができる。
The transparent electrode 46 such as ITO has an absorption edge at about 400 nm. By introducing oxygen-deficient or colored transition metal ions such as titanium, chromium, and iron, an absorption band is generated in the visible region and the infrared region. It becomes possible to do. For example, as shown in FIG. 13E, the transparent ion 46 can absorb light even in the infrared region by using an iron ion-introduced transparent electrode 46 into which iron ions are introduced. Therefore, the transparent wave 46 can absorb the fundamental wave of 1064 nm by emitting the fundamental wave of 1064 nm that has not been wavelength-converted in the same manner as other visible light that contributes to image formation.
その結果、光源を専用に設けることなく液晶を加温することができる。よってフィールドシーケンシャル方式の様に液晶の応答速度に数ミリ秒程度の高速な応答が要求される液晶表示装置においても、明るく、入力された画像データに忠実な高画質な液晶表示装置を安価に構成することが可能になる。
As a result, the liquid crystal can be heated without providing a dedicated light source. Therefore, even in a liquid crystal display device that requires a high response speed of several milliseconds for the response speed of the liquid crystal like the field sequential method, a high-quality liquid crystal display device that is bright and faithful to the input image data is inexpensively configured. It becomes possible to do.
尚、ここでは1064nmのYAGレーザ光を波長変換した時の例を示したが、本実施の形態3はこれに限定するものではなく、赤外の光を波長変換して画像形成に寄与する光源であれば同様に用いることが出来る。また、画像形成に寄与する可視域の光源とは別に、赤外光源を加温専用に用意しても勿論構わない。
Here, an example is shown in which the wavelength of 1064 nm YAG laser light is converted, but the third embodiment is not limited to this, and the light source that contributes to image formation by converting the wavelength of infrared light. If it is, it can be used similarly. In addition to the visible light source that contributes to image formation, an infrared light source may be prepared exclusively for heating.
また、透明電極46に吸収させる光を発する光源を専用に設けない液晶表示装置40としては、他に例えば、画像形成に用いる可視域の光を、透明電極46に吸収させることも可能である。例えば上で鉄イオンを導入することで赤外光を吸収させた場合と同様に、図13(f)に示すように、チタニウムイオンを導入したチタニウムイオン導入透明電極46を用いることで、青色に着色させることが可能となる。即ち、青色の補色である黄色領域に吸収を有するため、緑色と赤色の光を吸収することになる。
Further, as the liquid crystal display device 40 that does not have a dedicated light source that emits light to be absorbed by the transparent electrode 46, for example, visible light used for image formation can be absorbed by the transparent electrode 46. For example, as in the case where infrared light is absorbed by introducing iron ions in the above, as shown in FIG. 13 (f), by using the titanium ion-introduced transparent electrode 46 into which titanium ions are introduced, the blue color is obtained. It can be colored. That is, since it has absorption in the yellow region that is the complementary color of blue, it absorbs green and red light.
この様にして、画像形成に用いる光のうちの一部を透明電極46に吸収させることにより、透明電極46に吸収させる光を発する光源を専用に設けることなく、液晶表示装置40を構成することができ、応答速度が速く高画質な液晶表示装置を安価に提供できるという効果を有する。
In this way, the liquid crystal display device 40 is configured without providing a dedicated light source that emits light to be absorbed by the transparent electrode 46 by causing the transparent electrode 46 to absorb part of the light used for image formation. The liquid crystal display device having a high response speed and high image quality can be provided at low cost.
例えば、出射された光の20%程度を吸収させることができれば、上記で述べた画面サイズ(対角線長さ)が37インチの液晶表示装置であれば、20分程度で液晶パネルを10℃程度加温することができ、望ましい。なお、着色された透明電極46の色に応じて色補正を行っておけば、入力された画像データに忠実な画像を形成することができる。
For example, if about 20% of the emitted light can be absorbed, a liquid crystal display device with a 37-inch screen size (diagonal length) described above can be heated at about 10 ° C. in about 20 minutes. Can be warmed and desirable. If color correction is performed according to the color of the colored transparent electrode 46, an image faithful to the input image data can be formed.
さらに、図14に示す様に、上記とは別の方法でも液晶を加温することが可能である。図14は液晶表示パネル11における、図13(a)の40B―40B線での断面図である。液晶表示パネル11は、下側ガラス板48の上に信号線(DLm-2~DLm)を配置し、上側ガラス板49の下に共通電極47を設け、その間に厚さ数マイクロメートルの液晶層50を挟みこむ構造を取っている。さらに、液晶層50の数マイクロメートルの厚みを維持する様に、スペーサ51を液晶層50内に導入している。
Furthermore, as shown in FIG. 14, the liquid crystal can be heated by a method different from the above. 14 is a cross-sectional view of the liquid crystal display panel 11 taken along the line 40B-40B in FIG. In the liquid crystal display panel 11, signal lines (DLm-2 to DLm) are arranged on a lower glass plate 48, a common electrode 47 is provided under the upper glass plate 49, and a liquid crystal layer having a thickness of several micrometers is provided therebetween. The structure which sandwiches 50 is taken. Further, the spacer 51 is introduced into the liquid crystal layer 50 so that the thickness of the liquid crystal layer 50 is several micrometers.
一般に、スペーサ51の材質はシリカ(二酸化ケイ素、SiO2)が用いられており、通常画像形成に用いられる可視域においては透明で吸収が無い。このスペーサ51に染料で着色された着色シリカを用いた場合、上で述べた着色された透明電極と同様に、各光源12から出射された画像形成に寄与する可視域の光の一部を吸収させることができる。
In general, silica (silicon dioxide, SiO 2 ) is used as the material of the spacer 51, and it is transparent and has no absorption in the visible range usually used for image formation. When colored silica colored with a dye is used for the spacer 51, a part of visible light that contributes to image formation emitted from each light source 12 is absorbed in the same manner as the colored transparent electrode described above. Can be made.
この様にすることで、スペーサ51が光を吸収することで発熱するため、液晶を加温することができる。その結果、液晶の応答速度を高速化することが可能となり、応答速度が速く高画質な液晶表示装置を提供できるという効果を有する。
In this way, since the spacer 51 generates heat by absorbing light, the liquid crystal can be heated. As a result, it is possible to increase the response speed of the liquid crystal, and it is possible to provide a liquid crystal display device with a high response speed and high image quality.
また、シリカは紫外域を含めて透明であるが、アクリルは可視域においては透明であるが紫外域に吸収を持つため、スペーサ51としてシリカではなくアクリルを用いるようにしてもよい。スペーサ51としてアクリルを用いると、上述のITO等の透明電極46と同様に、光源12のひとつに紫外線を出射する光源(例えば図13(b)に示す紫外線光源12uv)を用いた場合や、紫外線を蛍光体等で可視域の光に変換する光源(例えば図13(c)に示す紫外線励起型緑色LED120g)を用いた場合において、スペーサ51で紫外線を吸収させることでスペーサ51を発熱させ、液晶を加温することができる。
Further, although silica is transparent including the ultraviolet region, acrylic is transparent in the visible region but has absorption in the ultraviolet region. Therefore, acrylic may be used as the spacer 51 instead of silica. When acrylic is used as the spacer 51, similarly to the transparent electrode 46 such as ITO described above, a light source that emits ultraviolet light (for example, the ultraviolet light source 12uv shown in FIG. 13B) is used as one of the light sources 12, or In the case of using a light source (for example, ultraviolet-excited green LED 120g shown in FIG. 13C) that converts the light into visible light with a phosphor or the like, the spacer 51 generates heat by absorbing the ultraviolet light, and the liquid crystal Can be heated.
この様にスペーサ51としてアクリルの様な紫外域に吸収を持つ材料を用いることでも、液晶を加温することができ液晶の応答速度を高速化することが可能であるため、応答速度が速く高画質な液晶表示装置を提供できるという効果を有する。
In this way, the spacer 51 can also be made of a material having absorption in the ultraviolet region such as acrylic, so that the liquid crystal can be heated and the response speed of the liquid crystal can be increased. The liquid crystal display device having an image quality can be provided.
もちろん、アクリル以外でも紫外域に吸収を持ち、可視域が透明である材料であれば、同様の効果を持つことは言うまでも無い。また、透明電極46の場合と同様に、出射された光の20%程度を吸収させることができれば、上記で述べた画面サイズ(対角線長さ)が37インチの液晶表示装置であれば、20分程度で液晶パネルを10℃程度加温することができ、望ましい。
Of course, it is needless to say that a material other than acrylic having the absorption in the ultraviolet region and having a transparent visible region has the same effect. Similarly to the case of the transparent electrode 46, if about 20% of the emitted light can be absorbed, the liquid crystal display device having the above-described screen size (diagonal length) of 37 inches can take 20 minutes. The liquid crystal panel can be heated by about 10 ° C., which is desirable.
尚、赤色光源、青色光源、緑色光源等から出射される光を順次駆動するが、本来光源を消灯しているタイミングにおいてもわずかに点灯させることで、透明電極46やスペーサ51での光の吸収量を増やすことで液晶の加温を促進できるため、さらに応答速度が速く、高画質な液晶表示装置を提供することが出来る。
Light emitted from a red light source, a blue light source, a green light source, and the like is sequentially driven, but light is absorbed by the transparent electrode 46 and the spacer 51 by slightly turning on the light when the light source is originally turned off. Since the heating of the liquid crystal can be promoted by increasing the amount, a liquid crystal display device with a higher response speed and higher image quality can be provided.
例えば、光源12として波長455nm、532nm、635nmのレーザ光源を用いて、制御部14により、常時10%ずつ光量を点灯させた場合でも、各フィールドにおいて所望の色を最大出力で発光させることで、表示可能な色範囲としてNTSC比で84%を満たす。こうすることで、実用上何ら問題の無い色再現範囲を確保しながら、一方で液晶表示パネル11を加温して液晶の応答速度を高速化することが可能であるため、応答速度が速く高画質な液晶表示装置を提供できるという効果を有する。
For example, by using a laser light source having a wavelength of 455 nm, 532 nm, or 635 nm as the light source 12 and always turning on the light amount by 10% by the control unit 14, by emitting a desired color at the maximum output in each field, The displayable color range is 84% of the NTSC ratio. In this way, while ensuring a color reproduction range that has no practical problem, the liquid crystal display panel 11 can be heated to increase the response speed of the liquid crystal. The liquid crystal display device having an image quality can be provided.
尚、上記において透明電極46やスペーサ51における光の吸収を例として示したが、本実施の形態3はそれに限定するものではなく、同様な効果を有するものであれば他の構成でも構わない。例えば液晶自体に光を吸収させても構わないし、ガラス板等に吸収させても構わない。
In addition, although the light absorption in the transparent electrode 46 and the spacer 51 was shown as an example in the above, this Embodiment 3 is not limited to it, and another structure may be used as long as it has the same effect. For example, the liquid crystal itself may absorb light or may be absorbed by a glass plate or the like.
