Nothing Special   »   [go: up one dir, main page]

WO2011048956A1 - 装飾発光体およびその製造方法 - Google Patents

装飾発光体およびその製造方法 Download PDF

Info

Publication number
WO2011048956A1
WO2011048956A1 PCT/JP2010/067641 JP2010067641W WO2011048956A1 WO 2011048956 A1 WO2011048956 A1 WO 2011048956A1 JP 2010067641 W JP2010067641 W JP 2010067641W WO 2011048956 A1 WO2011048956 A1 WO 2011048956A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
decorative
light
light emitting
curable ink
Prior art date
Application number
PCT/JP2010/067641
Other languages
English (en)
French (fr)
Inventor
茂 間野
柏木 寛司
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011537203A priority Critical patent/JP5678891B2/ja
Publication of WO2011048956A1 publication Critical patent/WO2011048956A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements

Definitions

  • the present invention relates to a decorative light emitter, and more particularly to a decorative light emitter using an organic electroluminescence element.
  • organic electroluminescence (organic EL) element has been attracting attention as a new surface light-emitting device, such as a color display, a lighting device by emitting white light, or a backlight of a liquid crystal device.
  • organic EL elements are attracting attention as resource-saving and energy-saving devices because they can be driven at low voltage, do not generate heat, and have high luminous efficiency, and are attracting attention as new display devices because they are surface-emitting light sources. It is coming.
  • the inorganic EL element used here has low light emission luminance, and the decoration layer is adhered to the substrate via the adhesive layer, so that the light extraction efficiency to the outside is improved by reflection at the adhesive interface. It has been found that there are problems such as low brightness of the display and wasteful energy consumption.
  • An object of the present invention is to provide a decorative illuminator that is easily, inexpensively, suitable for a variety of products and a small amount of production, has high energy consumption efficiency, high brightness, does not generate heat, is safe, and has excellent scratch resistance. And to provide a method for its manufacture.
  • n1 the refractive index of the substrate is n1
  • the refractive index of the decorative layer formed of the curable ink is A decorative illuminant characterized in that n1 and n2 satisfy the following relationships 1), 2) and 3) when the rate is n2.
  • a method for producing a decorative luminescent material comprising: a step of irradiating the surface of the curable ink layer with ultraviolet rays; and a step of energizing the surface light emitting element to emit light.
  • a decorative light emitting body that is easily and inexpensively adapted to a wide variety and a small amount of production, has high energy consumption efficiency, has high luminance, is safe, and has excellent scratch resistance.
  • FIG. 1 shows a Japanese paper-like, wood-like or marble-like decorative luminescent material formed according to the present invention.
  • Examples of the surface light-emitting element that forms the decorative light-emitting body of the present invention include organic electroluminescence elements (hereinafter referred to as organic EL elements), plasma light-emitting elements, light-emitting diodes (LEDs), liquid crystal display elements, and the like. None, but preferably an organic EL element is used.
  • the surface light emitting device according to the present invention may be a single color, multicolor or white light emitting device.
  • a decorative layer is directly formed with a curable ink on the surface of the substrate on the light extraction side of the surface light emitting device, so that various combinations of light emission and display can be easily performed with high brightness. It is.
  • the driving method may be a simple matrix (passive matrix) method or an active matrix method.
  • the surface light emitting device used in the present invention is preferably an organic EL device.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like when forming the organic EL element as necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
  • the substrate used in the surface light emitting device of the present invention may be any transparent substrate such as glass, plastic plate or plastic film, but is preferably a flexible plastic film.
  • the present invention relates to a decorative light emitter having a decorative layer formed of a curable ink on a substrate surface on the light extraction side of a surface light emitting device, wherein the refractive index of the substrate is n1, and is formed of the curable ink.
  • the refractive index of the decorated layer is n2, n1 and n2 satisfy the following relationships 1), 2), and 3).
  • a substrate having a refractive index in a specific range of n1 is selected, a refractive index of a decoration layer formed by the curable ink of n2 is selected in a range close to the refractive index of the substrate, and the refractive index of It has been found that by setting the difference within a specific range, internal reflection can be reduced and light extraction efficiency can be increased.
  • the refractive index relationship is preferably n1 ⁇ n2, and more preferably n1-n2 ⁇ 0.1.
  • the center line average roughness Ra, the maximum height Ry, and the 10-point average height Rz are represented by the following equations 4), 5), and 6), respectively.
  • the surface roughness of the substrate may cause variations in luminance of the surface light emitters formed on the substrate and cause failures, while the durability of the decorative layer formed on the opposite surface From these relationships, by setting these values within a specific range, it was possible to improve the durability when used as a decorative light emitter.
  • an organic EL element using a plastic film substrate will be described as a representative example of a surface light emitting element preferably used in the present invention.
  • the basic layer structure of the organic EL element preferably used in the present invention are shown below.
  • substrate / anode / light-emitting layer / electron transport layer / cathode substrate / anode / hole transport layer / light-emitting layer / electron transport layer / cathode
  • substrate / anode / hole transport layer / light-emitting layer / electron transport layer / cathode substrate / anode / hole transport layer / light-emitting layer / Hole blocking layer / electron transport layer / cathode
  • substrate / anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode substrate / anode / anode buffer layer / Hole transport layer / light-emitting layer / hole-blocking layer / electron transport layer / cathode buffer layer / cathode
  • the light-emitting layer may contain two
  • substrate Base material
  • substrate a base material, a base
  • substrate a base material, a base
  • it is a flexible transparent substrate or a glass substrate.
  • the glass substrate alkali-free glass, blue plate glass, quartz or the like is used.
  • a metal film such as metal, stainless steel foil, Al foil or the like, quartz or the like can be used as the substrate.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate and cellulose nitrate or their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether Sulfone (PES), polyphenylene sulfide, polysulfones, polyester Examples include cycloolefin resins such as terimide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate are preferable in terms of transparency, durability, and cost.
  • An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and the water vapor permeability measured by a method in accordance with JIS K 7129-1992 (40 ° C., 90% RH) Is preferably a barrier film of 0.01 g / m 2 ⁇ day ⁇ atm or less, and further has an oxygen permeability (20 ° C., 100% RH) of 10 measured by a method according to JIS K 7126-1992. ⁇ 3 g / m 2 / day or less and a water vapor transmission rate of 10 ⁇ 3 g / m 2 / day or less are preferable, and both the water vapor transmission rate and the oxygen transmission rate are 10 ⁇ 5. It is further more preferable that it is below g / m ⁇ 2 > / day.
  • the material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the organic EL element has at least a first electrode and a second electrode. Usually, one is an anode and the other is a cathode. The preferred anode and cathode configurations are described below.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode substances include metals such as Au, and conductive light-transmitting materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • a material such as IDIXO (In 2 O 3 —ZnO) that can form an amorphous light-transmitting conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • either the anode or the cathode of the organic EL element is configured to be light transmissive.
  • the light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light-emitting portion is the light-emitting layer even in the light-emitting layer. It may be an interface with an adjacent layer.
  • the structure of the light emitting layer is not particularly limited.
  • the total film thickness of the light emitting layer is preferably in the range of 1 to 100 nm, and more preferably 30 nm or less because a lower driving voltage can be obtained. Note that the total film thickness of the light emitting layer is a film thickness including the intermediate layer when a non-light emitting intermediate layer exists between the light emitting layers.
  • each light emitting layer is preferably adjusted in the range of 1 to 50 nm, more preferably in the range of 1 to 20 nm. There is no particular limitation on the relationship between the film thicknesses of the blue, green and red light emitting layers.
  • a light-emitting material also referred to as a light-emitting dopant
  • a light-emitting host compound also referred to as a host compound
  • the film can be formed by the thinning method.
  • a plurality of light emitting dopants may be mixed in each light emitting layer, and a phosphorescent light emitting dopant and a fluorescent light emitting dopant may be mixed and used in the same light emitting layer.
  • the light-emitting layer contains a light-emitting host compound and a light-emitting dopant and emits light from light-emitting dopan.
  • a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • known host compounds may be used alone or in combination of two or more.
  • the organic EL element can be made highly efficient.
  • the host compound may be a conventionally known low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable light emitting host).
  • the luminescent host compound used in the organic EL element it is preferable to use a low molecular compound.
  • the low molecular weight compound represents a compound having a molecular weight of 10,000 or less, preferably a compound having a molecular weight in the range of 100 to 10,000, and more preferably a compound in the range of 100 to 2000.
  • the known host compound a compound that has a hole transport ability and an electron transport ability, prevents the emission of light from being long-wavelength, and has a high Tg (glass transition point) is preferable.
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the light-emitting dopant a fluorescent compound (also referred to as a fluorescent compound) or a phosphorescent material (also referred to as a phosphorescent light-emitting material, a phosphorescent compound, or a phosphorescent compound) can be used.
  • the light-emitting dopant used in the light-emitting layer or light-emitting unit of the organic EL element (sometimes simply referred to as a light-emitting material) contains the above-mentioned host compound and at the same time a phosphorescent dopant. It is preferable to contain.
  • the phosphorescent dopant will be described.
  • a phosphorescent dopant is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield of 0.01 or more at 25 ° C.
  • the preferred phosphorescence quantum yield is 0.1 or more.
  • the above phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, when using a phosphorescent dopant in the present invention, the above phosphorescence quantum yield (0.01 or more) is achieved in any solvent. Just do it.
  • phosphorescent dopants There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. Energy transfer type to obtain light emission from the phosphorescent dopant, another is that the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained Although it is a carrier trap type, in any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
  • the phosphorescent dopant can be appropriately selected from known ones used in the light emitting layer of the organic EL device, and is preferably a complex compound containing a group 8-10 metal in the periodic table of elements. More preferably, an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
  • the dopant compound used in the organic EL element it is preferable to use a low molecular compound.
  • the low molecular weight compound represents a compound having a molecular weight of 10,000 or less, preferably a compound having a molecular weight in the range of 100 to 10,000, and more preferably a compound in the range of 100 to 2000.
  • Fluorescent light emitters can also be used for the organic EL elements.
  • fluorescent emitters include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, and pyrylium dyes. Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • Two or more kinds of light emitting materials may be contained in one light emitting layer, and the concentration ratio of the light emitting materials in the light emitting layer may be changed in the thickness direction of the light emitting layer.
  • non-light emitting intermediate layer is a layer provided between the light emitting layers when having a plurality of light emitting layers.
  • the film thickness of the non-light emitting intermediate layer is preferably in the range of 1 to 20 nm, and more preferably in the range of 3 to 10 nm to suppress interaction such as energy transfer between adjacent light emitting layers, and This is preferable because a large load is not applied to the voltage characteristics.
  • the material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but may be the same as the host material of at least one of the adjacent light emitting layers. preferable.
  • the non-light-emitting intermediate layer may contain a non-light-emitting layer, a compound common to each light-emitting layer (for example, a host compound), and each common host material (where a common host material is used)
  • a compound common to each light-emitting layer for example, a host compound
  • each common host material where a common host material is used
  • the injection barrier is reduced, and it is possible to obtain an effect that the injection balance of holes and electrons can be easily maintained even when the voltage (current) is changed.
  • the host material is responsible for carrier transport, and therefore a material having carrier transport capability is preferable.
  • Carrier mobility is used as a physical property representing carrier transport ability, but the carrier mobility of an organic material generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance between injection and transport of holes and electrons, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host material.
  • the non-light emitting intermediate layer functions as a blocking layer described later, that is, a hole blocking layer and an electron blocking layer. It is done.
  • injection layer electron injection layer, hole injection layer
  • the injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc.
  • the buffer layer (injection layer) is preferably an extremely thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m although it depends on the material.
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and their forefront of industrialization” (published by NTT Corporation on November 30, 1998). There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer and is composed of a hole blocking material having a function of transporting electrons and having a remarkably small ability to transport holes, while transporting electrons. By blocking holes, the recombination probability of electrons and holes can be improved. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer in a broad sense, has a function of a hole transport layer, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons, while transporting holes. By blocking electrons, the probability of recombination of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thickness of the hole blocking layer and the electron transport layer is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067 J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode.
  • any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivatives exemplified as the material of the light emitting layer can also be used as the electron transport material, and inorganic semiconductors such as n-type-Si and n-type-SiC can be used as well as the hole injection layer and the hole transport layer. It can be used as an electron transport material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • Method for producing organic EL element As an example of a method for producing an organic EL element, a method for producing an organic EL element comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described.
  • a thin film made of a desired electrode material for example, an anode material
  • a suitable support substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 to 200 nm, thereby producing an anode.
  • a method for thinning the organic compound thin film there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) and the like as described above.
  • the method and the printing method are particularly preferable. Further, a different film forming method may be applied for each layer.
  • the heating method may be a heater heating method (infrared heater, halogen heater, panel heater, etc. are placed on or under the film and heated by radiant heat), or zone heating method (heating in a zone where hot air is blown and adjusted to a predetermined temperature) )
  • a zone heating method is preferable from the viewpoint of uniformity.
  • a thermostatic bath can be used.
  • the thermostat may be in any form as long as it can heat-treat the coating film at a set temperature, for example, the entire thermostat may be heated with warm air set at a predetermined temperature. Alternatively, warm air may be blown onto the film, or the inside of the thermostatic chamber may be set to a desired temperature using a heater.
  • the attachment position of such a heating device such as a heater may be attached to any position inside the thermostatic bath as long as the coating film can be uniformly heated.
  • the temperature may be increased from the entrance toward the exit, the temperature may be decreased, or the temperature increase and decrease may be repeated.
  • a preheating part may be provided before heating, and a cooling part may be provided after heating.
  • the heating temperature only needs to be a temperature at which the residual solvent can be removed, and is generally higher than the boiling point of the solvent used for coating. preferable. However, since it is necessary to avoid deterioration of the substrate and the organic layer formed by coating, the temperature has an upper limit and is selected depending on the system.
  • the heat treatment time is preferably 1 to 120 minutes, more preferably 5 to 60 minutes, and further preferably 10 to 30 minutes.
  • the heat treatment time is preferably 1 to 120 minutes, more preferably 5 to 60 minutes, and further preferably 10 to 30 minutes.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, and a cathode is provided.
  • a desired organic EL element can be obtained.
  • the production of this organic EL element can be produced in the order of the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode by reversing the production order.
  • a DC voltage is applied to the organic EL device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • An organic EL element generally emits light inside a layer having a refractive index higher than that of air (refractive index of about 1.6 to 2.1) and can only extract about 15 to 20% of the light generated in the light emitting layer. It has been said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be extracted outside the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (for example, US Pat. No. 4,774,435).
  • a method of improving the efficiency by giving the substrate a light condensing property for example, JP-A-63-314795
  • a method of forming a reflective surface on the side surface of the element for example, JP-A-1-220394) Gazette
  • a method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter for example, Japanese Patent Application Laid-Open No. 62-172691
  • a method of introducing a flat layer having a lower refractive index than that for example, Japanese Patent Laid-Open No. 2001-202827
  • a diffraction grating is provided between any of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside).
  • Method of forming There is 11-283751 JP), and the like.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.0 or more and 1.5 or less. Further, it is preferably 1.0 or more and 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. Preferably, they are 1.0 micrometer or more and 2.0 mm or less.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction and second-order diffraction. Among them, light that cannot be emitted due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (in a transparent substrate or transparent electrode), and the light is emitted outside. I want to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the light emitting element is processed on the light extraction side of the support substrate so as to provide, for example, a microlens array-like structure or combined with a so-called condensing sheet, for example, a front direction with respect to the element light emitting surface.
  • condensing the light By condensing the light, the luminance in a specific direction can be increased.
  • a quadrangular pyramid having a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, a triangle stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m may be formed on the substrate, the vertex angle may be rounded, and the pitch may be changed randomly. Other shapes may be used.
  • a light diffusing plate / film may be used in combination with the light collecting sheet, or a light diffusing function may be added to the decorative layer.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the sealing substrate seals the organic EL element and protects the element from a severe external environment such as temperature change, humidity, oxygen, and impact.
  • a known gas barrier film used for packaging materials for example, a film in which silicon oxide or aluminum oxide is vapor-deposited on a resin (plastic) film, a dense ceramic layer, and a flexible impact relaxation polymer layer are alternately arranged.
  • a gas barrier film or the like having a configuration laminated on can be used as a sealing substrate.
  • a metal foil laminated with a resin film cannot be used as a gas barrier film on the light extraction side, but it is a sealing base material that is low in cost and has low moisture permeability, and can extract light.
  • a sealing substrate When it is not intended (transparency is not required), it is preferable as a sealing substrate.
  • Metal foil refers to a metal foil or film formed by rolling or the like, unlike a metal thin film formed by sputtering or vapor deposition, or a conductive film formed from a fluid electrode material such as a conductive paste. .
  • metal foil there is no limitation in particular in the kind of metal, for example, copper (Cu) foil, aluminum (Al) foil, gold (Au) foil, brass foil, nickel (Ni) foil, titanium (Ti) foil, copper alloy Examples thereof include foil, stainless steel foil, tin (Sn) foil, and high nickel alloy foil.
  • a particularly preferred metal foil is an Al foil.
  • the thickness of the metal foil is preferably 5 nm to 50 ⁇ m from the viewpoint of barrier properties (moisture permeability, oxygen permeability) and cost.
  • resin film in the metal foil laminated with the resin film various materials described in the new development of functional packaging materials (Toray Research Center, Inc.) can be used.
  • Resin polypropylene resin, polyethylene terephthalate resin, polyamide resin, ethylene-vinyl alcohol copolymer resin, ethylene-vinyl acetate copolymer resin, acrylonitrile-butadiene copolymer resin, cellophane resin, vinylon resin, chloride
  • vinylidene resins examples thereof include vinylidene resins.
  • Resins such as polypropylene resins and nylon resins may be stretched and further coated with a vinylidene chloride resin.
  • a polyethylene resin having a low density or a high density can be used.
  • PVDC vinylidene chloride
  • CPP unstretched polypropylene
  • OPP stretched polypropylene
  • KOP polypropylene coated with PVDC
  • PET polyethylene Use terephthalate
  • KPT PVDC-coated cellophane
  • Eval polyethylene-vinyl alcohol copolymer
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • the thickness of the resin film cannot be generally specified, but is preferably 3 to 400 ⁇ m, more preferably 10 to 200 ⁇ m, and even more preferably 10 to 50 ⁇ m.
  • a laminating machine As a method for coating (laminating) a polymer film on one side of a metal foil, a generally used laminating machine can be used.
  • a dry laminating method, a hot melt lamination method and an extrusion laminating method can be used, but a dry laminating method is preferred.
  • polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used as the adhesive. You may use a hardening
  • a film in which one side of a metal foil is coated with a resin film (polymer film) is commercially available for packaging materials.
  • a dry laminate film having a configuration of adhesive layer / aluminum film 9 ⁇ m / polyethylene terephthalate (PET) 38 ⁇ m can be obtained, and the cathode side of the organic EL element can be sealed using this.
  • a ceramic film is formed on the metal foil on the opposite side of the resin film (polymer film) of the film coated with a resin film (polymer film) on one side of the metal foil. It is also preferable to use them.
  • a method for sealing the two films for example, a method of laminating a commonly used impulse sealer heat-fusible resin film (layer), fusing with an impulse sealer, and sealing is preferable. .
  • the gas barrier properties of the sealing substrate (film) are preferably those having an oxygen permeability of 10 ⁇ 3 g / m 2 / day or less and a water vapor permeability of 10 ⁇ 3 g / m 2 / day or less.
  • the water vapor permeability and oxygen permeability are more preferably 10 ⁇ 5 g / m 2 / day or less.
  • the adhesive for adhering the sealing substrate examples include a thermosetting adhesive having a reactive vinyl group such as an acrylic acid oligomer or a methacrylic acid oligomer.
  • a thermosetting adhesive having a reactive vinyl group such as an acrylic acid oligomer or a methacrylic acid oligomer.
  • ThreeBond 1152, 1153 and the like can be used.
  • thermosetting adhesive that cures in about 1 hour at a temperature equal to or higher than the Tg of the sealing substrate and lower than the Tg of the flexible transparent substrate.
  • a thermosetting adhesive that cures in about 1 hour at a temperature equal to or higher than the Tg of the sealing substrate and lower than the Tg of the flexible transparent substrate.
  • Tg polyethylene naphthalate
  • Tg polyethylene terephthalate
  • an epoxy thermosetting adhesive with a curing condition of 120 ° C. for 1 hour is used. Agents.
  • the electrode and the organic layer on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and form an inorganic or organic layer in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • the inert gas a rare gas such as He and Ar is preferably used in addition to N 2 , but a rare gas in which He and Ar are mixed is also preferable, and the ratio of the inert gas in the gas is 90 to 99.99. It is preferably 9% by volume. Preservability is improved by sealing in an environment purged with an inert gas.
  • a ceramic film is formed on the metal foil instead of the laminated resin film surface.
  • the ceramic film surface is preferably bonded to the cathode of the organic EL element.
  • the dry laminating method is excellent in terms of workability.
  • This method generally uses a curable adhesive layer of about 1.0 to 2.5 ⁇ m.
  • the amount of adhesive is preferably adjusted to 3 to 5 ⁇ m in terms of dry film thickness.
  • the method which melts a hot melt adhesive and coats an adhesive layer on a substrate, or a resin (LDPE, EVA, PP, etc.) melted at a high temperature is coated on the substrate by a die.
  • a method extentrusion laminating method or the like may also be used.
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the decorative layer of the present invention is formed using a curable ink.
  • curable ink various curable inks such as actinic ray curable resin, thermosetting resin, and two-component curable resin can be used.
  • the actinic radiation curable resin is mainly composed of a resin that is cured through a crosslinking reaction or the like by irradiation with actinic rays such as ultraviolet rays, visible rays, and electron beams.
  • actinic radiation curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and a decorative layer is formed by curing by irradiating actinic radiation such as ultraviolet rays, visible rays or electron beams. Is done.
  • Typical examples of the actinic radiation curable resin include an ultraviolet curable resin, a visible light curable resin, and an electron beam curable resin.
  • an ultraviolet curable resin for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used.
  • UV curable acrylic urethane resins generally include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate) in products obtained by reacting polyester polyols with isocyanate monomers or prepolymers. It is easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • those described in JP-A-59-151110 can be used.
  • a mixture of 100 parts of Unidic 17-806 (manufactured by DIC Corporation) and 1 part of Coronate L (manufactured by Nippon Polyurethane Corporation) is preferably used.
  • UV curable polyester acrylate resins include those that are easily formed by reacting polyester polyols with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers, generally as disclosed in JP-A-59-151112. Can be used.
  • ultraviolet curable epoxy acrylate resin examples include those produced by reacting epoxy acrylate with an oligomer, a reactive diluent and a photoinitiator added thereto, and reacting them. Those described in US Pat. No. 105738 can be used.
  • UV curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, etc. Can be mentioned.
  • photoreaction initiators for these ultraviolet curable resins include benzoin and its derivatives, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof. You may use with a photosensitizer.
  • the photoinitiator can also be used as a photosensitizer.
  • a sensitizer such as n-butylamine, triethylamine, or tri-n-butylphosphine can be used.
  • the photoreaction initiator or photosensitizer used in the ultraviolet curable resin composition is 0.1 to 15 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the composition.
  • the resin monomer may include general monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, benzyl acrylate, cyclohexyl acrylate, vinyl acetate, and styrene as monomers having one unsaturated double bond.
  • Monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above-mentioned trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.
  • Examples of specific compounds include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, and the like.
  • the decorative layer made of these actinic ray curable resins can be applied by a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, or an ink jet method.
  • any light source that generates ultraviolet light can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is preferably 5 to 150 mJ / cm 2 , and particularly preferably 20 to 100 mJ / cm 2 .
  • An organic solvent may be used for the UV curable resin layer composition coating solution.
  • the organic solvent include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones, and the like. It can be appropriately selected from a class of compounds (acetone, methyl ethyl ketone, methyl isobutyl ketone), esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or a mixture thereof can be used.
  • Examples of the visible light curable resin include Clear Luce (registered trademark) MA21, Benefix S105, STN30, and VX manufactured by Adel Co., Ltd.
  • Examples of the two-component curable resin include 9300 series HIPET ink manufactured by Jujo Chemical Co., Ltd., inks obtained by blending imide resins such as V-8000, 8001, 8002, and 8003 manufactured by DIC and epoxy resins. it can.
  • a decorative layer is formed on the substrate surface of the light emitting surface of the organic EL element, which is a surface light emitting element, using the curable ink described above.
  • a method for forming the decoration layer there are a spin coating method, a casting method, an ink jet method, a printing method, and the like, but an ink jet method and a printing method (screen printing, gravure printing, etc.) are particularly preferable from the viewpoint of excellent productivity.
  • the decorative layer is formed by curing the layer formed of the curable ink using light irradiation, heating, or both light irradiation and heating.
  • the heating method may be a heater heating method (infrared heater, halogen heater, panel heater, etc. are placed on or under the film and heated by radiant heat), or zone heating method (heating in a zone where hot air is blown and adjusted to a predetermined temperature) )
  • zone heating method heating in a zone where hot air is blown and adjusted to a predetermined temperature
  • a thermostatic bath can be used.
  • the thermostat may be in any form as long as it can heat-treat the coating film at a set temperature, for example, the entire thermostat may be heated with warm air set at a predetermined temperature. Alternatively, warm air may be blown onto the film, or the inside of the thermostatic chamber may be set to a desired temperature using a heater.
  • the attachment position of such a heating device such as a heater may be attached to any position inside the thermostatic bath as long as the coating film can be uniformly heated.
  • the temperature may be increased from the entrance toward the exit, the temperature may be decreased, or the temperature increase and decrease may be repeated.
  • a preheating part may be provided before heating, and a cooling part may be provided after heating.
  • the heating temperature may be a curing temperature, and is preferably 100 ° C. or higher. However, since it is necessary to avoid deterioration of the substrate and the organic layer formed by coating, the temperature has an upper limit and is selected depending on the system.
  • the light irradiation may be a method of irradiating from the outside using a lamp that emits actinic rays.
  • the surface light emitting element is made to emit light by energizing the surface light emitting element so that the light irradiation from the inside is also performed.
  • the method to perform is a preferable method which can also irradiate the uncured portion where the light did not reach by light irradiation from the surface, and uniformize the curing.
  • the irradiation from the outside and the irradiation from the inside may be performed simultaneously or separately, and it is preferable to perform irradiation at the same time or partially overlapping.
  • the following 1) and 2) can be simultaneously performed in the step of irradiating the ultraviolet rays, so that it is possible to irradiate the uncured portion where the light has not reached by the light irradiation from the surface.
  • 1) Irradiation from the curable ink layer 2) Irradiation from the end surface of the light extraction side substrate of the surface light emitting element
  • An additive such as an agent can be added to produce a desired ink.
  • the decorative light-emitting body of the present invention can be used for various applications such as building materials, furniture, lighting, in-vehicle displays, signs, advertisements, and the like.
  • a building material it is used for a wall material, a floor material, a tile, and the like, and when the wall material and the floor material itself emit light, it can be used as a wall lighting or a floor lighting, and can also be used as a display or a sign.
  • a shining furniture, a shining partition, and a shining curtain and can use it for home use or vehicle-mounted use.
  • it can be used as all kinds of lighting and displays using surface light emitting elements such as billboard advertisements and traffic lights.
  • Example 1 Production of Decorative Light Emitter 101 (Invention) >> ⁇ Production of gas barrier flexible film>
  • an atmospheric pressure plasma discharge treatment apparatus having the structure described in JP-A-2004-68143 is formed on the entire surface of a polyethylene terephthalate film having a thickness of 100 ⁇ m (a film manufactured by Konica Minolta, hereinafter abbreviated as PET).
  • the inorganic gas barrier film (thickness 500 nm) made of SiO x (x is 2 or less) is continuously formed on the flexible film, and the oxygen permeability is 0.001 cm 3 / (m 2 ⁇ 24 h ⁇ atm. )
  • first electrode layer A 120 nm thick ITO (indium tin oxide) film was formed on the prepared gas barrier flexible film by sputtering and patterned by photolithography to form a first electrode layer.
  • the pattern was such that the light emission area was 50 mm ⁇ 50 mm.
  • ⁇ Formation of hole transport layer> As a modification treatment of the surface of the first electrode layer of the gas barrier flexible film on which the prepared first electrode layer is formed, a low-pressure mercury lamp with a wavelength of 184.9 nm is used, an irradiation intensity of 15 mW / cm 2 , and a distance of 10 mm. In addition, as a charge removal process, a process using a static eliminator with weak X-rays was performed. The hole transport layer forming coating liquid shown below was applied to the surface of the first electrode layer subjected to the above treatment by an extrusion coater, and then dried to form a hole transport layer. The coating liquid for forming the hole transport layer was applied so that the thickness after drying was 50 nm.
  • PEDOT / PSS polyethylene dioxythiophene / polystyrene sulfonate
  • Baytron P AI 4083 manufactured by Bayer
  • the following white light emitting layer forming coating solution was applied by an extrusion coater, and then dried to form the light emitting layer. Formed.
  • the white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.
  • Host material HA 1.0g, dopant material DA 100mg, dopant material DB 0.2mg, dopant material DC 0.2mg, dissolved in 100g toluene to form white light emitting layer It was prepared as a coating solution.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, a coating temperature of 25 ° C., and a coating speed of 1 m / min.
  • the following coating liquid for forming an electron transport layer was applied by an extrusion coater and then dried to form an electron transport layer.
  • the coating solution for forming an electron transport layer was applied so that the thickness after drying was 30 nm.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.
  • the electron transport layer was prepared by dissolving EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution as a coating solution for forming an electron transport layer.
  • An electron injection layer was formed on the formed electron transport layer.
  • the substrate was put into a vacuum chamber and the pressure was reduced to 5 ⁇ 10 ⁇ 4 Pa.
  • cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
  • Second electrode On the electron injection layer formed on the first electrode except for the portion to become the extraction electrode, aluminum is used as the second electrode forming material under a vacuum of 5 ⁇ 10 ⁇ 4 Pa, and light is emitted by vapor deposition.
  • a mask pattern was formed to have an extraction electrode with an area of 50 mm square, and a second electrode having a thickness of 100 nm was laminated.
  • a flexible gas barrier film was cut into a specified size.
  • Electrode leads 7 of 5 ⁇ m rolled copper foil 18 ⁇ m, coverlay: polyimide 12.5 ⁇ m, surface-treated NiAu plating) were connected by the conductive adhesive 8.
  • Crimping conditions temperature 120 ° C. (ACF temperature 120 ° C. measured using a separate thermocouple), pressure 2 MPa, 10 seconds, and at this time, crimping was performed so as to form as shown in FIG.
  • the organic EL element 40 to which the electrode lead 7 (flexible printed circuit board) is connected is bonded to the sealing member 50 using a commercially available roll laminating apparatus (not shown).
  • the organic EL panel 60 shown in c) was manufactured.
  • sealing member 50 As the sealing member 50, a 30 ⁇ m thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), a polyethylene terephthalate (PET) film (12 ⁇ m thick) and an adhesive for dry lamination (two-component reaction type urethane adhesive)
  • PET polyethylene terephthalate
  • adhesive for dry lamination two-component reaction type urethane adhesive
  • thermosetting adhesive 6 was applied uniformly to the aluminum surface with a thickness of 20 ⁇ m on the adhesive surface (glossy surface) of the aluminum foil using a dispenser.
  • thermosetting adhesive The following epoxy adhesive was used as the thermosetting adhesive.
  • the sealing member 50 is closely attached and arranged so as to cover the joint between the extraction electrode and the electrode lead so as to have a form as shown in FIG.
  • the organic EL panel 60 was obtained by tightly sealing with use.
  • the organic EL panel corresponds to the surface light emitting device in the present invention.
  • An uncured decorative layer 9 is formed by screen printing on the surface of the substrate 1 on the light extraction side of each surface light-emitting element obtained above using a screen printing method.
  • the cured decorative layer 9 is irradiated with ultraviolet rays from the surface side under the conditions of a FUSION H bulb 1,000 mJ / cm to cure the curable resin layer to form the decorated layer 9.
  • Each decorative luminous body 101 was obtained in combination (see FIG. 1D).
  • the decorative layer 9 was formed so that the film thickness after curing was 10 ⁇ m.
  • the light extraction efficiency is 80% or more by combining the refractive index of the substrate of the organic EL element and the decorative layer within the range of the present invention (the range marked with * in Table 1). It can be seen that a high and bright decorative illuminant can be obtained.
  • Example 2 In the production of the decorative light-emitting body 101 of Example 1, the substrates listed in Table 2 were used for the surface roughness, centerline average roughness Ra, maximum height Ry, and 10-point average height Rz of the PET surface of the substrate 1. Except that, decorative light emitters were produced in the same manner.
  • ⁇ Leakage current value> Using a decorative illuminator inspection device, apply a reverse bias voltage of 0 to -3 V to each decorative illuminator, measure the leakage current (displayed as R current) at that time, and set a current value of 0.001 mA or more. A panel in which an R current was observed was evaluated as R current x, and a panel having a lower current value was evaluated as R current ⁇ .
  • FIG. 1 A block diagram of the decorative light emitting device inspection apparatus used is shown in FIG.
  • the decorative light emitter inspection device 20 includes a power supply unit 22 and a control unit 23 which are voltage application means.
  • the power supply unit 22 sequentially applies a voltage from 0V to ⁇ 3V to the decorative light emitter 21 which is a voltage object, and subsequently sequentially applies voltages of different values from ⁇ 3V to 0V.
  • the control unit 23 controls the voltage of the power supply unit 22 and measures the VI characteristic.
  • the power supply unit 22 has a function of measuring and recording either the voltage V or the current I.
  • the leakage current R when a voltage is applied is measured. A case where a leak current of 001 mA or more is seen is determined to be defective.
  • the adhesion of the decorative layer formed on the substrate was evaluated by the following cross-cut tape peeling method, and 90 or more were evaluated as a film with o, and less than 90 were evaluated as a film with x.
  • each surface roughness coefficient is set to a specific range of the present invention (the range marked with * in Table 2), so that the leakage current is small and the film is good.
  • a decorative light emitter having excellent durability can be obtained.
  • Example 3 An optical glass BK-7 is used as the substrate of the organic EL panel 60 formed in Example 1, and the following thermosetting ink-jet ink is used in place of the ultraviolet curable ink used in the decorative light-emitting body 101.
  • a decorative illuminant was formed in the same manner except that the decorative layer was formed using.
  • thermosetting inkjet ink >> ⁇ Red ink> C.
  • the ink-jet method can be applied in a small area, and damage to the organic EL element due to heat treatment is small, and a bright full-color image can be easily formed.
  • Example 4 In the formation of the decorative luminescent material 101 used in Example 3, a curable ink was prepared in the same manner except that the following two-component curable ink was used in place of the thermosetting ink used, and the screen printing method was used to produce the curable ink 101 shown in FIG. A decorative layer having the transmission image pattern shown in FIG.
  • the two-component curable ink used was a 9300 series ink manufactured by Toago Paper Co., Ltd., and two components were mixed immediately before printing.
  • the feature of the two-component curing type is that a coating film having excellent mechanical strength and good adhesion can be formed on the substrate.
  • the obtained decorative layer had a good transmission image pattern. Further, the obtained decorative layer had high scratch resistance.
  • the refractive index of the decorative layer after curing was 1.50.
  • Example 5 In the formation of the decorative light emitting body 101 used in Example 4, a decorative layer (see FIG. 4) was formed by a screen printing method using visible light curable ink instead of the two-component curable ink.
  • the visible light curable ink used was formed by dispersing a patterning material in LCR0754 manufactured by Toa Chemical Co., Ltd. As required, Y, M, C, and Bk inks were stacked in multiple layers to produce a desired pattern. As a result, as shown in FIG. 4, the decorative layer can be printed in the form of Japanese paper, marble, or wood, and the decorative light emitting body 101 that is a decorative board with illumination can be easily obtained.
  • the refractive index of the decorative layer after curing was 1.50.
  • the luminescent material may be partially broken by the ultraviolet light irradiated at the time of curing, and the luminous efficiency may be lowered.
  • the visible light curable type there is no need to worry about that, and there is no limitation on the material that can be used for the light emitting layer or the limitation on the amount of light irradiation, so that a preferable mode can be implemented.
  • Example 6 In the production of the decorative light emitting body 101 of Example 1, in addition to the ultraviolet irradiation from the printing surface, the organic EL panel was energized to emit light from the organic EL layer, and irradiation from the inside was performed to promote curing. As a result, it was found that when the film thickness of the decorative layer was evaluated by the above-described crosscut tape peeling method, it was improved by 30% or more when compared with the same curing time.
  • Example 7 In the formation of the decoration layer of Example 5, the decoration light-emitting body 101 was formed in the same manner except that the patterning material used in the ink was not used and the transparent decoration layer was used. On the obtained decorative layer, a polyvinyl butyral aqueous solution in which silica fine particles were dispersed was applied and dried to form an ink jet image receiving layer.
  • the decorative light-emitting body 101 having the ink jet image receiving layer thus obtained can easily form a favorite image such as a photographic image on the ink jet image receiving layer by an ink jet printing method.
  • a decorative luminescent material that is easy, inexpensive, suitable for a wide variety and in small quantities, has high energy consumption efficiency, high brightness, does not generate heat, is safe, and has excellent scratch resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 容易に、安価に、多品種、少量生産に適した、エネルギー消費効率が高く、高輝度で、発熱が無く、安全で、耐擦過性に優れた装飾発光体を提供するにあたり、面発光素子の光取り出し側の基板表面上に、硬化性インクにより形成された装飾層を有する装飾発光体において、該基板の屈折率をn1とし、該硬化性インクにより形成された装飾層の屈折率をn2とするとき、n1とn2が下記1)、2)および3)式の関係を満たすことを特徴とする。 1) 1.4≦n1≦1.9 2) 1.4≦n2≦1.9 3) |n1-n2|≦0.2

Description

装飾発光体およびその製造方法
 本発明は装飾発光体に関し、特に有機エレクトロルミネッセンス素子を用いた装飾発光体に関するものである。
 有機エレクトロルミネッセンス(有機EL)素子は、カラーディスプレイとして用いたり、白色に発光させることにより照明装置としたり、液晶装置のバックライトとして用いたり、新しい面発光装置として注目されてきている。
 これら有機EL素子は、低電圧で駆動できること、発熱がないこと、発光効率が高いこと等から、省資源、省エネ機器としても注目され、面発光の光源であることから、新しいディスプレイ装置として注目されてきている。
 最近では、板状の無機EL素子表面に接着層を介して装飾層を設け、装飾層に種々の装飾を施すことにより、インテリア等のディスプレイとして用いる技術が開示されている(特許文献1参照。)。
 該特許文献1に記載された技術を見ると、装飾層にインクジェット印刷等により画像を形成し、EL素子をバックライトとして用いることにより、種々の画像を種々の形態で表示することができ、少量多品種、或いは一品生産が可能である。
 しかしながら、ここで用いられた無機EL素子は、発光輝度が低いこと、基板上に接着層を介して装飾層が接着されていることにより、接着界面での反射により、外部への光取りだし効率が低く、ディスプレイの輝度が低く、無駄なエネルギーが消費されている等の問題が有ることが分かった。
特開2008-293942号公報
 本発明の目的は、容易に、安価に、多品種、少量生産に適した、エネルギー消費効率が高く、高輝度で、発熱が無く、安全で、耐擦過性に優れた装飾発光体を提供すること、そしてその製造方法を提供することである。
 上記課題は、下記の本発明の構成により、解決することができた。
 1.面発光素子の光取り出し側の基板表面上に、硬化性インクにより形成された装飾層を有する装飾発光体において、該基板の屈折率をn1とし、該硬化性インクにより形成された装飾層の屈折率をn2とするとき、n1とn2が下記1)、2)および3)式の関係を満たすことを特徴とする装飾発光体。
 1) 1.4≦n1≦1.9
 2) 1.4≦n2≦1.9
 3) |n1-n2|≦0.2
 2.前記面発光素子の基板の表面粗さにおいて、中心線平均粗さRa、最大高さRy、10点平均高さRzがそれぞれ、下記4)、5)および6)式で示されることを特徴とする前記1に記載の装飾発光体。
 4) 0.1nm≦Ra≦10nm
 5) 1.0nm≦Ry≦100nm
 6) 1.0nm≦Rz≦100nm
 3.前記硬化性インクが熱硬化性インクであることを特徴とする前記1または2に記載の装飾発光体。
 4.前記硬化性インクが2液硬化性インクであることを特徴とする前記1または2に記載の装飾発光体。
 5.前記硬化性インクが光硬化性インクであることを特徴とする前記1または2に記載の装飾発光体。
 6.前記光硬化性インクが可視光線硬化性インクであることを特徴とする前記5に記載の装飾発光体。
 7.前記光硬化性インクが紫外線硬化性インクであることを特徴とする前記5に記載の装飾発光体。
 8.前記装飾層の形成がスクリーン印刷であることを特徴とする前記1~7の何れか1項に記載の装飾発光体。
 9.前記装飾層の形成がインクジェット印刷であることを特徴とする前記1~7の何れか1項に記載の装飾発光体。
 10.前記面発光素子が、有機EL素子であることを特徴とする前記1~9の何れか1項に記載の装飾発光体。
 11.面発光素子の光取り出し側基板表面上に硬化性インク層を形成する工程、形成された硬化性インク層に紫外線を照射する工程、によって形成された装飾層を有する装飾発光体の製造方法において、該硬化性インク層面に紫外線を照射する工程と、該面発光素子に通電して発光させる工程とを有することを特徴とする装飾発光体の製造方法。
 12.面発光素子の光取り出し側基板表面上に硬化性インク層を形成する工程、形成された硬化性インク層に紫外線を照射する工程、によって形成された装飾層を有する装飾発光体の製造方法において、該紫外線を照射する工程における紫外線の照射が下記1)および2)を同時に行うことを特徴とする装飾発光体の製造方法。
1)前記硬化性インク層上からの照射
2)前記面発光素子の光取り出し側基板の端面からの照射
 本発明により、容易に、安価に、多品種、少量生産に適応した、エネルギー消費効率が高く、高輝度であり、安全で、耐擦過性に優れた装飾発光体を提供することができた。
本発明の装飾発光体の形成工程を示す断面図である。 装飾発光体検査装置のブロック図である。 本発明により形成された透過画像パターンを有する装飾発光体を示す。 本発明により形成された和紙状、木目状或いは大理石状装飾発光体を示す。
 以下、本発明とその構成要素、及び本発明を実施するための最良の形態・態様について詳細に説明する。
 〔面発光素子について〕
 本発明の装飾発光体を形成する面発光素子としては、例えば、有機エレクトロルミネッセンス素子(以下、有機EL素子と記す。)、プラズマ発光素子、発光ダイオード(LED)、液晶表示素子等、特に制限は無いが、好ましく有機EL素子を用いたものである。
 本発明に係る面発光素子は単色、多色カラーあるいは白色の発光素子を用いることが出来る。
 本発明は、この面発光素子の光取り出し側の基板表面に直接硬化性インクにより装飾層を形成することにより、容易に、高輝度で、種々の組み合わされた発光や表示を行うことができるものである。
 本発明においては、面発光素子を全面均一に発光させる方法と、もう一方では、画面を駆動表示する方法を用いることも出来る。画面を駆動表示する場合は、駆動方式としては単純マトリクス(パッシブマトリクス)方式であってもアクティブマトリクス方式であっても良い。
 本発明に用いられる面発光素子としては、好ましくは有機EL素子である。
 本発明に用いられる面発光素子として白色有機EL素子を用いる場合は、必要に応じ有機EL素子形成時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしても良いし、電極と発光層をパターニングしても良く、素子全層をパターニングしたものであっても良い。
 本発明の面発光素子に用いられる基板としては、ガラスやプラスチック板やプラスチックフィルム等の透明基板であればどのようなものを用いても良いが、好ましくは可撓性プラスチックフィルムである。
 本発明は、面発光素子の光取り出し側の基板表面上に、硬化性インクにより形成された装飾層を有する装飾発光体であって、該基板の屈折率をn1とし、該硬化性インクにより形成された装飾層の屈折率をn2とするとき、n1とn2が下記1)、2)および3)式の関係を満たすことを特徴とする。
 1) 1.4≦n1≦1.9
 2) 1.4≦n2≦1.9
 3) |n1-n2|≦0.2
 なお、本発明は、n1の特定の範囲の屈折率を有する基板を選択し、n2の硬化性インクにより形成される装飾層の屈折率を基板の屈折率と近い範囲を選択し、屈折率の差を特定の範囲とすることにより、内部反射を低減し、光取り出し効率を高めることができることを見いだしたものである。
 また、屈折率の関係は、n1≧n2であることが好ましく、更にはn1-n2≦0.1であることが好ましい。
 また、前記面発光素子の基板の表面粗さにおいて、中心線平均粗さRa、最大高さRy、10点平均高さRzがそれぞれ、下記4)、5)および6)式で示されることを特徴とする。
 4) 0.1nm≦Ra≦10nm
 5) 1.0nm≦Ry≦100nm
 6) 1.0nm≦Rz≦100nm
 基板の表面粗さは、基板上に形成される面発光体の輝度のバラツキの発生や、故障の発生の原因となる可能性があり、一方、反対面に形成される装飾層の耐久性との関係から、これらの値を特定の範囲とすることにより、装飾発光体としたときの耐久性を向上させることができたものである。
 以下、本発明に好ましく用いられる面発光素子として、プラスチックフィルム基板を用いた有機EL素子を代表例として記載する。
 〔有機EL素子の基本的構成〕
 本発明に好ましく用いられる有機EL素子の基本的層構成の具体例を以下に示す。
(i)基板/陽極/発光層/電子輸送層/陰極
(ii)基板/陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)基板/陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)基板/陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)基板/陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 ここで、発光層は、発光色の異なる2種以上の発光材料を含有していても良く、同じ色に発光する層が、単層でも複数の発光層からなる発光層ユニットを形成していてもよい。また、正孔輸送層には正孔注入層、電子阻止層も含まれる。
 (基板:基材)
 本発明に係る面発光素子に用いられる基板(以下、基材、基体、基盤、支持基板、支持体等ともいう。)としては特に限定されないが、好ましく可撓性透明基板またはガラス基板である。
 ガラス基板としては、無アルカリガラス、青板ガラス、石英などが用いられる。ただし、目的に応じて、金属、ステンレスフォイル、Alフォイル等の金属フィルム等や石英等を基板として用いることもできる。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。
 これらの中でも、透明性、耐久性、コストの面より、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルが好ましい。
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド皮膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(40℃、90%RH)が0.01g/m・day・atm以下のバリア性フィルムであることが好ましく、さらにはJIS K 7126-1992に準拠した方法で測定された酸素透過度(20℃、100%RH)が10-3g/m/day以下、水蒸気透過度が10-3g/m/day以下の高バリア性フィルムであることが好ましく、前記の水蒸気透過度、酸素透過度がいずれも10-5g/m/day以下であることが、さらに好ましい。
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに当該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 尚、ガラス基板、金属、金属フォイル等を用いた場合は、それ自体で十分な水、酸素等のバリア性を持っているため、水分や酸素が該基板の透過を防ぐ透過バリア層の形成は必要としない。
 (電極)
 有機EL素子は、少なくとも第1電極と第2電極とを有する。通常は、一方が陽極、他方が陰極で構成される。以下に好ましい陽極、及び陰極の構成について述べる。
 〈陽極〉
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性光透過性材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で光透過性の導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式製膜法を用いることもできる。陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
 〈陰極〉
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方は、光透過性となるよう構成される。
 (発光層)
 発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
 発光層は、その構成には特に制限はない。
 また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。
 各発光層間には非発光性の中間層を有していることが好ましい。
 発光層の膜厚の総和は1~100nmの範囲にあることが好ましく、さらに好ましくは、より低い駆動電圧を得ることができることから30nm以下である。なお、発光層の膜厚の総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む膜厚である。
 個々の発光層の膜厚としては1~50nmの範囲に調整することが好ましく、さらに好ましくは1~20nmの範囲に調整することである。青、緑、赤の各発光層の膜厚の関係については、特に制限はない。
 発光層の作製には、後述する発光材料(発光ドーパントともいう)や発光ホスト化合物(ホスト化合物ともいう)を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により製膜して形成することができる。
 各発光層には複数の発光ドーパントを混合してもよく、またりん光発光ドーパントと蛍光発光ドーパントを同一発光層中に混合して用いてもよい。
 発光層の構成として、発光ホスト化合物、発光ドーパントを含有し、発光ドーパンより発光させることが好ましい。
 〈発光ホスト化合物〉
 有機EL素子の発光層に含有される発光ホスト化合物としては、室温(25℃)におけるりん光発光のりん光量子収率が0.1未満の化合物が好ましい。さらに好ましくはりん光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 ホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性発光ホスト)でもいい。
 有機EL素子に用いられる発光ホスト化合物としては、低分子化合物を用いることが好ましい。ここで、低分子化合物としては、10000以下の化合物を表すが、好ましくは100~10000の範囲の分子量を有するものであり、さらに好ましくは100~2000の範囲の化合物である。
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移点)である化合物が好ましい。ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。
 (発光ドーパント)
 次に、発光ドーパントについて説明する。
 発光ドーパントとしては、蛍光性化合物(蛍光性化合物ともいう)、りん光材料(りん光発光材料、りん光性化合物、りん光発光性化合物等ともいう)を用いることができるが、より発光効率の高い有機EL素子を得る観点からは、有機EL素子の発光層や発光ユニットに使用される発光ドーパント(単に、発光材料ということもある)としては、上記のホスト化合物を含有すると同時に、リン光ドーパントを含有することが好ましい。
 リン光ドーパントについて説明する。
 リン光ドーパントとは励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてりん光発光する化合物であり、りん光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいりん光量子収率は0.1以上である。
 上記りん光量子収率は第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのりん光量子収率は種々の溶媒を用いて測定できるが、本発明においてリン光ドーパントを用いる場合、任意の溶媒のいずれかにおいて上記りん光量子収率(0.01以上)が達成されればよい。
 リン光ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こり、リン光ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
 リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
 有機EL素子に用いられるドーパント化合物としては、低分子化合物を用いることが好ましい。ここで、低分子化合物としては、10000以下の化合物を表すが、好ましくは100~10000の範囲の分子量を有するものであり、さらに好ましくは100~2000の範囲の化合物である。
 以下にリン光ドーパントとして用いられる化合物の具体例を示す。これらの化合物は、例えば、Inorg.Chem.,40巻,1704~1711に記載の方法等により合成できる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 有機EL素子には、蛍光発光体を用いることもできる。蛍光発光体(蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
 また、従来公知のドーパントも用いることができ、例えば、国際公開第00/70655号パンフレット、特開2002-280178号公報、同2001-181616号公報、同2002-280179号公報、同2001-181617号公報、同2002-280180号公報、同2001-247859号公報、同2002-299060号公報、同2001-313178号公報、同2002-302671号公報、同2001-345183号公報、同2002-324679号公報、国際公開第02/15645号パンフレット、特開2002-332291号公報、同2002-50484号公報、同2002-332292号公報、同2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、同2002-338588号公報、同2002-170684号公報、同2002-352960号公報、国際公開第01/93642号パンフレット、特開2002-50483号公報、同2002-100476号公報、同2002-173674号公報、同2002-359082号公報、同2002-175884号公報、同2002-363552号公報、同2002-184582号公報、同2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、同2002-226495号公報、同2002-234894号公報、同2002-235076号公報、同2002-241751号公報、同2001-319779号公報、同2001-319780号公報、同2002-62824号公報、同2002-100474号公報、同2002-203679号公報、同2002-343572号公報、同2002-203678号公報等が挙げられる。
 一つの発光層に2種以上の発光材料を含有していてもよく、発光層における発光材料の濃度比が発光層の厚さ方向で変化していてもよい。
 (中間層)
 各発光層間に非発光性の中間層(非ドープ領域等ともいう)を設けることも好ましい。
 ここで、「非発光性の中間層」とは、複数の発光層を有する場合、その発光層間に設けられる層である。
 非発光性の中間層の膜厚としては1~20nmの範囲にあるのが好ましく、さらには3~10nmの範囲にあることが隣接発光層間のエネルギー移動等相互作用を抑制し、かつ素子の電流電圧特性に大きな負荷を与えないということから好ましい。
 この非発光性の中間層に用いられる材料としては、発光層のホスト化合物と同一でも異なっていてもよいが、隣接する2つの発光層の少なくとも一方の発光層のホスト材料と同一であることが好ましい。
 非発光性の中間層は非発光層、各発光層と共通の化合物(例えば、ホスト化合物等)を含有していてもよく、各々共通ホスト材料(ここで、共通ホスト材料が用いられるとは、りん光発光エネルギー、ガラス転移点等の物理化学的特性が同一である場合やホスト化合物の分子構造が同一である場合等を示す。)を含有することにより、発光層-非発光層間の層間の注入障壁が低減され、電圧(電流)を変化させても正孔と電子の注入バランスが保ちやすいという効果を得ることができる。さらに、非ドープ発光層に各発光層に含まれるホスト化合物と同一の物理的特性または同一の分子構造を有するホスト材料を用いることにより、従来の有機EL素子作製の大きな問題点である素子作製の煩雑さをも併せて解消することができる。
 有機EL素子を用いる場合、ホスト材料はキャリアの輸送を担うため、キャリア輸送能を有する材料が好ましい。キャリア輸送能を表す物性としてキャリア移動度が用いられるが、有機材料のキャリア移動度は一般的に電界強度に依存性が見られる。電界強度依存性の高い材料は正孔と電子注入・輸送バランスを崩しやすいため、中間層材料、ホスト材料は移動度の電界強度依存性の少ない材料を用いることが好ましい。
 また、一方では正孔や電子の注入バランスを最適に調整するためには、非発光性の中間層は後述する阻止層、即ち正孔阻止層、電子阻止層として機能することも好ましい態様として挙げられる。
 (注入層:電子注入層、正孔注入層)
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)は極薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。
 (阻止層:正孔阻止層、電子阻止層)
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは、広い意味では、電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。正孔阻止層、電子輸送層の膜厚としては好ましくは3~100nmであり、さらに好ましくは5~30nmである。
 (正孔輸送層)
 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような所謂、p型正孔輸送材料を用いることもできる。
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 (電子輸送層)
 電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
 〔有機EL素子の作製方法〕
 有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法について説明する。
 まず、適当な支持基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの膜厚になるように蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層の有機化合物薄膜を形成させる。
 この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、生産性に優れる点から、キャスト法、インクジェット法、印刷法が特に好ましい。さらに層毎に異なる製膜法を適用してもよい。
 これらの層をウェットプロセスで塗布した後、残留溶媒を除去するために、熱処理を行うことが好ましい。
 加熱方法はヒーター加熱法(赤外線ヒーター、ハロゲンヒーター、パネルヒーター等をフィルム上や下に設置し輻射熱で加熱)でもよく、ゾーン加熱法(熱風等を吹き込み所定の温度に調温したゾーン内で加熱)でもよい。均一性の観点からゾーン加熱法が好ましい。ゾーン加熱法の場合、例えば恒温槽を用いることができる。恒温槽としては、設定した温度で塗布フィルムの熱処理を行うことができる装置ならばどのような形態でもよく、例えば、所定の温度に設定した温風で恒温槽内部全体を加温してもよいし、あるいは温風をフィルムに吹きつけてもよいし、ヒーターを用いて恒温槽内部を所望の温度に設定してもよい。このようなヒーター等の加温装置の取付け位置は塗布フィルムが均一に加温されることができれば、恒温槽内部のどの位置に取り付けてもよい。恒温槽内部の温度分布については入り口から出口に向かって昇温してもよいし、降温してもよく、あるいは昇温と降温とを繰り返してもよい。また、加熱前に予熱部分を設けてもよく、加熱後、冷却部分を設けてもよい。
 加熱温度は残存溶媒の除去ができる温度であればよく、塗布に用いた溶媒の沸点以上であるのが一般的であるが、水分が微量にでも残存すると性能劣化を引き起こすため、100℃以上が好ましい。しかし基板や塗布成膜した有機層の劣化を避けることが必要なため、温度には上限があり、系によって選択される。
 前記熱処理の時間は1~120分が好ましく、5~60分がより好ましく、さらに好ましくは10~30分である。前記熱処理時間を1分以上とすることにより十分に残存溶媒の除去ができ、120分以下とすることにより、加熱に伴う有機層の劣化を抑制することができる。
 これらの層を形成後、その上に陰極物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚となるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより、所望の有機EL素子が得られる。
 この有機EL素子の作製は作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
 有機EL素子は空気よりも屈折率の高い(屈折率1.6~2.1程度)層の内部で発光し、発光層で発生した光のうち15~20%程度の光しか取り出せないと一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は全反射を起こし、素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。
 本発明はこれらの手段を組み合わせることにより、さらに高輝度あるいは耐久性に優れた素子を得ることができる。
 屈折率nの媒体から空気に取り出される光の取り出し効率η1は、通常η1=1/2nの式で表されるが、媒体nの厚さが光の波長よりも厚くなると、光取り出し効率η2は、η2=1-(n-1)1/2/nに変わるので、媒体nの屈折率が低いほど外部への取り出し効率が高くなる。すなわち、低屈折率媒質の厚さが光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.0以上1.5以下であることが好ましい。またさらに1.0以上1.35以下であることが好ましい。
 また、低屈折率媒質の厚さは媒質中の波長の2倍以上となるのが望ましい。好ましくは、1.0μm以上2.0mm以下である。
 全反射を起こす界面またはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった、所謂ブラッグ回折により光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光をいずれかの層間もしくは媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては、前述の通りいずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。
 発光素子は支持基板の光取出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基板に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
 また、発光素子からの光放射角を制御するために光拡散板・フィルムを集光シートと併用しても良く、装飾層に光拡散機能を入れてもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
 (封止基材)
 封止基材は、有機EL素子を封止し、当該素子を温度変化、湿度、酸素、衝撃等の過酷な外部環境から守るためのものである。
 封止基材としては、バリア膜が形成された種々の公知のガスバリア性フィルムを用いることができる。例えば、包装材等に使用される公知のガスバリア性フィルム、例えば樹脂(プラスチック)フィルム上に酸化珪素や、酸化アルミニウムを蒸着したフィルム、緻密なセラミック層と、柔軟性を有する衝撃緩和ポリマー層を交互に積層した構成からなるガスバリア性フィルム等を封止基材として用いることができる。
 また、特に、樹脂膜(ポリマー膜)をラミネートされた金属箔は、光取りだし側のガスバリア性フィルムとして用いることはできないが、低コストで、かつ透湿性の低い封止基材料であり光取り出しを意図しない(透明性を要求されない)場合、封止基材として好ましい。
 「金属箔」とは、スパッタや蒸着等で形成された金属薄膜や、導電性ペースト等の流動性電極材料から形成された導電膜と異なり、圧延等で形成された金属の箔またはフィルムを指す。
 金属箔としては、金属の種類に特に限定はなく、例えば銅(Cu)箔、アルミニウム(Al)箔、金(Au)箔、黄銅箔、ニッケル(Ni)箔、チタン(Ti)箔、銅合金箔、ステンレス箔、スズ(Sn)箔、高ニッケル合金箔等が挙げられる。これらの各種の金属箔の中で特に好ましい金属箔としてはAl箔が挙げられる。
 金属箔の厚さは、バリア性(透湿度、酸素透過率)及びコストの観点から、5nm~50μmが好ましい。
 樹脂フィルム(ポリマー膜)がラミネートされた金属箔において樹脂フィルムとしては、機能性包装材料の新展開(株式会社 東レリサーチセンター)に記載の各種材料を使用することが可能であり、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂、ポリアミド系樹脂、エチレン-ビニルアルコール共重合体系樹脂、エチレン-酢酸ビニル共重合体系樹脂、アクリロニトリル-ブタジエン共重合体系樹脂、セロハン系樹脂、ビニロン系樹脂、塩化ビニリデン系樹脂等が挙げられる。ポリプロピレン系樹脂、ナイロン系樹脂等の樹脂は、延伸されていてもよく、さらに塩化ビニリデン系樹脂をコートされていてもよい。また、ポリエチレン系樹脂は、低密度あるいは高密度のものも用いることができる。
 上記の高分子材料の中で、ナイロン(Ny)、塩化ビニリデン(PVDC)をコートしたナイロン(KNy)、無延伸ポリプロピレン(CPP)、延伸ポリプロピレン(OPP)、PVDCをコートしたポリプロピレン(KOP)、ポリエチレンテレフタレート(PET)、PVDCをコートしたセロハン(KPT)、ポリエチレン-ビニルアルコール共重合体(エバール)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)を用いることが好ましい。また、これら熱可塑性フィルムは、必要に応じて異種フィルムと共押し出しで作った多層フィルム、延伸角度を変えて張り合わせ積層した多層フィルム等も当然使用できる。さらに必要とする包装材料の物性を得るために使用するフィルムの密度、分子量分布を組み合わせて作ることも当然可能である。
 樹脂膜(ポリマー膜)の厚さは、一概には規定できないが、3~400μmが好ましく、10~200μmがより好ましく、10~50μmがさらに好ましい。
 金属箔の片面にポリマー膜をコーティング(ラミネート)する方法としては、一般に使用されているラミネート機を使用することができる。
 ドライラミネート方式、ホットメルトラミネーション法やエクストルージョンラミネート法も使用できるがドライラミネート方式が好ましい。
 接着剤としては、ポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。
 金属箔の片面が樹脂膜(ポリマー膜)でコーティングされたフィルムは、包装材用に市販されている。例えば、接着剤層/アルミフィルム9μm/ポリエチレンテレフタレート(PET)38μmの構成のドライラミネートフィルムが入手でき、これを用いて有機EL素子の陰極側の封止を行うこともできる。
 また、封止基材(フィルム)としては、金属箔の片面が樹脂膜(ポリマー膜)でコーティングされたフィルムの、樹脂膜(ポリマー膜)と反対側の金属箔上に、セラミック膜を形成して用いることも好ましい。
 後述するが、2つのフィルムの封止方法としては、例えば、一般に使用されるインパルスシーラー熱融着性の樹脂膜(層)をラミネートして、インパルスシーラーで融着させ、封止する方法が好ましい。
 本発明において、封止基材(フィルム)のガスバリア性は、酸素透過度10-3g/m/day以下、水蒸気透過度10-3g/m/day以下のものであることが好ましい。また、前記の水蒸気透過度、酸素透過度がいずれも10-5g/m/day以下であることがさらに好ましい。
 (封止基材接着剤)
 封止基材を接着するための接着剤としては、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する熱硬化型接着剤等を挙げることができる。市販品としては、スリーボンド1152、1153等を使用することができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、封止基材のTg以上でかつ、前記可撓性透明基材のTg未満の温度で1時間程度で硬化する熱硬化型接着剤が好ましい。例えば、可撓性透明基材としてポリエチレンナフタレート(Tg、155℃)、封止基材としてポリエチレンテレフタレート(Tg、110℃)を用いる場合は、硬化条件が120℃1時間のエポキシ系熱硬化接着剤が挙げられる。
 また、有機層を挟み支持基板と対向する側の電極の外側に、当該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、当該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに当該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造をもたせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止基材と有機EL素子の表示領域との間隙には、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 〔有機EL素子の封止〕
 本発明では、基板上に透明導電膜を形成し、更にその上に、有機EL素子を構成する各種機能層を形成した後、不活性ガスによりパージされた環境下で、上記封止基材で陰極面を覆うようにして、有機EL素子を封止することができる。
 不活性ガスとしては、Nの他、He、Ar等の希ガスが好ましく用いられるが、HeとArを混合した希ガスも好ましく、気体中に占める不活性ガスの割合は、90~99.9体積%であることが好ましい。不活性ガスによりパージされた環境下で封止することにより、保存性が改良される。
 また、前記の樹脂膜(ポリマー膜)がラミネートされた金属箔を用いて、有機EL素子を封止するにあたっては、ラミネートされた樹脂フィルム面ではなく、金属箔上にセラミック膜を形成し、このセラミック膜面を有機EL素子の陰極に貼り合わせることが好ましい。
 接着方法としてはドライラミネート方式が作業性の面で優れている。この方法は一般には1.0~2.5μm程度の硬化性の接着剤層を使用する。好ましくは、接着剤量を乾燥膜厚で3~5μmになるように調節することが好ましい。
 なお、ホットメルト接着剤を溶融し基材に接着層を塗設する方法(ホットメルトラミネーと法)や高温で溶融した樹脂(LDPE、EVA、PP等)をダイスにより基材上に塗設する方法(エクストルージョンラミネート法)等も用いることもよい。
 〔保護膜、保護板〕
 有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
 〔本発明の装飾層について〕
 本発明の装飾層について説明する。
 本発明の装飾層は硬化性インクを用いて形成される。
 硬化性インクとしては、活性線硬化性樹脂、熱硬化性樹脂、2液硬化性樹脂等種々の硬化性インクを用いることができる。
 活性線硬化樹脂とは紫外線、可視光線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂を主たる成分とする。活性線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線、可視光線や電子線のような活性線を照射することによって硬化させて装飾層が形成される。活性線硬化性樹脂としては紫外線硬化性樹脂、可視光線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられる。
 紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。
 紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号に記載のものを用いることができる。例えば、ユニディック17-806(DIC(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。
 紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2-ヒドロキシエチルアクリレート、2-ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、特開昭59-151112号に記載のものを用いることができる。
 紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成するものを挙げることができ、特開平1-105738号に記載のものを用いることができる。
 紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
 これら紫外線硬化性樹脂の光反応開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。上記光反応開始剤も光増感剤として使用できる。また、エポキシアクリレート系の光反応開始剤の使用の際、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。紫外線硬化樹脂組成物に用いられる光反応開始剤また光増感剤は該組成物100質量部に対して0.1~15質量部であり、好ましくは1~10質量部である。
 樹脂モノマーとしては、例えば、不飽和二重結合が1つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を2つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4-シクロヘキサンジアクリレート、1,4-シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。
 本発明において使用し得る紫外線硬化樹脂の市販品としては、アデカオプトマーKR・BYシリーズ:KR-400、KR-410、KR-550、KR-566、KR-567、BY-320B(旭電化(株)製);コーエイハードA-101-KK、A-101-WS、C-302、C-401-N、C-501、M-101、M-102、T-102、D-102、NS-101、FT-102Q8、MAG-1-P20、AG-106、M-101-C(広栄化学(株)製);セイカビームPHC2210(S)、PHC X-9(K-3)、PHC2213、DP-10、DP-20、DP-30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC-5015、RC-5016、RC-5020、RC-5031、RC-5100、RC-5102、RC-5120、RC-5122、RC-5152、RC-5171、RC-5180、RC-5181(DIC(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH-601、RC-750、RC-700、RC-600、RC-500、RC-611、RC-612(三洋化成工業(株)製);SP-1509、SP-1507(昭和高分子(株)製);RCC-15C(グレース・ジャパン(株)製)、アロニックスM-6100、M-8030、M-8060(東亞合成(株)製)、DIC(株)製OP-38Z、OP-40、OP-40Z、OP-43、V-9510、V-9530、シグマ-アルドリッチ社製640204、640298等を適宜選択して利用できる。
 また、具体的化合物例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
 これらの活性線硬化性樹脂からなる装飾層は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法で塗設することができる。
 紫外線硬化性樹脂を光硬化反応により硬化させ、装飾層を形成するための光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、活性線の照射量は好ましくは、5~150mJ/cmであり、特に好ましくは20~100mJ/cmである。
 紫外線硬化樹脂層組成物塗布液には有機溶媒を用いてもよく、有機溶媒としては、例えば、炭化水素類(トルエン、キシレン)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、あるいはこれらを混合し利用できる。
 可視光線硬化性樹脂としては、例えば、(株)アーデル社製クリアルーチェ(登録商標)MA21、ベネフィックスS105、STN30、VX等が挙げられる。
 2液硬化性樹脂としては、例えば、十条ケミカル(株)製9300シリーズHIPETインキ、DIC社製V-8000、8001,8002,8003等のイミド樹脂とエポキシ樹脂とのブレンドによるインク等を挙げることができる。
 面発光素子である有機EL素子の発光面の基板表面に前述の硬化性インクを用いて装飾層が形成される。
 装飾層の形成方法としては、スピンコート法、キャスト法、インクジェット法、印刷法等があるが、生産性に優れる点から、インクジェット法、印刷法(スクリーン印刷、グラビア印刷等)が特に好ましい。
 前記硬化性インクにより形成された層に光照射または加熱もしくは光照射と加熱の両方を用いて硬化することにより装飾層を形成する。
 加熱方法はヒーター加熱法(赤外線ヒーター、ハロゲンヒーター、パネルヒーター等をフィルム上や下に設置し輻射熱で加熱)でもよく、ゾーン加熱法(熱風等を吹き込み所定の温度に調温したゾーン内で加熱)でもよい。ゾーン加熱法の場合、例えば恒温槽を用いることができる。恒温槽としては、設定した温度で塗布フィルムの熱処理を行うことができる装置ならばどのような形態でもよく、例えば、所定の温度に設定した温風で恒温槽内部全体を加温してもよいし、あるいは温風をフィルムに吹きつけてもよいし、ヒーターを用いて恒温槽内部を所望の温度に設定してもよい。このようなヒーター等の加温装置の取付け位置は塗布フィルムが均一に加温されることができれば、恒温槽内部のどの位置に取り付けてもよい。恒温槽内部の温度分布については入り口から出口に向かって昇温してもよいし、降温してもよく、あるいは昇温と降温とを繰り返してもよい。また、加熱前に予熱部分を設けてもよく、加熱後、冷却部分を設けてもよい。
 加熱温度は硬化温度であればよく、100℃以上が好ましい。しかし基板や塗布成膜した有機層の劣化を避けることが必要なため、温度には上限があり、系によって選択される。
 光照射としては、活性光線を発光するランプを用いて外部から照射する方法であってもよく、また、本発明においては、面発光素子に通電して発光させることにより、内部からの光照射も行う方法が、表面からの光照射では光が到達しなかった未硬化部分にも照射し、硬化を均一化することができ好ましい方法である。
 これらの外部からの照射と内部からの照射は、同時に行っても、別々に行ってもよく、好ましくは同時に若しくは一部重複して照射することが好ましい。
 また、該紫外線を照射する工程における紫外線の照射が下記1)および2)を同時に行うことが、表面からの光照射では光が到達しなかった未硬化部分にも照射することができ、硬化を均一化することができ好ましい方法である。
1)前記硬化性インク層上からの照射
2)前記面発光素子の光取り出し側基板の端面からの照射
 硬化性インク中には、着色剤や粒状添加物、更には、紫外線吸収剤、酸化防止剤等の添加剤等を添加し、目的とするインクを作製することが出来る。
 〔用途〕
 本発明の装飾発光体は、例えば、建材、家具、照明、車載用ディスプレイ、サイン、広告等、種々の用途に用いることができる。建材としては、壁材、床材、タイル等に用い、壁材、床材そのものが発光することにより、壁照明や床照明となると共に、ディスプレイやサインとしても用いることが出来る。また、家具等に用いる場合は、光る家具、光るパーテーションや光るカーテンとしてデザインすることができ、家庭用や車載用として用いることが出来る。また、看板広告、信号機等、面発光素子を利用したあらゆる照明やディスプレイとして用いることができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの記載に限定されるものではない。
 実施例1
 《装飾発光体101(本発明)の作製》
 〈ガスバリア性の可撓性フィルムの作製〉
 可撓性フィルムとして、厚み100μmのポリエチレンテレフタレートフィルム(コニカミノルタ社製フィルム、以下、PETと略記する)の全面に、特開2004-68143号公報に記載の構成からなる大気圧プラズマ放電処理装置を用いて、連続して可撓性フィルム上に、SiO(xは2以下)からなる無機物のガスバリア膜(厚み500nm)を形成し、酸素透過度0.001cm/(m・24h・atm)以下、水蒸気透過度0.001g/(m・24h)以下のガスバリア性の可撓性フィルムを作製した。
 〈第1電極層の形成〉
 準備したガスバリア性の可撓性フィルム上に厚さ120nmのITO(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターンは発光面積が50mm×50mmとなるようなパターンとした。
 〈正孔輸送層の形成〉
 準備した第1電極層が形成されたガスバリア性の可撓性フィルムの第1電極層表面の改質処理として、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施し、更に帯電除去処理として、微弱X線による除電器を使用して処理を行った。以上の処理を施した第1電極層表面に以下に示す正孔輸送層形成用塗布液を押出し塗布機で塗布した後、乾燥し正孔輸送層を形成した。正孔輸送層形成用塗布液は乾燥後の厚みが50nmになるように塗布した。
 (塗布条件)
 塗布工程は大気中、25℃相対湿度50%の環境で行った。
 (正孔輸送層形成用塗布液の準備)
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
 (乾燥及び加熱処理条件)
 正孔輸送層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度120℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
 〈発光層の形成〉
 引き続き、正孔輸送層迄を形成したガスバリア性の可撓性フィルムの正孔輸送層の上に、以下に示す白色発光層形成用塗布液を押出し塗布機で塗布した後、乾燥し発光層を形成した。白色発光層形成用塗布液は乾燥後の厚みが40nmになるように塗布した。
 (白色発光層形成用塗布液)
 ホスト材のH-Aを1.0gと、ドーパント材D-Aを100mg、ドーパント材D-Bを0.2mg、ドーパント材D-Cを0.2mg、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。
Figure JPOXMLDOC01-appb-C000007
 (塗布条件)
 塗布工程を窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とし、塗布速度1m/minで行った。
 (乾燥及び加熱処理条件)
 白色発光層形成用塗布液を塗布した後、製膜面に送風し温度60℃で溶媒を除去した後、引き続き、温度120℃で加熱処理を行い、発光層を形成した。
 〈電子輸送層の形成〉
 引き続き、発光層迄を形成したのち、以下に示す電子輸送層形成用塗布液を押出し塗布機で塗布した後、乾燥し電子輸送層を形成した。電子輸送層形成用塗布液は乾燥後の厚みが30nmになるように塗布した。
 (塗布条件)
 塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
 (電子輸送層形成用塗布液)
 電子輸送層はE-Aを2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。
Figure JPOXMLDOC01-appb-C000008
 (乾燥及び加熱処理条件)
 電子輸送層形成用塗布液を塗布した後、製膜面に送風し温度60℃で溶媒を除去した後、引き続き、加熱処理部で温度120℃で加熱処理を行い、電子輸送層を形成した。
 (電子注入層の形成)
 形成された電子輸送層の上に電子注入層を形成した。まず、基板を減圧チャンバーに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバーにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
 (第2電極の形成)
 取り出し電極になる部分を除き第1電極上に形成された電子注入層の上に、5×10-4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、蒸着法にて、発光面積が50mm平方で、取り出し電極を有するようにマスクパターン成膜し、厚さ100nmの第2電極を積層した。
 (裁断)
 第2電極まで形成したガスバリア性の可撓性フィルムを、再び窒素雰囲気に移動した。
 ガスバリア性の可撓性フィルムを規定の大きさに裁断した。
 (電極リード接続)
 図1(a)に示す如く、作製した有機EL素子40の電極引き出し部2aに、ソニーケミカル&インフォメーションデバイス株式会社製異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)の電極リード7を導電性接着剤8により接続した。
 圧着条件:温度120℃(別途熱伝対を用いて測定したACF温度120℃)、圧力2MPa、10秒、なお、このとき図1(a)のような形態になるように圧着を行った。
 (封止)
 図1(b)に示すように、電極リード7(フレキシブルプリント基板)を接続した有機EL素子40を、市販のロールラミネート装置(不図示)を用いて封止部材50を接着し、図1(c)に示した有機ELパネル60を製作した。
 なお、封止部材50として、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いてラミネートした(接着剤層の厚み1.5μm)封止基材5を用いた。
 アルミニウム面に熱硬化性接着剤6を、ディスペンサを使用してアルミ箔の接着面(つや面)に厚み20μmで均一に塗布した。
 熱硬化接着剤としては以下のエポキシ系接着剤を用いた。
   ビスフェノールAジグリシジルエーテル(DGEBA)
   ジシアンジアミド(DICY)
   エポキシアダクト系硬化促進剤
 しかる後、図1(c)のような形態になるよう、封止部材50を、取り出し電極および電極リードの接合部を覆うようにして密着・配置して、圧着ロールを用いて密着封止し有機ELパネル60を得た。該有機ELパネルが本発明における面発光素子に該当する。
 表1に記載の基板を用いた各面発光素子を形成した。
 (硬化性インクによる装飾層を有する装飾発光体101の作製)
 上記で得られた各面発光素子の光取り出し側の基板1の表面に表1記載の透明紫外線硬化性インクを用い、スクリーン印刷法により、未硬化の装飾層9を形成し、形成された未硬化の装飾層9に、FUSION H バルブ 1,000mJ/cmの条件で、表面側から紫外線を照射して硬化性樹脂層を硬化し装飾層9を形成し、表1に示す基板および装飾層を組み合わせた、各装飾発光体101を得た(図1(d)参照。)。硬化後の膜厚が10μmとなるように装飾層9を形成した。
 〈評価〉
 得られた各装飾発光体に一定電圧を印加し、有機EL素子を発光させたときの装飾面の全光束を積分球で測定し、発光取り出し効率を計算した。尚、表1の発光取り出し効率は、装飾発光体101で、基板がPET、装飾層がV-9530を用いた試料を100としたときの相対値で評価した。
Figure JPOXMLDOC01-appb-T000009
 表1から分かる通り、有機EL素子の基板と装飾層の屈折率を本発明の範囲の組み合わせ(表1中、*印が付された範囲)とすることにより、光取り出し効率が80%以上と高く、明るい装飾発光体が得られることがわかる。
 実施例2
 実施例1の装飾発光体101の作製において、基板1のPET表面の表面粗さ、中心線平均粗さRa、最大高さRy、10点平均高さRzが各々表2記載の基板を用いた以外は同様にして各々装飾発光体を作製した。
 〈評価〉
 得られた各装飾発光体を用い、以下の評価を行った。
 〈リーク電流値〉
 装飾発光体検査装置を用い、各装飾発光体に0~-3Vの逆バイアスの電圧を印加し、その時のリーク電流値(R電流と表示)を測定し、設定値0.001mA以上の電流値となるR電流が見られるパネルをR電流×、それより低い電流値を示すものをR電流○として評価した。
 尚、用いた装飾発光体検査装置のブロック図を図2に示す。
 図2において、装飾発光体検査装置20は、電圧印加手段である電源部22と制御部23を備える。
 電源部22は、電圧被検体である装飾発光体21に、0Vから-3Vまでの電圧を順次印加し、続けて-3Vから0Vまで同様に異なる値の電圧を順次印加する。制御部23は、電源部22の電圧を制御し、V-I特性を測定する。尚、電源部22は、電圧Vまたは電流Iの何れも測定かつ記録ができる機能を有する。
 装飾発光体21のV-I特性にスパイク状のリーク電流が見られると装飾発光体21の突然発光停止を引き起こす確率が高いことから、電圧を印加したときのリーク電流Rを測定し、0.001mA以上のリーク電流が見られるものを不良と判定する。
 〈装飾層の接着性〉
 基板上に形成した装飾層の接着性を下記に示すクロスカットテープ剥離法により評価し、90以上を膜付○、90未満を膜付×として評価した。
 (クロスカットテープ剥離法)
 装飾層の基板への接着性を調べるための試験方法である。
 硬化した装飾層にカッターナイフを用いて、直行する縦横11本ずつの平行線を1mmの間隔で引き、1cmの中に100個のます目が出来るように碁盤目状の切り傷を付ける。碁盤目の部分にセロテープ(登録商標)を密着させ、急激に引き離す。
 判定は、全く剥離がなければ「100」とし、剥離した碁盤目がある場合には、残った碁盤目の数を記録する。
 評価結果を表2に示した。
Figure JPOXMLDOC01-appb-T000010
 表2の結果から分かるように、各表面粗さの係数を本発明の特定の範囲(表2中、*印が付された範囲)とすることにより、リーク電流が小さく、かつ膜付きが良好で、耐久性に優れた装飾発光体が得られることが分かる。
 実施例3
 実施例1で形成した有機ELパネル60の基板として光学ガラスBK-7を用い、装飾発光体101において用いた紫外線硬化性インクに代えて、下記の熱硬化性インクジェット用インクを用い、インクジェット印刷法を用いて装飾層を形成した以外は同様にして装飾発光体を形成した。
 《熱硬化性インクジェット用インクの作製》
 〈Redインク〉
 C.I.Pigment Red 254          22部
 プロピレングリコールモノメチルエーテルアセテート(溶剤) 41部
 樹脂溶液                         15部
(ベンジルメタクリレート/メタクリル酸/ヒドロキシエチルメタクリレート(=80/10/10[モル比])共重合体(重量平均分子量=10,000)のプロピレングリコールモノメチルエーテルアセテート40%(樹脂固形分)溶液)
 分散剤(BY-161、BYK社製)             6部
 次に、得られた混練分散物に、さらにプロピレングリコールモノメチルエーテルアセテート(溶剤)76部を加え、サンドミルで一昼夜微分散処理を行った。微分散処理後、下記組成Bの各成分を更に加え、撹拌混合してRedインクを調製した。
 〔組成B〕
 EHPE3150                     33部
(ダイセル・サイテック(株)製;計算値エポキシ当量=140)
 3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン                           3部
 テトラニック150R1(BASF社製、界面活性剤)   0.2部
 1,3-ブタンジオールジアセテート           100部
 〈Greenインク〉
 C.I.Pigment Red 254の代わりに、C.I.Pigment Green 36 30部を用いた以外は前記Redインクと同じ構成、手順でGreenインクを調製した。
 〈Blueインク〉
 C.I.Pigment Red 254の代わりに、C.I.Pigment Blue 66 20部を用いた以外は前記Redインクと同じ構成、手順でBlueインクを調製した。
 《装飾層の作製》
 上記で調製したRed、Green、Blueインクを用いてピエゾ素子を用いてインクジェット法により吐出、堆積し、光透過性フルカラー画像層を形成した。
 吐出後120℃で10分間加熱処理を行って硬化させ装飾層を作製した。硬化後の装飾層の屈折率は1.56であった。
 インクジェット方式により小面積での塗りわけが可能で、且つ加熱処理による有機EL素子へのダメージが少なく、容易に明るいフルカラー画像を形成することができた。
 実施例4
 実施例3で用いた装飾発光体101の形成において、用いた熱硬化性インクに代えて下記2液硬化型インクを用いた以外は同様にして硬化性インクを作製し、スクリーン印刷法により図3に示す透過画像パターンを有する装飾層を形成した。
 用いた2液硬化型インクは、十條製紙社製9300シリーズのインクを用い、印刷直前に2液を混合して用いた。
 2液硬化型の特長は機械的強度に優れ、密着性のよい塗布膜を基板上に形成できることにある。
 得られた装飾層は、良好な透過画像パターンが得られた。また、得られた装飾層は高い耐擦過性を有するものであった。硬化後の装飾層の屈折率は1.50であった。
 実施例5
 実施例4で用いた装飾発光体101の形成において、2液硬化型インクに代えて、可視光硬化型インクを用いてスクリーン印刷法により装飾層(図4参照。)を形成した。
 用いた可視光硬化型インクは東亜化学社製LCR0754にパターニング材料を分散させて形成した。必要に応じてY,M,C,Bk色のインクを多重積層し所望の絵柄を作製した。これにより、図4に示す如く、装飾層として和紙状、大理石状或いは木目状印刷を行うことができ、照明付き化粧板となる装飾発光体101を容易に得ることができた。
 硬化後の装飾層の屈折率は1.50であった。
 紫外線硬化型では、硬化時に照射される紫外光により、発光材料が一部壊され、発光効率が低下する場合がある。しかし可視光硬化型ではその心配をする必要がなくなり、発光層に使える材料の制限あるいは光照射量の制限がなく好ましい態様を実施することができる。
 実施例6
 実施例1の装飾発光体101の作製において、印刷面からの紫外線照射に加えて、有機ELパネルに通電して有機EL層も発光させ、内部からの照射を行い、硬化を促進させた。その結果、同一硬化時間で比較すると、装飾層の膜付きを前記のクロスカットテープ剥離法により評価すると30%以上向上していることが分かった。
 実施例7
 実施例5の装飾層の形成において、インク中に用いたパターニング材料を用いず透明装飾層とした以外は同様にして装飾発光体101を形成した。得られた装飾層の上に、シリカ微粒子を分散したポリビニルブチラール水溶液を塗布、乾燥し、インクジェット受像層を形成した。
 このようにして得られたインクジェット受像層を有する装飾発光体101は、インクジェット印刷法により、インクジェット受像層に写真画像等の好みの画像を容易に形成することが可能となった。
 以上の本発明の実施例より、容易に、安価に、多品種、少量生産に適した、エネルギー消費効率が高く、高輝度で、発熱が無く、安全で、耐擦過性に優れた装飾発光体を提供することができた。
 1 基板
 2 陽極
 2a 陽極外部取り出し部
 3 有機化合物層
 4 陰極
 4a 陰極外部取り出し部
 5 封止基材
 6 封止用接着剤
 7 電極リード
 8 導電性接着剤
 9 装飾層
 20 装飾発光体検査装置
 21 装飾発光体
 22 電源部
 23 制御部
 40 有機EL素子
 50 封止部材
 60 有機ELパネル
 101 装飾発光体

Claims (12)

  1. 面発光素子の光取り出し側の基板表面上に、硬化性インクにより形成された装飾層を有する装飾発光体において、該基板の屈折率をn1とし、該硬化性インクにより形成された装飾層の屈折率をn2とするとき、n1とn2が下記1)、2)および3)式の関係を満たすことを特徴とする装飾発光体。
     1) 1.4≦n1≦1.9
     2) 1.4≦n2≦1.9
     3) |n1-n2|≦0.2
  2. 前記面発光素子の基板の表面粗さにおいて、中心線平均粗さRa、最大高さRy、10点平均高さRzがそれぞれ、下記4)、5)および6)式で示されることを特徴とする請求項1に記載の装飾発光体。
     4) 0.1nm≦Ra≦10nm
     5) 1.0nm≦Ry≦100nm
     6) 1.0nm≦Rz≦100nm
  3. 前記硬化性インクが熱硬化性インクであることを特徴とする請求項1または2に記載の装飾発光体。
  4. 前記硬化性インクが2液硬化性インクであることを特徴とする請求項1または2に記載の装飾発光体。
  5. 前記硬化性インクが光硬化性インクであることを特徴とする請求項1または2に記載の装飾発光体。
  6. 前記光硬化性インクが可視光線硬化性インクであることを特徴とする請求項5に記載の装飾発光体。
  7. 前記光硬化性インクが紫外線硬化性インクであることを特徴とする請求項5に記載の装飾発光体。
  8. 前記装飾層の形成がスクリーン印刷であることを特徴とする請求項1~7の何れか1項に記載の装飾発光体。
  9. 前記装飾層の形成がインクジェット印刷であることを特徴とする請求項1~7の何れか1項に記載の装飾発光体。
  10. 前記面発光素子が、有機EL素子であることを特徴とする請求項1~9の何れか1項に記載の装飾発光体。
  11. 面発光素子の光取り出し側基板表面上に硬化性インク層を形成する工程、形成された硬化性インク層に紫外線を照射する工程、によって形成された装飾層を有する装飾発光体の製造方法において、該硬化性インク層面に紫外線を照射する工程と、該面発光素子に通電して発光させる工程とを有することを特徴とする装飾発光体の製造方法。
  12. 面発光素子の光取り出し側基板表面上に硬化性インク層を形成する工程、形成された硬化性インク層に紫外線を照射する工程、によって形成された装飾層を有する装飾発光体の製造方法において、該紫外線を照射する工程における紫外線の照射が下記1)および2)を同時に行うことを特徴とする装飾発光体の製造方法。
    1)前記硬化性インク層上からの照射
    2)前記面発光素子の光取り出し側基板の端面からの照射
PCT/JP2010/067641 2009-10-22 2010-10-07 装飾発光体およびその製造方法 WO2011048956A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011537203A JP5678891B2 (ja) 2009-10-22 2010-10-07 装飾発光体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-243281 2009-10-22
JP2009243281 2009-10-22

Publications (1)

Publication Number Publication Date
WO2011048956A1 true WO2011048956A1 (ja) 2011-04-28

Family

ID=43900186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067641 WO2011048956A1 (ja) 2009-10-22 2010-10-07 装飾発光体およびその製造方法

Country Status (2)

Country Link
JP (2) JP5678891B2 (ja)
WO (1) WO2011048956A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108835A1 (ja) * 2012-01-18 2013-07-25 日本電気硝子株式会社 有機elデバイス用ガラス基板及びそれを用いた有機elデバイス
JP2013179020A (ja) * 2012-02-08 2013-09-09 National Institute Of Advanced Industrial & Technology 有機光電子素子
EP2750210A2 (en) * 2012-12-26 2014-07-02 Nitto Denko Corporation Encapsulating sheet
EP2750209A3 (en) * 2012-12-26 2014-12-24 Nitto Denko Corporation Encapsulating sheet
JP2015219143A (ja) * 2014-05-19 2015-12-07 コニカミノルタ株式会社 光デバイス検査装置および光デバイス検査方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252060A (ja) * 1999-03-01 2000-09-14 Fuji Electric Co Ltd 蛍光変換フィルターの製造方法および有機el素子
JP2003163083A (ja) * 2001-09-13 2003-06-06 Nissha Printing Co Ltd El発光加飾成形品とその製造方法、el発光加飾シート
JP2004055355A (ja) * 2002-07-19 2004-02-19 Fuji Electric Holdings Co Ltd 色変換フィルタ、色変換層およびそれらを用いた色変換発光デバイス
JP2004531854A (ja) * 2001-04-03 2004-10-14 セイコーエプソン株式会社 パターニング方法
JP2004322628A (ja) * 2003-04-11 2004-11-18 Nippon Soda Co Ltd 透明導電性積層体
JP2007311044A (ja) * 2006-05-16 2007-11-29 Mitsubishi Electric Corp 発光装置及び照光方法
JP2008218421A (ja) * 1996-09-12 2008-09-18 Mitsubishi Chemicals Corp 有機電界発光素子及びその製造方法
JP2009032528A (ja) * 2007-07-27 2009-02-12 Nippon Zeon Co Ltd 照明装置の製造方法および照明装置
WO2009081750A1 (ja) * 2007-12-21 2009-07-02 Zeon Corporation 面光源装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739134B2 (ja) * 2006-07-06 2011-08-03 凸版印刷株式会社 有機エレクトロルミネッセンス素子および表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218421A (ja) * 1996-09-12 2008-09-18 Mitsubishi Chemicals Corp 有機電界発光素子及びその製造方法
JP2000252060A (ja) * 1999-03-01 2000-09-14 Fuji Electric Co Ltd 蛍光変換フィルターの製造方法および有機el素子
JP2004531854A (ja) * 2001-04-03 2004-10-14 セイコーエプソン株式会社 パターニング方法
JP2003163083A (ja) * 2001-09-13 2003-06-06 Nissha Printing Co Ltd El発光加飾成形品とその製造方法、el発光加飾シート
JP2004055355A (ja) * 2002-07-19 2004-02-19 Fuji Electric Holdings Co Ltd 色変換フィルタ、色変換層およびそれらを用いた色変換発光デバイス
JP2004322628A (ja) * 2003-04-11 2004-11-18 Nippon Soda Co Ltd 透明導電性積層体
JP2007311044A (ja) * 2006-05-16 2007-11-29 Mitsubishi Electric Corp 発光装置及び照光方法
JP2009032528A (ja) * 2007-07-27 2009-02-12 Nippon Zeon Co Ltd 照明装置の製造方法および照明装置
WO2009081750A1 (ja) * 2007-12-21 2009-07-02 Zeon Corporation 面光源装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108835A1 (ja) * 2012-01-18 2013-07-25 日本電気硝子株式会社 有機elデバイス用ガラス基板及びそれを用いた有機elデバイス
JP2013149406A (ja) * 2012-01-18 2013-08-01 Nippon Electric Glass Co Ltd ガラス基板及びそれを用いた有機elデバイス
JP2013179020A (ja) * 2012-02-08 2013-09-09 National Institute Of Advanced Industrial & Technology 有機光電子素子
EP2750210A2 (en) * 2012-12-26 2014-07-02 Nitto Denko Corporation Encapsulating sheet
CN103904200A (zh) * 2012-12-26 2014-07-02 日东电工株式会社 封装片
EP2750209A3 (en) * 2012-12-26 2014-12-24 Nitto Denko Corporation Encapsulating sheet
EP2750210A3 (en) * 2012-12-26 2014-12-24 Nitto Denko Corporation Encapsulating sheet
JP2015219143A (ja) * 2014-05-19 2015-12-07 コニカミノルタ株式会社 光デバイス検査装置および光デバイス検査方法

Also Published As

Publication number Publication date
JPWO2011048956A1 (ja) 2013-03-07
JP5678891B2 (ja) 2015-03-04
JP2015062206A (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5835216B2 (ja) 光取り出しシート、有機エレクトロルミネッセンス素子及び照明装置
JP6052182B2 (ja) 有機エレクトロルミネッセンス素子、及び、面状発光体
JPWO2007049470A1 (ja) 有機エレクトロルミネッセンス素子、液晶表示装置及び照明装置
JP6362330B2 (ja) 有機エレクトロルミネッセンス素子、及び、面状発光体
JP2007200692A (ja) 有機エレクトロルミネッセンスパネルの製造方法、有機エレクトロルミネッセンスパネル
JP5994884B2 (ja) 有機エレクトロルミネッセンス素子および照明装置
JP2015062206A (ja) 装飾発光体
JP6337883B2 (ja) 電子デバイス
JP5888095B2 (ja) 有機エレクトロルミネッセンス素子
JP2008226471A (ja) 有機エレクトロルミネッセンスパネルの製造方法、有機エレクトロルミネッセンスパネル
WO2013042533A1 (ja) 有機エレクトロルミネッセンスパネル及び有機エレクトロルミネッセンスパネルの製造方法
JP5664715B2 (ja) 有機エレクトロルミネッセンス素子
JP2007200591A (ja) 有機エレクトロルミネッセンスパネルの製造方法及び有機エレクトロルミネッセンスパネル
JP4962452B2 (ja) 面発光素子及び発光パネル
JP2009252944A (ja) 有機エレクトロルミネセンス素子とその製造方法
JP4978034B2 (ja) 有機エレクトロルミネッセンス素子
JP6119606B2 (ja) 有機エレクトロルミネッセンスパネル及び有機エレクトロルミネッセンスパネルの製造方法
JP5708677B2 (ja) 有機エレクトロルミネッセンス素子および照明装置
JP2007180277A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2011150803A (ja) 有機エレクトロルミネッセンス素子および照明装置
JP5286637B2 (ja) 有機エレクトロルミネッセンスパネルの製造方法、有機エレクトロルミネッセンスパネル
JP5273148B2 (ja) 発光パネル
JP2007221028A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5353852B2 (ja) 面発光体および面発光体の製造方法
JP2007059311A (ja) 有機エレクトロルミネッセンスパネルおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824805

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537203

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10824805

Country of ref document: EP

Kind code of ref document: A1