Nothing Special   »   [go: up one dir, main page]

WO2011051121A1 - Wärmealterungsbeständige polyamide mit flammschutz - Google Patents

Wärmealterungsbeständige polyamide mit flammschutz Download PDF

Info

Publication number
WO2011051121A1
WO2011051121A1 PCT/EP2010/065580 EP2010065580W WO2011051121A1 WO 2011051121 A1 WO2011051121 A1 WO 2011051121A1 EP 2010065580 W EP2010065580 W EP 2010065580W WO 2011051121 A1 WO2011051121 A1 WO 2011051121A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding compositions
acid
thermoplastic molding
compositions according
component
Prior art date
Application number
PCT/EP2010/065580
Other languages
English (en)
French (fr)
Inventor
Manoranjan Prusty
Martin Baumert
Michael Roth
Klaus Uske
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012535736A priority Critical patent/JP5496351B2/ja
Priority to US13/504,524 priority patent/US8450407B2/en
Priority to MX2012004654A priority patent/MX2012004654A/es
Priority to EP10774157.1A priority patent/EP2493969B1/de
Application filed by Basf Se filed Critical Basf Se
Priority to ES10774157T priority patent/ES2429839T3/es
Priority to KR1020127013569A priority patent/KR101865667B1/ko
Priority to PL10774157T priority patent/PL2493969T3/pl
Priority to CN2010800481957A priority patent/CN102666693A/zh
Priority to RU2012121580/04A priority patent/RU2541527C2/ru
Priority to AU2010311727A priority patent/AU2010311727B2/en
Priority to CA2778491A priority patent/CA2778491A1/en
Priority to BR112012009655A priority patent/BR112012009655B1/pt
Priority to SI201030379T priority patent/SI2493969T1/sl
Publication of WO2011051121A1 publication Critical patent/WO2011051121A1/de
Priority to IL218750A priority patent/IL218750A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34928Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/5205Salts of P-acids with N-bases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention relates to thermoplastic molding compositions containing
  • the invention relates to the use of the molding compositions according to the invention for the production of fibers, films and moldings of any kind, as well as the moldings obtainable in this case.
  • Thermoplastic polyamides such as PA6 and PA66 are often used in the form of glass-fiber-reinforced molding compositions as construction materials for components which are exposed to elevated temperatures during their service life, resulting in thermo-oxidative damage.
  • thermo-oxidative damage By adding known heat stabilizers, although the occurrence of the thermo-oxidative damage can be delayed, it can not be prevented permanently. in a fall of the mechanical characteristics expresses.
  • the improvement of the heat aging resistance (WAB) of polyamides is highly desirable, as it allows longer lifetimes for thermally stressed components can be achieved, or their failure risk can be reduced. Alternatively, an improved WAB may also allow the components to be used at higher temperatures.
  • the heat aging resistance is still insufficient in the known molding compositions, especially over longer periods of thermal stress.
  • the surface of the moldings is in need of improvement, since in the heat aging form porous spots and blistering occurs.
  • Combinations of polyethyleneimines with iron powder are proposed in the recent EP application Serial No. 08171803.3 for improving the MCA.
  • the molding compositions of the invention contain 10 to 98, preferably 20 to 97 and in particular 25 to 90 wt .-% of at least one polyamide.
  • the polyamides of the molding compositions according to the invention generally have a viscosity number of 90 to 350, preferably 1 10 to 240 ml / g, determined in a 0.5 wt .-% solution in 96 wt .-% sulfuric acid at 25 ° C according to ISO 307.
  • Semicrystalline or amorphous resins having a weight average molecular weight of at least 5,000 e.g. U.S. Patents 2,071,250, 2,071,251, 2,130,523, 2,130,948, 2,241,322, 2,312,966, 2,512,606 and 3,393,210 are preferred.
  • polyamides which are derived from lactams having 7 to 13 ring members, such as polycaprolactam, polycapryllactam and polylaurolactam, and also polyamides which are obtained by reacting dicarboxylic acids with diamines.
  • alkanedicarboxylic acids having 6 to 12, in particular 6 to 10 carbon atoms and aromatic dicarboxylic acids can be used.
  • adipic acid, azelaic acid, sebacic acid, dodecanedioic acid and terephthalic and / or isophthalic acid are mentioned as acids.
  • Suitable diamines are particularly alkanediamines having 6 to 12, especially 6 to 8 carbon atoms and m-xylylenediamine are suitable (for example Ultramid ® X17 from BASF SE, a 1: 1 molar ratio of MXDA with adipic acid), di- (4-aminophenyl) methane, Di- (4-amino-cyclohexyl) -methane, 2,2-di- (4-aminophenyl) -propane, 2,2-di- (4-aminocyclohexyl) -propane or 1,5-diamino-2- methyl-pentane.
  • Ultramid ® X17 from BASF SE, a 1: 1 molar ratio of MXDA with adipic acid
  • di- (4-aminophenyl) methane Di- (4-amino-cyclohexyl) -methane
  • Preferred polyamides are polyhexamethylene adipamide, polyhexamethylene sebacamide and polycaprolactam and copolyamides 6/66, in particular with a proportion of 5 to 95 wt .-% of caprolactam units (for example Ultramid ® C31 BASF SE).
  • polyamides are obtainable from ⁇ -aminoalkyl nitriles such as, for example, aminocapronitrile (PA 6) and adiponitrile with hexamethylenediamine (PA 66) by so-called direct polymerization in the presence of water, as for example in DE-A 10313681, EP-A 1 198491 and EP 922065 described.
  • ⁇ -aminoalkyl nitriles such as, for example, aminocapronitrile (PA 6) and adiponitrile with hexamethylenediamine (PA 66) by so-called direct polymerization in the presence of water, as for example in DE-A 10313681, EP-A 1 198491 and EP 922065 described.
  • polyamides which are e.g. are obtainable by condensation of 1, 4-diaminobutane with adipic acid at elevated temperature (polyamide 4.6). Manufacturing processes for polyamides of this structure are known e.g. in EP-A 38 094, EP-A 38 582 and EP-A 39 524 described.
  • polyamides which are obtainable by copolymerization of two or more of the abovementioned monomers or mixtures of a plurality of polyamides are suitable, the mixing ratio being arbitrary. Particular preference is given to mixtures of polyamide 66 with other polyamides, in particular copolyamides 6/66.
  • the triamine content is less than 0.5, preferably less than 0.3 wt .-% (see EP-A 299 444).
  • Further high-temperature-resistant polyamides are known from EP-A 19 94 075 (PA 6T / 6I / MXD6)
  • the production of the preferred partly aromatic copolyamides with a low triamine content can be carried out by the processes described in EP-A 129 195 and 129 196.
  • PA 46 tetramethylenediamine, adipic acid
  • PA 66 hexamethylenediamine, adipic acid
  • PA 610 hexamethylenediamine, sebacic acid
  • PA 612 hexamethylenediamine, decanedicarboxylic acid
  • PA 613 hexamethylenediamine, undecanedicarboxylic acid
  • PA 1212 1, 12-dodecanediamine, decanedicarboxylic acid
  • PA 1313 1, 13-diaminotridecane, undecanedicarboxylic acid
  • PA 6T hexamethylenediamine, terephthalic acid
  • PA MXD6 m-xylylenediamine, adipic acid
  • PA 9 T 1, 9-nonanediamine, adipic acid
  • PA 6I hexamethylenediamine, isophthalic acid
  • PA 6-3-T trimethylhexamethylenediamine, terephthalic acid
  • PA 6 / 6T (see PA 6 and PA 6T)
  • PA 6/66 (see PA 6 and PA 66)
  • PA 6/12 see PA 6 and PA 12
  • PA 66/6/610 see PA 66, PA 6 and PA 610)
  • PA 6I / 6T see PA 61 and PA 6T
  • PA PA PACM 12 diaminodicyclohexylmethane, laurolactam
  • PA 6I / 6T / PACM such as PA 6I / 6T + diaminodicyclohexylmethane
  • PA PDA-T phenylenediamine, terephthalic acid
  • the molding compositions of the invention contain from 0.001 to 20, preferably from 0.05 to 10, and in particular from 0.1 to 5,% by weight of iron powder having a particle size (also referred to as particle size) of not more than 10 ⁇ m (d.sub.50 value). , which is obtainable by thermal decomposition of iron pentacarbonyl.
  • ⁇ -Fe (ferrite) forms space-centered cubic lattice, is magnetizable, dissolves little
  • Carbon occurs in pure iron up to 928 ° C. At 770 ° C (Curie temperature) it loses its ferromagnetic properties and becomes paramagnetic; Iron in the temperature range of 770 to 928 ° C is also referred to as ⁇ -Fe. At ordinary temperature and a pressure of at least
  • ⁇ -Fe is converted into so-called ⁇ -Fe with a volumetric reduction of approx. 0.20 cm 3 / mol, with the density increasing from 7.85 to 9.1 (at 20,000 MPa).
  • ⁇ -Fe (austenite) forms surface-centered cubic lattice, is non-magnetic, dissolves a lot of carbon and can only be observed in the temperature range of 928 to 1398 ° C.
  • ⁇ -Fe body centered, exists between 1398 ° C and the melting point 1539 ° C.
  • Metallic iron is generally silver white, with a density of 7.874 (heavy metal), melting point 1539 ° C, boiling point 2880 ° C; specific heat (between 18 and 100 ° C) about 0.5 g- 1 K- 1 , tensile strength 220 to 280 N / mm 2 . The values apply to the chemically pure iron.
  • Iron is produced industrially by smelting iron ores, iron slags, pebbles, gout dust and by remelting scrap and alloy.
  • the iron powder of the invention is prepared by thermal decomposition of Eisenpen- tacarbonyl, preferably at temperatures of 150 ° C to 350 ° C.
  • the particles (particles) obtainable in this case have a preferably spherical shape, i. spherical or nearly spherical shape (also referred to as spherulitic).
  • Preferred iron powder has a particle size distribution as described below, the particle size distribution being determined by laser diffraction in a highly diluted aqueous suspension (e.g.
  • the particle size (and distribution) described below can be adjusted by milling and / or sieving.
  • the component B) has an iron content of 97 to 99.8 g / 100 g, preferably from 97.5 to 99.6 g / 100 g.
  • the content of further metals is preferably below 1000 ppm, in particular below 100 ppm and very particularly below 10 ppm.
  • the Fe content is usually determined by infrared spectroscopy.
  • the C content is preferably 0.01 to 1.2, preferably 0.05 to 1.1, g / 100 g, more preferably 0.4 to 1.1 g / 100 g. In the preferred iron powders, this C content corresponds to those which are not reduced with hydrogen following the thermal decomposition.
  • the C content is usually determined by burning the sample amount in the oxygen stream and subsequent IR detection of the resulting CO 2 gas (using Leco CS230 or CS-mat 6250 from Juwe) based on ASTM E1019.
  • the nitrogen content is preferably max. 1.5 g / 100 g, preferably from 0.01 to 1.2 g / 100 g.
  • the oxygen content is preferably max. 1.3 g / 100 g, preferably 0.3 to
  • N and O are made by heating the sample in the graphite furnace to approx. 2100 ° C.
  • the oxygen obtained in the sample is converted to CO and measured by an IR detector.
  • the N released from the N-containing compounds under the reaction conditions is discharged with the carrier gas and detected and recorded by means of WLD (Thermal Conductivity Detector / TC) (both methods in accordance with ASTM E1019).
  • the tap density is preferably 2.5 to 5 g / cm 3 , in particular 2.7 to 4.4 g / cm 3 . This is generally understood to mean density when, for example, the powder is filled into the container and shaken to achieve compaction.
  • Further preferred iron powders may be surface-coated with iron phosphate, iron phosphite or S1O2.
  • the BET surface area in accordance with DIN ISO 9277 is preferably from 0.1 to 10 m 2 / g, in particular from 0.1 to 5 m 2 / g, preferably from 0.2 to 1 m 2 / g and in particular from 0.4 to 1 m 2 / g.
  • the mass fraction of the iron in the polymer is usually 15 to 80, preferably 20 to 40% by mass.
  • the molding compositions according to the invention contain 1 to 40, preferably 2 to 30 and in particular 5 to 20 wt .-% of a halogen-free flame retardant selected from the group of nitrogen-containing or phosphorus-containing compounds or PN condensates or mixtures thereof.
  • the melamine cyanurate which is preferably suitable according to the invention is a reaction product of preferably equimolar amounts of melamine (formula I) and cyanuric acid or isocyanuric acid (formulas Ia and Ib)
  • the commercially available product is a white powder with an average particle size dso of 1, 5 - 7 ⁇ .
  • melamine melamine borate
  • oxalate phosphate prim.
  • pyrophosphate sec neopentyl glycol boronic acid melamine and polymeric melamine phosphate (CAS No. 56386-64-2).
  • Suitable guanidine salts are
  • compounds are meant to be both e.g. Benzogumanamin itself and its adducts or salts as well as the nitrogen-substituted derivatives and its adducts or salts are understood.
  • ammonium polyphosphate with n about 200 to 1000, preferably 600 to 800, and tris (hydroxyethyl) isocyanurate (THEIC) of the formula (II)
  • Ar aromatic carboxylic acids
  • Suitable carboxylic acids are, for example, phthalic acid, isophthalic acid, terephthalic acid, 1,3,5-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, pyromellitic acid, melanoic acid, prehnitic acid, 1-naphthoic acid, 2-naphthoic acid, naphthalene dicarboxylic acids and anthracene carboxylic acids.
  • the preparation is carried out by reacting the tris (hydroxyethyl) isocyanurate with the acids, their alkyl esters or their halides according to the processes of
  • reaction products are a mixture of monomeric and oligomeric esters, which may also be crosslinked.
  • the degree of oligomerization is usually from 2 to about 100, preferably from 2 to 20.
  • Preference is given to using mixtures of THEIC and / or its reaction products with phosphorus-containing nitrogen compounds, in particular (NH4POs) n or melamine pyrophosphate or polymeric melamine phosphate.
  • the mixing ratio e.g. from (NH4POs) n to THEIC is preferably 90 to 50 to 10 to 50, especially 80 to 50 to 50 to
  • benzoguanamine compounds of the formula (III) in which R, R 'are straight-chain or branched alkyl radicals having 1 to 10 C atoms, preferably hydrogen, and in particular their adducts with phosphoric acid, boric acid and / or pyrophosphoric acid.
  • R, R ' have the meaning given in formula III and their salts with phosphoric acid, boric acid and / or pyrophosphoric acid and glycolurils of the formula (V) or its salts with the abovementioned acids
  • Suitable products are commercially available or according to DE-A 196 14 424.
  • the cyanoguanidine (Formula VI) which can be used according to the invention is obtained e.g. by reaction of calcium cyanamide with carbonic acid, wherein the resulting cyanamide dimerizes at pH 9 to 10 to cyanguanidine.
  • HN XH The commercially available product is a white powder with a melting point of 209 ° C to 21 1 ° C.
  • Phosphorus acid salts of the formula (I) and / or diphosphinic acid salts of the formula (II) and / or their polymers are preferred as phosphorus-containing inorganic compounds,
  • R 1 , R 2 is hydrogen, C 1 - to C 6 -alkyl, preferably C 1 - to C 4 -alkyl, linear or branched, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl , n-pentyl;
  • R 3 is C 1 -C 10 -alkylene, linear or branched, for example methylene, ethylene, n-propylene, isopropylene, n-butylene, tert-butylene, n-pentylene, n-octylene, n-dodecylene; Arylene, eg phenylene, naphthylene;
  • Alkylarylene e.g. Methyl-phenylene, ethyl-phenylene, tert-butyl-phenylene, methyl-naphthylene, ethyl-naphthylene, tert-butyl-naphthylene;
  • Arylalkylene e.g. Phenylmethylene, phenylethylene, phenylpropylene, phenylbutylene;
  • M is an alkaline earth, alkali metal, Al, Zn, Fe, boron;
  • n is an integer of 1 to 3;
  • n is an integer of 1 and 3 and
  • x 1 or 2 Particular preference is given to compounds of the formula II in which R 1 and R 2 are hydrogen, where M is preferably Zn or Al and calcium phosphinate is very particularly preferred. Such products are commercially available, for example, as calcium phosphinate.
  • Suitable salts of the formula I or II in which only one radical R 1 or R 2 is hydrogen are, for example, salts of phenylphosphinic acid, their Na and / or Ca salts being preferred.
  • R 1 and R 2 are ethyl radicals, where M is preferably Zn or Ca and Al diethylphosphinate is particularly preferred.
  • Al-diethylphosphinate in admixture with melamine cyanurate and / or melamine polyphosphate (3: 1 to 1, 5: 1) are preferred as the flame retardant system.
  • These contain up to 10, preferably up to 6 wt .-% (based on 100 wt .-% of the above mixture), preferably a borate synergist.
  • Suitable metal borates are borates of metals of the 1st to 3rd main group and the 1 to 8 subgroup of the periodic table, wherein anhydrous zinc borate or zinc borate of the general formula in which x is from 3.3 to 3.7, are preferred.
  • This zinc borate is essentially stable at the high processing temperatures of the partly aromatic polyamides and has only a slight tendency to split off the water of hydration. Accordingly, zinc borates with a higher proportion of hydrated water are generally less suitable as synergists. It is also possible to use mixtures of metal borates with metal oxides, the mixing ratio being arbitrary.
  • the phosphorus-containing compounds of component C) are preferably organic and inorganic phosphorus-containing compounds in which the phosphorus has the valence state -3 to +5.
  • level of oxidation is understood to mean the term "oxidation state” as used in the textbook of inorganic chemistry by A.F. Hollemann and E. Wiberg, Walter des Gruyter and Co. (1964, 57th to 70th edition), pages 166 to 177, is reproduced.
  • Phosphorus compounds of valence levels -3 to +5 are derived from phosphine (-3), diphosphine (-2), phosphine oxide (-1), elemental phosphorus (+0), hypophosphorous acid (+1), phosphorous acid (+3), Hypodiphosphoric acid (+4) and phosphoric acid (+5).
  • phosphorus compounds of the phosphine class which have the valence state -3 are aromatic phosphines, such as triphenylphosphine, tritolylphosphine, trinonylphosphine, trinaphthylphosphine and trisnonylphenylphosphine, among others. Triphenylphosphine is particularly suitable.
  • Examples of phosphorus compounds of the diphosphine class which have the valence state -2 are tetraphenyldiphosphine, tetranaphthyldiphosphine and the like. Particularly suitable is tetranaphthyldiphosphine.
  • Phosphorus compounds of valence state -1 are derived from the phosphine oxide.
  • R 1 , R 2 and R 3 denote identical or different alkyl, aryl, alkylaryl or cycloalkyl groups having 8 to 40 carbon atoms.
  • phosphine oxides are triphenylphosphine oxide, tritolylphosphine oxide, trisynylphenylphosphine oxide, tricyclohexylphosphine oxide, tris (n-butyl) phosphine oxide, tris (n-hexyl) phosphine oxide, tris (n-octyl) phosphine oxide, tris (cyanoethyl) - phosphine oxide, benzylbis (cyclohexyl) phosphine oxide, benzylbisphenylphosphine oxide, phenylbis (n-hexyl) phosphine oxide.
  • oxidized reaction products of phosphine with aldehydes especially from t-butylphosphine with glyoxal.
  • Particular preference is given to using triphenylphosphine oxide, tricyclohexlyphosphine oxide, tris (n-octyl) phosphine oxide and tris (cyanoethyl) phosphine oxide.
  • triphenylphosphine sulfide and its derivatives of phosphine oxides as described above.
  • Phosphorus of the valence state +0 is the elemental phosphorus. Eligible are red and black phosphorus. Preference is given to red phosphorus.
  • Phosphorus compounds of the "oxidation state" +1 are, for example, hypophosphites of purely organic nature, for example organic hypophosphites, such as cellulose hypophosphite esters, esters of hypophosphorous acids with diols, for example of 1,10-dodecyldiol.
  • organic hypophosphites such as cellulose hypophosphite esters, esters of hypophosphorous acids with diols, for example of 1,10-dodecyldiol.
  • Substituted phosphinic acids and their anhydrides, such as diphenylphosphinic can be used.
  • diphenylphosphinic acid di-p-tolylphosphinic acid, di-cresylphosphinic anhydride
  • diphenylphosphinic acid di-p-tolylphosphinic acid, di-cresylphosphinic anhydride
  • hydroquinone ethylene glycol
  • propylene glycol bis (diphenylphosphinic) - esters inter alia in question.
  • aryl (alkyl) phosphinic acid amides such as, for example, diphenylphosphinic acid dimethylamide and sulfonamidoaryl (alkyl) phosphinic acid derivatives, for example p-tolylsulfonamidodiphenylphosphinic acid.
  • Hydroquinone and ethylene glycol bis (diphenylphosphinic) esters and the bis-diphenylphosphinate of hydroquinone are preferably used.
  • Phosphorus compounds of the oxidation state +3 are derived from the phosphorous acid. Suitable are cyclic phosphonates derived from pentaerythritol, neopentyl glycol or catechol, e.g.
  • +3 valence phosphorous is in triaryl (alkyl) phosphites, e.g.
  • Triphenyl phosphite tris (4-decylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite or phenyldidecyl phosphite and the like. contain. But there are also diphosphites, such. Propylene glycol-1, 2-bis (diphosphite) or cyclic phosphites derived from pentaerythritol, neopentyl glycol or catechol, in question.
  • methyl neopentyl glycol phosphonate and phosphite and dimethyl pentaerythritol diphosphonate and phosphite are particularly preferred.
  • hypodiphosphates such as. Tetraphenyl hypodiphosphate or Bisneopentylhypodiphosphat into consideration.
  • Suitable phosphorus compounds of the oxidation state +5 are, in particular, alkyl- and aryl-substituted phosphates.
  • Examples are phenylbisdodecylphosphate, phenylethylhydrogenphosphate, phenylbis (3,5,5-trimethylhexyl) phosphate, ethyldiphenylphosphate, 2-ethylhexyldi (tolyl) phosphate, diphenylhydrogenphosphate, bis (2-ethylhexyl) p-tolylphosphate, tritolylphosphate, bis (2-ethylhexyl) phenyl phosphate, di (nonyl) phenyl phosphate, phenylmethyl hydrogen phosphate, di (dodecyl) p-tolyl phosphate, p-tolylbis (2,5,5-trimethylhexyl) phosphate or 2-ethylhexyl
  • R 4 -R 7 is an aromatic radical having 6 to 20 C atoms, preferably a phenyl radical which may be substituted by alkyl groups having 1 to 4 C atoms, preferably methyl,
  • R 8 is a divalent phenol radical, preferred and n an average value between 0.1 to 100, preferably 0.5 to 50, in particular 0.8 to 10 and very particularly 1 to 5.
  • cyclic phosphates can also be used. Particularly suitable here is diphenylpentaerythritol diphosphate and phenylneopentyl phosphate.
  • diphenylpentaerythritol diphosphate and phenylneopentyl phosphate are still oligomeric and polymeric phosphorus compounds in question.
  • Such polymeric, halogen-free organic phosphorus compounds containing phosphorus in the polymer chain are formed, for example, in the preparation of pentacyclic, unsaturated phosphine dihalides, as described, for example, in DE-A 20 36 173.
  • the molecular weight measured by vapor pressure osmometry in dimethylformamide, the Polyphospholinoxide should be in the range of 500 to 7000, preferably in the range of 700 to 2000.
  • the phosphorus here has the oxidation state -1.
  • inorganic coordination polymers of aryl (alkyl) phosphinic acids such as poly-ß-sodium (l) -methylphenylphosphinat be used. Their preparation is given in DE-A 31 40 520.
  • the phosphorus has the oxidation number +1.
  • halogen-free polymeric phosphorus compounds by the reaction of a phosphonic acid chloride, such as phenyl, methyl, propyl, styryl and vinylphosphonic dichloride with bifunctional phenols, such as hydroquinone, resorcinol, 2,3,5-trimethylhydroquinone, bisphenol-A , Tetramethylbiphenol-A arise.
  • polymeric phosphorus compounds which may be present in the molding compositions according to the invention are prepared by reaction of phosphorus oxide trichloride or phosphoric ester dichlorides with a mixture of mono-, bi- and trifunctional phenols and compounds carrying other hydroxyl groups (see Houben-Weyl- Müller, Thieme-Verlag Stuttgart, Organic Phosphorus Compounds Part II (1963)).
  • polymeric phosphonates can be prepared by transesterification reactions of phosphonic acid esters with bifunctional phenols (cf DE-A 29 25 208) or by reactions of phosphonic acid esters with diamines or diamides or hydrazides (compare US Pat. No. 4,403,075).
  • inorganic poly ammonium phosphate
  • Preferred compounds C) are those in which R 1 to R 20 independently of one another are hydrogen and / or a methyl radical.
  • R 1 to R 20 independently of one another are methyl
  • such compounds C) are preferred in which the radicals R 1 , R 5 , R 6 , R 10 , R 11 , R 15 , R 16 , R 20 in ortho position to the oxygen of the phosphate group represent at least one methyl radical.
  • substituents are SO 2 and S, and most preferably C (CH 3) 2 for X in the above formula (VI).
  • n is preferably 0.5 to 5, in particular 0.7 to 2 and in particular "1" as an average value.
  • n as an average value results from the preparation of the compounds listed above, so that the degree of oligomerization is usually less than 10 and small amounts (usually ⁇ 5 wt .-%) are included in triphenyl phosphate, this being different from batch to batch.
  • Compounds C) are commercially available as CR-741 from Daihachi.
  • P-N condensates are suitable, in particular those as described in the
  • Particularly preferred combinations C) are mixtures of phosphorus- and nitrogen-containing compounds, wherein mixing ratios of 1:10 to 10: 1, preferably 1: 9 to 9: 1 are preferred.
  • the molding compositions of the invention may contain up to 70, preferably up to 50 wt .-% of other additives.
  • Fibrous or particulate fillers D1 which may be mentioned are carbon fibers, glass fibers, glass spheres, amorphous silica, calcium silicate, calcium metasilicate, magnesium carbonate, kaolin, chalk, powdered quartz, mica, barium sulfate and feldspar, which are used in amounts of from 1 to 50% by weight. %, in particular 1 to 40, preferably 10 to 40 wt .-% are used.
  • Preferred fibrous fillers are carbon fibers, aramid fibers and potassium titanate fibers, glass fibers being particularly preferred as E glass. These can be used as rovings or cut glass in the commercial forms.
  • the fibrous fillers can be surface-pretreated with a silane compound.
  • Suitable silane compounds are those of the general formula
  • X is NH 2 -, CH 2 -CH-, HO-,
  • O n is an integer from 2 to 10, preferably 3 to 4
  • n is an integer from 1 to 5, preferably 1 to 2
  • k is an integer from 1 to 3, preferably 1
  • Preferred silane compounds are aminopropyltrimethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane and the corresponding silanes which contain a glycidyl group as substituent X.
  • the silane compounds are generally used in amounts of from 0.01 to 2, preferably from 0.025 to 1.0, and in particular from 0.05 to 0.5,% by weight (based on E)) of the surface coating.
  • acicular mineral fillers are also suitable.
  • needle-shaped mineral fillers are understood to mean a mineral filler with a pronounced, needle-like character.
  • An example is acicular wollastonite.
  • the mineral has an L / D (length diameter) ratio of 8: 1 to 35: 1, preferably 8: 1 to 1: 1: 1.
  • the mineral filler may optionally be pretreated with the silane compounds mentioned above; however, pretreatment is not absolutely necessary.
  • fillers are kaolin, calcined kaolin, wollastonite, talc and chalk called as well as platelet or needle-shaped nanofillers preferably in amounts between 0.1 and 10%.
  • Boehmite, bentonite, montmorillonite, vermicullite, hectorite and laponite are preferably used for this purpose.
  • the addition of the platelet- or needle-shaped nanofillers to the nanocomposites according to the invention leads to a further increase in the mechanical strength.
  • the molding compositions according to the invention may contain 0.05 to 3, preferably 0.1 to 1, 5 and in particular 0.1 to 1 wt .-% of a lubricant.
  • a lubricant Preference is given to Al, alkali metal, alkaline earth metal salts or esters or amides of fatty acids having 10 to 44 carbon atoms, preferably having 12 to 44 carbon atoms.
  • the metal ions are preferably alkaline earth and Al, with Ca or Mg being particularly preferred.
  • Preferred metal salts are Ca-stearate and Ca-montanate as well as Al-stearate and a mixture of Al-distearate with Al-tristearate (Alugel® 30DF from Baerlocher).
  • the carboxylic acids can be 1- or 2-valent. Examples which may be mentioned are pelargonic acid, palmitic acid, lauric acid, margaric acid, dodecanedioic acid, behenic acid and particularly preferably stearic acid, capric acid and montanic acid (mixture of fatty acids having 30 to 40 carbon atoms).
  • the aliphatic alcohols can be 1 - to 4-valent.
  • examples of alcohols are n-butanol, n-octanol, stearyl alcohol, ethylene glycol, propylene glycol, neopentyl glycol, pentaerythritol, with glycerol and pentaerythritol being preferred.
  • the aliphatic amines can be 1 - to 3-valent. Examples of these are stearylamine, ethylenediamine, propylenediamine, hexamethylenediamine, di (6-aminohexyl) amine, with ethylenediamine and hexamethylenediamine being particularly preferred.
  • preferred esters or amides are glycerol distearate, glycerol tristearate, ethylenediamine distearate, glycerol monopalmitate, glycerol trilaurate, glycerol monobehenate and pentaerythritol tetrastearate.
  • the molding compositions according to the invention may contain from 0.05 to 3, preferably from 0.1 to 1, 5 and in particular from 0.1 to 1,% by weight of a Cu stabilizer,
  • a Cu (l) halide in particular in admixture with an alkali halide, preferably KJ, in particular in the ratio 1: 4, or a sterically hindered phenol or mixtures thereof.
  • Suitable salts of monovalent copper are preferably copper (I) acetate, copper (I) chloride, bromide and iodide. These are contained in amounts of 5 to 500 ppm of copper, preferably 10 to 250 ppm, based on polyamide.
  • the advantageous properties are obtained in particular when the copper is present in molecular distribution in the polyamide.
  • This is achieved by adding to the molding compound a concentrate containing polyamide, a salt of monovalent copper and an alkali halide in the form of a solid, homogeneous solution.
  • a typical concentrate is e.g. from 79 to 95 wt .-% polyamide and 21 to 5 wt .-% of a mixture of copper iodide or bromide and potassium iodide.
  • the concentration of the solid homogeneous solution of copper is preferably between 0.3 and 3, in particular between 0.5 and 2 wt .-%, based on the total weight of the solution and the molar ratio of copper (I) iodide to potassium iodide is between 1 and 1 1, 5, preferably between 1 and 5.
  • Suitable polyamides for the concentrate are homopolyamides and copolyamides, in particular polyamide 6 and polyamide 6.6.
  • Suitable hindered phenols D3) are in principle all compounds having a phenolic structure which have at least one sterically demanding group on the phenolic ring.
  • R 1 and R 2 are an alkyl group, a substituted alkyl group or a substituted triazole group, wherein the radicals R 1 and R 2 may be the same or different and R 3 is an alkyl group, a substituted alkyl group, an alkoxy group or a substituted amino group.
  • Antioxidants of the type mentioned are described, for example, in DE-A 27 02 661 (US Pat. No. 4,360,617).
  • Another group of preferred sterically hindered phenols are derived from substituted benzenecarboxylic acids, especially substituted benzenepropionic acids.
  • Particularly preferred compounds of this class are compounds of the formula
  • R 4 , R 5 , R 7 and R 8 independently of one another are C 1 -C 8 -alkyl groups which in turn may be substituted (at least one of which is a sterically demanding group) and R 6 is a divalent aliphatic radical having 1 to 10 C Atoms, which may also have CO bonds in the main chain.
  • a total of sterically hindered phenols may be mentioned: 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 1,6-hexanediol bis [3- (3,5-di-tert. -butyl-4-hydroxyphenyl) -propionate), pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxy-phenol) -propionate], distearyl-3,5-di-tert.
  • the antioxidants D which can be used individually or as mixtures, are in an amount of 0.05 to 3 wt .-%, preferably from 0.1 to 1, 5 wt .-%, in particular 0.1 to 1 Wt .-%, based on the total weight of the molding compositions A) to D).
  • sterically hindered phenols having no more than one sterically hindered group ortho to the phenolic hydroxy group have been found to be particularly advantageous; especially when assessing color stability when stored in diffused light for extended periods of time.
  • the molding compositions according to the invention may contain 0.05 to 5, preferably 0.1 to 2 and in particular 0.25 to 1 wt .-% of a nigrosine.
  • Nigrosines are generally understood to mean a group of black or gray indulene-related phenazine dyes (azine dyes) in various embodiments (water-soluble, fat-soluble, gas-soluble) used in wool dyeing and printing, in black dyeing of silks, for dyeing of leather, shoe creams, varnishes, plastics, stoving lacquers, inks and the like, as well as being used as microscope dyes.
  • the nigrosine is technically obtained by heating nitrobenzene, aniline and aniline with anhydrous metal.
  • Component D4 can be used as the free base or else as the salt (for example hydrochloride).
  • nigrosines can be found, for example, in the electronic lexicon Rompp Online, Version 2.8, Thieme-Verlag Stuttgart, 2006, keyword "nigrosine".
  • Other customary additives D) are, for example, in amounts of up to 25, preferably up to 20 wt .-% rubber-elastic polymers (often also referred to as impact modifiers, elastomers or rubbers).
  • these are copolymers which are preferably composed of at least two of the following monomers: ethylene, propylene, butadiene, isobutene, isoprene, chloroprene, vinyl acetate, styrene, acrylonitrile and acrylic or methacrylic esters with 1 to 18 C Atoms in the alcohol component.
  • Such polymers are described, for example, in Houben-Weyl, Methods of Organic Chemistry, Vol. 14/1 (Georg Thieme Verlag, Stuttgart, 1961). Pages 392 to 406 and in the monograph by CB Bucknall, "Toughened Plastics" (Applied Science Publishers, London, 1977). In the following some preferred types of such elastomers are presented.
  • EPM ethylene-propylene
  • EPDM ethylene-propylene-diene
  • diene monomers for EPDM rubbers for example, conjugated dienes such as isoprene and butadiene, non-conjugated dienes having 5 to 25 carbon atoms such as penta-1, 4-diene, hexa-1, 4-diene, hexa-1, 5 -diene, 2,5-dimethylhexa-1,5-diene and octa-1,4-diene, cyclic dienes such as cyclopentadiene, cyclohexadienes, cyclooctadienes and dicyclopentadienes, and alkenylnorbornenes such as 5-ethylidene-2-norbornene, 5- Butylidene-2-norbornene, 2-methallyl-5-norbornene, 2-isopropenyl-5-norbornene and tricyclodienes such as 3-methyltricyclo (5.2.1.0.2.6) -3,8-decadiene or mixtures thereof.
  • the diene content of the EPDM rubbers is preferably 0.5 to 50, in particular 1 to 8 wt .-%, based on the total weight of the rubber.
  • EPM or EPDM rubbers may preferably also be grafted with reactive carboxylic acids or their derivatives.
  • reactive carboxylic acids or their derivatives e.g. Acrylic acid, methacrylic acid and its derivatives, e.g. Glycidyl (meth) acrylate, and called maleic anhydride.
  • Another group of preferred rubbers are copolymers of ethylene with acrylic acid and / or methacrylic acid and / or the esters of these acids.
  • the rubbers may also contain dicarboxylic acids such as maleic acid and fumaric acid or derivatives of these acids, for example esters and anhydrides, and / or monomers containing epoxy groups.
  • dicarboxylic acids such as maleic acid and fumaric acid or derivatives of these acids, for example esters and anhydrides, and / or monomers containing epoxy groups.
  • the monomers are preferably incorporated into the rubber by adding monomers containing dicarboxylic acid or epoxy groups of the general formulas I or II or III or IV to the monomer mixture
  • R 1 to R 9 represent hydrogen or alkyl groups having 1 to 6 carbon atoms and m is an integer of 0 to 20, g is an integer of 0 to 10 and p is an integer of 0 to 5.
  • the radicals R 1 to R 9 preferably denote hydrogen, where m is 0 or 1 and g is 1.
  • the corresponding compounds are maleic acid, fumaric acid, maleic anhydride, allyl glycidyl ether and vinyl glycidyl ether.
  • Preferred compounds of formulas I, II and IV are maleic acid, maleic anhydride and epoxy group-containing esters of acrylic acid and / or methacrylic acid, such as glycidyl acrylate, glycidyl methacrylate and the esters with tertiary alcohols, such as t-butyl acrylate. Although the latter have no free carboxyl groups, their behavior is close to the free acids and are therefore termed monomers with latent carboxyl groups.
  • the copolymers consist of 50 to 98 wt .-% of ethylene, 0.1 to
  • esters of acrylic and / or methacrylic acid are the methyl, ethyl, propyl and i- or t-butyl esters.
  • vinyl esters and vinyl ethers can also be used as comonomers.
  • the ethylene copolymers described above can be prepared by methods known per se, preferably by random copolymerization under high pressure and elevated temperature. Corresponding methods are generally known.
  • Preferred elastomers are also emulsion polymers, their preparation e.g. at Blackley in the monograph "Emulsion Polymerization".
  • the emulsifiers and catalysts which can be used are known per se. Basically, homogeneously constructed elastomers or those with a shell structure can be used. The shell-like structure is determined by the order of addition of the individual monomers; the morphology of the polymers is also influenced by this order of addition.
  • monomers for the preparation of the rubber portion of the elastomers acrylates such as e.g.
  • These monomers may be reacted with other monomers such as e.g. Styrene, acrylonitrile, vinyl ethers and other acrylates or methacrylates such as methyl methacrylate, methyl acrylate, ethyl acrylate and propyl acrylate are copolymerized.
  • the soft or rubber phase (with a glass transition temperature below 0 ° C) of the elastomers may be the core, the outer shell, or a middle shell (for elastomers having more than two shell construction); in the case of multi-shell elastomers, it is also possible for a plurality of shells to consist of a rubber phase.
  • one or more hard components having glass transition temperatures of more than 20 ° C.
  • these are generally prepared by polymerization of styrene, acrylonitrile, methacrylonitrile, ⁇ -methylstyrene, p-methylstyrene, acrylic esters and methacrylic acid esters such as methyl acrylate, ethyl acrylate and methyl methacrylate as the main monomers.
  • acrylic esters and methacrylic acid esters such as methyl acrylate, ethyl acrylate and methyl methacrylate as the main monomers.
  • smaller proportions of other comonomers can also be used here.
  • emulsion polymers which have reactive groups on the surface.
  • groups are e.g. Epoxy, carboxyl, latent carboxyl, amino or amide groups, and functional groups obtained by concomitant use of monomers of the general formula
  • R 10 is hydrogen or a C 1 - to C 4 -alkyl group
  • R 11 is hydrogen, a C 1 - to C 6 -alkyl group or an aryl group, in particular phenyl
  • R 12 is hydrogen, a C 1 - to C 10 -alkyl, C 1 - to C 12 -aryl or -OR 13
  • R 13 is a C 1 - to C 5 -alkyl or C 1 - to C 12 -aryl group which may optionally be substituted by O- or N-containing groups
  • X is a chemical bond, a C 1 -C 10 -alkylene or C 6 -C 12 -alkyl radical Arylene group o-
  • Z is a C 1 -C 10 -alkylene or C 1 -C 12 -arylene group.
  • the graft monomers described in EP-A 208 187 are also suitable for introducing reactive groups on the surface.
  • acrylamide methacrylamide and substituted esters of acrylic acid or methacrylic acid, such as (Nt-butylamino) -ethyl methacrylate, (N, N-dimethylamino) ethyl acrylate, (N, N-dimethylamino) -methyl acrylate and (N, N-) Diethylamino) ethyl acrylate.
  • the particles of the rubber phase can also be crosslinked.
  • monomers acting as crosslinkers are buta-1,3-diene, divinylbenzene, diallyl phthalate and dihydrodicyclopentadienyl acrylate, and also the compounds described in EP-A 50 265.
  • graft-linking monomers may also be used, i. Monomers having two or more polymerizable double bonds, which react at different rates in the polymerization. Preferably, those compounds are used in which at least one reactive group polymerizes at about the same rate as the other monomers, while the other reactive group (or reactive groups) e.g. significantly slower polymerizing (polymerizing).
  • the different polymerization rates bring a certain proportion of unsaturated double bonds in the rubber with it. If a further phase is subsequently grafted onto such a rubber, the double bonds present in the rubber react at least partially with the graft monomers to form chemical bindings, ie. the grafted phase is at least partially linked via chemical bonds to the graft base.
  • graft-crosslinking monomers examples include allyl-containing monomers, in particular allyl esters of ethylenically unsaturated carboxylic acids such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
  • allyl-containing monomers in particular allyl esters of ethylenically unsaturated carboxylic acids such as allyl acrylate, allyl methacrylate, diallyl maleate, diallyl fumarate, diallyl itaconate or the corresponding monoallyl compounds of these dicarboxylic acids.
  • graft-linking monomers there are a variety of other suitable graft-linking monomers; for further details, reference is made here, for example, to US Pat. No. 4,148,846.
  • the proportion of these crosslinking monomers in the impact-modifying polymer is up to 5%
  • graft polymers having a core and at least one outer shell, which have the following structure: Type monomers for the core monomers for the shell
  • III such as I or II n-butyl acrylate, ethyl acrylate, methyl acrylate, buta-1, 3-diene, isoprene, ethylhexyl acrylate
  • graft polymers having a multi-shell structure instead of graft polymers having a multi-shell structure, homogeneous, i. single-shell elastomers of buta-1, 3-diene, isoprene and n-butyl acrylate or copolymers thereof are used. These products can also be prepared by co-use of crosslinking monomers or monomers having reactive groups.
  • emulsion polymers examples include n-butyl acrylate / (meth) acrylic acid copolymers, n-butyl acrylate / glycidyl acrylate or n-butyl acrylate / glycidyl methacrylate copolymers, graft polymers having an inner core of n-butyl acrylate or butadiene-based and an outer shell of the above copolymers and copolymers of ethylene with comonomers which provide reactive groups.
  • the described elastomers may also be prepared by other conventional methods, e.g. by suspension polymerization.
  • Silicone rubbers as described in DE-A 37 25 576, EP-A 235 690, DE-A 38 00 603 and EP-A 319 290, are likewise preferred. Of course, it is also possible to use mixtures of the rubber types listed above.
  • the thermoplastic molding compositions of the invention may contain conventional processing aids such as stabilizers, Oxidationsverzogerer, agents against thermal decomposition and decomposition by ultraviolet light, lubricants and mold release agents, colorants such as dyes and pigments, nucleating agents, plasticizers, etc.
  • processing aids such as stabilizers, Oxidationsverzogerer, agents against thermal decomposition and decomposition by ultraviolet light, lubricants and mold release agents, colorants such as dyes and pigments, nucleating agents, plasticizers, etc.
  • Oxidationsverzogerer and heat stabilizers are sterically hindered phenols and / or phosphites and amines (eg TAD), hydroquinones, aromatic secondary amines such as diphenylamines, various substituted representatives of these groups and mixtures thereof in concentrations up to 1 wt .-%, based on the Weight of the thermoplastic molding compositions called.
  • UV stabilizers which are generally used in amounts of up to 2 wt .-%, based on the molding composition, various substituted resorcinols, salicylates, benzotriazoles and benzophenones may be mentioned.
  • inorganic pigments such as titanium dioxide, ultramarine blue, iron oxide and carbon black, furthermore organic pigments such as phthalocyanines, quinacridones, perylenes and also dyes such as anthraquinones as colorants.
  • organic pigments such as phthalocyanines, quinacridones, perylenes and also dyes such as anthraquinones as colorants.
  • nucleating agents sodium phenylphosphinate, alumina, silica and preferably talc may be used.
  • thermoplastic molding compositions according to the invention can be prepared by processes known per se, in which mixing the starting components in conventional mixing devices such as screw extruders, Brabender mills or Banbury mills and then extruded. After extrusion, the extrudate can be cooled and comminuted. It is also possible to premix individual components and then to add the remaining starting materials individually and / or likewise mixed.
  • the mixing temperatures are usually between 230 and 320 ° C.
  • the components B) to C) and optionally D) can be mixed with a prepolymer, formulated and granulated.
  • the granules obtained are then condensed in solid phase under inert gas continuously or discontinuously at a temperature below the melting point of component A) to the desired viscosity.
  • thermoplastic molding compositions of the invention are characterized by good processability coupled with good mechanical properties, as well as a significantly improved weld line strength and thermal stability.
  • Cylinder head covers are suitable for the production of fibers, films and moldings of any kind.
  • Al-di / tristearate (Alugel® 30 DF from Baerlocher)
  • the molding compositions were prepared on a ZSK 26 at a throughput of 25 kg / h and about 280 ° C flat temperature profile. The following measurements were carried out:
  • VZ: c 5 g / l in 96% sulfuric acid, according to ISO 307
  • compositions of the molding compositions and the results of the measurements are shown in the tables.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Thermoplastische Formmassen, enthaltend A) 10 bis 98 Gew.-% eines Polyamides B) 0,001 bis 20 Gew.-% Eisenpulver mit einer Teilchengröße von maximal 10 μm (d50-Wert) C) 1 bis 40 Gew.-% eines halogenfreien Flammschutzmittels aus der Gruppe der phosphorhaltigen oder stickstoffhaltigen Verbindungen oder P-N-Kondensate oder deren Mischungen D) 0 bis 70 Gew.-% weiterer Zusatzstoffe, wobei die Summe der Gewichtsprozente der Komponenten A) bis D) 100 % ergibt.

Description

Wärmealterungsbeständige Polyamide mit Flammschutz
Beschreibung Die Erfindung betrifft thermoplastische Formmassen, enthaltend
A) 10 bis 98 Gew.-% eines Polyamides
B) 0,001 bis 20 Gew.-% Eisenpulver mit einer Teilchengröße von maximal 10 μηη (d5o-Wert)
C) 1 bis 40 Gew.-% eines halogenfreien Flammschutzmittels aus der Gruppe der phosphorhaltigen oder stickstoffhaltigen Verbindungen oder P-N-Kondensate oder deren Mischungen
D) 0 bis 70 Gew.-% weiterer Zusatzstoffe, wobei die Summe der Gewichtsprozente der Komponenten A) bis D) 100 % ergibt.
Weiterhin betrifft die Erfindung die Verwendung der erfindungsgemäßen Formmassen zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art, sowie die hierbei erhältlichen Formkörper.
Thermoplastische Polyamide wie PA6 und PA66 werden häufig in Form von glasfaserverstärkten Formmassen als Konstruktionswerkstoffe für Bauteile, die während ihrer Lebensdauer erhöhten Temperaturen ausgesetzt sind, eingesetzt, wobei es zu ther- mooxidativen Schädigungen kommt. Durch Zusatz von bekannten Wärmestabilisatoren kann das Auftreten der thermooxidativen Schädigung zwar hinausgezögert nicht aber dauerhaft verhindert werden, was sich z.B. in einem Abfallen der mechanischen Kennwerte äußert. Die Verbesserung der Wärmealterungsbeständigkeit (WAB) von Polyamiden ist überaus wünschenswert, da dadurch längere Lebenszeiten für thermisch belastete Bauteile erreicht werden können, bzw. deren Ausfallrisiko gesenkt werden kann. Alternativ kann eine verbesserte WAB auch den Einsatz der Bauteile bei höheren Temperaturen ermöglichen.
Der Einsatz von elementarem Eisenpulver in Polyamiden ist aus den DE-A 26 02 449 , JP-A 09/221590 , JP-A 2000/86889 (jeweils als Füllstoff), JP-A 2000/256 123 (als Dekorzusatz) sowie WO 2006/074912 und WO 2005/007727 (Stabilisatoren) bekannt.
Aus der EP-A 1 846 506 ist eine Kombination von Cu-haltigen Stabilisatoren mit Eisenoxiden für Polyamide bekannt.
Die Wärmealterungsbeständigkeit ist in den bekannten Formmassen, insbesondere über längere thermische Belastungszeiträume, immer noch unzureichend. Die Oberfläche der Formkörper ist verbesserungsbedürftig, da bei der Wärmealterung sich poröse Stellen bilden sowie Blasenbildung erfolgt. In der jüngeren EP-Anmeldung Aktenzeichen: 08171803.3 werden Kombinationen von Polyethyleniminen mit Eisenpulver zur Verbesserung der WAB vorgeschlagen.
Flammschutzmittel werden in den genannten Schriften nur allgemein erwähnt.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, flammgeschützte ther- moplastische Polyamidformmassen zur Verfügung zu stellen, welche eine verbesserte WAB und eine gute Oberfläche nach Wärmealterung sowie Mechanik aufweisen.
Demgemäß wurden die eingangs definierten Formmassen gefunden. Bevorzugte Ausführungsformen sind den Unteransprüchen zu entnehmen.
Als Komponente A) enthalten die erfindungsgemäßen Formmassen 10 bis 98, vorzugsweise 20 bis 97 und insbesondere 25 bis 90 Gew.-% mindestens eines Polyamides. Die Polyamide der erfindungsgemäßen Formmassen weisen im allgemeinen eine Viskositätszahl von 90 bis 350, vorzugsweise 1 10 bis 240 ml/g auf, bestimmt in einer 0,5 gew.-%igen Lösung in 96 gew.-%iger Schwefelsäure bei 25°C gemäß ISO 307.
Halbkristalline oder amorphe Harze mit einem Molekulargewicht (Gewichtsmittelwert) von mindestens 5.000, wie sie z.B. in den amerikanischen Patentschriften 2 071 250, 2 071 251 , 2 130 523, 2 130 948, 2 241 322, 2 312 966, 2 512 606 und 3 393 210 beschrieben werden, sind bevorzugt.
Beispiele hierfür sind Polyamide, die sich von Lactamen mit 7 bis 13 Ringgliedern ab- leiten, wie Polycaprolactam, Polycapryllactam und Polylaurinlactam sowie Polyamide, die durch Umsetzung von Dicarbonsäuren mit Diaminen erhalten werden.
Als Dicarbonsäuren sind Alkandicarbonsäuren mit 6 bis 12, insbesondere 6 bis 10 Kohlenstoffatomen und aromatische Dicarbonsäuren einsetzbar. Hier seien nur Adipinsäu- re, Azelainsäure, Sebacinsäure, Dodecandisäure und Terephthal- und/oder Isophthal- säure als Säuren genannt.
Als Diamine eignen sich besonders Alkandiamine mit 6 bis 12, insbesondere 6 bis 8 Kohlenstoffatomen sowie m-Xylylendiamin (z.B. Ultramid® X17 der BASF SE, ein 1 :1 molares Verhältnis von MXDA mit Adipinsäure), Di-(4-aminophenyl)methan, Di-(4- amino-cyclohexyl)-methan, 2,2-Di- (4-aminophenyl)-propan, 2,2-Di-(4-aminocyclo- hexyl)-propan oder 1 ,5-Diamino-2-methyl-pentan. Bevorzugte Polyamide sind Polyhexamethylenadipinsäureamid, Polyhexamethylen- sebacinsäureamid und Polycaprolactam sowie Copolyamide 6/66, insbesondere mit einem Anteil von 5 bis 95 Gew.-% an Caprolactam-Einheiten (z.B. Ultramid® C31 der BASF SE).
Weiterhin geeignete Polyamide sind erhältlich aus ω-Aminoalkylnitrilen wie beispielsweise Aminocapronitril (PA 6) und Adipodinitril mit Hexamethylendiamin (PA 66) durch sog. Direktpolymerisation in Anwesenheit von Wasser, wie beispielsweise in der DE-A 10313681 , EP-A 1 198491 und EP 922065 beschrieben.
Außerdem seien auch noch Polyamide erwähnt, die z.B. durch Kondensation von 1 ,4- Diaminobutan mit Adipinsäure unter erhöhter Temperatur erhältlich sind (Polyamid 4,6). Herstellungsverfahren für Polyamide dieser Struktur sind z.B. in den EP-A 38 094, EP-A 38 582 und EP-A 39 524 beschrieben.
Weiterhin sind Polyamide, die durch Copolymerisation zweier oder mehrerer der vorgenannten Monomeren erhältlich sind, oder Mischungen mehrerer Polyamide geeignet, wobei das Mischungsverhältnis beliebig ist. Besonders bevorzugt sind Mischungen von Polyamid 66 mit anderen Polyamiden, insbesondere Copolyamide 6/66.
Weiterhin haben sich solche teilaromatischen Copolyamide wie PA 6/6T und PA 66/6T als besonders vorteilhaft erwiesen, deren Triamingehalt weniger als 0,5, vorzugsweise weniger als 0,3 Gew.-% beträgt (siehe EP-A 299 444). Weitere hochtemperaturbe- ständige Polyamide sind aus der EP-A 19 94 075 bekannt (PA 6T/6I/MXD6)
Die Herstellung der bevorzugten teilaromatischen Copolyamide mit niedrigem Triamingehalt kann nach den in den EP-A 129 195 und 129 196 beschriebenen Verfahren erfolgen.
Die nachfolgende nicht abschließende Aufstellung enthält die genannten, sowie weitere Polyamide A) im Sinne der Erfindung und die enthaltenen Monomeren.
AB-Polymere:
PA 4 Pyrrolidon
PA 6 ε-Caprolactam
PA 7 Ethanolactam
PA 8 Capryllactam
PA 9 9-Aminopelargonsäure
PA 1 1 1 1 -Aminoundecansäure
PA 12 Laurinlactam AA/BB-Polymere
PA 46 Tetramethylendiamin, Adipinsäure
PA 66 Hexamethylendiamin, Adipinsäure
PA 69 Hexamethylendiamin, Azelainsäure
PA 610 Hexamethylendiamin, Sebacinsäure
PA 612 Hexamethylendiamin, Decandicarbonsäure
PA 613 Hexamethylendiamin, Undecandicarbonsäure
PA 1212 1 ,12-Dodecandiamin, Decandicarbonsäure
PA 1313 1 ,13-Diaminotridecan, Undecandicarbonsäure
PA 6T Hexamethylendiamin, Terephthalsäure
PA MXD6 m-Xylylendiamin, Adipinsäure
PA 9 T 1 ,9-Nonandiamin, Adipinsäure
PA 6I Hexamethylendiamin, Isophthalsäure
PA 6-3-T Trimethylhexamethylendiamin, Terephthalsäure
PA 6/6T (siehe PA 6 und PA 6T)
PA 6/66 (siehe PA 6 und PA 66)
PA 6/12 (siehe PA 6 und PA 12)
PA 66/6/610 (siehe PA 66, PA 6 und PA 610)
PA 6I/6T (siehe PA 61 und PA 6T)
PA PACM 12 Diaminodicyclohexylmethan, Laurinlactam
PA 6I/6T/PACM wie PA 6I/6T + Diaminodicyclohexylmethan
PA 12/MACMI Laurinlactam, Dimethyl-diaminodicyclohexylmethan, Isophthalsäure
PA 12/MACMT Laurinlactam, Dimethyl-diaminodicyclohexylmethan, Terephthalsäure
PA PDA-T Phenylendiamin, Terephthalsäure
Als Komponente B) enthalten die erfindungsgemäßen Formmassen 0,001 bis 20, vor- zugsweise 0,05 bis 10 und insbesondere 0,1 bis 5 Gew.-% Eisenpulver mit einer Teilchengröße (auch als Partikelgröße bezeichnet) von maximal 10 μηη (dso-Wert), welches durch thermische Zersetzung von Eisenpentacarbonyl erhältlich ist.
Eisen kommt in mehreren allotropen Modifikationen vor:
1 . α-Fe (Ferrit) bildet raumzentrierte Würfelgitter, ist magnetisierbar, löst wenig
Kohlenstoff, kommt in reinem Eisen bis 928°C vor. Bei 770°C (Curie- Temperatur) verliert es seine ferromagnetischen Eigenschaften und wird paramagnetisch; Eisen im Temperaturbereich von 770 bis 928°C wird auch als ß-Fe bezeichnet. Bei gewöhnlicher Temperatur und einem Druck von mindestens
13000 MPa geht α-Fe in sog. ε-Fe unter einer Vol.-Verminderung von ca. 0,20 cm3/mol über, wobei sich die Dichte von 7,85 auf 9,1 (bei 20000 MPa) erhöht. γ-Fe (Austenit) bildet flächenzentrierte Würfelgitter, ist unmagnetisch, löst viel Kohlenstoff und ist nur im Temperaturbereich von 928 bis 1398°C zu beobachten.
3. δ-Fe, raumzentriert, existiert zwischen 1398°C und dem Schmelzpunkt 1539°C. Metallisches Eisen ist allgemein silberweiß, mit einer Dichte 7,874 (Schwermetall), Schmelzpunkt 1539°C, Siedepunkt 2880°C; spezifische Wärme (zwischen 18 und 100°C) etwa 0,5 g-1 K-1, Zugfestigkeit 220 bis 280 N/mm2. Die Werte gelten für das chemisch reine Eisen.
Großtechnisch wird Eisen durch Verhüttung von Eisenerzen, Eisenschlacken, Kiesab- bränden, Gichtstaub und durch Umschmelzen von Schrott und Legierung hergestellt.
Das erfindungsgemäße Eisenpulver wird durch thermische Zersetzung von Eisenpen- tacarbonyl hergestellt, vorzugsweise bei Temperaturen von 150°C bis 350°C. Die hierbei erhältlichen Partikel (Teilchen) haben eine vorzugsweise sphärische Form, d.h. kugelförmig oder nahezu kugelförmige Form (auch als sphärolitisch bezeichnet).
Bevorzugtes Eisenpulver weist eine Teilchengrößenverteilung (Partikelgrößenverteilung) wie nachstehend beschrieben auf, wobei die Teilchengrößenverteilung mittels Laserbeugung in einer hoch verdünnten wässrigen Suspension (z.B. mit Beckmann LS13320 Gerät) bestimmt wird. Optional kann die nachfolgend beschriebene Teilchengröße (und Verteilung) durch Mahlen oder/und Sieben eingestellt werden.
Hierbei bedeutet dxx = XX% des Gesamtvolumens der Partikels ist kleiner als der Wert.
-Werte: max. 10 μηη, vorzugsweise 1 ,6 bis 8, insbesondere 2,9 bis 7,5 μηη, ga besonders 3,4 bis 5,2 μηη dio-Werte: vorzugsweise 1 bis 5 μηη, insbesondere 1 bis 3 und ganz besonders 1 ,4 bis 2,7 μηη dgo-Werte: vorzugsweise 3 bis 35 μηη, insbesondere 3 bis 12 und ganz besonders 6,4 bis 9,2 μηη.
Bevorzugt weist die Komponente B) einen Eisengehalt von 97 bis 99,8 g/100 g, vorzugsweise von 97,5 bis 99,6 g/100 g auf. Der Gehalt an weiteren Metallen beträgt vorzugsweise unter 1000 ppm, insbesondere unter 100 ppm und ganz besonders unter 10 ppm. Der Fe-Gehalt wird üblicherweise durch Infrarotspektroskopie bestimmt.
Der C-Gehalt beträgt vorzugsweise 0,01 bis 1 ,2, vorzugsweise 0,05 bis 1 ,1 g/100 g und insbesondere 0,4 bis 1 , 1 g/100g. Dieser C-Gehalt entspricht bei den bevorzugten Eisenpulvern solchen, die im Anschluß an die thermische Zersetzung nicht mit Wasserstoff reduziert werden.
Der C-Gehalt wird üblicherweise durch Verbrennen der Probenmenge im Sauerstoffstrom und anschließender IR Detektion des entstandenen C02-Gases (mittels Leco CS230 oder CS-mat 6250 der Firma Juwe) in Anlehnung an ASTM E1019 bestimmt.
Der Stickstoffgehalt beträgt vorzugsweise max. 1 ,5 g/100 g, bevorzugt von 0,01 bis 1 ,2 g/100g.
Der Sauerstoffgehalt beträgt vorzugsweise max. 1 ,3 g/100g, bevorzugt 0,3 bis
0,65 g/100g.
Die Bestimmungen von N und O erfolgt durch Erhitzen der Probe im Graphitofen auf ca. 2100°C. Der hierbei in der Probe erhaltene Sauerstoff wird zu CO umgesetzt und über einen IR-Detektor gemessen. Der unter den Reaktionsbedingungen freigesetzte N aus den N-haltigen Verbindungen wird mit dem Trägergas ausgetragen und mittels WLD (Thermal Conductivity Detector/TC) detektiert und erfasst (beide Methoden in Anlehnung an ASTM E1019).
Die Klopfdichte (tap density) beträgt vorzugsweise 2,5 bis 5 g/cm3, insbesondere 2,7 bis 4,4 g/cm3. Darunter wird im Allgemeinen die Dichte verstanden, wenn das Pulver in den Container z.B. gefüllt und geschüttelt wird, um eine Kompaktierung zu erzielen. Weiterhin bevorzugte Eisenpulver können mit Eisenphosphat, Eisenphosphit oder S1O2 oberflächlich beschichtet sein.
Die BET-Oberfläche gemäß DIN ISO 9277 beträgt vorzugsweise von 0,1 bis 10 m2/g, insbesondere 0,1 bis 5 m2/g, bevorzugt 0,2 bis 1 m2/g und insbesondere 0,4 bis 1 m2/g.
Um eine besonders gute Verteilung der Eisenpartikel zu erzielen, kann man einen Batch mit einem Polymeren einsetzen. Polymere wie Polyolefine, Polyester oder Polyamide sind hierfür geeignet, wobei vorzugsweise das Batchpolymer gleich der Komponente A) ist. Der Masseanteil des Eisens im Polymeren beträgt in der Regel 15 bis 80, vorzugsweise 20 bis 40 Masse-%.
Als Komponente C) enthalten die erfindungsgemäßen Formmassen 1 bis 40, vorzugsweise 2 bis 30 und insbesondere 5 bis 20 Gew.-% eines halogenfreien Flammschutz- mittels ausgewählt aus der Gruppe der stickstoffhaltigen oder phosphorhaltigen Verbindungen oder der P-N-Kondensate oder deren Mischungen. Das gemäß der Erfindung (Komponente C) bevorzugt geeignete Melamincyanurat ist ein Reaktionsprodukt aus vorzugsweise aquimolaren Mengen von Melamin (Formel I) und Cyanursäure bzw. Isocyanursäure (Formeln la und Ib)
N
I
HO
Figure imgf000008_0001
da) (Ib)
Enolform Ketoform
Man erhält es z.B. durch Umsetzung von wässrigen Lösungen der Ausgangsverbindungen bei 90 bis 100°C. Das im Handel erhältliche Produkt ist ein weißes Pulver mit einer mittleren Korngröße dso von 1 ,5 - 7 μηη.
Weitere geeignete Verbindungen (oft auch als Salze oder Addukte bezeichnet) sind Melamin, Melaminborat, -oxalat, -phosphat prim., -phosphat sec. und -pyrophosphat sec, Neopentylglycolborsäuremelamin sowie polymeres Melaminphosphat (CAS-Nr 56386-64-2).
Geeignete Guanidinsalze sind
CAS-Nr.
G-carbonat 593-85-1
G-cyanurat prim. 70285-19-7
G-phosphat prim. 5423-22-3
G-phosphat sec. 5423-23-4
G-sulfat prim. 646-34-4
G-sulfat sec. 594-14-9
Pentaerythritborsäureguanidin N.A.
Neopentylglycolborsäureguanidin N.A.
sowie Harnstoffphosphat grün 4861 -19-2
Harnstoffcyanurat 57517-1 1 -0
Ammeiin 645-92-1
Ammelid 645-93-2
Meiern 1502-47-2
Melon 32518-77-7 Melam 3576-88-3
Unter Verbindungen im Sinne der vorliegenden Erfindung sollen sowohl z.B. Benzogu- anamin selbst und dessen Addukte bzw. Salze als auch die am Stickstoff substituierten Derivate und dessen Addukte bzw. Salze verstanden werden.
Weiterhin geeignet sind Ammoniumpolyphosphat
Figure imgf000009_0001
mit n ca. 200 bis 1000 bevorzugt 600 bis 800, und Tris(hydroxyethyl)isocyanurat (THEIC) der Formel (II)
Figure imgf000009_0002
oder dessen Umsetzungsprodukte mit aromatischen Carbonsäuren Ar(COOH)m, welche gegebenenfalls in Mischung miteinander vorliegen können, wobei Ar ein ein-, zwei- oder dreikerniges aromatisches Sechsringsystem bedeutet und m 2, 3 oder 4 ist.
Geeignete Carbonsäuren sind beispielsweise Phthalsäure, Isophthalsäure, Terephthal- säure, 1 ,3,5-Benzoltricarbonsäure, 1 ,2,4-Benzoltricarbonsäure, Pyromellithsäure, Mel- lophansäure, Prehnitsäure, 1 -Naphthoesäure, 2-Naphthoesäure, Naphthalindicarbon- säuren und Anthracencarbonsäuren.
Die Herstellung erfolgt durch Umsetzung des Tris(hydroxyethyl)isocyanurats mit den Säuren, ihren Alkylestern oder ihren Halogeniden gemäß den Verfahren der
EP-A 584 567. Derartige Umsetzungsprodukte stellen ein Gemisch von monomeren und oligomeren Estern dar, welche auch vernetzt sein können. Der Oligomerisierungsgrad beträgt üblicherweise 2 bis ca. 100, vorzugsweise 2 bis 20. Bevorzugt werden Mischungen von THEIC und/oder dessen Umsetzungsprodukte mit phosphorhaltigen Stickstoffverbindungen, insbesondere (NH4POs)n oder Melaminpyrophosphat oder polymeres Mel- aminphosphat eingesetzt. Das Mischungsverhältnis z.B. von (NH4POs)n zu THEIC beträgt vorzugsweise 90 bis 50 zu 10 bis 50, insbesondere 80 bis 50 zu 50 bis
20 Gew.-%, bezogen auf die Mischung derartiger Komponenten B).
Weiterhin geeignet sind Benzoguanamin-Verbindungen der Formel (III)
Figure imgf000010_0001
in der R,R' geradkettige oder verzweigte Alkylreste mit 1 bis 10 C-Atomen, bevorzugt Wasserstoff bedeutet und insbesondere deren Addukte mit Phosphorsäure, Borsäure und/oder Pyrophosphorsäure.
Bevorzugt sind ferner Allantoin-Verbindungen der Formel (IV)
Figure imgf000010_0002
wobei R,R' die in Formel III angegebene Bedeutung haben sowie deren Salze mit Phosphorsäure, Borsäure und/oder Pyrophosphorsäure sowie Glycolurile der Formel (V) oder dessen Salze mit den o.g. Säuren
Figure imgf000010_0003
in der R die in Formel (III) genannte Bedeutung hat.
Geeignete Produkte sind im Handel oder gemäß DE-A 196 14 424 erhältlich.
Das gemäß der Erfindung verwendbare Cyanguanidin (Formel VI) erhält man z.B. durch Umsetzung von Kalkstickstoff (Calciumcyanamid) mit Kohlensäure, wobei das entstehende Cyanamid bei pH 9 bis 10 zu Cyanguanidin dimerisiert.
CaNCN + H20 C02 * H2N-CN + CaC03
Figure imgf000010_0004
Η2Ν
/ C-N-CN
HN X H Das im Handel erhältliche Produkt ist ein weißes Pulver mit einem Schmelzpunkt von 209°C bis 21 1 °C. Als phosphorhaltige anorganische Verbindungen sind Phosphinsauresalze der Formel (I) und/oder Diphosphinsäuresalze der Formel (II) und/oder deren Polymere bevorzugt,
Figure imgf000011_0001
wobei die Substituenten folgende Bedeutung haben:
R1, R2 Wasserstoff, d- bis C6-Alkyl, vorzugsweise d- bis C4-Alkyl, linear oder ver- zweigt, z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl, n-Pentyl;
Phenyl; wobei bevorzugt mindestens ein Rest R1 oder R2, insbesondere R1 und R2 Wasserstoff ist;
R3 Cr bis Cio-Alkylen, linear oder verzweigt, z.B. Methylen, Ethylen, n-Propylen, iso-Propylen, n-Butylen, tert.-Butylen, n-Pentylen, n-Octylen, n-Dodecylen; Arylen, z.B. Phenylen, Naphthylen;
Alkylarylen, z.B. Methyl-phenylen, Ethyl-phenylen, tert.-Butyl-phenylen, Me- thyl-naphthylen, Ethyl-naphthylen, tert.-Butyl-naphthylen;
Arylalkylen, z.B. Phenyl-methylen, Phenyl-ethylen, Phenyl-propylen, Phenyl- butylen;
M ein Erdalkali-, Alkalimetall, AI, Zn, Fe, Bor;
m eine ganze Zahl von 1 bis 3;
n eine ganze Zahl von 1 und 3 und
x 1 oder 2. Besonders bevorzugt sind Verbindungen der Formel II, in denen R1 und R2 Wasserstoff ist, wobei M vorzugsweise Zn oder AI ist und Calciumphosphinat ganz besonders bevorzugt ist. Derartige Produkte sind im Handel z.B. als Calciumphosphinat erhältlich.
Geeignete Salze der Formel I oder II, in denen nur ein Rest R1 oder R2 Wasserstoff bedeutet, sind z.B. Salze der Phenylphosphinsäure, wobei deren Na- und/oder Ca- Salze bevorzugt sind.
Insbesondere bevorzugt sind Verbindungen der Formel II, in denen R1 und R2 Ethylres- te sind, wobei M vorzugsweise Zn oder Ca und Al-diethylphosphinat besonders bevorzugt ist. Insbesondere Al-diethylphosphinat in Mischung mit Melamincyanurat und/oder Melaminpolyphosphat (3 : 1 bis 1 ,5 : 1 ) sind als Flammschutzmittelsystem bevorzugt. Diese enthalten bis zu 10, vorzugsweise bis 6 Gew.-% (bezogen auf 100 Gew.-% der obigen Mischung) vorzugsweise eines Borates als Synergist.
Geeignete Metallborate sind Borate von Metallen der 1. bis 3. Hauptgruppe sowie der 1 bis 8 Nebengruppe des Periodensystems, wobei wasserfreies Zinkborat oder Zinkborat der allgemeinen Formel
Figure imgf000012_0001
in der x 3,3 bis 3,7 bedeutet, bevorzugt sind. Dieses Zinkborat ist im Wesentlichen bei den hohen Verarbeitungstemperaturen der teilaromatischen Polyamide stabil und neigt nur unwesentlich zur Abspaltung des Hydratwassers. Dementsprechend sind Zinkborate mit höherem Hydratwasseranteil im Allgemeinen nicht so gut als Synergist geeignet. Es können auch Mischungen von Metallboraten mit Metalloxiden eingesetzt werden, wobei das Mischungsverhältnis beliebig ist.
Bei den phosphorhaltigen Verbindungen der Komponente C) handelt es sich vorzugsweise um organische und anorganische Phosphor enthaltende Verbindungen, in denen der Phosphor die Wertigkeitsstufe -3 bis +5 besitzt. Unter der Wertigkeitsstufe soll der Begriff "Oxidationsstufe" verstanden werden, wie er im Lehrbuch der Anorganischen Chemie von A.F. Hollemann und E. Wiberg, Walter des Gruyter und Co. (1964, 57. bis 70. Auflage), Seite 166 bis 177, wiedergegeben ist. Phosphorverbindungen der Wertigkeitsstufen -3 bis +5 leiten sich von Phosphin (-3), Diphosphin (-2), Phosphinoxid (-1 ), elementarem Phosphor (+0), hypophosphoriger Säure (+1 ), phosphoriger Säure (+3), Hypodiphosphorsäure (+4) und Phosphorsäure (+5) ab.
Aus der großen Zahl von phosphorhaltigen Verbindungen seien nur einige Beispiele erwähnt. Beispiele für Phosphorverbindungen der Phosphin-Klasse, die die Wertigkeitsstufe -3 aufweisen, sind aromatische Phosphine, wie Triphenylphosphin, Tritolylphosphin, Tri- nonylphosphin, Trinaphthylphosphin und Trisnonylphenylphosphin u.a. Besonders geeignet ist Triphenylphosphin.
Beispiele für Phosphorverbindungen der Diphosphinklasse, die die Wertigkeitsstufe -2 aufweisen, sind Tetraphenyldiphosphin, Tetranaphthyldiphosphin u.a.. Besonders geeignet ist Tetranaphthyldiphosphin.
Phosphorverbindungen der Wertigkeitsstufe -1 leiten sich vom Phosphinoxid ab. Geeignet sind Phosphinoxide der allgemeinen Formel (III)
Figure imgf000013_0001
wobei R1, R2 und R3 gleiche oder verschiedene Alkyl-, Aryl-, Alkylaryl- oder Cycloal- kylgruppen mit 8 bis 40 C-Atomen bedeuten.
Beispiele für Phosphinoxide sind Triphenylphosphinoxid, Tritolylphosphinoxid, Trisno- nylphenylphosphinoxid, Tricyclohexylphosphinoxid, Tris-(n-butyl)-phosphinoxid, Tris-(n- hexyl)-phosphinoxid, Tris-(n-octyl)-phosphinoxid, Tris-(cyanoethyl)-phosphinoxid, Ben- zylbis-(cyclohexyl)-phosphinoxid, Benzylbisphenylphosphinoxid, Phenylbis-(n-hexyl)- phosphinoxid. Bevorzugt sind weiterhin oxidierte Umsetzungsprodukte aus Phosphin mit Aldehyden, insbesondere aus t-Butylphosphin mit Glyoxal. Besonders bevorzugt eingesetzt werden Triphenyl-phosphinoxid, Tricyclohexlyphosphinoxid, Tris-(n-octyl)- phosphinoxid und Tris-(cyanoethyl)-phosphinoxid.
Ebenso geeignet ist Triphenylphosphinsulfid und dessen wie oben beschriebene Derivate der Phosphinoxide.
Phosphor der Wertigkeitsstufe +0 ist der elementare Phosphor. In Frage kommen roter und schwarzer Phosphor. Bevorzugt ist roter Phosphor.
Phosphorverbindungen der "Oxidationsstufe" +1 sind z.B. Hypophosphite rein organischer Natur, z.B. organische Hypophosphite, wie Cellulosehypophosphitester, Ester der hypophosphorigen Säuren mit Diolen, wie z.B. von 1 ,10-Dodecyldiol. Auch substituierte Phosphinsäuren und deren Anhydride, wie z.B. Diphenylphosphinsaure, können eingesetzt werden. Des Weiteren kommen in Frage Diphenylphosphinsaure, Di-p- Tolylphosphinsäure, Di-Kresylphosphinsäureanhydrid, Es kommen aber auch Verbin- düngen wie Hydrochinon-, Ethylenglykol-, Propylenglykol-bis(diphenylphosphinsäure)- ester u.a. in Frage. Ferner sind geeignet Aryl(Alkyl)phosphinsäureamide, wie z.B. Diphenylphosphinsäure-dimethylamid und Sulfonamidoaryl(alkyl)phosphinsäure- derivate, wie z.B. p-Tolylsulfonamidodiphenylphosphinsäure. Bevorzugt eingesetzt werden Hydrochinon- und Ethylenglykol-bis-(diphenylphosphinsäure)ester und das Bisdiphenylphosphinat des Hydrochinons.
Phosphorverbindungen der Oxidationsstufe +3 leiten sich von der phosphorigen Säure ab. Geeignet sind cyclische Phosphonate, die sich vom Pentaerythrit, Neopentylglykol oder Brenzkatechin ableiten wie z.B.
Figure imgf000014_0001
wobei R einen Ci bis C4-Alkylrest, bevorzugt Methylrest, x=0 oder 1 bedeutet (Am- gard®) P 45 der Firma Albright & Wilson).
Ferner ist Phosphor der Wertigkeitsstufe +3 in Triaryl(alkyl)phosphiten, wie z.B.
Triphenylphosphit, Tris(4-decylphenyl)phosphit, Tris(2,4-di-tert.-butylphenyl)phosphit oder Phenyldidecylphosphit u.a. enthalten. Es kommen aber auch Diphosphite, wie z.B. Propylenglykol-1 ,2-bis(diphosphit) oder cyclische Phosphite, die sich vom Pentaerythrit, Neopentylglykol oder Brenzkatechin ableiten, in Frage.
Besonders bevorzugt werden Methylneopentylglycolphosphonat und -phosphit sowie Dimethylpentaerythritdiphosphonat und -phosphit. Als Phosphorverbindungen der Oxidationsstufe +4 kommen vor allem Hypodiphospha- te, wie z.B. Tetraphenylhypodiphosphat oder Bisneopentylhypodiphosphat in Betracht.
Als Phosphorverbindungen der Oxidationsstufe +5 kommen vor allem alkyl- und aryl- substituierte Phosphate in Betracht. Beispiele sind Phenylbisdodecylphosphat, Phenyl- ethylhydrogenphosphat, Phenyl-bis(3,5,5-trimethylhexyl)phosphat, Ethyldiphenyl- phosphat, 2-Ethylhexyldi(tolyl)phosphat, Diphenylhydrogenphosphat, Bis(2-ethylhexyl)- p-tolylphosphat, Tritolylphosphat, Bis(2-ethylhexyl)-phenylphosphat, Di(nonyl)phenyl- phosphat, Phenylmethylhydrogenphosphat, Di(dodecyl)-p-tolylphosphat, p-Tolyl- bis(2,5,5-trimethylhexyl)phosphat oder 2-Ethylhexyldiphenylphosphat. Besonders ge- eignet sind Phosphorverbindungen, bei denen jeder Rest ein Aryloxi-Rest ist. Ganz besonders geeignet ist Triphenylphosphat und Resorcinol-bis-(diphenylphosphat) und dessen kernsubstituierten Derivate der allgemeinen Formel V (RDP):
Figure imgf000015_0001
in der die Substituenten folgende Bedeutung haben: R4-R7 ein aromatischer Rest mit 6 bis 20 C-Atomen, bevorzugt ein Phenylrest, welcher mit Alkylgruppen mit 1 bis 4 C-Atomen bevorzugt Methyl, substituiert sein kann,
R8 ein zweiwertiger Phenolrest, bevorzugt
Figure imgf000015_0002
und n einen Durchschnittswert zwischen 0,1 bis 100, bevorzugt 0,5 bis 50, insbesondere 0,8 bis 10 und ganz besonders 1 bis 5.
Die im Handel erhältlichen RPD-Produkte unter dem Warenzeichen Fyroflex® oder Fyrol® -RDP (Akzo) sowie CR 733-S (Daihachi) sind bedingt durch das Herstellungsverfahren Gemische aus ca. 85 % RDP (n=1 ) mit ca. 2,5 % Triphenylphosphat sowie ca. 12,5 % oligomeren Anteilen, in denen der Oligomerisierungsgrad meist kleiner 10 beträgt.
Des Weiteren können auch cyclische Phosphate eingesetzt werden. Besonders geeignet ist hierbei Diphenylpentaerythritdiphosphat und Phenylneopentylphosphat. Außer den oben angeführten niedermolekularen Phosphorverbindungen kommen noch oligomere und polymere Phosphorverbindungen in Frage.
Solche polymeren, halogenfreien organischen Phosphorverbindungen mit Phosphor in der Polymerkette entstehen beispielsweise bei der Herstellung von pentacyclischen, ungesättigten Phosphindihalogeniden, wie beispielsweise in der DE-A 20 36 173 beschrieben ist. Das Molekulargewicht gemessen durch Dampfdruckosmometrie in Di- methylformamid, der Polyphospholinoxide soll im Bereich von 500 bis 7000, vorzugsweise im Bereich von 700 bis 2000 liegen.
Der Phosphor besitzt hierbei die Oxidationsstufe -1 . Ferner können anorganische Koordinationspolymere von Aryl(alkyl)-phosphinsäuren wie z.B. Poly-ß-natrium(l)-methylphenylphosphinat eingesetzt werden. Ihre Herstellung wird in DE-A 31 40 520 angegeben. Der Phosphor besitzt die Oxidationszahl +1. Weiterhin können solche halogenfreien polymeren Phosphorverbindungen durch die Reaktion eines Phosphonsäurechlorids, wie z.B. Phenyl-, Methyl-, Propyl-, Styryl- und Vinylphosphonsäuredichlorid mit bifunktionellen Phenolen, wie z.B. Hydrochinon, Re- sorcin, 2,3,5-Trimethylhydrochinon, Bisphenol-A, Tetramethylbiphenol-A entstehen. Weitere halogenfreie polymere Phosphorverbindungen, die in den erfindungsgemäßen Formmassen enthalten sein können, werden durch Reaktion von phosphoroxidtrichlo- rid oder Phosphorsäureesterdichloriden mit einem Gemisch aus mono-, bi- und trifunk- tionellen Phenolen und anderen Hydroxylgruppen tragenden Verbindungen hergestellt (vgl. Houben-Weyl-Müller, Thieme-Verlag Stuttgart, Organische Phosphorverbindun- gen Teil II (1963)). Ferner können polymere Phosphonate durch Umesterungsreaktio- nen von Phosphonsaureestern mit bifunktionellen Phenolen (vgl. DE-A 29 25 208) oder durch Reaktionen von Phosphonsaureestern mit Diaminen oder Diamiden oder Hydra- ziden (vgl. US-PS 4 403 075) hergestellt werden. In Frage kommt aber auch das anorganische Poly(ammoniumphosphat).
Es können auch oligomere Pentaerythritphosphite, -phosphate und -phosphonate gemäß EP-B 8 486, z.B. Mobil Antiblaze® 19 (eingetragenes Warenzeichen der Firma Mobil Oil) verwendet werden.
Weiterhin bevorzugt sind Phosphorverbindungen der allgemeinen Formel VI
Figure imgf000016_0001
in der die Substituenten folgende Bedeutung haben:
R1 bis R20 unabhängig voneinander Wasserstoff, eine lineare oder verzweigte Al- kylgruppe bis zu 6 C-Atomen n einen Durchschnittswert von 0,5 bis 50 und X eine Einfachbindung, C=0, S, S02, C(CH3)2.
Bevorzugte Verbindungen C) sind solche, in denen R1 bis R20 unabhängig voneinander Wasserstoff und/oder einen Methylrest bedeuten. Für den Fall, dass R1 bis R20 unabhängig voneinander einen Methylrest bedeuten, sind solche Verbindungen C) bevorzugt, in welchen die Reste R1, R5, R6, R10, R11, R15, R16, R20 in ortho-Stellung zum Sauerstoff der Phosphatgruppe mindestens einen Methylrest darstellen. Weiterhin bevorzugt sind Verbindungen C) in denen pro aromatischem Ring eine Methylgruppe, vorzugsweise in ortho-Stellung vorhanden ist und die anderen Reste Wasserstoff be- deuten.
Insbesondere bevorzugt sind als Substituenten SO2 und S, sowie ganz besonders bevorzugt C(CH3)2 für X in obiger Formel (VI). n beträgt vorzugsweise als Durchschnittswert 0,5 bis 5, insbesondere 0,7 bis 2 und insbesondere « 1 .
Die Angabe von n als Durchschnittswert ergibt sich durch das Herstellverfahren der oben aufgeführten Verbindungen, so dass der Oligomerisierungsgrad meist kleiner 10 beträgt und geringe Anteile (meist < 5 Gew.-%) an Triphenylphosphat enthalten sind, wobei dies von Charge zu Charge unterschiedlich ist. Die Verbindungen C) sind als CR - 741 der Firma Daihachi im Handel erhältlich.
Weiterhin sind P-N-Kondensate geeignet, insbesondere solche, wie sie in der
WO 2002/96976 beschrieben sind.
Insbesondere bevorzugte Kombinationen C) sind Mischungen von phosphor- und stickstoffhaltigen Verbindungen, wobei Mischungsverhältnisse von 1 :10 bis 10:1 , bevorzugt 1 :9 bis 9:1 bevorzugt sind.
Als Komponente D) können die erfindungsgemäßen Formmassen bis zu 70, vorzugsweise bis zu 50 Gew.-% weiterer Zusatzstoffe enthalten.
Als faser- oder teilchenförmige Füllstoffe D1 ) seien Kohlenstofffasern, Glasfasern, Glaskugeln, amorphe Kieselsäure, Calciumsilicat, Calciummetasilicat, Magnesiumcar- bonat, Kaolin, Kreide, gepulverter Quarz, Glimmer, Bariumsulfat und Feldspat genannt, die in Mengen von 1 bis 50 Gew.-%, insbesondere 1 bis 40, vorzugsweise 10 bis 40 Gew.-% eingesetzt werden.
Als bevorzugte faserförmige Füllstoffe seien Kohlenstofffasern, Aramid-Fasern und Kaliumtitanat-Fasern genannt, wobei Glasfasern als E-Glas besonders bevorzugt sind. Diese können als Rovings oder Schnittglas in den handelsüblichen Formen eingesetzt werden.
Die faserförmigen Füllstoffe können zur besseren Verträglichkeit mit dem Thermoplas- ten mit einer Silanverbindung oberflächlich vorbehandelt sein.
Geeignete Silanverbindungen sind solche der allgemeinen Formel
(X-(C H 2) n) k-S i-(0-Cm H 2m+ 1 )4-k in der die Substituenten folgende Bedeutung haben:
X NH2-, CH2-CH-, HO-,
\ /
O n eine ganze Zahl von 2 bis 10, bevorzugt 3 bis 4
m eine ganze Zahl von 1 bis 5, bevorzugt 1 bis 2
k eine ganze Zahl von 1 bis 3, bevorzugt 1
Bevorzugte Silanverbindungen sind Aminopropyltrimethoxysilan, Aminobutyltrimeth- oxysilan, Aminopropyltriethoxysilan, Aminobutyltriethoxysilan sowie die entsprechenden Silane, welche als Substituent X eine Glycidylgruppe enthalten.
Die Silanverbindungen werden im Allgemeinen in Mengen von 0,01 bis 2, vorzugsweise 0,025 bis 1 ,0 und insbesondere 0,05 bis 0,5 Gew.-% (bezogen auf E)) zur Oberflä- chenbeschichtung eingesetzt.
Geeignet sind auch nadeiförmige mineralische Füllstoffe.
Unter nadeiförmigen mineralischen Füllstoffen wird im Sinne der Erfindung ein minera- lischer Füllstoff mit stark ausgeprägtem nadeiförmigen Charakter verstanden. Als Beispiel sei nadeiförmiger Wollastonit genannt. Vorzugsweise weist das Mineral ein L/D- (Länge Durchmesser)-Verhältnis von 8 : 1 bis 35 : 1 , bevorzugt von 8 : 1 bis 1 1 : 1 auf. Der mineralische Füllstoff kann gegebenenfalls mit den vorstehend genannten Silanverbindungen vorbehandelt sein; die Vorbehandlung ist jedoch nicht unbedingt erfor- derlich.
Als weitere Füllstoffe seien Kaolin, calciniertes Kaolin, Wollastonit, Talkum und Kreide genannt sowie zusätzlich plättchen- oder nadeiförmige Nanofüllstoffe bevorzugt in Mengen zwischen 0,1 und 10 %. Bevorzugt werden hierfür Böhmit, Bentonit, Montmo- rillonit, Vermicullit, Hektorit und Laponit eingesetzt. Um eine gute Verträglichkeit der plättchenförmigen Nanofüllstoffe mit dem organischen Bindemittel zu erhalten, werden die plättchenförmigen Nanofüllstoffe nach dem Stand der Technik organisch modifiziert. Der Zusatz der plättchen- oder nadeiförmigen Nanofüllstoffe zu den erfindungsgemäßen Nanokompositen führt zu einer weiteren Steigerung der mechanischen Festigkeit.
Als Komponente D2) können die erfindungsgemäßen Formmassen 0,05 bis 3, vorzugsweise 0,1 bis 1 ,5 und insbesondere 0,1 bis 1 Gew.-% eines Schmiermittels enthalten. Bevorzugt sind AI-, Alkali-, Erdalkalisalze oder Ester oder Amide von Fettsäuren mit 10 bis 44 C-Atomen, vorzugsweise mit 12 bis 44 C-Atomen.
Die Metallionen sind vorzugsweise Erdalkali und AI, wobei Ca oder Mg besonders bevorzugt sind.
Bevorzugte Metallsalze sind Ca-Stearat und Ca-Montanat sowie Al-Stearat und eine Mischung aus Al-distearat mit Al-tristearat (Alugel® 30DF der Firma Baerlocher).
Es können auch Mischungen verschiedener Salze eingesetzt werden, wobei das Mi- schungsverhältnis beliebig ist.
Die Carbonsäuren können 1 - oder 2-wertig sein. Als Beispiele seien Pelargonsäure, Palmitinsäure, Laurinsäure, Margarinsäure, Dodecandisäure, Behensäure und besonders bevorzugt Stearinsäure, Caprinsäure sowie Montansäure (Mischung von Fettsäu- ren mit 30 bis 40 C-Atomen) genannt.
Die aliphatischen Alkohole können 1 - bis 4-wertig sein. Beispiele für Alkohole sind n- Butanol, n-Octanol, Stearylalkohol, Ethylenglykol, Propylenglykol, Neopentylglykol, Pentaerythrit, wobei Glycerin und Pentaerythrit bevorzugt sind.
Die aliphatischen Amine können 1 - bis 3-wertig sein. Beispiele hierfür sind Stearylamin, Ethylendiamin, Propylendiamin, Hexamethylendiamin, Di(6-Aminohexyl)amin, wobei Ethylendiamin und Hexamethylendiamin besonders bevorzugt sind. Bevorzugte Ester oder Amide sind entsprechend Glycerindistearat, Glycerintristearat, Ethylendiamin- distearat, Glycerinmonopalmitat, Glycerintrilaurat, Glycerinmonobehenat und Penta- erythrittetrastearat.
Es können auch Mischungen verschiedener Ester oder Amide oder Ester mit Amiden in Kombination eingesetzt werden, wobei das Mischungsverhältnis beliebig ist.
Als Komponente D3) können die erfindungsgemäßen Formmassen 0,05 bis 3, vorzugsweise 0,1 bis 1 ,5 und insbesondere 0,1 bis 1 Gew.-% eines Cu-Stabilisators, vor- zugsweise eines Cu-(l)-Halogenids, insbesondere in Mischung mit einem Alkalihaloge- nid, vorzugsweise KJ, insbesondere im Verhältnis 1 : 4., oder eines sterisch gehinderten Phenols oder deren Mischungen enthalten. Als Salze des einwertigen Kupfers kommen vorzugsweise Kupfer(l)-Acetat, Kupfer(l)- Chlorid, -Bromid und -Jodid in Frage. Diese sind in Mengen von 5 bis 500 ppm Kupfer, vorzugsweise 10 bis 250 ppm, bezogen auf Polyamid, enthalten.
Die vorteilhaften Eigenschaften werden insbesondere erhalten, wenn das Kupfer in molekularer Verteilung im Polyamid vorliegt. Dies wird erreicht, wenn man der Formmasse ein Konzentrat zusetzt, das Polyamid, ein Salz des einwertigen Kupfers und ein Alkalihalogenid in Form einer festen, homogenen Lösung enthält. Ein typisches Konzentrat besteht z.B. aus 79 bis 95 Gew.-% Polyamid und 21 bis 5 Gew.-% eines Gemisches aus Kupferjodid oder -bromid und Kaliumjodid. Die Konzentration der festen ho- mogenen Lösung an Kupfer liegt bevorzugt zwischen 0,3 und 3, insbesondere zwischen 0,5 und 2 Gew.-%, bezogen auf das Gesamtgewicht der Lösung und das molare Verhältnis von Kupfer(l)-Jodid zu Kaliumjodid liegt zwischen 1 und 1 1 ,5, vorzugsweise zwischen 1 und 5. Geeignete Polyamide für das Konzentrat sind Homopolyamide und Copolyamide, insbesondere Polyamid 6 und Polyamid 6.6.
Als sterisch gehinderte Phenole D3) eignen sich prinzipiell alle Verbindungen mit phenolischer Struktur, die am phenolischen Ring mindestens eine sterisch anspruchsvolle Gruppe aufweisen.
Vorzugsweise kommen z.B. Verbindungen der Formel
Figure imgf000020_0001
in Betracht, in der bedeuten:
R1 und R2 eine Alkylgruppe, eine substituierte Alkylgruppe oder eine substituierte Tri- azolgruppe, wobei die Reste R1 und R2 gleich oder verschieden sein können und R3 eine Alkylgruppe, eine substituierte Alkylgruppe, eine Alkoxigruppe oder eine substituierte Aminogruppe.
Antioxidantien der genannten Art werden beispielsweise in der DE-A 27 02 661 (US- A 4 360 617) beschrieben. Eine weitere Gruppe bevorzugter sterisch gehinderter Phenole leiten sich von substituierten Benzolcarbonsäuren ab, insbesondere von substituierten Benzolpropionsäuren.
Besonders bevorzugte Verbindungen aus dieser Klasse sind Verbindungen der Formel
Figure imgf000021_0001
wobei R4, R5, R7 und R8 unabhängig voneinander Ci-Cs-Alkylgruppen darstellen, die ihrerseits substituiert sein können (mindestens eine davon ist eine sterisch anspruchs volle Gruppe) und R6 einen zweiwertigen aliphatischen Rest mit 1 bis 10 C-Atomen bedeutet, der in der Hauptkette auch C-O-Bindungen aufweisen kann.
Bevorzugte Verbindungen, die diesen Formeln entsprechen, sind
Figure imgf000021_0002
(Irganox® 245 der Firma Ciba-Geigy
Figure imgf000021_0003
(Irganox® 259 der Firma Ciba-Geigy)
Beispielhaft genannt seien insgesamt als sterisch gehinderte Phenole: 2,2'-Methylen-bis-(4-methyl-6-tert.-butylphenol), 1 ,6-Hexandiol-bis[3-(3,5-di-tert.-butyl- 4-hydroxyphenyl)-propionat), Pentaerythrityl-tetrakis-[3-(3,5-di-tert.-butyl-4-hydroxy- phenol)-propionat], Distearyl-3,5-di-tert.-butyl-4-hydroxybenzylphosphonat, 2,6,7- Trioxa-1 -phosphabicyclo-[2.2.2]oct-4-yl-methyl-3,5-di-tert.-butyl-4-hydroxyhydro- cinnamat, 3,5-Di-tert.-butyl-4-hydroxyphenyl-3,5-distearyl-thiotriazylamin, 2-(2'- Hydroxy-3'-hydroxy-3',5'-di-tert.-butylphenyl)-5-chlorbenzotriazol, 2,6-Di-tert.-butyl-4- hydroxymethylphenol, 1 ,3,5-Trimethyl-2,4,6-tris-(3,5-di-tert.-butyl-4-hydroxybenzyl)- benzol, 4,4'-Methylen-bis-(2,6-di-tert.-butylphenol), 3,5-Di-tert.-butyl-4-hydroxybenzyl- dimethylamin. Als besonders wirksam erwiesen haben sich und daher vorzugsweise verwendet werden 2,2'-Methylen-bis-(4-methyl-6-tert.-butylphenyl), 1 ,6-Hexandiol-bis-(3,5-di-tert- butyl-4-hydroxyphenyl]-propionat (Irganox® 259), Pentaerythrityl-tetrakis-[3-(3,5-di- tert.-butyl-4-hydroxyphenyl)-propionat] sowie N,N'-Hexamethylen-bis-3,5-di-tert.-butyl- 4-hydroxyhydrocinnamid (Irganox® 1098) und das vorstehend beschriebene Irga- nox® 245 der Firma Ciba Geigy, das besonders gut geeignet ist.
Die Antioxidantien D), die einzeln oder als Gemische eingesetzt werden können, sind in einer Menge von 0,05 bis zu 3 Gew.-%, vorzugsweise von 0,1 bis 1 ,5 Gew.-%, insbesondere 0,1 bis 1 Gew.-%, bezogen auf das Gesamtgewicht der Formmassen A) bis D) enthalten.
In manchen Fällen haben sich sterisch gehinderte Phenole mit nicht mehr als einer sterisch gehinderten Gruppe in ortho-Stellung zur phenolischen Hydroxygruppe als besonders vorteilhaft erwiesen; insbesondere bei der Beurteilung der Farbstabilität bei Lagerung in diffusem Licht über längere Zeiträume.
Als Komponente D4) können die erfindungsgemäßen Formmassen 0,05 bis 5, vorzugsweise 0,1 bis 2 und insbesondere 0,25 bis 1 Gew.-% eines Nigrosins enthalten. Unter Nigrosinen versteht man im allgemeinen eine Gruppe von schwarzen oder grauen, mit den Indulinen verwandten Phenazin-Farbstoffen (Azin-Farbstoffen) in verschiedenen Ausführungsformen (wasserlöslich, fettlöslich, spritlöslich), die bei Wollfärberei und -druck, beim Schwarzfärben von Seiden, zum Färben von Leder, Schuhcremes, Firnissen, Kunststoffen, Einbrennlacken, Tinten und dergleichen, sowie als Mikrosko- piefarbstoffe Verwendung finden.
Man gewinnt die Nigrosine technisch durch Erhitzen von Nitrobenzol, Anilin und salzsaurem Anilin mit metall. Eisen und FeC (Name von lateinischem niger = schwarz). Die Komponente D4) kann als freie Base oder auch als Salz (z.B. Hydrochlorid) eingesetzt werden.
Weitere Einzelheiten zu Nigrosinen sind beispielsweise dem elektronischen Lexikon Römpp Online, Version 2.8, Thieme-Verlag Stuttgart, 2006, Stichwort„Nigrosin" zu entnehmen. Weitere übliche Zusatzstoffe D) sind beispielsweise in Mengen bis zu 25, vorzugsweise bis zu 20 Gew.-% kautschukelastische Polymerisate (oft auch als Schlagzähmodifier, Elastomere oder Kautschuke bezeichnet). Ganz allgemein handelt es sich dabei um Copolymerisate die bevorzugt aus mindestens zwei der folgenden Monomeren aufgebaut sind: Ethylen, Propylen, Butadien, Isobuten, Isopren, Chloropren, Vinylacetat, Styrol, Acrylnitril und Acryl- bzw. Methacryl- säureester mit 1 bis 18 C-Atomen in der Alkoholkomponente. Derartige Polymere werden z.B. in Houben-Weyl, Methoden der organischen Chemie, Bd. 14/1 (Georg-Thieme-Verlag, Stuttgart, 1961 ). Seiten 392 bis 406 und in der Monographie von C.B. Bucknall, "Toughened Plastics" (Applied Science Publishers, London, 1977) beschrieben. Im Folgenden werden einige bevorzugte Arten solcher Elastomerer vorgestellt.
Bevorzugte Arten von solchen Elastomeren sind die sog. Ethylen-Propylen (EPM) bzw. Ethylen-Propylen-Dien-(EPDM)-Kautschuke. EPM-Kautschuke haben im Allgemeinen praktisch keine Doppelbindungen mehr, während EPDM-Kautschuke 1 bis 20 Doppelbindungen/100 C-Atome aufweisen können.
Als Dien-Monomere für EPDM-Kautschuke seien beispielsweise konjugierte Diene wie Isopren und Butadien, nicht-konjugierte Diene mit 5 bis 25 C-Atomen wie Penta-1 ,4- dien, Hexa-1 ,4-dien, Hexa-1 ,5-dien, 2,5-Dimethylhexa-1 ,5-dien und Octa-1 ,4-dien, cyc- lische Diene wie Cyclopentadien, Cyclohexadiene, Cyclooctadiene und Dicyclopen- tadien sowie Alkenylnorbornene wie 5-Ethyliden-2-norbornen, 5-Butyliden-2-norbornen, 2-Methallyl-5-norbornen, 2-lsopropenyl-5-norbornen und Tricyclodiene wie 3-Methyl- tricyclo(5.2.1.0.2.6)-3,8-decadien oder deren Mischungen genannt. Bevorzugt werden Hexa-1 ,5-dien, 5-Ethylidennorbornen und Dicyclopentadien. Der Diengehalt der EPDM-Kautschuke beträgt vorzugsweise 0,5 bis 50, insbesondere 1 bis 8 Gew.-%, bezogen auf das Gesamtgewicht des Kautschuks.
EPM- bzw. EPDM-Kautschuke können vorzugsweise auch mit reaktiven Carbonsäuren oder deren Derivaten gepfropft sein. Hier seien z.B. Acrylsäure, Methacrylsäure und deren Derivate, z.B. Glycidyl(meth)acrylat, sowie Maleinsäureanhydrid genannt.
Eine weitere Gruppe bevorzugter Kautschuke sind Copolymere des Ethylens mit Acrylsäure und/oder Methacrylsäure und/oder den Estern dieser Säuren. Zusätzlich können die Kautschuke noch Dicarbonsäuren wie Maleinsäure und Fumarsäure oder Derivate dieser Säuren, z.B. Ester und Anhydride, und/oder Epoxy-Gruppen enthaltende Monomere enthalten. Diese Dicarbonsäurederivate bzw. Epoxygruppen enthaltende Mo- nomere werden vorzugsweise durch Zugabe von Dicarbonsäure- bzw. Epoxygruppen enthaltenden Monomeren der allgemeinen Formeln I oder II oder III oder IV zum Mo- nomerengemisch in den Kautschuk eingebaut
R1C(COOR2)=C(COOR3)R4 (I)
RV R4
/
c c
(ii)
oc. ^co
o
,0.
CHR7=CH (CH2)m 0 (CHR6)a CH CHR5 (III)
CH2=CRa COO ( CH2)p CH— CHR (IV)
O
wobei R1 bis R9 Wasserstoff oder Alkylgruppen mit 1 bis 6 C-Atomen darstellen und m eine ganze Zahl von 0 bis 20, g eine ganze Zahl von 0 bis 10 und p eine ganze Zahl von 0 bis 5 ist.
Vorzugsweise bedeuten die Reste R1 bis R9 Wasserstoff, wobei m für 0 oder 1 und g für 1 steht. Die entsprechenden Verbindungen sind Maleinsäure, Fumarsäure, Maleinsäureanhydrid, Allylglycidylether und Vinylglycidylether. Bevorzugte Verbindungen der Formeln I, II und IV sind Maleinsäure, Maleinsäureanhydrid und Epoxygruppen-enthaltende Ester der Acrylsäure und/oder Methacrylsäure, wie Glycidylacrylat, Glycidylmethacrylat und die Ester mit tertiären Alkoholen, wie t- Butylacrylat. Letztere weisen zwar keine freien Carboxylgruppen auf, kommen in ihrem Verhalten aber den freien Säuren nahe und werden deshalb als Monomere mit latenten Carboxylgruppen bezeichnet.
Vorteilhaft bestehen die Copolymeren aus 50 bis 98 Gew.-% Ethylen, 0,1 bis
20 Gew.-% Epoxygruppen enthaltenden Monomeren und/oder Methacrylsäure und/oder Säure-anhydridgruppen enthaltenden Monomeren sowie der restlichen Men- ge an (Meth)acrylsäureestern. Besonders bevorzugt sind Copolymerisate aus
50 bis 98, insbesondere 55 bis 95 Gew.-% Ethylen, 0,1 bis 40, insbesondere 0,3 bis 20 Gew.-% Glycidylacrylat und/oder Glycidyl- methacrylat, (Meth)acrylsäure und/oder Maleinsäureanhydrid, und
1 bis 45, insbesondere 5 bis 40 Gew.-% n-Butylacrylat und/oder 2-Ethylhexyl- acrylat.
Weitere bevorzugte Ester der Acryl- und/oder Methacrylsäure sind die Methyl-, Ethyl-, Propyl- und i- bzw. t-Butylester.
Daneben können auch Vinylester und Vinylether als Comonomere eingesetzt werden.
Die vorstehend beschriebenen Ethylencopolymeren können nach an sich bekannten Verfahren hergestellt werden, vorzugsweise durch statistische Copolymerisation unter hohem Druck und erhöhter Temperatur. Entsprechende Verfahren sind allgemein bekannt.
Bevorzugte Elastomere sind auch Emulsionspolymerisate, deren Herstellung z.B. bei Blackley in der Monographie "Emulsion Polymerization" beschrieben wird. Die verwendbaren Emulgatoren und Katalysatoren sind an sich bekannt. Grundsätzlich können homogen aufgebaute Elastomere oder aber solche mit einem Schalenaufbau eingesetzt werden. Der schalenartige Aufbau wird durch die Zugabereihenfolge der einzelnen Monomeren bestimmt; auch die Morphologie der Polymeren wird von dieser Zugabereihenfolge beeinflusst. Nur stellvertretend seien hier als Monomere für die Herstellung des Kautschukteils der Elastomeren Acrylate wie z.B. n-Butylacrylat und 2-Ethylhexylacrylat, entsprechende Methacrylate, Butadien und Isopren sowie deren Mischungen genannt. Diese Monomeren können mit weiteren Monomeren wie z.B. Styrol, Acrylnitril, Vinylethern und weiteren Acrylaten oder Methacrylaten wie Methylmethacrylat, Methylacrylat, Ethylacrylat und Propylacrylat copolymerisiert werden.
Die Weich- oder Kautschukphase (mit einer Glasübergangstemperatur von unter 0°C) der Elastomeren kann den Kern, die äußere Hülle oder eine mittlere Schale (bei Elastomeren mit mehr als zweischaligem Aufbau) darstellen; bei mehrschaligen Elastomeren können auch mehrere Schalen aus einer Kautschukphase bestehen. Sind neben der Kautschukphase noch eine oder mehrere Hartkomponenten (mit Glasübergangstemperaturen von mehr als 20°C) am Aufbau des Elastomeren beteiligt, so werden diese im allgemeinen durch Polymerisation von Styrol, Acrylnitril, Methacryl- nitril, α-Methylstyrol, p-Methylstyrol, Acrylsäureestern und Methacrylsäureestern wie Methylacrylat, Ethylacrylat und Methylmethacrylat als Hauptmonomeren hergestellt. Daneben können auch hier geringere Anteile an weiteren Comonomeren eingesetzt werden.
In einigen Fällen hat es sich als vorteilhaft herausgestellt, Emulsionspolymerisate ein- zusetzen, die an der Oberfläche reaktive Gruppen aufweisen. Derartige Gruppen sind z.B. Epoxy-, Carboxyl-, latente Carboxyl-, Amino- oder Amidgruppen sowie funktionelle Gruppen, die durch Mitverwendung von Monomeren der allgemeinen Formel
Figure imgf000026_0001
eingeführt werden können, wobei die Substituenten folgende Bedeutung haben können: R10 Wasserstoff oder eine d- bis C4-Alkylgruppe,
R11 Wasserstoff, eine d- bis Cs-Alkylgruppe oder eine Arylgruppe, insbesondere Phenyl, R12 Wasserstoff, eine d- bis Cio-Alkyl-, eine Ce- bis Ci2-Arylgruppe oder -OR13
R13 eine d- bis Cs-Alkyl- oder Ce- bis Ci2-Arylgruppe, die gegebenenfalls mit O- oder N-haltigen Gruppen substituiert sein können, X eine chemische Bindung, eine d- bis Cio-Alkylen- oder C6-Ci2-Arylengruppe o- der
O
— C— Y
Y O-Z oder NH-Z und
Z eine d- bis Cio-Alkylen- oder Ce- bis Ci2-Arylengruppe. Auch die in der EP-A 208 187 beschriebenen Pfropfmonomeren sind zur Einführung reaktiver Gruppen an der Oberfläche geeignet.
Als weitere Beispiele seien noch Acrylamid, Methacrylamid und substituierte Ester der Acrylsäure oder Methacrylsäure wie (N-t-Butylamino)-ethylmethacrylat, (N,N-Dimethyl- amino)ethylacrylat, (N,N-Dimethylamino)-methylacrylat und (N,N-Diethylamino)ethyl- acrylat genannt.
Weiterhin können die Teilchen der Kautschukphase auch vernetzt sein. Als Vernetzer wirkende Monomere sind beispielsweise Buta-1 ,3-dien, Divinylbenzol, Diallylphthalat und Dihydrodicyclopentadienylacrylat sowie die in der EP-A 50 265 beschriebenen Verbindungen.
Ferner können auch sogenannte pfropfvernetzende Monomere (graft-linking mono- mers) verwendet werden, d.h. Monomere mit zwei oder mehr polymerisierbaren Doppelbindungen, die bei der Polymerisation mit unterschiedlichen Geschwindigkeiten reagieren. Vorzugsweise werden solche Verbindungen verwendet, in denen mindestens eine reaktive Gruppe mit etwa gleicher Geschwindigkeit wie die übrigen Monomeren polymerisiert, während die andere reaktive Gruppe (oder reaktive Gruppen) z.B. deut- lieh langsamer polymerisiert (polymerisieren). Die unterschiedlichen Polymerisationsgeschwindigkeiten bringen einen bestimmten Anteil an ungesättigten Doppelbindungen im Kautschuk mit sich. Wird anschließend auf einen solchen Kautschuk eine weitere Phase aufgepfropft, so reagieren die im Kautschuk vorhandenen Doppelbindungen zumindest teilweise mit den Pfropfmonomeren unter Ausbildung von chemischen Bin- düngen, d.h. die aufgepfropfte Phase ist zumindest teilweise über chemische Bindungen mit der Pfropfgrundlage verknüpft.
Beispiele für solche pfropfvernetzende Monomere sind Allylgruppen enthaltende Monomere, insbesondere Allylester von ethylenisch ungesättigten Carbonsäuren wie Allyl- acrylat, Allylmethacrylat, Diallylmaleat, Diallylfumarat, Diallylitaconat oder die entsprechenden Monoallylverbindungen dieser Dicarbonsäuren. Daneben gibt es eine Vielzahl weiterer geeigneter pfropfvernetzender Monomerer; für nähere Einzelheiten sei hier beispielsweise auf die US-PS 4 148 846 verwiesen. Im Allgemeinen beträgt der Anteil dieser vernetzenden Monomeren an dem schlagzäh modifizierenden Polymer bis zu 5 Gew.-%, vorzugsweise nicht mehr als 3 Gew.-%, bezogen auf das schlagzäh modifizierende Polymere.
Nachfolgend seien einige bevorzugte Emulsionspolymerisate aufgeführt. Zunächst sind hier Pfropfpolymerisate mit einem Kern und mindestens einer äußeren Schale zu nennen, die folgenden Aufbau haben: Typ Monomere für den Kern Monomere für die Hülle
1 Buta-1 ,3-dien, Isopren, n- Styrol, Acrylnitril, Methylmethacrylat
Butylacrylat, Ethylhexylacry- lat oder deren Mischungen
II wie I aber unter Mitverwenwie I
dung von Vernetzern
III wie I oder II n-Butylacrylat, Ethylacrylat, Methylacrylat, Buta-1 ,3- dien, Isopren, Ethylhexyl-acrylat
IV wie I oder II wie I oder III aber unter Mitverwendung von Monomeren mit reaktiven Gruppen wie hierin beschrieben
V Styrol, Acrylnitril, Methyl- erste Hülle aus Monomeren wie unter I und II für den methacrylat oder deren MiKern beschrieben zweite Hülle wie unter I oder IV für schungen die Hülle beschrieben
Anstelle von Pfropfpolymerisaten mit einem mehrschaligen Aufbau können auch homogene, d.h. einschalige Elastomere aus Buta-1 ,3-dien, Isopren und n-Butylacrylat oder deren Copolymeren eingesetzt werden. Auch diese Produkte können durch Mit- Verwendung von vernetzenden Monomeren oder Monomeren mit reaktiven Gruppen hergestellt werden.
Beispiele für bevorzugte Emulsionspolymerisate sind n-Butylacrylat/(Meth)acrylsäure- Copolymere, n-Butylacrylat/Glycidylacrylat- oder n-Butylacrylat/Glycidylmethacrylat- Copolymere, Pfropfpolymerisate mit einem inneren Kern aus n-Butylacrylat oder auf Butadienbasis und einer äußeren Hülle aus den vorstehend genannten Copolymeren und Copolymere von Ethylen mit Comonomeren, die reaktive Gruppen liefern.
Die beschriebenen Elastomere können auch nach anderen üblichen Verfahren, z.B. durch Suspensionspolymerisation, hergestellt werden.
Siliconkautschuke, wie in der DE-A 37 25 576, der EP-A 235 690, der DE-A 38 00 603 und der EP-A 319 290 beschrieben, sind ebenfalls bevorzugt. Selbstverständlich können auch Mischungen der vorstehend aufgeführten Kautschuktypen eingesetzt werden.
Als Komponente D) können die erfindungsgemäßen thermoplastischen Formmassen übliche Verarbeitungshilfsmittel wie Stabilisatoren, Oxidationsverzogerer, Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungs- mittel, Färbemittel wie Farbstoffe und Pigmente, Keimbildungsmittel, Weichmacher, usw. enthalten. Als Beispiele für Oxidationsverzogerer und Wärmestabilisatoren sind sterisch gehinderte Phenole und/oder Phosphite und Amine (z.B. TAD), Hydrochinone, aromatische sekundäre Amine wie Diphenylamine, verschiedene substituierte Vertreter dieser Gruppen und deren Mischungen in Konzentrationen bis zu 1 Gew.-%, bezogen auf das Ge- wicht der thermoplastischen Formmassen genannt.
Als UV-Stabilisatoren, die im Allgemeinen in Mengen bis zu 2 Gew.-%, bezogen auf die Formmasse, verwendet werden, seien verschiedene substituierte Resorcine, Salicyla- te, Benzotriazole und Benzophenone genannt.
Es können anorganische Pigmente, wie Titandioxid, Ultramarinblau, Eisenoxid und Ruß, weiterhin organische Pigmente, wie Phthalocyanine, Chinacridone, Perylene sowie Farbstoffe, wie Anthrachinone als Farbmittel zugesetzt werden. Als Keimbildungsmittel können Natriumphenylphosphinat, Aluminiumoxid, Siliziumdioxid sowie bevorzugt Talkum eingesetzt werden.
Die erfindungsgemäßen thermoplastischen Formmassen können nach an sich bekannten Verfahren hergestellt werden, in dem man die Ausgangskomponenten in üblichen Mischvorrichtungen wie Schneckenextrudern, Brabender-Mühlen oder Banbury-Mühlen mischt und anschließend extrudiert. Nach der Extrusion kann das Extrudat abgekühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden. Die Mischtemperaturen liegen in der Regel bei 230 bis 320°C.
Nach einer weiteren bevorzugten Arbeitsweise können die Komponenten B) bis C) sowie gegebenenfalls D) mit einem Präpolymeren gemischt, konfektioniert und granuliert werden. Das erhaltene Granulat wird in fester Phase anschließend unter Inertgas kontinuierlich oder diskontinuierlich bei einer Temperatur unterhalb des Schmelzpunk- tes der Komponente A) bis zur gewünschten Viskosität kondensiert.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch eine gute Verarbeitbarkeit bei gleichzeitig guter Mechanik, sowie eine deutlich verbesserte Bindenahtfestigkeit und thermische Stabilität aus.
Diese eignen sich zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art. Nachfolgend sind einige Beispiele genannt: Zylinderkopfhauben, Motorradabdeckungen, Ansaugrohre, Ladeluftkühlerkappen, Steckverbinder, Zahnräder, Lüfterräder, Kühlwasserkästen.
Im E/E-Bereich können mit fließverbesserten Polyamiden Stecker, Steckerteile, Steckverbinder, Membranschalter, Leiterplattenbaugruppen, mikroelektronische Bauteile, Spulen, I/O Steckverbinder, Stecker für Leiterplatten (PCB), Stecker für flexible Leiterplatten (FPC), Stecker für flexible integrierte Schaltkreise (FFC), High-Speed Steckverbindungen, Klemmleisten, Anschlussstecker, Gerätestecker, Kabelbaumkomponenten, Schaltungsträger, Schaltungsträgerkomponen-ten, dreidimensional spritzgegossene Schaltungsträger, elektrische Verbindungselemente, mechatronische Komponenten hergestellt werden.
Im Auto-Innenraum ist eine Verwendung für Armaturentafeln, Lenkstockschalter, Sitzteile, Kopfstützen, Mittelkonsolen, Getriebe-Komponenten und Türmodule, im Auto- Außenraum für Türgriffe, Außenspiegelkomponenten, Scheibenwischerkomponenten, Scheibenwischerschutzgehäuse, Ziergitter, Dachreling, Schiebedachrahmen, Motorabdeckungen, Zylinderkopfhauben, Ansaugrohre (insbesondere Ansaugkrümmer), Scheibenwischer sowie Karosserieaußenteile möglich. Für den Küchen- und Haushaltsbereich ist der Einsatz fließverbesserter Polyamide zur Herstellung von Komponenten für Küchengeräte, wie z.B. Friteusen, Bügeleisen, Knöpfe, sowie Anwendungen im Garten-Freizeitbereich, z.B. Komponenten für Bewässerungssysteme oder Gartengeräte und Türgriffe möglich. Beispiele
Es wurden folgende Komponenten eingesetzt:
Komponente A/1
Polyamid 66 mit einer Viskositätszahl VZ von 148 ml/g, gemessen als 0,5 gew.-%ige Lösung in 96 gew.-%iger Schwefelsäure bei 25°C nach ISO 307. (Es wurde Ultramid® A27der BASF SE verwendet).
Komponente B/1
Eisenpulver CAS-Nr. 7439-89-6:
Figure imgf000030_0003
Teilchengrößenverteilung: (Laserbeugung mit Beckmann LS13320)
Figure imgf000030_0001
d5o 3,4 bis 5,2 μηι
Figure imgf000030_0002
BET-Oberfläche 0,44 m2/g (DIN ISO 9277) Komponente C
2:1 Mischung von Aluminium-diethylphosphinat und Melaminpolyphosphat, zusätzlich 5 % Zink-borat (Exolit® OP1312 der Firma Clariant GmbH) Komponente D/1
Glasfasern
Komponente D/2
Al-di/tristearate (Alugel® 30 DF der Firma Baerlocher)
Komponente D/31
CuJ/KJ im Verhältnis 1 :4 (20%iger Batch in PA6)
Komponente D/32
Irganox® 1098 der Firma BASF SE
Die Formmassen wurden auf einer ZSK 26 bei einem Durchsatz von 25 kg/h und ca. 280°C flachem Temperaturprofil hergestellt. Es wurden folgende Messungen durchgeführt:
Zugversuch nach ISO 527, Mechanikkennwerte vor und nach Wärmelagerung bei 200°C im Umluftofen
VZ: c = 5 g/l in 96%iger Schwefelsäure, nach ISO 307
Flammschutzeigenschaften gemäß UL 94
Die Zusammensetzungen der Formmassen und die Ergebnisse der Messungen sind den Tabellen zu entnehmen.
Tabelle 1 : Zusammensetzungen
Figure imgf000031_0001
Tabelle 2: Mechanische Eigenschaften
Tensile strength (Bruchspannung)
Bsp. 0h 250h 500h 750h 1000h 1V 152 125 101 74 46
2 139 120 101 83 71
3 135 125 1 15 95 79
Figure imgf000032_0001
Tabelle 3: Flammschutz UL 94
Beisp. 1 ,6mm Stärke
1 V VO
2 V1
3 VO

Claims

Patentansprüche
1 . Thermoplastische Formmassen, enthaltend
A) 10 bis 98 Gew.-% eines Polyamides
B) 0,001 bis 20 Gew.-% Eisenpulver mit einer Teilchengröße von maximal 10 μηι (dso-Wert)
C) 1 bis 40 Gew.-% eines halogenfreien Flammschutzmittels aus der Gruppe der phosphorhaltigen oder stickstoffhaltigen Verbindungen oder P-N- Kondensate oder deren Mischungen
D) 0 bis 70 Gew.-% weiterer Zusatzstoffe, wobei die Summe der Gewichtsprozente der Komponenten A) bis D) 100 % ergibt.
2. Thermoplastische Formmassen nach Anspruch 1 , wobei das Eisenpulver B) eine spezifische BET-Oberfläche von 0,1 bis 5 m2/g gemäß DIN ISO 9277 aufweist. 3. Thermoplastische Formmassen nach den Ansprüchen 1 oder 2, in denen die Komponente B) einen dio-wert von 1 bis 5 μηη aufweist.
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, in denen die Komponente B) einen dgo-Wert von 3 bis 35 μηη aufweist. 5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, in denen die Komponente B) einen C-Gehalt von 0,05 bis 1 ,2 g/100g aufweist (gemäß ASTM E 1019). 6. Thermoplastische Formmassen nach den Ansprüchen 1 bis 5, in denen die Komponente B) durch thermische Zersetzung von Eisenpentacarbonyl erhältlich ist.
7. Thermoplastische Formmassen nach den Ansprüchen 1 bis 6, in denen die Komponente B) eine Klopfdichte von 2,5 bis 5 g/cm3 aufweist. 8. Thermoplastische Formmassen nach den Ansprüchen 1 bis 7, in denen die Komponente C) aus Phosphinsäuresalzen der Formel (I) und/oder Diphosphinsäure- salzen der Formel (II) und/oder deren Polymeren aufgebaut ist
1 O
R
2 P-o M (I)
R
m
Figure imgf000034_0001
wobei die Substituenten folgende Bedeutung haben:
R1, R2 Wasserstoff, d- bis Cs-Alkyl, vorzugsweise d- bis C4-Alkyl, linear oder verzweigt, z.B. Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert-Butyl, n- Pentyl; Phenyl; wobei bevorzugt mindestens ein Rest R1 oder R2, insbesondere R1 und R2 Wasserstoff ist;
R3 Cr bis Cio-Alkylen, linear oder verzweigt, z.B. Methylen, Ethylen, n-
Propylen, iso-Propylen, n-Butylen, tert.-Butylen, n-Pentylen, n-Octylen, n- Dodecylen;
Arylen, z.B. Phenylen, Naphthylen;
Alkylarylen, z.B. Methyl-phenylen, Ethyl-phenylen, tert.-Butyl-phenylen, Methyl-naphthylen, Ethyl-nahpthylen, tert.-Butyl-naphtylen; Arylalkylen, z.B. Pheny-methylen, Phenyl-ethylen, Phenyl-propylen, Phe- nyl-butylen;
M ein Erdalkali-, Alkalimethall, AI, Zn, Fe, Bor;
m eine ganze Zahl von 1 bis 3;
n eine ganze Zahl von 1 bis 3 und
x 1 oder 2.
Verwendung der thermoplastischen Formmassen gemäß den Anspruch' zur Herstellung von Fasern, Folien und Formkörpern.
10. Fasern, Folien und Formkörper, erhältlich aus den thermoplastischen Formassen gemäß den Ansprüchen 1 bis 8.
PCT/EP2010/065580 2009-10-27 2010-10-18 Wärmealterungsbeständige polyamide mit flammschutz WO2011051121A1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
KR1020127013569A KR101865667B1 (ko) 2009-10-27 2010-10-18 난연성을 갖는 열 노화 내성 폴리아미드
MX2012004654A MX2012004654A (es) 2009-10-27 2010-10-18 Poliamidas resistentes a añejamiento termico con retardo de llama.
EP10774157.1A EP2493969B1 (de) 2009-10-27 2010-10-18 Wärmealterungsbeständige polyamide mit flammschutz
CN2010800481957A CN102666693A (zh) 2009-10-27 2010-10-18 具有阻燃性的耐热老化性聚酰胺
ES10774157T ES2429839T3 (es) 2009-10-27 2010-10-18 Poliamidas ignífugas estables al envejecimiento en caliente
US13/504,524 US8450407B2 (en) 2009-10-27 2010-10-18 Heat aging-resistant polyamides with flame retardancy
PL10774157T PL2493969T3 (pl) 2009-10-27 2010-10-18 Ogniochronne poliamidy na starzenie termiczne
JP2012535736A JP5496351B2 (ja) 2009-10-27 2010-10-18 難燃剤を有する耐熱老化性ポリアミド
RU2012121580/04A RU2541527C2 (ru) 2009-10-27 2010-10-18 Устойчивые к тепловому старению полиамиды с огнезащитой
AU2010311727A AU2010311727B2 (en) 2009-10-27 2010-10-18 Heat aging-resistant polyamides with flame retardancy
CA2778491A CA2778491A1 (en) 2009-10-27 2010-10-18 Heat aging-resistant polyamides with flame retardancy
BR112012009655A BR112012009655B1 (pt) 2009-10-27 2010-10-18 composição de moldagem termoplástica, uso das composições de moldagem termoplástica, e, fibra, folha, ou molde
SI201030379T SI2493969T1 (sl) 2009-10-27 2010-10-18 Toplotno proti staranju odporni poliamidi z zaščito proti ognju
IL218750A IL218750A (en) 2009-10-27 2012-03-20 Polyamides withstand heat over time with ignition inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09174175 2009-10-27
EP09174175.1 2009-10-27

Publications (1)

Publication Number Publication Date
WO2011051121A1 true WO2011051121A1 (de) 2011-05-05

Family

ID=43302641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/065580 WO2011051121A1 (de) 2009-10-27 2010-10-18 Wärmealterungsbeständige polyamide mit flammschutz

Country Status (17)

Country Link
US (1) US8450407B2 (de)
EP (1) EP2493969B1 (de)
JP (1) JP5496351B2 (de)
KR (1) KR101865667B1 (de)
CN (2) CN102666693A (de)
AU (1) AU2010311727B2 (de)
BR (1) BR112012009655B1 (de)
CA (1) CA2778491A1 (de)
ES (1) ES2429839T3 (de)
IL (1) IL218750A (de)
MX (1) MX2012004654A (de)
MY (1) MY156004A (de)
PL (1) PL2493969T3 (de)
PT (1) PT2493969E (de)
RU (1) RU2541527C2 (de)
SI (1) SI2493969T1 (de)
WO (1) WO2011051121A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268920B2 (en) 2008-12-16 2012-09-18 Basf Se Heat aging resistant polyamides
US8450407B2 (en) 2009-10-27 2013-05-28 Basf Se Heat aging-resistant polyamides with flame retardancy
WO2013075982A1 (de) 2011-11-25 2013-05-30 Basf Se Blasformbare polyamidformmassen
US8536247B2 (en) 2009-10-27 2013-09-17 Basf Se Polyamide resistant to heat aging
US8629206B2 (en) 2011-01-20 2014-01-14 Basf Se Flame-retardant thermoplastic molding composition
US8629220B2 (en) 2011-01-18 2014-01-14 Basf Se Hydrolysis-resistant polyamides
US8653168B2 (en) 2011-05-10 2014-02-18 Basf Se Flame-retardant thermoplastic molding composition
US8987357B2 (en) 2011-05-27 2015-03-24 Basf Se Thermoplastic molding composition
WO2015140016A1 (de) * 2014-03-17 2015-09-24 Basf Se Vernetzte polyamide
WO2018015253A1 (de) * 2016-07-20 2018-01-25 Clariant Plastics & Coatings Ltd Flammschutzmittelmischungen, ihre herstellung und ihre verwendung
WO2018015252A1 (de) * 2016-07-20 2018-01-25 Clariant Plastics & Coatings Ltd Flammschutzmittelmischungen, ihre herstellung und ihre verwendung

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045636B2 (en) * 2007-09-10 2015-06-02 Sabic Global Technologies B.V. Blow moldable polyimide/polyamide composition, process for blow molding and articles made thereby
US20120277354A1 (en) * 2011-04-28 2012-11-01 Basf Se Flame-retardant molding compositions
CN103214825B (zh) * 2013-04-01 2015-09-23 金发科技股份有限公司 阻燃性聚酰胺树脂组合物、制备方法及由其制得的制品
CN103214833B (zh) * 2013-04-01 2016-03-30 金发科技股份有限公司 阻燃性聚酰胺树脂组合物、制备方法及由其制得的制品
ES2767296T3 (es) * 2013-11-28 2020-06-17 Lanxess Deutschland Gmbh Composiciones de poliamida
JP6276145B2 (ja) * 2014-09-03 2018-02-07 旭化成株式会社 樹脂組成物及び成形体
DE102016213280B4 (de) 2016-07-20 2024-03-07 Clariant International Ltd Diorganylphosphinsäuresalze, ein Verfahren zu deren Herstellung und ihre Verwendung
CN106280429A (zh) * 2016-08-23 2017-01-04 天津金发新材料有限公司 一种高性能高挤出速率玻璃纤维增强尼龙66组合物
KR102421887B1 (ko) * 2016-10-18 2022-07-18 어센드 퍼포먼스 머티리얼즈 오퍼레이션즈 엘엘씨 열 노화에 내성이 있는 저할로겐 난연제 폴리아마이드 조성물
ES2954970T3 (es) 2016-12-05 2023-11-27 Metis Tech Pty Ltd Copolímero de poliacrilonitrilo extruido
WO2019077529A2 (en) 2017-10-17 2019-04-25 Celanese Sales Germany Gmbh FLAME RETARDANT POLYAMIDE COMPOSITION
CN109705566B (zh) * 2017-10-26 2021-11-19 中国石油化工股份有限公司 阻燃尼龙6组合物及其发泡珠粒
CN109355733B (zh) * 2018-09-20 2020-11-17 浙江恒澜科技有限公司 一种阻燃超细涤锦海岛纤维及其制备方法
CN113661214A (zh) * 2019-04-01 2021-11-16 奥升德功能材料运营有限公司 非卤化阻燃性聚酰胺组合物
JP7356382B2 (ja) * 2019-04-15 2023-10-04 旭化成株式会社 ポリアミド組成物及び成形品
WO2024200758A1 (en) * 2023-03-31 2024-10-03 Sika Technology Ag A halogen-free flame-retardant polymer composition and use thereof

Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071250A (en) 1931-07-03 1937-02-16 Du Pont Linear condensation polymers
US2071251A (en) 1931-07-03 1937-02-16 Du Pont Fiber and method of producing it
US2130948A (en) 1937-04-09 1938-09-20 Du Pont Synthetic fiber
US2130523A (en) 1935-01-02 1938-09-20 Du Pont Linear polyamides and their production
US2241322A (en) 1938-09-30 1941-05-06 Du Pont Process for preparing polyamides from cyclic amides
US2312966A (en) 1940-04-01 1943-03-02 Du Pont Polymeric material
US2512606A (en) 1945-09-12 1950-06-27 Du Pont Polyamides and method for obtaining same
US3393210A (en) 1964-08-24 1968-07-16 Du Pont Polycarbonamides of bis (para-aminocyclohexyl)methane and dodecanedioic acid
DE2036173A1 (de) 1970-07-21 1972-01-27 Farbenfabriken Bayer Ag, 5090 Lever Kusen Verfahren zur Herstellung von isomeren pentacychschen, ungesättigten Phosphin dihalogeniden
DE2602449A1 (de) 1976-01-23 1977-07-28 Dynamit Nobel Ag Gefuellte und/oder verstaerkte blockpolymerisate aus lactamen
DE2702661A1 (de) 1976-02-05 1977-08-11 Ciba Geigy Ag Stabilisatorsysteme aus triarylphosphiten und phenolen
US4148846A (en) 1970-09-10 1979-04-10 Rohm And Haas Company Acrylic modifiers for polycarbonamides
DE2925208A1 (de) 1979-06-22 1981-01-29 Bayer Ag Verfahren zur herstellung von aromatischen thermoplastischen polyphosphonatocarbonaten
EP0038094A2 (de) 1980-03-26 1981-10-21 Stamicarbon B.V. Herstellung von hochmolekularem Polytetramethylenadipamid
EP0038582A2 (de) 1980-03-26 1981-10-28 Stamicarbon B.V. Herstellung von auf Polyamiden basierten Gegenständen
EP0039524A1 (de) 1980-03-26 1981-11-11 Stamicarbon B.V. Herstellung von Polytetramethylenadipamid
EP0050265A1 (de) 1980-10-16 1982-04-28 Bayer Ag Thermoplastische Polyester-Formmassen mit verbesserter Zähigkeit
DE3140520A1 (de) 1981-10-13 1983-04-21 Basf Ag, 6700 Ludwigshafen Selbstverloeschende thermoplastische formmassen
US4403075A (en) 1980-09-25 1983-09-06 Mcdonnell Douglas Corporation Flame resistant composition containing polymeric phosphorylated amides
EP0088486A2 (de) 1982-02-05 1983-09-14 Automotive Products Public Limited Company Übertragung einer Drehbewegung
EP0129195A2 (de) 1983-06-15 1984-12-27 BASF Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Polyamiden
EP0129196A2 (de) 1983-06-15 1984-12-27 BASF Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Polyamiden
EP0208187A2 (de) 1985-07-06 1987-01-14 Bayer Ag Neue Pfropfpolymerisate und deren Abmischungen mit Polyamiden
EP0235690A2 (de) 1986-03-04 1987-09-09 Bayer Ag Pfropfpolymerisate auf Kautschukpolymeren mit blockartiger Struktur
EP0299444A2 (de) 1987-07-17 1989-01-18 BASF Aktiengesellschaft Teilaromatische Copolyamide mit verringertem Triamingehalt
DE3725576A1 (de) 1987-08-01 1989-02-09 Bayer Ag Formmassen aus aromatischem polyester und gepfropftem silikonkautschuk
EP0319290A2 (de) 1987-12-04 1989-06-07 Polyplastics Co. Ltd. Harzzusammensetzung
DE3800603A1 (de) 1988-01-12 1989-07-20 Bayer Ag Formmassen aus aromatischen polyestern, vinyl-copolymerisaten und gepfropftem siliconkautschuk
EP0584567A2 (de) 1992-08-01 1994-03-02 Hoechst Aktiengesellschaft Flammwidrige Kunststoff-Formmasse mit verbesserter Stabilität
EP0592942A1 (de) * 1992-10-12 1994-04-20 Kishimoto Sangyo Co., Ltd. Flammhemmende Polyamid-Zusammensetzung
JPH09221590A (ja) 1996-02-15 1997-08-26 Toray Ind Inc ポリアミド樹脂組成物
DE19614424A1 (de) 1996-04-12 1997-10-16 Hoechst Ag Synergistische Flammschutzmittel-Kombination für Polymere
EP0922065A2 (de) 1996-08-30 1999-06-16 Basf Aktiengesellschaft Verfahren zur herstellung von polyamiden aus aminonitrilen
JP2000086889A (ja) 1998-09-17 2000-03-28 Toyobo Co Ltd メタリック調ポリアミド樹脂組成物
JP2000256123A (ja) 1999-01-07 2000-09-19 Kao Corp アザミ抽出物の製造法
EP1198491A1 (de) 1999-07-30 2002-04-24 Basf Aktiengesellschaft Verfahren zur herstellung von polyamiden aus dinitrilen und diaminen
WO2002096976A1 (de) 2001-05-31 2002-12-05 Basf Aktiengesellschaft Phosphor-stickstoff-kondensat, verfahren zu dessen herstellung und dessen verwendung als flammschutzmittel
DE10313681A1 (de) 2003-03-26 2004-10-07 Basf Ag Verfahren zur Herstellung von Polyamiden
EP1498445A1 (de) * 2003-07-18 2005-01-19 DSM IP Assets B.V. Wärmestabilisierte Formmasse
EP1500676A2 (de) * 2003-07-14 2005-01-26 Clariant GmbH Flammwidrige Polyamide
US20050250885A1 (en) * 2004-05-04 2005-11-10 General Electric Company Halogen-free flame retardant polyamide composition with improved electrical properties
WO2006074912A1 (en) 2005-01-12 2006-07-20 Dsm Ip Assets B.V. Heat stabilized moulding composition
EP1846506A1 (de) 2005-01-17 2007-10-24 DSMIP Assets B.V. Wärmestabilisierte formzusammensetzung
EP1994075A2 (de) 2006-03-08 2008-11-26 Basf Se Teilaromatische copolyamide mit hoher kristallinität

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19706525A1 (de) * 1997-02-19 1998-08-20 Basf Ag Phosphorhaltige Eisenpulver
KR100236656B1 (ko) * 1997-08-30 2000-01-15 성재갑 외관이 양호한 비할로겐계 난연 폴리아미드 수지 조성물
US7294661B2 (en) * 2003-10-03 2007-11-13 E.I. Du Pont De Nemours And Company Flame resistant aromatic polyamide resin composition and articles therefrom
RU2007102080A (ru) * 2004-06-22 2008-07-27 СУПРЕСТА ЭлЭлСи (US) Фосфорсодержащий пламегаситель для термопластических полимеров
DE102004045775B4 (de) * 2004-09-21 2009-01-08 Ems-Chemie Ag Verwendung von stabilisierten, thermoplastischen Polyamid-Formmassen als Beschichtung von Lichtwellenleitern
CN101099931B (zh) * 2007-05-23 2010-05-19 江苏天一超细金属粉末有限公司 纳米铁系催化剂及其制备方法和装置
WO2010076145A1 (de) * 2008-12-16 2010-07-08 Basf Se Wärmealterungsbeständige polyamide
PT2493968E (pt) 2009-10-27 2015-01-02 Basf Se Poliamida resistente ao envelhecimento térmico
CN102666693A (zh) 2009-10-27 2012-09-12 巴斯夫欧洲公司 具有阻燃性的耐热老化性聚酰胺

Patent Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071251A (en) 1931-07-03 1937-02-16 Du Pont Fiber and method of producing it
US2071250A (en) 1931-07-03 1937-02-16 Du Pont Linear condensation polymers
US2130523A (en) 1935-01-02 1938-09-20 Du Pont Linear polyamides and their production
US2130948A (en) 1937-04-09 1938-09-20 Du Pont Synthetic fiber
US2241322A (en) 1938-09-30 1941-05-06 Du Pont Process for preparing polyamides from cyclic amides
US2312966A (en) 1940-04-01 1943-03-02 Du Pont Polymeric material
US2512606A (en) 1945-09-12 1950-06-27 Du Pont Polyamides and method for obtaining same
US3393210A (en) 1964-08-24 1968-07-16 Du Pont Polycarbonamides of bis (para-aminocyclohexyl)methane and dodecanedioic acid
DE2036173A1 (de) 1970-07-21 1972-01-27 Farbenfabriken Bayer Ag, 5090 Lever Kusen Verfahren zur Herstellung von isomeren pentacychschen, ungesättigten Phosphin dihalogeniden
US4148846A (en) 1970-09-10 1979-04-10 Rohm And Haas Company Acrylic modifiers for polycarbonamides
DE2602449A1 (de) 1976-01-23 1977-07-28 Dynamit Nobel Ag Gefuellte und/oder verstaerkte blockpolymerisate aus lactamen
DE2702661A1 (de) 1976-02-05 1977-08-11 Ciba Geigy Ag Stabilisatorsysteme aus triarylphosphiten und phenolen
US4360617A (en) 1976-02-05 1982-11-23 Ciba-Geigy Corporation Stabilizer systems of triarylphosphites and phenols
DE2925208A1 (de) 1979-06-22 1981-01-29 Bayer Ag Verfahren zur herstellung von aromatischen thermoplastischen polyphosphonatocarbonaten
EP0038094A2 (de) 1980-03-26 1981-10-21 Stamicarbon B.V. Herstellung von hochmolekularem Polytetramethylenadipamid
EP0038582A2 (de) 1980-03-26 1981-10-28 Stamicarbon B.V. Herstellung von auf Polyamiden basierten Gegenständen
EP0039524A1 (de) 1980-03-26 1981-11-11 Stamicarbon B.V. Herstellung von Polytetramethylenadipamid
US4403075A (en) 1980-09-25 1983-09-06 Mcdonnell Douglas Corporation Flame resistant composition containing polymeric phosphorylated amides
EP0050265A1 (de) 1980-10-16 1982-04-28 Bayer Ag Thermoplastische Polyester-Formmassen mit verbesserter Zähigkeit
DE3140520A1 (de) 1981-10-13 1983-04-21 Basf Ag, 6700 Ludwigshafen Selbstverloeschende thermoplastische formmassen
EP0088486A2 (de) 1982-02-05 1983-09-14 Automotive Products Public Limited Company Übertragung einer Drehbewegung
EP0129196A2 (de) 1983-06-15 1984-12-27 BASF Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Polyamiden
EP0129195A2 (de) 1983-06-15 1984-12-27 BASF Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Polyamiden
EP0208187A2 (de) 1985-07-06 1987-01-14 Bayer Ag Neue Pfropfpolymerisate und deren Abmischungen mit Polyamiden
EP0235690A2 (de) 1986-03-04 1987-09-09 Bayer Ag Pfropfpolymerisate auf Kautschukpolymeren mit blockartiger Struktur
EP0299444A2 (de) 1987-07-17 1989-01-18 BASF Aktiengesellschaft Teilaromatische Copolyamide mit verringertem Triamingehalt
DE3725576A1 (de) 1987-08-01 1989-02-09 Bayer Ag Formmassen aus aromatischem polyester und gepfropftem silikonkautschuk
EP0319290A2 (de) 1987-12-04 1989-06-07 Polyplastics Co. Ltd. Harzzusammensetzung
DE3800603A1 (de) 1988-01-12 1989-07-20 Bayer Ag Formmassen aus aromatischen polyestern, vinyl-copolymerisaten und gepfropftem siliconkautschuk
EP0584567A2 (de) 1992-08-01 1994-03-02 Hoechst Aktiengesellschaft Flammwidrige Kunststoff-Formmasse mit verbesserter Stabilität
EP0592942A1 (de) * 1992-10-12 1994-04-20 Kishimoto Sangyo Co., Ltd. Flammhemmende Polyamid-Zusammensetzung
JPH09221590A (ja) 1996-02-15 1997-08-26 Toray Ind Inc ポリアミド樹脂組成物
DE19614424A1 (de) 1996-04-12 1997-10-16 Hoechst Ag Synergistische Flammschutzmittel-Kombination für Polymere
EP0922065A2 (de) 1996-08-30 1999-06-16 Basf Aktiengesellschaft Verfahren zur herstellung von polyamiden aus aminonitrilen
JP2000086889A (ja) 1998-09-17 2000-03-28 Toyobo Co Ltd メタリック調ポリアミド樹脂組成物
JP2000256123A (ja) 1999-01-07 2000-09-19 Kao Corp アザミ抽出物の製造法
EP1198491A1 (de) 1999-07-30 2002-04-24 Basf Aktiengesellschaft Verfahren zur herstellung von polyamiden aus dinitrilen und diaminen
WO2002096976A1 (de) 2001-05-31 2002-12-05 Basf Aktiengesellschaft Phosphor-stickstoff-kondensat, verfahren zu dessen herstellung und dessen verwendung als flammschutzmittel
DE10313681A1 (de) 2003-03-26 2004-10-07 Basf Ag Verfahren zur Herstellung von Polyamiden
EP1500676A2 (de) * 2003-07-14 2005-01-26 Clariant GmbH Flammwidrige Polyamide
EP1498445A1 (de) * 2003-07-18 2005-01-19 DSM IP Assets B.V. Wärmestabilisierte Formmasse
WO2005007727A1 (en) 2003-07-18 2005-01-27 Dsm Ip Assets B.V. Heat stabilized moulding composition
US20050250885A1 (en) * 2004-05-04 2005-11-10 General Electric Company Halogen-free flame retardant polyamide composition with improved electrical properties
WO2006074912A1 (en) 2005-01-12 2006-07-20 Dsm Ip Assets B.V. Heat stabilized moulding composition
EP1683830A1 (de) * 2005-01-12 2006-07-26 DSM IP Assets B.V. Thermostabilisierte Formmassen
EP1846506A1 (de) 2005-01-17 2007-10-24 DSMIP Assets B.V. Wärmestabilisierte formzusammensetzung
EP1994075A2 (de) 2006-03-08 2008-11-26 Basf Se Teilaromatische copolyamide mit hoher kristallinität

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Lexikon Römpp Online", 2006, THIEME-VERLAG
A.F. HOLLEMANN; E. WIBERG: "Lehrbuch der Anorganischen Chemie", 1964, WALTER DES GRUYTER UND CO., pages: 166 - 177
C.B. BUCKNALL: "Toughened Plastics", 1977, APPLIED SCIENCE PUBLISHERS
HOUBEN-WEYL: "Methoden der organischen Chemie", vol. 14/1, 1961, GEORG-THIEME-VERLAG, pages: 392 - 406
HOUBEN-WEYL-MÜLLER: "Organische Phosphorverbindungen Teil", vol. II, 1963, THIEME-VERLAG

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268920B2 (en) 2008-12-16 2012-09-18 Basf Se Heat aging resistant polyamides
US8450407B2 (en) 2009-10-27 2013-05-28 Basf Se Heat aging-resistant polyamides with flame retardancy
US8536247B2 (en) 2009-10-27 2013-09-17 Basf Se Polyamide resistant to heat aging
US8629220B2 (en) 2011-01-18 2014-01-14 Basf Se Hydrolysis-resistant polyamides
US8629206B2 (en) 2011-01-20 2014-01-14 Basf Se Flame-retardant thermoplastic molding composition
US8653168B2 (en) 2011-05-10 2014-02-18 Basf Se Flame-retardant thermoplastic molding composition
US8987357B2 (en) 2011-05-27 2015-03-24 Basf Se Thermoplastic molding composition
JP2014533761A (ja) * 2011-11-25 2014-12-15 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ブロー成形可能なポリアミド成形材料
CN103958609A (zh) * 2011-11-25 2014-07-30 巴斯夫欧洲公司 可吹塑的聚酰胺化合物
WO2013075982A1 (de) 2011-11-25 2013-05-30 Basf Se Blasformbare polyamidformmassen
CN103958609B (zh) * 2011-11-25 2017-11-10 巴斯夫欧洲公司 可吹塑的聚酰胺化合物
US10655013B2 (en) 2011-11-25 2020-05-19 Basf Se Blow-moldable polyamide compositions
WO2015140016A1 (de) * 2014-03-17 2015-09-24 Basf Se Vernetzte polyamide
WO2018015253A1 (de) * 2016-07-20 2018-01-25 Clariant Plastics & Coatings Ltd Flammschutzmittelmischungen, ihre herstellung und ihre verwendung
WO2018015252A1 (de) * 2016-07-20 2018-01-25 Clariant Plastics & Coatings Ltd Flammschutzmittelmischungen, ihre herstellung und ihre verwendung
US11028324B2 (en) 2016-07-20 2021-06-08 Clariant Plastics & Coatings Ltd Flame retardant mixtures, the production and the use thereof

Also Published As

Publication number Publication date
KR101865667B1 (ko) 2018-06-08
ES2429839T3 (es) 2013-11-18
RU2012121580A (ru) 2013-12-10
SI2493969T1 (sl) 2013-11-29
CN106380840A (zh) 2017-02-08
RU2541527C2 (ru) 2015-02-20
CN102666693A (zh) 2012-09-12
CA2778491A1 (en) 2011-05-05
MX2012004654A (es) 2012-05-08
PT2493969E (pt) 2013-09-06
MY156004A (en) 2015-12-31
KR20120099240A (ko) 2012-09-07
AU2010311727B2 (en) 2014-12-04
PL2493969T3 (pl) 2013-12-31
JP2013508522A (ja) 2013-03-07
EP2493969B1 (de) 2013-07-24
BR112012009655B1 (pt) 2019-12-24
IL218750A (en) 2015-05-31
US8450407B2 (en) 2013-05-28
BR112012009655A2 (pt) 2016-05-17
US20120208937A1 (en) 2012-08-16
EP2493969A1 (de) 2012-09-05
JP5496351B2 (ja) 2014-05-21
IL218750A0 (en) 2012-06-28
AU2010311727A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
EP2493969B1 (de) Wärmealterungsbeständige polyamide mit flammschutz
EP2828336B1 (de) Hellgefärbte flammgeschützte polyamide
EP2379644B1 (de) Wärmealterungsbeständige polyamide
EP2652032B1 (de) Glühdrahtbeständige polyamide
WO2007042446A1 (de) Flammgeschütze formmassen
WO1999067326A1 (de) Flammgeschützte polyesterformmassen
EP2294120A1 (de) Wärmeleitfähige polyamide mit diatomeenerde
EP3601424B1 (de) Flammhemmende polyamid-formmassen
EP2898009B1 (de) Flammgeschützte polyamide mit heller farbe
DE102010023770A1 (de) Glühdrahtbeständige Formmassen
EP2861666B1 (de) Flammgeschützte polyamide mit polyacrylnitrilhomopolymerisaten
DE102015209451A1 (de) Flammgeschützte Polyamide
WO2011009877A1 (de) Flammgeschützte polyamidformmassen
EP2817363A1 (de) Cuo/zno-mischungen als stabilisatoren für flammgeschützte polyamide
EP3033387B1 (de) Flammgeschützte polyester
EP2756033B1 (de) Silber-zinkoxid-mischungen als stabilisator für flammgeschützte polyamide enthaltend roten phosphor
WO2006010543A1 (de) Wärmestabilisierte polyamide
WO2012146624A1 (de) Flammgeschütze formmassen
DE102008038411A1 (de) Flammgeschützte Polyamide
WO2012013564A1 (de) Flammgeschützte formmassen
EP2415827A1 (de) Flammgeschützte Polyamide mit Schichtsilikaten

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048195.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774157

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 218750

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2010774157

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2778491

Country of ref document: CA

Ref document number: MX/A/2012/004654

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010311727

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012535736

Country of ref document: JP

Ref document number: 13504524

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 4465/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010311727

Country of ref document: AU

Date of ref document: 20101018

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127013569

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012121580

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012009655

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012009655

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120424