また、前述した各実施の形態は、フィールドシーケンシャル方式の液晶表示装置に関して説明したが、それ以外の方式においても、液晶を高速で駆動する場合には同様に有効である。例えば従来の液晶表示パネルの様に各画素を赤色、緑色、青色の三色のサブピクセルで構成された液晶表示パネルを用いた液晶表示装置であっても、動画応答性改善のために画像1フレームを複数のサブフレームに分割する2倍速以上の高速駆動の液晶表示装置においても有効である。
In addition, although each of the above-described embodiments has been described with respect to a field sequential type liquid crystal display device, the other types are also effective in the case of driving the liquid crystal at high speed. For example, even in a liquid crystal display device using a liquid crystal display panel in which each pixel is composed of three sub-pixels of red, green, and blue as in a conventional liquid crystal display panel, an image 1 is used to improve moving image response. This is also effective in a liquid crystal display device that is driven at a high speed of 2 × or more, in which a frame is divided into a plurality of subframes.
(実施の形態4)
次に、実施の形態4にかかる液晶表示装置100に関して、図15~図18を用いて説明する。図15(a)は実施の形態4の液晶表示装置の概略構成図、図15(b)は図15(a)の100A-100A線での断面図であり、図15(c)は図15(a)の100B-100B線での断面図である。 (Embodiment 4)
Next, the liquidcrystal display device 100 according to the fourth embodiment will be described with reference to FIGS. 15A is a schematic configuration diagram of the liquid crystal display device according to the fourth embodiment, FIG. 15B is a cross-sectional view taken along the line 100A-100A in FIG. 15A, and FIG. It is sectional drawing in the 100B-100B line of (a).
次に、実施の形態4にかかる液晶表示装置100に関して、図15~図18を用いて説明する。図15(a)は実施の形態4の液晶表示装置の概略構成図、図15(b)は図15(a)の100A-100A線での断面図であり、図15(c)は図15(a)の100B-100B線での断面図である。 (Embodiment 4)
Next, the liquid
液晶表示装置100は、概略は図15(a)に示す様に側面照射光源101とパネルアセンブリ102とを備える。側面照射光源101は、白色光源101bと、白色光源101bの三方を覆う側面反射体101aとを備える。パネルアセンブリ102は、導光板102a、液晶表示パネル102bおよび反射板102cを備える。さらに、液晶表示パネル102bは、前側偏光板102d、前側ガラス板102e、反射型カラーフィルタ102f、液晶層102g、後側ガラス板102hおよび後側偏光板102iを備える。
The liquid crystal display device 100 includes a side illumination light source 101 and a panel assembly 102 as schematically shown in FIG. The side illumination light source 101 includes a white light source 101b and a side reflector 101a that covers three sides of the white light source 101b. The panel assembly 102 includes a light guide plate 102a, a liquid crystal display panel 102b, and a reflection plate 102c. Further, the liquid crystal display panel 102b includes a front polarizing plate 102d, a front glass plate 102e, a reflective color filter 102f, a liquid crystal layer 102g, a rear glass plate 102h, and a rear polarizing plate 102i.
白色光源101bはCCFLやHCFL(hot cathode fluorescent lamp)等の蛍光灯でも構わないし、白色LEDでも構わないし、赤色、青色、緑色の三色のLEDを混色して白色とした複数のLEDの組み合わせでも構わず、勿論他の光源でも構わず、ここではその種類は限定しない。
The white light source 101b may be a fluorescent lamp such as CCFL or HCFL (hot-cathode-fluorescent-lamp), may be a white LED, or may be a combination of a plurality of LEDs that are white by mixing red, blue, and green LEDs. Of course, other light sources may be used, and the type is not limited here.
白色光源101bから出射した白色光103Wは一部が側面反射体101aで反射されながら、導光板102aの側面から導光板102aに入射する。導光板102aに入射した白色光103Wは導光板102a内を全反射しながら進行する。導光板102aは底面に図15(b)に示す様なプリズム102jが多数設けられている。このプリズム102jに入射した白色光103Wは、図15(b)に示す様に略垂直方向に立ち上げられ、導光板102aから出射し、液晶表示パネル102bに入射することになる。
White light 103W emitted from the white light source 101b is incident on the light guide plate 102a from the side surface of the light guide plate 102a while being partially reflected by the side reflector 101a. The white light 103W incident on the light guide plate 102a travels while being totally reflected in the light guide plate 102a. The light guide plate 102a is provided with a large number of prisms 102j as shown in FIG. The white light 103W incident on the prism 102j rises in a substantially vertical direction as shown in FIG. 15B, is emitted from the light guide plate 102a, and enters the liquid crystal display panel 102b.
液晶表示パネル102b内の反射型カラーフィルタ102fは、赤透過フィルタ104rと緑透過フィルタ104gと青透過フィルタ104bとを備える。赤透過フィルタ104rは、白色光103Wに含まれる赤色光103rのみを透過し、白色光103Wに含まれる赤色光103r以外の光である緑色光103gと青色光103bは反射する特性を持つ。同様に、緑透過フィルタ104gは、緑色光103gのみを透過し赤色光103rと青色光103bを反射する特性を持ち、青透過フィルタ104bは、青色光103bのみを透過し赤色光103rと緑色光103gを反射する特性を持つ。
The reflective color filter 102f in the liquid crystal display panel 102b includes a red transmission filter 104r, a green transmission filter 104g, and a blue transmission filter 104b. The red transmission filter 104r transmits only the red light 103r included in the white light 103W, and has a characteristic of reflecting the green light 103g and the blue light 103b other than the red light 103r included in the white light 103W. Similarly, the green transmission filter 104g has a characteristic of transmitting only the green light 103g and reflecting the red light 103r and the blue light 103b, and the blue transmission filter 104b transmits only the blue light 103b and transmits the red light 103r and the green light 103g. It has the property of reflecting.
このような反射型カラーフィルタ102fは、例えば、誘電体多層膜を複数層コーティングすることで得ることができる。この場合は、ガラス等の基板の上にそれぞれ赤透過フィルタ104r、緑透過フィルタ104g、青透過フィルタ104bに対して、異なる膜厚のコートを複数層蒸着により施す。
Such a reflective color filter 102f can be obtained, for example, by coating a plurality of dielectric multilayer films. In this case, coats having different film thicknesses are applied to the red transmission filter 104r, the green transmission filter 104g, and the blue transmission filter 104b on a substrate such as glass by a plurality of layers.
このコーティングは、一般的に、高屈折率膜と、低屈折率膜を交互に積層させることにより行う。高屈折率膜としては、二酸化チタン(TiO2、屈折率n=2.4)や五酸化二ニオブ(Nb2O5、屈折率n=2.33)、低屈折率膜としては、二酸化ケイ素(SiO2、屈折率n=1.4)が用いられることが多い。
This coating is generally performed by alternately laminating a high refractive index film and a low refractive index film. Examples of the high refractive index film include titanium dioxide (TiO 2 , refractive index n = 2.4) and niobium pentoxide (Nb 2 O 5 , refractive index n = 2.33), and examples of the low refractive index film include silicon dioxide. (SiO 2 , refractive index n = 1.4) is often used.
尚、ここでは成膜方法の一例として述べたが、これは成膜材料や成膜方法に関して特に制限するものではない。所望の特性が得られれば成膜材料は上で述べた材料に限定するものではなく、また成膜方法に関しても、蒸着以外でも例えば塗布により連続的にすることもできる。塗布によると、一度に長い距離のコーティングが可能になるため、ある程度広い面積をコーティングするには都合がよい。勿論塗布以外の方法でも構わず、例えばサブ波長格子を積層させることでも所望の性能をえることが可能であり、ここでは製法を限定するものではない。
In addition, although mentioned as an example of the film-forming method here, this is not restrict | limited in particular regarding the film-forming material and the film-forming method. The film-forming material is not limited to the above-described materials as long as desired characteristics can be obtained, and the film-forming method can be continuously applied by, for example, coating other than vapor deposition. Application makes it possible to coat a long distance at a time, which is convenient for coating a certain large area. Of course, any method other than coating may be used. For example, a desired performance can be obtained by laminating sub-wavelength gratings, and the manufacturing method is not limited here.
導光板102aから上向きに出射した白色光103Wは、図15(c)に示す様に前側偏光板102dにて偏光方向を揃えられた後、前側ガラス板102eを通過して反射型カラーフィルタ102fに到達する。この時、白色光103Wが図15(c)に示す様に反射型カラーフィルタ102fの赤透過フィルタ104rに到達した場合、白色光103Wに含まれる光のうち、赤色光103rのみが透過し、残りの緑色光103gと青色光103bは反射されることになる。反射された緑色光103gと青色光103bは、導光板102aを通過して反射板102cにて上向きに反射され、再度反射型カラーフィルタ102fに入射することになる。
The white light 103W emitted upward from the light guide plate 102a is aligned in the polarization direction by the front polarizing plate 102d as shown in FIG. 15C, and then passes through the front glass plate 102e to become a reflective color filter 102f. To reach. At this time, when the white light 103W reaches the red transmission filter 104r of the reflective color filter 102f as shown in FIG. 15C, only the red light 103r is transmitted among the light included in the white light 103W, and the remaining light is left. The green light 103g and the blue light 103b are reflected. The reflected green light 103g and blue light 103b pass through the light guide plate 102a, are reflected upward by the reflection plate 102c, and enter the reflection type color filter 102f again.
この時、反射型カラーフィルタ102fの緑透過フィルタ104gに入射した場合、緑色光103gと青色光103bの内緑色光103gは透過し、青色光103bは反射することになる。反射して導光板102aを透過した青色光103bは、再度反射板102cで上向きに反射され、反射型カラーフィルタ102fの青透過フィルタ104bに到達すると、初めて反射型カラーフィルタ102fを透過し、画像形成に寄与することになる。
At this time, when the light enters the green transmission filter 104g of the reflective color filter 102f, the green light 103g of the green light 103g and the blue light 103b is transmitted and the blue light 103b is reflected. The blue light 103b reflected and transmitted through the light guide plate 102a is again reflected upward by the reflection plate 102c and reaches the blue transmission filter 104b of the reflection type color filter 102f, and is transmitted through the reflection type color filter 102f for the first time to form an image. Will contribute.
以上はあくまで光路としての一例であるが、他の光路であっても同様に、赤色光103rは、赤透過フィルタ104rに到達するまでは反射型カラーフィルタ102fと反射板102cとの間を多重反射することになり、緑色光103gと青色光103bも同様に、それぞれ緑透過フィルタ104gと青透過フィルタ104bに到達するまで、反射型カラーフィルタ102fと反射板102cとの間を多重反射することになる。
The above is merely an example of an optical path, but similarly in other optical paths, the red light 103r is subjected to multiple reflections between the reflective color filter 102f and the reflection plate 102c until reaching the red transmission filter 104r. Similarly, the green light 103g and the blue light 103b are also subjected to multiple reflections between the reflective color filter 102f and the reflection plate 102c until reaching the green transmission filter 104g and the blue transmission filter 104b, respectively. .
本方式は色分離方式と呼ばれ、フィールドシーケンシャル方式と同様に、導光板102aに入射した光がロス無く使用されることから、非常に高効率な液晶表示装置100を構成することが可能になる。
This method is called a color separation method. Like the field sequential method, the light incident on the light guide plate 102a is used without loss, so that a highly efficient liquid crystal display device 100 can be configured. .
ここで、本液晶表示装置100の液晶層102gの駆動回路ブロック図を図16および図17に示す。また、図18は、この液晶表示装置100の各画素の制御タイミングを示す図で、(a)は図16に示す駆動回路の場合を示し、(b)は図17に示す駆動回路の場合を示す。この実施の形態4の液晶表示装置100では、フィールドシーケンシャル方式と異なり赤色、緑色、青色の3つのサブピクセルで一つの画素を形成する。図16に示すように、図2と同様に、各画素が、第1方向(図16中、横方向)および第2方向(図16中、縦方向)に、マトリクス状に配列されている。
Here, a drive circuit block diagram of the liquid crystal layer 102g of the liquid crystal display device 100 is shown in FIGS. FIG. 18 is a diagram showing the control timing of each pixel of the liquid crystal display device 100. (a) shows the case of the drive circuit shown in FIG. 16, and (b) shows the case of the drive circuit shown in FIG. Show. In the liquid crystal display device 100 of the fourth embodiment, unlike the field sequential method, one pixel is formed by three sub-pixels of red, green, and blue. As shown in FIG. 16, as in FIG. 2, the pixels are arranged in a matrix in the first direction (horizontal direction in FIG. 16) and the second direction (vertical direction in FIG. 16).
図16に示す様に、左端からn番目に赤色サブピクセルSr(n)が配置され、左端からn番目に緑色サブピクセルSg(n)が配置され、左端からn番目に青色サブピクセルSb(n)が配置されている。また、同様に、左端からn番目にピクセルP(n)が配置されている。また、上からm列目に走査線GLmが配置されている。また、左からn番目の画素の赤色サブピクセルSr(n)に信号線DLr(n)が接続され、左からn番目の画素の緑色サブピクセルSg(n)に信号線DLg(n)が接続され、左からn番目の画素の青色サブピクセルSb(n)に信号線DLb(n)が接続されている。
As shown in FIG. 16, the red subpixel Sr (n) is arranged nth from the left end, the green subpixel Sg (n) is arranged nth from the left end, and the blue subpixel Sb (n) is arranged nth from the left end. ) Is arranged. Similarly, the pixel P (n) is arranged nth from the left end. A scanning line GLm is arranged in the m-th column from the top. The signal line DLr (n) is connected to the red subpixel Sr (n) of the nth pixel from the left, and the signal line DLg (n) is connected to the green subpixel Sg (n) of the nth pixel from the left. The signal line DLb (n) is connected to the blue subpixel Sb (n) of the nth pixel from the left.
それぞれのサブピクセルは、図2と同様に、TFT(薄膜トランジスタ)のゲート電極が走査線(GL1、・・・、GLm、・・・)に接続され、ドレイン電極が信号線(・・・、DLr(n)、DLg(n)、DLb(n)、・・・)に接続されて、形成されている。さらにTFTのソース電極は透明電極(図示省略)に接続され、さらに容量Clcの液晶を介して共通電極Vcomに接続されている。信号線DLr(n)等はソースドライバ105に接続され、走査線GLm等はゲートドライバ106に接続されている。ソースドライバ105、ゲートドライバ106、TFT、透明電極、共通電極Vcom等によって、駆動回路が構成されている。
As in FIG. 2, each subpixel has a TFT (thin film transistor) gate electrode connected to a scanning line (GL1,..., GLm,...) And a drain electrode connected to a signal line (. (N), DLg (n), DLb (n),...)). Further, the source electrode of the TFT is connected to a transparent electrode (not shown), and further connected to the common electrode Vcom via a liquid crystal having a capacitance Clc. The signal lines DLr (n) and the like are connected to the source driver 105, and the scanning lines GLm and the like are connected to the gate driver 106. A drive circuit is constituted by the source driver 105, the gate driver 106, the TFT, the transparent electrode, the common electrode Vcom, and the like.
そして、制御部109の駆動制御部107によりゲートドライバ106およびソースドライバ105が制御されて、所望の走査線(GLm等)にON信号(走査信号)が印加されたタイミングに同期して、各信号線(DLr(n)等)に接続されているサブピクセルの液晶が所望の透過率になる様に、個々の信号線の電圧が液晶の両端に印加される。
Then, the gate driver 106 and the source driver 105 are controlled by the drive control unit 107 of the control unit 109, and each signal is synchronized with the timing when the ON signal (scanning signal) is applied to a desired scanning line (GLm or the like). The voltage of each signal line is applied across the liquid crystal so that the liquid crystal of the subpixel connected to the line (DLr (n), etc.) has a desired transmittance.
駆動制御部107は、ゲートドライバ106およびソースドライバ105を制御して、通常、走査線の上から順(GL1、・・・、GLm-1、Glm、GLm+1、・・・の順)に順次ON信号(走査信号)を印加し、それに同期して信号線を介して液晶に所望の電圧を印加する(駆動信号を供給する)ため、液晶表示パネル102bの上から下に向けて表示する画像が更新されることになる。なお、制御部109のバックライト制御部108は、白色光源101bの発光を制御する。
The drive control unit 107 controls the gate driver 106 and the source driver 105, and normally is sequentially turned on in order from the top of the scanning line (GL1,..., GLm-1, Glm, GLm + 1,...). Since a signal (scanning signal) is applied and a desired voltage is applied to the liquid crystal via the signal line (a driving signal is supplied) in synchronization therewith, an image displayed from the top to the bottom of the liquid crystal display panel 102b is displayed. Will be updated. Note that the backlight control unit 108 of the control unit 109 controls light emission of the white light source 101b.
図16に示す駆動回路によれば、通常同一画素内の赤色サブピクセル、緑色サブピクセル、青色サブピクセルは、いずれも同時に信号が与えられ、液晶が駆動されることが分かる。例えば図18(a)に示すように、赤色サブピクセルSr(n)と緑色サブピクセルSg(n)と青色サブピクセルSb(n)のON、OFFタイミングは、同時である。しかし図18(a)に示す様に、赤色サブピクセル、緑色サブピクセル、青色サブピクセルを同時に制御するためには、図16に示す駆動回路において、ソースドライバ105内の回路が、横方向にピクセル数×3個必要となることから、部品点数が増大していた。
According to the drive circuit shown in FIG. 16, it can be seen that the red subpixel, the green subpixel, and the blue subpixel in the same pixel are usually given signals simultaneously, and the liquid crystal is driven. For example, as shown in FIG. 18A, the ON timing and OFF timing of the red subpixel Sr (n), the green subpixel Sg (n), and the blue subpixel Sb (n) are the same. However, as shown in FIG. 18A, in order to control the red sub-pixel, the green sub-pixel, and the blue sub-pixel at the same time, in the driving circuit shown in FIG. Since several × 3 pieces are required, the number of parts has increased.
これに対して図17では、ソースドライバ105と信号線との接続構成が図16と異なっており、その他の構成、例えばゲートドライバ106と走査線との接続構成などは図16と同じ構成となっている。図17に示す様に、各ピクセルに対して一本の信号線DL(n)とすることができると、ソースドライバ105内の回路数も減少できるため、部品点数を削減することができる。
On the other hand, in FIG. 17, the connection configuration between the source driver 105 and the signal line is different from that in FIG. 16, and other configurations, for example, the connection configuration between the gate driver 106 and the scanning line are the same as those in FIG. ing. As shown in FIG. 17, if one signal line DL (n) can be provided for each pixel, the number of circuits in the source driver 105 can also be reduced, so that the number of components can be reduced.
こうするために図17において、左端からn番目の信号線DL(n)に対して赤色用スイッチKr(n)、緑色用スイッチKg(n)、青色用スイッチKb(n)を並列に接続する。そして、赤色用スイッチKr(n)は赤色サブピクセルSr(n)に接続する信号線DLr(n)に設けられ、緑色用スイッチKg(n)は緑色サブピクセルSg(n)に接続する信号線DLg(n)に設けられ、青色用スイッチKb(n)は青色サブピクセルSb(n)に接続する信号線DLb(n)に設けられている。また、各スイッチKg(n)、Kb(n)、Kr(n)は、それぞれ制御線L11、L12、L13を介してソースドライバ105に接続されており、駆動制御部107によって、ON、OFFタイミングが制御される。
In order to do this, in FIG. 17, the red switch Kr (n), the green switch Kg (n), and the blue switch Kb (n) are connected in parallel to the nth signal line DL (n) from the left end. . The red switch Kr (n) is provided on the signal line DLr (n) connected to the red subpixel Sr (n), and the green switch Kg (n) is a signal line connected to the green subpixel Sg (n). The blue switch Kb (n) is provided on the signal line DLb (n) connected to the blue subpixel Sb (n). The switches Kg (n), Kb (n), and Kr (n) are connected to the source driver 105 through control lines L11, L12, and L13, respectively, and are turned on and off by the drive control unit 107. Is controlled.
図17に示す駆動回路の場合、1本の信号線DL(n)で赤色サブピクセルSr(n)と緑色サブピクセルSg(n)と青色サブピクセルSb(n)を時分割で制御するので、図18(b)に示す様に1フレームにかかる時間FPを3分割したタイミングで赤色サブピクセルSr(n)、緑色サブピクセルSg(n)、青色サブピクセルSb(n)をそれぞれON/OFFすることになる。すなわち、本実施の形態4は、色分離方式を採用しているが、図17に示すように駆動回路を構成することによって、図18(b)に示すように、フィールドシーケンシャル方式の場合と同様に、異なる色の光は異なるタイミングで、液晶表示パネル102bを透過することとなる。この様な構成を取ることで、上述の通りソースドライバ105内の回路数を減少できるため、部品点数を削減できるという効果を有する。
In the case of the driving circuit shown in FIG. 17, the red sub-pixel Sr (n), the green sub-pixel Sg (n), and the blue sub-pixel Sb (n) are controlled in a time division manner with one signal line DL (n). As shown in FIG. 18B, the red sub-pixel Sr (n), the green sub-pixel Sg (n), and the blue sub-pixel Sb (n) are turned on / off at a timing obtained by dividing the time FP required for one frame into three. It will be. That is, the fourth embodiment employs the color separation method, but by configuring the drive circuit as shown in FIG. 17, the same as in the case of the field sequential method as shown in FIG. 18B. In addition, light of different colors is transmitted through the liquid crystal display panel 102b at different timings. By adopting such a configuration, the number of circuits in the source driver 105 can be reduced as described above, so that the number of parts can be reduced.
さらにこの時、図17に示す通り、隣接する画素で制御線L11、L12、L13に接続するサブピクセルの色を違えている。すなわち、制御線L11には、左端からn番目の画素P(n)では、緑色用スイッチKg(n)が接続され、図17中、左側に隣接する画素P(n-1)では、赤色サブピクセルSr(n-1)に接続される信号線に設けられた赤色用スイッチが接続され、図17中、右側に隣接する画素P(n+1)では、青色サブピクセルSb(n+1)に接続される信号線に設けられた青色用スイッチが接続されている。
Further, at this time, as shown in FIG. 17, the colors of the sub-pixels connected to the control lines L11, L12, and L13 are different in adjacent pixels. That is, to the control line L11, the green switch Kg (n) is connected to the nth pixel P (n) from the left end, and in the pixel P (n−1) adjacent to the left side in FIG. A red switch provided on a signal line connected to the pixel Sr (n−1) is connected, and in the pixel P (n + 1) adjacent to the right side in FIG. 17, it is connected to the blue subpixel Sb (n + 1). A blue switch provided on the signal line is connected.
同様に、制御線L12には、左端からn番目の画素P(n)では、青色用スイッチKb(n)が接続され、図17中、左側に隣接する画素P(n-1)では、緑色サブピクセルSg(n-1)に接続される信号線に設けられた緑色用スイッチが接続され、図17中、右側に隣接する画素P(n+1)では赤色サブピクセルSr(n+1)に接続される信号線に設けられた赤色用スイッチが接続されている。
Similarly, the blue line Kb (n) is connected to the control line L12 in the nth pixel P (n) from the left end, and in the pixel P (n−1) adjacent to the left side in FIG. A green switch provided on a signal line connected to the sub-pixel Sg (n−1) is connected. In FIG. 17, the pixel P (n + 1) adjacent to the right side is connected to the red sub-pixel Sr (n + 1). A red switch provided on the signal line is connected.
さらに、制御線L13には、左端からn番目の画素P(n)では、赤色用スイッチKr(n)が接続され、図17中、左側に隣接する画素P(n-1)では、青色サブピクセルSb(n-1)に接続される信号線に設けられた青色用スイッチが接続され、図17中、右側に隣接する画素P(n+1)では緑色サブピクセルSg(n+1)に接続される信号線に設けられた緑色用スイッチが接続されている。
Further, a red switch Kr (n) is connected to the control line L13 in the nth pixel P (n) from the left end, and in the pixel P (n−1) adjacent to the left side in FIG. A blue switch provided on a signal line connected to the pixel Sb (n−1) is connected, and a signal connected to the green subpixel Sg (n + 1) in the pixel P (n + 1) adjacent to the right side in FIG. 17 is connected. A green switch provided on the line is connected.
このように接続することによって、ソースドライバ105により制御線L11、L12、L13を介して各サブピクセルを順番に駆動すると、第1方向(図17中、横方向)に互いに隣接する画素では、同じタイミングで異なる色の光が液晶表示パネル102bを透過することとなる。これによって、色割れのない高画質な液晶表示装置を構成することができるという効果も有する。
By connecting in this way, when the sub-pixels are sequentially driven by the source driver 105 via the control lines L11, L12, and L13, the pixels adjacent to each other in the first direction (the horizontal direction in FIG. 17) are the same. Light of different colors is transmitted through the liquid crystal display panel 102b at the timing. This also has the effect that a high-quality liquid crystal display device without color breakup can be configured.
また、この実施の形態4において、実施の形態3に示した液晶を加温する構成をさらに備えるようにしてもよい。例えば、図13(b)に示す紫外線光源を備えたり、赤外光源および図13(e)に示す鉄イオン導入透明電極を備えたり、図13(f)に示すチタニウムイオン導入透明電極を備えたり、図14に示すスペーサおよび紫外線光源を備えることができる。
In the fourth embodiment, a configuration for heating the liquid crystal shown in the third embodiment may be further provided. For example, an ultraviolet light source shown in FIG. 13 (b), an infrared light source and an iron ion introduction transparent electrode shown in FIG. 13 (e), or a titanium ion introduction transparent electrode shown in FIG. 13 (f) are provided. The spacer shown in FIG. 14 and an ultraviolet light source can be provided.
また、この実施の形態4の液晶表示装置100は、色分離方式の液晶表示装置全般に適用することができる。
Further, the liquid crystal display device 100 of the fourth embodiment can be applied to all color separation type liquid crystal display devices.
尚、本液晶表示装置100においては、パネルアセンブリ102に白色光103Wを照明する光学系として、図15の様な導光板102aを用いた光学系を例として説明したが、勿論これに限定するものではなく、他の光学系でも構わない。
In the present liquid crystal display device 100, the optical system using the light guide plate 102a as shown in FIG. 15 is described as an example of the optical system that illuminates the panel assembly 102 with the white light 103W. However, the present invention is of course limited to this. Instead, other optical systems may be used.
なお、前述した各実施の形態は考えられる一例であり、その適用範囲を限定するものではなく、本発明の真意および範囲を逸脱することなしに種々変形、組合せを行うことは、容易に理解されるであろう。
It should be noted that each of the above-described embodiments is a possible example, and does not limit the scope of application, and it is easily understood that various modifications and combinations can be made without departing from the spirit and scope of the present invention. It will be.
なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。すなわち、本発明の一局面に従う液晶表示装置は、複数の画素を有し、入力される画像データに対応する画像を表示する液晶表示パネルと、前記液晶表示パネルに電圧を印加して前記液晶表示パネルを駆動する駆動回路と、複数色の光を前記液晶表示パネルに対して背面から照射するバックライトと、前記駆動回路を制御する駆動制御部と、前記バックライトからの光の照射を制御するバックライト制御部とを備え、1フレームは複数のサブフレームに分割され、さらに前記各サブフレームは前記複数色の光にそれぞれ対応する複数のフィールドに分割され、前記各フィールドにおいて、前記画像データに基づき、前記液晶表示パネルを駆動するとともに当該フィールドに対応する色の光を前記バックライトから前記液晶表示パネルに対して照射することで前記画像を形成する液晶表示装置であって、前記駆動制御部は、前記各フィールドにおいて前記液晶表示パネルに印加される電圧を前記各フィールドの終端近傍にてゼロにすることなく前記各フィールドの終端まで電圧印加を継続するように前記駆動回路を制御し、前記バックライト制御部は、前記各フィールドにおける前記バックライトからの光の照射開始タイミングを調整する。
The specific embodiments described above mainly include inventions having the following configurations. That is, a liquid crystal display device according to an aspect of the present invention includes a liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data, and applying the voltage to the liquid crystal display panel to provide the liquid crystal display. A driving circuit for driving the panel; a backlight for irradiating the liquid crystal display panel with light of a plurality of colors from the back; a drive control unit for controlling the driving circuit; and controlling the irradiation of light from the backlight. A backlight control unit, wherein one frame is divided into a plurality of sub-frames, and each sub-frame is further divided into a plurality of fields respectively corresponding to the light of the plurality of colors. And driving the liquid crystal display panel and emitting light of a color corresponding to the field from the backlight to the liquid crystal display panel. In the liquid crystal display device that forms the image by irradiating, the drive control unit does not make the voltage applied to the liquid crystal display panel in each field zero near the end of each field. The drive circuit is controlled so as to continue the voltage application until the end of each field, and the backlight control unit adjusts the irradiation start timing of the light from the backlight in each field.
この構成によれば、駆動制御部により、各フィールドの終端近傍にて液晶表示パネルに印加される電圧をゼロにリセットせずに各フィールドの終端まで電圧印加を継続するように駆動回路を制御しているため、液晶の配向に掛けることの出来る時間を長く確保することができ、各フィールドの終端近傍における液晶の透過率を所望の値に近づけることが出来る。また、バックライト制御部により、各フィールドにおけるバックライトからの光の照射開始タイミングを調整しているため、例えば照射開始タイミングを早くして光の照射時間を長くすることにより高輝度の画像を得ることが可能になり、例えば照射開始タイミングを遅くして各フィールドの終端近傍で光を照射することにより、所望の透過率に近い状態で光を照射することが可能になる。したがって、照射開始タイミングを調整することにより最適な画質を得ることができる。
According to this configuration, the drive control unit controls the drive circuit so that the voltage application is continued until the end of each field without resetting the voltage applied to the liquid crystal display panel in the vicinity of the end of each field to zero. Therefore, it is possible to ensure a long time for the alignment of the liquid crystal and to bring the transmittance of the liquid crystal near the end of each field close to a desired value. In addition, since the backlight control unit adjusts the light irradiation start timing from the backlight in each field, for example, a high brightness image is obtained by increasing the light irradiation time by increasing the irradiation start timing. For example, by irradiating light near the end of each field by delaying the irradiation start timing, it is possible to irradiate light in a state close to a desired transmittance. Therefore, an optimal image quality can be obtained by adjusting the irradiation start timing.
また、上記の液晶表示装置において、前記バックライト制御部は、前記各フィールドにおいて、当該フィールドに対応する色の光の照射を当該フィールドの終端まで継続するとしても構わない。この構成によれば、バックライト制御部により、各フィールドにおいて、当該フィールドに対応する色の光の照射を当該フィールドの終端まで継続しているため、照射開始タイミングを調整することにより、光の照射時間も調整することが可能となる。
In the above liquid crystal display device, the backlight control unit may continue the irradiation of light of a color corresponding to the field until the end of the field in each field. According to this configuration, since the backlight control unit continues to irradiate light of the color corresponding to the field until the end of the field in each field, light irradiation is performed by adjusting the irradiation start timing. The time can also be adjusted.
また、上記の液晶表示装置において、照度を検出する照度検出部をさらに備え、前記バックライト制御部は、前記照度検出部により検出された検出照度に応じて、前記照射開始タイミングを調整するとしても構わない。この構成によれば、バックライト制御部によって、照度検出部により検出された検出照度に応じて、照射開始タイミングを調整しているため、検出された領域の明るさに応じた画質を得ることができる。照度を検出する領域は、例えば液晶表示パネルの表示面側の近傍としてもよく、液晶表示パネルが配置されている室内としてもよい。
The liquid crystal display device may further include an illuminance detection unit that detects illuminance, and the backlight control unit may adjust the irradiation start timing according to the detected illuminance detected by the illuminance detection unit. I do not care. According to this configuration, since the irradiation start timing is adjusted by the backlight control unit according to the detected illuminance detected by the illuminance detection unit, it is possible to obtain image quality according to the brightness of the detected area. it can. The area for detecting the illuminance may be, for example, the vicinity of the display surface side of the liquid crystal display panel, or the room where the liquid crystal display panel is arranged.
また、上記の液晶表示装置において、前記バックライト制御部は、前記検出照度が高くなるほど前記照射開始タイミングを早くし、前記検出照度が低くなるほど前記照射開始タイミングを遅くするとしても構わない。
Further, in the above liquid crystal display device, the backlight control unit may advance the irradiation start timing as the detected illuminance increases, and delay the irradiation start timing as the detected illuminance decreases.
この構成によれば、バックライト制御部により、検出照度が高くなるほど照射開始タイミングが早くされることにより光の照射時間が長くなるため、照度検出領域が明るくなるほど高輝度の画像を形成することができる。一方、検出照度が低くなるほど照射開始タイミングが遅くされることにより、液晶の透過率が所望の値に近づいた時点で光が照射されるため、照度検出領域が暗くなるほど色再現性の高い画像を形成することができる。したがって、照度検出領域の明るさに適した品質の画像を得ることができる。
According to this configuration, since the irradiation start timing is advanced as the detected illuminance increases, the light irradiation time becomes longer by the backlight control unit, so that a brighter image can be formed as the illuminance detection region becomes brighter. it can. On the other hand, since the irradiation start timing is delayed as the detected illuminance decreases, light is emitted when the transmittance of the liquid crystal approaches the desired value, so an image with higher color reproducibility becomes darker as the illuminance detection region becomes darker. Can be formed. Therefore, an image having a quality suitable for the brightness of the illuminance detection region can be obtained.
また、上記の液晶表示装置において、時刻を計時する計時部をさらに備え、前記バックライト制御部は、前記計時部により計時された時刻に基づき前記照射開始タイミングを調整するとしても構わない。この構成によれば、バックライト制御部によって、計時部により計時された時刻に基づき照射開始タイミングが調整されるため、周辺の明るさに応じた品質の画像を得ることができる。
In addition, the liquid crystal display device may further include a time measuring unit that measures time, and the backlight control unit may adjust the irradiation start timing based on the time measured by the time measuring unit. According to this configuration, since the irradiation start timing is adjusted by the backlight control unit based on the time measured by the time measuring unit, it is possible to obtain an image with quality according to the surrounding brightness.
また、上記の液晶表示装置において、前記バックライト制御部は、前記計時部により計時された時刻が、正午を含む所定時間内に含まれる場合は前記照射開始タイミングを早くし、それ以外の場合は前記照射開始タイミングを遅くするとしても構わない。
Further, in the above liquid crystal display device, the backlight control unit may advance the irradiation start timing when the time measured by the time measuring unit is included in a predetermined time including noon, and otherwise. The irradiation start timing may be delayed.
この構成によれば、バックライト制御部により、時刻が正午を含む所定時間内に含まれる場合は照射開始タイミングが早くされて光の照射時間が長くなるため、周辺が明るいときは高輝度の画像を形成することができる。一方、時刻がそれ以外の場合は照射開始タイミングが遅くされるため、液晶の透過率が所望の値に近づいた時点で光が照射されることから、周辺が暗いときに色再現性の高い画像を形成することができる。したがって、周辺の明るさに適した品質の画像を得ることができる。ここで、正午を含む所定時間は、例えば午前8時から午後4時までの8時間としてもよく、午前9時から午後3時までの6時間としてもよい。
According to this configuration, when the time is within a predetermined time including noon, the backlight control unit makes the irradiation start timing earlier and the light irradiation time becomes longer. Can be formed. On the other hand, when the time is other than that, since the irradiation start timing is delayed, light is emitted when the transmittance of the liquid crystal approaches the desired value, so an image with high color reproducibility when the periphery is dark Can be formed. Therefore, it is possible to obtain an image having a quality suitable for the surrounding brightness. Here, the predetermined time including noon may be, for example, 8 hours from 8 am to 4 pm, or 6 hours from 9 am to 3 pm.
また、上記の液晶表示装置において、前記液晶表示パネルの周囲の温度を検出する温度検出部をさらに備え、前記バックライト制御部は、前記温度検出部により検出された検出温度に応じて、前記照射開始タイミングを調整するとしても構わない。この構成によれば、バックライト制御部によって、温度検出部により検出された検出温度に応じて照射開始タイミングが調整されるため、温度の高低により液晶の応答速度が変化することから、液晶の応答速度に適した照射開始タイミングに設定することができる。
The liquid crystal display device may further include a temperature detection unit that detects an ambient temperature of the liquid crystal display panel, and the backlight control unit may perform the irradiation according to the detected temperature detected by the temperature detection unit. The start timing may be adjusted. According to this configuration, since the irradiation control timing is adjusted by the backlight control unit according to the detected temperature detected by the temperature detection unit, the response speed of the liquid crystal changes depending on the temperature, so the response of the liquid crystal The irradiation start timing suitable for the speed can be set.
また、上記の液晶表示装置において、前記バックライト制御部は、前記検出温度が高くなるほど前記照射開始タイミングを早くし、前記検出温度が低くなるほど前記照射開始タイミングを遅くするとしても構わない。
Further, in the above liquid crystal display device, the backlight control unit may advance the irradiation start timing as the detection temperature becomes higher, and delay the irradiation start timing as the detection temperature becomes lower.
この構成によれば、バックライト制御部によって、温度検出部により検出された検出温度が高くなるほど照射開始タイミングが早くされるが、周囲温度が高いときは液晶の応答速度が速くなることから、照射開始タイミングを早くしても、光の照射開始時点で液晶の透過率が所望の値に近づいているため、色再現性が高く、かつ高輝度の画像を形成することができる。一方、検出温度が低くなるほど照射開始タイミングが遅くされるが、周囲温度が低いときは液晶の応答速度が遅くなることから、照射開始タイミングを遅くすることにより、液晶の透過率が所望の値に近づいた時点で光を照射することができ、色再現性の高い画像を形成することができる。
According to this configuration, the higher the detected temperature detected by the temperature detection unit, the earlier the irradiation start timing, but the liquid crystal response speed increases when the ambient temperature is high. Even if the start timing is advanced, the transmittance of the liquid crystal is close to a desired value at the start of light irradiation, so that an image with high color reproducibility and high brightness can be formed. On the other hand, the lower the detection temperature, the later the irradiation start timing is. However, when the ambient temperature is low, the response speed of the liquid crystal is slowed down. Light can be irradiated when approaching, and an image with high color reproducibility can be formed.
また、本発明の他の局面に従う液晶表示装置は、複数の画素を有し、入力される画像データに対応する画像を表示する液晶表示パネルと、前記液晶表示パネルに電圧を印加して前記液晶表示パネルを駆動する駆動回路と、複数色の光を前記液晶表示パネルに対して背面から照射するバックライトと、前記駆動回路を制御する駆動制御部と、前記バックライトからの光の照射を制御するバックライト制御部とを備え、1フレームは複数のサブフレームに分割され、さらに前記各サブフレームは前記複数色の光にそれぞれ対応する複数のフィールドに分割され、前記各フィールドにおいて、前記画像データに基づき、前記液晶表示パネルを駆動するとともに当該フィールドに対応する色の光を前記バックライトから前記液晶表示パネルに対して照射することで前記画像を形成する液晶表示装置であって、前記駆動制御部は、前記1フレームに含まれる同じ色の光に対応する前記各フィールドにおいて前記画像データに基づき前記液晶表示パネルに印加される電圧が、少なくとも2つの前記サブフレーム間で異なる値となるように前記駆動回路を制御する。
In addition, a liquid crystal display device according to another aspect of the present invention includes a liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data, and applying the voltage to the liquid crystal display panel to apply the liquid crystal A drive circuit that drives the display panel, a backlight that irradiates the liquid crystal display panel with light of a plurality of colors from the back surface, a drive control unit that controls the drive circuit, and control of light irradiation from the backlight A backlight control unit that divides one frame into a plurality of subframes, and further subdivides each subframe into a plurality of fields respectively corresponding to the plurality of colors of light. And driving the liquid crystal display panel and transmitting the color light corresponding to the field from the backlight to the liquid crystal display panel. A liquid crystal display device that forms the image by irradiating the image, wherein the drive control unit applies to the liquid crystal display panel based on the image data in each field corresponding to light of the same color included in the one frame. The drive circuit is controlled so that the voltage to be applied is different between at least two of the subframes.
この構成によれば、1フレームに含まれる同じ色の光に対応する各フィールドにおいて画像データに基づき液晶表示パネルに印加される電圧が、少なくとも2つのサブフレーム間で異なる値となるように、駆動制御部によって駆動回路が制御される。このように、同じ色のフィールドにおいて少なくとも2つのサブフレームにおける印加電圧を異なる値に分解することにより、中間階調に対応する電圧値とならないようにすることが可能となっている。ここで、液晶は、中間階調に対応する電圧が印加されると、その応答速度が低下することが知られている。そこで、この構成によれば、駆動制御部によって、中間階調に対応する電圧値とならないように駆動回路を制御することにより、液晶を高速に駆動することが可能になるため、画像データに忠実な高品質の画像を提供することが出来る。また、少なくとも2つのサブフレーム間で同じ色の階調が異なるため、画像を視認したときのカラーブレーキングを抑制する効果も有する。
According to this configuration, driving is performed so that the voltage applied to the liquid crystal display panel based on the image data in each field corresponding to the same color light included in one frame has a different value between at least two subframes. The drive circuit is controlled by the control unit. As described above, in the same color field, the applied voltage in at least two subframes is decomposed into different values, so that the voltage value corresponding to the intermediate gradation can be prevented. Here, it is known that the response speed of the liquid crystal decreases when a voltage corresponding to an intermediate gradation is applied. Therefore, according to this configuration, since the drive control unit controls the drive circuit so that the voltage value does not correspond to the intermediate gradation, the liquid crystal can be driven at a high speed, and thus it is faithful to the image data. High quality images can be provided. In addition, since the gradation of the same color is different between at least two subframes, there is an effect of suppressing color braking when an image is viewed.
また、上記の液晶表示装置において、前記駆動制御部は、前記画像データの一の色が中間階調のときに、前記1フレームに含まれる当該色の光に対応する前記各フィールドにおいて、高階調画像データに対応する電圧および低階調画像データに対応する電圧をそれぞれ前記液晶表示パネルに印加する2つの前記サブフレームが組み合わされて前記1フレームが構成されるように、前記駆動回路を制御することによって、当該色を中間階調とするとしても構わない。
Further, in the liquid crystal display device, the drive control unit may perform high gradation in each field corresponding to light of the color included in the one frame when one color of the image data is intermediate gradation. The drive circuit is controlled so that the one frame is formed by combining two subframes that apply a voltage corresponding to image data and a voltage corresponding to low gradation image data to the liquid crystal display panel, respectively. Thus, the color may be set to an intermediate gradation.
この構成によれば、画像データの一の色が中間階調のときに、当該色の光に対応する各フィールドにおいて、高階調画像データに対応する電圧および低階調画像データに対応する電圧をそれぞれ液晶表示パネルに印加する2つのサブフレームが組み合わされて1フレームが構成されるように、駆動制御部により駆動回路が制御されることによって、当該色が中間階調とされる。したがって、画像データの一の色が中間階調であっても、中間階調に対応する電圧が印加されないため、液晶の応答速度の低下を防止することができる。よって、画像データに忠実な高品質の画像を提供することが出来る。なお、中間階調の画像データとは、例えば8ビットで階調を表現する場合、128を含む所定の範囲、例えば85~170とすることができる。そして、この範囲以上の階調を高階調画像データとし、この範囲以下の階調を低階調画像データとすればよい。
According to this configuration, when one color of the image data is an intermediate gradation, in each field corresponding to the light of the color, the voltage corresponding to the high gradation image data and the voltage corresponding to the low gradation image data are set. The drive control unit controls the drive circuit so that two frames applied to the liquid crystal display panel are combined to form one frame, so that the color is set to an intermediate gradation. Therefore, even if one color of the image data is an intermediate gradation, a voltage corresponding to the intermediate gradation is not applied, so that it is possible to prevent a decrease in the response speed of the liquid crystal. Therefore, it is possible to provide a high quality image faithful to the image data. The intermediate gradation image data can be a predetermined range including 128, for example, 85 to 170, for example, when gradation is expressed by 8 bits. Then, gradations above this range may be used as high gradation image data, and gradations below this range may be used as low gradation image data.
また、上記の液晶表示装置において、前記駆動制御部は、前記1フレームに含まれる前記各フィールドにおいて前記画像データに基づき前記液晶表示パネルに印加される電圧に関し、少なくとも一つの色において、ある注目画素における印加電圧が連続する2つのサブフレーム間で異なるとき、前記注目画素に隣接する隣接画素における当該2つのサブフレーム間の印加電圧の大小関係を、前記注目画素における大小関係と逆にしたとしても構わない。
In the liquid crystal display device, the drive control unit may be a pixel of interest in at least one color with respect to a voltage applied to the liquid crystal display panel based on the image data in each field included in the one frame. Even if the applied voltage in the subpixel is different between two consecutive subframes, the magnitude relationship of the applied voltage between the two subframes in the adjacent pixels adjacent to the target pixel may be reversed from the magnitude relationship in the target pixel. I do not care.
この構成によれば、1フレームに含まれる各フィールドにおいて画像データに基づき液晶表示パネルに印加される電圧に関し、少なくとも一つの色において、ある注目画素における印加電圧が、連続する2つのサブフレーム間で異なるとき、注目画素に隣接する隣接画素における当該2つのサブフレーム間の印加電圧の大小関係を、注目画素における大小関係と逆にしている。つまり、注目画素と隣接画素とで、当該2つのサブフレーム間の印加電圧の大小関係が逆になっている。したがって、互いに隣接する画素において同じ色の階調が同じサブフレームで異なるため、画像を視認したときのカラーブレーキングをさらに抑制する効果を有する。
According to this configuration, with respect to the voltage applied to the liquid crystal display panel based on the image data in each field included in one frame, the applied voltage at a certain target pixel in at least one color is between two consecutive subframes. When they are different, the magnitude relationship of the applied voltages between the two subframes in the adjacent pixel adjacent to the pixel of interest is reversed from the magnitude relationship of the pixel of interest. That is, the magnitude relationship of the applied voltage between the two subframes is reversed between the target pixel and the adjacent pixel. Therefore, since the gradation of the same color is different in the same subframe in adjacent pixels, there is an effect of further suppressing color braking when an image is viewed.
また、本発明のさらに他の局面に従う液晶表示装置は、複数の画素を有し、入力される画像データに対応する画像を表示する液晶表示パネルと、前記液晶表示パネルに電圧を印加して前記液晶表示パネルを駆動する駆動回路と、複数色の光を前記液晶表示パネルに対して背面から照射するバックライトと、前記駆動回路を制御する駆動制御部と、前記バックライトからの光の照射を制御するバックライト制御部とを備え、1フレームは複数のサブフレームに分割され、さらに前記各サブフレームは前記複数色の光にそれぞれ対応する複数のフィールドに分割され、前記各フィールドにおいて、前記画像データに基づき、前記液晶表示パネルを駆動するとともに当該フィールドに対応する色の光を前記バックライトから前記液晶表示パネルに対して照射することで前記画像を形成する液晶表示装置であって、前記液晶表示パネルは、内部に液晶層と、前記駆動回路により前記液晶層に電圧を印加するための透明電極とを有し、前記バックライトから出射される光は、赤外光もしくは紫外光を含み、前記透明電極は、赤外光もしくは紫外光を吸収して発熱する材質で形成されている。
Further, a liquid crystal display device according to still another aspect of the present invention includes a liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data, and applying a voltage to the liquid crystal display panel to A driving circuit that drives the liquid crystal display panel; a backlight that irradiates the liquid crystal display panel with light of a plurality of colors from the back; a drive control unit that controls the driving circuit; and illumination of light from the backlight. A backlight control unit for controlling, one frame is divided into a plurality of subframes, and each subframe is further divided into a plurality of fields respectively corresponding to the light of the plurality of colors, and in each field, the image Based on the data, the liquid crystal display panel is driven, and light of a color corresponding to the field is transmitted from the backlight to the liquid crystal display panel. The liquid crystal display device forms the image by irradiating the liquid crystal display panel, and the liquid crystal display panel includes a liquid crystal layer inside and a transparent electrode for applying a voltage to the liquid crystal layer by the driving circuit. The light emitted from the backlight includes infrared light or ultraviolet light, and the transparent electrode is formed of a material that generates heat by absorbing infrared light or ultraviolet light.
この構成によれば、透明電極は、赤外光もしくは紫外光を吸収して発熱する材質で形成されているため、バックライトから出射される光に含まれる赤外光もしくは紫外光を吸収して透明電極が発熱することから、液晶表示パネルを加温することができる。ここで、液晶は、低温のときに応答速度が低下することが知られている。しかし、この構成によれば、液晶表示パネルを加温することができるため、液晶の応答速度が低下するのを防止することができ、その結果、高品質の画像を得ることが可能となる。
According to this configuration, since the transparent electrode is formed of a material that absorbs infrared light or ultraviolet light and generates heat, the transparent electrode absorbs infrared light or ultraviolet light included in the light emitted from the backlight. Since the transparent electrode generates heat, the liquid crystal display panel can be heated. Here, it is known that the response speed of the liquid crystal decreases when the temperature is low. However, according to this configuration, since the liquid crystal display panel can be heated, it is possible to prevent the response speed of the liquid crystal from being lowered, and as a result, it is possible to obtain a high-quality image.
また、上記の液晶表示装置において、前記バックライトから出射される前記複数色の光のうち少なくとも一つの光を出射する光源は、赤外光もしくは紫外光を発光する発光部と、前記赤外光もしくは紫外光を波長変換する波長変換部とを有し、前記波長変換部により波長変換されずに残った光が前記バックライトから出射されるように構成されているとしても構わない。
In the above liquid crystal display device, the light source that emits at least one of the light of the plurality of colors emitted from the backlight includes a light emitting unit that emits infrared light or ultraviolet light, and the infrared light. Alternatively, it may have a wavelength conversion unit that converts the wavelength of the ultraviolet light, and the light that remains without being wavelength-converted by the wavelength conversion unit may be emitted from the backlight.
この構成によれば、バックライトから出射される複数色の光のうち少なくとも一つの光を出射する光源は、赤外光もしくは紫外光を発光する発光部と、当該赤外光もしくは紫外光を波長変換する波長変換部とを有しているため、複数色の光のうち少なくとも一つの色の光は、発光部から発光された赤外光もしくは紫外光が、波長変換部により波長変換されることによって生成される。そして、波長変換されずに残った光、つまり赤外光もしくは紫外光がバックライトから出射されるように構成されているため、この赤外光もしくは紫外光によって、透明電極が発熱することとなる。したがって、液晶表示パネルを加温することができるので、液晶の応答速度が低下するのを防止することができ、その結果、高品質の画像を得ることが可能となる。
According to this configuration, the light source that emits at least one of the light of the plurality of colors emitted from the backlight includes the light emitting unit that emits infrared light or ultraviolet light, and the wavelength of the infrared light or ultraviolet light. A wavelength conversion unit that converts the wavelength of the light of at least one of a plurality of colors that is converted from infrared light or ultraviolet light emitted from the light-emitting unit by the wavelength conversion unit. Generated by. Since the light remaining without being wavelength-converted, that is, infrared light or ultraviolet light is emitted from the backlight, the transparent electrode generates heat due to the infrared light or ultraviolet light. . Therefore, since the liquid crystal display panel can be heated, it is possible to prevent the response speed of the liquid crystal from being lowered, and as a result, a high-quality image can be obtained.
また、上記の液晶表示装置において、前記バックライトから前記複数色の光を出射する光源は、赤色光、青色光および緑色光をそれぞれ出射するレーザ光源を含むとしても構わない。
In the above liquid crystal display device, the light source that emits the light of the plurality of colors from the backlight may include a laser light source that emits red light, blue light, and green light, respectively.
また、上記の液晶表示装置において、前記バックライトから前記複数色の光を出射する光源は、赤色光、青色光および緑色光をそれぞれ出射する発光ダイオード(LED)を含むとしても構わない。
In the above liquid crystal display device, the light source that emits the light of the plurality of colors from the backlight may include a light emitting diode (LED) that emits red light, blue light, and green light, respectively.
また、上記の液晶表示装置において、前記バックライトから前記複数色の光を出射する光源は、赤色光、青色光および緑色光をそれぞれ出射するスーパールミネッセントダイオード(SLD)を含むとしても構わない。
In the above liquid crystal display device, the light source that emits the light of the plurality of colors from the backlight may include a super luminescent diode (SLD) that emits red light, blue light, and green light, respectively. .
また、本発明のさらに他の局面に従う液晶表示装置は、それぞれが赤色サブ画素、緑色サブ画素および青色サブ画素を有する複数の画素を含む液晶表示パネルと、前記液晶表示パネルに対して背面から白色光を照射するバックライトと、前記バックライトから前記液晶表示パネルに照射された光のうち前記液晶表示パネルで反射された反射光を前記液晶表示パネルに向けて反射する反射部材と、互いに直交する第1方向および第2方向にマトリクス状に配列された前記各画素を駆動する駆動回路と、前記駆動回路を制御する駆動制御部とを備え、前記赤色サブ画素は、赤色光を透過し、前記赤色光以外の光を反射する赤透過フィルタを有し、前記緑色サブ画素は、緑色光を透過し、前記緑色光以外の光を反射する緑透過フィルタを有し、前記青色サブ画素は、青色光を透過し、前記青色光以外の光を反射する青透過フィルタを有し、前記駆動回路は、それぞれが前記第1方向に配列された前記各画素に含まれる全サブ画素に接続された複数の走査線と、前記各走査線を介して前記各サブ画素に走査信号を供給するゲートドライバと、それぞれが前記第2方向に配列された前記各画素に含まれる前記各色のサブ画素に色ごとに接続され、スイッチが介設された複数の第1信号線と、前記各第1信号線を介して前記各サブ画素に色ごとに駆動信号を供給するソースドライバと、それぞれが前記第2方向に配列された前記各画素に対応して設けられた複数の第2信号線とを有し、同一の前記画素に含まれる3個の前記サブ画素に接続された前記各第1信号線は、当該画素に対応して設けられた前記第2信号線に接続され、前記ソースドライバは、前記各スイッチをオンにするための駆動信号を前記各スイッチに供給し、前記ソースドライバは、前記各第2信号線と、前記スイッチがオンにされた前記各第1信号線とを介して、前記各サブ画素に駆動信号を供給し、前記駆動制御部は、前記画素ごとに、当該画素に含まれる3個のサブ画素に接続された前記各第1信号線の前記各スイッチのオンタイミングを異ならせることで、前記第2方向に配列された前記各画素に含まれる前記各色のサブ画素に対して異なるタイミングで前記ソースドライバから前記駆動信号を供給する。
In addition, a liquid crystal display device according to still another aspect of the present invention includes a liquid crystal display panel including a plurality of pixels each having a red sub-pixel, a green sub-pixel, and a blue sub-pixel, and white from the back with respect to the liquid crystal display panel. A backlight that irradiates light and a reflecting member that reflects reflected light reflected from the backlight to the liquid crystal display panel out of the light emitted from the backlight to the liquid crystal display panel are orthogonal to each other. A drive circuit that drives the pixels arranged in a matrix in the first direction and the second direction; and a drive control unit that controls the drive circuit, wherein the red sub-pixel transmits red light, and The green sub-pixel includes a green transmission filter that transmits green light and reflects light other than the green light; The blue sub-pixel has a blue transmission filter that transmits blue light and reflects light other than the blue light, and the driving circuit includes all sub-pixels included in each of the pixels arranged in the first direction. A plurality of scanning lines connected to the pixels, a gate driver for supplying scanning signals to the sub-pixels through the scanning lines, and the colors included in the pixels arranged in the second direction. A plurality of first signal lines connected to each sub-pixel for each color and provided with a switch; a source driver that supplies a drive signal for each color to each sub-pixel via each first signal line; Each of the plurality of second signal lines provided corresponding to each of the pixels arranged in the second direction and connected to the three sub-pixels included in the same pixel. The first signal line is provided corresponding to the pixel. The source driver supplies a drive signal for turning on the switches to the switches, and the source driver includes the second signal lines and the switches. And a drive signal is supplied to each of the sub-pixels via each of the first signal lines that is turned on, and the drive control unit is connected to three sub-pixels included in the pixel for each of the pixels. The on-timing of the respective switches of the first signal lines thus made is made different from the source driver at different timings with respect to the sub-pixels of the respective colors included in the respective pixels arranged in the second direction. The drive signal is supplied.
この構成によれば、バックライトから液晶表示パネルに照射された光のうち液晶表示パネルで反射された反射光を液晶表示パネルに向けて反射する反射部材を備え、各色のサブ画素は、当該色の光を透過し、当該色の光以外の光を反射する透過フィルタを有しているため、光の利用効率を高めることができる。また、画素ごとに、当該画素に含まれる3個のサブ画素に接続された各第1信号線の各スイッチのオンタイミングが異なることにより、第2方向に配列された各画素に含まれる各色のサブ画素に対して異なるタイミングでソースドライバから駆動信号が供給される。つまり、各画素において、各色のサブ画素は互いに異なるタイミングでオンにされる。また、ソースドライバに接続される第2信号線の数は第1信号線の1/3になるため、第1信号線をそれぞれソースドライバに接続する構成に比べて、ソースドライバ内の回路数を減少できる。したがって、ソースドライバを構成する部品点数を削減することができる。
According to this configuration, the reflective member that reflects the reflected light reflected by the liquid crystal display panel out of the light irradiated to the liquid crystal display panel from the backlight toward the liquid crystal display panel is provided. The light use efficiency can be improved because the transmission filter that transmits light of the color and reflects light other than the light of the color is included. In addition, since the on timing of each switch of each first signal line connected to the three sub-pixels included in the pixel is different for each pixel, each color included in each pixel arranged in the second direction is changed. Drive signals are supplied from the source driver to the sub-pixels at different timings. That is, in each pixel, the sub-pixels of each color are turned on at different timings. In addition, since the number of second signal lines connected to the source driver is 1/3 of that of the first signal line, the number of circuits in the source driver can be reduced as compared with the configuration in which each first signal line is connected to the source driver. Can be reduced. Therefore, the number of parts constituting the source driver can be reduced.
また、上記の液晶表示装置において、前記駆動制御部は、前記第1方向に互いに隣接する画素では、同じタイミングで異なる色の前記サブ画素に前記駆動信号を供給するとしても構わない。この構成によれば、隣接する画素では同一のタイミングで異なる色のサブ画素が駆動されるため、色割れを抑制して高画質の液晶表示装置を実現できる。
In the above liquid crystal display device, the drive control unit may supply the drive signal to the sub-pixels of different colors at the same timing in pixels adjacent to each other in the first direction. According to this configuration, subpixels of different colors are driven at the same timing in adjacent pixels, so that a high-quality liquid crystal display device can be realized while suppressing color breakup.
また、上記の液晶表示装置において、それぞれが、前記第1方向に互いに隣接する画素において、異なる色の前記サブ画素に接続された前記第1信号線の前記スイッチに接続された3本の制御線をさらに備え、前記ソースドライバは、前記3本の制御線を介して前記各スイッチに駆動信号を供給するとしても構わない。この構成によれば、簡易な回路構成で、隣接する画素において同一のタイミングで異なる色のサブ画素に駆動信号を供給することができる。
In the above liquid crystal display device, three control lines connected to the switch of the first signal line connected to the sub-pixels of different colors, respectively, in the pixels adjacent to each other in the first direction. The source driver may supply drive signals to the switches via the three control lines. According to this configuration, it is possible to supply drive signals to sub-pixels of different colors at the same timing in adjacent pixels with a simple circuit configuration.
本発明の液晶表示装置は、簡便な構成で液晶を高輝度、高画質、高速に応答させることが可能であり、フィールドシーケンシャル方式の液晶表示装置全般に適用することができる。
The liquid crystal display device of the present invention can respond to liquid crystal with high brightness, high image quality, and high speed with a simple configuration, and can be applied to all field sequential liquid crystal display devices.
Claims (16)
- 複数の画素を有し、入力される画像データに対応する画像を表示する液晶表示パネルと、
前記液晶表示パネルに電圧を印加して前記液晶表示パネルを駆動する駆動回路と、
複数色の光を前記液晶表示パネルに対して背面から照射するバックライトと、
前記駆動回路を制御する駆動制御部と、
前記バックライトからの光の照射を制御するバックライト制御部とを備え、
1フレームは複数のサブフレームに分割され、さらに前記各サブフレームは前記複数色の光にそれぞれ対応する複数のフィールドに分割され、前記各フィールドにおいて、前記画像データに基づき、前記液晶表示パネルを駆動するとともに当該フィールドに対応する色の光を前記バックライトから前記液晶表示パネルに対して照射することで前記画像を形成する液晶表示装置であって、
前記駆動制御部は、前記各フィールドにおいて前記液晶表示パネルに印加される電圧を前記各フィールドの終端近傍にてゼロにすることなく前記各フィールドの終端まで電圧印加を継続するように前記駆動回路を制御し、
前記バックライト制御部は、前記各フィールドにおける前記バックライトからの光の照射開始タイミングを調整することを特徴とする、液晶表示装置。 A liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data;
A driving circuit for driving the liquid crystal display panel by applying a voltage to the liquid crystal display panel;
A backlight for irradiating the liquid crystal display panel with light of a plurality of colors from the back;
A drive control unit for controlling the drive circuit;
A backlight control unit that controls irradiation of light from the backlight,
One frame is divided into a plurality of sub-frames, and each sub-frame is further divided into a plurality of fields corresponding to the light of the plurality of colors, and the liquid crystal display panel is driven based on the image data in each field. And a liquid crystal display device that forms the image by irradiating the liquid crystal display panel with light of a color corresponding to the field from the backlight,
The drive control unit controls the drive circuit so that the voltage applied to the liquid crystal display panel in each field is continuously applied to the end of each field without being zero near the end of each field. Control
The liquid crystal display device, wherein the backlight control unit adjusts the irradiation start timing of light from the backlight in each field. - 前記バックライト制御部は、前記各フィールドにおいて、当該フィールドに対応する色の光の照射を当該フィールドの終端まで継続する請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the backlight control unit continues the irradiation of light of a color corresponding to the field until the end of the field in each field.
- 照度を検出する照度検出部をさらに備え、
前記バックライト制御部は、前記照度検出部により検出された検出照度に応じて、前記照射開始タイミングを調整することを特徴とする、請求項1または2に記載の液晶表示装置。 An illuminance detection unit that detects illuminance is further provided,
The liquid crystal display device according to claim 1, wherein the backlight control unit adjusts the irradiation start timing according to the detected illuminance detected by the illuminance detection unit. - 前記バックライト制御部は、前記検出照度が高くなるほど前記照射開始タイミングを早くし、前記検出照度が低くなるほど前記照射開始タイミングを遅くすることを特徴とする、請求項3に記載の液晶表示装置。 4. The liquid crystal display device according to claim 3, wherein the backlight control unit makes the irradiation start timing earlier as the detected illuminance increases, and delays the irradiation start timing as the detected illuminance decreases.
- 時刻を計時する計時部をさらに備え、
前記バックライト制御部は、前記計時部により計時された時刻に基づき前記照射開始タイミングを調整することを特徴とする、請求項1ないし4のいずれかに記載の液晶表示装置。 It further includes a timekeeping part that keeps time
5. The liquid crystal display device according to claim 1, wherein the backlight control unit adjusts the irradiation start timing based on a time measured by the time measuring unit. - 前記バックライト制御部は、前記計時部により計時された時刻が、正午を含む所定時間内に含まれる場合は前記照射開始タイミングを早くし、それ以外の場合は前記照射開始タイミングを遅くすることを特徴とする、請求項5に記載の液晶表示装置。 The backlight control unit is configured to advance the irradiation start timing when the time measured by the time measuring unit is included in a predetermined time including noon, and to delay the irradiation start timing in other cases. The liquid crystal display device according to claim 5, which is characterized.
- 前記液晶表示パネルの周囲の温度を検出する温度検出部をさらに備え、
前記バックライト制御部は、前記温度検出部により検出された検出温度に応じて、前記照射開始タイミングを調整することを特徴とする、請求項1ないし6のいずれかに記載の液晶表示装置。 A temperature detection unit for detecting a temperature around the liquid crystal display panel;
The liquid crystal display device according to claim 1, wherein the backlight control unit adjusts the irradiation start timing in accordance with the detected temperature detected by the temperature detection unit. - 前記バックライト制御部は、前記検出温度が高くなるほど前記照射開始タイミングを早くし、前記検出温度が低くなるほど前記照射開始タイミングを遅くすることを特徴とする、請求項7に記載の液晶表示装置。 The liquid crystal display device according to claim 7, wherein the backlight control unit makes the irradiation start timing earlier as the detected temperature becomes higher, and delays the irradiation start timing as the detected temperature becomes lower.
- 複数の画素を有し、入力される画像データに対応する画像を表示する液晶表示パネルと、
前記液晶表示パネルに電圧を印加して前記液晶表示パネルを駆動する駆動回路と、
複数色の光を前記液晶表示パネルに対して背面から照射するバックライトと、
前記駆動回路を制御する駆動制御部と、
前記バックライトからの光の照射を制御するバックライト制御部とを備え、
1フレームは複数のサブフレームに分割され、さらに前記各サブフレームは前記複数色の光にそれぞれ対応する複数のフィールドに分割され、前記各フィールドにおいて、前記画像データに基づき、前記液晶表示パネルを駆動するとともに当該フィールドに対応する色の光を前記バックライトから前記液晶表示パネルに対して照射することで前記画像を形成する液晶表示装置であって、
前記駆動制御部は、前記1フレームに含まれる同じ色の光に対応する前記各フィールドにおいて前記画像データに基づき前記液晶表示パネルに印加される電圧が、少なくとも2つの前記サブフレーム間で異なる値となるように前記駆動回路を制御することを特徴とする液晶表示装置。 A liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data;
A driving circuit for driving the liquid crystal display panel by applying a voltage to the liquid crystal display panel;
A backlight for irradiating the liquid crystal display panel with light of a plurality of colors from the back;
A drive control unit for controlling the drive circuit;
A backlight control unit that controls irradiation of light from the backlight,
One frame is divided into a plurality of sub-frames, and each sub-frame is further divided into a plurality of fields corresponding to the light of the plurality of colors, and the liquid crystal display panel is driven based on the image data in each field. And a liquid crystal display device that forms the image by irradiating the liquid crystal display panel with light of a color corresponding to the field from the backlight,
The drive control unit is configured such that a voltage applied to the liquid crystal display panel based on the image data in each field corresponding to light of the same color included in the one frame is different between at least two subframes. A liquid crystal display device, wherein the drive circuit is controlled to be - 前記駆動制御部は、前記画像データの一の色が中間階調のときに、前記1フレームに含まれる当該色の光に対応する前記各フィールドにおいて、高階調画像データに対応する電圧および低階調画像データに対応する電圧をそれぞれ前記液晶表示パネルに印加する2つの前記サブフレームが組み合わされて前記1フレームが構成されるように、前記駆動回路を制御することによって、当該色を中間階調とすることを特徴とする、請求項9に記載の液晶表示装置。 When the color of one of the image data is an intermediate gradation, the drive control unit is configured to apply a voltage and a lower order corresponding to the high gradation image data in each field corresponding to the light of the color included in the one frame. By controlling the drive circuit so that the one frame is formed by combining the two sub-frames, each of which applies a voltage corresponding to tone image data to the liquid crystal display panel, the color is changed to an intermediate gray level. The liquid crystal display device according to claim 9, wherein:
- 前記駆動制御部は、前記1フレームに含まれる前記各フィールドにおいて前記画像データに基づき前記液晶表示パネルに印加される電圧に関し、少なくとも一つの色において、ある注目画素における印加電圧が連続する2つのサブフレーム間で異なるとき、前記注目画素に隣接する隣接画素における当該2つのサブフレーム間の印加電圧の大小関係を、前記注目画素における大小関係と逆にしたことを特徴とする、請求項9または10に記載の液晶表示装置。 The drive control unit relates to a voltage applied to the liquid crystal display panel based on the image data in each field included in the one frame, and two applied sub-continuous voltages applied to a target pixel in at least one color. The magnitude relationship of applied voltages between the two sub-frames in adjacent pixels adjacent to the target pixel when different between frames is reversed from the size relationship in the target pixel. A liquid crystal display device according to 1.
- 複数の画素を有し、入力される画像データに対応する画像を表示する液晶表示パネルと、
前記液晶表示パネルに電圧を印加して前記液晶表示パネルを駆動する駆動回路と、
複数色の光を前記液晶表示パネルに対して背面から照射するバックライトと、
前記駆動回路を制御する駆動制御部と、
前記バックライトからの光の照射を制御するバックライト制御部とを備え、
1フレームは複数のサブフレームに分割され、さらに前記各サブフレームは前記複数色の光にそれぞれ対応する複数のフィールドに分割され、前記各フィールドにおいて、前記画像データに基づき、前記液晶表示パネルを駆動するとともに当該フィールドに対応する色の光を前記バックライトから前記液晶表示パネルに対して照射することで前記画像を形成する液晶表示装置であって、
前記液晶表示パネルは、内部に液晶層と、前記駆動回路により前記液晶層に電圧を印加するための透明電極とを有し、
前記バックライトから出射される光は、赤外光もしくは紫外光を含み、
前記透明電極は、赤外光もしくは紫外光を吸収して発熱する材質で形成されていることを特徴とする液晶表示装置。 A liquid crystal display panel having a plurality of pixels and displaying an image corresponding to input image data;
A driving circuit for driving the liquid crystal display panel by applying a voltage to the liquid crystal display panel;
A backlight for irradiating the liquid crystal display panel with light of a plurality of colors from the back;
A drive control unit for controlling the drive circuit;
A backlight control unit that controls irradiation of light from the backlight,
One frame is divided into a plurality of sub-frames, and each sub-frame is further divided into a plurality of fields corresponding to the light of the plurality of colors, and the liquid crystal display panel is driven based on the image data in each field. And a liquid crystal display device that forms the image by irradiating the liquid crystal display panel with light of a color corresponding to the field from the backlight,
The liquid crystal display panel has a liquid crystal layer inside, and a transparent electrode for applying a voltage to the liquid crystal layer by the drive circuit,
The light emitted from the backlight includes infrared light or ultraviolet light,
The liquid crystal display device, wherein the transparent electrode is formed of a material that generates heat by absorbing infrared light or ultraviolet light. - 前記バックライトから出射される前記複数色の光のうち少なくとも一つの光を出射する光源は、赤外光もしくは紫外光を発光する発光部と、前記赤外光もしくは紫外光を波長変換する波長変換部とを有し、
前記波長変換部により波長変換されずに残った光が前記バックライトから出射されるように構成されていることを特徴とする、請求項12に記載の液晶表示装置。 The light source that emits at least one of the light of the plurality of colors emitted from the backlight includes a light emitting unit that emits infrared light or ultraviolet light, and wavelength conversion that converts the wavelength of the infrared light or ultraviolet light. And
The liquid crystal display device according to claim 12, wherein light that remains without being wavelength-converted by the wavelength conversion unit is emitted from the backlight. - 前記バックライトから前記複数色の光を出射する光源は、赤色光、青色光および緑色光をそれぞれ出射するレーザ光源を含むことを特徴とする、請求項1ないし13のいずれかに記載の液晶表示装置。 14. The liquid crystal display according to claim 1, wherein the light source that emits the light of the plurality of colors from the backlight includes a laser light source that emits red light, blue light, and green light, respectively. apparatus.
- 前記バックライトから前記複数色の光を出射する光源は、赤色光、青色光および緑色光をそれぞれ出射する発光ダイオード(LED)を含むことを特徴とする、請求項1ないし13のいずれかに記載の液晶表示装置。 The light source that emits the light of the plurality of colors from the backlight includes a light emitting diode (LED) that emits red light, blue light, and green light, respectively. Liquid crystal display device.
- 前記バックライトから前記複数色の光を出射する光源は、赤色光、青色光および緑色光をそれぞれ出射するスーパールミネッセントダイオード(SLD)を含むことを特徴とする、請求項1ないし13のいずれかに記載の液晶表示装置。 14. The light source that emits the light of the plurality of colors from the backlight includes a super luminescent diode (SLD) that emits red light, blue light, and green light, respectively. A liquid crystal display device according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009256733A JP2013019921A (en) | 2009-11-10 | 2009-11-10 | Liquid crystal display device |
JP2009-256733 | 2009-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011058728A1 true WO2011058728A1 (en) | 2011-05-19 |
Family
ID=43991397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/006552 WO2011058728A1 (en) | 2009-11-10 | 2010-11-09 | Liquid crystal display |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013019921A (en) |
WO (1) | WO2011058728A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013125384A1 (en) * | 2012-02-22 | 2013-08-29 | シャープ株式会社 | Display device and drive method therefor |
WO2013183509A1 (en) * | 2012-06-05 | 2013-12-12 | シャープ株式会社 | Liquid crystal display device and method for controlling same |
JP2013254149A (en) * | 2012-06-08 | 2013-12-19 | Sharp Corp | Display device and driving method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6194654B2 (en) * | 2013-06-24 | 2017-09-13 | セイコーエプソン株式会社 | Electro-optical device, driving method of electro-optical device, and electronic apparatus |
JP6774320B2 (en) | 2016-11-29 | 2020-10-21 | 日亜化学工業株式会社 | Display device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05173508A (en) * | 1991-12-25 | 1993-07-13 | Toshiba Corp | Method for driving liquid crystal display device |
JPH10333127A (en) * | 1997-05-29 | 1998-12-18 | Seiko Instr Inc | Manufacture of liquid crystal display device and device therefor |
JPH11327492A (en) * | 1998-05-20 | 1999-11-26 | Mitsubishi Electric Corp | Plane sequential color image display device and plane sequential color image display method |
JP2003029716A (en) * | 2001-07-12 | 2003-01-31 | Matsushita Electric Ind Co Ltd | Liquid crystal display device and driving device for the device and driving method of the device |
JP2004157373A (en) * | 2002-11-07 | 2004-06-03 | Sharp Corp | Liquid crystal display device |
JP2004163828A (en) * | 2002-11-15 | 2004-06-10 | Sharp Corp | Liquid crystal display device |
JP2006039329A (en) * | 2004-07-29 | 2006-02-09 | Hitachi Ltd | Projection type display device and multi-screen system |
WO2006080254A1 (en) * | 2005-01-25 | 2006-08-03 | Sharp Kabushiki Kaisha | Display device, instrument panel, automatic vehicle, and method of driving display device |
JP2008152108A (en) * | 2006-12-19 | 2008-07-03 | Seiko Epson Corp | Display apparatus and display method |
JP2009116701A (en) * | 2007-11-07 | 2009-05-28 | Sharp Corp | Display system, and method for detecting pointed position |
JP2009134217A (en) * | 2007-12-03 | 2009-06-18 | Seiko Epson Corp | Projector |
-
2009
- 2009-11-10 JP JP2009256733A patent/JP2013019921A/en active Pending
-
2010
- 2010-11-09 WO PCT/JP2010/006552 patent/WO2011058728A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05173508A (en) * | 1991-12-25 | 1993-07-13 | Toshiba Corp | Method for driving liquid crystal display device |
JPH10333127A (en) * | 1997-05-29 | 1998-12-18 | Seiko Instr Inc | Manufacture of liquid crystal display device and device therefor |
JPH11327492A (en) * | 1998-05-20 | 1999-11-26 | Mitsubishi Electric Corp | Plane sequential color image display device and plane sequential color image display method |
JP2003029716A (en) * | 2001-07-12 | 2003-01-31 | Matsushita Electric Ind Co Ltd | Liquid crystal display device and driving device for the device and driving method of the device |
JP2004157373A (en) * | 2002-11-07 | 2004-06-03 | Sharp Corp | Liquid crystal display device |
JP2004163828A (en) * | 2002-11-15 | 2004-06-10 | Sharp Corp | Liquid crystal display device |
JP2006039329A (en) * | 2004-07-29 | 2006-02-09 | Hitachi Ltd | Projection type display device and multi-screen system |
WO2006080254A1 (en) * | 2005-01-25 | 2006-08-03 | Sharp Kabushiki Kaisha | Display device, instrument panel, automatic vehicle, and method of driving display device |
JP2008152108A (en) * | 2006-12-19 | 2008-07-03 | Seiko Epson Corp | Display apparatus and display method |
JP2009116701A (en) * | 2007-11-07 | 2009-05-28 | Sharp Corp | Display system, and method for detecting pointed position |
JP2009134217A (en) * | 2007-12-03 | 2009-06-18 | Seiko Epson Corp | Projector |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013125384A1 (en) * | 2012-02-22 | 2013-08-29 | シャープ株式会社 | Display device and drive method therefor |
US9280924B2 (en) | 2012-02-22 | 2016-03-08 | Sharp Kabushiki Kaisha | Display device and method that divides one frame period into a plurality of subframe periods and that displays screens of different colors in accordance with the subframe periods |
WO2013183509A1 (en) * | 2012-06-05 | 2013-12-12 | シャープ株式会社 | Liquid crystal display device and method for controlling same |
JP2013254149A (en) * | 2012-06-08 | 2013-12-19 | Sharp Corp | Display device and driving method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2013019921A (en) | 2013-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI227768B (en) | Illumination device and liquid crystal display device using the same | |
JP4482286B2 (en) | Illumination device and display device including the same | |
CN108319070B (en) | Display device and display method thereof | |
KR100712471B1 (en) | Field Sequential Liquid Crystal Display Device and Method for Color Image Display the same | |
US8325416B2 (en) | Re-writeable optical element and a display, reflector and backlight incorporating the same | |
US9324250B2 (en) | High dynamic range displays comprising MEMS/IMOD components | |
US9726948B2 (en) | Image display device | |
TWI439118B (en) | Image display device and image display system using the same | |
US20120113159A1 (en) | Stereoscopic display apparatus and display method for stereoscopic display apparatus | |
US20120140147A1 (en) | Display panel, display system, portable terminal and electronic device | |
US20130293534A1 (en) | Display unit and electronic apparatus | |
TW201213862A (en) | Stereoscopic display device and display drive circuit | |
JP5774675B2 (en) | Display device | |
WO2011058728A1 (en) | Liquid crystal display | |
CN101276078B (en) | Liquid crystal display device | |
JP4738470B2 (en) | Illumination device and display device including the same | |
CN105911689B (en) | Display base plate, display panel and display device | |
JP2005078070A (en) | Structure of display capable of making both side display and driving method for the same | |
JP6749824B2 (en) | Display device and lighting device | |
WO2018076610A1 (en) | Display device and control method therefor | |
US9448434B2 (en) | Liquid crystal display panel and method for driving the same | |
JP2001166739A (en) | Optical display system and method, active and passive dithering using double refraction, color image superposition, and display emphasis using phase integrating polarizing switch | |
TWI284219B (en) | Liquid crystal display device | |
WO2014109026A1 (en) | Display device | |
JP2008261944A (en) | Liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10829692 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10829692 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |