Nothing Special   »   [go: up one dir, main page]

WO2011040529A1 - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
WO2011040529A1
WO2011040529A1 PCT/JP2010/067085 JP2010067085W WO2011040529A1 WO 2011040529 A1 WO2011040529 A1 WO 2011040529A1 JP 2010067085 W JP2010067085 W JP 2010067085W WO 2011040529 A1 WO2011040529 A1 WO 2011040529A1
Authority
WO
WIPO (PCT)
Prior art keywords
camber
vehicle
wheel
load
predetermined
Prior art date
Application number
PCT/JP2010/067085
Other languages
English (en)
French (fr)
Inventor
堀口 宗久
水野 晃
Original Assignee
株式会社エクォス・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010145216A external-priority patent/JP5609314B2/ja
Application filed by 株式会社エクォス・リサーチ filed Critical 株式会社エクォス・リサーチ
Priority to EP10820644.2A priority Critical patent/EP2484543B1/en
Priority to CN201080043094.0A priority patent/CN102574439B/zh
Publication of WO2011040529A1 publication Critical patent/WO2011040529A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/006Attaching arms to sprung or unsprung part of vehicle, characterised by comprising attachment means controlled by an external actuator, e.g. a fluid or electrical motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/46Indexing codes relating to the wheels in the suspensions camber angle

Definitions

  • the present invention relates to a vehicle control device used in a vehicle including a camber angle adjusting device that adjusts a camber angle of a wheel, and in particular, suppresses uneven wear of a tire to improve the life of the tire and stabilize the running of the vehicle.
  • the present invention relates to a vehicular control device that can ensure safety.
  • the present invention has been made to solve the above-described problems, and suppresses uneven wear of the tire, thereby improving the life of the tire and ensuring the running stability of the vehicle.
  • the purpose is to provide.
  • the first camber angle adjusting means when the ground load determining means determines that the wheel ground load is equal to or greater than the predetermined ground load.
  • the camber angle of the wheel is adjusted so that at least the absolute value decreases, so that uneven wear of the tire can be suppressed. That is, as the wheel ground load increases, the tire wear tends to be disadvantageous. Therefore, if the wheel ground load is equal to or greater than the predetermined ground load, the camber angle of the wheel is reduced so that the absolute value decreases at least. By adjusting, uneven wear of the tire can be suppressed. As a result, there is an effect that the life of the tire can be improved.
  • the second camber angle adjusting means when the state quantity determining means determines that the vehicle state quantity satisfies the predetermined condition, provides a positive camber or negative camber on the wheel. For example, when the vehicle's longitudinal acceleration and lateral acceleration are large and the vehicle is suddenly accelerated, suddenly braked, or suddenly turned, the vehicle travels using the canvas last generated on the wheels. Stability can be ensured.
  • the ground load determination means determines that the wheel ground load is equal to or greater than the predetermined ground load
  • the camber angle of the wheel is adjusted by the first camber angle adjusting means so that the absolute value is at least smaller than the camber angle adjusted by the second camber angle adjusting means, uneven wear of the tire can be suppressed. . Therefore, in addition to the effect of the first aspect, there is an effect that it is possible to achieve both of ensuring traveling stability and suppressing uneven wear of the tire.
  • vehicle state quantity is not limited to the state of the vehicle itself, such as the longitudinal acceleration and lateral acceleration of the vehicle described above, and an operation member operated by the driver.
  • an amount of depression of an accelerator pedal or a brake pedal, a steering operation amount, or the like may be used.
  • the positive camber or negative camber is applied to the wheel by the third camber angle adjusting means when the running condition judging means judges that the running condition of the vehicle is a predetermined straight running condition. Therefore, for example, when the vehicle travels on an expressway or a main road with relatively many straight lines, the lateral rigidity of the wheels can be used to ensure the straight running stability of the vehicle.
  • the traveling state of the vehicle is a predetermined straight traveling state by the traveling state determining means and the ground load determining means determines that the ground load of the wheel is equal to or greater than the predetermined ground load
  • the camber angle of the wheel is adjusted by the one camber angle adjusting means so that the absolute value becomes at least smaller than the camber angle adjusted by the third camber angle adjusting means, uneven wear of the tire can be suppressed. Therefore, in addition to the effect of the first or second aspect, there is an effect that it is possible to achieve both of ensuring the straight running stability and suppressing the uneven wear of the tire.
  • the “predetermined straight traveling state” described in claim 3 is an operation that is operated by the driver to change the traveling direction of the vehicle to the left and right when the lateral acceleration, the yaw rate, or the like of the vehicle is below a predetermined value.
  • the operation amount of a member for example, steering
  • the current position of the vehicle is on a straight road where it is determined that the vehicle goes straight in a predetermined section such as on a highway or a main road of map data The case where it is located in is illustrated.
  • the vehicle control device of the fourth aspect since the camber angles of the front wheels and the rear wheels are adjusted by the third camber angle adjusting means, it is possible to ensure the straight running stability of the vehicle. Further, since the camber angle of the front wheel or the rear wheel is adjusted by the first camber angle adjusting means, the state where the positive camber or the negative camber is applied to the rear wheel or the front wheel is maintained while suppressing the uneven wear of the front wheel or the rear wheel. be able to. Thus, in addition to the effect of the third aspect, there is an effect that the uneven wear of the tire is suppressed and the straight running stability of the vehicle can be ensured.
  • the traveling state determining means determines that the traveling state of the vehicle is a predetermined straight traveling state
  • the ground load determining means determines that the wheel ground load is equal to or greater than the predetermined ground load.
  • the standby unit uses the third camber angle adjusting unit.
  • the start of adjustment of the camber angle of the wheel is awaited.
  • the body the plurality of wheels rotatably disposed with respect to the body, and the predetermined cam wheel among the wheels, the camber of the wheel.
  • a camber angle adjusting device that adjusts the angle is used for a vehicle, and a traveling stable state determination processing unit that determines whether the traveling state of the vehicle is stable, and the traveling stable state determination processing unit When it is determined that the traveling state is stable, the camber angle adjusting device is operated to provide a camber imparting processing means for imparting a negative camber to a predetermined wheel.
  • the frequency at which the negative camber is given can be lowered, and the time during which the negative camber is given is shortened. Can do. Therefore, it is possible to sufficiently suppress the occurrence of uneven wear in the tire of a predetermined wheel, and there is an effect that the life of the tire can be extended.
  • the vehicle 1 includes a vehicle body frame BF, a plurality of (four wheels in the present embodiment) wheels 2 that support the vehicle body frame BF, and some of the plurality of wheels 2 (the book In the embodiment, a wheel driving device 3 that rotationally drives the left and right front wheels 2FL, 2FR, a plurality of suspension devices 4 that suspend each wheel 2 on the vehicle body frame BF, and a part of the wheels 2
  • the embodiment mainly includes a steering device 5 that steers the left and right front wheels 2FL, 2FR).
  • the wheel 2 includes left and right front wheels 2FL and 2FR located on the front side (arrow F direction side) of the vehicle 1 and left and right rear wheels located on the rear side (arrow B direction side) of the vehicle 1.
  • Wheels 2RL and 2RR are provided.
  • the left and right front wheels 2FL and 2FR are configured as drive wheels that are rotationally driven by the wheel drive device 3, while the left and right rear wheels 2RL and 2RR are driven as the vehicle 1 travels. It is configured as a driven wheel.
  • the left and right front wheels 2FL, 2FR and the left and right rear wheels 2RL, 2RR are all configured to have the same shape and characteristics, and the wheel 2 has a tread width (dimension in the left-right direction in FIG. 1). It is configured to have the same width.
  • the wheel driving device 3 is a device for rotationally driving the left and right front wheels 2FL and 2FR, and is configured by an electric motor 3a as described later (see FIG. 3). Further, as shown in FIG. 1, the electric motor 3 a is connected to the left and right front wheels 2 FL and 2 FR via a differential gear (not shown) and a pair of drive shafts 31.
  • the suspension device 4 functions as a so-called suspension for mitigating vibration transmitted from the road surface to the vehicle body frame BF via the wheels 2, and is configured to be extendable. As shown in FIG. Are provided corresponding to each. Further, the suspension device 4 in the present embodiment also has a function as a camber angle adjusting mechanism for adjusting the camber angle of the wheel 2.
  • the suspension device 4 transmits a knuckle 43 supported by the vehicle body frame BF via a strut 41 and a lower arm 42, an FR motor 44FR that generates a driving force, and a driving force of the FR motor 44FR.
  • the worm wheel 45 and the arm 46 are configured to mainly include a movable plate 47 that is swingably driven with respect to the knuckle 43 by the driving force of the FR motor 44FR transmitted from the worm wheel 45 and the arm 46. .
  • the knuckle 43 supports the wheel 2 so as to be steerable. As shown in FIG. 2, the upper end (upper side in FIG. 2) is connected to the strut 41, and the lower end (lower side in FIG. 2) is connected via a ball joint. Are coupled to the lower arm 42.
  • the FR motor 44FR applies a driving force for swinging driving to the movable plate 47, is constituted by a DC motor, and a worm (not shown) is formed on its output shaft 44a.
  • the worm wheel 45 transmits the driving force of the FR motor 44FR to the arm 46, meshes with a worm formed on the output shaft 44a of the FR motor 44FR, and constitutes a staggered shaft gear pair together with the worm.
  • the arm 46 transmits the driving force of the FR motor 44FR transmitted from the worm wheel 45 to the movable plate 47, and has one end (right side in FIG. 2) via the first connecting shaft 48 as shown in FIG. The other end (left side in FIG. 2) is connected to the upper end (upper side in FIG. 2) via the second connection shaft 49 while being connected to a position eccentric from the rotation shaft 45 a of the worm wheel 45.
  • the movable plate 47 supports the wheel 2 in a rotatable manner. As described above, the upper end (upper side in FIG. 2) is coupled to the arm 46, and the lower end (lower side in FIG. 2) is interposed via the camber shaft 50.
  • the knuckle 43 is pivotally supported so as to be swingable.
  • the suspension device 4 configured as described above, when the FR motor 44FR is driven, the worm wheel 45 rotates and the rotational motion of the worm wheel 45 is converted into linear motion of the arm 46. As a result, when the arm 46 moves linearly, the movable plate 47 is driven to swing with the camber shaft 50 as the swing shaft, and the camber angle of the wheel 2 is adjusted.
  • the first connecting shaft 48, the rotating shaft 45a, the rotating shaft 45a of each connecting shaft 48, 49 and the worm wheel 45 in the direction from the vehicle body frame BF toward the wheel 2 (arrow R direction).
  • a first camber state positioned in a straight line in the order of the second connecting shaft 49, and a second camber state positioned in a straight line in the order of the rotating shaft 45a, the first connecting shaft 48, and the second connecting shaft 49 (see FIG. 2), the camber angle of the wheel 2 is adjusted so that one of the camber states is established.
  • first camber angle a predetermined negative angle (-3 ° in the present embodiment, hereinafter referred to as “first camber angle”).
  • second camber angle the camber angle of the wheel 2 is adjusted to 0 ° (hereinafter referred to as “second camber angle”).
  • the steering device 5 is a device for steering an operation of the steering 63 by the driver to the left and right front wheels 2FL, 2FR, and is configured as a so-called rack and pinion type steering gear.
  • the operation (rotation) of the steering 63 by the driver is first transmitted to the universal joint 52 via the steering column 51, and the pinion 53 a of the steering box 53 is changed while the angle is changed by the universal joint 52. Is transmitted as rotational motion. Then, the rotational motion transmitted to the pinion 53a is converted into a linear motion of the rack 53b, and the tie rod 54 connected to both ends of the rack 53b moves by the linear motion of the rack 53b. As a result, the tie rod 54 pushes and pulls the knuckle 55, so that a predetermined steering angle is given to the wheel 2.
  • the accelerator pedal 61 and the brake pedal 62 are operation members operated by the driver, and the traveling speed and braking force of the vehicle 1 are determined according to the operation state (depression amount, depressing speed, etc.) of the pedals 61 and 62.
  • the wheel drive device 3 is driven and controlled.
  • the steering 63 is an operation member operated by the driver, and the left and right front wheels 2FL and 2FR are steered by the steering device 5 according to the operation state (steer angle, steer angular velocity, etc.).
  • the vehicle control device 100 is a device for controlling each part of the vehicle 1 configured as described above.
  • the camber angle adjusting device 44 see FIG. 3.
  • FIG. 3 is a block diagram showing an electrical configuration of the vehicle control device 100.
  • the vehicle control device 100 includes a CPU 71, a ROM 72, and a RAM 73, which are connected to an input / output port 75 via a bus line 74.
  • the input / output port 75 is connected to a device such as the wheel drive device 3.
  • the CPU 71 is an arithmetic device that controls each unit connected by the bus line 74, and the ROM 72 is a control program executed by the CPU 71 (for example, the program of the flowcharts shown in FIGS. 4 to 7), fixed value data, or the like. Is a non-rewritable non-volatile memory.
  • the RAM 73 is a memory for rewritably storing various data when the control program is executed. As shown in FIG. 3, a camber flag 73a, a state quantity flag 73b, a running state flag 73c, and an uneven wear load flag 73d are stored. Is provided.
  • the camber flag 73a is a flag indicating whether or not the camber angle of the wheel 2 is adjusted to the first camber angle, and the CPU 71 displays the camber angle of the wheel 2 when the camber flag 73a is on. Is determined to have been adjusted to the first camber angle.
  • the state quantity flag 73b is a flag indicating whether or not the state quantity of the vehicle 1 satisfies a predetermined condition, and is turned on or off when a state quantity determination process (see FIG. 4) described later is executed.
  • the state amount flag 73b in the present embodiment is switched on when at least one of the operation amounts of the accelerator pedal 61, the brake pedal 62, and the steering 63 is equal to or greater than a predetermined operation amount, and the CPU 71 Determines that the state quantity of the vehicle 1 satisfies a predetermined condition when the state quantity flag 73b is on.
  • the traveling state flag 73b is a flag indicating whether or not the traveling state of the vehicle 1 is a predetermined straight traveling state (is stable), and is turned on or off when a traveling state determination process (see FIG. 5) described later is executed. Can be switched to.
  • the traveling state flag 73c in the present embodiment is switched on when the traveling speed of the vehicle 1 is equal to or higher than the predetermined traveling speed and the operation amount of the steering 63 is equal to or smaller than the predetermined operation amount. Determines that the traveling state of the vehicle 1 is a predetermined straight traveling state when the traveling state flag 73c is on.
  • the uneven wear load flag 73d indicates that when the vehicle 1 travels in a state in which the camber angle of the wheel 2 is the first camber angle, that is, in a state where a negative camber is applied to the wheel 2, the ground load of the wheel 2 is a tire (tread). ) Is a flag indicating whether or not the contact load may cause uneven wear (hereinafter referred to as “uneven wear load”), and is turned on or off during execution of the uneven wear load determination process (see FIG. 6) described later. Can be switched to. When the uneven wear load flag 73d is on, the CPU 71 determines that the ground load of the wheel 2 is an uneven wear load that may cause uneven wear on the tire.
  • the wheel drive device 3 is a device for rotationally driving the left and right front wheels 2FL, 2FR (see FIG. 1), and an electric motor 3a that applies a rotational driving force to the left and right front wheels 2FL, 2FR.
  • a drive control circuit (not shown) for driving and controlling the electric motor 3a based on an instruction from the CPU 71 is mainly provided.
  • the wheel drive device 3 is not limited to the electric motor 3a, and other drive sources can naturally be adopted. Examples of other drive sources include a hydraulic motor and an engine.
  • the camber angle adjusting device 44 is a device for adjusting the camber angle of each wheel 2, and as described above, the driving force for swinging is applied to the movable plate 47 (see FIG. 2) of each suspension device 4, respectively.
  • a total of four FL to RR motors 44FL to 44RR to be provided and a drive control circuit (not shown) for driving and controlling each of the motors 44FL to 44RR based on an instruction from the CPU 71 are mainly provided.
  • the acceleration sensor device 80 is a device for detecting the acceleration of the vehicle 1 and outputting the detection result to the CPU 71.
  • the acceleration sensor device 80a includes a longitudinal acceleration sensor 80a, a lateral acceleration sensor 80b, and the acceleration sensors 80a and 80b. It mainly includes an output circuit (not shown) that processes the detection result and outputs it to the CPU 71.
  • the longitudinal acceleration sensor 80a is a sensor that detects the acceleration in the longitudinal direction (arrow FB direction in FIG. 1) of the vehicle 1 (body frame BF), so-called longitudinal G
  • the lateral acceleration sensor 80b is the vehicle 1 (vehicle body BF). This is a sensor that detects the acceleration in the left-right direction (the direction of the arrow LR in FIG. 1) of the frame BF, so-called lateral G.
  • each of the acceleration sensors 80a and 80b is configured as a piezoelectric sensor using a piezoelectric element.
  • the CPU 71 time-integrates the detection results (front and rear G, lateral G) of the respective acceleration sensors 80a and 80b input from the acceleration sensor device 80, and calculates speeds in two directions (front and rear directions and left and right directions), respectively.
  • the traveling speed of the vehicle 1 can be acquired by synthesizing these two-direction components.
  • the yaw rate sensor device 81 is a device for detecting the yaw rate of the vehicle 1 and outputting the detection result to the CPU 71, and a vehicle around a vertical axis passing through the center of gravity of the vehicle 1 (arrow UD direction axis in FIG. 1).
  • 1 main body frame BF
  • a yaw rate sensor 81a that detects the rotational angular velocity
  • an output circuit (not shown) that processes the detection result of the yaw rate sensor 81a and outputs it to the CPU 71.
  • the roll angle sensor device 82 is a device for detecting the roll angle of the vehicle 1 and outputting the detection result to the CPU 71.
  • a roll angle sensor 82a for detecting the rotation angle of the vehicle 1 (body frame BF) and an output circuit (not shown) for processing the detection result of the roll angle sensor 82a and outputting the result to the CPU 71. .
  • the yaw rate sensor 81a and the roll angle sensor 82a are configured by optical gyro sensors that detect the rotation angular velocity and the rotation angle by the Sagnac effect.
  • optical gyro sensors that detect the rotation angular velocity and the rotation angle by the Sagnac effect.
  • other types of gyro sensors include mechanical and fluid gyro sensors.
  • the suspension stroke sensor device 83 is a device for detecting the amount of expansion / contraction of each suspension device 4 and outputting the detection result to the CPU 71.
  • the suspension stroke sensor device 83 detects the amount of expansion / contraction of each suspension device 4 for a total of four FL ⁇ RR suspension stroke sensors 83FL to 83RR, and an output circuit (not shown) for processing the detection results of the respective suspension stroke sensors 83FL to 83RR and outputting them to the CPU 71 are provided.
  • each of the suspension stroke sensors 83FL to 83RR is configured as a strain gauge. Has been.
  • the ground load sensor device 84 is a device for detecting the ground load of each wheel 2 and outputting the detection result to the CPU 71.
  • Load sensors 84FL to 84RR and an output circuit (not shown) for processing the detection results of the respective ground load sensors 84FL to 84RR and outputting them to the CPU 71 are provided.
  • each of the ground load sensors 84FL to 84RR is configured as a piezoresistive load sensor, and each of the ground load sensors 84FL to 84RR is a shock absorber (not shown) of each suspension device 4. Respectively.
  • each of the side wall crushing margin sensors 85FL to 85RR is configured as a strain gauge, and each of the side wall crushing margin sensors 85FL to 85RR is disposed in each wheel 2.
  • the accelerator pedal sensor device 61a is a device for detecting the operation amount of the accelerator pedal 61 and outputting the detection result to the CPU 71.
  • An angle sensor (not shown) for detecting the depression amount of the accelerator pedal 61; It mainly includes an output circuit (not shown) that processes the detection result of the angle sensor and outputs it to the CPU 71.
  • the brake pedal sensor device 62a is a device for detecting the operation amount of the brake pedal 62 and outputting the detection result to the CPU 71.
  • An angle sensor (not shown) for detecting the depression amount of the brake pedal 62; It mainly includes an output circuit (not shown) that processes the detection result of the angle sensor and outputs it to the CPU 71.
  • each angle sensor is configured as a contact type potentiometer using electrical resistance.
  • the CPU 71 time-differentiates the detection results (operation amounts) of the angle sensors input from the sensor devices 61a, 62a, and 63a, and acquires the depression speeds of the pedals 61 and 62 and the steering angular speed of the steering 63. be able to. Further, the CPU 71 can obtain the steering angular acceleration of the steering 63 by differentiating the obtained steering angular velocity of the steering 63 with respect to time.
  • the current position of the vehicle 1 is acquired using GPS, and the acquired current position of the vehicle 1 is associated with map data in which information on roads is stored.
  • the navigation apparatus etc. which are acquired in this way are illustrated.
  • FIG. 4 is a flowchart showing the state quantity determination process.
  • This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 100 is turned on. Whether the state quantity of the vehicle 1 satisfies a predetermined condition. Is a process for determining.
  • the CPU 71 first acquires the operation amount (depression amount) of the accelerator pedal 61, the operation amount (depression amount) of the brake pedal 62, and the operation amount (steer angle) of the steering 63 (S1, S2). S3), it is determined whether or not at least one of the obtained operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is equal to or greater than a predetermined operation amount (S4).
  • S4 corresponds to the operation amount of each pedal 61 and 62 and the operation amount of the steering 63, and the operation amount of each of the pedals 61 and 62 and the operation amount of the steering 63 respectively acquired in the processing of S1 to S3.
  • the threshold value stored in advance in the ROM 72 (in this embodiment, when the vehicle 1 is accelerated, braked or turned while the camber angle of the wheel 2 is the second camber angle, the wheel 2 may slip.
  • the current operation amount of each pedal 61 and 62 and the operation amount of the steering 63 are equal to or greater than a predetermined operation amount.
  • the state amount flag 73b. Is turned on (S5), and the state quantity determination process is terminated. That is, in this state quantity determination process, when at least one of the operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is equal to or greater than a predetermined operation amount, the state quantity of the vehicle 1 is a predetermined amount. Judge that the condition is met.
  • FIG. 5 is a flowchart showing the running state determination process.
  • This process is a process repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 100 is turned on, and the traveling state of the vehicle 1 is in a predetermined straight traveling state. This is a process for determining whether or not.
  • the operation amount (steer angle) of the steering 63 is acquired (S13). It is determined whether or not the acquired operation amount of the steering 63 is equal to or less than a predetermined operation amount (S14).
  • S14 the operation amount of the steering 63 acquired in the process of S13 and the threshold value stored in advance in the ROM 72 (in this embodiment, in the state quantity determination process shown in FIG. And a value smaller than the operation amount of the steering 63 for determining whether or not a predetermined condition is satisfied), it is determined whether or not the current operation amount of the steering 63 is equal to or greater than the predetermined operation amount. .
  • the traveling state flag 73c is turned on (S15), and the traveling state determination process is terminated. That is, in this traveling state determination process, when the traveling speed of the vehicle 1 is equal to or higher than a predetermined speed and the operation amount of the steering 63 is equal to or smaller than the predetermined operation amount, the traveling state of the vehicle 1 is a predetermined straight traveling state. It is judged that.
  • FIG. 6 is a flowchart showing an uneven wear load determination process.
  • This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 100 is turned on, and the vehicle with the negative camber applied to the wheels 2 is executed.
  • This is a process for determining whether or not the ground contact load of the wheel 2 is an uneven wear load that may cause uneven wear on the tire (tread) when the vehicle 1 travels.
  • the CPU 71 first determines whether or not the expansion / contraction amount of each suspension device 4 is equal to or less than a predetermined expansion / contraction amount regarding the uneven wear load determination processing (S21).
  • the suspension stroke sensor device 83 detects the expansion / contraction amount of each suspension device 4, and compares the detected expansion / contraction amount of each suspension device 4 with a threshold value stored in advance in the ROM 72. Thus, it is determined whether the current expansion / contraction amount of each suspension device 4 is equal to or less than a predetermined expansion / contraction amount.
  • the expansion / contraction amount of at least one suspension device 4 among the suspension devices 4 is larger than the predetermined expansion / contraction amount (S21: No)
  • the contact load of the wheel 2 is larger than the predetermined contact load and it is determined that the contact load of the wheel 2 is an uneven wear load
  • the uneven wear load flag 73d is turned on (S33), and this uneven wear load determination process is performed.
  • the lateral G of the vehicle 1 detected by the acceleration sensor device 80 is compared with the threshold value stored in advance in the ROM 72, and the lateral G of the current vehicle 1 is compared. Is less than or equal to a predetermined acceleration.
  • the ground load of either the left front wheel 2FL, 2RL or the right front wheel 2FR, 2RR is predetermined. Therefore, it is determined that the contact load of the wheel 2 is a partial wear load. Therefore, the uneven wear load flag 73d is turned on (S33), and the uneven wear load determination process is terminated.
  • the ground load of either the left front wheel 2FL, 2RL or the right front wheel 2FR, 2RR is predetermined. Since it is estimated that the contact load is larger than the contact load, and it is determined that the contact load of the wheel 2 is an uneven wear load, the uneven wear load flag 73d is turned on (S33), and the uneven wear load determination process is terminated.
  • the uneven wear load flag 73d is turned on (S33), and the uneven wear load determination process is terminated.
  • the collapse allowance of the tire sidewall of each wheel 2 is equal to or less than the predetermined collapse allowance. It is determined whether or not (S27).
  • the collapse amount of the tire sidewall of each wheel 2 detected by the sidewall collapse allowance sensor device 85 is compared with the threshold value stored in advance in the ROM 72, and the current wheel 2 of each wheel 2 is compared. It is determined whether the crushing margin of the tire sidewall is equal to or less than a predetermined crushing margin.
  • the grounding of the wheel 2 with the large crushed allowance is made. Since the load is estimated to be larger than the predetermined ground load and it is determined that the ground load of the wheel 2 is an uneven wear load, the uneven wear load flag 73d is turned on (S33), and this uneven wear load determination process is performed. finish.
  • the operation amount (depressed amount) of the accelerator pedal 61 is It is determined whether or not the operation amount is equal to or less than a predetermined operation amount (S28).
  • S28 the operation amount of the accelerator pedal 61 detected by the accelerator pedal sensor device 61a and a threshold value stored in advance in the ROM 72 (in the present embodiment, in the state quantity determination process shown in FIG.
  • the current operation amount of the accelerator pedal 61 is equal to or less than the predetermined operation amount, as compared with the operation amount of the accelerator pedal 61 for determining whether or not the state quantity of 1 satisfies the predetermined condition. Determine whether or not.
  • the operation amount (depression amount) of the brake pedal 62 is the predetermined operation amount. It is determined whether the following is true (S29). In the process of S29, the operation amount of the brake pedal 62 detected by the brake pedal sensor device 62a and the threshold value stored in advance in the ROM 72 (in the present embodiment, in the state quantity determination process shown in FIG. And the current operation amount of the brake pedal 62 is not more than the predetermined operation amount. Determine whether or not.
  • the operation amount of the brake pedal 62 is equal to or less than the predetermined operation amount as a result of the process of S29 (S29: Yes)
  • the operation amount (steer angle) of the steering 63 is equal to or less than the predetermined operation amount. It is determined whether or not (S30). In the process of S30, the operation amount of the steering 63 detected by the steering sensor device 63a and the threshold value stored in advance in the ROM 72 (in the present embodiment, in the state quantity determination process shown in FIG.
  • the ground load of either the left front wheel 2FL, 2RL or the right front wheel 2FR, 2RR is Since it is estimated that the contact load of the wheel 2 is larger than the predetermined contact load, it is determined that the contact load of the wheel 2 is an uneven wear load. Therefore, the uneven wear load flag 73d is turned on (S33), and this uneven wear load determination process is terminated. .
  • the operation speed (steer angular velocity) of the steering 63 is equal to or less than the predetermined speed. Whether or not (S31).
  • the operation speed of the steering 63 obtained by time differentiation of the operation amount of the steering 63 is compared with a threshold value stored in advance in the ROM 72, and the current operation speed of the steering 63 is determined in advance. It is determined whether or not the speed is below.
  • the ground load of either the left front wheel 2FL, 2RL or the right front wheel 2FR, 2RR is predetermined. Therefore, it is determined that the contact load of the wheel 2 is a partial wear load. Therefore, the uneven wear load flag 73d is turned on (S33), and the uneven wear load determination process is terminated.
  • the operational acceleration (steer angular acceleration) of the steering wheel 63 is equal to or lower than the predetermined acceleration. Whether or not (S32).
  • the operation acceleration of the steering 63 obtained by time differentiation of the operation speed of the steering 63 is compared with a threshold value stored in advance in the ROM 72, and the current operation acceleration of the steering 63 is determined in advance. It is determined whether the acceleration is equal to or less than the acceleration.
  • the ground load of either the left front wheel 2FL, 2RL or the right front wheel 2FR, 2RR is predetermined. Therefore, it is determined that the contact load of the wheel 2 is a partial wear load. Therefore, the uneven wear load flag 73d is turned on (S33), and the uneven wear load determination process is terminated.
  • FIG. 7 is a flowchart showing camber control processing.
  • This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 100 is turned on, and each wheel 2 (the left and right front wheels 2FL, 2FR and the left and right) This is a process for adjusting the camber angle of the rear wheels 2RL, 2RR).
  • the CPU 71 first determines whether or not the state quantity flag 73b is on (S41). If it is determined that the state quantity flag 73b is on (S41: Yes), It is determined whether or not the flag 73a is on (S42). As a result, when it is determined that the camber flag 73a is off (S42: No), the FL to RR motors 44FL to 44RR are operated to set the wheels 2 (the left and right front wheels 2FL and 2FR and the left and right rear wheels). 2RL, 2RR) is adjusted to the first camber angle, a negative camber is applied to each wheel 2 (S43), the camber flag 73a is turned on (S44), and the camber control process is terminated.
  • the state quantity of the vehicle 1 satisfies a predetermined condition, that is, at least one of the operation quantities of the pedals 61 and 62 and the operation quantity of the steering 63 is equal to or greater than the predetermined operation quantity.
  • a predetermined condition that is, at least one of the operation quantities of the pedals 61 and 62 and the operation quantity of the steering 63 is equal to or greater than the predetermined operation quantity.
  • the traveling state of the vehicle 1 is a predetermined straight traveling state, that is, the traveling speed of the vehicle 1 is equal to or higher than the predetermined speed and the operation amount of the steering 63 is equal to or smaller than the predetermined operation amount.
  • the traveling speed of the vehicle 1 is equal to or higher than the predetermined speed and the operation amount of the steering 63 is equal to or smaller than the predetermined operation amount.
  • the camber angle of the wheel 2 is the second camber angle (first camber angle). (The camber angle having a smaller absolute value) is adjusted and the application of the negative camber to the wheel 2 is released, so that uneven wear of the tire can be suppressed. That is, the larger the ground load of the wheel 2, the more disadvantageous the tire wear. Therefore, when the ground contact load of the wheel 2 is equal to or greater than the predetermined ground load, the partial wear of the tire can be suppressed by releasing the application of the negative camber to the wheel 2. As a result, the life of the tire can be improved. Further, by suppressing uneven wear of the tire, it is possible to prevent the ground contact surface of the tire from becoming uneven and to ensure the running stability of the vehicle 1. Furthermore, since uneven wear of the tire can be suppressed, fuel saving can be achieved correspondingly.
  • the camber angle of the wheel 2 is adjusted to the first camber angle, and the negative camber is given to the wheel 2. Therefore, the running stability of the vehicle 1 can be ensured using the canvas last generated on the wheels 2.
  • the camber angle of the wheel 2 is the second Since the camber angle is adjusted to a camber angle (a camber angle having a smaller absolute value than the first camber angle) and the application of the negative camber to the wheel 2 is released, uneven wear of the tire can be suppressed. Therefore, it is possible to achieve both of ensuring traveling stability and suppressing uneven wear of the tire.
  • the camber angle of the wheel 2 is adjusted to the first camber angle, and the negative camber is applied to the wheel 2. Since it is given, it is possible to ensure the straight running stability of the vehicle 1 by utilizing the lateral rigidity of the wheels 2.
  • the camber angle of the wheel 2 is the second camber. Since the angle (the camber angle having a smaller absolute value than the first camber angle) is adjusted and the negative camber is not applied to the wheel 2, uneven wear of the tire can be suppressed. Therefore, it is possible to achieve both of ensuring straight running stability and suppressing uneven wear of the tire.
  • the vehicle 1 to be controlled by the vehicle control device 100 is configured to adjust the camber angles of all the wheels 2 including the left and right front wheels 2FL, 2FR and the left and right rear wheels 2RL, 2RR.
  • the camber angles of only the left and right rear wheels 202RL and 202RR can be adjusted by the camber angle adjusting device 244, and the left and right front wheels 202FL are adjusted.
  • 202FR is configured such that the camber angle is not adjusted.
  • the vehicle control device 200 is a device for controlling each part of the vehicle 201 configured as described above.
  • the camber angle adjusting device 244 (see FIG. 9).
  • the suspension stroke sensor device 283 is a device for detecting the amount of expansion / contraction of each suspension device 4 and outputting the detection result to the CPU 71.
  • RL and RR suspension stroke sensors for detecting the amount of expansion / contraction of each suspension device 4 respectively.
  • 83RL, 83RR, and an output circuit (not shown) that processes the detection results of the respective suspension stroke sensors 83RL, 83RR and outputs them to the CPU 71. That is, the suspension stroke sensor device 283 in the second embodiment is a part of the suspension stroke sensor device 83 in the first embodiment (FL, FR suspension stroke sensors 83FL, 83FR corresponding to the left and right front wheels 202FL, 202FR). It is omitted.
  • the ground load sensor device 284 is a device for detecting the ground load of the left and right rear wheels 202RL and 202RR and outputting the detection result to the CPU 71.
  • the ground load sensor device 284 detects the ground loads of the left and right rear wheels 202RL and 202RR, respectively.
  • RL, RR ground load sensors 84RL, 84RR, and an output circuit (not shown) for processing the detection results of the ground load sensors 84RL, 84RR and outputting them to the CPU 71 are provided. That is, the ground load sensor device 284 in the second embodiment is a part of the ground load sensor device 84 in the first embodiment (FL, FR ground load sensors 84FL, 84FR corresponding to the left and right front wheels 202FL, 202FR). It is omitted.
  • the sidewall collapse allowance sensor device 285 is a device for detecting the collapse allowance of the tire sidewalls of the left and right rear wheels 202RL and 202RR and outputting the detection result to the CPU 71.
  • RL and RR sidewall collapse allowance sensors 85RL and 85RR that detect the collapse allowance of the tire sidewall, respectively, and an output circuit (not shown) that processes the detection results of the respective sidewall collapse allowance sensors 85RL and 85RR and outputs them to the CPU 71.
  • the sidewall collapse allowance sensor device 285 in the second embodiment is a part of the sidewall collapse allowance sensor device 85 in the first embodiment (the FL and FR sidewall collapse allowance corresponding to the left and right front wheels 202FL and 202FR).
  • the sensors 85FL and 85FR are omitted.
  • the CPU 71 first determines whether or not the expansion / contraction amount of each suspension device 4 is equal to or less than a predetermined expansion / contraction amount regarding the uneven wear load determination processing in the second embodiment (S221).
  • the suspension stroke sensor device 283 detects the extension / contraction amount of each suspension device 4, and compares the detected extension / contraction amount of each suspension device 4 with a threshold value stored in advance in the ROM 72. Thus, it is determined whether the current expansion / contraction amount of each suspension device 4 is equal to or less than a predetermined expansion / contraction amount.
  • the suspension device 4 corresponding to the large expansion / contraction amount is handled. Since the contact load of the wheels 202 (the left and right rear wheels 202RL, 202RR) is larger than a predetermined contact load, and it is determined that the contact load of the wheels 202 is an uneven wear load, the uneven wear load flag 73d is turned on ( S33), the uneven wear load determination process is terminated.
  • the ground loads of the left and right rear wheels 202RL and 202RR are equal to or smaller than the predetermined ground load. It is determined whether or not (S226).
  • the ground loads of the left and right rear wheels 202RL, 202RR detected by the ground load sensor device 284 are compared with the threshold values stored in advance in the ROM 72, and the current left and right rear wheels 202RL, 202RL, It is determined whether the contact load of 202RR is equal to or less than a predetermined contact load.
  • the ground load of at least one of the left and right rear wheels 202RL and 202RR is larger than the predetermined ground load (S226: No)
  • the ground load of the wheel 202 is unevenly worn. Since it is determined that the load is a load, the uneven wear load flag 73d is turned on (S33), and the uneven wear load determination process is terminated.
  • the operation amount (steer angle) of the steering 63 is equal to or less than the predetermined operation amount. It is determined whether or not (S30). As a result, when it is determined that the operation amount of the steering 63 is larger than the predetermined operation amount (S30: No), the ground load of either the left rear wheel 202RL or the right rear wheel 202RR is the predetermined ground load. Since it is estimated that the contact load of the wheel 202 is an uneven wear load, the uneven wear load flag 73d is turned on (S33), and the uneven wear load determination process is terminated.
  • the operation speed (steer angular velocity) of the steering 63 is equal to or less than the predetermined speed. Whether or not (S31).
  • the ground load of either the left rear wheel 202RL or the right rear wheel 202RR is greater than the predetermined ground load. Since it is estimated that the wheel 202 is large and the ground load of the wheel 202 is determined to be an uneven wear load, the uneven wear load flag 73d is turned on (S33), and the uneven wear load determination process is terminated.
  • the operational acceleration (steer angular acceleration) of the steering wheel 63 is equal to or lower than the predetermined acceleration. Whether or not (S32).
  • the ground load of either the left rear wheel 202RL or the right rear wheel 202RR is greater than the predetermined ground load. Since it is estimated that the wheel 202 is large and the ground load of the wheel 202 is determined to be an uneven wear load, the uneven wear load flag 73d is turned on (S33), and the uneven wear load determination process is terminated.
  • FIG. 11 is a flowchart showing camber control processing in the second embodiment.
  • This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 200 is turned on, and the camber angles of the left and right rear wheels 202RL and 202RR are adjusted. It is processing to do.
  • symbol is attached
  • the CPU 71 first determines whether or not the state quantity flag 73b is on (S41), and if it is determined that the state quantity flag 73b is on ( S41: Yes), it is determined whether or not the camber flag 73a is on (S42). As a result, when it is determined that the camber flag 73a is off (S42: No), the RL and RR motors 44RL and 44RR are operated to set the camber angles of the left and right rear wheels 202RL and 202RR to the first camber angle. To the left and right rear wheels 202RL, 202RR (S243), the camber flag 73a is turned on (S44), and the camber control process is terminated.
  • the state quantity of the vehicle 201 satisfies a predetermined condition, that is, at least one of the operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is equal to or greater than the predetermined operation amount. If it is determined that the left and right rear wheels 202RL and 202RR may slip when the vehicle 201 accelerates, brakes or turns with the camber angles of the left and right rear wheels 202RL and 202RR being the second camber angle, By giving a negative camber to the rear wheels 202RL and 202RR, the running stability of the vehicle 201 can be ensured using the canvas last generated on the left and right rear wheels 202RL and 202RR.
  • the contact load information acquisition means described in claim 1 includes the processes of S221, S22 to 25, S226, S227, S28 and S30 to S32.
  • the process of detecting the expansion / contraction amount of each suspension device 4 by the suspension stroke sensor device 283 in the process of S221 is the ground load according to claim 1 in the flowchart (camber control process) shown in FIG.
  • the determination means the process of S49, the process of S250 as the first camber angle adjustment means, the process of S41 as the state quantity determination means according to claim 2, and the process of S243 as the second camber angle adjustment means.
  • the processing of S45 is performed, and as the third camber angle adjusting means, S24 is performed. Processing is subject to any applicable each.
  • the process of S45 corresponds to the traveling stable state determination processing means according to claim 8
  • the process of S247 corresponds to the camber provision processing means.
  • the traveling state of the vehicles 1 and 201 is a predetermined straight traveling state (stable), and the ground load of the wheels 2 and 202 is the predetermined grounding.
  • the camber angle of the wheels 2, 202 is adjusted to the second camber angle when it is determined that the load is greater than or equal to the load has been described.
  • the traveling state of the vehicle 201 is a predetermined straight traveling state (stable)
  • the ground load of the wheel 202 is determined to be greater than or equal to the predetermined ground load.
  • the RAM 373 is a memory for storing various data in a rewritable manner when the control program is executed. As shown in FIG. 12, the RAM 373 includes a camber flag 73a, a state quantity flag 73b, a running state flag 73c, and an uneven wear load flag 73d. In addition, a first timekeeping flag 373e and a second timekeeping flag 373f are provided.
  • FIG. 13 is a flowchart showing a running state determination process.
  • This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 300 is turned on, and the traveling state of the vehicle 201 is a predetermined straight traveling state. This is a process for determining whether or not.
  • CPU71 first acquires the traveling speed of the vehicle 201 (S11) regarding the traveling state determination process, and determines whether or not the acquired traveling speed of the vehicle 201 is equal to or higher than a predetermined speed (S12). As a result, when it is determined that the traveling speed of the vehicle 201 is equal to or higher than the predetermined speed (S12: Yes), the operation amount (steer angle) of the steering 63 is acquired (S13). It is determined whether the operation amount is equal to or less than a predetermined operation amount (S14). As a result, when it is determined that the operation amount of the steering 63 is equal to or less than the predetermined operation amount (S14: Yes), it is determined whether or not the first timekeeping flag 373e is on (S61).
  • this travel state determination process it is determined that the travel speed of the vehicle 201 is equal to or higher than the predetermined speed, the operation amount of the steering 63 is equal to or less than the predetermined operation amount, and this state continues for a predetermined time.
  • the running state flag 73c is turned on.
  • the traveling speed of the vehicle 201 is smaller than the predetermined speed as a result of the process of S12 (S12: No)
  • the operation amount of the steering 63 is larger than the predetermined operation amount as a result of the process of S14. If it is determined (S14: No), the timing by the first timing device 385a is terminated (S68), the first timing flag 373e is turned off (S69), and the running state flag 73c is turned off (S70). ), The running state determination process is terminated.
  • FIGS. 14 and 15 are flowcharts showing the uneven wear load determination processing.
  • This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 300 is turned on, and a negative camber is applied to the left and right rear wheels 202RL and 202RR.
  • the CPU 71 for example, at intervals of 0.2 seconds
  • a negative camber is applied to the left and right rear wheels 202RL and 202RR.
  • the ground contact load of the rear wheels 202RL and 202RR is an uneven wear load that may cause uneven wear on the tire (tread).
  • the portion shown in FIG. 14 in the uneven wear load determination process is the same as the uneven wear load determination process in the second embodiment, and thus the same reference numerals are given and description thereof is omitted.
  • FIG. 16 is a flowchart showing the camber control process.
  • This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 300 is turned on, and adjusts the camber angles of the left and right rear wheels 2RL and 2RR. It is processing to do.
  • the CPU 71 first determines whether or not the state quantity flag 73b is on (S41). If it is determined that the state quantity flag 73b is on (S41: Yes), It is determined whether or not the flag 73a is on (S42). As a result, when it is determined that the camber flag 73a is off (S42: No), the RL and RR motors 44RL and 44RR are operated to adjust the camber angles of the rear wheels 202RL and 202RR to the first camber angle.
  • a negative camber is applied to the rear wheels 202RL and 202RR (S247), the camber flag 73a is turned on (S48), the time measurement by the third time measuring device 385c is started (S82), and the process of S49 is executed.
  • the traveling state of the vehicle 201 is a predetermined straight traveling state
  • the lateral rigidity of the rear wheels 202RL and 202RR is utilized, and the straight traveling stability of the vehicle 201 is achieved. Can be secured.
  • the state quantity of the vehicle 201 does not satisfy the predetermined condition and the traveling state of the vehicle 201 is not the predetermined straight traveling state, that is, when it is not necessary to prioritize the traveling stability of the vehicle 201.
  • the influence of the canvas last can be avoided and the fuel consumption can be reduced.
  • the camber angle of the wheel 202 is set to the first angle.
  • the camber angle can be maintained.
  • the camber angle of the wheel 202 is adjusted to the first camber angle
  • the camber angle of the wheel 202 is adjusted to the second camber angle (S84).
  • the predetermined time has not elapsed (the predetermined state in which the camber angle of the wheel 202 is adjusted to the first camber angle is continued in the vehicle 201 based on the information regarding the ground load).
  • the camber angle of the wheel 202 is maintained at the first camber angle.
  • the camber angle adjusting device 244 is actuated every time the ground load of the wheel 202 is determined to be equal to or greater than the predetermined ground load and the camber angle of the wheel 202 is adjusted to the second camber angle. Frequent switching of corners can be suppressed.
  • the first time measuring device 385a When it is determined that a predetermined time has elapsed due to timekeeping (S64: Yes), the running state flag 73c is turned on (S65). Therefore, the process of S247 of the camber control process (see FIG. 16) is executed, and it is possible to avoid the camber angle adjusting device 244 from operating and frequently adjusting the camber angle of the wheel 202 to the first camber angle. Frequent switching of corners can be suppressed.
  • the waiting means described in claim 6 corresponds to the process of S70 executed as a result of the process of S64.
  • the continuation state determination means according to claim 5 corresponds to the process of S74.
  • the continuation state determination means described in claim 5 corresponds to the processing of S83
  • the maintenance means corresponds to the processing of skipping the processing of S84 as a result of the processing of S83.
  • the RAM 473 is a memory for storing various data in a rewritable manner when the control program is executed. As shown in FIG. 17, the RAM 473 includes a camber flag 73a, a state quantity flag 73b, a running state flag 73c, and an uneven wear load flag 73d. In addition, a ring buffer memory 473e is provided.
  • the ring buffer memory 473e is a ring buffer that stores the history of the ground load of the rear wheels 2RL and 2RR, and detection results (ground loads) by the RL ground load sensor 84RL and the RR ground load sensor 84RR of the ground load sensor device 284 are predetermined.
  • the ground load is sequentially written in association with the sampling time.
  • the writing to the ring buffer memory 473e is performed in order from the head address of the ring buffer. When the writing reaches the last address of the ring buffer, the writing returns to the head address of the ring buffer and the writing is continued from the head address.
  • the CPU 71 reads the ground load within a predetermined time from the ring buffer memory 473e, compares it with a predetermined threshold (ground load) stored in the ROM 72, and counts the number of samplings of the ground load exceeding the threshold. When the number of samplings of the ground load exceeding the threshold is small, it can be estimated that the ground loads of the rear wheels 2RL and 2RR are suddenly generated.
  • a predetermined threshold ground load
  • the ground contact load of the rear wheels 202RL and 202RR continues to be large, and the vehicle is based on the information regarding the contact load. Since it is determined that the predetermined state continues in 201 and there is a possibility of causing uneven wear, the uneven wear load flag 73d is turned on (S93), and this uneven wear load determination process is terminated.
  • the camber angle of the wheel 202 can be maintained at the first camber angle when the ground load of the wheel 202 is suddenly applied due to discontinuous unevenness due to road joints, partial pavement, and the like.
  • the continuation state determination means according to claim 6 corresponds to the process of S92.
  • the uneven wear load determination process in the uneven wear load determination process (see FIG. 18), it is determined whether or not the uneven wear load flag 73d is turned on in consideration of whether the state value within a predetermined period satisfies a predetermined condition.
  • a case will be described in which it is determined whether or not the state value indicating the traveling state satisfies a predetermined condition.
  • the uneven wear load determination process in the fifth embodiment will be described as being executed in the vehicle control device 200 mounted on the vehicle 201 in the second embodiment.
  • symbol is attached
  • FIG. 19 is a flowchart showing uneven wear load determination processing in the fifth embodiment.
  • This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power source of the vehicle control device 200 is turned on. Note that the state quantity determination process, the traveling state determination process, and the camber control process can be performed in the same manner as in the first embodiment, and thus description thereof is omitted.
  • the CPU 71 calculates the time differential value (the magnitude of the change in the ground load) obtained by time differentiation of the ground load detected by the ground load sensor device 284, and the ROM 72. Is compared with a predetermined threshold stored in (S95).
  • the uneven wear load flag is turned on (S93). Therefore, in the camber control process, it can be avoided that the camber angle adjusting device 244 is operated and the camber angle of the wheel 202 is frequently adjusted to the second camber angle, and frequent switching of the camber angle can be suppressed.
  • the vehicle control device 500 described in the sixth embodiment will be described as being mounted instead of the vehicle control device 100 mounted on the vehicle 1 in the first embodiment.
  • symbol is attached
  • the RAM 573 is a memory for storing various data in a rewritable manner when the control program is executed. As shown in FIG. 20, the front wheel camber flag 573a, the rear wheel camber flag 573b, the state amount flag 73b, and the running state flag 73c. An uneven wear load flag 73d is provided.
  • the front wheel camber flag 573a is a flag indicating whether or not the camber angles of the front wheels 2FL and 2FR are adjusted to the first camber angle, and the CPU 71 determines that the front wheel 2FL when the front wheel camber flag 573a is on. , 2FR camber angle is determined to be adjusted to the first camber angle.
  • the rear wheel camber flag 573b is a flag indicating whether or not the camber angles of the rear wheels 2RL and 2RR are adjusted to the first camber angle, and the CPU 71 is in a case where the rear wheel camber flag 573b is on. In addition, it is determined that the camber angles of the rear wheels 2RL and 2RR are adjusted to the first camber angle.
  • the CPU 71 determines whether or not the expansion / contraction amount of at least one suspension device 4 among the suspension devices 4 is equal to or less than a predetermined expansion / contraction amount instead of the processing of S221 shown in FIG. To do. Moreover, it replaces with the process of S226 shown in FIG. 19, and it is judged whether the ground load of each wheel 2 (front wheel 2FL, 2FR and rear wheel 2RL, 2RR) is below a predetermined ground load. Further, instead of the processing of S227 shown in FIG. 19, it is determined whether or not the crushed allowance of the tire sidewall of each wheel 2 (front wheels 2FL, 2FR and rear wheels 2RL, 2RR) is equal to or less than a predetermined crushed allowance.
  • the ground load of any of the front wheels 2FL, 2FR and the rear wheels 2RL, 2RR is larger than a predetermined ground load, and it is determined that the ground load of the wheel 2 is a partial wear load.
  • the CPU 71 stores in the ROM 72 the time differential value (the magnitude of the change in the ground load) obtained by time differentiation of the ground load detected by the ground load sensor device 84.
  • a predetermined threshold value is compared (S95).
  • S95 when it is determined that the magnitude of the change in the ground load is equal to or less than the threshold value (S95: Yes), the change in the ground load is small but the ground load gradually increases, and the vehicle 1 is in a predetermined state. Since it is determined that the load is continued, the uneven wear load flag 73d is turned on (S93), and the uneven wear load determination process is terminated.
  • the camber angles of the front wheels 2FL and 2FR are the second camber angles (first The camber angle having a smaller absolute value than the camber angle) is adjusted, and the negative camber is no longer applied to the front wheels 2FL and 2FR. Thereby, the partial wear of the tires of the front wheels 2FL and 2FR can be suppressed.
  • the vehicle 1 since the vehicle 1 is equipped with the wheel drive device 3 having a large mass on the front wheels 2FL, 2FR side, the ground load of the front wheels 2FL, 2FR tends to be larger than the ground load of the rear wheels 2RL, 2RR. Further, when a braking force is applied, the load on the vehicle 1 moves toward the front wheels 2FL and 2FR, so the ground load on the front wheels 2FL and 2FR tends to be larger than the ground load on the rear wheels 2RL and 2RR. Further, since the front wheels 2FL and 2FR are operated by operating the steering 63 when the vehicle 1 turns, the front wheels 2FL and 2FR tend to be easily worn away.
  • the partial wear of the tires of the front wheels 2FL, 2FR can be suppressed by canceling the application of the negative camber to the front wheels 2FL, 2FR. .
  • the life of the tire can be improved.
  • by suppressing uneven wear of the tire it is possible to prevent the ground contact surface of the tire from becoming uneven and to ensure the running stability of the vehicle 1. Furthermore, since uneven wear of the tire can be suppressed, fuel saving can be achieved correspondingly.
  • the negative to the rear wheels 2RL, 2RR is negative.
  • the camber grant is maintained.
  • the camber angle of the wheel 2 is adjusted to the first camber angle, and the negative camber is given to the wheel 2. Therefore, the running stability of the vehicle 1 can be ensured using the canvas last generated on the wheels 2.
  • the camber angles of the front wheels 2FL and 2FR are Adjustment to the second camber angle (a camber angle whose absolute value is smaller than the first camber angle) and release of the negative camber to the front wheels 2FL and 2FR are canceled, so that uneven wear of the tires of the front wheels 2FL and 2FR is suppressed. be able to. Therefore, it is possible to achieve both of ensuring traveling stability and suppressing uneven wear of the tire.
  • the camber angle of the wheel 2 is adjusted to the first camber angle, and the negative camber is applied to the wheel 2. Since it is given, it is possible to ensure the straight running stability of the vehicle 1 by utilizing the lateral rigidity of the wheels 2.
  • the camber angles of the front wheels 2FL and 2FR are The camber angle is adjusted to 2 camber angles (a camber angle having an absolute value smaller than the first camber angle), and the application of the negative camber to the front wheels 2FL and 2FR is released. Thereby, the partial wear of the tires of the front wheels 2FL and 2FR can be suppressed. Therefore, it is possible to achieve both of ensuring straight running stability and suppressing uneven wear of the tire.
  • the continuation state determination means according to claim 5 is the processing of S95, and in the flowchart shown in FIG. The process of S115 as the load determination means, the process of S116 as the first camber angle adjustment means, the process of S101 as the state quantity determination means according to claim 2, and the processes of S103 and S106 as the second camber angle adjustment means.
  • the processing of S108 corresponds to the traveling state determination means described in claim 3
  • the processing of S110 and S113 corresponds to the third camber angle adjustment means.
  • the vehicle 301 has a structure of a rear wheel drive system by an engine 303 as a drive source, and the wheels 302RL and 302RR function as drive wheels.
  • the engine 303 and the wheels 302RL and 302RR include an automatic transmission 304 as a transmission, a propeller shaft 305 as a first transmission shaft, a differential device 306, a drive shaft 307 as a second transmission shaft, and the like. Connected through. The rotation generated by driving the engine 303 is shifted at a predetermined gear ratio in the automatic transmission 304 and transmitted to the wheels 302RL and 302RR.
  • the loss tangent represents the degree of energy absorption when the tread is deformed, and can be represented by the ratio of the loss shear modulus to the storage shear modulus. The smaller the loss tangent, the less energy is absorbed by the tread, so the rolling resistance generated in the tire 302a is reduced and the wear generated in the tire 302a is reduced. On the other hand, the greater the loss tangent, the greater the energy absorption by the tread, so the rolling resistance generated in the tire 302a increases and the wear generated in the tire 302a increases. In the vehicle 301, since the rolling resistance of the tire 302a is reduced, fuel efficiency can be improved.
  • the actuator 308 includes a motor 44RL serving as a camber control driving unit fixed to a knuckle (not shown) serving as a base member, and a movable plate 47 serving as a movable member disposed so as to be swingable with respect to the knuckle. Is provided. Further, the actuator 308 is arranged to be rotatable with respect to the knuckle and the output shaft 44a of the RL motor 44RL to which the worm gear as the first conversion element is attached, and the second conversion is engaged with the worm gear. It has a worm wheel 45 as an element, and an arm 46 as a third conversion element for connecting the worm wheel 45 and the movable plate 47 and as a connection element.
  • the arm 46 is connected to the worm wheel 45 through the first connecting portion at a position eccentric from the rotation axis of the worm wheel 45 at one end, and is connected to the second connection at the upper end of the movable plate 47 at the other end. It is connected to the movable plate 47 through the section.
  • the movable plate 47 constitutes a fourth conversion element.
  • FIG. 24 is a control block diagram of the vehicle 301.
  • a control unit 601 is a first control device that constitutes a computer, and is connected to a ROM 602 as a first storage unit and a RAM 603 as a second storage unit.
  • the automatic transmission control unit 91 is a transmission control unit as a second control device.
  • the vehicle speed sensor 92 is a vehicle speed detection unit that detects the vehicle speed
  • the camber sensor 93 is a camber detection unit that detects camber applied to the wheels 302RL and 302RR.
  • the steering sensor 63b is a steering operation amount detection unit as a steering amount detection unit that detects a steering angle as a steering amount representing an operation amount of the steering wheel 63 (see FIG. 22).
  • the yaw rate sensor 81 a is a yaw rate detection unit that detects the yaw rate of the vehicle 301.
  • the lateral G sensor 80b is a first acceleration detection unit that detects lateral G
  • the longitudinal G sensor 80a is a second acceleration detection unit that detects longitudinal G.
  • the accelerator sensor 61b is an accelerator operation amount detection unit that detects a depression amount (accelerator opening) that represents the operation amount of the accelerator pedal 61.
  • the brake sensor 62b is a brake operation amount detection unit that detects a depression amount (brake stroke) representing an operation amount of the brake pedal 62.
  • the accelerator sensor 61b, the brake sensor 62b, and the steering sensor 63b correspond to parts of the accelerator pedal sensor device 61a, the brake pedal sensor device 62a, and the steering sensor device 63a (see FIG. 3) of the first embodiment, respectively.
  • the suspension stroke sensor 83a is a suspension detector that detects a stroke of a suspension device (not shown) of each of the wheels 302RL and 302RR, that is, a suspension stroke.
  • the load sensor 84a is a load detection unit that detects a load applied to each of the wheels 302RL and 302RR.
  • the tire collapse allowance sensor 85a is a tire collapse allowance detecting unit that detects a collapse allowance that is a deformation amount of the tire 302a, that is, a tire collapse allowance.
  • the camber control device is configured by the body B, the actuators 308 and 309, the control unit 601, the wheels 302RL and 302RR, and the like.
  • the suspension stroke sensor 83a, the load sensor 84a, and the tire collapse allowance sensor 85a are part of the suspension stroke sensor device 83, the ground load sensor device 84, and the sidewall collapse allowance sensor device 85 (see FIG. 3) of the first embodiment. Each is applicable.
  • the steering sensor 63b can detect the steering angle, the steering angular velocity, and the like of the wheels 302FL and 302FR as the steering amount instead of the steering angle.
  • the accelerator sensor 61b can detect a depression speed, a depression acceleration, and the like representing an operation amount of the accelerator pedal 61, instead of the depression amount of the accelerator pedal 61.
  • the brake sensor 62b can detect a stepping speed, a stepping acceleration, and the like representing the amount of operation of the brake pedal 62 instead of the amount of depression of the brake pedal 62.
  • the suspension stroke sensor 83a is constituted by a height sensor, a magnetic sensor, etc.
  • the load sensor 84a is constituted by a load cell (strain sensor) provided in the suspension device
  • the tire collapse allowance sensor 85a is arranged on the tire 302a. It is comprised by the installed load cell (distortion sensor).
  • the control unit 601 performs overall control of the vehicle 301, and the automatic transmission control unit 91 performs overall control of the automatic transmission 304.
  • the automatic transmission 304 selectively connects between gear elements of a transmission mechanism having a planetary gear as a predetermined number of differential rotation devices, a sun gear, a ring gear, and a carrier constituting the planetary gear, and a predetermined gear element.
  • Friction engagement elements including clutches and brakes for fixing to an automatic transmission case as a housing, hydraulic servos for engaging and disengaging the friction engagement elements, and engagement hydraulic pressures to the hydraulic servos Provided with valves for supply.
  • a shift processing means (not shown) of the automatic transmission control unit 91 performs a shift process, reads the depression amount of the accelerator pedal 61 (see FIG. 22), the vehicle speed, etc., and sets a plurality of shift stages based on the depression amount, the vehicle speed, etc.
  • a shift output of a predetermined shift stage is generated, an engagement hydraulic pressure is supplied to a predetermined hydraulic servo based on the shift output, and the friction engagement element is engaged / disengaged.
  • rotation of a gear ratio corresponding to the gear stage is output from a predetermined gear element and transmitted to the propeller shaft 305.
  • the gear ratio represents the ratio of the rotational speed input to the automatic transmission 304 to the rotational speed output from the automatic transmission 304.
  • the gear ratio is 1 or more, the automatic transmission 304 performs underdrive gear shifting suitable for low-speed driving.
  • the gear gear ratio is smaller than 1, the automatic transmission 304 performs overdrive gear suitable for high-speed driving. Shifting is performed.
  • a low rolling resistance tire is used as the tire 302a.
  • the rigidity of the tire 302a is low, so that the running stability and the turning stability are reduced accordingly. Therefore, in the present embodiment, it is determined whether or not a predetermined camber provision condition is satisfied so that running stability and turning stability can be increased even if the tire 302a is a low rolling resistance tire.
  • a predetermined camber provision condition is satisfied, the actuators 308 and 309 are operated, and a predetermined negative camber ⁇ is imparted to the wheels 302RL and 302RR.
  • FIG. 25 is a first main flowchart showing the operation of the control unit 601 in the seventh embodiment of the present invention
  • FIG. 26 is a second main flowchart showing the operation of the control unit 601 in the seventh embodiment.
  • FIG. 27 is a diagram showing a subroutine for determining whether or not a steering stability camber is necessary in the seventh embodiment
  • FIG. 28 is a diagram showing a subroutine for determining whether or not a straight-line stable camber is necessary in the seventh embodiment.
  • FIG. 29 is a diagram showing a subroutine of ground load determination processing in the seventh embodiment.
  • a determination index acquisition processing unit (not shown) of the control unit 601 performs a determination index acquisition process, and is a determination index necessary for assigning camber ⁇ to each wheel 302RL, 302RR and releasing the camber ⁇ .
  • the vehicle state representing the state of the vehicle 301 and the operation state representing the state of operation of each operation unit by the driver who is the operator are acquired as determination indices (S301, S302).
  • the determination index acquisition processing means outputs the sensor output of each sensor such as the yaw rate sensor 81a, the lateral G sensor 80b, the front / rear G sensor 80a, the camber sensor 93, the suspension stroke sensor 83a, the load sensor 84a, the tire collapse allowance sensor 85a.
  • the yaw rate, the lateral G, the front and rear G, the camber ⁇ , the suspension stroke, the load, the tire collapse allowance, and the like are acquired.
  • the determination index acquisition processing unit calculates a roll angle based on the suspension stroke, and acquires the roll angle as a vehicle state.
  • a roll angle sensor can be obtained by arranging a roll angle sensor as the roll angle detection unit and reading the sensor output of the roll angle sensor.
  • the gear ratio acquisition processing means of the determination index acquisition processing means performs a gear ratio acquisition process, reads a shift command sent from the automatic transmission control unit 91 to the automatic transmission 304, and responds to the shift command from the ROM 602. Then, the recorded gear ratio is read and acquired as the vehicle state.
  • the determination index acquisition processing means reads the sensor output of each sensor such as the steering sensor 63b, the accelerator sensor 61b, and the brake sensor 62b, and sets the steering angle, the depression amount of the accelerator pedal 61, and the depression amount of the brake pedal 62 as operation states. Etc. Further, the determination index acquisition processing unit acquires, as an operation state, a steering angular velocity that represents the rate of change of the steering angle and a steering angular acceleration that represents the rate of change of the steering angular velocity based on the steering angle.
  • a steering stability camber necessity determination processing unit as a first camber necessity determination processing unit (not shown) of the control unit 601 performs a steering stability camber necessity determination process as a first camber necessity determination process.
  • the steering stability camber necessity determination processing means reads the steering angle and determines whether or not the steering angle is equal to or greater than a threshold value ⁇ th (S317, see FIG. 27). As a result, when the steering angle is equal to or larger than the threshold value ⁇ th (S317: Yes), it is determined that the camber provision condition for turning is satisfied (S318).
  • the camber determination processing unit (not shown) of the control unit 601 performs camber determination processing, reads the camber ⁇ , and the camber ⁇ is ⁇ 5 [°] ⁇ ⁇ ⁇ . Whether or not camber ⁇ is applied to each of the wheels 302RL and 302RR is determined based on whether or not ⁇ [°] (S305).
  • the value ⁇ is a camber in a steady state set in advance for each vehicle.
  • the control unit 601 terminates the process, and when the camber ⁇ is not given (S305: No), the camber (not shown) of the control unit 601 is displayed.
  • the control processing means performs camber control processing. That is, the camber imparting processing means of the camber control processing means performs the camber imparting process and operates the actuators 308 and 309 to apply the camber ⁇ ( ⁇ 5 [°] ⁇ ⁇ ⁇ [°]) to the wheels 302RL and 302RR. (S306).
  • the control unit 601 as a second camber necessity determination processing means (not shown).
  • the straight travel stability camber necessity determination processing means as the travel stable state determination processing means performs a straight travel stability camber necessity determination process as the second camber necessity determination process and as the travel stable state determination process. This is performed (S307).
  • the vehicle 301 is traveling straight ahead, it is determined whether the traveling condition of the vehicle 301 is stable and whether the first and second traveling stability conditions are satisfied, and whether the camber provision condition for straight traveling is satisfied. (S308).
  • the straight-running stable camber necessity determination processing means reads the vehicle speed and the steering angle. Then, a vehicle speed calculation value (average vehicle speed in this embodiment) is calculated based on the vehicle speed for a predetermined time immediately before reading the vehicle speed (in the present embodiment, for the past X [seconds]), and the steering angle A steering amount calculation value (an average steering angle in the present embodiment) is calculated based on a steering angle for a predetermined time (in the present embodiment, during the past Y [seconds]) immediately before reading.
  • the straight travel stability camber necessity determination processing means determines whether or not the average vehicle speed during the past X [seconds] is equal to or greater than the threshold value vth1 and the average steering angle during the past Y [seconds] is smaller than the threshold value ⁇ th1 (S319). 28), when the average vehicle speed during the past X [seconds] is equal to or greater than the threshold value vth1 and the average steering angle during the past Y [seconds] is smaller than the threshold value ⁇ th1 (S319: Yes), It is determined that the traveling state is stable and the camber provision condition for straight traveling is satisfied (S320).
  • the threshold value ⁇ th1 is set smaller than the threshold value ⁇ th.
  • the camber determination processing unit reads the camber ⁇ and determines whether the camber ⁇ is applied to each of the wheels 302RL and 302RR (S309). When the camber ⁇ is not applied to each of the wheels 302RL and 302RR (S309: No), the camber applying processing unit operates the actuators 308 and 309 to apply the camber ⁇ to each of the wheels 302RL and 302RR (S310).
  • a ground load determination processing unit as a camber release determination processing unit (not shown) of the control unit 601 performs a ground load determination process as a camber release determination process, and determines whether a camber release condition is satisfied (S311 and S312). ).
  • the contact load determination processing means includes, as a contact load index, tire collapse allowance, suspension stroke, longitudinal G, yaw rate, roll angle, load, brake stroke, accelerator opening, steering angle, steering angular velocity, steering angular acceleration, and the like. It is read and it is determined whether or not each ground load index is equal to or greater than the respective threshold (S321 to S331, see FIG. 29).
  • the contact load causes uneven wear on the tire 302a. It is determined that the camber release condition is satisfied (S332).
  • the camber release processing unit of the camber control processing unit When the camber release condition is satisfied in the ground load determination process, the camber release processing unit of the camber control processing unit performs the camber release process and operates the actuators 308 and 309 to apply the camber ⁇ to each wheel 302RL and 302RR. Is released (S313).
  • the camber determination processing means ⁇ is read, and it is determined whether or not camber ⁇ is currently assigned to each of the wheels 302RL and 302RR (S314).
  • the camber release processing means starts counting by a timer (not shown) as a timing processing unit built in the control unit 601,
  • the actuators 308 and 309 are operated to release the camber ⁇ from the wheels 302RL and 302RR (S316).
  • each wheel 302RL when the average vehicle speed during the past X [seconds] is equal to or greater than the threshold value vth1 and the average steering angle during the past Y [seconds] is smaller than the threshold value ⁇ th1.
  • a camber ⁇ is given to 302RR. Accordingly, camber ⁇ is given to each of the wheels 302RL and 302RR only while the vehicle 301 is traveling at a high speed or a medium speed on a road such as an expressway or a main road.
  • the camber ⁇ is not given when the vehicle 301 is traveling at a low speed on a road other than a highway, a main road, or the like, or when a traffic jam occurs on a road such as a highway or a main road.
  • the camber cancellation condition is satisfied while the vehicle 301 is traveling with the camber ⁇ applied to the wheels 302RL and 302RR, the camber ⁇ application to the wheels 302RL and 302RR is cancelled.
  • the frequency at which the camber ⁇ is applied can be reduced, and the time during which the camber ⁇ is applied can be shortened, so that occurrence of uneven wear in the tire 302a can be sufficiently suppressed. . As a result, the life of the tire 302a can be extended.
  • the camber ⁇ is not continuously applied to the wheels 302RL and 302RR while the vehicle 301 is running, the rolling resistance of the tire 302a can be reduced accordingly. Therefore, fuel consumption can be improved.
  • the wheels 302RL and 302RR are Although camber (theta) is provided, it is not restricted to this.
  • the vehicle position of the vehicle is detected by a GPS sensor as a current position detection unit, and the vehicle position is on a road such as an expressway or a main road, and the past X [seconds]
  • the camber ⁇ can be given to each of the wheels 302RL and 302RR when the average vehicle speed between them is equal to or higher than the threshold value vth1 and the average steering angle during the past Y [seconds] is smaller than the threshold value ⁇ th1.
  • the vehicle position determination processing means of the control unit performs the vehicle position determination process, and based on the map data recorded in the information recording unit, the vehicle position is such as an expressway, a main road, etc. It is determined whether or not the vehicle is on the road, and the determination result is sent to the control unit 601.
  • the vehicle position is on a road such as an expressway or a main road
  • the average vehicle speed during the past X [seconds] is equal to or greater than the threshold value vth1, and the past Y [seconds].
  • the average steering angle is smaller than the threshold value ⁇ th1, it is determined that the camber provision condition is satisfied.
  • the straight travel stability camber necessity determination processing means reads the traffic information acquired by the navigation device from the traffic information center or the like, and determines whether or not there is a traffic jam on the road based on the traffic information or the like.
  • the vehicle position is on a road such as an expressway or a main road, there is no traffic jam on the road, the average vehicle speed during the past X [seconds] is equal to or higher than the threshold value vth1, and the past Y [seconds]
  • the average steering angle is smaller than the threshold value ⁇ th1, it is determined that the camber provision condition is satisfied.
  • the steering stability camber necessity determination processing means determines whether or not the steering angle is equal to or greater than a threshold value ⁇ th, and when the steering angle is equal to or greater than the threshold value ⁇ th, the camber provision condition is satisfied. Judgment is not limited to this. For example, calculating an average steering angle as a steering amount calculation value, determining whether the average steering angle is equal to or greater than a threshold, and determining that the camber provision condition is satisfied when the average steering angle is equal to or greater than the threshold. Can do.
  • the straight traveling stable camber necessity determination processing means is configured such that the average vehicle speed during the past X [seconds] is equal to or greater than the threshold value vth1, and the average steering angle during the past Y [seconds] is greater than the threshold value ⁇ th1. If the average vehicle speed during the past X [seconds] is equal to or greater than the threshold value vth1 and the average steering angle during the past Y [seconds] is smaller than the threshold value ⁇ th1, the camber provision condition is satisfied. Judgment is not limited to this.
  • the average vehicle speed during the past X [seconds] is equal to or greater than the threshold value vth1 and the steering angle has not been equal to or greater than the threshold during the past Y [seconds]. Is greater than or equal to the threshold vth1 and the steering angle does not exceed the threshold during the past Y [seconds], it can be determined that the camber provision condition is satisfied.
  • the contact load information acquisition unit according to claim 1 reads the contact load index in the process of S311 and the state quantity acquisition unit according to claim 2 acquires the steering angle in the process of S303.
  • the processing of S304 is performed as the state quantity determination means
  • the processing of S306 is performed as the second camber angle adjusting means
  • the vehicle speed and the steering angle are read in the processing of S307 as the traveling state acquisition means according to claim 3.
  • the processing corresponds to the processing of S308 as the traveling state determination means
  • the processing of S310 as the third camber angle adjustment means.
  • the processing at S312 corresponds to the contact load determination means according to claim 1
  • the processing at S313 corresponds to the first camber angle adjustment means.
  • the processing in S308 corresponds to the traveling stable state determination processing means described in claim 8
  • the processing in S310 corresponds to the camber provision processing means.
  • the average vehicle speed during the past X [seconds] is equal to or higher than the threshold value vth1, and the average during the past Y [seconds].
  • the camber provision condition is satisfied (S319: Yes)
  • the camber provision condition is not satisfied. It is determined (S319: No).
  • the average vehicle speed during the past X [seconds] is Even if it is lower than the threshold value vth1, it is desirable to give camber ⁇ to each of the wheels 302RL and 302RR.
  • FIG. 30 is a diagram showing a subroutine of the straight-ahead stable camber necessity determination process in the eighth embodiment of the present invention.
  • the straight traveling stable camber necessity determination processing means as the second camber necessity determination processing means and the traveling state determination means reads the vehicle speed and the steering angle. Then, a vehicle speed calculation value (average vehicle speed in this embodiment) is calculated based on the vehicle speed for a predetermined time immediately before reading the vehicle speed (in the present embodiment, for the past X [seconds]), and the steering angle is calculated. A steering amount calculation value (an average steering angle in the present embodiment) is calculated based on a steering angle for a predetermined time immediately before reading (in the present embodiment during the past Y [seconds]).
  • the straight travel stability camber necessity determination processing means determines whether the average vehicle speed during the past X [seconds] is equal to or higher than the threshold value vth1 and the average steering angle during the past Y [seconds] is smaller than the threshold value ⁇ th1 (S333). ) When the average vehicle speed during the past X [seconds] is equal to or higher than the threshold value vth1 and the average steering angle during the past Y [seconds] is smaller than the threshold value ⁇ th1 (S333: Yes), the traveling state of the vehicle 301 is stable. In step S334, it is determined that the camber provision condition for straight traveling is satisfied.
  • the straight traveling stability camber necessity determination processing means Reads the gear ratio and the average steering angle of the automatic transmission 304, and determines whether the gear ratio is smaller than 1 and the average steering angle during the past Y [seconds] is smaller than the threshold value ⁇ th1 (S335). As a result, when the gear ratio is smaller than 1 and the average steering angle during the past Y [seconds] is smaller than the threshold value ⁇ th1 (S335: Yes), the traveling state of the vehicle 301 is stable and the camber provision condition is satisfied. It is determined that it has been done (S334).
  • the straight traveling stable camber necessity determination processing means ends the process.
  • the straight traveling stable camber necessity determination processing means ends the process.
  • the average vehicle speed during the past X [seconds] is equal to or higher than the threshold value vth1
  • the first traveling stability condition is satisfied
  • the average steering angle during the past Y [seconds] is the threshold value ⁇ th1.
  • the second traveling stability condition is satisfied
  • the speed ratio is smaller than 1
  • the third traveling stability condition is satisfied.
  • the gear ratio is smaller than 1 and the average steering angle during the past Y [seconds] is smaller than the threshold value ⁇ th1.
  • the camber applying condition is It can be determined that it has been established.
  • the average vehicle speed during the past X [seconds] is equal to or higher than the threshold value vth1, and the average steering angle during the past Y [seconds] is the threshold value ⁇ th1. If it is smaller, it is determined that the camber provision condition is satisfied. For example, if the average steering angle during the past Y [seconds] is equal to or greater than the threshold ⁇ th1, it is determined that the camber provision condition is not satisfied.
  • camber ⁇ is applied to each of the wheels 302RL and 302RR even if the average steering angle during the past Y [seconds] is equal to or greater than the threshold value ⁇ th1. Is desirable.
  • the ninth embodiment of the present invention is configured so that camber ⁇ can be applied to each of the wheels 302RL and 302RR even when the average steering angle during the past Y [seconds] is equal to or greater than the threshold value ⁇ th1.
  • symbol is provided and the effect of the same embodiment is used about the effect of the invention by having the same structure.
  • FIG. 31 is a diagram showing a subroutine for determining whether or not straight running stable camber is necessary in the ninth embodiment of the present invention.
  • the straight traveling stable camber necessity determination processing means as the second camber necessity determination processing means and the traveling stable state determination processing means reads the vehicle speed and the steering angle. Then, a vehicle speed calculation value (average vehicle speed in this embodiment) is calculated based on the vehicle speed for a predetermined time immediately before reading the vehicle speed (in the present embodiment, for the past X [seconds]), and the steering angle is calculated. A steering amount calculation value (an average steering angle in the present embodiment) is calculated based on a steering angle for a predetermined time immediately before reading (in the present embodiment during the past Y [seconds]).
  • the straight travel stability camber necessity determination processing means determines whether the average vehicle speed during the past X [seconds] is equal to or greater than the threshold value vth1 and the average steering angle during the past Y [seconds] is smaller than the threshold value ⁇ th1 (S336). ) When the average vehicle speed during the past X [seconds] is equal to or greater than the threshold value vth1 and the average steering angle during the past Y [seconds] is smaller than the threshold value ⁇ th1 (S336: Yes), the traveling state of the vehicle 301 is stable. In step S337, it is determined that the camber provision condition for straight traveling is satisfied.
  • the straight traveling stability camber necessity determination processing means Reads the gear ratio of the automatic transmission 304 (see FIG. 22), determines whether the gear ratio is smaller than 1 (S338), and if the gear ratio is smaller than 1 (S338: Yes), the traveling state of the vehicle 301 Is stable, and it is determined that the camber imparting condition for straight traveling is satisfied (S337).
  • the straight traveling stability camber necessity determination processing means ends the processing.
  • the average vehicle speed during the past X [seconds] is equal to or higher than the threshold value vth1
  • the first traveling stability condition is satisfied
  • the average steering angle during the past Y [seconds] is the threshold value ⁇ th1.
  • the second traveling stability condition is satisfied
  • the speed ratio is smaller than 1
  • the third traveling stability condition is satisfied.
  • the first and second travel stability conditions after determining whether or not the first and second travel stability conditions are satisfied, it is determined whether or not the third travel stability condition is satisfied, but the first to third travel stability conditions are determined. It is determined whether the condition is satisfied, and it is determined that the camber provision condition is satisfied when the first traveling stability condition or the second traveling stability condition is satisfied and the third traveling stability condition is satisfied. be able to.
  • straight-line stable camber necessity determination processing is performed based on the gear ratio of the automatic transmission 304, but based on the gear ratio of a transmission such as a continuously variable transmission or a manual transmission.
  • a straight traveling stable camber necessity determination process can be performed.
  • the gear ratio acquisition processing means reads a shift command sent from the continuously variable transmission control unit as the transmission control unit to the continuously variable transmission, and corresponds to the shift command from the ROM 602. The recorded gear ratio is read and acquired as the vehicle state.
  • the gear ratio acquisition processing means reads a signal indicating the gear ratio from a shift lever or the like as a gear shift instruction device and acquires it as a vehicle state.
  • state quantity for example, it may indicate the state of the operating member operated by the driver, such as the operating speed or operating acceleration of each pedal 61, 62 and steering 63, or the vehicle 1, 201, It may indicate the state of 301 itself.
  • the traveling state of the vehicles 1, 201, 301 is stable (is a predetermined straight traveling state) based on the traveling speed of the vehicles 1, 201, 301 and the operation amount of the steering 63 is determined.
  • the present invention is not necessarily limited to this, and it may be determined whether the traveling state of the vehicles 1, 201, 301 is stable based only on the operation amount of the steering 63. good.
  • the traveling state of the vehicles 1, 201, 301 is stable based on the operation state of the steering 63, such as the operation speed and the operation acceleration of the steering 63.
  • the traveling state of the vehicles 1, 201, 301 is stabilized based on the state quantities of the vehicles 1, 201, 301 themselves, such as the lateral G of the vehicles 1, 201, 301, the yaw rate, etc. It may be determined whether or not.
  • the traveling speed of the vehicles 1, 201, 301 and the operation amount of the steering 63 it is naturally possible to determine whether the traveling state of the vehicles 1, 201, 301 is stable based on other information.
  • the other information is, for example, information acquired by a navigation device exemplified as the other input / output device 90, and the current position of the vehicles 1, 201, 301 is predetermined such as on a highway or a main road of map data. The case where the vehicles 1, 201, 301 are located on a straight road determined to go straight in this section is exemplified.
  • the camber angle adjusting devices 44 and 244 and the actuators 308 and 309 are activated each time the vehicles 1, 201 and 301 turn in a road situation where a curve exists at the end of the straight road or a right or left turn is required. Therefore, frequent switching of the camber angle can be prevented.
  • the operation amount of the accelerator pedal 61, the operation amount of the brake pedal 62, and the operation of the steering 63 A criterion for determining each operation amount for determining whether the amount is equal to or greater than a predetermined operation amount is that the vehicles 1,201 are accelerated, braked or turned with the camber angle of the wheels 2,202 being the second camber angle.
  • the present invention is not necessarily limited to this.
  • the state quantities of the vehicles 1 and 201 (for example, The operation amount of each pedal 61, 62, the operation amount of the steering 63, etc.) may be set.
  • the uneven wear load determination processing for determining whether or not the ground load of the wheels 2, 202, 302 is an uneven wear load, the amount of expansion / contraction of the suspension device 4, the vehicles 1, 201, 301 Front and rear G, lateral G, yaw rate, roll angle, contact load on wheels 2, 202, 302, tire sidewall crushing amount, accelerator pedal 61 operation amount, brake pedal 62 operation amount, steering 63 operation amount, operation
  • the determination criteria for determining whether the speed and the operation acceleration are equal to or less than the predetermined values is a constant value stored in advance in the ROM 72 has been described, it is not necessarily limited thereto.
  • each wheel 2 or the left and right rear wheels 202RL, 202RR When releasing the negative camber, it may be released after a predetermined time (for example, 3 seconds) has elapsed.
  • a predetermined time for example, 3 seconds
  • the camber angle adjusting devices 44, 244 are not operated each time the vehicles 1,201 turn, and the camber angle is frequently changed. Switching can be prevented.
  • the fourth embodiment, the fifth embodiment, and the sixth embodiment in the uneven wear load determination process, in addition to the determination that the ground load of the wheels 2 and 202 is equal to or greater than the predetermined ground load, a predetermined period
  • a predetermined period The case where the ground contact load and the magnitude of the change of the ground load are considered as the state value has been described.
  • the present invention is not necessarily limited to this, and other state values that can be substituted for the ground load of the wheels 2 and 202 can be employed.
  • state values include, for example, the amount of expansion and contraction of the suspension device 4 detected by the suspension stroke sensor devices 83 and 283, the front and rear G and lateral G detected by the acceleration sensor device 80, and the yaw rate detected by the yaw rate sensor device 81.
  • These state values can be used alone or in combination.
  • the state value (ground load) within a predetermined period is compared with a preset threshold value.
  • the present invention is not necessarily limited to this, and other forms may be used. Is possible.
  • an average value of state values (contact load) within a predetermined period is obtained, and this average value is set as a threshold value and compared with a sampled state value.
  • the ground contact load is equal to or greater than the predetermined ground load is the front wheels 2FL, 2FR or the rear wheels 2RL, 2RR, and is determined to be greater than the predetermined ground load. It is also possible to adjust the camber angle of the front wheels 2FL, 2FR or the rear wheels 2RL, 2RR to the second camber angle. For example, when the vehicle 1 is braked, the ground load of the front wheels 2FL and 2FR tends to be larger than the ground load of the rear wheels 2RL and 2RR, and when the vehicle 1 is accelerated, the ground load of the rear wheels 2RL and 2RR is observed. Tends to be larger than the ground load of the front wheels 2FL and 2FR. By switching the wheel 2 that adjusts the camber angle to the second camber angle according to the situation, uneven wear of the wheel 2 can be effectively prevented.
  • the width of the tread of the left and right rear wheels 202RL and 202RR is Although the method of narrowing the width of the tread of the front wheels 202FL and 202FR has been described as an example, the method is not necessarily limited to this, and other methods may be adopted.
  • the treads of the left and right rear wheels 202RL and 202RR are made of a material harder than the treads of the left and right front wheels 202FL and 202FR, and the treads of the left and right front wheels 202FL and 202FR are made to the left and right rear wheels. While the treads of 202RL and 202RR have higher gripping power (high grip), the treads of the left and right rear wheels 202RL and 202RR have lower rolling resistance than the treads of the left and right front wheels 202FL and 202FR (low rolling resistance).
  • the tread widths of the left and right rear wheels 202RL and 202RR are configured to be narrower than the tread widths of the left and right front wheels 202FL and 202FR has been described.
  • a method for setting the tread width of the left and right rear wheels 202RL and 202RR in this case will be described.
  • FIGS. 34 (a) and 34 (b) are front views of the rear wheels 1202RL and 1202RR supported by the suspension device 4, and FIGS. 35 (a) and 35 (b) are supported by the suspension device 4.
  • FIG. It is a front view of rear rear wheels 202RL, 202RR. 34 (a) to 35 (b) are front views corresponding to FIG. 2, and only the right rear wheel 1202RR and 202RR are shown, and the illustration of the suspension device 4 is simplified.
  • the vertical line (the arrow UD direction line, see FIG. 2) passing through the outer shape of the vehicle body B is the outer line S (that is, the line indicating the full width of the vehicle 201). As shown in FIG.
  • the rear wheels 1202RL and 1202RR are wheels configured to have the same width as the front wheels 202FL and 202FR described in the second embodiment.
  • the vehicle 201 adds a telescopic function by the RL and RR motors 44RL and 44RR only to the suspension device 204 on the rear wheel side with respect to the existing vehicle that supports all the front and rear wheels 202 by the suspension device 204.
  • the applicant of the present application reduces the tire width Wl of the rear wheels 202RL and 202RR, thereby significantly increasing the structure of the existing vehicle (vehicle 201).
  • the present inventors have come up with a configuration that makes it unnecessary to make a change and that can sufficiently secure the adjustable range of the camber angle while satisfying the safety standard.
  • FIG. 36 is a schematic diagram schematically showing a front view of a wheel supported by the suspension device 4, and shows a state where a negative camber having a camber angle ⁇ is given.
  • the distance connecting the position P, which is the intersection of the wheel rotation axis and the outer surface of the wheel, and the origin O is a value obtained by dividing the wheel offset A by half the tire width W ( W / 2 ⁇ A)
  • the distance connecting the position P and the tire outer end M is a half value (R / 2) of the tire diameter R
  • the distance L is the distance in the horizontal direction from the origin O to the outline S so that the tire outer end M of the wheel does not protrude outward beyond the outline S of the vehicle 201 and satisfies the safety standard. (See FIGS. 34 (b) and 35 (b)). Therefore, by applying the maximum value of the distance L (that is, the distance Z) and the maximum value of the camber angle ⁇ to be applied to the wheel (for example, 3 °) to the above formula that determines the tire width W, The maximum value of the tire width W can be determined.
  • the outer end M of the tire exceeds the outline S and extends outward.
  • the tread width of each wheel is set within a range not exceeding the tire width W.
  • the minimum value of the tire width W is twice the wheel offset A because the tire outer end M cannot be disposed inside the wheel seat surface T.
  • the width of the tread of the front wheels 202FL and 202FR can be widened, the braking force can be improved.
  • acceleration performance can be improved.
  • the tread width of the rear wheels 202RL and 202RR narrower than the tread width of the left and right front wheels 202FL and 202FR, the rolling resistance of the rear wheels 202RL and 202RR is made to be larger than the rolling resistance of the front wheels 202FL and 202FR. The fuel consumption can be reduced, and fuel consumption can be reduced accordingly.
  • a body a plurality of wheels arranged rotatably with respect to the body, and a camber angle adjusting device arranged on a predetermined wheel of the plurality of wheels and adjusting a camber angle of the wheel.
  • a vehicle control device for use in a vehicle, wherein the running state of the vehicle is stabilized by a running stable state determination processing unit that determines whether the running state of the vehicle is stable, and the running stable state determination processing unit.
  • a camber imparting processing means for actuating the camber angle adjusting device to impart a negative camber to the predetermined wheel when the camber angle adjusting device is judged to be present.
  • the vehicle control device A1 or A2 includes a steering amount detection unit that detects a steering amount, and the travel stable state determination processing unit has a steering amount calculation value calculated based on the steering amount at a predetermined time from a threshold value.
  • the vehicle control device A3 that determines whether or not the vehicle is in a stable state when the calculated amount of steering is smaller than the threshold value.
  • the camber ⁇ can be prevented from being applied to the wheels except when the vehicle is traveling in a predetermined straight traveling state.
  • the frequency at which the camber ⁇ is applied to the wheel can be reduced, and the time during which the camber ⁇ is applied can be shortened.
  • the occurrence of uneven wear in the tire can be suppressed and the life of the tire can be extended.
  • Any one of the vehicle control devices A1 to A3 includes gear ratio acquisition processing means for acquiring a gear ratio of a transmission disposed in the vehicle, and the running stable state determination processing means has a gear ratio of 1 When it is smaller, the vehicle control device A4 determines that the running state of the vehicle is stable.
  • a body of a vehicle a plurality of wheels disposed rotatably with respect to the body, a camber variable mechanism disposed on a predetermined wheel of the wheels and imparting camber to the wheel, and the vehicle
  • the traveling stable state determination processing means for determining whether the traveling state of the vehicle is stable and the traveling stable state determination processing means, a negative camber is applied to the predetermined wheel.
  • a camber control device B having camber provision processing means.
  • the camber control device B when the running state of the vehicle is stable, the negative camber is given to the predetermined wheel, so that the frequency of giving the negative camber can be reduced, and the negative camber is provided. Can be shortened. Therefore, it is possible to sufficiently suppress the occurrence of uneven wear on the tire of a predetermined wheel, and it is possible to extend the life of the tire. Further, since the negative camber is not continuously applied to the predetermined wheel while the vehicle is running, the rolling resistance of the tire can be reduced accordingly. Therefore, fuel consumption can be improved.
  • Vehicle control device 1, 201, 301 Vehicle 2, 202, 302 Wheel 2FL, 202FL, 302FL Left front wheel (part of wheel) 2FR, 202FR, 302FR Right front wheel (part of the wheel) 2RL, 202RL, 302RL Left rear wheel (part of the wheel) 2RR, 202RR, 302RR Right rear wheel (part of the wheel) 4,104 Suspension device 44,244 Camber angle adjusting device 44FL FL motor (part of camber angle adjusting device) 44FR FR motor (part of camber angle adjustment device) 44RL RL motor (part of camber angle adjustment device) 44RR RR motor (part of camber angle adjustment device) 308, 309 Actuator (Camber angle adjusting device) B Body BF Body frame (part of body)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

タイヤの偏摩耗を抑制して、タイヤの寿命を向上させると共に車両の走行安定性を確保することができる車両用制御装置を提供する。車輪(2)の接地荷重が所定の接地荷重以上であると判断される場合に、車輪(2)のキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、車輪(2)へのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制できる。その結果、タイヤの寿命を向上させることができる。また、タイヤの偏摩耗を抑制することで、タイヤの接地面が不均一となるのを防止して、車両(1)の走行安定性を確保することができる。

Description

車両用制御装置
 本発明は、車輪のキャンバ角を調整するキャンバ角調整装置を備えた車両に用いられる車両用制御装置に関し、特に、タイヤの偏摩耗を抑制して、タイヤの寿命を向上させると共に車両の走行安定性を確保することができる車両用制御装置に関するものである。
 従来より、車両の走行状態に応じて車輪のキャンバ角を調整することで、車両の走行安定性を確保する技術が知られている。この種の技術に関し、例えば、特許文献1には、車速を検出し、所定の車速以上において車輪にネガティブキャンバを付与することで、コーナリング走行時における車両の限界性能を向上させる技術が開示されている。
特開昭60-193781号公報
 しかしながら、上述した特許文献1に開示される技術では、高速道路や幹線道路などを車両が所定の車速以上で長時間走行する場合、その間、車輪にネガティブキャンバが付与され続けるため、タイヤが偏摩耗して、タイヤの寿命が短くなると共にタイヤの接地面が不均一となって車両の走行安定性が低下するという問題点があった。
 本発明は、上述した問題点を解決するためになされたものであり、タイヤの偏摩耗を抑制して、タイヤの寿命を向上させると共に車両の走行安定性を確保することができる車両用制御装置を提供することを目的としている。
課題を解決するための手段および発明の効果
 この目的を達成するために請求項1記載の車両用制御装置によれば、接地荷重判断手段により車輪の接地荷重が所定の接地荷重以上であると判断される場合に、第1キャンバ角調整手段により、少なくとも絶対値が減少するように車輪のキャンバ角が調整されるので、タイヤの偏摩耗を抑制することができる。即ち、車輪の接地荷重が大きいほどタイヤの摩耗に対して不利な傾向があるため、車輪の接地荷重が所定の接地荷重以上である場合には、少なくとも絶対値が減少するように車輪のキャンバ角を調整することで、タイヤの偏摩耗を抑制することができる。その結果、タイヤの寿命を向上させることができるという効果がある。また、タイヤの偏摩耗を抑制することで、タイヤの接地面が不均一となるのを防止して、車両の走行安定性を確保できるという効果がある。更に、タイヤの偏摩耗を抑制できるので、その分、省燃費化を図ることができるという効果がある。
 請求項2記載の車両用制御装置によれば、状態量判断手段により車両の状態量が所定の条件を満たすと判断される場合に、第2キャンバ角調整手段により車輪にポジティブキャンバ又はネガティブキャンバが付与されるので、例えば、車両の前後方向加速度や横方向加速度が大きく、車両が急加速、急制動または急旋回している場合には、車輪に発生するキャンバスラストを利用して、車両の走行安定性を確保することができる。また、状態量判断手段により車両の状態量が所定の条件を満たしていないと判断され、且つ、接地荷重判断手段により車輪の接地荷重が所定の接地荷重以上であると判断される場合には、第1キャンバ角調整手段により、少なくとも第2キャンバ角調整手段により調整されるキャンバ角よりも絶対値が小さくなるように車輪のキャンバ角が調整されるので、タイヤの偏摩耗を抑制することができる。よって、請求項1の効果に加え、走行安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができるという効果がある。
 なお、請求項2記載の「車両の状態量」とは、上述した車両の前後方向加速度や横方向加速度のように、車両自体の状態を示すものに限られず、運転者により操作される操作部材の状態を示すもの、例えば、アクセルペダルやブレーキペダルの踏み込み量、ステアリングの操作量などでも良い。
 請求項3記載の車両用制御装置によれば、走行状態判断手段により車両の走行状態が所定の直進状態であると判断される場合に、第3キャンバ角調整手段により車輪にポジティブキャンバ又はネガティブキャンバが付与されるので、例えば、比較的直線の多い高速道路や幹線道路などを車両が走行する場合には、車輪の横剛性を利用して、車両の直進安定性を確保することができる。また、走行状態判断手段により車両の走行状態が所定の直進状態であると判断され、且つ、接地荷重判断手段により車輪の接地荷重が所定の接地荷重以上であると判断される場合には、第1キャンバ角調整手段により、少なくとも第3キャンバ角調整手段により調整されるキャンバ角よりも絶対値が小さくなるように車輪のキャンバ角が調整されるので、タイヤの偏摩耗を抑制することができる。よって、請求項1又は2の効果に加え、直進安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができるという効果がある。
 なお、請求項3記載の「所定の直進状態」とは、車両の横方向加速度やヨーレート等が所定値以下である場合、車両の進行方向を左右に転換するために運転者により操作される操作部材(例えば、ステアリング等)の操作量が所定の操作量以下である場合、車両の現在位置が地図データの高速道路上や幹線道路上など所定の区間において車両が直進すると判断される直線道路上に位置する場合などが例示される。
 請求項4記載の車両用制御装置によれば、第3キャンバ角調整手段により前輪および後輪のキャンバ角が調整されるので、車両の直進安定性を確保できる。さらに第1キャンバ角調整手段により前輪または後輪のキャンバ角が調整されるので、前輪または後輪の偏磨耗を抑制しつつ、ポジティブキャンバ又はネガティブキャンバが後輪または前輪に付与された状態を保つことができる。これにより請求項3の効果に加え、タイヤの偏磨耗を抑制すると同時に車両の直進安定性を確保できる効果がある。
 請求項5記載の車両用制御装置によれば、走行状態判断手段により車両の走行状態が所定の直進状態であると判断され、且つ、接地荷重判断手段により車輪の接地荷重が所定の接地荷重以上であると判断される場合であっても、継続状態判断手段により車両が所定の状態が継続されていると判断される場合には、維持手段は、第3キャンバ角調整手段により調整されるキャンバ角を維持する。これにより、請求項3又は4の効果に加え、第3キャンバ角調整手段により車輪のキャンバ角が調整された状態において、車輪の接地荷重が所定の接地荷重以上になるたびにキャンバ角調整装置が作動して車輪のキャンバ角が調整されることを回避でき、キャンバ角の頻繁な切り替わりを抑制できる効果がある。
 請求項6記載の車両用制御装置によれば、走行状態判断手段により車両の走行状態が所定の直進状態であると判断される場合であっても、待機手段により、第3キャンバ角調整手段による車輪のキャンバ角の調整の開始が待機される。これにより、請求項3から5のいずれかの効果に加え、第3キャンバ角調整手段によりキャンバ角調整装置が駆動され車輪のキャンバ角が調整される場合に、キャンバ角調整装置が頻繁に作動してキャンバ角が頻繁に調整されることを回避でき、キャンバ角の頻繁な切り替わりを抑制できる効果がある。
 請求項7記載の車両用制御装置によれば、接地荷重判断手段は、伸縮量取得手段により取得された懸架装置の伸縮量に基づいて、車輪の接地荷重が所定の接地荷重以上であるかを判断するので、請求項1から6のいずれかの効果に加え、懸架装置の伸縮量と車輪の接地荷重との比例関係を利用して、車輪の接地荷重が所定の接地荷重以上であるかを簡単な構造で正確に判断できるという効果がある。
 請求項8記載の車両用制御装置によれば、ボディと、そのボディに対して回転自在に配設された複数の車輪と、その車輪のうちの所定の車輪に配設され、その車輪のキャンバ角を調整するキャンバ角調整装置とを備える車両に用いられるものであり、車両の走行状態が安定しているかどうかを判断する走行安定状態判定処理手段と、その走行安定状態判定処理手段により車両の走行状態が安定していると判断される場合に、キャンバ角調整装置を作動させて、所定の車輪にネガティブキャンバを付与するキャンバ付与処理手段とを有する。車両の走行状態が安定している場合に所定の車輪にネガティブキャンバが付与されるので、ネガティブキャンバが付与される頻度を低くすることができ、しかも、ネガティブキャンバが付与される時間を短くすることができる。したがって、所定の車輪のタイヤに偏摩耗が発生するのを十分に抑制することができ、タイヤの寿命を長くすることができる効果がある。
 また、タイヤの偏摩耗を抑制することで、タイヤの接地面が不均一となるのを防止して、車両の走行安定性を確保できるという効果がある。
 さらに、車両を走行させている間、所定の車輪にネガティブキャンバが付与され続けることがないので、タイヤの転がり抵抗をその分小さくすることができる。したがって、燃費を良くすることができる効果がある。
第1実施の形態における車両用制御装置が搭載される車両を模式的に示した模式図である。 懸架装置の正面図である。 車両用制御装置の電気的構成を示したブロック図である。 状態量判断処理を示すフローチャートである。 走行状態判断処理を示すフローチャートである。 偏摩耗荷重判断処理を示すフローチャートである。 キャンバ制御処理を示すフローチャートである。 第2実施の形態における車両用制御装置が搭載される車両を模式的に示した模式図である。 車両用制御装置の電気的構成を示したブロック図である。 第2実施の形態における偏摩耗荷重判断処理を示すフローチャートである。 第2実施の形態におけるキャンバ制御処理を示すフローチャートである。 第3実施の形態における車両用制御装置の電気的構成を示したブロック図である。 走行状態判断処理を示すフローチャートである。 偏磨耗荷重判断処理を示すフローチャートである。 偏磨耗荷重判断処理を示すフローチャートである。 キャンバ制御処理を示すフローチャートである。 第4実施の形態における車両用制御装置の電気的構成を示したブロック図である。 偏磨耗荷重判断処理を示すフローチャートである。 第5実施の形態における偏磨耗荷重判断処理を示すフローチャートである。 第6実施の形態における車両用制御装置の電気的構成を示したブロック図である。 キャンバ制御処理を示すフローチャートである。 第7実施の形態における車両の概念図である。 車輪の断面図である。 車両の制御ブロック図である。 制御部の動作を示す第1のメインフローチャートである。 制御部の動作を示す第2のメインフローチャートである。 操縦安定キャンバ要否判定処理のサブルーチンを示す図である。 直進安定キャンバ要否判定処理のサブルーチンを示す図である。 接地荷重判定処理のサブルーチンを示す図である。 第8実施の形態における直進安定キャンバ要否判定処理のサブルーチンを示す図である。 第9実施の形態における直進安定キャンバ要否判定処理のサブルーチンを示す図である。 懸架装置の正面図である。 車両を模式的に示した模式図である。 (a)及び(b)は懸架装置に支持された後輪の正面図である。 (a)及び(b)は懸架装置に支持された後輪の正面図である。 懸架装置に支持された車輪の正面図を模式的に図示した模式図である。
 以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図1は、本発明の第1実施の形態における車両用制御装置100が搭載される車両1を模式的に示した模式図である。なお、図1の矢印U-D,L-R,F-Bは、車両1の上下方向、左右方向、前後方向をそれぞれ示している。
 まず、車両1の概略構成について説明する。車両1は、図1に示すように、車体フレームBFと、その車体フレームBFを支持する複数(本実施の形態では4輪)の車輪2と、それら複数の車輪2の内の一部(本実施の形態では、左右の前輪2FL,2FR)を回転駆動する車輪駆動装置3と、各車輪2を車体フレームBFに懸架する複数の懸架装置4と、複数の車輪2の内の一部(本実施の形態では、左右の前輪2FL,2FR)を操舵する操舵装置5とを主に備えて構成されている。
 次いで、各部の詳細構成について説明する。車輪2は、図1に示すように、車両1の前方側(矢印F方向側)に位置する左右の前輪2FL,2FRと、車両1の後方側(矢印B方向側)に位置する左右の後輪2RL,2RRとを備えている。なお、本実施の形態では、左右の前輪2FL,2FRは、車輪駆動装置3により回転駆動される駆動輪として構成される一方、左右の後輪2RL,2RRは、車両1の走行に伴って従動される従動輪として構成されている。
 また、車輪2は、図1に示すように、左右の前輪2FL,2FR及び左右の後輪2RL,2RRが全て同じ形状および特性に構成され、そのトレッドの幅(図1左右方向の寸法)が同一の幅に構成されている。
 車輪駆動装置3は、上述したように、左右の前輪2FL,2FRを回転駆動するための装置であり、後述するように電動モータ3aにより構成されている(図3参照)。また、電動モータ3aは、図1に示すように、デファレンシャルギヤ(図示せず)及び一対のドライブシャフト31を介して左右の前輪2FL,2FRに接続されている。
 運転者がアクセルペダル61を操作した場合には、車輪駆動装置3から左右の前輪2FL,2FRに回転駆動力が付与され、それら左右の前輪2FL,2FRがアクセルペダル61の操作量に応じて回転駆動される。なお、左右の前輪2FL,2FRの回転差は、デファレンシャルギヤにより吸収される。
 懸架装置4は、路面から車輪2を介して車体フレームBFに伝わる振動を緩和するための装置、いわゆるサスペンションとして機能するものであり、伸縮可能に構成され、図1に示すように、各車輪2に対応してそれぞれ設けられている。また、本実施の形態における懸架装置4は、車輪2のキャンバ角を調整するキャンバ角調整機構としての機能を兼ね備えている。
 ここで、図2を参照して、懸架装置4の詳細構成について説明する。図2は、懸架装置4の正面図である。なお、ここでは、キャンバ角調整機構として機能する構成のみについて説明し、サスペンションとして機能する構成については周知の構成と同様であるので、その説明を省略する。また、各懸架装置4の構成は、各車輪2においてそれぞれ共通であるので、右の前輪2FRに対応する懸架装置4を代表例として図2に図示する。但し、図2では、理解を容易とするために、ドライブシャフト31等の図示が省略されている。
 懸架装置4は、図2に示すように、ストラット41及びロアアーム42を介して車体フレームBFに支持されるナックル43と、駆動力を発生するFRモータ44FRと、そのFRモータ44FRの駆動力を伝達するウォームホイール45及びアーム46と、それらウォームホイール45及びアーム46から伝達されるFRモータ44FRの駆動力によりナックル43に対して揺動駆動される可動プレート47とを主に備えて構成されている。
 ナックル43は、車輪2を操舵可能に支持するものであり、図2に示すように、上端(図2上側)がストラット41に連結されると共に、下端(図2下側)がボールジョイントを介してロアアーム42に連結されている。
 FRモータ44FRは、可動プレート47に揺動駆動のための駆動力を付与するものであり、DCモータにより構成され、その出力軸44aにはウォーム(図示せず)が形成されている。
 ウォームホイール45は、FRモータ44FRの駆動力をアーム46に伝達するものであり、FRモータ44FRの出力軸44aに形成されたウォームに噛み合い、かかるウォームと共に食い違い軸歯車対を構成している。
 アーム46は、ウォームホイール45から伝達されるFRモータ44FRの駆動力を可動プレート47に伝達するものであり、図2に示すように、一端(図2右側)が第1連結軸48を介してウォームホイール45の回転軸45aから偏心した位置に連結される一方、他端(図2左側)が第2連結軸49を介して可動プレート47の上端(図2上側)に連結されている。
 可動プレート47は、車輪2を回転可能に支持するものであり、上述したように、上端(図2上側)がアーム46に連結される一方、下端(図2下側)がキャンバ軸50を介してナックル43に揺動可能に軸支されている。
 上述したように構成される懸架装置4によれば、FRモータ44FRが駆動されると、ウォームホイール45が回転すると共に、ウォームホイール45の回転運動がアーム46の直線運動に変換される。その結果、アーム46が直線運動することで、可動プレート47がキャンバ軸50を揺動軸として揺動駆動され、車輪2のキャンバ角が調整される。
 なお、本実施の形態では、各連結軸48,49及びウォームホイール45の回転軸45aが、車体フレームBFから車輪2に向かう方向(矢印R方向)において、第1連結軸48、回転軸45a、第2連結軸49の順に一直線上に並んで位置する第1キャンバ状態と、回転軸45a、第1連結軸48、第2連結軸49の順に一直線上に並んで位置する第2キャンバ状態(図2に示す状態)とのいずれか一方のキャンバ状態となるように車輪2のキャンバ角が調整される。
 これにより、車輪2のキャンバ角が調整された状態では、車輪2に外力が加わったとしても、アーム46を回動させる方向の力は発生せず、車輪2のキャンバ角を維持することができる。
 また、本実施の形態では、第1キャンバ状態において、車輪2のキャンバ角がマイナス方向の所定の角度(本実施の形態では-3°、以下「第1キャンバ角」と称す)に調整され、車輪2にネガティブキャンバが付与される。一方、第2キャンバ状態(図2に示す状態)では、車輪2のキャンバ角が0°(以下「第2キャンバ角」と称す)に調整される。
 図1に戻って説明する。操舵装置5は、運転者によるステアリング63の操作を左右の前輪2FL,2FRに伝えて操舵するための装置であり、いわゆるラック&ピニオン式のステアリングギヤとして構成されている。
 この操舵装置5によれば、運転者によるステアリング63の操作(回転)は、まず、ステアリングコラム51を介してユニバーサルジョイント52に伝達され、ユニバーサルジョイント52により角度を変えられつつステアリングボックス53のピニオン53aに回転運動として伝達される。そして、ピニオン53aに伝達された回転運動は、ラック53bの直線運動に変換され、ラック53bが直線運動することで、ラック53bの両端に接続されたタイロッド54が移動する。その結果、タイロッド54がナックル55を押し引きすることで、車輪2に所定の舵角が付与される。
 アクセルペダル61及びブレーキペダル62は、運転者により操作される操作部材であり、各ペダル61,62の操作状態(踏み込み量、踏み込み速度など)に応じて、車両1の走行速度や制動力が決定され、車輪駆動装置3が駆動制御される。ステアリング63は、運転者により操作される操作部材であり、その操作状態(ステア角、ステア角速度など)に応じて、操舵装置5により左右の前輪2FL,2FRが操舵される。
 車両用制御装置100は、上述したように構成される車両1の各部を制御するための装置であり、例えば、各ペダル61,62やステアリング63の操作状態に応じてキャンバ角調整装置44(図3参照)を作動制御する。
 次いで、図3を参照して、車両用制御装置100の詳細構成について説明する。図3は、車両用制御装置100の電気的構成を示したブロック図である。車両用制御装置100は、図3に示すように、CPU71、ROM72及びRAM73を備え、それらがバスライン74を介して入出力ポート75に接続されている。また、入出力ポート75には、車輪駆動装置3等の装置が接続されている。
 CPU71は、バスライン74により接続された各部を制御する演算装置であり、ROM72は、CPU71により実行される制御プログラム(例えば、図4から図7に図示されるフローチャートのプログラム)や固定値データ等を記憶する書き換え不能な不揮発性のメモリである。
 RAM73は、制御プログラムの実行時に各種のデータを書き換え可能に記憶するためのメモリであり、図3に示すように、キャンバフラグ73a、状態量フラグ73b、走行状態フラグ73c及び偏摩耗荷重フラグ73dが設けられている。
 キャンバフラグ73aは、車輪2のキャンバ角が第1キャンバ角に調整された状態にあるか否かを示すフラグであり、CPU71は、このキャンバフラグ73aがオンである場合に、車輪2のキャンバ角が第1キャンバ角に調整された状態にあると判断する。
 状態量フラグ73bは、車両1の状態量が所定の条件を満たすか否かを示すフラグであり、後述する状態量判断処理(図4参照)の実行時にオン又はオフに切り替えられる。なお、本実施の形態における状態量フラグ73bは、アクセルペダル61、ブレーキペダル62及びステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上である場合にオンに切り替えられ、CPU71は、この状態量フラグ73bがオンである場合に、車両1の状態量が所定の条件を満たしていると判断する。
 走行状態フラグ73bは、車両1の走行状態が所定の直進状態であるか(安定しているか)否かを示すフラグであり、後述する走行状態判断処理(図5参照)の実行時にオン又はオフに切り替えられる。なお、本実施の形態における走行状態フラグ73cは、車両1の走行速度が所定の走行速度以上であり、且つ、ステアリング63の操作量が所定の操作量以下である場合にオンに切り替えられ、CPU71は、この走行状態フラグ73cがオンである場合に、車両1の走行状態が所定の直進状態であると判断する。
 偏摩耗荷重フラグ73dは、車輪2のキャンバ角が第1キャンバ角の状態、即ち、車輪2にネガティブキャンバが付与された状態で車両1が走行する場合に、車輪2の接地荷重がタイヤ(トレッド)に偏摩耗を引き起こす恐れのある接地荷重(以下「偏摩耗荷重」と称す)であるか否かを示すフラグであり、後述する偏摩耗荷重判断処理(図6参照)の実行時にオン又はオフに切り替えられる。CPU71は、この偏摩耗荷重フラグ73dがオンである場合に、車輪2の接地荷重がタイヤに偏摩耗を引き起こす恐れのある偏摩耗荷重であると判断する。
 車輪駆動装置3は、上述したように、左右の前輪2FL,2FR(図1参照)を回転駆動するための装置であり、それら左右の前輪2FL,2FRに回転駆動力を付与する電動モータ3aと、その電動モータ3aをCPU71からの指示に基づいて駆動制御する駆動制御回路(図示せず)とを主に備えている。但し、車輪駆動装置3は、電動モータ3aに限られず、他の駆動源を採用することは当然可能である。他の駆動源としては、例えば、油圧モータやエンジン等が例示される。
 キャンバ角調整装置44は、各車輪2のキャンバ角を調整するための装置であり、上述したように、各懸架装置4の可動プレート47(図2参照)に揺動のための駆動力をそれぞれ付与する合計4個のFL~RRモータ44FL~44RRと、それら各モータ44FL~44RRをCPU71からの指示に基づいて駆動制御する駆動制御回路(図示せず)とを主に備えている。
 加速度センサ装置80は、車両1の加速度を検出すると共に、その検出結果をCPU71に出力するための装置であり、前後方向加速度センサ80a及び左右方向加速度センサ80bと、それら各加速度センサ80a,80bの検出結果を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。
 前後方向加速度センサ80aは、車両1(車体フレームBF)の前後方向(図1矢印F-B方向)の加速度、いわゆる前後Gを検出するセンサであり、左右方向加速度センサ80bは、車両1(車体フレームBF)の左右方向(図1矢印L-R方向)の加速度、いわゆる横Gを検出するセンサである。なお、本実施の形態では、これら各加速度センサ80a,80bが圧電素子を利用した圧電型センサとして構成されている。
 また、CPU71は、加速度センサ装置80から入力された各加速度センサ80a,80bの検出結果(前後G、横G)を時間積分して、2方向(前後方向および左右方向)の速度をそれぞれ算出すると共に、それら2方向成分を合成することで、車両1の走行速度を取得することができる。
 ヨーレートセンサ装置81は、車両1のヨーレートを検出すると共に、その検出結果をCPU71に出力するための装置であり、車両1の重心を通る鉛直軸(図1矢印U-D方向軸)回りの車両1(車体フレームBF)の回転角速度を検出するヨーレートセンサ81aと、そのヨーレートセンサ81aの検出結果を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。
 ロール角センサ装置82は、車両1のロール角を検出すると共に、その検出結果をCPU71に出力するための装置であり、車両1の重心を通る前後軸(図1矢印F-B方向軸)回りの車両1(車体フレームBF)の回転角を検出するロール角センサ82aと、そのロール角センサ82aの検出結果を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。
 なお、本実施の形態では、ヨーレートセンサ81a及びロール角センサ82aがサニャック効果により回転角速度および回転角を検出する光学式ジャイロセンサにより構成されている。但し、他の種類のジャイロセンサを採用することは当然可能である。他の種類のジャイロセンサとしては、例えば、機械式や流体式などのジャイロセンサが例示される。
 サスストロークセンサ装置83は、各懸架装置4の伸縮量を検出すると共に、その検出結果をCPU71に出力するための装置であり、各懸架装置4の伸縮量をそれぞれ検出する合計4個のFL~RRサスストロークセンサ83FL~83RRと、それら各サスストロークセンサ83FL~83RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。
 なお、本実施の形態では、各サスストロークセンサ83FL~83RRがひずみゲージとして構成されており、これら各サスストロークセンサ83FL~83RRは、各懸架装置4のショックアブソーバ(図示せず)にそれぞれ配設されている。
 CPU71は、サスストロークセンサ装置83から入力された各サスストロークセンサ83FL~83RRの検出結果(伸縮量)に基づいて、各車輪2の接地荷重を取得する。即ち、車輪2の接地荷重と懸架装置4の伸縮量とは比例関係を有しているので、懸架装置4の伸縮量をXとし、懸架装置4の減衰定数をkとすると、車輪2の接地荷重Fは、F=kXとなる。
 接地荷重センサ装置84は、各車輪2の接地荷重を検出すると共に、その検出結果をCPU71に出力するための装置であり、各車輪2の接地荷重をそれぞれ検出する合計4個のFL~RR接地荷重センサ84FL~84RRと、それら各接地荷重センサ84FL~84RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。
 なお、本実施の形態では、各接地荷重センサ84FL~84RRがピエゾ抵抗型の荷重センサとして構成されており、これら各接地荷重センサ84FL~84RRは、各懸架装置4のショックアブソーバ(図示せず)にそれぞれ配設されている。
 サイドウォール潰れ代センサ装置85は、各車輪2のタイヤサイドウォールの潰れ代を検出すると共に、その検出結果をCPU71に出力するための装置であり、各車輪2のタイヤサイドウォールの潰れ代をそれぞれ検出する合計4個のFL~RRサイドウォール潰れ代センサ85FL~85RRと、それら各サイドウォール潰れ代センサ85FL~85RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。
 なお、本実施の形態では、各サイドウォール潰れ代センサ85FL~85RRがひずみゲージとして構成されており、これら各サイドウォール潰れ代センサ85FL~85RRは、各車輪2内にそれぞれ配設されている。
 アクセルペダルセンサ装置61aは、アクセルペダル61の操作量を検出すると共に、その検出結果をCPU71に出力するための装置であり、アクセルペダル61の踏み込み量を検出する角度センサ(図示せず)と、その角度センサの検出結果を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。
 ブレーキペダルセンサ装置62aは、ブレーキペダル62の操作量を検出すると共に、その検出結果をCPU71に出力するための装置であり、ブレーキペダル62の踏み込み量を検出する角度センサ(図示せず)と、その角度センサの検出結果を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。
 ステアリングセンサ装置63aは、ステアリング63の操作量を検出すると共に、その検出結果をCPU71に出力するための装置であり、ステアリング63のステア角を検出する角度センサ(図示せず)と、その角度センサの検出結果を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。
 なお、本実施の形態では、各角度センサが電気抵抗を利用した接触型のポテンショメータとして構成されている。また、CPU71は、各センサ装置61a,62a,63aから入力された各角度センサの検出結果(操作量)を時間微分して、各ペダル61,62の踏み込み速度およびステアリング63のステア角速度を取得することができる。更に、CPU71は、取得したステアリング63のステア角速度を時間微分して、ステアリング63のステア角加速度を取得することができる。
 図3に示す他の入出力装置90としては、例えば、GPSを利用して車両1の現在位置を取得すると共にその取得した車両1の現在位置を道路に関する情報が記憶された地図データに対応付けて取得するナビゲーション装置などが例示される。
 次いで、図4を参照して、状態量判断処理について説明する。図4は、状態量判断処理を示すフローチャートである。この処理は、車両用制御装置100の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車両1の状態量が所定の条件を満たすかを判断する処理である。
 CPU71は、状態量判断処理に関し、まず、アクセルペダル61の操作量(踏み込み量)、ブレーキペダル62の操作量(踏み込み量)及びステアリング63の操作量(ステア角)をそれぞれ取得し(S1、S2、S3)、それら取得した各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上であるか否かを判断する(S4)。なお、S4の処理では、S1~S3の処理でそれぞれ取得した各ペダル61,62の操作量およびステアリング63の操作量と、それら各ペダル61,62の操作量およびステアリング63の操作量にそれぞれ対応してROM72に予め記憶されている閾値(本実施の形態では、車輪2のキャンバ角が第2キャンバ角の状態で車両1が加速、制動または旋回する場合に、車輪2がスリップする恐れがあると判断される限界値)とを比較して、現在の各ペダル61,62の操作量およびステアリング63の操作量が所定の操作量以上であるか否かを判断する。
 その結果、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上であると判断される場合には(S4:Yes)、状態量フラグ73bをオンして(S5)、この状態量判断処理を終了する。即ち、この状態量判断処理では、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上である場合に、車両1の状態量が所定の条件を満たすと判断する。
 一方、S4の処理の結果、各ペダル61,62の操作量およびステアリング63の操作量のいずれもが所定の操作量より小さいと判断される場合には(S4:No)、状態量フラグ73bをオフして(S6)、この状態量判断処理を終了する。
 次いで、図5を参照して、走行状態判断処理について説明する。図5は、走行状態判断処理を示すフローチャートである。この処理は、車両用制御装置100の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車両1の走行状態が所定の直進状態にあるか否かを判断する処理である。
 CPU71は、走行状態判断処理に関し、まず、車両1の走行速度を取得し(S11)、その取得した車両1の走行速度が所定の速度以上であるか否かを判断する(S12)。なお、S12の処理では、S11の処理で取得した車両1の走行速度と、ROM72に予め記憶されている閾値とを比較して、現在の車両1の走行速度が所定の速度以上であるか否かを判断する。
 その結果、車両1の走行速度が所定の速度より小さいと判断される場合には(S12:No)、走行状態フラグ73cをオフして(S16)、この走行状態判断処理を終了する。
 一方、S12の処理の結果、車両1の走行速度が所定の速度以上であると判断される場合には(S12:Yes)、ステアリング63の操作量(ステア角)を取得し(S13)、その取得したステアリング63の操作量が所定の操作量以下であるか否かを判断する(S14)。なお、S14の処理では、S13の処理で取得したステアリング63の操作量と、ROM72に予め記憶されている閾値(本実施の形態では、図4に示す状態量判断処理において、車両1の状態量が所定の条件を満たすか否かを判断するためのステアリング63の操作量より小さい値)とを比較して、現在のステアリング63の操作量が所定の操作量以上であるか否かを判断する。
 その結果、ステアリング63の操作量が所定の操作量以下であると判断される場合には(S14:Yes)、走行状態フラグ73cをオンして(S15)、この走行状態判断処理を終了する。即ち、この走行状態判断処理では、車両1の走行速度が所定の速度以上であり、且つ、ステアリング63の操作量が所定の操作量以下である場合に、車両1の走行状態が所定の直進状態であると判断する。
 一方、S14の処理の結果、ステアリング63の操作量が所定の操作量より大きいと判断される場合には(S14:No)、走行状態フラグ73cをオフして(S16)、この走行状態判断処理を終了する。
 次いで、図6を参照して、偏摩耗荷重判断処理について説明する。図6は、偏摩耗荷重判断処理を示すフローチャートである。この処理は、車両用制御装置100の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車輪2にネガティブキャンバが付与された状態で車両1が走行する場合に、車輪2の接地荷重がタイヤ(トレッド)に偏摩耗を引き起こす恐れのある偏摩耗荷重であるか否かを判断する処理である。
 CPU71は、偏摩耗荷重判断処理に関し、まず、各懸架装置4の伸縮量が所定の伸縮量以下であるか否かを判断する(S21)。なお、S21の処理では、サスストロークセンサ装置83により各懸架装置4の伸縮量を検出すると共に、その検出された各懸架装置4の伸縮量と、ROM72に予め記憶されている閾値とを比較して、現在の各懸架装置4の伸縮量が所定の伸縮量以下であるか否かを判断する。
 その結果、各懸架装置4の内の少なくとも1の懸架装置4の伸縮量が所定の伸縮量より大きいと判断される場合には(S21:No)、その伸縮量の大きい懸架装置4に対応する車輪2の接地荷重が所定の接地荷重より大きく、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S21の処理の結果、各懸架装置4の伸縮量が所定の伸縮量以下であると判断される場合には(S21:Yes)、車両1の前後Gが所定の加速度以下であるか否かを判断する(S22)。なお、S22の処理では、加速度センサ装置80(前後方向加速度センサ80a)により検出された車両1の前後Gと、ROM72に予め記憶されている閾値とを比較して、現在の車両1の前後Gが所定の加速度以下であるか否かを判断する。
 その結果、車両1の前後Gが所定の加速度より大きいと判断される場合には(S22:No)、左右の前輪2FL,2FR又は左右の後輪2RL,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S22の処理の結果、車両1の前後Gが所定の加速度以下であると判断される場合には(S22:Yes)、車両1の横Gが所定の加速度以下であるか否かを判断する(S23)。なお、S23の処理では、加速度センサ装置80(左右方向加速度センサ80b)により検出された車両1の横Gと、ROM72に予め記憶されている閾値とを比較して、現在の車両1の横Gが所定の加速度以下であるか否かを判断する。
 その結果、車両1の横Gが所定の加速度より大きいと判断される場合には(S23:No)、左の前後輪2FL,2RL又は右の前後輪2FR,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S23の処理の結果、車両1の横Gが所定の加速度以下であると判断される場合には(S23:Yes)、車両1のヨーレートが所定のヨーレート以下であるか否かを判断する(S24)。なお、S24の処理では、ヨーレートセンサ装置81により検出された車両1のヨーレートと、ROM72に予め記憶されている閾値とを比較して、現在の車両1のヨーレートが所定のヨーレート以下であるか否かを判断する。
 その結果、車両1のヨーレートが所定のヨーレートより大きいと判断される場合には(S24:No)、左の前後輪2FL,2RL又は右の前後輪2FR,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S24の処理の結果、車両1のヨーレートが所定のヨーレート以下であると判断される場合には(S24:Yes)、車両1のロール角が所定のロール角以下であるか否かを判断する(S25)。なお、S25の処理では、ロール角センサ装置82により検出された車両1のロール角と、ROM72に予め記憶されている閾値とを比較して、現在の車両1のロール角が所定のロール角以下であるか否かを判断する。
 その結果、車両1のロール角が所定のロール角より大きいと判断される場合には(S25:No)、左右の前輪2FL,2FR又は左右の後輪2RL,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S25の処理の結果、車両1のロール角が所定のロール角以下であると判断される場合には(S25:Yes)、各車輪2の接地荷重が所定の接地荷重以下であるか否かを判断する(S26)。なお、S26の処理では、接地荷重センサ装置84により検出された各車輪2の接地荷重と、ROM72に予め記憶されている閾値とを比較して、現在の各車輪2の接地荷重が所定の接地荷重以下であるか否かを判断する。
 その結果、各車輪2の内の少なくとも1の車輪2の接地荷重が所定の接地荷重より大きいと判断される場合には(S26:No)、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S26の処理の結果、各車輪2の接地荷重が所定の荷重以下であると判断される場合には(S26:Yes)、各車輪2のタイヤサイドウォールの潰れ代が所定の潰れ代以下であるか否かを判断する(S27)。なお、S27の処理では、サイドウォール潰れ代センサ装置85により検出された各車輪2のタイヤサイドウォールの潰れ代と、ROM72に予め記憶されている閾値とを比較して、現在の各車輪2のタイヤサイドウォールの潰れ代が所定の潰れ代以下であるか否かを判断する。
 その結果、各車輪2の内の少なくとも1の車輪2のタイヤサイドウォールの潰れ代が所定の潰れ代より大きいと判断される場合には(S27:No)、その潰れ代の大きい車輪2の接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S27の処理の結果、各車輪2のタイヤサイドウォールの潰れ代が所定の潰れ代以下であると判断される場合には(S27:Yes)、アクセルペダル61の操作量(踏み込み量)が所定の操作量以下であるか否かを判断する(S28)。なお、S28の処理では、アクセルペダルセンサ装置61aにより検出されたアクセルペダル61の操作量と、ROM72に予め記憶されている閾値(本実施の形態では、図4に示す状態量判断処理において、車両1の状態量が所定の条件を満たすか否かを判断するためのアクセルペダル61の操作量より小さい値)とを比較して、現在のアクセルペダル61の操作量が所定の操作量以下であるか否かを判断する。
 その結果、アクセルペダル61の操作量が所定の操作量より大きいと判断される場合には(S28:No)、左右の後輪2RL,2RRの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S28の処理の結果、アクセルペダル61の操作量が所定の操作量以下であると判断される場合には(S28:Yes)、ブレーキペダル62の操作量(踏み込み量)が所定の操作量以下であるか否かを判断する(S29)。なお、S29の処理では、ブレーキペダルセンサ装置62aにより検出されたブレーキペダル62の操作量と、ROM72に予め記憶されている閾値(本実施の形態では、図4に示す状態量判断処理において、車両1の状態量が所定の条件を満たすか否かを判断するためのブレーキペダル62の操作量より小さい値)とを比較して、現在のブレーキペダル62の操作量が所定の操作量以下であるか否かを判断する。
 その結果、ブレーキペダル62の操作量が所定の操作量より大きいと判断される場合には(S29:No)、左右の前輪2FL,2FRの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S29の処理の結果、ブレーキペダル62の操作量が所定の操作量以下であると判断される場合には(S29:Yes)、ステアリング63の操作量(ステア角)が所定の操作量以下であるか否かを判断する(S30)。なお、S30の処理では、ステアリングセンサ装置63aにより検出されたステアリング63の操作量と、ROM72に予め記憶されている閾値(本実施の形態では、図4に示す状態量判断処理において、車両1の状態量が所定の条件を満たすか否かを判断するためのステアリング63の操作量より小さい値、且つ、図5に示す走行状態判断処理において、車両1の走行状態が所定の直進状態であるか否かを判断するためのステアリング63の操作量より大きい値)とを比較して、現在のステアリング63の操作量が所定の操作量以下であるか否かを判断する。
 その結果、ステアリング63の操作量が所定の操作量より大きいと判断される場合には(S30:No)、左の前後輪2FL,2RL又は右の前後輪2FR,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S30の処理の結果、ステアリング63の操作量が所定の操作量以下であると判断される場合には(S30:Yes)、ステアリング63の操作速度(ステア角速度)が所定の速度以下であるか否かを判断する(S31)。なお、S31の処理では、ステアリング63の操作量を時間微分して取得されるステアリング63の操作速度と、ROM72に予め記憶されている閾値とを比較して、現在のステアリング63の操作速度が所定の速度以下であるか否かを判断する。
 その結果、ステアリング63の操作速度が所定の速度より大きいと判断される場合には(S31:No)、左の前後輪2FL,2RL又は右の前後輪2FR,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S31の処理の結果、ステアリング63の操作速度が所定の速度以下であると判断される場合には(S31:Yes)、ステアリング63の操作加速度(ステア角加速度)が所定の加速度以下であるか否かを判断する(S32)。なお、S32の処理では、ステアリング63の操作速度を時間微分して取得されるステアリング63の操作加速度と、ROM72に予め記憶されている閾値とを比較して、現在のステアリング63の操作加速度が所定の加速度以下であるか否かを判断する。
 その結果、ステアリング63の操作加速度が所定の加速度より大きいと判断される場合には(S32:No)、左の前後輪2FL,2RL又は右の前後輪2FR,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S32の処理の結果、ステアリング63の操作加速度が所定の加速度以下であると判断される場合には(S32:Yes)、偏摩耗フラグ73dをオフして(S34)、この偏摩耗荷重判断処理を終了する。
 次いで、図7を参照して、キャンバ制御処理について説明する。図7は、キャンバ制御処理を示すフローチャートである。この処理は、車両用制御装置100の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、各車輪2(左右の前輪2FL,2FR及び左右の後輪2RL,2RR)のキャンバ角を調整する処理である。
 CPU71は、キャンバ制御処理に関し、まず、状態量フラグ73bがオンであるか否かを判断し(S41)、状態量フラグ73bがオンであると判断される場合には(S41:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S42)。その結果、キャンバフラグ73aがオフであると判断される場合には(S42:No)、FL~RRモータ44FL~44RRを作動させて、各車輪2(左右の前輪2FL,2FR及び左右の後輪2RL,2RR)のキャンバ角を第1キャンバ角に調整し、各車輪2にネガティブキャンバを付与すると共に(S43)、キャンバフラグ73aをオンして(S44)、このキャンバ制御処理を終了する。
 これにより、車両1の状態量が所定の条件を満たす場合、即ち、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上であり、車輪2のキャンバ角が第2キャンバ角の状態で車両1が加速、制動または旋回すると車輪2がスリップする恐れがあると判断される場合には、車輪2にネガティブキャンバを付与することで、車輪2に発生するキャンバスラストを利用して、車両1の走行安定性を確保することができる。
 一方、S42の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S42:Yes)、車輪2のキャンバ角は既に第1キャンバ角に調整されているので、S43及びS44の処理をスキップして、このキャンバ制御処理を終了する。
 これに対し、S41の処理の結果、状態量フラグ73bがオフであると判断される場合には(S41:No)、走行状態フラグ73cがオンであるか否かを判断し(S45)、走行状態フラグ73cがオンであると判断される場合には(S45:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S46)。その結果、キャンバフラグ73aがオフであると判断される場合には(S46:No)、FL~RRモータ44FL~44RRを作動させて、各車輪2(左右の前輪2FL,2FR及び左右の後輪2RL,2RR)のキャンバ角を第1キャンバ角に調整し、各車輪2にネガティブキャンバを付与すると共に(S47)、キャンバフラグ73aをオンして(S48)、S49の処理を実行する。
 これにより、車両1の走行状態が所定の直進状態である場合、即ち、車両1の走行速度が所定の速度以上であると共にステアリング63の操作量が所定の操作量以下であり、車両1が比較的高速で直進している場合には、車輪2にネガティブキャンバを付与することで、車輪2の横剛性を利用して、車両1の直進安定性を確保することができる。
 一方、S46の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S46:Yes)、車輪2のキャンバ角は既に第1キャンバ角に調整されているので、S47及びS48の処理をスキップして、偏摩耗荷重フラグ73dがオンであるか否かを判断する(S49)。その結果、偏摩耗荷重フラグ73dがオンであると判断される場合には(S49:Yes)、FL~RRモータ44FL~44RRを作動させて、各車輪2(左右の前輪2FL,2FR及び左右の後輪2RL,2RR)のキャンバ角を第2キャンバ角に調整し、各車輪2へのネガティブキャンバの付与を解除すると共に(S50)、キャンバフラグ73aをオフして(S51)、このキャンバ制御処理を終了する。
 これにより、車輪2の接地荷重が偏摩耗荷重である場合、即ち、車輪2にネガティブキャンバが付与された状態で車両1が走行すると、タイヤ(トレッド)に偏摩耗を引き起こす恐れがある場合には、車輪2へのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。
 一方、S49の処理の結果、偏摩耗荷重フラグ73dがオフであると判断される場合には(S49:No)、車輪2の接地荷重は偏摩耗荷重ではなく、車輪2にネガティブキャンバが付与された状態で車両1が走行しても、タイヤ(トレッド)が偏摩耗する恐れはないと判断されるので、S50及びS51の処理をスキップして、このキャンバ制御処理を終了する。
 これに対し、S45の処理の結果、走行状態フラグ73cがオフであると判断される場合には(S45:No)、キャンバフラグ73aがオンであるか否かを判断する(S52)。その結果、キャンバフラグ73aがオンであると判断される場合には(S52:Yes)、FL~RRモータ44FL~44RRを作動させて、各車輪2(左右の前輪2FL,2FR及び左右の後輪2RL,2RR)のキャンバ角を第2キャンバ角に調整し、各車輪2へのネガティブキャンバの付与を解除すると共に(S53)、キャンバフラグ73aをオフして(S54)、このキャンバ制御処理を終了する。
 これにより、車両1の状態量が所定の条件を満たしておらず車両1の走行状態が所定の直進状態でない場合、即ち、車両1の走行安定性を優先して確保する必要がない場合には、車輪2へのネガティブキャンバの付与を解除することで、キャンバスラストの影響を回避して、省燃費化を図ることができる。
 一方、S52の処理の結果、キャンバフラグ73aがオフであると判断される場合には(S52:No)、車輪2のキャンバ角は既に第2キャンバ角に調整されているので、S53及びS54の処理をスキップして、このキャンバ制御処理を終了する。
 以上説明したように、第1実施の形態によれば、車輪2の接地荷重が所定の接地荷重以上であると判断される場合に、車輪2のキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、車輪2へのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。即ち、車輪2の接地荷重が大きいほどタイヤの摩耗に対して不利な傾向がある。よって、車輪2の接地荷重が所定の接地荷重以上である場合には、車輪2へのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。その結果、タイヤの寿命を向上させることができる。また、タイヤの偏摩耗を抑制することで、タイヤの接地面が不均一となるのを防止して、車両1の走行安定性を確保することができる。更に、タイヤの偏摩耗を抑制できるので、その分、省燃費化を図ることができる。
 また、第1実施の形態によれば、車両1の状態量が所定の条件を満たすと判断される場合に、車輪2のキャンバ角が第1キャンバ角に調整され、車輪2にネガティブキャンバが付与されるので、車輪2に発生するキャンバスラストを利用して、車両1の走行安定性を確保することができる。また、車両1の状態量が所定の条件を満たしていないと判断され、且つ、車輪2の接地荷重が所定の接地荷重以上であると判断される場合には、車輪2のキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、車輪2へのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。よって、走行安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができる。
 また、第1実施の形態によれば、車両1の走行状態が所定の直進状態であると判断される場合に、車輪2のキャンバ角が第1キャンバ角に調整され、車輪2にネガティブキャンバが付与されるので、車輪2の横剛性を利用して、車両1の直進安定性を確保することができる。また、車両1の走行状態が所定の直進状態であると判断され、且つ、車輪2の接地荷重が所定の接地荷重以上であると判断される場合には、車輪2のキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、車輪2へのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。よって、直進安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができる。
 なお、図4に示すフローチャート(状態量判断処理)において、請求項2記載の状態量取得手段としてはS1~S3の処理が、図5に示すフローチャート(走行状態判断処理)において、請求項3記載の走行状態取得手段としてはS11及びS13の処理が、図6に示すフローチャート(偏摩耗荷重判断処理)において、請求項1記載の接地荷重情報取得手段としてはS21~32の処理が、請求項7記載の伸縮量取得手段としてはS21の処理においてサスストロークセンサ装置83により各懸架装置4の伸縮量を検出する処理が、図7に示すフローチャート(キャンバ制御処理)において、請求項1記載の接地荷重判断手段としてはS49の処理が、第1キャンバ角調整手段としてはS50の処理が、請求項2記載の状態量判断手段としてはS41の処理が、第2キャンバ角調整手段としてはS43の処理が、請求項3記載の走行状態判断手段としてはS45の処理が、第3キャンバ角調整手段としてはS47の処理が、それぞれ該当する。
 また、図7に示すフローチャートにおいて、請求項8記載の走行安定状態判定処理手段としてはS45の処理が、キャンバ付与処理手段としてはS47の処理が、それぞれ該当する。なお、走行安定状態判定処理手段は走行状態判断手段に該当し、キャンバ付与処理手段は第3キャンバ角調整手段の一部に該当する。
 次いで、図8から図11を参照して、第2実施の形態について説明する。第1実施の形態では、車両用制御装置100の制御対象である車両1が、左右の前輪2FL,2FR及び左右の後輪2RL,2RRを含む全ての車輪2のキャンバ角をキャンバ角調整装置44により調整可能に構成される場合を説明したが、第2実施の形態における車両201は、左右の後輪202RL,202RRのみのキャンバ角がキャンバ角調整装置244により調整可能とされ、左右の前輪202FL,202FRについてはキャンバ角の調整を行わない構成とされている。
 また、第1実施の形態では、左右の前輪2FL,2FR及び左右の後輪2RL,2RRを含む全ての車輪2が同じ構成とされる場合を説明したが、第2実施の形態における車両201は、左右の前輪202FL,202FRと左右の後輪202RL,202RRとが異なる構成とされている。なお、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。
 図8は、第2実施の形態における車両用制御装置200が搭載される車両201を模式的に示した模式図である。なお、図8の矢印U-D,L-R,F-Bは、車両201の上下方向、左右方向、前後方向をそれぞれ示している。
 まず、車両201の概略構成について説明する。図8に示すように、車両201は、複数(本実施の形態では4輪)の車輪202を備え、それら車輪202は、車両201の前方側(矢印F方向側)に位置する左右の前輪202FL,202FRと、車両201の後方側(矢印B方向側)に位置する左右の後輪202RL,202RRとを備えている。なお、本実施の形態では、左右の前輪202FL,202FRは、車輪駆動装置3により回転駆動される駆動輪として構成される一方、左右の後輪202RL,202RRは、車両201の走行に伴って従動される従動輪として構成されている。
 車輪202は、左右の前輪202FL,202FRが互いに同じ形状および特性に構成されると共に、左右の後輪202RL,202RRが互いに同じ形状および特性に構成されている。また、左右の前輪202FL,202FRは、そのトレッドの幅(図8左右方向の寸法)が、左右の後輪202RL,202RRのトレッドの幅よりも広い幅に構成されている。なお、左右の前輪202FL,202FRのトレッドと左右の後輪202RL,202RRのトレッドとは同じ特性に構成されている。
 また、車輪202は、左右の前輪202FL,202FRが懸架装置204により車体フレームBFに懸架される一方、左右の後輪202RL,202RRが懸架装置4により車体フレームBFに懸架されている。なお、懸架装置204は、左右の前輪202FL,202FRのキャンバ角を調整する機能が省略されている点(即ち、図2に示す懸架装置4において、FRモータ44FRによる伸縮機能が省略されている点)を除き、その他の構成は懸架装置4と同じ構成であるので、その説明を省略する。
 このように、第2実施の形態における車両201は、左右の後輪202RL,202RRのトレッドの幅が、左右の前輪202FL,202FRのトレッドの幅よりも狭くされているので、前輪202FL,202FRの路面に対する摩擦係数を、後輪202RL,202RRの路面に対する摩擦係数よりも大きくすることができる。その結果、制動力の向上を図ることができる。また、左右の前輪202FL,202FRが駆動輪とされる本実施の形態においては、加速性能の向上を図ることができる。
 一方、左右の後輪202RL,202RRの転がり抵抗を、左右の前輪202FL,202FRの転がり抵抗よりも小さくできるので、その分、省燃費化を図ることができる。また、左右の後輪202RL,202RRにキャンバ角を付与できるので、車両201の旋回時には、左右の後輪202RL,202RRの対地キャンバ角を補正できると共に、車両201の旋回特性をアンダーステア傾向とすることができ、車両201の旋回安定性を確保することができる。更に、車両201の直進時には、左右の後輪202RL,202RRの横剛性を利用して、車両201の直進安定性を確保することができる。
 車両用制御装置200は、上述したように構成される車両201の各部を制御するための装置であり、例えば、各ペダル61,62やステアリング63の操作状態に応じてキャンバ角調整装置244(図9参照)を作動制御する。
 次いで、図9を参照して、車両用制御装置200の詳細構成について説明する。図9は、車両用制御装置200の電気的構成を示したブロック図である。車両用制御装置200は、主に、第1実施の形態における車両用制御装置100のキャンバ角調整装置44に代えて、キャンバ角調整装置244を備えている。
 キャンバ角調整装置244は、左右の後輪202RL,202RRのキャンバ角を調整するための装置であり、左右の後輪202RL,202RRにキャンバ角をそれぞれ付与する合計2個のRL,RRモータ44RL,44RRと、それら各モータ44RL,44RRをCPU71からの指示に基づいて駆動制御する駆動制御回路(図示せず)とを主に備えている。即ち、第2実施の形態におけるキャンバ角調整装置244は、第1実施の形態におけるキャンバ角調整装置44の一部(左右の前輪202FL,202FRに対応するFL,FRモータ44FL,44FR)を省略して構成されている。
 サスストロークセンサ装置283は、各懸架装置4の伸縮量を検出すると共に、その検出結果をCPU71に出力するための装置であり、各懸架装置4の伸縮量をそれぞれ検出するRL,RRサスストロークセンサ83RL,83RRと、それら各サスストロークセンサ83RL,83RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。即ち、第2実施の形態におけるサスストロークセンサ装置283は、第1実施の形態におけるサスストロークセンサ装置83の一部(左右の前輪202FL,202FRに対応するFL,FRサスストロークセンサ83FL,83FR)を省略して構成されている。
 接地荷重センサ装置284は、左右の後輪202RL,202RRの接地荷重を検出すると共に、その検出結果をCPU71に出力するための装置であり、左右の後輪202RL,202RRの接地荷重をそれぞれ検出するRL,RR接地荷重センサ84RL,84RRと、それら各接地荷重センサ84RL,84RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。即ち、第2実施の形態における接地荷重センサ装置284は、第1実施の形態における接地荷重センサ装置84の一部(左右の前輪202FL,202FRに対応するFL,FR接地荷重センサ84FL,84FR)を省略して構成されている。
 サイドウォール潰れ代センサ装置285は、左右の後輪202RL,202RRのタイヤサイドウォールの潰れ代を検出すると共に、その検出結果をCPU71に出力するための装置であり、左右の後輪202RL,202RRのタイヤサイドウォールの潰れ代をそれぞれ検出するRL,RRサイドウォール潰れ代センサ85RL,85RRと、それら各サイドウォール潰れ代センサ85RL,85RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。即ち、第2実施の形態におけるサイドウォール潰れ代センサ装置285は、第1実施の形態におけるサイドウォール潰れ代センサ装置85の一部(左右の前輪202FL,202FRに対応するFL,FRサイドウォール潰れ代センサ85FL,85FR)を省略して構成されている。
 次いで、図10を参照して、第2実施の形態における偏摩耗荷重判断処理について説明する。図10は、第2実施の形態における偏摩耗荷重判断処理を示すフローチャートである。この処理は、車両用制御装置200の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、左右の後輪202RL,202RRにネガティブキャンバが付与された状態で車両201が走行する場合に、左右の後輪202RL,202RRの接地荷重がタイヤ(トレッド)に偏摩耗を引き起こす恐れのある偏摩耗荷重であるか否かを判断する処理である。なお、第1実施の形態における偏摩耗荷重判断処理と同一の処理については同一の符号を付して説明する。
 CPU71は、第2実施の形態における偏摩耗荷重判断処理に関し、まず、各懸架装置4の伸縮量が所定の伸縮量以下であるか否かを判断する(S221)。なお、S221の処理では、サスストロークセンサ装置283により各懸架装置4の伸縮量を検出すると共に、その検出された各懸架装置4の伸縮量と、ROM72に予め記憶されている閾値とを比較して、現在の各懸架装置4の伸縮量が所定の伸縮量以下であるか否かを判断する。
 その結果、各懸架装置4の内の少なくとも1の懸架装置4の伸縮量が所定の伸縮量より大きいと判断される場合には(S221:No)、その伸縮量の大きい懸架装置4に対応する車輪202(左右の後輪202RL,202RR)の接地荷重が所定の接地荷重より大きく、かかる車輪202の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S221の処理の結果、各懸架装置4の伸縮量が所定の伸縮量以下であると判断される場合には(S221:Yes)、車両1の前後Gが所定の加速度以下であるか否かを判断する(S22)。その結果、車両1の前後Gが所定の加速度より大きいと判断される場合には(S22:No)、左右の後輪202RL,202RRの接地荷重が所定の接地荷重より大きい可能性があると推定され、かかる車輪202の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S22の処理の結果、車両1の前後Gが所定の加速度以下であると判断される場合には(S22:Yes)、車両1の横Gが所定の加速度以下であるか否かを判断する(S23)。その結果、車両1の横Gが所定の加速度より大きいと判断される場合には(S23:No)、左の後輪202RL又は右の後輪202RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪202の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S23の処理の結果、車両1の横Gが所定の加速度以下であると判断される場合には(S23:Yes)、車両1のヨーレートが所定のヨーレート以下であるか否かを判断する(S24)。その結果、車両1のヨーレートが所定のヨーレートより大きいと判断される場合には(S24:No)、左の後輪202RL又は右の後輪202RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪202の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S24の処理の結果、車両1のヨーレートが所定のヨーレート以下であると判断される場合には(S24:Yes)、車両1のロール角が所定のロール角以下であるか否かを判断する(S25)。その結果、車両1のロール角が所定のロール角より大きいと判断される場合には(S25:No)、左右の後輪202RL,202RRの接地荷重が所定の接地荷重より大きい可能性があると推定され、かかる車輪202の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S25の処理の結果、車両1のロール角が所定のロール角以下であると判断される場合には(S25:Yes)、左右の後輪202RL,202RRの接地荷重が所定の接地荷重以下であるか否かを判断する(S226)。なお、S226の処理では、接地荷重センサ装置284により検出された左右の後輪202RL,202RRの接地荷重と、ROM72に予め記憶されている閾値とを比較して、現在の左右の後輪202RL,202RRの接地荷重が所定の接地荷重以下であるか否かを判断する。
 その結果、左右の後輪202RL,202RRの内の少なくとも1の車輪202の接地荷重が所定の接地荷重より大きいと判断される場合には(S226:No)、かかる車輪202の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S226の処理の結果、左右の後輪202RL,202RRの接地荷重が所定の荷重以下であると判断される場合には(S226:Yes)、左右の後輪202RL,202RRのタイヤサイドウォールの潰れ代が所定の潰れ代以下であるか否かを判断する(S227)。なお、S227の処理では、サイドウォール潰れ代センサ装置285により検出された左右の後輪202RL,202RRのタイヤサイドウォールの潰れ代と、ROM72に予め記憶されている閾値とを比較して、現在の左右の後輪202RL,202RRのタイヤサイドウォールの潰れ代が所定の潰れ代以下であるか否かを判断する。
 その結果、左右の後輪202RL,202RRの内の少なくとも1の車輪202のタイヤサイドウォールの潰れ代が所定の潰れ代より大きいと判断される場合には(S227:No)、その潰れ代の大きい車輪202の接地荷重が所定の接地荷重より大きいと推定され、かかる車輪202の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S227の処理の結果、左右の後輪202RL,202RRのタイヤサイドウォールの潰れ代が所定の潰れ代以下であると判断される場合には(S227:Yes)、アクセルペダル61の操作量(踏み込み量)が所定の操作量以下であるか否かを判断する(S28)。その結果、アクセルペダル61の操作量が所定の操作量より大きいと判断される場合には(S28:No)、左右の後輪202RL,202RRの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪202の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S28の処理の結果、アクセルペダル61の操作量が所定の操作量以下であると判断される場合には(S28:Yes)、ステアリング63の操作量(ステア角)が所定の操作量以下であるか否かを判断する(S30)。その結果、ステアリング63の操作量が所定の操作量より大きいと判断される場合には(S30:No)、左の後輪202RL又は右の後輪202RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪202の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S30の処理の結果、ステアリング63の操作量が所定の操作量以下であると判断される場合には(S30:Yes)、ステアリング63の操作速度(ステア角速度)が所定の速度以下であるか否かを判断する(S31)。その結果、ステアリング63の操作速度が所定の速度より大きいと判断される場合には(S31:No)、左の後輪202RL又は右の後輪202RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪202の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S31の処理の結果、ステアリング63の操作速度が所定の速度以下であると判断される場合には(S31:Yes)、ステアリング63の操作加速度(ステア角加速度)が所定の加速度以下であるか否かを判断する(S32)。その結果、ステアリング63の操作加速度が所定の加速度より大きいと判断される場合には(S32:No)、左の後輪202RL又は右の後輪202RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪202の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S33)、この偏摩耗荷重判断処理を終了する。
 一方、S32の処理の結果、ステアリング63の操作加速度が所定の加速度以下であると判断される場合には(S32:Yes)、偏摩耗フラグ73dをオフして(S34)、この偏摩耗荷重判断処理を終了する。
 次いで、図11を参照して、第2実施の形態におけるキャンバ制御処理について説明する。図11は、第2実施の形態におけるキャンバ制御処理を示すフローチャートである。この処理は、車両用制御装置200の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、左右の後輪202RL,202RRのキャンバ角を調整する処理である。なお、第1実施の形態におけるキャンバ制御処理と同一の処理については同一の符号を付して説明する。
 CPU71は、第2実施の形態におけるキャンバ制御処理に関し、まず、状態量フラグ73bがオンであるか否かを判断し(S41)、状態量フラグ73bがオンであると判断される場合には(S41:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S42)。その結果、キャンバフラグ73aがオフであると判断される場合には(S42:No)、RL,RRモータ44RL,44RRを作動させて、左右の後輪202RL,202RRのキャンバ角を第1キャンバ角に調整し、左右の後輪202RL,202RRにネガティブキャンバを付与すると共に(S243)、キャンバフラグ73aをオンして(S44)、このキャンバ制御処理を終了する。
 これにより、車両201の状態量が所定の条件を満たしている場合、即ち、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上であり、左右の後輪202RL,202RRのキャンバ角が第2キャンバ角の状態で車両201が加速、制動または旋回すると左右の後輪202RL,202RRがスリップする恐れがあると判断される場合には、左右の後輪202RL,202RRにネガティブキャンバを付与することで、左右の後輪202RL,202RRに発生するキャンバスラストを利用して、車両201の走行安定性を確保することができる。
 一方、S42の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S42:Yes)、左右の後輪202RL,202RRのキャンバ角は既に第1キャンバ角に調整されているので、S243及びS44の処理をスキップして、このキャンバ制御処理を終了する。
 これに対し、S41の処理の結果、状態量フラグ73bがオフであると判断される場合には(S41:No)、走行状態フラグ73cがオンであるか否かを判断し(S45)、走行状態フラグ73cがオンであると判断される場合には(S45:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S46)。その結果、キャンバフラグ73aがオフであると判断される場合には(S46:No)、RL,RRモータ44RL,44RRを作動させて、左右の後輪202RL,202RRのキャンバ角を第1キャンバ角に調整し、左右の後輪202RL,202RRにネガティブキャンバを付与すると共に(S247)、キャンバフラグ73aをオンして(S48)、S49の処理を実行する。
 これにより、車両201の走行状態が所定の直進状態である(安定している)場合、即ち、車両201の走行速度が所定の速度以上であると共にステアリング63の操作量が所定の操作量以下であり、車両201が比較的高速で直進している場合には、左右の後輪202RL,202RRにネガティブキャンバを付与することで、左右の後輪202RL,202RRの横剛性を利用して、車両201の直進安定性を確保することができる。
 一方、S46の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S46:Yes)、左右の後輪202RL,202RRのキャンバ角は既に第1キャンバ角に調整されているので、S247及びS48の処理をスキップして、偏摩耗荷重フラグ73dがオンであるか否かを判断する(S49)。その結果、偏摩耗荷重フラグ73dがオンであると判断される場合には(S49:Yes)、RL,RRモータ44RL,44RRを作動させて、左右の後輪202RL,202RRのキャンバ角を第2キャンバ角に調整し、左右の後輪202RL,202RRへのネガティブキャンバの付与を解除すると共に(S250)、キャンバフラグ73aをオフして(S51)、このキャンバ制御処理を終了する。
 これにより、左右の後輪202RL,202RRの接地荷重が偏摩耗荷重である場合、即ち、左右の後輪202RL,202RRにネガティブキャンバが付与された状態で車両201が走行すると、タイヤ(トレッド)に偏摩耗を引き起こす恐れがある場合には、左右の後輪202RL,202RRへのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。
 一方、S49の処理の結果、偏摩耗荷重フラグ73dがオフであると判断される場合には(S49:No)、左右の後輪202RL,202RRの接地荷重は偏摩耗荷重ではなく、左右の後輪202RL,202RRにネガティブキャンバが付与された状態で車両201が走行しても、タイヤ(トレッド)が偏摩耗する恐れはないと判断されるので、S250及びS51の処理をスキップして、このキャンバ制御処理を終了する。
 これに対し、S45の処理の結果、走行状態フラグ73cがオフであると判断される場合には(S45:No)、キャンバフラグ73aがオンであるか否かを判断する(S52)。その結果、キャンバフラグ73aがオンであると判断される場合には(S52:Yes)、RL,RRモータ44RL,44RRを作動させて、左右の後輪202RL,202RRのキャンバ角を第2キャンバ角に調整し、左右の後輪202RL,202RRへのネガティブキャンバの付与を解除すると共に(S253)、キャンバフラグ73aをオフして(S54)、このキャンバ制御処理を終了する。
 これにより、車両201の状態量が所定の条件を満たしておらず車両201の走行状態が所定の直進状態でない場合、即ち、車両201の走行安定性を優先して確保する必要がない場合には、左右の後輪202RL,202RRへのネガティブキャンバの付与を解除することで、キャンバスラストの影響を回避して、省燃費化を図ることができる。
 一方、S52の処理の結果、キャンバフラグ73aがオフであると判断される場合には(S52:No)、左右の後輪202RL,202RRのキャンバ角は既に第2キャンバ角に調整されているので、S253及びS54の処理をスキップして、このキャンバ制御処理を終了する。
 なお、図10に示すフローチャート(偏摩耗荷重判断処理)において、請求項1記載の接地荷重情報取得手段としてはS221、S22~25、S226、S227、S28及びS30~S32の処理が、請求項7記載の伸縮量取得手段としてはS221の処理においてサスストロークセンサ装置283により各懸架装置4の伸縮量を検出する処理が、図11に示すフローチャート(キャンバ制御処理)において、請求項1記載の接地荷重判断手段としてはS49の処理が、第1キャンバ角調整手段としてはS250の処理が、請求項2記載の状態量判断手段としてはS41の処理が、第2キャンバ角調整手段としてはS243の処理が、請求項3記載の走行状態判断手段としてはS45の処理が、第3キャンバ角調整手段としてはS247の処理が、それぞれ該当する。
 また、図11に示すフローチャートにおいて、請求項8記載の走行安定状態判定処理手段としてはS45の処理が、キャンバ付与処理手段としてはS247の処理が、それぞれ該当する。
 次いで、図12から図16を参照して、第3実施の形態について説明する。第1実施の形態および第2実施の形態では、車両1,201の走行状態が所定の直進状態である(安定している)と判断され、且つ、車輪2,202の接地荷重が所定の接地荷重以上であると判断される場合に、車輪2,202のキャンバ角が第2キャンバ角に調整される場合について説明した。これに対し、第3実施の形態では、車両201の走行状態が所定の直進状態である(安定している)と判断されると共に、車輪202の接地荷重が所定の接地荷重以上であると判断され、且つ、車輪202の接地荷重が所定の条件を満たさないと判断される場合に、車輪202のキャンバ角が第1キャンバ角に維持される場合について説明する。また、第3実施の形態で説明する車両用制御装置300は、第2実施の形態における車両201に搭載される車両用制御装置200に代えて搭載されるものとして説明する。なお、第1実施の形態および第2実施の形態と同一の部分については、同一の符号を付してその説明を省略する。
 まず、図12を参照して、第3実施の形態における車両用制御装置300の電気的構成について説明する。図12は車両用制御装置300の電気的構成を示したブロック図である。計時装置385は時間を計測するための装置であり、各計時装置は、CPU71からの指示に基づいて時間を計測する計時回路(図示せず)と、その計時回路により計測された時間を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。なお、第1計時装置385aは後述する走行状態判断処理(図13参照)において時間を計測する装置であり、第2計時装置385bは後述する偏磨耗荷重判断処理(図15参照)において時間を計測する装置であり、第3計時装置385cは後述するキャンバ制御処理(図16参照)において時間を計測する装置である。
 RAM373は、制御プログラムの実行時に各種のデータを書き換え可能に記憶するためのメモリであり、図12に示すように、キャンバフラグ73a、状態量フラグ73b、走行状態フラグ73c、偏摩耗荷重フラグ73dに加え、第1計時フラグ373e及び第2計時フラグ373fが設けられている。
 第1計時フラグ373eは、第1計時装置385aが時間を計時中か否かを示すフラグであり、走行状態判断処理(図13参照)の実行中にオン又はオフに切り替えられる。第2計時フラグ373fは、第2計時装置385bが時間を計時中か否かを示すフラグであり、偏磨耗荷重判断処理(図15参照)の実行中にオン又はオフに切り替えられる。
 次いで、図13を参照して、第3実施の形態における走行状態判断処理について説明する。図13は、走行状態判断処理を示すフローチャートである。この処理は、車両用制御装置300の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車両201の走行状態が所定の直進状態であるか否かを判断する処理である。
 CPU71は、走行状態判断処理に関し、まず、車両201の走行速度を取得し(S11)、その取得した車両201の走行速度が所定の速度以上であるか否かを判断する(S12)。その結果、車両201の走行速度が所定の速度以上であると判断される場合には(S12:Yes)、ステアリング63の操作量(ステア角)を取得し(S13)、その取得したステアリング63の操作量が所定の操作量以下であるか否かを判断する(S14)。その結果、ステアリング63の操作量が所定の操作量以下であると判断される場合には(S14:Yes)、第1計時フラグ373eがオンであるか否かを判断する(S61)。その結果、第1計時フラグ373eがオフであると判断される場合には(S61:No)、第1計時装置385aにより計時を開始し(S62)、第1計時フラグ373eをオンして(S63)、この走行状態判断処理を終了する。
 一方、S61の処理の結果、第1計時フラグ373eがオンであると判断される場合には(S61:Yes)、第1計時装置385aにより計時が開始されてから所定の時間が経過したか否かを判断する(S64)。この所定の時間は予め設定されROM72に記憶されている。その結果、所定の時間が経過していると判断される場合には(S64:Yes)、走行状態フラグ73cをオンすると共に(S65)、第1計時装置385aによる計時を終了して(S66)、第1計時フラグ373eをオフし(S67)、この走行状態判断処理を終了する。即ち、この走行状態判断処理では、車両201の走行速度が所定の速度以上であると共に、ステアリング63の操作量が所定の操作量以下であると判断され、且つ、この状態が所定時間継続したと判断される場合に、走行状態フラグ73cがオンされる。
 これに対し、S12の処理の結果、車両201の走行速度が所定の速度より小さいと判断される場合(S12:No)、S14の処理の結果、ステアリング63の操作量が所定の操作量より大きいと判断される場合には(S14:No)、第1計時装置385aによる計時を終了すると共に(S68)、第1計時フラグ373eをオフし(S69)、走行状態フラグ73cをオフして(S70)、この走行状態判断処理を終了する。また、S64の処理の結果、第1計時装置385aにより計時が開始されてから所定の時間が経過していないと判断される場合には(S64:No)、走行状態フラグ73cをオフして(S70)、この走行状態判断処理を終了する。
 次いで、図14及び図15を参照して、第3実施の形態における偏摩耗荷重判断処理について説明する。図14及び図15は、偏摩耗荷重判断処理を示すフローチャートである。この処理は、車両用制御装置300の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、左右の後輪202RL,202RRにネガティブキャンバが付与された状態で車両201が走行する場合に、後輪202RL,202RRの接地荷重がタイヤ(トレッド)に偏摩耗を引き起こす恐れのある偏摩耗荷重であるか否かを判断する処理である。なお、偏摩耗荷重判断処理のうち図14に示す部分は、第2実施の形態における偏磨耗荷重判断処理と同一なので、同一の符号を付してその説明を省略する。
 図14に示すS221~S32のいずれかの処理の結果、後輪202RL,202RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪202の接地荷重が偏摩耗荷重であると判断される場合には(図14:A)、図15に示すようにCPU71は第2計時フラグ373fがオンであるか否かを判断する(S71)。その結果、第2計時フラグ373fがオフであると判断される場合には(S71:No)、第2計時装置385bにより計時を開始すると共に(S72)、第2計時フラグ373fをオンして(S73)、この偏磨耗荷重判断処理を終了する。
 一方、S71の処理の結果、第2計時フラグ373fがオンであると判断される場合には(S71:Yes)、第2計時装置385bにより計時が開始されてから所定の時間が経過したか否かを判断する(S74)。この所定の時間は予め設定されROM72に記憶されている。その結果、所定の時間が経過していると判断される場合には(S74:Yes)、偏磨耗荷重フラグ73dをオンすると共に(S75)、第2計時装置385bによる計時を終了して(S76)、第2計時フラグ373fをオフし(S77)、この偏磨耗荷重判断処理を終了する。即ち、この偏磨耗荷重判断処理では、後輪202RL,202RRの接地荷重が所定の接地荷重より大きいと推定される状態が所定時間継続したと判断される場合に、偏摩耗荷重フラグ73dをオンする。
 これに対し、図14に示すS221~S32の処理の結果、後輪202RL,202RRのいずれかの接地荷重が所定の接地荷重以下と推定され、かかる後輪202RL,202RRの接地荷重が偏摩耗荷重でないと判断される場合には(図14:B)、図15に示すように第2計時装置385bによる計時を終了すると共に(S78)、第2計時フラグ373fをオフし(S79)、偏磨耗荷重フラグ73dをオフして(S80)、この偏磨耗荷重判断処理を終了する。また、S74の処理の結果、第2計時装置385bにより計時が開始されてから所定の時間が経過していない(車両201が所定の状態が継続されていない)と判断される場合には(S74:No)、偏磨耗荷重フラグ373fをオフして(S80)、この偏磨耗荷重判断処理を終了する。
 次いで、図16を参照して、第3実施の形態におけるキャンバ制御処理について説明する。図16は、キャンバ制御処理を示すフローチャートである。この処理は、車両用制御装置300の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、左右の後輪2RL,2RRのキャンバ角を調整する処理である。
 CPU71は、キャンバ制御処理に関し、まず、状態量フラグ73bがオンであるか否かを判断し(S41)、状態量フラグ73bがオンであると判断される場合には(S41:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S42)。その結果、キャンバフラグ73aがオフであると判断される場合には(S42:No)、RL及びRRモータ44RL,44RRを作動させて、後輪202RL,202RRのキャンバ角を第1キャンバ角に調整し、後輪202RL,202RRにネガティブキャンバを付与すると共に(S243)、キャンバフラグ73aをオンして(S44)、第3計時装置385cによる計時を終了して(S81)、このキャンバ制御処理を終了する。
 一方、S42の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S42:Yes)、後輪202RL,202RRのキャンバ角は既に第1キャンバ角に調整されているので、S43及びS44の処理をスキップし、第3計時装置385cによる計時を終了して(S81)、このキャンバ制御処理を終了する。
 これに対し、S41の処理の結果、状態量フラグ73bがオフであると判断される場合には(S41:No)、走行状態フラグ73cがオンであるか否かを判断し(S45)、走行状態フラグ73cがオンであると判断される場合には(S45:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S46)。その結果、キャンバフラグ73aがオフであると判断される場合には(S46:No)、RL及びRRモータ44RL,44RRを作動させて、後輪202RL,202RRのキャンバ角を第1キャンバ角に調整し、後輪202RL,202RRにネガティブキャンバを付与すると共に(S247)、キャンバフラグ73aをオンし(S48)、第3計時装置385cによる計時を開始して(S82)、S49の処理を実行する。これにより、車両201の走行状態が所定の直進状態である場合、後輪202RL,202RRにネガティブキャンバを付与することで、後輪202RL,202RRの横剛性を利用して、車両201の直進安定性を確保できる。
 一方、S46の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S46:Yes)、後輪202RL,202RRのキャンバ角は既に第1キャンバ角に調整されているので、S247,S48及びS82の処理をスキップして、偏摩耗荷重フラグ73dがオンであるか否かを判断する(S49)。その結果、偏摩耗荷重フラグ73dがオンであると判断される場合には(S49:Yes)、第3計時装置385cにより計時が開始されてから所定の時間が経過したか否かを判断し(S83)、所定の時間が経過していると判断される場合には(S83:Yes)、RL及びRRモータ44RL,44RRを作動させて、後輪202RL,202RRのキャンバ角を第2キャンバ角に調整し、後輪202RL,202RRへのネガティブキャンバの付与を解除すると共に(S84)、キャンバフラグ73aをオフし(S85)、第3計時装置385cによる計時を終了して(S86)、このキャンバ制御処理を終了する。
 これにより、後輪202RL,202RRの接地荷重が偏摩耗荷重である場合、即ち、後輪202RL,202RRにネガティブキャンバが付与された状態で車両201が走行すると、タイヤ(トレッド)に偏摩耗を引き起こす恐れがある場合には、後輪202RL,202RRへのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。
 これに対し、S49の処理の結果、偏摩耗荷重フラグ73dがオフであると判断される場合には(S49:No)、後輪202RL,202RRの接地荷重は偏摩耗荷重ではなく、後輪202RL,202RRにネガティブキャンバが付与された状態で車両201が走行しても、タイヤ(トレッド)が偏摩耗する恐れはないと判断されるので、第3計時装置385cによる計時を終了し(S87)、S83~S86の処理をスキップして、このキャンバ制御処理を終了する。
 また、S83の処理の結果、所定の時間が経過していないと判断される場合には(S83:No)、S84,S85及びS86の処理をスキップして、このキャンバ制御処理を終了する。このように、偏磨耗荷重フラグ73dがオンであると判断される場合であっても(S49:Yes)、S83の処理の結果、所定の時間が経過していない(後輪202RL,202RRにネガティブキャンバが付与された所定の状態が車両201に継続している)と判断される場合に(S83:No)、後輪202RL,202RRへのネガティブキャンバの付与を維持することで、後輪202RL,202RRのキャンバ角の頻繁な切り替わりを抑制できる。
 一方、S45の処理の結果、走行状態フラグ73cがオフであると判断される場合には(S45:No)、キャンバフラグ73aがオンであるか否かを判断する(S52)。その結果、キャンバフラグ73aがオンであると判断される場合には(S52:Yes)、RL及びRRモータ44RL,44RRを作動させて、後輪202RL,202RRのキャンバ角を第2キャンバ角に調整し、後輪202RL,202RRへのネガティブキャンバの付与を解除すると共に(S253)、キャンバフラグ73aをオフし(S54)、第3計時装置385cによる計時を終了して(S88)、このキャンバ制御処理を終了する。
 これにより、車両201の状態量が所定の条件を満たしておらず車両201の走行状態が所定の直進状態でない場合、即ち、車両201の走行安定性を優先して確保する必要がない場合には、後輪202RL,202RRへのネガティブキャンバの付与を解除することで、キャンバスラストの影響を回避して、省燃費化を図ることができる。
 一方、S52の処理の結果、キャンバフラグ73aがオフであると判断される場合には(S52:No)、後輪202RL,202RRのキャンバ角は既に第2キャンバ角に調整されているので、S253及びS54の処理をスキップして、第3計時装置385cによる計時を終了し(S88)、このキャンバ制御処理を終了する。
 以上説明したように、第3実施の形態によれば、偏磨耗荷重判断処理において(図15参照)、車輪202の接地荷重が所定の接地荷重以上であると判断されるのに加え、第2計時装置385bによる計時により所定の時間が経過した(接地荷重に関する情報に基づいて車両201が所定の状態が継続されている)と判断される場合に(S74:Yes)、偏磨耗荷重フラグ73dがオンされる(S75)。そのため、キャンバ制御処理(図16参照)において、S84の処理の実行により車輪202のキャンバ角が頻繁に第2キャンバ角に調整されることを回避でき、キャンバ角の頻繁な切り替わりを抑制できる。これにより、路面の継ぎ目や部分的な舗装等による不連続な凹凸によって、走行中の車両201の懸架装置4の伸縮量が突発的に変化するような場合に、車輪202のキャンバ角を第1キャンバ角に維持できる。
 また、第3実施の形態によれば、キャンバ制御処理(図16参照)において走行状態フラグ73cがオンである場合(S45)、車輪202のキャンバ角が第1キャンバ角に調整されてから、第3計時装置385cによる計時により所定の時間が経過したと判断される場合に(S83:Yes)、車輪202のキャンバ角が第2キャンバ角に調整される(S84)。一方、S83の処理の結果、所定の時間が経過していない(車輪202のキャンバ角が第1キャンバ角に調整された所定の状態が、接地荷重に関する情報に基づいて車両201に継続されている)と判断される場合に(S83:No)、車輪202のキャンバ角が第1キャンバ角に維持される。この場合も、車輪202の接地荷重が所定の接地荷重以上と判断されるたびにキャンバ角調整装置244が作動して車輪202のキャンバ角が第2キャンバ角に調整されることを回避でき、キャンバ角の頻繁な切り替わりを抑制できる。
 また、第3実施の形態によれば、走行状態判断処理において(図13参照)、車両201の走行状態が所定の直進状態であると判断される場合であっても、第1計時装置385aによる計時により所定の時間が経過したと判断される場合に(S64:Yes)、走行状態フラグ73cがオンされる(S65)。そのため、キャンバ制御処理(図16参照)のS247の処理が実行されて、キャンバ角調整装置244が作動して車輪202のキャンバ角が頻繁に第1キャンバ角に調整されることを回避でき、キャンバ角の頻繁な切り替わりを抑制できる。
 なお、図13に示すフローチャート(走行状態判断処理)において、請求項6記載の待機手段としてはS64の処理の結果、実行されるS70の処理が該当する。図15に示すフローチャート(偏磨耗荷重判断処理)において、請求項5記載の継続状態判断手段としてはS74の処理が該当する。図16に示すフローチャート(キャンバ制御処理)において、請求項5記載の継続状態判断手段としてはS83の処理が、維持手段としてはS83の処理の結果S84の処理をスキップする処理が、それぞれ該当する。
 次いで、図17から図18を参照して、第4実施の形態について説明する。第3実施の形態では偏磨耗荷重判断処理(図15参照)において、偏磨耗荷重フラグ73dをオンするか否かを、所定の時間が経過するか否かを考慮して判断する場合について説明した。これに対し、第4実施の形態では、走行状態を示す所定期間内の状態値が所定条件を満たすか否かを考慮して判断する場合について説明する。また、第4実施の形態で説明する車両用制御装置400は、第2実施の形態における車両201に搭載される車両用制御装置200に代えて搭載されるものとして説明する。なお、第1実施の形態および第2実施の形態と同一の部分については、同一の符号を付してその説明を省略する。
 まず、図17を参照して、第4実施の形態における車両用制御装置400の電気的構成について説明する。RAM473は、制御プログラムの実行時に各種のデータを書き換え可能に記憶するためのメモリであり、図17に示すように、キャンバフラグ73a、状態量フラグ73b、走行状態フラグ73c、偏摩耗荷重フラグ73dに加え、リングバッファメモリ473eが設けられている。
 リングバッファメモリ473eは、後輪2RL,2RRの接地荷重の履歴を記憶するリングバッファであり、接地荷重センサ装置284のRL接地荷重センサ84RL及びRR接地荷重センサ84RRによる検出結果(接地荷重)が所定のレートでサンプリングされ、接地荷重がサンプリング時間に対応付けられて順次書き込まれる。このリングバッファメモリ473eへの書き込みは、リングバッファの先頭アドレスから順に行われ、その書き込みがリングバッファの最終アドレスへ至ると、再度リングバッファの先頭アドレスに戻って、その先頭アドレスから書き込みが継続される。
 CPU71は、リングバッファメモリ473eから所定時間内の接地荷重を読み出し、ROM72に記憶された所定の閾値(接地荷重)と比較し、閾値を超えた接地荷重のサンプリング数をカウントする。閾値を超えた接地荷重のサンプリング数が少ない場合は、後輪2RL,2RRの接地荷重が突発的に生じていると推定できる。
 次いで、図18を参照して、第4実施の形態における偏摩耗荷重判断処理について説明する。図18は、偏摩耗荷重判断処理を示すフローチャートである。この処理は、車両用制御装置400の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、左右の後輪202RL,202RRにネガティブキャンバが付与された状態で車両201が走行する場合に、後輪202RL,202RRの接地荷重がタイヤ(トレッド)に偏摩耗を引き起こす恐れのある偏摩耗荷重であるか否かを判断する処理である。なお、状態量判断処理、走行状態判断処理およびキャンバ制御処理は、第1実施の形態から第3実施の形態のいずれかと同様にできるので、説明を省略する。
 図18に示すS221~S32のいずれかの処理の結果、後輪202RL,202RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪202の接地荷重が偏摩耗荷重であると判断される場合には(S221~S32:No)、CPU71は、リングバッファメモリ473eから所定時間内の接地荷重を読み出し、所定時間内の接地荷重が所定の閾値(接地荷重)を超えたサンプリング数をカウントする(S91)。次いで、CPU71はそのサンプリング数と、ROM72に記憶された所定の閾値(サンプリング数)とを比較する(S92)。その結果、カウントされたサンプリング数が閾値以上であると判断される場合は(S92:Yes)、後輪202RL,202RRの接地荷重が大きな状態が継続しており、接地荷重に関する情報に基づいて車両201が所定の状態が継続されていると判断され、偏摩耗を引き起こすおそれがあると判断されるので、偏磨耗荷重フラグ73dをオンして(S93)、この偏磨耗荷重判断処理を終了する。
 一方、S92の処理の結果、カウントされたサンプリング数が閾値未満であると判断される場合は(S92:No)、後輪2RL,2RRの接地荷重は突発的であり、偏摩耗を引き起こすおそれがないと判断されるので、偏磨耗荷重フラグ73dをオフして(S94)、この偏磨耗荷重判断処理を終了する。
 以上説明したように第4実施の形態によれば、偏磨耗荷重判断処理において(図18参照)、車輪202の接地荷重が所定の接地荷重以上であるとの判断に加え、カウントされたサンプリング数が閾値以上であると判断される場合に(S92:Yes)、偏磨耗荷重フラグ73dがオンされる(S93)。そのため、キャンバ制御処理おいて、キャンバ角調整装置244が作動して車輪202のキャンバ角が頻繁に第2キャンバ角に調整されることを回避でき、キャンバ角の頻繁な切り替わりを抑制できる。これにより、路面の継ぎ目や部分的な舗装等による不連続な凹凸によって車輪202の接地荷重が突発的に加わるような場合に、車輪202のキャンバ角を第1キャンバ角に維持できる。なお、図18に示すフローチャート(偏磨耗荷重判断処理)において、請求項6記載の継続状態判断手段としてはS92の処理が該当する。
 次いで、図19を参照して、第5実施の形態について説明する。第4実施の形態では偏磨耗荷重判断処理(図18参照)において、偏磨耗荷重フラグ73dをオンするか否かを、所定期間内の状態値が所定条件を満たすか否かを考慮して判断する場合について説明した。これに対し第5実施の形態では、走行状態を示す状態値が所定条件を満たすか否かを考慮して判断する場合について説明する。また、第5実施の形態における偏磨耗荷重判断処理は、第2実施の形態における車両201に搭載される車両用制御装置200において実行されるものとして説明する。なお、第1実施の形態と同一の部分については、同一の符号を付してその説明を省略する。
 図19は第5実施の形態における偏摩耗荷重判断処理を示すフローチャートである。この処理は、車両用制御装置200の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理である。なお、状態量判断処理、走行状態判断処理およびキャンバ制御処理は、第1実施の形態と同様にできるので、説明を省略する。
 図19に示すS221~S32のいずれかの処理の結果、後輪202RL,202RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪202の接地荷重が偏摩耗荷重であると判断される場合には(S221~S32:No)、CPU71は、接地荷重センサ装置284により検出される接地荷重を時間微分して得られる時間微分値(接地荷重の変化の大きさ)と、ROM72に記憶された所定の閾値とを比較する(S95)。その結果、接地荷重の変化の大きさが閾値以下であると判断される場合は(S95:Yes)、接地荷重の変化は小さいが接地荷重は漸次増加しており、車両201が所定の状態が継続されていると判断されるので、偏磨耗荷重フラグ73dをオンして(S93)、この偏磨耗荷重判断処理を終了する。
 一方、S95の処理の結果、接地荷重の変化の大きさが閾値より大きいと判断される場合は(S95:No)、後輪2RL,2RRの接地荷重はタイヤが受ける衝撃等によって突発的に生じていると判断されるので、偏磨耗荷重フラグ73dをオフして(S94)、この偏磨耗荷重判断処理を終了する。
 以上説明したように第5実施の形態によれば、偏磨耗荷重判断処理において(図19参照)、車輪202の接地荷重が所定の接地荷重以上であるとの判断に加え、接地荷重の変化の大きさが閾値以下であると判断される場合に(S95:Yes)、偏磨耗荷重フラグがオンされる(S93)。そのため、キャンバ制御処理おいて、キャンバ角調整装置244が作動して車輪202のキャンバ角が頻繁に第2キャンバ角に調整されることを回避でき、キャンバ角の頻繁な切り替わりを抑制できる。これにより、路面の継ぎ目や部分的な舗装等による不連続な凹凸によって車輪202の接地荷重が突発的に変化するような場合に、車輪202のキャンバ角を第1キャンバ角に維持できる。なお、図19に示すフローチャート(偏磨耗荷重判断処理)において、請求項5記載の継続状態判断手段としてはS95の処理が該当する。
 次いで、図20から図21を参照して、第6実施の形態について説明する。第1実施の形態ではキャンバ制御処理(図7参照)において、前輪2FL,2FR及び後輪2RL,2RRにネガティブキャンバが付与された状態で偏磨耗荷重フラグ73d(図3参照)がオンである場合に(S49:Yes)、前輪2FL,2FR及び後輪2RL,2RRへのネガティブキャンバの付与を解除する場合について説明した。これに対し、第6実施の形態では、前輪2FL,2FR及び後輪2RL,2RRにネガティブキャンバが付与された状態で偏磨耗荷重フラグ73dがオンである場合に、前輪2FL,2FRへのネガティブキャンバの付与を解除する場合について説明する。また、第6実施の形態で説明する車両用制御装置500は、第1実施の形態における車両1に搭載される車両用制御装置100に代えて搭載されるものとして説明する。なお、第1実施の形態と同一の部分については、同一の符号を付してその説明を省略する。
 まず、図20を参照して、第6実施の形態における車両用制御装置500の電気的構成について説明する。RAM573は、制御プログラムの実行時に各種のデータを書き換え可能に記憶するためのメモリであり、図20に示すように、前輪キャンバフラグ573a、後輪キャンバフラグ573b、状態量フラグ73b、走行状態フラグ73c、偏摩耗荷重フラグ73dが設けられている。
 前輪キャンバフラグ573aは、前輪2FL,2FRのキャンバ角が第1キャンバ角に調整された状態にあるか否かを示すフラグであり、CPU71は、この前輪キャンバフラグ573aがオンである場合に前輪2FL,2FRのキャンバ角が第1キャンバ角に調整された状態にあると判断する。後輪キャンバフラグ573bは、後輪2RL,2RRのキャンバ角が第1キャンバ角に調整された状態にあるか否かを示すフラグであり、CPU71は、この後輪キャンバフラグ573bがオンである場合に後輪2RL,2RRのキャンバ角が第1キャンバ角に調整された状態にあると判断する。
 次いで、車両用制御装置500で実行される偏磨耗荷重判断処理について、図19を参照しながら説明する。偏磨耗荷重判断処理では、CPU71は、図19に示すS221の処理に代えて、各懸架装置4の内の少なくとも1の懸架装置4の伸縮量が所定の伸縮量以下であるか否かを判断する。また、図19に示すS226の処理に代えて、各車輪2(前輪2FL,2FR及び後輪2RL,2RR)の接地荷重が所定の接地荷重以下であるか否かを判断する。さらに図19に示すS227の処理に代えて、各車輪2(前輪2FL,2FR及び後輪2RL,2RR)のタイヤサイドウォールの潰れ代が所定の潰れ代以下であるか否かを判断する。
 これらの処理の結果、前輪2FL,2FR及び後輪2RL,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断される場合には(S221~S32:No)、CPU71は、接地荷重センサ装置84により検出される接地荷重を時間微分して得られる時間微分値(接地荷重の変化の大きさ)と、ROM72に記憶された所定の閾値とを比較する(S95)。その結果、接地荷重の変化の大きさが閾値以下であると判断される場合は(S95:Yes)、接地荷重の変化は小さいが接地荷重は漸次増加しており、車両1が所定の状態が継続されていると判断されるので、偏磨耗荷重フラグ73dをオンして(S93)、この偏磨耗荷重判断処理を終了する。
 一方、S95の処理の結果、接地荷重の変化の大きさが閾値より大きいと判断される場合は(S95:No)、前輪2FL,2FR又は後輪2RL,2RRの接地荷重はタイヤが受ける衝撃等によって突発的に生じていると判断されるので、偏磨耗荷重フラグ73dをオフして(S94)、この偏磨耗荷重判断処理を終了する。
 次いで、図21を参照して、キャンバ制御処理について説明する。図21は、キャンバ制御処理を示すフローチャートである。この処理は、車両用制御装置500の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、各車輪2(左右の前輪2FL,2FR及び左右の後輪2RL,2RR)のキャンバ角を調整する処理である。
 CPU71は、キャンバ制御処理に関し、まず、状態量フラグ73bがオンであるか否かを判断し(S101)、状態量フラグ73bがオンであると判断される場合には(S101:Yes)、後輪キャンバフラグ573bがオンであるか否かを判断する(S102)。その結果、後輪キャンバフラグ573bがオフであると判断される場合には(S102:No)、RLモータ及びRRモータ44RL,44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第1キャンバ角に調整し、後輪2RL,2RRにネガティブキャンバを付与する(S103)。後輪キャンバフラグ573bをオンした後(S104)、前輪キャンバフラグ573aがオンであるか否かを判断する(S105)。
 なお、S102の処理の結果、後輪キャンバフラグ573bがオンであると判断される場合は(S102:Yes)、後輪2RL,2RRのキャンバ角は既に第1キャンバ角に調整されているので、S103及びS104の処理をスキップして、S105の処理を実行する。
 S105の処理の結果、前輪キャンバフラグ573aがオフであると判断される場合には(S105:No)、FLモータ及びFRモータ44FL,44FRを作動させて、左右の前輪2FL,2FRのキャンバ角を第1キャンバ角に調整し、前輪2FL,2FRにネガティブキャンバを付与する(S106)。前輪キャンバフラグ573aをオンした後(S107)、このキャンバ制御処理を終了する。
 これにより、車両1の状態量が所定の条件を満たす場合、即ち、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上であり、車輪2のキャンバ角が第2キャンバ角の状態で車両1が加速、制動または旋回すると車輪2がスリップする恐れがあると判断される場合には、車輪2(前輪2FL,2FR及び後輪2RL,2RR)にネガティブキャンバを付与することで、車輪2に発生するキャンバスラストを利用して、車両1の走行安定性を確保することができる。
 また、車両1の状態量が所定の条件を満たす場合には、S102~S107の処理において、ネガティブキャンバを後輪2RL,2RRに付与した後、前輪2FL,2FRに付与するので、前輪2FL,2FR及び後輪2RL,2RRのキャンバ角が同時に調整されることを防止すると共に、後輪2RL,2RRに発生するキャンバスラストを効果的に利用できる。これにより、車輪2のキャンバ角が調整されるときの車両1の走行安定性を向上できる。
 一方、S105の処理の結果、前輪キャンバフラグ573aがオンであると判断される場合には(S105:Yes)、前輪2FL,2FRのキャンバ角は既に第1キャンバ角に調整されているので、S106及びS107の処理をスキップして、このキャンバ制御処理を終了する。
 これに対し、S101の処理の結果、状態量フラグ73bがオフであると判断される場合には(S101:No)、走行状態フラグ73cがオンであるか否かを判断し(S108)、走行状態フラグ73cがオンであると判断される場合には(S108:Yes)、後輪キャンバフラグ573bがオンであるか否かを判断する(S109)。その結果、後輪キャンバフラグ573bがオフであると判断される場合には(S109:No)、RLモータ及びRRモータ44RL,44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第1キャンバ角に調整し、後輪2RL,2RRにネガティブキャンバを付与する(S110)。後輪キャンバフラグ573bをオンした後(S111)、前輪キャンバフラグ573aがオンであるか否かを判断する(S112)。
 なお、S109の処理の結果、後輪キャンバフラグ573bがオンであると判断される場合は(S109:Yes)、後輪2RL,2RRのキャンバ角は既に第1キャンバ角に調整されているので、S110及びS111の処理をスキップして、S112の処理を実行する。
 S112の処理の結果、前輪キャンバフラグ573aがオフであると判断される場合には(S112:No)、RLモータ及びRRモータ44RL,44RRを作動させて、左右の前輪2FL,2FRのキャンバ角を第1キャンバ角に調整し、前輪2FL,2FRにネガティブキャンバを付与し(S113)、前輪キャンバフラグ573aをオンして(S114)、S115の処理を実行する。
 これにより、車両1の走行状態が所定の直進状態である場合、即ち、車両1の走行速度が所定の速度以上であると共にステアリング63の操作量が所定の操作量以下であり、車両1が比較的高速で直進している場合には、車輪2にネガティブキャンバを付与することで、車輪2の横剛性を利用して、車両1の直進安定性を確保することができる。
 また、車両1の走行状態が所定の直進状態である場合には、S109~S114の処理において、ネガティブキャンバを後輪2RL,2RRに付与した後、前輪2FL,2FRに付与するので、前輪2FL,2FR及び後輪2RL,2RRのキャンバ角が同時に調整されることを防止すると共に、後輪2RL,2RRに発生するキャンバスラストを効果的に利用できる。これにより、車輪2のキャンバ角が調整されるときの車両1の直進安定性を向上できる。
 一方、S112の処理の結果、前輪キャンバフラグ573aがオンであると判断される場合には(S112:Yes)、前輪2FL,2FRのキャンバ角は既に第1キャンバ角に調整されているので、S113及びS114の処理をスキップして、偏摩耗荷重フラグ73dがオンであるか否かを判断する(S115)。その結果、偏摩耗荷重フラグ73dがオンであると判断される場合には(S115:Yes)、FLモータ及びFRモータ44FL,44FRを作動させて、左右の前輪2FL,2FRのキャンバ角を第2キャンバ角に調整し、前輪2FL,2FRへのネガティブキャンバの付与を解除すると共に(S116)、前輪キャンバフラグ573aをオフして(S117)、このキャンバ制御処理を終了する。
 これにより、車輪2の接地荷重が偏摩耗荷重である場合、即ち、前輪2FL,2FRにネガティブキャンバが付与された状態で車両1が走行すると、前輪2FL,2FRのタイヤ(トレッド)に偏摩耗を引き起こす恐れがある場合には、前輪2FL,2FRへのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。さらに後輪2RL,2RRへのネガティブキャンバの付与は維持されるので、後輪2RL,2RRの横剛性を利用して車両1の直進安定性を確保できる。
 一方、S115の処理の結果、偏摩耗荷重フラグ73dがオフであると判断される場合には(S115:No)、車輪2の接地荷重は偏摩耗荷重ではなく、前輪2FL,2FRにネガティブキャンバが付与された状態で車両1が走行しても、タイヤ(トレッド)が偏摩耗する恐れはないと判断されるので、S116及びS117の処理をスキップして、このキャンバ制御処理を終了する。
 これに対し、S108の処理の結果、走行状態フラグ73cがオフであると判断される場合には(S108:No)、前輪キャンバフラグ573aがオンであるか否かを判断する(S118)。その結果、前輪キャンバフラグ573aがオンであると判断される場合には(S118:Yes)、FLモータ及びFRモータ44FL,44FRを作動させて、左右の前輪2FL,2FRのキャンバ角を第2キャンバ角に調整し、前輪2FL,2FRへのネガティブキャンバの付与を解除すると共に(S119)、前輪キャンバフラグ573aをオフして(S120)、S121の処理を実行する。
 なお、S118の処理の結果、前輪キャンバフラグ573aがオフであると判断される場合は(S118:No)、前輪2FL,2FRのキャンバ角は既に第2キャンバ角に調整されているので、S119及びS120の処理をスキップして、S121の処理を実行する。
 S121の処理の結果、後輪キャンバフラグ573bがオンであると判断される場合には(S121:Yes)、RLモータ及びRRモータ44RL,44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S122)、後輪キャンバフラグ573bをオフして(S123)、このキャンバ制御処理を終了する。
 これにより、車両1の状態量が所定の条件を満たしておらず車両1の走行状態が所定の直進状態でない場合、即ち、車両1の走行安定性を優先して確保する必要がない場合には、車輪2へのネガティブキャンバの付与を解除することで、キャンバスラストの影響を回避して、省燃費化を図ることができる。
 また、この場合にS119~S123の処理において、前輪2FL,2FRのネガティブキャンバの付与を解除した後、後輪2RL,2RRのネガティブキャンバの付与を解除するので、前輪2FL,2FR及び後輪2RL,2RRのキャンバ角が同時に調整されることを防止できる。これにより、車輪2のキャンバ角が調整されるときの車両1の走行安定性を確保できる。
 一方、S121の処理の結果、後輪キャンバフラグ573bがオフであると判断される場合には(S121:No)、後輪2RL,2RRのキャンバ角は既に第2キャンバ角に調整されているので、S122及びS123の処理をスキップして、このキャンバ制御処理を終了する。
 以上説明したように、第6実施の形態によれば、車輪2の接地荷重が所定の接地荷重以上であると判断される場合に、前輪2FL,2FRのキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、前輪2FL,2FRへのネガティブキャンバの付与が解除される。これにより前輪2FL,2FRのタイヤの偏摩耗を抑制することができる。
 即ち、車両1は前輪2FL,2FR側に質量の大きな車輪駆動装置3が搭載されているので、前輪2FL,2FRの接地荷重は後輪2RL,2RRの接地荷重に比べて大きくなり易い。また、制動力が加わると車両1の荷重が前輪2FL,2FR側に移動するので、前輪2FL,2FRの接地荷重は後輪2RL,2RRの接地荷重に比べて大きくなり易い。また、車両1が旋回するときにはステアリング63の操作により前輪2FL,2FRが操作されるので、前輪2FL,2FRは偏磨耗し易い傾向がある。よって、車輪2の接地荷重が所定の接地荷重以上である場合には、前輪2FL,2FRへのネガティブキャンバの付与を解除することで、前輪2FL,2FRのタイヤの偏摩耗を抑制することができる。その結果、タイヤの寿命を向上させることができる。また、タイヤの偏摩耗を抑制することで、タイヤの接地面が不均一となるのを防止して、車両1の走行安定性を確保することができる。更に、タイヤの偏摩耗を抑制できるので、その分、省燃費化を図ることができる。
 また、前輪2FL,2FR及び後輪2RL,2RRにネガティブキャンバが付与された状態で、車輪2の接地荷重が所定の接地荷重以上であると判断される場合は、後輪2RL,2RRへのネガティブキャンバの付与は維持される。偏磨耗し難い後輪2RL,2RRへのネガティブキャンバの付与を維持することにより、車両1の直進安定性を確保できる。これにより前輪2FL,2FRの偏磨耗を防止できると共に、車両1の直進安定性を確保できる。
 また、第6実施の形態によれば、車両1の状態量が所定の条件を満たすと判断される場合に、車輪2のキャンバ角が第1キャンバ角に調整され、車輪2にネガティブキャンバが付与されるので、車輪2に発生するキャンバスラストを利用して、車両1の走行安定性を確保することができる。また、車両1の状態量が所定の条件を満たしていないと判断され、且つ、車輪2の接地荷重が所定の接地荷重以上であると判断される場合には、前輪2FL,2FRのキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、前輪2FL,2FRへのネガティブキャンバの付与が解除されるので、前輪2FL,2FRのタイヤの偏摩耗を抑制することができる。よって、走行安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができる。
 また、第6実施の形態によれば、車両1の走行状態が所定の直進状態であると判断される場合に、車輪2のキャンバ角が第1キャンバ角に調整され、車輪2にネガティブキャンバが付与されるので、車輪2の横剛性を利用して、車両1の直進安定性を確保することができる。また、車両1の走行状態が所定の直進状態であると判断され、且つ、車輪2の接地荷重が所定の接地荷重以上であると判断される場合には、前輪2FL,2FRのキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、前輪2FL,2FRへのネガティブキャンバの付与が解除される。これにより前輪2FL,2FRのタイヤの偏摩耗を抑制することができる。よって、直進安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができる。
 また、偏磨耗荷重判断処理において(図19参照)、車輪2の接地荷重が所定の接地荷重以上であるとの判断に加え、接地荷重の変化の大きさが閾値以下であると判断される場合に(S95:Yes)、偏磨耗荷重フラグがオンされる(S93)。そのため、キャンバ制御処理おいて、キャンバ角調整装置44が作動して車輪2のキャンバ角が頻繁に第2キャンバ角に調整されることを回避でき、キャンバ角の頻繁な切り替わりを抑制できる。これにより、路面の継ぎ目や部分的な舗装等による不連続な凹凸によって車輪2の接地荷重が突発的に変化するような場合に、車輪2のキャンバ角を第1キャンバ角に維持できる。
 なお、図19に示すフローチャート(偏磨耗荷重判断処理)において、請求項5記載の継続状態判断手段としてはS95の処理が、図21に示すフローチャート(キャンバ制御処理)において、請求項1記載の接地荷重判断手段としてはS115の処理が、第1キャンバ角調整手段としてはS116の処理が、請求項2記載の状態量判断手段としてはS101の処理が、第2キャンバ角調整手段としてはS103及びS106の処理が、請求項3記載の走行状態判断手段としてはS108の処理が、第3キャンバ角調整手段としてはS110及びS113の処理が、それぞれ該当する。
 また、図21に示すフローチャートにおいて、請求項8記載の走行安定状態判定処理手段としてはS108の処理が、キャンバ付与処理手段としてはS110及びS113の処理が、それぞれ該当する。
 次いで、図22から図29を参照して、第7実施の形態について説明する。なお、以下の第7実施の形態から第9実施の形態において、第1実施の形態と同一の部分には、同一の符号を付して詳細な説明を省略する。図22は本発明の第7実施の形態における車両301の概念図である。図22において、車両301の本体であるボディBに、左前方、右前方、左後方及び右後方の車輪302FL,302FR,302RL,302RRが回転自在に配設されている。なお、車輪302FL,302FRによって前輪が、車輪302RL,302RRによって後輪が構成される。
 本実施の形態において、車両301は、駆動源としてのエンジン303により後輪駆動方式の構造を有し、車輪302RL,302RRが駆動輪として機能する。そして、エンジン303と各車輪302RL,302RRとが、変速機としての自動変速機304、第1の伝動軸としてのプロペラシャフト305、差動装置306及び第2の伝動軸としてのドライブシャフト307等を介して連結される。エンジン303を駆動することによって発生させられた回転が、自動変速機304において所定の変速比で変速され、車輪302RL,302RRに伝達される。
 本実施の形態において、車両301は後輪駆動方式の構造であるが、前輪駆動方式の構造や四輪駆動方式の構造とすることもできる。また、エンジン303に代えて、第1の駆動源としてのエンジン、及び第2の駆動源としての発電機/モータから成る駆動ユニットを配設してハイブリッド型車両を構成することもできる。また、第1の駆動源としてのエンジン、第2の駆動源としての発電機及び第3の駆動源としてのモータから成る駆動ユニットを配設してハイブリッド型車両を構成することもできる。さらに駆動源としてのモータを配設して電気自動車を構成することもできる。
 車両301は、車両301の操舵を行うための操作部としての、かつ、操舵部材としてのステアリングホイール63と、車両301を加速するための操作部としての、かつ、加速操作部材としてのアクセルペダル61と、車両301を制動するための操作部としての、かつ、制動操作部材としてのブレーキペダル62とを備えている。
 アクチュエータ308,309は、それぞれボディBと各車輪302RL,302RRとの間に配設され、各車輪302RL,302RRを回転させたり、各車輪302RL,302RRにキャンバを付与したり、キャンバの付与を解除したりするためのキャンバ可変機構(キャンバ角調整装置)である。なお、本実施の形態においては、ボディBと各車輪302RL,302RRとの間に各アクチュエータ308,309(キャンバ角調整装置)が配設されるようになっているが、ボディBと各車輪302FL,302FRとの間にアクチュエータ308,309を配設したり、ボディBと車輪302FL,302FR,302RL,302RRとの間にアクチュエータ308,309を配設したりすることができる。
 タイヤ302aは、幅方向の全体にわたって損失正接を小さくすることにより、トレッドの変形によって発生する転がり抵抗が小さくされた低転がり抵抗タイヤが使用される。本実施の形態においては、転がり抵抗を小さくするためにタイヤ302aの幅が通常のタイヤより小さくされるが、トレッドの溝のパターンであるトレッドパターンを、転がり抵抗が小さくなるような形状にしたり、少なくともトレッドの部分の材料を、転がり抵抗が小さいものにしたりすることができる。
 なお、損失正接は、トレッドが変形する際のエネルギーの吸収の度合いを表し、貯蔵剪(せん)断弾性率に対する損失剪断弾性率の比で表すことができる。損失正接が小さいほどトレッドによるエネルギーの吸収が少なくなるので、タイヤ302aに発生する転がり抵抗が小さくなり、タイヤ302aに発生する摩耗が少なくなる。これに対して、損失正接が大きいほどトレッドによるエネルギーの吸収が多くなるので、タイヤ302aに発生する転がり抵抗が大きくなり、タイヤ302aに発生する摩耗が多くなる。車両301においては、タイヤ302aの転がり抵抗が小さくされるので、燃費を良くすることができる。
 次に、図23を参照して、アクチュエータ308の構造について説明する。なお、左右のアクチュエータ308,309の構造は同じであるので、車輪302RLのアクチュエータ308について説明する。図23は車輪302RLの断面図である。
 アクチュエータ308は、ベース部材としてのナックル(図示せず)に固定されたキャンバ制御用の駆動部としてのモータ44RLと、ナックルに対して揺動自在に配設された可動部材としての可動プレート47とを備える。さらにアクチュエータ308は、第1の変換要素としてのウォームギヤが取り付けられたRLモータ44RLの出力軸44aと、ナックルに対して回転自在に配設され、ウォームギヤと噛(し)合される第2の変換要素としてのウォームホイール45と、ウォームホイール45と可動プレート47とを連結する第3の変換要素としての、かつ、連結要素としてのアーム46とを有する。
 アーム46は、一端において、ウォームホイール45の回転軸から偏心させた位置で、第1の連結部を介してウォームホイール45と連結され、他端において、可動プレート47の上端で、第2の連結部を介して可動プレート47と連結される。この場合、可動プレート47によって第4の変換要素が構成される。RLモータ44RLを駆動すると、出力軸44aの回転によりウォームホイール45が回転させられ、アーム46が進退することにより可動プレート47が揺動される。その結果、可動プレート47が路面上の垂線に対して傾けられた角度と等しいキャンバが車輪302RLに付与される。なお、ホイールWは、タイヤ302aが外周に嵌合される部材であり、可動プレート47に対して回転自在に支持され、ドライブシャフト307と連結される。
 次に、図24を参照して、車両301に搭載される車両用制御装置600について説明する。図24は車両301の制御ブロック図である。
 図24において、制御部601はコンピュータを構成する第1の制御装置であり、第1の記憶部としてのROM602、第2の記憶部としてのRAM603が接続されている。自動変速機制御部91は第2の制御装置としての変速機制御部である。車速センサ92は車速を検出する車速検出部であり、キャンバセンサ93は各車輪302RL,302RRに付与されたキャンバを検出するキャンバ検出部である。
 ステアリングセンサ63bは、ステアリングホイール63(図22参照)の操作量を表す操舵量としてのステアリング角度を検出する操舵量検出部としてのステアリング操作量検出部である。ヨーレートセンサ81aは、車両301のヨーレートを検出するヨーレート検出部である。横Gセンサ80bは横Gを検出する第1の加速度検出部であり、前後Gセンサ80aは前後Gを検出する第2の加速度検出部である。アクセルセンサ61bはアクセルペダル61の操作量を表す踏込量(アクセル開度)を検出するアクセル操作量検出部である。ブレーキセンサ62bはブレーキペダル62の操作量を表す踏込量(ブレーキストローク)を検出するブレーキ操作量検出部である。
 なお、アクセルセンサ61b、ブレーキセンサ62b、ステアリングセンサ63bは、第1実施の形態のアクセルペダルセンサ装置61a、ブレーキペダルセンサ装置62a、ステアリングセンサ装置63a(図3参照)の一部にそれぞれ該当する。
 サスストロークセンサ83aは、各車輪302RL,302RRの図示されないサスペンション装置のストローク、すなわち、サスストロークを検出する懸架検出部である。荷重センサ84aは各車輪302RL,302RRに加わる荷重を検出する荷重検出部である。タイヤ潰れ代センサ85aはタイヤ302aの変形量である潰れ代、すなわち、タイヤ潰れ代を検出するタイヤ潰れ代検出部である。ボディB、アクチュエータ308,309、制御部601、車輪302RL,302RR等によってキャンバ制御装置が構成される。サスストロークセンサ83a、荷重センサ84a、タイヤ潰れ代センサ85aは、第1実施の形態のサスストロークセンサ装置83、接地荷重センサ装置84、サイドウォール潰れ代センサ装置85(図3参照)の一部にそれぞれ該当する。
 なお、ステアリングセンサ63bは、操舵量として、ステアリング角度に代えて、車輪302FL,302FRの舵角、舵角速度等を検出することができる。アクセルセンサ61bは、アクセルペダル61の踏込量に代えて、アクセルペダル61の操作量を表す踏込速度、踏込加速度等を検出することができる。ブレーキセンサ62bは、ブレーキペダル62の踏込量に代えて、ブレーキペダル62の操作量を表す踏込速度、踏込加速度等を検出することができる。
 また、サスストロークセンサ83aは、ハイトセンサ、磁気センサ等によって構成され、荷重センサ84aは、サスペンション装置に配設されたロードセル(歪みセンサ)によって構成され、タイヤ潰れ代センサ85aは、タイヤ302aに配設されたロードセル(歪みセンサ)によって構成される。
 制御部601は車両301の全体の制御を行い、自動変速機制御部91は自動変速機304の全体の制御を行う。自動変速機304は、所定の数の差動回転装置としてのプラネタリギヤを備えた変速機構、プラネタリギヤを構成するサンギヤ、リングギヤ及びキャリヤの各歯車要素間を選択的に連結したり、所定の歯車要素を筐体としての自動変速機ケースに固定したりするためのクラッチ及びブレーキから成る各摩擦係合要素、該各摩擦係合要素を係脱させるための油圧サーボ、該各油圧サーボに係合油圧を供給するためのバルブ等を備える。
 そして、自動変速機制御部91の図示されない変速処理手段が、変速処理を行い、アクセルペダル61(図22参照)の踏込量、車速等を読み込み、踏込量、車速等に基づいて複数の変速段のうちの所定の変速段の変速出力を発生させると、該変速出力に基づいて所定の油圧サーボに係合油圧が供給され、摩擦係合要素が係脱させられる。その結果、所定の歯車要素から、変速段に対応する変速比の回転が出力され、プロペラシャフト305に伝達される。なお、変速比は、自動変速機304から出力される回転数に対する、自動変速機304に入力される回転数の比を表す。変速比が1以上である場合、自動変速機304において、低速走行に適したアンダードライブの変速が行われ、変速比が1より小さい場合、自動変速機304において、高速走行に適したオーバードライブの変速が行われる。
 ところで、本実施の形態においては、タイヤ302aに低転がり抵抗タイヤが使用されるが、その場合、タイヤ302aの剛性が低いので、走行安定性及び旋回安定性がその分低下してしまう。そこで、本実施の形態においては、タイヤ302aが低転がり抵抗タイヤであっても、走行安定性及び旋回安定性を高くすることができるように、所定のキャンバ付与条件が成立したかどうかが判断され、所定のキャンバ付与条件が成立した場合に、各アクチュエータ308,309が作動させられ、各車輪302RL,302RRに所定の負のキャンバθが付与される。
 この場合、各車輪302RL,302RRにキャンバθが付与された状態で車両を走行させるのに伴ってタイヤ302aに偏摩耗が発生すると、タイヤ302aの寿命が短くなってしまう。そこで、本実施の形態においては、タイヤ302aに偏摩耗が発生するのを抑制するために、各車輪302RL,302RRにキャンバθが付与された状態で車両301を走行させているときに、所定のキャンバ解除条件が成立したかどうかが判断され、キャンバ解除条件が成立した場合に、アクチュエータ308,309が作動させられ、各車輪302RL,302RRへのキャンバθの付与が解除される。
 次に、各車輪302RL,302RRにキャンバθを付与したり、キャンバθの付与を解除したりするための制御部601の動作について説明する。図25は本発明の第7実施の形態における制御部601の動作を示す第1のメインフローチャートであり、図26は第7実施の形態における制御部601の動作を示す第2のメインフローチャートであり、図27は第7実施の形態における操縦安定キャンバ要否判定処理のサブルーチンを示す図であり、図28は第7実施の形態における直進安定キャンバ要否判定処理のサブルーチンを示す図であり、図29は第7実施の形態における接地荷重判定処理のサブルーチンを示す図である。
 まず、制御部601の図示されない判定指標取得処理手段は、判定指標取得処理を行い、各車輪302RL,302RRにキャンバθを付与したり、キャンバθの付与を解除したりするために必要な判定指標を取得する。本実施の形態においては、車両301の状態を表す車両状態、及び操作者である運転者による各操作部の操作の状態を表す操作状態を判定指標として取得する(S301,S302)。
 そのために、判定指標取得処理手段は、ヨーレートセンサ81a、横Gセンサ80b、前後Gセンサ80a、キャンバセンサ93、サスストロークセンサ83a、荷重センサ84a、タイヤ潰れ代センサ85a等の各センサのセンサ出力を読み込み、車両状態として、ヨーレート、横G、前後G、キャンバθ、サスストローク、荷重、タイヤ潰れ代等を取得する。また、判定指標取得処理手段は、サスストロークに基づいてロール角を算出し、該ロール角を車両状態として取得する。
 なお、ロール角検出部としてロール角センサを配設し、該ロール角センサのセンサ出力を読み込むことによって、ロール角を取得することもできる。さらに、判定指標取得処理手段の変速比取得処理手段は、変速比取得処理を行い、自動変速機制御部91から自動変速機304に送られている変速指令を読み込むとともに、ROM602から変速指令に対応させて記録されている変速比を読み込み、車両状態として取得する。
 そして、判定指標取得処理手段は、ステアリングセンサ63b、アクセルセンサ61b、ブレーキセンサ62b等の各センサのセンサ出力を読み込み、操作状態として、ステアリング角度、アクセルペダル61の踏込量、ブレーキペダル62の踏込量等を取得する。また、判定指標取得処理手段は、ステアリング角度に基づいて、ステアリング角度の変化率を表すステアリング角速度、及び該ステアリング角速度の変化率を表すステアリング角加速度を操作状態として取得する。
 次に、制御部601の図示されない第1のキャンバ要否判定処理手段としての操縦安定キャンバ要否判定処理手段は、第1のキャンバ要否判定処理としての操縦安定キャンバ要否判定処理を行い、車両301の旋回時に、旋回用のキャンバ付与条件が成立したかどうかを判断する(S303,S304)。そのために、操縦安定キャンバ要否判定処理手段は、ステアリング角度を読み込み、該ステアリング角度が閾(しきい)値γth以上であるかどうかを判断する(S317、図27参照)。その結果、ステアリング角度が閾値γth以上である場合に(S317:Yes)、旋回用のキャンバ付与条件が成立したと判断する(S318)。
 そして、キャンバ付与条件が成立した場合(S304:Yes)、制御部601の図示されないキャンバ判定処理手段は、キャンバ判定処理を行い、キャンバθを読み込み、キャンバθが、-5〔°〕≦θ<α〔°〕であるかどうかによって、各車輪302RL,302RRにキャンバθが付与されているかどうかを判断する(S305)。なお、値αは、車両ごとにあらかじめ設定された、定常状態におけるキャンバである。
 各車輪302RL,302RRにキャンバθが付与されている場合(S305:Yes)、制御部601は処理を終了し、キャンバθが付与されていない場合(S305:No)、制御部601の図示されないキャンバ制御処理手段は、キャンバ制御処理を行う。すなわち、キャンバ制御処理手段のキャンバ付与処理手段は、キャンバ付与処理を行い、アクチュエータ308,309を作動させて各車輪302RL,302RRにキャンバθ(-5〔°〕≦θ<α〔°〕)を付与する(S306)。
 このとき、各車輪302RL,302RRにキャンバθが付与されるのに伴って、車輪302RL,302RRのタイヤ302aに互いに対向する方向にキャンバスラストが発生する。車両301を左方に向けて旋回させる場合は、車両301に遠心力が発生するので、外周側の車輪302RR(外輪)の接地荷重が大きくなり、車輪302RRのタイヤ302aに発生するキャンバスラストが内周側の車輪302RL(内輪)のタイヤ302aに発生するキャンバスラストより大きくなる。また、車両301を右方に向けて旋回させる場合は、外周側の車輪302RL(外輪)の接地荷重が大きくなり、車輪302RLのタイヤ302aに発生するキャンバスラストが内周側の車輪302RR(内輪)のタイヤ302aに発生するキャンバスラストより大きくなる。したがって、車両301に十分な求心力を発生させることができるので、タイヤ302aとして低転がり抵抗タイヤが使用されても、旋回安定性を高くすることができる。
 これに対して、操縦安定キャンバ要否判定処理(S303)を経て、旋回用のキャンバ付与条件が成立しない場合(S304:No)、制御部601の図示されない第2のキャンバ要否判定処理手段としての、かつ、走行安定状態判定処理手段としての直進安定キャンバ要否判定処理手段は、第2のキャンバ要否判定処理としての、かつ、走行安定状態判定処理としての直進安定キャンバ要否判定処理を行う(S307)。次いで、車両301の直進走行時に、車両301の走行状態が安定していて、第1、第2の走行安定条件が成立したかどうかによって、直進走行用のキャンバ付与条件が成立したかどうかを判断する(S308)。
 そのために、直進安定キャンバ要否判定処理手段は、車速及びステアリング角度を読み込む。そして、車速を読み込む直前の所定の時間(本実施の形態においては、過去X〔秒〕間)の車速に基づいて車速算出値(本実施の形態においては平均車速)を算出するとともに、ステアリング角度を読み込む直前の所定の時間(本実施の形態においては過去Y〔秒〕間)のステアリング角度に基づいて操舵量算出値(本実施の形態においては平均ステアリング角度)を算出する。
 直進安定キャンバ要否判定処理手段は、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さいかどうかを判断し(S319、図28参照)、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に(S319:Yes)、車両301の走行状態が安定していて、直進走行用のキャンバ付与条件が成立したと判断する(S320)。
 なお、本実施の形態においては、過去X〔秒〕間の平均車速が閾値vth1以上である場合、第1の走行安定条件が成立し、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合、第2の走行安定条件が成立する。また、閾値γth1は閾値γthより小さく設定される。
 そして、キャンバ付与条件が成立した場合(S308:Yes)、キャンバ判定処理手段は、キャンバθを読み込み、各車輪302RL,302RRにキャンバθが付与されているかどうかを判断する(S309)。各車輪302RL,302RRにキャンバθが付与されていない場合(S309:No)、キャンバ付与処理手段は、アクチュエータ308,309を作動させて各車輪302RL,302RRにキャンバθを付与する(S310)。
 このとき、各車輪302RL,302RRにキャンバθを付与するのに伴って、車輪302RL,302RRのタイヤ302aに互いに対向する方向にキャンバスラストが発生する。その結果、タイヤ302aとして低転がり抵抗タイヤが使用されても、各車輪302RL,302RRに外力が加わった場合は、外力と逆方向のキャンバスラストが大きくなる。したがって、車両301の復元力が大きくなり、走行安定性を高くすることができる。
 ところで、前述されたように、各車輪302RL,302RRにキャンバθが付与された状態で車両301を走行させるのに伴ってタイヤ302aに偏摩耗が発生すると、タイヤ302aの寿命が短くなってしまう。そこで、制御部601の図示されないキャンバ解除判定処理手段としての接地荷重判定処理手段は、キャンバ解除判定処理としての接地荷重判定処理を行い、キャンバ解除条件が成立したかどうかを判断する(S311,S312)。
 そのために、接地荷重判定処理手段は、接地荷重指標として、タイヤ潰れ代、サスストローク、前後G、ヨーレート、ロール角、荷重、ブレーキストローク、アクセル開度、ステアリング角度、ステアリング角速度、ステアリング角加速度等を読み込み、各接地荷重指標が、それぞれの閾値以上であるかどうかを判断する(S321~S331、図29参照)。各接地荷重指標のうちのいずれか一つ(本実施の形態においては、少なくともタイヤ潰れ代)が閾値以上である場合に(S321~S331:Yes)、接地荷重がタイヤ302aに偏摩耗を発生させると判断し、キャンバ解除条件が成立したと判断する(S332)。
 そして、接地荷重判定処理においてキャンバ解除条件が成立すると、キャンバ制御処理手段のキャンバ解除処理手段は、キャンバ解除処理を行い、アクチュエータ308,309を作動させて各車輪302RL,302RRへのキャンバθの付与を解除する(S313)。
 また、操縦安定キャンバ要否判定処理(S303)及び直進安定キャンバ要否判定処理(S307)を経て、キャンバ付与条件が成立しないと判断されると(S308:No)、キャンバ判定処理手段は、キャンバθを読み込み、現在、各車輪302RL,302RRにキャンバθが付与されているかどうかを判断する(S314)。
 そして、各車輪302RL,302RRにキャンバθが付与されている場合(S314:Yes)、キャンバ解除処理手段は、制御部601に内蔵された計時処理部としての図示されないタイマによる計時を開始し、所定の時間が経過すると(S315:Yes)、アクチュエータ308,309を作動させて各車輪302RL,302RRへのキャンバθの付与を解除する(S316)。
 このように、本実施の形態においては、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に各車輪302RL,302RRにキャンバθが付与される。これにより、高速道路、幹線道路等の道路において車両301を高速又は中速で走行させている間だけ、各車輪302RL,302RRにキャンバθが付与される。一方、高速道路、幹線道路等以外の道路において車両301を低速で走行させている場合、高速道路、幹線道路等の道路において渋滞が発生している場合等には、キャンバθは付与されない。また、各車輪302RL,302RRにキャンバθが付与された状態で車両301を走行させている間にキャンバ解除条件が成立すると、各車輪302RL,302RRへのキャンバθの付与が解除される。
 したがって、キャンバθが付与される頻度を低くすることができ、しかも、キャンバθが付与される時間を短くすることができるので、タイヤ302aに偏摩耗が発生するのを十分に抑制することができる。その結果、タイヤ302aの寿命を長くすることができる。
 また、車両301を走行させている間、各車輪302RL,302RRにキャンバθが付与され続けることがないので、タイヤ302aの転がり抵抗をその分小さくすることができる。したがって、燃費を良くすることができる。
 なお、本実施の形態においては、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に各車輪302RL,302RRにキャンバθが付与されるが、これに限られるものではない。例えば、ナビゲーション装置が搭載された車両においては、現在地検出部としてのGPSセンサによって車両の自車位置を検出し、自車位置が高速道路、幹線道路等の道路上にあり、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に、各車輪302RL,302RRにキャンバθを付与することができる。
 その場合、ナビゲーション装置において、制御部の自車位置判定処理手段は、自車位置判定処理を行い、情報記録部に記録された地図データに基づいて、自車位置が高速道路、幹線道路等の道路上にあるかどうかを判断し、判断結果を制御部601に送る。そして、直進安定キャンバ要否判定処理は、自車位置が高速道路、幹線道路等の道路上にあり、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に、キャンバ付与条件が成立したと判断する。
 また、直進安定キャンバ要否判定処理手段は、ナビゲーション装置が交通情報センタ等から取得した交通情報等を読み込み、該交通情報等に基づいて道路に渋滞が発生しているかどうかを判断する。自車位置が高速道路、幹線道路等の道路上にあり、該道路に渋滞が発生しておらず、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に、キャンバ付与条件が成立したと判断する。
 さらに、本実施の形態において、操縦安定キャンバ要否判定処理手段は、ステアリング角度が閾値γth以上であるかどうかを判断し、ステアリング角度が閾値γth以上である場合に、キャンバ付与条件が成立したと判断するが、これに限られるものではない。例えば、操舵量算出値として平均ステアリング角度を算出し、該平均ステアリング角度が閾値以上であるかどうかを判断し、平均ステアリング角度が閾値以上である場合に、キャンバ付与条件が成立したと判断することができる。
 また、本実施の形態において、直進安定キャンバ要否判定処理手段は、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さいかどうかを判断し、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に、キャンバ付与条件が成立したと判断するが、これに限られるものではない。例えば、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間にステアリング角度が閾値以上にならなかったかどうかを判断し、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間にステアリング角度が閾値以上にならなかった場合に、キャンバ付与条件が成立したと判断することができる。
 なお、図25に示すフローチャートにおいて、請求項1記載の接地荷重情報取得手段としてはS311の処理において接地荷重指標を読み込む処理が、請求項2記載の状態量取得手段としてはS303の処理においてステアリング角度を読み込む処理が、状態量判断手段としてはS304の処理が、第2キャンバ角調整手段としてはS306の処理が、請求項3記載の走行状態取得手段としてはS307の処理において車速及びステアリング角度を読み込む処理が、走行状態判断手段としてはS308の処理が、第3キャンバ角調整手段としてはS310の処理が、それぞれ該当する。図26に示すフローチャートにおいて、請求項1記載の接地荷重判断手段としてはS312の処理が、第1キャンバ角調整手段としてはS313の処理が、それぞれ該当する。
 また、図25に示すフローチャートにおいて、請求項8記載の走行安定状態判定処理手段としてはS308の処理が、キャンバ付与処理手段としてはS310の処理が、それぞれ該当する。
 ところで、第7実施の形態においては、直進安定キャンバ要否判定処理において(図28参照)、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に、キャンバ付与条件が成立したと判断され(S319:Yes)、過去X〔秒〕間の平均車速が閾値vth1より低い場合には、キャンバ付与条件が成立しないと判断される(S319:No)。
 ところが、例えば、道路の交通量が多い場合、登坂路を走行する場合等のように、常時、走行安定性を高くするのが好ましい道路の状況においては、過去X〔秒〕間の平均車速が閾値vth1より低い場合であっても、各車輪302RL,302RRにキャンバθを付与するのが望ましい。
 そこで、過去X〔秒〕間の平均車速が閾値vth1より低い場合であっても、各車輪302RL,302RRにキャンバθを付与することができるようにした本発明の第8実施の形態について説明する。なお、第7実施の形態と同じ構造を有するものについては、同じ符号を付与し、同じ構造を有することによる発明の効果については同実施の形態の効果を援用する。図30は本発明の第8実施の形態における直進安定キャンバ要否判定処理のサブルーチンを示す図である。
 この場合、第2のキャンバ要否判定処理手段としての、かつ、走行状態判断手段としての直進安定キャンバ要否判定処理手段は、車速及びステアリング角度を読み込む。そして、車速を読み込む直前の所定の時間(本実施の形態においては過去X〔秒〕間)の車速に基づいて車速算出値(本実施の形態においては平均車速)を算出するとともに、ステアリング角度を読み込む直前の所定の時間(本実施の形態においては過去Y〔秒〕間)のステアリング角度に基づいて操舵量算出値(本実施の形態においては平均ステアリング角度)を算出する。直進安定キャンバ要否判定処理手段は、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さいかどうかを判断し(S333)、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に(S333:Yes)、車両301の走行状態が安定していて、直進走行用のキャンバ付与条件が成立したと判断する(S334)。
 また、過去X〔秒〕間の平均車速が閾値vth1より低いか、又は過去Y〔秒〕間の平均ステアリング角度が閾値γth1以上である場合(S333:No)、直進安定キャンバ要否判定処理手段は、自動変速機304の変速比及び平均ステアリング角度を読み込み、変速比が1より小さく、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さいかどうかを判断する(S335)。その結果、変速比が1より小さく、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合(S335:Yes)、車両301の走行状態が安定していて、キャンバ付与条件が成立したと判断する(S334)。
 そして、変速比が1以上であるか、又は過去Y〔秒〕間の平均ステアリング角度が閾値γth1以上である場合(S335:No)、直進安定キャンバ要否判定処理手段は処理を終了する。なお、本実施の形態においては、過去X〔秒〕間の平均車速が閾値vth1以上である場合に、第1の走行安定条件が成立し、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に、第2の走行安定条件が成立し、変速比が1より小さい場合に、第3の走行安定条件が成立する。
 このように、過去X〔秒〕間の平均車速が閾値vth1より低い場合であっても、変速比が1より小さく、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合には、キャンバ付与条件が成立したと判断され、各車輪302RL,302RRにキャンバθが付与されるので、道路の交通量が多い場合、登坂路を走行する場合等の道路の状況において、常時、走行安定性を高くすることができる。
 なお、本実施の形態においては、第1、第2の走行安定条件が成立したかどうかを判断した後に、第2、第3の走行安定条件が成立したかどうかを判断するが、第1~第3の走行安定条件が成立したかどうかを判断し、第1の走行安定条件又は第3の走行安定条件が成立し、かつ、第2の走行安定条件が成立した場合に、キャンバ付与条件が成立したと判断することができる。
 ところで、第7実施の形態においては、直進安定キャンバ要否判定処理において、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に、キャンバ付与条件が成立したと判断され、例えば、過去Y〔秒〕間の平均ステアリング角度が閾値γth1以上である場合には、キャンバ付与条件が成立しないと判断される。
 ところが、例えば、曲率半径が比較的大きいカーブが続く場合、道路上の凹凸等を一時的に回避するために、ステアリングホイール63(図22参照)が大きく操作された場合等のように、継続的に走行安定性を高くするのが好ましい道路の状況においては、過去Y〔秒〕間の平均ステアリング角度が閾値γth1以上である場合であっても、各車輪302RL,302RRにキャンバθを付与するのが望ましい。
 そこで、過去Y〔秒〕間の平均ステアリング角度が閾値γth1以上である場合であっても、各車輪302RL,302RRにキャンバθを付与することができるようにした本発明の第9実施の形態について説明する。なお、第7実施の形態および第8実施の形態と同じ構造を有するものについては、同じ符号を付与し、同じ構造を有することによる発明の効果については同実施の形態の効果を援用する。図31は本発明の第9実施の形態における直進安定キャンバ要否判定処理のサブルーチンを示す図である。
 この場合、第2のキャンバ要否判定処理手段としての、かつ、走行安定状態判定処理手段としての直進安定キャンバ要否判定処理手段は、車速及びステアリング角度を読み込む。そして、車速を読み込む直前の所定の時間(本実施の形態においては過去X〔秒〕間)の車速に基づいて車速算出値(本実施の形態においては平均車速)を算出するとともに、ステアリング角度を読み込む直前の所定の時間(本実施の形態においては過去Y〔秒〕間)のステアリング角度に基づいて操舵量算出値(本実施の形態においては平均ステアリング角度)を算出する。直進安定キャンバ要否判定処理手段は、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さいかどうかを判断し(S336)、過去X〔秒〕間の平均車速が閾値vth1以上であり、かつ、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に(S336:Yes)、車両301の走行状態が安定していて、直進走行用のキャンバ付与条件が成立したと判断する(S337)。
 また、過去X〔秒〕間の平均車速が閾値vth1より低いか、又は過去Y〔秒〕間の平均ステアリング角度が閾値γth1以上である場合(S336:No)、直進安定キャンバ要否判定処理手段は、自動変速機304(図22参照)の変速比を読み込み、変速比が1より小さいかどうかを判断し(S338)、変速比が1より小さい場合(S338:Yes)、車両301の走行状態が安定していて、直進走行用のキャンバ付与条件が成立したと判断する(S337)。
 そして、変速比が1以上である場合(S338:No)、直進安定キャンバ要否判定処理手段は処理を終了する。なお、本実施の形態においては、過去X〔秒〕間の平均車速が閾値vth1以上である場合に、第1の走行安定条件が成立し、過去Y〔秒〕間の平均ステアリング角度が閾値γth1より小さい場合に、第2の走行安定条件が成立し、変速比が1より小さい場合に、第3の走行安定条件が成立する。
 このように、過去Y〔秒〕間の平均ステアリング角度が閾値γth1以上である場合であっても、変速比が1より小さい場合には、キャンバ付与条件が成立したと判断され、各車輪302RL,302RRにキャンバθが付与されるので、例えば、曲率半径が比較的大きいカーブが続く場合、道路上の凹凸等を一時的に回避するために、ステアリングホイール63が大きく操作された場合等においても、継続的に走行安定性を高くすることができる。
 本実施の形態においては、第1及び第2の走行安定条件が成立したかどうかを判断した後に、第3の走行安定条件が成立したかどうかを判断するが、第1~第3の走行安定条件が成立したかどうかを判断し、第1の走行安定条件又は第2の走行安定条件が成立し、かつ、第3の走行安定条件が成立した場合に、キャンバ付与条件が成立したと判断することができる。
 また、本実施の形態においては、自動変速機304の変速比に基づいて、直進安定キャンバ要否判定処理が行われるが、無段変速機、マニュアル変速機等の変速機の変速比に基づいて直進安定キャンバ要否判定処理を行うことができる。
 無段変速機の場合、変速比取得処理手段は、変速機制御部としての無段変速機制御部から無段変速機に送られている変速指令を読み込むとともに、ROM602から変速指令に対応させて記録されている変速比を読み込み、車両状態として取得する。また、マニュアル変速機の場合、変速比取得処理手段は、変速指示装置としてのシフトレバー等から変速比を表す信号を読み込み、車両状態として取得する。
 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
 上記各実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。例えば、上記各実施の形態で説明した第1キャンバ角および第2キャンバ角の値は任意に設定することができる。
 上記各実施の形態では、アクセルペダル61、ブレーキペダル62及びステアリング63の操作量に基づいて、車両1,201,301の状態量が所定の条件を満たすか否かを判断する場合を説明したが、必ずしもこれに限られるものではなく、各ペダル61,62及びステアリング63の操作量に代えて、他の状態量に基づいて車両1,201,301の状態量が所定の条件を満たすか否かを判断することは当然可能である。他の状態量としては、例えば、各ペダル61,62及びステアリング63の操作速度や操作加速度のように、運転者により操作される操作部材の状態を示すものでも良く、或いは、車両1,201,301自体の状態を示すものでも良い。車両1,201,301自体の状態を示すものとしては、車両1,201,301の前後G、横G、ヨーレート、ロール角などが例示される。
 上記各実施の形態では、車両1,201,301の走行速度およびステアリング63の操作量に基づいて、車両1,201,301の走行状態が安定しているか(所定の直進状態であるか)否かを判断する場合を説明したが、必ずしもこれに限られるものではなく、ステアリング63の操作量のみに基づいて、車両1,201,301の走行状態が安定しているか否かを判断しても良い。また、ステアリング63の操作量に代えて、ステアリング63の操作速度や操作加速度のように、ステアリング63の操作状態に基づいて、車両1,201,301の走行状態が安定しているか否かを判断しても良く、或いは、車両1,201,301の横G、ヨーレートなどのように、車両1,201,301自体の状態量に基づいて、車両1,201,301の走行状態が安定しているか否かを判断しても良い。
 また、車両1,201,301の走行速度およびステアリング63の操作量に代えて、他の情報に基づいて車両1,201,301の走行状態が安定しているか否かを判断することは当然可能である。他の情報としては、例えば、他の入出力装置90として例示したナビゲーション装置により取得される情報であって、車両1,201,301の現在位置が地図データの高速道路上や幹線道路上など所定の区間において車両1,201,301が直進すると判断される直線道路上に位置する場合などが例示される。この場合には、直線道路の先にカーブが存在したり右左折を必要とする道路状況において、車両1,201,301が旋回するたびにキャンバ角調整装置44,244、アクチュエータ308,309を作動させてしまうことがなく、キャンバ角の頻繁な切り替わりを防止することができる。
 上記各実施の形態では、車両1,201の状態量が所定の条件を満たすか否かを判断する状態量判断処理において、アクセルペダル61の操作量、ブレーキペダル62の操作量およびステアリング63の操作量が所定の操作量以上であるか否かを判断するための各操作量の判断基準を、車輪2,202のキャンバ角が第2キャンバ角の状態で車両1,201が加速、制動または旋回する場合に、車輪2,202がスリップする恐れがあると判断される限界値とする場合を説明したが、必ずしもこれに限られるものではなく、例えば、単に車両1,201の状態量(例えば、各ペダル61,62の操作量やステアリング63の操作量など)に基づいて設定しても良い。
 また、上記各実施の形態では、車輪2,202,302の接地荷重が偏摩耗荷重であるか否かを判断する偏摩耗荷重判断処理において、懸架装置4の伸縮量、車両1,201,301の前後G、横G、ヨーレート、ロール角、車輪2,202,302の接地荷重、タイヤサイドウォールの潰れ代、アクセルペダル61の操作量、ブレーキペダル62の操作量、ステアリング63の操作量、操作速度、操作加速度が所定値以下であるかを判断するための判断基準が、それぞれROM72に予め記憶された一定値である場合を説明したが、必ずしもこれに限られるものではなく、例えば、天候や路面の状況を取得し、その取得した天候や路面の状況に応じて各判断基準を変更する構成としても良い。この場合には、より高精度に車輪2,202,302の接地荷重が偏摩耗荷重であるか否かを判断でき、タイヤの偏摩耗を抑制することができる。
 上記各実施の形態では説明を省略したが、キャンバ制御処理のS53,S253,S119及びS122の処理において(図7、図11及び図21参照)、各車輪2又は左右の後輪202RL,202RRへのネガティブキャンバの付与を解除する場合に、所定時間(例えば3秒など)の経過を待ってから解除しても良い。この場合には、山道などの車両1,201が頻繁に旋回する道路状況において、車両1,201が旋回するたびにキャンバ角調整装置44,244を作動させてしまうことがなく、キャンバ角の頻繁な切り替わりを防止することができる。
 上記第4実施の形態、第5実施の形態および第6実施の形態では、偏磨耗荷重判断処理において、車輪2,202の接地荷重が所定の接地荷重以上であるとの判断に加え、所定期間内の接地荷重や接地荷重の変化の大きさを状態値として考慮する場合について説明した。しかし、必ずしもこれに限られるものではなく、車輪2,202の接地荷重と代用可能な他の状態値を採用することが可能である。
 他の状態値としては、例えば、サスストロークセンサ装置83,283により検出される懸架装置4の伸縮量、加速度センサ装置80により検出される前後Gや横G、ヨーレートセンサ装置81により検出されるヨーレート、ロール角センサ装置82により検出されるロール角、サイドウォール潰れ代センサ装置85,285により検出されるタイヤサイドウォールの潰れ代、アクセルペダルセンサ装置61aにより検出されるアクセルペダル61の操作量、ステアリングセンサ装置63aにより検出されるステアリング63の操作速度や操作加速度が挙げられる。これらの状態値を単独で又は組み合わせて採用できる。
 上記第4実施の形態では、所定期間内の状態値(接地荷重)と予め設定された閾値とを比較する場合について説明したが、必ずしもこれに限られるものではなく、他の形態とすることも可能である。他の形態としては、例えば、所定期間内の状態値(接地荷重)の平均値を求め、この平均値を閾値とし、サンプリングした状態値と比較するものが挙げられる。
 上記第6実施の形態では、キャンバ制御処理において、車輪2の接地荷重が所定の接地荷重以上であると判断される場合に、前輪2FL,2FRのキャンバ角を第2キャンバ角に調整する場合について説明したが、必ずしもこれに限られるものではなく、前輪2FL,2FRのキャンバ角は第1キャンバ角に維持しつつ、後輪2RL,2RRのキャンバ角を第2キャンバ角に調整するようにすることも当然可能である。即ち、後輪2RL,2RRの駆動力により走行する後輪駆動の車両や、後輪2RL,2RR側に車輪駆動装置3が搭載される車両等のように、後輪2RL,2RR側の荷重が前輪2FL,2FR側の荷重よりも大きな車両では、前輪2FL,2FRに比べ後輪2RL,2RRが磨耗し易い。このような場合に、前輪2FL,2FRのキャンバ角を第2キャンバ角に調整することにより後輪2RL,2RRに偏磨耗が生じることを防止しつつ、前輪2FL,2FRにより車両の安定性を確保できる。
 また、上記第6実施の形態において、接地荷重が所定の接地荷重以上であるのは前輪2FL,2FR又は後輪2RL,2RRであるのかを判断し、所定の接地荷重以上であると判断される前輪2FL,2FR又は後輪2RL,2RRのキャンバ角を第2キャンバ角に調整することも可能である。例えば、車両1が制動されるときは前輪2FL,2FRの接地荷重が後輪2RL,2RRの接地荷重より大きくなる傾向がみられ、車両1が加速されるときは後輪2RL,2RRの接地荷重が前輪2FL,2FRの接地荷重より大きくなる傾向がみられる。状況に応じてキャンバ角を第2キャンバ角に調整する車輪2を切り替えることにより、車輪2の偏磨耗を効果的に防止できる。
 上記第1実施の形態から第9実施の形態では、前輪2FL,2FR及び後輪2RL,2RR(又は202RL,202RR或いは302RL,302RR)にネガティブキャンバを付与する場合、或いは後輪2RL,2RR(又は202RL,202RR或いは302RL,302RR)にネガティブキャンバを付与する場合について説明したが、必ずしもこれに限られるものではない。後輪2RL,2RRにネガティブキャンバを付与するのに代えて、若しくは後輪2RL,2RRにネガティブキャンバを付与するのに加えて、前輪2FL,2FRのキャンバ角を調整して前輪2FL,2FRにポジティブキャンバを付与することも可能である。
 ここで、図32を参照して、前輪2FL,2FRにポジティブキャンバを付与するための懸架装置104の詳細構成について説明する。図32は、懸架装置104の正面図である。なお、ここでは、キャンバ角調整機構として機能する構成のみについて説明し、サスペンションとして機能する構成については周知の構成と同様であるので、その説明を省略する。また、各懸架装置104の構成は、左右の前輪2FL,2FRにおいてそれぞれ共通であるので、右の前輪2FRに対応する懸架装置104を代表例として図32に図示する。但し、図32では、理解を容易とするために、ドライブシャフト31等の図示が省略されている。また、第1実施の形態と同一の部分は、同一の符号を付してその説明を省略する。
 アーム146は、ウォームホイール45から伝達されるFRモータ44FRの駆動力を可動プレート47に伝達するものであり、図32に示すように、一端(図32右側)が第1連結軸148を介してウォームホイール45の回転軸45aから偏心した位置に連結される一方、他端(図2左側)が第2連結軸49を介して可動プレート47の上端(図32上側)に連結されている。
 懸架装置104によれば、FRモータ44FRが駆動されると、ウォームホイール45が回転すると共に、ウォームホイール45の回転運動がアーム146の直線運動に変換される。その結果、アーム146が直線運動することで、可動プレート47がキャンバ軸50を揺動軸として揺動駆動され、車輪2のキャンバ角が調整される。
 なお、本実施の形態では、各連結軸148,49及びウォームホイール45の回転軸45aが、車体フレームBFから車輪2に向かう方向(矢印R方向)において、回転軸45a、第1連結軸148、第2連結軸49の順に一直線上に並んで位置する第1キャンバ状態と、第1連結軸148、回転軸45a、第2連結軸49の順に一直線上に並んで位置する第2キャンバ状態(図32に示す状態)とのいずれか一方のキャンバ状態となるように車輪2のキャンバ角が調整される。これにより、車輪2のキャンバ角が調整された状態では、車輪2に外力が加わったとしても、アーム146を回動させる方向の力は発生せず、車輪2のキャンバ角を維持することができる。
 また、本実施の形態では、第1キャンバ状態において、車輪2のキャンバ角がプラス方向の所定の角度(第1キャンバ角)に調整され、車輪2にポジティブキャンバが付与される。一方、第2キャンバ状態(図32に示す状態)では、車輪2のキャンバ角が0°(第2キャンバ角)に調整される。前輪2FL,2FR(車輪2)がプラス方向の所定の角度に調整されて、前輪2FL,2FRにポジティブキャンバが付与されると、発生するキャンバスラストを利用して車両1の走行安定性を確保できる。
 上記各実施の形態では説明を省略したが、各実施の形態における車両1,201,301の車輪2,202,302の一部または全部を、他の実施の形態における車輪2,202,302の一部または全部と置換しても良い。例えば、第1実施の形態における車両用制御装置100により制御される車両1の車輪2を、第2実施の形態における車両201の車輪202に変更しても良い。
 上記第1実施の形態では、車両用制御装置100の制御対象である車両1の車輪2が、全て同じ形状および特性に構成され、そのトレッドの幅が同一の幅に構成される場合を説明したが、必ずしもこれに限られるものではなく、例えば、図33に示すように、第1トレッド21及び第2トレッド22の2種類のトレッドを備える構成としても良い。この場合には、各車輪2において、第1トレッド21を車両1の内側に配置し、第2トレッド22を車両1の外側に配置すると共に、第2トレッド22を第1トレッド21よりも硬度の高い材料により構成し、第1トレッド21を第2トレッド22に比してグリップ力の高い特性(高グリップ特性)に構成する一方、第2トレッド22を第1トレッド21に比して転がり抵抗の小さい特性(低転がり特性)に構成することが好ましい。これにより、車輪2のキャンバ角を第1キャンバ角に調整し、車輪2にネガティブキャンバを付与することで、第1トレッド21の高グリップ特性を発揮させて、車両1の走行安定性を確保することができる。一方、車輪2のキャンバ角を第2キャンバ角に調整し、車輪2へのネガティブキャンバの付与を解除することで、第2トレッド22の低転がり特性を発揮させて、省燃費化を図ることができる。なお、図33は、車両1を模式的に示した模式図である。
 上記第2実施の形態では、左右の後輪202RL,202RRを、左右の前輪202FL,202FRよりも低転がり抵抗とするための手法として、左右の後輪202RL,202RRのトレッドの幅を、左右の前輪202FL,202FRのトレッドの幅よりも狭くする手法を一例として説明したが、必ずしもこれに限られるものではなく、他の手法を採用しても良い。
 例えば、他の手法としては、左右の後輪202RL,202RRのトレッドを、左右の前輪202FL,202FRのトレッドよりも硬度の高い材料から構成し、左右の前輪202FL,202FRのトレッドを左右の後輪202RL,202RRのトレッドよりもグリップ力の高い特性(高グリップ性)とする一方、左右の後輪202RL,202RRのトレッドを左右の前輪202FL,202FRのトレッドよりも転がり抵抗の小さい特性(低転がり抵抗)とする第1の手法、左右の後輪202RL,202RRのトレッドのパターンを、左右の前輪202FL,202FRのトレッドのパターンよりも低転がり抵抗のパターンとする(例えば、左右の後輪202RL,202RRのトレッドのパターンをラグタイプ又はブロックタイプとし、左右の後輪202RL,202RRのトレッドのパターンをリブタイプとする)第2の手法、左右の後輪202RL,202RRの空気圧を、左右の前輪202FL,202FRの空気圧よりも高圧とする第3の手法、左右の後輪202RL,202RRのトレッドの厚み寸法を、左右の前輪202FL,202FRのトレッドの厚み寸法よりも薄い寸法とする第4の手法、或いは、これら第1から第4の手法および第2実施の形態における手法(トレッドの幅を異ならせる手法)の一部または全部を組み合わせる第5の手法、が例示される。
 上記第2実施の形態では、左右の後輪202RL,202RRのトレッドの幅を、左右の前輪202FL,202FRのトレッドの幅よりも狭くする場合を説明したが、必ずしもこれに限られるものではなく、左右の後輪202RL,202RRのトレッドの幅を、左右の前輪202FL,202FRのトレッドの幅と同一の幅としても良い。この場合でも、かかる構成に上述した第1から第4の手法の一部または全部を組み合わせることで、左右の後輪202RL,202RRを、左右の前輪202FL,202FRよりも低転がり抵抗とすることができる。よって、車両1の走行安定性と省燃費化との両立を図ることができる。
 また、上記第2実施の形態では、左右の後輪202RL,202RRのトレッドの幅が、左右の前輪202FL,202FRのトレッドの幅よりも狭くされる場合を説明したが、これに加え、左右の後輪202RL,202RRのトレッドの幅を次のように構成することが好ましい。即ち、タイヤ幅L([mm])をタイヤ外径R([mm])で除した値(L/R)を0.1より大きく、かつ、0.4より小さくすることが好ましく(0.1<L/R<0.4)、0.1より大きく、かつ、0.3より小さくすることが更に好ましい(0.1<L/R<0.3)。これにより、車両201の走行安定性を確保しつつ、転がり抵抗を小さくして、省燃費化の向上を図ることができる。なお、トレッドの幅は、リム幅よりも大きくタイヤ幅よりも小さな値となる。
 上記第2実施の形態では、左右の後輪202RL,202RRのトレッドの幅を、左右の前輪202FL,202FRのトレッドの幅よりも狭く構成する場合を説明した。この場合の左右の後輪202RL,202RRのトレッドの幅の設定方法について説明する。
 図34(a)及び図34(b)は、懸架装置4に支持された後輪1202RL,1202RRの正面図であり、図35(a)及び図35(b)は、懸架装置4に支持された後輪202RL,202RRの正面図である。なお、これら図34(a)から図35(b)は、図2に対応する正面図であり、右の後輪1202RR,202RRのみを図示すると共に、懸架装置4の図示が簡略化されている。また、図34(a)から図35(b)では、車体Bの外形を通る鉛直線(矢印U-D方向線、図2参照)を外形線S(即ち、車両201の全幅を示す線)として二点鎖線を用いて図示している。
 後輪1202RL,1202RRは、第2実施の形態で説明した前輪202FL,202FRと同一の幅に構成された車輪である。ここで、車両201は、前後の全車輪202を懸架装置204により支持する既存の車両に対し、後輪側の懸架装置204にのみRL,RRモータ44RL,44RRによる伸縮機能を追加して懸架装置4とすることで構成された車両である。よって、車両201は、図34(a)に示すように、少なくともキャンバ角が定常角(=0°)においては、後輪1202RL,1202RRを外形線Sから外側に突出させない(即ち、保安基準を満たす)ように装着可能とされている。
 しかしながら、後輪1202RL,1202RRのキャンバ角を調整する制御を行う場合には、図34(b)に示すように、後輪1202RL,1202RRが外形線Sを越えて外側へ突出し、保安基準を満たすことができないという問題点があった。そのため、後輪1202RL,1202RRのキャンバ角を調整可能な範囲が限定され、十分な角度のキャンバ角を付与することができないという問題点があった。
 この場合、懸架装置4自体の配設位置を車両201の内側(図34(a)右側)へ移動させることで、キャンバ角の調整可能範囲を確保することも考えられるが、車両201に大幅な構造の変更を加えることが必要となるため、コストが嵩み、現実的でない。一方、後輪1202RL,1202RRのホイールオフセットを車輪中心線Cから車両201の外側(図34(a)左側)に移動させることで、車両201への構造の変更を行うことなく、比較的大きな角度のキャンバ角を後輪1202RL,1202RRに付与することが可能となる。しかしながら、この場合には、ホイールオフセットの分だけ、後輪1202RL,1202RR自体が車両201の内側へ移動することとなるので、車体Bとの干渉が避けられない。
 そこで、本願出願人は、図35(a)及び図35(b)に示すように、後輪202RL,202RRのタイヤ幅Wlを狭くすることで、既存の車両(車両201)に大幅な構造の変更を加えることを不要とし、かつ、保安基準を満たしながら、キャンバ角の調整可能範囲を十分に確保することを可能とする構成に想到した。
 後輪202RL,202RRのタイヤ幅Wlの設定方法について、図34(a)から図36を参照して説明する。図36は、懸架装置4に支持された車輪の正面図を模式的に図示した模式図であり、キャンバ角θのネガティブキャンバが付与された状態が図示されている。
 図36に示すように、車輪の幅寸法をタイヤ幅Wと、直径をタイヤ径Rと、タイヤ中心線(車輪中心線)Cからホイール座面Tまでの距離をホイールオフセットAと、それぞれ規定する。この場合、車輪が外側へ最も突出する位置であるタイヤ外側端Mから、車輪の回転軸とホイール座面Tとの交点である原点Oまでの水平方向の距離である距離Lは次のように算出される。
 即ち、図36に示すように、車輪の回転軸と車輪の外側面との交点である位置Pと原点Oとを結ぶ距離は、タイヤ幅Wの半分の値からホイールオフセットAを除算した値(W/2-A)となるので、位置Pから原点Oまでの水平方向の距離である距離Jは、三角比の関係から、J=(W/2-A)・cosθとなる。
 一方、位置Pとタイヤ外側端Mとを結ぶ距離は、タイヤ径Rの半分の値(R/2)となるので、タイヤ外側端Kから位置Pまでの水平方向の距離である距離Kは、三角比の関係から、K=(R/2)・sinθとなる。
 よって、距離Lは、距離Jと距離Kとの和であるので、これらを加算して、L=(W/2-A)・cosθ+(R/2)・sinθとなる。この関係式をタイヤ幅Wでまとめると、W=2A-R・tanθ+2L/cosθとなる。
 車輪のタイヤ外側端Mが車両201の外形線Sを越えて外側へ突出せず、保安基準を満たすためには、距離Lが、原点Oから外形線Sまでの水平方向の距離である距離Z(図34(b)及び図35(b)参照)より小さくなれば良い。よって、タイヤ幅Wを定める上記の式に対し、距離Lの最大値(即ち、距離Z)と、車輪に付与するキャンバ角θの最大値(例えば、3°)とを当てはめることで、車輪のタイヤ幅Wの最大値を決定することができる。
 即ち、図34(a)及び図34(b)に示す後輪1202RL,1202RRについては、タイヤ外側端Mが外形線Sを越えて外側に突出しないための最大のキャンバ角をθwとすると、そのタイヤ幅Wwは、W=2A-R・tanθw+2Z/cosθwとなり、図35(a)及び図35(b)に示す後輪202RL,202RRについては、タイヤ外側端Mが外形線Sを越えて外側に突出しないための最大のキャンバ角をθlとすると、そのタイヤ幅Wlは、W=2A-R・tanθl+2Z/cosθlとなる。
 なお、各車輪のトレッドの幅は、タイヤ幅Wを越えない範囲に設定される。なお、タイヤ幅Wの最小値は、タイヤ外側端Mをホイール座面Tよりも内側へ配置できないことから、ホイールオフセットAの2倍の値となる。
 以上のように、タイヤ幅Wを定める上記の式によれば、車輪のタイヤ幅W(即ち、トレッドの幅)を狭くすることで、車輪に付与するキャンバ角θの最大値を大きくすることができる。即ち、第2実施の形態で説明したように、後輪202RL,202RRのトレッドの幅(タイヤ幅W)を、前輪202FL,202FRのトレッドの幅よりも狭くすることで、既存の車両(車両201)に大幅な構造の変更を加えることを不要とし、かつ、保安基準を満たしつつ、後輪202RL,202RRにおけるキャンバ角の調整可能範囲を確保することができる。
 なお、この場合には、前輪202FL,202FRのトレッドの幅を広くすることができるので、制動力の向上を図ることができる。特に、前輪202FL,202FRが駆動輪とされる第2実施の形態においては、加速性能の向上を図ることができる。一方、後輪202RL,202RRのトレッドの幅を、左右の前輪202FL,202FRのトレッドの幅よりも狭くすることで、これら後輪202RL,202RRの転がり抵抗を、前輪202FL,202FRの転がり抵抗よりも小さくすることができ、その分、省燃費化を図ることができる。
 以下に本発明の請求項8記載の車両用制御装置Aおよび変形例を示す。ボディと、そのボディに対して回転自在に配設された複数の車輪と、その複数の車輪のうちの所定の車輪に配設され、その車輪のキャンバ角を調整するキャンバ角調整装置とを備える車両に用いられる車両用制御装置であって、前記車両の走行状態が安定しているかどうかを判断する走行安定状態判定処理手段と、その走行安定状態判定処理手段により前記車両の走行状態が安定していると判断される場合に、前記キャンバ角調整装置を作動させて、前記所定の車輪にネガティブキャンバを付与するキャンバ付与処理手段と、を備えていることを特徴とする車両用制御装置A。
 車両用制御装置Aにおいて、車速を検出する車速検出部を有するとともに、前記走行安定状態判定処理手段は、所定の時間における車速に基づいて算出される車速算出値が閾値以上であるかどうかを判断し、車速算出値が閾値以上である場合に、車両の走行状態が安定していると判断する車両用制御装置A1。
 車両用制御装置A1によれば、車両を低速で走行させている場合はキャンバθが車輪に付与されないようにできる。これにより車輪にキャンバθが付与される頻度を低くできると共に、キャンバθが付与される時間を短くできる。その結果、タイヤに偏磨耗が発生することを抑制し、タイヤの寿命を長くすることができる。
 車両用制御装置A1又はA2において、操舵量を検出する操舵量検出部を有するとともに、前記走行安定状態判定処理手段は、所定の時間における操舵量に基づいて算出される操舵量算出値が閾値より小さいかどうかを判断し、操舵量算出値が閾値より小さい場合に、車両の走行状態が安定していると判断する車両用制御装置A3。
 車両用制御装置A3によれば、車両を所定の直進状態で走行させている以外はキャンバθが車輪に付与されないようにできる。これにより車輪にキャンバθが付与される頻度を低くできると共に、キャンバθが付与される時間を短くできる。その結果、タイヤに偏磨耗が発生することを抑制し、タイヤの寿命を長くすることができる。
 車両用制御装置A1からA3のいずれかにおいて、前記車両に配設された変速機の変速比を取得する変速比取得処理手段を有するとともに、前記走行安定状態判定処理手段は、前記変速比が1より小さい場合に、車両の走行状態が安定していると判断する車両用制御装置A4。
 車両用制御装置A4によれば、変速比が1より小さい状態で高速走行をしているときに、例えば、道路上の凹凸等を一時的に回避するためにステアリングが操作された場合には、車輪にキャンバθが付与された状態が維持される。これにより、キャンバ付与処理手段により車輪のキャンバ角が調整された状態において、車輪の接地荷重が所定の接地荷重以上になるたびにキャンバ角調整装置が作動して車輪のキャンバ角が調整されることを回避でき、キャンバ角の頻繁な切り替わりを抑制できる。その結果、キャンバ角の頻繁な切り替わりによって走行安定性が低下することを抑制できる。
 車両用制御装置A1からA4のいずれかにおいて、前記所定の車輪は後輪である車両用制御装置A5。
 車両用制御装置A5によれば、車両の走行状態が安定しているときに後輪にネガティブキャンバを付与することにより、車両を安定なアンダーステア傾向にできると共に、車両の装置構成を簡素化できる。
 以下に、本発明の変形例Bを示す。従来、後方の車輪に負のキャンバ(ネガティブキャンバ)を付与することができるようにした車両が提供されている。この種の車両においては、車両を直進させて走行させるとき、すなわち、車両の直進走行時に、左後方及び右後方の各車輪のタイヤに、互いに対向する方向にキャンバスラストを発生させることができるので、車両の直進走行時の安定性(以下「走行安定性」と称す)を高くすることができる。また、ステアリングホイールを操作して車両を旋回させるとき、すなわち、車両の旋回時に、車両に遠心力が発生するので、左後方及び右後方の各車輪のうちの外周側の車輪(外輪)の接地荷重が大きくなり、外周側の車輪のタイヤに発生するキャンバスラストが内周側の車輪(内輪)のタイヤに発生するキャンバスラストより大きくなる。したがって、車両に十分な求心力を発生させることができるので、車両の旋回時の安定性(以下「旋回安定性」と称す)を高くすることができる。なお、前記接地荷重は、タイヤが路面を押圧する荷重である。
 ところが、一般に、車輪にキャンバが付与された状態で車両を低速で走行させると、タイヤに偏摩耗が発生し、タイヤの寿命が短くなってしまう。そこで、前記車両においては、車速を検出し、車両を高速で走行させている間だけ、後方の車輪にネガティブキャンバを付与することによって、タイヤに偏摩耗が発生するのを抑制するようにしている(特許文献1)。
 しかしながら、特許文献1に開示される技術では、車輪にネガティブキャンバが付与される頻度が高く、しかも、ネガティブキャンバが付与される時間が長いので、タイヤに偏摩耗が発生するのを十分に抑制することができない。また、車両を高速で走行させている間、後方の車輪にネガティブキャンバが付与され続けるので、タイヤの転がり抵抗がその分大きくなり、燃費が悪くなってしまう。
 本発明の変形例Bは、前記従来の車両の問題点を解決して、タイヤの寿命を長くすることができ、燃費を良くすることができるキャンバ制御装置を提供することを目的とする。
 車両のボディと、該ボディに対して回転自在に配設された複数の車輪と、該各車輪のうちの所定の車輪に配設され、車輪にキャンバを付与するためのキャンバ可変機構と、車両の走行状態が安定しているかどうかを判断する走行安定状態判定処理手段と、その走行安定状態判定処理手段により車両の走行状態が安定している場合に、前記所定の車輪にネガティブキャンバを付与するキャンバ付与処理手段とを有するキャンバ制御装置B。
 キャンバ制御装置Bによれば、車両の走行状態が安定している場合に、所定の車輪にネガティブキャンバが付与されるので、ネガティブキャンバが付与される頻度を低くすることができ、しかも、ネガティブキャンバが付与される時間を短くすることができる。したがって、所定の車輪のタイヤに偏摩耗が発生するのを十分に抑制することができ、タイヤの寿命を長くすることができる。また、車両を走行させている間、所定の車輪にネガティブキャンバが付与され続けることがないので、タイヤの転がり抵抗をその分小さくすることができる。したがって、燃費を良くすることができる。
100,200,300,400,500,600 車両用制御装置
1,201,301               車両
2,202,302               車輪
2FL,202FL,302FL         左の前輪(車輪の一部)
2FR,202FR,302FR         右の前輪(車輪の一部)
2RL,202RL,302RL         左の後輪(車輪の一部)
2RR,202RR,302RR         右の後輪(車輪の一部)
4,104                   懸架装置
44,244                  キャンバ角調整装置
44FL              FLモータ(キャンバ角調整装置の一部)
44FR              FRモータ(キャンバ角調整装置の一部)
44RL              RLモータ(キャンバ角調整装置の一部)
44RR              RRモータ(キャンバ角調整装置の一部)
308,309           アクチュエータ(キャンバ角調整装置)
B                 ボディ
BF                車体フレーム(ボディの一部)

Claims (8)

  1.  車輪としての前輪および後輪と、その車輪のキャンバ角を調整するキャンバ角調整装置と、を備えた車両に用いられる車両用制御装置であって、
     前記車輪の接地荷重に関する情報を取得する接地荷重情報取得手段と、
     その接地荷重情報取得手段により取得された前記車輪の接地荷重に関する情報に基づいて、前記車輪の接地荷重が所定の接地荷重以上であるかを判断する接地荷重判断手段と、
     その接地荷重判断手段により前記車輪の接地荷重が所定の接地荷重以上であると判断される場合に、前記キャンバ角調整装置を作動させて、少なくとも絶対値が減少するように、前記車輪のキャンバ角を調整する第1キャンバ角調整手段と、を備えていることを特徴とする車両用制御装置。
  2.  前記車両の状態量を取得する状態量取得手段と、
     その状態量取得手段により取得された前記車両の状態量が所定の条件を満たすかを判断する状態量判断手段と、
     その状態量判断手段により前記車両の状態量が所定の条件を満たすと判断される場合に、前記キャンバ角調整装置により前記車輪のキャンバ角を調整して前記車輪にポジティブキャンバ又はネガティブキャンバを付与する第2キャンバ角調整手段と、を備え、
     前記第1キャンバ角調整手段は、前記状態量判断手段により前記車両の状態量が所定の条件を満たしていないと判断され、且つ、前記接地荷重判断手段により前記車輪の接地荷重が所定の接地荷重以上であると判断される場合に、少なくとも前記第2キャンバ角調整手段により調整するキャンバ角よりも絶対値が小さくなるように、前記車輪のキャンバ角を調整することを特徴とする請求項1記載の車両用制御装置。
  3.  前記車両の走行状態を取得する走行状態取得手段と、
     その走行状態取得手段により取得された前記車両の走行状態が所定の直進状態であるかを判断する走行状態判断手段と、
     その走行状態判断手段により前記車両の走行状態が所定の直進状態であると判断される場合に、前記キャンバ角調整装置により前記車輪のキャンバ角を調整して前記車輪にポジティブキャンバ又はネガティブキャンバを付与する第3キャンバ角調整手段と、を備え、
     前記第1キャンバ角調整手段は、前記走行状態判断手段により前記車両の走行状態が所定の直進状態であると判断され、且つ、前記接地荷重判断手段により前記車輪の接地荷重が所定の接地荷重以上であると判断される場合に、少なくとも前記第3キャンバ角調整手段により調整するキャンバ角よりも絶対値が小さくなるように、前記車輪のキャンバ角を調整することを特徴とする請求項1又は2に記載の車両用制御装置。
  4.  前記第3キャンバ角調整手段は、前輪および後輪のキャンバ角を調整するものであり、
     前記第1キャンバ角調整手段は、前記前輪または前記後輪のキャンバ角を調整するものであることを特徴とする請求項3記載の車両用制御装置。
  5.  前記接地荷重情報取得手段により取得された前記車輪の接地荷重に関する情報に基づいて、前記車両が所定の状態が継続されているかを判断する継続状態判断手段を備え、
     前記第1キャンバ角調整手段は、前記走行状態判断手段により前記車両の走行状態が所定の直進状態であると判断されると共に、前記接地荷重判断手段により前記車輪の接地荷重が所定の接地荷重以上であると判断され、且つ、前記継続状態判断手段により前記車両が所定の条件が継続されていると判断される場合に、前記第3キャンバ角調整手段により調整されるキャンバ角を維持する維持手段を備えていることを特徴とする請求項3又は4に記載の車両用制御装置。
  6.  前記第3キャンバ角調整手段は、前記車輪のキャンバ角の調整の開始を待機する待機手段を備えていることを特徴とする請求項3から5のいずれかに記載の車両用制御装置。
  7.  前記車両は、伸縮可能に構成される懸架装置により前記車輪が車体に懸架されるものであり、
     前記懸架装置の伸縮量を取得する伸縮量取得手段を備え、
     前記接地荷重判断手段は、前記伸縮量取得手段により取得された前記懸架装置の伸縮量に基づいて、前記車輪の接地荷重が所定の接地荷重以上であるかを判断することを特徴とする請求項1から6のいずれかに記載の車両用制御装置。
  8.  ボディと、そのボディに対して回転自在に配設された複数の車輪と、その複数の車輪のうちの所定の車輪に配設され、その車輪のキャンバ角を調整するキャンバ角調整装置と、を備える車両に用いられる車両用制御装置であって、
     前記車両の走行状態が安定しているかどうかを判断する走行安定状態判定処理手段と、
     その走行安定状態判定処理手段により前記車両の走行状態が安定していると判断される場合に、前記キャンバ角調整装置を作動させて、前記所定の車輪にネガティブキャンバを付与するキャンバ付与処理手段と、を備えていることを特徴とする車両用制御装置。
PCT/JP2010/067085 2009-09-30 2010-09-30 車両用制御装置 WO2011040529A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10820644.2A EP2484543B1 (en) 2009-09-30 2010-09-30 Control device for vehicle
CN201080043094.0A CN102574439B (zh) 2009-09-30 2010-09-30 车辆用控制装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009227326 2009-09-30
JP2009-227326 2009-09-30
JP2009228447 2009-09-30
JP2009-228447 2009-09-30
JP2010-145216 2010-06-25
JP2010145216A JP5609314B2 (ja) 2009-09-30 2010-06-25 キャンバ制御装置
JP2010-150531 2010-06-30
JP2010150531 2010-06-30

Publications (1)

Publication Number Publication Date
WO2011040529A1 true WO2011040529A1 (ja) 2011-04-07

Family

ID=46384642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067085 WO2011040529A1 (ja) 2009-09-30 2010-09-30 車両用制御装置

Country Status (3)

Country Link
EP (1) EP2484543B1 (ja)
CN (1) CN102574439B (ja)
WO (1) WO2011040529A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7165807B2 (ja) * 2018-07-19 2022-11-04 ニッサン ノース アメリカ,インク 車両のタイヤ圧監視インターフェース
WO2020178751A1 (en) * 2019-03-05 2020-09-10 Qooder S.A. A system and method for controlling a vehicle's attitude, and a vehicle equipped with said system
CN113562075A (zh) * 2020-04-29 2021-10-29 上海汽车集团股份有限公司 可变外倾角的非驱动车桥控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114004U (ja) * 1984-01-12 1985-08-01 トヨタ自動車株式会社 自動車のサスペンシヨン
JPS60193781A (ja) 1984-03-15 1985-10-02 Honda Motor Co Ltd 車両のキヤンバ可変装置
JPH03231017A (ja) * 1990-02-07 1991-10-15 Mitsubishi Motors Corp 車輪のキャンバ角制御装置
JP2006327571A (ja) * 2005-04-27 2006-12-07 Equos Research Co Ltd 制御装置
JP2009184540A (ja) * 2008-02-07 2009-08-20 Equos Research Co Ltd 制御装置及び車両

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3509440A1 (de) * 1984-03-15 1985-09-26 Honda Giken Kogyo K.K., Tokio/Tokyo Radausrichtungskontrollsystem fuer fahrzeuge
JPH115419A (ja) * 1997-06-18 1999-01-12 Toyota Autom Loom Works Ltd 産業車両の車体揺動制御装置
WO2006070842A1 (ja) * 2004-12-27 2006-07-06 Equos Research Co., Ltd. 車輪制御装置及び制御装置
WO2009099178A1 (ja) * 2008-02-07 2009-08-13 Equos Research Co., Ltd. 制御装置及び車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114004U (ja) * 1984-01-12 1985-08-01 トヨタ自動車株式会社 自動車のサスペンシヨン
JPS60193781A (ja) 1984-03-15 1985-10-02 Honda Motor Co Ltd 車両のキヤンバ可変装置
JPH03231017A (ja) * 1990-02-07 1991-10-15 Mitsubishi Motors Corp 車輪のキャンバ角制御装置
JP2006327571A (ja) * 2005-04-27 2006-12-07 Equos Research Co Ltd 制御装置
JP2009184540A (ja) * 2008-02-07 2009-08-20 Equos Research Co Ltd 制御装置及び車両

Also Published As

Publication number Publication date
EP2484543B1 (en) 2018-06-06
EP2484543A1 (en) 2012-08-08
EP2484543A4 (en) 2013-07-10
CN102574439B (zh) 2015-05-20
CN102574439A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
WO2011040529A1 (ja) 車両用制御装置
JP5338620B2 (ja) 車両用制御装置
JP5110055B2 (ja) 車両用制御装置
JP5146427B2 (ja) 車両用制御装置
JP5671917B2 (ja) 車両用制御装置
JP5223857B2 (ja) 車両用制御装置
JP2011116164A (ja) 車両用制御装置
WO2010110248A1 (ja) 車両用制御装置
JP2012076500A (ja) キャンバ角制御装置
JP2013006577A (ja) キャンバ制御装置
JP5223855B2 (ja) 車両用制御装置
JP5434635B2 (ja) 車両用制御装置
JP5387335B2 (ja) 車両用制御装置
JP2012076501A (ja) キャンバ角制御装置
JP2011201342A (ja) 車両
JP2012011890A (ja) 車両用制御装置
JP2012206553A (ja) 車両用制御装置
JP5582300B2 (ja) キャンバ角制御装置
JP5370681B2 (ja) 車両用キャンバ角制御装置
JP5447189B2 (ja) 車両用制御装置
JP5223856B2 (ja) 車両用制御装置
JP2011116165A (ja) 車両用制御装置
JP2011116161A (ja) 車両用制御装置
WO2011061925A1 (ja) キャンバ制御装置
JP2012076499A (ja) キャンバ角制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043094.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820644

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010820644

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE