Nothing Special   »   [go: up one dir, main page]

WO2010131442A1 - Process for producing polyamic acid solution, and polyimide film - Google Patents

Process for producing polyamic acid solution, and polyimide film Download PDF

Info

Publication number
WO2010131442A1
WO2010131442A1 PCT/JP2010/003124 JP2010003124W WO2010131442A1 WO 2010131442 A1 WO2010131442 A1 WO 2010131442A1 JP 2010003124 W JP2010003124 W JP 2010003124W WO 2010131442 A1 WO2010131442 A1 WO 2010131442A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
polyamic acid
producing
bis
acid solution
Prior art date
Application number
PCT/JP2010/003124
Other languages
French (fr)
Japanese (ja)
Inventor
小川紘平
菊澤明
多和田誠
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2010131442A1 publication Critical patent/WO2010131442A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polymer compound having excellent heat resistance and dimensional stability and a method for producing the same.
  • a polyimide having excellent heat resistance and in particular, a method for producing a polyimide film that can be suitably used as a material (for example, a substitute for display device glass) for forming a product or member that has high demands on heat resistance and dimensional stability.
  • a method for producing polyamic acid in which an aliphatic carboxylic acid is used as a part of a solvent to shorten the production time a polyimide film obtained by the production method, a resin composition using the polyimide film, and the resin
  • the present invention relates to an article produced using the composition.
  • Polyimide has high heat resistance, dimensional stability, chemical resistance, electrical properties, mechanical properties, and other excellent properties, so it has been applied to semiconductors and electronic components. For this reason, it is often laminated with a metal such as single crystal silicon or copper, and attempts have been made to reduce the linear thermal expansion coefficient of polyimide to the same level as single crystal silicon or metal.
  • the chemical structure is a factor that greatly affects the linear thermal expansion coefficient of polyimide. Generally, it is said that the higher the rigidity and linearity of the polyimide polymer chain, the lower the expansion coefficient. In order to reduce the expansion coefficient, various structures have been proposed for both acid dianhydrides and diamines, which are polyimide raw materials. It was.
  • polyimide obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,2′-bis (trifluoromethyl) benzidine is transparent in addition to heat resistance and linear expansion coefficient.
  • a polyimide film is obtained by immersing a film obtained by casting the polyamic acid solution obtained from both monomers in a dehydration catalyst and an imidizing agent solution. It is described that the linear expansion coefficient of the film was improved by dipping. (Patent Document 1).
  • Patent Document 2 describes that a polyamic acid obtained by reacting these in m-cresol was gradually heated to 300 ° C. to obtain a polyimide. Only the thermophysical properties of are described, and details of other physical properties are not described.
  • Non-Patent Document 1 describes that a polyimide was obtained by adding a dehydration catalyst and an imidizing agent to a solution obtained by using both monomers. It only describes the thermophysical properties of the gel, not the physical properties of the film.
  • polyimides produced using 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,2′-bis (trifluoromethyl) benzidine have been conventionally known.
  • This monomer has a low reactivity and requires a lot of reaction time in the polyamic acid synthesis stage.
  • the present invention has been achieved in view of the above circumstances, and an object thereof is to obtain a low thermal expansion polyimide having excellent transparency, heat resistance, and linear expansion coefficient in a short production time. Furthermore, a resin composition useful as a resin material for forming a product or member having a high demand for heat resistance and a low linear thermal expansion coefficient using the polymer compound, and further, produced using the resin composition An object is to provide a product or member excellent in heat resistance. In particular, it is an object of the present invention to provide a product and a member in which the polyimide and the resin composition of the present invention are applied for use in contact with an inorganic substance such as glass, metal, metal oxide, or single crystal silicon.
  • an inorganic substance such as glass, metal, metal oxide, or single crystal silicon.
  • the present invention has the following configuration.
  • a method for producing a polyamic acid solution containing a repeating unit represented by the following formula (1) by polymerizing a diamine compound and an acid dianhydride using a mixture of an aprotic polar solvent and an aliphatic carboxylic acid having 15 or less carbon atoms as a solvent.
  • the proportion of the aliphatic carboxylic acid having 15 or less carbon atoms in the solvent is 0.5 or more and less than 29% by weight
  • the polymerization temperature is 0 to 35 ° C.
  • the process for producing a polyamic acid solution containing a repeating unit represented by the following formula (1) is polymerized at a temperature of 45 or less.
  • R 1 represents a tetravalent organic group and R 2 represents a divalent organic group.
  • R 1 is an acid dianhydride residue containing a substituted or unsubstituted aromatic group.
  • R 2 has at least one aromatic group and at least one of them has a substituent, or has a plurality of aromatic groups and is bonded with a branched or straight chain alkyl group.
  • R 1 is a tetravalent organic group selected from the following formula (2), The method for producing a polyamic acid solution according to 2).
  • R 2 is a divalent organic group selected from the following formula (3), The method for producing a polyamic acid solution according to 3),
  • R 3 represents an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, or halogen).
  • R 3 represents an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, or halogen).
  • a method for producing a polyimide film containing a repeating unit represented by formula (6) which is prepared by casting a solution obtained by mixing a polyamic acid obtained in 1) with a dehydration catalyst and an imidizing agent onto a support.
  • a method for producing a polyimide film comprising:
  • R 1 represents a tetravalent organic group selected from the following formula (2)
  • R 2 represents a divalent organic group selected from the following formula (3)
  • R 3 represents hydrogen, halogen, alkyl halide, or a C1-C16 alkyl group.
  • R 3 represents hydrogen, halogen, alkyl halide, or a C1-C16 alkyl group.
  • R 3 is halogen, or process for producing a polyimide film as described in 13), which is a halogenated alkyl.
  • the imide skeleton contained in the repeating unit of the formula (1) is a rigid skeleton having high linearity.
  • the obtained polyimide film not only has excellent heat resistance, but also exhibits a low coefficient of linear thermal expansion.
  • the production rate of the polyamic acid can be controlled, and the production rate can be improved when a component containing halogen, particularly a component having a fluoroalkyl group, is used.
  • Polyamide acid synthesis time can be shortened.
  • the resin composition containing polyimide obtained in the present invention has the same linear expansion coefficient as various inorganic materials, and has low dimensional hysteresis.
  • the polyamic acid produced in the present invention is a polyamic acid having a repeating unit represented by the formula (1).
  • This polyamic acid can be synthesized using an acid dianhydride and a diamine compound.
  • the aliphatic carboxylic acid used in the present invention is an aliphatic carboxylic acid having 15 or less carbon atoms.
  • the aliphatic group is preferably an alkyl group having 15 or less carbon atoms, and the alkyl group may have a branch.
  • carboxylic acids having 15 or less carbon atoms carboxylic acids having 10 or less carbon atoms, more preferably 5 or less, and particularly 3 or less are preferable.
  • Polyvalent carboxylic acids can also be used, but monovalent carboxylic acids are preferred.
  • Specific examples of the carboxylic acid that can be used include formic acid, acetic acid, propionic acid, n-butyric acid, and iso-butyric acid. Of these, formic acid, acetic acid, and propionic acid are preferable, and acetic acid is more preferable.
  • the amount of the aliphatic carboxylic acid used in the present invention is 0.5 or more and less than 29% by weight, preferably 3.0 or more and less than 28% by weight, based on the total amount of the solvent including the aliphatic carboxylic acid used. Preferably it is 5.0 or more and less than 27 weight%. In terms of reaction rate, it is particularly preferably 15 to 27% by weight, most preferably 22 to 27% by weight.
  • the amount of the aliphatic carboxylic acid is higher than the above range, it is difficult to expect an improvement in the synthesis rate of the polyamic acid, and it is difficult to obtain a product having a desired molecular weight by decomposition of the produced polyamic acid. Further, when the amount of the aliphatic carboxylic acid is small, a sufficient polymerization rate cannot be obtained, and it is difficult to shorten the synthesis time of the polyamic acid.
  • R 1 in the formula (1) is a tetravalent organic group, and a tetravalent organic group represented by the formula (2) is preferable. Specific examples thereof include a tetravalent organic group corresponding to each acid dianhydride component to be described later, that is, a structure in which acid dianhydride components are removed from both terminal acid anhydride groups involved in the formation of a polyimide chain. It is done.
  • acid dianhydrides having the structure of Formula (4) are particularly preferred from the viewpoint of the rigidity exhibited by the resulting polymer and the availability of raw materials.
  • a structure having a biphenylene group is more preferable.
  • two or more kinds of tetravalent organic groups can be used as long as the properties such as transparency and expansion coefficient of polyimide can be secured.
  • R 1 in the formula (1) can be introduced from the acid dianhydride component (compound), and two or more kinds of acid dianhydride compounds can be used.
  • the acid dianhydride component it is preferable to use an acid dianhydride compound having a tetravalent organic group listed in Formula (2).
  • the acid dianhydride compound having a tetravalent organic group listed in the formula (2) is 30 mol% or more, further 50 mol% or more of the whole acid dianhydride, depending on the target physical properties. It is particularly preferred that substantially all acid dianhydride compounds have the structure of formula (2). Moreover, when using 2 or more types, they may be regularly arranged and may exist in a polyimide at random.
  • acid dianhydride having an organic group represented by the formula (2) examples include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride.
  • acid dianhydrides that can be used in combination with the acid dianhydride having an organic group represented by the formula (2), specifically, for example, ethylene tetracarboxylic dianhydride, butane tetracarboxylic dianhydride , Cyclobutanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenonetetracarboxylic Acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-di Carboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) e
  • R 2 in the formula (1) is a divalent organic group, and specific examples thereof include a divalent organic group corresponding to each diamine component described later, as described in the formula (3). That is, the structure which remove
  • a rigid diamine having an electron withdrawing group is preferably used.
  • R 2 of these diamines include those having a phenylene group or a biphenylene group, more preferably a biphenylene group in the formula (3), and a diamine having a structure of the formula (5) is particularly preferable.
  • R 3 in the formulas (3) and (5) is a monovalent organic group representing hydrogen, halogen, alkyl halide, or C1-C16 alkyl group. From the transparency, heat resistance, and dimensional stability of the resulting polyimide, an electron withdrawing group such as halogen or alkyl halide is preferred, and a fluorine atom or a fluoroalkyl group is more preferred. A fluoromethyl group, more preferably a trifluoromethyl group, is most preferred. A specific example of the most preferred diamine is 2,2′-bis (trifluoromethyl) benzidine.
  • Two or more diamines can be used in combination as long as the transparency of the polyimide can be ensured.
  • a diamine having the structure of formula (3), particularly formula (5) in an amount of 30 mol% or more, preferably 50 mol% or more of the entire diamine, and substantially all diamines. It is particularly preferred to use a diamine having the structure of formula (3).
  • they may be regularly arranged and may exist in the polyimide at random.
  • diamines that can be used in combination with the diamine having the structure of the formula (3) include, for example, p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3,3′-diaminodiphenyl ether, 3, 4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,3′-diaminobenzophenone, 4,4′-diaminobenzophenone, 3,4′-diaminobenzoph
  • any one or more of ethynyl group, benzocyclobuten-4′-yl group, vinyl group, allyl group, cyano group, isocyanate group, and isopropenyl group serving as a crosslinking point may be used. Even if it introduce
  • the substituent R 3 introduced in the state of diamine may be introduced in the state of polyimide or polyamic acid.
  • the wavelength of light to be absorbed can be adjusted, and the transparency and coloring degree of the resulting film can be adjusted.
  • the aprotic polar solvent used in the present invention is a solvent having high polarity and no acidic hydrogen.
  • the high polarity means that the dielectric constant is preferably 5 or more, for example.
  • N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), hexamethylphosphorylamide, acetonitrile, acetone Solvents such as tetrahydrofuran can be used singly or as a mixture, preferably N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAc).
  • the total amount of the solvent other than the aliphatic carboxylic acid having 15 or less carbon atoms used in the present invention is preferably an aprotic polar solvent, but an aromatic solvent or an ether solvent may be used as an auxiliary solvent.
  • the auxiliary solvent include xylene, toluene, benzene, diethylene glycol ethyl ether, 1,2-dimethoxyethane (monoglyme), diethylene glycol dimethyl ether (diglyme), 1,2-bis- (2-methoxyethoxy) ethane (triglyme), Bis- (2-methoxyethyl) ether, butyl cellosolve, butyl cellosolve acetate, propylene glycol methyl ether and propylene glycol methyl ether acetate.
  • the auxiliary solvent can be used in an amount of less than 50% by weight of the aprotic polar solvent used, further less than 30% by weight, particularly less than 15% by weight.
  • the solid content concentration of the polyamic acid solution synthesized according to the present invention is preferably 5 to 50% by weight, more preferably 10 to 35% by weight from the viewpoint of handling.
  • the diamine compound and acid dianhydride used in the production of the polyamic acid solution of the present invention are preferably carried out in substantially the same amount (molar ratio), but when the diamine component is large, the viscosity of the resulting polyamic acid solution However, it is preferable that the amount (molar ratio) of the acid dianhydride is larger than that of the diamine compound.
  • the monomer ratio of the diamine compound to the acid dianhydride is, for example, preferably 92.0 to 99.5 mol%, more preferably 95.0 to 99.0 mol%, with respect to 100 mol% of the acid anhydride component. . If the diamine component is too small, sufficient viscosity cannot be obtained, and the mechanical properties of the polyimide film synthesized from polyamic acid are unlikely to be sufficient.
  • the method for obtaining the polyamic acid can be obtained by mixing an amine component and an acid anhydride component. Stirring is preferably performed during mixing, and the time is preferably as short as possible without causing inconvenience in operation. For example, 10 minutes to 20 hours, further 10 minutes to 10 hours, particularly 15 minutes to 5 hours are preferable. In the present invention, it can be carried out within 15 minutes to 3 hours, and further within 1 hour.
  • the method of adding the acid anhydride component to the amine component and the opposite method can be adopted, but the method of adding the acid anhydride component to the amine component is preferable.
  • Each component may be added at once, or may be added in multiple portions.
  • the diamine compound and the acid dianhydride to be used may be added at once (including adding the whole amount in the other), for example, either one of them.
  • a method may be used in which a prepolymer (precursor) is first produced without using all components, and the remaining components are added later.
  • the ratio of the diamine compound and the acid dianhydride used in the production of the polyamic acid of the present invention is preferably the above-mentioned ratio. It is preferable to produce a polyamic acid by synthesizing and then sequentially adding the other monomer and adjusting the viscosity.
  • the method using a diamine compound later is preferable in terms of the storage stability of the polyamic acid obtained.
  • the amount of the acid dianhydride or diamine compound used later is preferably 3 to 15 mol%, more preferably 4 to 10 mol%, based on the total amount of the acid dianhydride or diamine compound.
  • the reaction temperature of the polyamic acid synthesized according to the present invention is 0 to 35 ° C., preferably 3 to 30 ° C. When reaction temperature is low, reaction time may become long. Further, when the reaction temperature is high, the viscosity may not increase.
  • the reaction temperature for synthesizing the polyamic acid is 0 to 35 ° C., and it is ⁇ 0.5 ⁇ (the proportion of aliphatic carboxylic acid having 15 or less carbon atoms in the solvent (% by weight)). It is necessary to carry out at a temperature (° C) of +45 or less. Further, the temperature is preferably ⁇ 0.5 ⁇ (ratio of aliphatic carboxylic acid having 15 or less carbon atoms in the solvent (% by weight)) + 40 or less (° C.).
  • ⁇ 1.0 ⁇ ratio of aliphatic carboxylic acid having 15 or less carbon atoms in the solvent (% by weight) + 15 or more, and further ⁇ 1.0 ⁇ (aliphatic carboxylic acid having 15 or less carbon atoms in the solvent) Ratio (wt%)) + 20 or more, in particular, ⁇ 1.0 ⁇ (ratio of aliphatic carboxylic acid having 15 or less carbon atoms in the solvent (wt%)) + temperature (° C.) of 25 or more. It is preferable in terms of
  • a polyamic acid which is a precursor is synthesized from an acid dianhydride and a diamine, a dehydration catalyst and an imidizing agent are added thereto, and cast or coated on a substrate.
  • a technique for obtaining a polyimide film is typically mentioned.
  • a method of casting or coating a method of casting or coating on an endless belt or a method of casting or coating on a substrate having a predetermined size can be employed.
  • the method of imidizing by heating without using a dehydration catalyst or imidizing agent is not suitable for the purpose because the resulting film has poor linear expansion and dimensional stability.
  • a tertiary amine can be used as the imidizing agent to be used.
  • a tertiary amine a heterocyclic tertiary amine is more preferable.
  • the heterocyclic tertiary amine include pyridine, 2,5-diethylpyridine, picoline, quinoline, isoquinoline and the like.
  • the physical properties of the resulting polyimide film can be improved by changing the amount of the polyamic acid added to the carboxylic acid as the amount of the imidizing agent. That is, the greater the amount of imidizing agent added, the better the linear expansion coefficient and dimensional stability of the resulting film.
  • the acid anhydride is less affected by the amount than the imidizing agent, but if it is too much, there is a problem that the cast film is peeled off from the substrate, and the following preferred ranges can be exemplified respectively. .
  • the linear expansion coefficient and dimensional stability of the resulting film tend to be improved.
  • imidization proceeds too quickly with a large amount of imidizing agent, it becomes insoluble before filming, which causes problems such as inability to cast.
  • the dehydration catalyst acid anhydrides are preferred, and specific examples include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, and trifluoroacetic anhydride, with acetic anhydride being the most preferred. preferable.
  • the physical properties of the obtained film do not change regardless of the amount of the dehydration catalyst added, but if the amount added is increased, the cast film tends to be peeled off from the substrate. From these tendencies, the addition amount of the dehydration catalyst is 0.6 to 10.0 times molar equivalent, more preferably 1.0 to 7.0 times molar equivalent, more preferably relative to the carboxylic acid group of the polyamic acid. Is preferably 3.0 to 5.0 times equivalent.
  • the said preferable range of an imidation agent and a dehydration catalyst can be used in combination as appropriate.
  • an imidizing agent or a dehydration catalyst When adding an imidizing agent or a dehydration catalyst to a polyamic acid solution, it may be added directly without dissolving in a solvent, or a solution dissolved in a solvent may be added. In the direct addition method, the reaction may rapidly proceed before the imidizing agent or the dehydration catalyst diffuses to form a gel.
  • the imidizing agent and the dehydration catalyst are dissolved in a solvent, and the solution is mixed with the polyamic acid solution.
  • a polyamic acid solution After stirring for a predetermined time, a polyamic acid solution is obtained. It is preferable to add the imidizing agent and the dehydrating agent at a low temperature of 3 ° C. or lower, more preferably around 0 ° C., particularly 0 ° C. or lower. After adding an imidizing agent and a dehydrating agent, the solution is vigorously stirred and defoamed under vacuum or using a centrifugal precipitator or the like, and then applied and dried on a substrate such as glass or a film to form a coating film. For example, a polyimide coating film can be obtained by heating it to 300 ° C. or higher.
  • the maximum temperature is preferably in the range of 200 to 400 ° C.
  • the heating atmosphere can be performed in air, under reduced pressure, or in an inert gas such as nitrogen. Moreover, you may combine those atmospheres.
  • the polyimide of the present invention synthesized in this way is characterized by low linear expansion and dimensional stability before and after heating.
  • a film sample of 15 mm ⁇ 5 mm When the weight is set to 3.0 g and measured at a heating rate of 10 ° C./min, a polyimide film having a linear thermal expansion coefficient of 40 ppm or less, preferably 20 ppm or less can be obtained.
  • a polyimide film of 10 ppm or less, particularly 5 ppm or less can be obtained.
  • a polyimide film having a dimensional change rate before and after heating of 0.1% or less and further 0.05% or less can be obtained. Further, a polyimide film of 0.003% or less can be obtained by adjusting the amount of the imidizing agent.
  • the thickness of the polyimide film produced in the present invention is not particularly specified, but if it is too thin, the resulting film becomes difficult to handle. On the other hand, when the thickness is thick, it becomes difficult to remove the solvent by heating, and the outgas amount of the film increases.
  • the film thickness is preferably 10 ⁇ m to 100 ⁇ m, more preferably 20 ⁇ m to 80 ⁇ m.
  • the mechanical properties of the polyimide obtained as described above are unlikely to be sufficient.
  • Polyamic acid is an unstable compound, and as a simple method instead of grasping the polymerization state by molecular weight measurement, a method of grasping the polymerization state from the viscosity of the obtained polyamic acid solution is used.
  • the polymerization conditions are preferably determined so that the viscosity of the polyimide acid solution is 500 to 4500 poises at 23 ° C., more preferably 850 to 4000 poises, and particularly 1000 to 3500 poises. When the solution viscosity is high, handling becomes difficult, and when the solution viscosity is low, the mechanical properties of the polyimide film synthesized from the polyamic acid are not sufficient.
  • the solution viscosity of the prepolymer can be adjusted so that the viscosity at 23 ° C. is 1 to 200 poise, preferably 2 to 150 poise, particularly preferably 3 to 100 poise.
  • the weight average molecular weight is preferably in the range of 3,000 to 1,000,000, although it depends on its use, 5,000 The range is more preferably in the range of ⁇ 500,000, and the range in the range of 10,000 to 500,000 is more preferable.
  • the weight average molecular weight is too low, it is difficult to obtain sufficient strength when used as a coating film or film. Moreover, from the point that there is little coloring of a film, 5000 or more, Furthermore, 10,000 or more are preferable. On the other hand, when the weight average molecular weight is too high, the viscosity increases and the solubility in a solvent also decreases, so that it is difficult to obtain a coating film or film having a smooth surface and a uniform film thickness.
  • the molecular weight used here refers to a value in terms of polystyrene measured by gel permeation chromatography (GPC), and may be the molecular weight of the polyimide precursor itself, or acetic anhydride when the resulting polyimide is solvent soluble. The thing after performing a chemical imidation process by etc. may be sufficient.
  • the polyimide film of the present invention is characterized by having particularly excellent dimensional stability, but the original properties of the polyimide such as heat resistance and insulation are not impaired and are good.
  • the glass transition temperature is preferably as high as possible from the viewpoint of heat resistance, but in a differential scanning calorimeter, the glass transition temperature when measured at a temperature rising rate of 10 ° C./min is preferably 200 ° C. or higher. More preferably, it is good at 300 degreeC or more.
  • the polyimide film in the present invention is characterized by having the structure represented by the formula (6) as described in detail, but it is 85% or more of the number of repeating units of the polyimide film, more preferably 93% or more, especially It is preferable that 97% or more has a structure represented by the above formula. Most preferably, substantially all of the structure is represented by the above formula.
  • the polyimide film according to the present invention may be used as it is for a coating or forming process for producing a product or a member as it is, but it may be used as a laminate by further processing such as coating on a molded product formed into a film shape. I can do it.
  • the polyimide film is dissolved or dispersed in a solvent as necessary.
  • a light or thermosetting component, a non-polymerizable binder resin other than the polyimide film component according to the present invention, other A polyimide resin composition may be prepared by blending the components.
  • the resin composition can be formed using a polyimide obtained by imidizing a polyamic acid obtained by the method for producing a polyamic acid solution according to the present invention.
  • various organic or inorganic low-molecular or high-molecular compounds may be blended in order to impart processing characteristics and various functionalities to the obtained resin composition.
  • dyes, surfactants, leveling agents, plasticizers, fine particles, sensitizers, and the like can be used.
  • the fine particles include organic fine particles such as polystyrene and polytetrafluoroethylene, inorganic fine particles such as colloidal silica, carbon, and layered silicate, and these may have a porous or hollow structure.
  • the function or form includes pigments, fillers, fibers, and the like.
  • the polyimide resin composition can be obtained by containing the polyimide represented by the formula (1) in the range of usually 5 to 99.9% by weight with respect to the entire solid content of the resin composition.
  • the blending ratio of the components that can be blended as described above is preferably in the range of 0.1 wt% to 95 wt% with respect to the total solid content of the polyimide resin composition.
  • solid content of a polyimide resin composition is all components other than a solvent, and a liquid monomer component is also contained in solid content.
  • the polyimide film according to the present invention can be used as a laminate by subjecting the film to a treatment such as coating.
  • the material such as coating is preferably an inorganic material, and examples thereof include various inorganic thin films such as metal oxides and transparent electrodes.
  • various inorganic thin films such as a metal oxide and a transparent electrode can be formed on the polyimide film surface and used.
  • the method for forming these inorganic thin films is not particularly limited, and for example, a PVD method such as a CVD method, a sputtering method, a vacuum deposition method, or an ion plating method can be used.
  • the polyimide film obtained in the present invention can obtain a polyimide film having a yellowness (YI) as compared with a polyimide film obtained without using an aliphatic carboxylic acid.
  • YI yellowness
  • the polyimide film according to the present invention is a polyimide film having a thickness of 45 ⁇ m to 55 ⁇ m and can be 20 or less, preferably 18 or less, particularly 17 or less.
  • the lower haze of the polyimide film is also preferred for the same reason. Preferably, it may be 5.0% or less, more preferably 3.0% or less.
  • the polyimide film according to the present invention has high dimensional stability in addition to the original characteristics of polyimide such as heat resistance and insulation, fields and products in which these characteristics are effective, such as printed matter, color filters, etc. Suitable for forming flexible displays, semiconductor parts, interlayer insulating films, wiring coating films, optical circuits, optical circuit parts, antireflection films, holograms, optical members or building materials.
  • test piece (type 2) was measured at a tensile speed of 20 mm / min.
  • Total light transmittance and haze measurement The haze and total light transmittance of the film were measured using NDH-300A manufactured by Nippon Denshoku Industries Co., Ltd.
  • Example 1 In a 500 ml separable flask, 22.2 g (69.1 mmol) of 2,2′-bis (trifluoromethyl) benzidine was charged, dissolved in 175 g of dimethylacetamide (DMAc), and stirred in a 25 ° C. water bath. 3,3 ′, 4,4′-BPDA (22.4 g, 73.4 mmol) was added thereto, and the mixture was stirred at room temperature for 3 hours to obtain a uniform solution. The precursor solution 1 was obtained by stirring. The solution viscosity of the precursor solution 1 at 23 ° C. was 6 poise.
  • DMAc dimethylacetamide
  • a solution prepared by dissolving 1.1 g (3.4 mmol) of 2,2′-bis (trifluoromethyl) benzidine in 6 g of DMAc was added to the precursor solution 1.
  • the solution viscosity after the 2,2′-bis (trifluoromethyl) benzidine solution was added to the precursor solution 1 was traced with an E-type viscometer, and the difference between the previously measured viscosity and the next measured viscosity was ⁇ The time when it was within 100 poise was taken as the polymerization time.
  • the solution viscosity of the polyamic acid solution 1 thus obtained at 23 ° C. was 2660 poise, and the time until the final reached viscosity was 4.0 h.
  • solid content concentration was 18.0 weight%.
  • the polyimide film 1 had a thickness of 50 ⁇ m, a linear expansion coefficient (100-200 ° C.) of 1.2 ppm, a total light transmittance of 87%, a haze of 2.0%, and a yellowness of 16.
  • Example 2 In a 500 ml separable flask, 22.0 g (68.6 mmol) of 2,2′-bis (trifluoromethyl) benzidine was charged, dissolved in 170 g of dimethylacetamide (DMAc), and stirred in a 25 ° C. water bath. Thereto, 22.4 g (76.3 mmol) of 3,3 ′, 4,4′-BPDA was added and stirred at room temperature for 3 hours to obtain a homogeneous solution, followed by addition of 38.0 g of acetic acid and 1 hour in a water bath. The precursor solution 2 was obtained by stirring. The solution viscosity at 23 ° C. of the precursor solution was 7 poise.
  • DMAc dimethylacetamide
  • this precursor solution 2 a solution prepared by dissolving 2.1 g (6.5 mmol) of 2,2′-bis (trifluoromethyl) benzidine in 7 g of DMAc was added.
  • the polymerization time was measured in the same manner as in Example 1.
  • the solution viscosity at 23 ° C. of the polyamic acid solution 2 was 2130 poise, and the time until the final viscosity reached 120 minutes.
  • the solid content concentration was 18.2% by weight.
  • a polyimide film 2 was obtained in the same manner as in Example 1.
  • the polyimide film 2 had a thickness of 49 ⁇ m, a linear expansion coefficient (100-200 ° C.) of 0.9 ppm, a total light transmittance of 87%, a haze of 1.9%, and a yellowness of 16.1.
  • Example 3 In a 500 ml separable flask, 22.0 g (68.6 mmol) of 2,2′-bis (trifluoromethyl) benzidine was charged, dissolved in 160 g of dimethylacetamide (DMAc), and stirred in a 25 ° C. water bath. Thereto, 22.4 g (76.3 mmol) of 3,3 ′, 4,4′-BPDA was added and stirred at room temperature for 3 hours to obtain a homogeneous solution. The precursor solution 3 was obtained by stirring for 1 hour. The solution viscosity of the precursor solution 3 at 23 ° C. was 7 poise.
  • DMAc dimethylacetamide
  • a solution prepared by dissolving 2.1 g (6.5 mmol) of 2,2′-bis (trifluoromethyl) benzidine in 7 g of DMAc was added to the precursor solution 3.
  • the solution viscosity after the 2,2′-bis (trifluoromethyl) benzidine solution was added to the precursor solution 3 was traced with an E-type viscometer, and the difference between the previously measured viscosity and the next measured viscosity was ⁇
  • the time when it was within 100 poise was taken as the polymerization time.
  • the solution viscosity at 23 ° C. of the polyamic acid solution 3 was 2130 poise, and the time until the final reached viscosity was 100 minutes.
  • polyimide film 3 was obtained by drying with hot air at 90 ° C. for 10 minutes, 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, and 300 ° C. for 10 minutes.
  • the polyimide film 3 had a thickness of 49 ⁇ m, a linear expansion coefficient (100-200 ° C.) of 0.0 ppm, a total light transmittance of 87%, a haze of 1.8%, and a YI of 15.8.
  • Example 4 To a 500 mL separable flask, 23.3 g (72.8 mmol) of 2,2′-bis (trifluoromethyl) benzidine was added, dissolved in 162 g of dimethylacetamide (DMAc), and stirred in a 25 ° C. water bath. Thereto, 23.0 g (78.2 mmol) of 3,3 ′, 4,4′-BPDA was added and stirred at room temperature for 3 hours to obtain a homogeneous solution, followed by addition of 50 g of acetic acid and 1 hour in a 25 ° C. water bath. The precursor solution 4 was obtained by stirring. The solution viscosity at 23 ° C. of the precursor solution 4 was 8 poise.
  • DMAc dimethylacetamide
  • a polyimide film 4 was obtained in the same manner as in Example 1.
  • the thickness of the polyimide film 4 is 48 ⁇ m
  • the linear expansion coefficient (100-200 ° C.) is ⁇ 1.7 ppm
  • the thermal hysteresis is 0.6 ⁇ m
  • the total light transmittance is 87%
  • the haze is 1.9%
  • the YI is 15 .8.
  • Example 5 In a 2 L separable flask, 69.9 g (0.22 mol) of 2,2′-bis (trifluoromethyl) benzidine was added, dissolved in 475 g of dimethylacetamide (DMAc), and stirred in a 25 ° C. water bath. 3,3 ′, 4,4′-BPDA (69.0 g, 0.23 mol) was added thereto, and the mixture was stirred at room temperature for 3 hours to obtain a homogeneous solution. The precursor solution 5 was obtained by stirring. The solution viscosity at 23 ° C. of the precursor solution 5 was 13 poise.
  • DMAc dimethylacetamide
  • polyimide film 5 was obtained by drying with hot air at 90 ° C. for 10 minutes, 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, and 300 ° C. for 10 minutes.
  • the polyimide film 5 has a thickness of 47 ⁇ m, a linear expansion coefficient (100-200 ° C.) of 0.0 ppm, a thermal hysteresis of 0.1 ⁇ m, a total light transmittance of 87%, a haze of 2.0%, and a YI of 15. It was 8.
  • a solution prepared by dissolving 1.7 g (5.3 mmol) of 2,2′-bis (trifluoromethyl) benzidine in 1.2 g of DMAc was added to the precursor solution 6.
  • the polymerization time was measured in the same manner as in Example 1.
  • the solution viscosity at 23 ° C. of the polyamic acid solution 6 thus obtained was 2900 poise, and the time until the final reached viscosity was 30 minutes.
  • solid content concentration was 20.1 weight%.
  • a polyimide film 6 was obtained in the same manner as in Example 1.
  • the polyimide film 6 had a thickness of 50 ⁇ m, a linear expansion coefficient (100-200 ° C.) of 2.0 ppm, a total light transmittance of 87%, a haze of 2.0%, and a YI of 16.
  • a polyimide film 7 was obtained in the same manner as in Example 1.
  • the polyimide film 7 had a thickness of 47 ⁇ m, a linear expansion coefficient (100-200 ° C.) of 0.3 ppm, a total light transmittance of 87%, a haze of 3%, and a YI of 17.4.
  • the polyimide film thus obtained has substantially the same expansion coefficient, thickness, transmittance and haze as when no aliphatic carboxylic acid is used. Further, the yellowness (YI) is improved as compared with the case where no aliphatic carboxylic acid is used. Thus, a polyimide film with improved physical properties can be obtained by using an aliphatic carboxylic acid in combination as a polymerization solvent.
  • the glass transition temperature (Tg) of the polyimide films obtained in Examples and Comparative Examples was measured. Since DSC Q200 manufactured by TS Instruments was used and measured at a heating rate of 10 ° C./min and no peak corresponding to Tg was observed up to 400 ° C., the Tg of the obtained polyimide film was Was also found to be at least 400 ° C. or higher.
  • the molecular weight of the polyamic acid obtained in the examples was measured using gel permeation chromatography. Dimethylformamide was used as a developing solvent, polystyrene was used as a standard sample, and Shodex, one KD-G, two KD-806M, and one KD-801 were connected in series to a Tosoh RI8020 column as a detector. The measurement was performed at a measurement temperature of 40 ° C. As a result, it was confirmed that all the polyamic acids of the examples had a weight average molecular weight of 3000 or more.
  • the polyimide film of the present invention thus produced has good heat resistance and can produce a film having an arbitrary low expansion coefficient and dimensional stability, these characteristics are considered to be effective.
  • Fields and products such as paints, printing inks, color filters, flexible display films, semiconductor devices, electronic components, interlayer insulation films, wiring coating films, optical circuits, optical circuit components, antireflection films, holograms, etc. Suitable for forming optical members or building materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

A process for producing a polyamic acid solution using specific monomers, in particular, a process for producing a polyamic acid solution having a sufficiently high viscosity, in which the time period required for increasing viscosity can be controlled or shortened; a polyimide film composition; and a product or member produced using the resin composition and having excellent heat resistance. The process includes supplementing the monomers to a low-viscosity polyamic acid solution obtained from a specific aromatic acid dianhydride, a specific diamine, an aprotic polar solvent, and an aliphatic carboxylic acid and reacting the monomers, thereby producing, within two hours, a polyamic acid having a desired solution viscosity. Provided is a polyimide film having the same coefficient of expansion as various inorganic materials.

Description

ポリアミド酸溶液の製造方法及びポリイミドフィルムMethod for producing polyamic acid solution and polyimide film
本発明は、耐熱性、寸法安定性に優れる高分子化合物及びその製造方法に関する。好適には、耐熱性優れるポリイミドに関し、特に、耐熱性と共に寸法安定性に対する要求が高い製品又は部材を形成するための材料(例えば、表示装置ガラス代替など)として好適に利用できるポリイミドフィルムの製造方法、特に溶剤の一部に脂肪族カルボン酸を使用し製造時間を短縮したポリアミド酸の製造方法、さらに、当該製造方法で得られたポリイミドフィルム、当該ポリイミドフィルムを用いた樹脂組成物及び、当該樹脂組成物を用いて作製した物品に関するものである。 The present invention relates to a polymer compound having excellent heat resistance and dimensional stability and a method for producing the same. Preferably, it relates to a polyimide having excellent heat resistance, and in particular, a method for producing a polyimide film that can be suitably used as a material (for example, a substitute for display device glass) for forming a product or member that has high demands on heat resistance and dimensional stability. In particular, a method for producing polyamic acid in which an aliphatic carboxylic acid is used as a part of a solvent to shorten the production time, a polyimide film obtained by the production method, a resin composition using the polyimide film, and the resin The present invention relates to an article produced using the composition.
 近年、液晶や有機EL、電子ペーパー等のディスプレイや、太陽電池、タッチパネル等のエレクトロニクスの急速な進歩に伴い、デバイスの薄型化や軽量化、更には、フレキシブル化が要求されるようになってきた。これらのデバイスにはガラス板上に様々な電子素子、例えば、薄型トランジスタや透明電極等が形成されているが、ガラス基板を用いたデバイスは、厚い、重い、破損しやすい、といった問題があり、このガラス材料をフィルム材料に変えることにより、パネル自体の薄型化や軽量化、さらには、フレキシブル化が図れる。しかしながらこれらの電子素子の形成には高温プロセスが必要であり、これに耐えられるだけのフィルム材料がこれまで存在しなかった。 In recent years, with the rapid progress of displays such as liquid crystal, organic EL, and electronic paper, and electronics such as solar cells and touch panels, devices have been required to be thinner and lighter, and more flexible. . In these devices, various electronic elements such as thin transistors and transparent electrodes are formed on a glass plate, but devices using a glass substrate have a problem that they are thick, heavy, and easily damaged. By changing this glass material to a film material, the panel itself can be made thinner and lighter, and more flexible. However, the formation of these electronic devices requires a high temperature process, and there has been no film material that can withstand this.
 また無機材料からなるこれらの微細な素子をフィルム上に形成した場合、無機材料とフィルムの線膨張係数の違いにより、無機素子の形成後フィルムが曲がったり、更には、無機素子が破壊されてしまう恐れがあった。このため、透明性と耐熱性を有しながら、無機材料と同じ線膨張係数を有するフィルム材料が望まれていた。 Moreover, when these fine elements made of an inorganic material are formed on a film, the film is bent after the formation of the inorganic element due to the difference in the linear expansion coefficient between the inorganic material and the film, and further, the inorganic element is destroyed. There was a fear. For this reason, a film material having the same linear expansion coefficient as an inorganic material while having transparency and heat resistance has been desired.
 ポリイミドは高度の耐熱性・寸法安定性・耐薬品性・電気的特性・機械的物性その他優れた諸特性を有することから、半導体や電子部品への応用がなされてきた。その為、単結晶シリコンや銅などの金属と積層される場合が多く、ポリイミドの線熱膨張係数を単結晶シリコンや金属並に小さくする試みは従来から行われてきた。 Polyimide has high heat resistance, dimensional stability, chemical resistance, electrical properties, mechanical properties, and other excellent properties, so it has been applied to semiconductors and electronic components. For this reason, it is often laminated with a metal such as single crystal silicon or copper, and attempts have been made to reduce the linear thermal expansion coefficient of polyimide to the same level as single crystal silicon or metal.
 ポリイミドの線熱膨張係数に大きく影響を与える因子として、その化学構造が挙げられる。一般に、ポリイミドの高分子鎖が剛直で直線性が高いほど膨張率は下がるといわれており、膨張率を下げる為、ポリイミドの原料である酸二無水物、ジアミン双方で種々の構造が提案されてきた。 The chemical structure is a factor that greatly affects the linear thermal expansion coefficient of polyimide. Generally, it is said that the higher the rigidity and linearity of the polyimide polymer chain, the lower the expansion coefficient. In order to reduce the expansion coefficient, various structures have been proposed for both acid dianhydrides and diamines, which are polyimide raw materials. It was.
 このうち、3,3',4,4'-ビフェニルテトラカルボン酸二無水物と2,2'-ビス(トリフルオロメチル)ベンジジンから得られるポリイミドは、耐熱性や線膨張係数に加えて透明性にも優れており、これまでいくつかの報告例がある。両モノマーから得られたポリアミド酸溶液をキャストして得られたフィルムを、脱水触媒及びイミド化剤溶液の中に浸漬することにより、ポリイミドフィルムを得ている。浸漬して作成することにより、フィルムの線膨張係数が改善されたと記載されている。(特許文献1)。 Among these, polyimide obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,2′-bis (trifluoromethyl) benzidine is transparent in addition to heat resistance and linear expansion coefficient. There are several reports so far. A polyimide film is obtained by immersing a film obtained by casting the polyamic acid solution obtained from both monomers in a dehydration catalyst and an imidizing agent solution. It is described that the linear expansion coefficient of the film was improved by dipping. (Patent Document 1).
 例えば、特許文献2には、これらをm-クレゾール中で反応させて得られたポリアミド酸を、300℃まで徐々に加熱することでポリイミドを得たことが記載されているが、ここにはポリイミドの熱物性が記載されているだけであり、それ以外の物性の詳細は記載されていない。 For example, Patent Document 2 describes that a polyamic acid obtained by reacting these in m-cresol was gradually heated to 300 ° C. to obtain a polyimide. Only the thermophysical properties of are described, and details of other physical properties are not described.
 また、非特許文献1には、同じく両モノマーを用いて得られた溶液に、脱水触媒及びイミド化剤を添加してポリイミドが得られたことが記載されているが、ここには得られたゲルの熱物性が記載されているだけであって、フィルムの物性については記載されていない。 In addition, Non-Patent Document 1 describes that a polyimide was obtained by adding a dehydration catalyst and an imidizing agent to a solution obtained by using both monomers. It only describes the thermophysical properties of the gel, not the physical properties of the film.
 上述のように、3,3',4,4'-ビフェニルテトラカルボン酸二無水物と2,2'-ビス(トリフルオロメチル)ベンジジンを用いて製造したポリイミドは従来知られていたが、これらのモノマーは反応性が低く、ポリアミド酸合成段階で多くの反応時間を必要とする状況であった。 As described above, polyimides produced using 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,2′-bis (trifluoromethyl) benzidine have been conventionally known. This monomer has a low reactivity and requires a lot of reaction time in the polyamic acid synthesis stage.
特開2007-046054JP2007-046054 米国特許5071997U.S. Pat.
 本発明は、上記実情を鑑みて成し遂げられたものであり、透明性や耐熱性、更には線膨張係数等が優れた、低熱膨張性ポリイミドを短い製造時間で得ることを目的とする。さらに、当該高分子化合物を用いて耐熱性や、低線熱膨張係数の要求の高い製品又は部材を形成するための樹脂材料として有用な樹脂組成物、さらには、当該樹脂組成物を用いて作製した耐熱性に優れた製品又は部材を提供することを目的とする。特に、本発明のポリイミド、及び樹脂組成物を、ガラス、金属や金属酸化物、単結晶シリコン等の無機物と界面を接するような用途に適用した製品、及び部材を提供することを目的とする。 The present invention has been achieved in view of the above circumstances, and an object thereof is to obtain a low thermal expansion polyimide having excellent transparency, heat resistance, and linear expansion coefficient in a short production time. Furthermore, a resin composition useful as a resin material for forming a product or member having a high demand for heat resistance and a low linear thermal expansion coefficient using the polymer compound, and further, produced using the resin composition An object is to provide a product or member excellent in heat resistance. In particular, it is an object of the present invention to provide a product and a member in which the polyimide and the resin composition of the present invention are applied for use in contact with an inorganic substance such as glass, metal, metal oxide, or single crystal silicon.
 本願発明は以下の構成を有するものである。 The present invention has the following configuration.
 1). 非プロトン極性溶剤及び炭素数15以下の脂肪族カルボン酸の混合物を溶剤とし、ジアミン化合物と酸二無水物を重合し下記式(1)で表される繰り返し単位を含むポリアミド酸溶液の製造方法であり、溶剤中の炭素数15以下の脂肪族カルボン酸の割合が0.5以上29重量%未満で、かつ、重合温度が0~35℃かつ-0.5×(溶剤中の炭素数15以下の脂肪族カルボン酸の割合(重量%))+45以下の温度で重合する、下記式(1)で表される繰り返し単位を含むポリアミド酸溶液の製造方法。 1). A method for producing a polyamic acid solution containing a repeating unit represented by the following formula (1) by polymerizing a diamine compound and an acid dianhydride using a mixture of an aprotic polar solvent and an aliphatic carboxylic acid having 15 or less carbon atoms as a solvent. Yes, the proportion of the aliphatic carboxylic acid having 15 or less carbon atoms in the solvent is 0.5 or more and less than 29% by weight, and the polymerization temperature is 0 to 35 ° C. and −0.5 × (15 or less carbon atoms in the solvent) The ratio of the aliphatic carboxylic acid (% by weight)) The process for producing a polyamic acid solution containing a repeating unit represented by the following formula (1) is polymerized at a temperature of 45 or less.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中Rは4価の有機基を、Rは2価の有機基を示す。)。 (Wherein R 1 represents a tetravalent organic group and R 2 represents a divalent organic group).
 2). Rは、置換、非置換の芳香族基を含む酸二無水物残基であることを特徴とする1)に記載のポリアミド酸溶液の製造方法。 2). R 1 is an acid dianhydride residue containing a substituted or unsubstituted aromatic group. The method for producing a polyamic acid solution according to 1), wherein R 1 is an acid dianhydride residue.
 3). Rは芳香族基を少なくとも1個有し少なくともその1個が置換基を有するか、あるいは芳香族基を複数個有し分岐あるいは直鎖のアルキル基で結合されていることを特徴とする1)に記載のポリアミド酸溶液の製造方法。 3). R 2 has at least one aromatic group and at least one of them has a substituent, or has a plurality of aromatic groups and is bonded with a branched or straight chain alkyl group. The manufacturing method of the polyamic acid solution as described in).
 4). Rの置換基が炭素数1~16のアルキル基、炭素数1~16のハロゲン化アルキル基、ハロゲンから選ばれることを特徴とする3)に記載のポリアミド酸溶液の製造方法。 4). 3. The method for producing a polyamic acid solution according to 3), wherein the substituent of R 2 is selected from an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, and halogen.
 5). Rは下記式(2)から選択される4価の有機基であることを特徴とする2)に記載のポリアミド酸溶液の製造方法。 5). R 1 is a tetravalent organic group selected from the following formula (2), The method for producing a polyamic acid solution according to 2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 6). Rは下記式(3)から選択される2価の有機基であることを特徴とする3)に記載のポリアミド酸溶液の製造方法。 6). R 2 is a divalent organic group selected from the following formula (3), The method for producing a polyamic acid solution according to 3),
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(Rは、炭素数1~16のアルキル基、炭素数1~16のハロゲン化アルキル基、あるいはハロゲンを示す。)。 (R 3 represents an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, or halogen).
 7). Rが下記式(4)で表される4価の有機基であることを特徴とする2)に記載のポリアミド酸溶液の製造方法。 7). The method for producing a polyamic acid solution according to 2), wherein R 1 is a tetravalent organic group represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 8). Rの構造が下記式(5)から選択される2価のビフェニレン基であることを特徴とする3)に記載のポリアミド酸溶液の製造方法。 8). The method for producing a polyamic acid solution according to 3), wherein the structure of R 2 is a divalent biphenylene group selected from the following formula (5).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(Rは、炭素数1~16のアルキル基、炭素数1~16のハロゲン化アルキル基、あるいはハロゲンを示す)。 (R 3 represents an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, or halogen).
 9). Rが、ハロゲン、もしくはハロゲン化アルキルであることを特徴とする8)に記載のポリアミド酸溶液の製造方法。 9). The method for producing a polyamic acid solution according to 8), wherein R 3 is halogen or alkyl halide.
 10). Rが、炭素数が1~16のフルオロアルキル基であることを特徴とする8)に記載のポリアミド酸溶液の製造方法。 10). 8. The method for producing a polyamic acid solution as described in 8) above, wherein R 3 is a fluoroalkyl group having 1 to 16 carbon atoms.
 11). 式(6)で表される繰り返し単位を含むポリイミドフィルムの製造方法であり、1)で得られたポリアミド酸に脱水触媒及びイミド化剤を混合した溶液を支持体上に流延することにより作成することを特徴とする、ポリイミドフィルムの製造方法。 11). A method for producing a polyimide film containing a repeating unit represented by formula (6), which is prepared by casting a solution obtained by mixing a polyamic acid obtained in 1) with a dehydration catalyst and an imidizing agent onto a support. A method for producing a polyimide film, comprising:
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式中Rは下記式(2)から選択される4価の有機基を、また、Rは下記式(3)から選択される2価の有機基を示し、 In the formula, R 1 represents a tetravalent organic group selected from the following formula (2), R 2 represents a divalent organic group selected from the following formula (3),
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式中Rは、水素、ハロゲン、ハロゲン化アルキル、C1~C16のアルキル基を示す。 In the formula, R 3 represents hydrogen, halogen, alkyl halide, or a C1-C16 alkyl group.
 12). Rの構造が下記式(4)から選択される4価の有機基であることを特徴とする11)に記載のポリイミドフィルムの製造方法。 12). The method for producing a polyimide film according to 11), wherein the structure of R 1 is a tetravalent organic group selected from the following formula (4).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 13). Rの構造が下記式(5)から選択される2価の有機基ビフェニレン基もしくはフェニレン基であることを特徴とする11)に記載のポリイミドフィルムの製造方法。 13). 11. The method for producing a polyimide film according to 11), wherein the structure of R 2 is a divalent organic group biphenylene group or phenylene group selected from the following formula (5).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式中Rは、水素、ハロゲン、ハロゲン化アルキル、C1~C16のアルキル基を示す。 In the formula, R 3 represents hydrogen, halogen, alkyl halide, or a C1-C16 alkyl group.
 14). Rがハロゲン、もしくは、ハロゲン化アルキルであることを特徴とする13)に記載のポリイミドフィルムの製造方法。 14). R 3 is halogen, or process for producing a polyimide film as described in 13), which is a halogenated alkyl.
 15). Rがトリフルオロメチル基であることを特徴とする13)に記載のポリイミドフィルムの製造方法。 15). The process for producing a polyimide film as described in 13), wherein the R 3 is a trifluoromethyl group.
 16). イミド化剤として、ピリジン、ピコリン、キノリン、もしくはイソキノリンから選ばれ、脱水触媒が無水酢酸等の酸無水物から選ばれることを特徴とする、11)に記載のポリイミドフィルムの製造方法。 16). The method for producing a polyimide film according to 11), wherein the imidizing agent is selected from pyridine, picoline, quinoline, or isoquinoline, and the dehydration catalyst is selected from an acid anhydride such as acetic anhydride.
 17). アミン化合物の添加量が、ポリアミド酸のカルボン酸に対して0.05モル倍当量以上を用いることを特徴とする、16)に記載のポリイミドフィルムの製造方法。 17). The method for producing a polyimide film according to 16), wherein the addition amount of the amine compound is 0.05 molar equivalent or more with respect to the carboxylic acid of the polyamic acid.
 18). 線熱膨張係数が40ppm以下、加熱前後の収縮率が0.1%以下である、1)~17)のいずれかに記載の方法で製造されたポリイミドフィルム。 18). A polyimide film produced by the method according to any one of 1) to 17) having a linear thermal expansion coefficient of 40 ppm or less and a shrinkage ratio before and after heating of 0.1% or less.
 19). ガラス転移温度が200℃以上である、1)~17)のいずれかに記載のポリイミドフィルム。 19). The polyimide film according to any one of 1) to 17), which has a glass transition temperature of 200 ° C. or higher.
 20). 重量平均分子量が3,000以上である、1)~17)のいずれかに記載のポリイミドフィルム。 20). The polyimide film according to any one of 1) to 17), which has a weight average molecular weight of 3,000 or more.
 21). 18)に記載されたポリイミドフィルムを用いたポリイミド樹脂組成物。 21). 18) A polyimide resin composition using the polyimide film described in 18).
 22). 19)に記載されたポリイミドフィルムを用いたポリイミド樹脂組成物。 22). 19) A polyimide resin composition using the polyimide film described in 19).
 23). 20)に記載されたポリイミドフィルムを用いたポリイミド樹脂組成物。 23). Polyimide resin composition using the polyimide film described in 20).
 24). 18)に記載のポリイミドフィルムに、少なくとも1層の無機材料が積層されていることを特徴とする積層物。 24). 18) A laminate comprising at least one layer of an inorganic material laminated on the polyimide film described in 18).
 25). 19)に記載のポリイミドフィルムに、少なくとも1層の無機材料が積層されていることを特徴とする積層物。 25). (19) A laminate comprising at least one layer of an inorganic material laminated on the polyimide film described in (19).
 26). 20)に記載のポリイミドフィルムに、少なくとも1層の無機材料が積層されていることを特徴とする積層物。 26). (20) A laminate comprising at least one layer of an inorganic material laminated on the polyimide film described in (20).
 式(1)の繰り返し単位に含まれるイミド骨格は、直線性の高い、剛直な骨格であるといえる。得られるポリイミドフィルムは耐熱性に優れるだけでなく、低い線熱膨張係数を示す。 It can be said that the imide skeleton contained in the repeating unit of the formula (1) is a rigid skeleton having high linearity. The obtained polyimide film not only has excellent heat resistance, but also exhibits a low coefficient of linear thermal expansion.
 本発明によれば、ポリアミド酸の生成速度をコントロールすることが可能であり、ハロゲンを含有する成分、特にはフルオロアルキル基を有する成分を用いた場合に生成速度が向上することが可能であり、ポリアミド酸合成時間を短縮することができる。また、上記本発明で得られるポリイミドを含有する樹脂組成物は、透明性、耐熱性に加えて、様々な無機材料と同じ線膨張係数を有し、寸法ヒステリシスが小さいことから、耐熱性、低膨張性(寸法安定性)が必要とされる公知の全ての部材用のフィルムや塗膜として好適であり、例えば、印刷物、カラーフィルター、フレキシブルディスプレー、半導体部品、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、ホログラム、光学部材又は建築材料や構造物としての利用が期待される。 According to the present invention, the production rate of the polyamic acid can be controlled, and the production rate can be improved when a component containing halogen, particularly a component having a fluoroalkyl group, is used. Polyamide acid synthesis time can be shortened. In addition to transparency and heat resistance, the resin composition containing polyimide obtained in the present invention has the same linear expansion coefficient as various inorganic materials, and has low dimensional hysteresis. Suitable as a film or coating film for all known members that require expansibility (dimensional stability), such as printed matter, color filters, flexible displays, semiconductor parts, interlayer insulation films, wiring coating films, Use as an optical circuit, an optical circuit component, an antireflection film, a hologram, an optical member, a building material or a structure is expected.
 以下において本発明を詳しく説明する。 The present invention will be described in detail below.
 本発明で製造されるポリアミド酸は、式(1)で表される繰り返し単位を有するポリアミド酸である。このポリアミド酸は酸二無水物とジアミン化合物を用いて合成することが可能である。また、本発明に使用する脂肪族カルボン酸としては、炭素数15以下の脂肪族カルボン酸である。 The polyamic acid produced in the present invention is a polyamic acid having a repeating unit represented by the formula (1). This polyamic acid can be synthesized using an acid dianhydride and a diamine compound. The aliphatic carboxylic acid used in the present invention is an aliphatic carboxylic acid having 15 or less carbon atoms.
 本発明に用いることができる炭素数15以下の脂肪族カルボン酸は、その脂肪族は炭素数15以下のアルキル基が好ましく、アルキル基は分岐を有していてもかまわない。炭素数15以下の脂肪族カルボン酸の中でも炭素数10以下、さらには5以下、特には3以下のカルボン酸が好ましい。また、多価カルボン酸も使用可能であるが、1価のカルボン酸が好ましい。用いることができるカルボン酸としては、具体的には例えば、ギ酸、酢酸、プロピオン酸、n-酪酸、iso-酪酸をあげることができる。中でもギ酸、酢酸、プロピオン酸が好ましく、さらには酢酸が好ましい。 In the aliphatic carboxylic acid having 15 or less carbon atoms that can be used in the present invention, the aliphatic group is preferably an alkyl group having 15 or less carbon atoms, and the alkyl group may have a branch. Among aliphatic carboxylic acids having 15 or less carbon atoms, carboxylic acids having 10 or less carbon atoms, more preferably 5 or less, and particularly 3 or less are preferable. Polyvalent carboxylic acids can also be used, but monovalent carboxylic acids are preferred. Specific examples of the carboxylic acid that can be used include formic acid, acetic acid, propionic acid, n-butyric acid, and iso-butyric acid. Of these, formic acid, acetic acid, and propionic acid are preferable, and acetic acid is more preferable.
 本発明に使用する脂肪族カルボン酸の量は、使用する脂肪族カルボン酸を含めた全溶剤量の0.5以上29重量%未満であるが、好ましくは3.0以上28重量%未満、さらに好ましくは5.0以上27重量%未満であることが好ましい。反応速度の面では15以上27重量%以下が特に好ましく、22以上27重量%が最も好ましい。脂肪族カルボン酸量が前記範囲より高い場合には、ポリアミド酸の合成速度の向上が見込めにくいことと、生成したポリアミド酸が分解して所望の分子量のものが得られにくい。また、脂肪族カルボン酸量が少ない場合は、十分な重合速度が得られずポリアミド酸の合成時間を短縮し難い。 The amount of the aliphatic carboxylic acid used in the present invention is 0.5 or more and less than 29% by weight, preferably 3.0 or more and less than 28% by weight, based on the total amount of the solvent including the aliphatic carboxylic acid used. Preferably it is 5.0 or more and less than 27 weight%. In terms of reaction rate, it is particularly preferably 15 to 27% by weight, most preferably 22 to 27% by weight. When the amount of the aliphatic carboxylic acid is higher than the above range, it is difficult to expect an improvement in the synthesis rate of the polyamic acid, and it is difficult to obtain a product having a desired molecular weight by decomposition of the produced polyamic acid. Further, when the amount of the aliphatic carboxylic acid is small, a sufficient polymerization rate cannot be obtained, and it is difficult to shorten the synthesis time of the polyamic acid.
 式(1)中のRは4価の有機基であるが、式(2)で示される4価の有機基が好ましい。その具体例としては、後述する各酸二無水物成分に対応する4価の有機基、すなわち、酸二無水物成分からポリイミド鎖の形成に関与する両末端酸無水物基を取り除いた構造が挙げられる。 R 1 in the formula (1) is a tetravalent organic group, and a tetravalent organic group represented by the formula (2) is preferable. Specific examples thereof include a tetravalent organic group corresponding to each acid dianhydride component to be described later, that is, a structure in which acid dianhydride components are removed from both terminal acid anhydride groups involved in the formation of a polyimide chain. It is done.
 式(2)に挙げられている4価の有機基のうち、得られる高分子が示す剛直性及び原料の入手性という観点から、特に式(4)の構造を有する酸二無水物が好ましい。更に好ましくはビフェニレン基を有する構造が好ましい。また、ポリイミドの透明性や膨張係数などの特性を確保できる範囲内であれば2種類以上の4価の有機基を用いることができる。 Of the tetravalent organic groups listed in Formula (2), acid dianhydrides having the structure of Formula (4) are particularly preferred from the viewpoint of the rigidity exhibited by the resulting polymer and the availability of raw materials. A structure having a biphenylene group is more preferable. Further, two or more kinds of tetravalent organic groups can be used as long as the properties such as transparency and expansion coefficient of polyimide can be secured.
 上記したように、式(1)中のRは酸二無水物成分(化合物)から導入することが出来、2種類以上の酸二無水物化合物を用いることができる。また、酸二無水物成分としては式(2)に挙げられている4価の有機基を有する酸二無水物化合物を用いることが好ましい。 As described above, R 1 in the formula (1) can be introduced from the acid dianhydride component (compound), and two or more kinds of acid dianhydride compounds can be used. As the acid dianhydride component, it is preferable to use an acid dianhydride compound having a tetravalent organic group listed in Formula (2).
 この場合、式(2)に挙げられている4価の有機基を有する酸二無水物化合物は目的の物性に応じて、酸二無水物全体の30モル%以上、さらには50モル%以上、実質的に全ての酸二無水物化合物が式(2)の構造を有することが特に好ましい。また、2種以上用いる場合、それらは、規則的に配列されていてもよいし、ランダムにポリイミド中に存在していてもよい。 In this case, the acid dianhydride compound having a tetravalent organic group listed in the formula (2) is 30 mol% or more, further 50 mol% or more of the whole acid dianhydride, depending on the target physical properties. It is particularly preferred that substantially all acid dianhydride compounds have the structure of formula (2). Moreover, when using 2 or more types, they may be regularly arranged and may exist in a polyimide at random.
 式(2)に示す有機基を有する酸二無水物としては、具体的には3,3',4,4'-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物をあげることができる。 Specific examples of the acid dianhydride having an organic group represented by the formula (2) include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride. .
 式(2)に示す有機基を有する酸二無水物と併用することができる他の酸二無水物としては、具体的には、例えば、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,2',3,3'-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、1,3-ビス[(3,4-ジカルボキシ)ベンゾイル]ベンゼン二無水物、1,4-ビス[(3,4-ジカルボキシ)ベンゾイル]ベンゼン二無水物、2,2-ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}プロパン二無水物、2,2-ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}プロパン二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}ケトン二無水物、4,4'-ビス[4-(1,2-ジカルボキシ)フェノキシ]ビフェニル二無水物、4,4'-ビス[3-(1,2-ジカルボキシ)フェノキシ]ビフェニル二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}スルホン二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}スルホン二無水物、ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}スルフィド二無水物、ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}スルフィド二無水物、2,2-ビス{4-[4-(1,2-ジカルボキシ)フェノキシ]フェニル}-1,1,1,3,3,3-ヘキサフルプロパン二無水物、2,2-ビス{4-[3-(1,2-ジカルボキシ)フェノキシ]フェニル}-1,1,1,3,3,3-プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等が挙げられる。 As other acid dianhydrides that can be used in combination with the acid dianhydride having an organic group represented by the formula (2), specifically, for example, ethylene tetracarboxylic dianhydride, butane tetracarboxylic dianhydride , Cyclobutanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenonetetracarboxylic Acid dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-di Carboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2, 3-Dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3 , 3-hexafluoropropane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 1,3-bis [ (3,4-dicarboxy) benzoyl] benzene dianhydride, 1,4-bis [(3,4-dicarboxy) benzoyl] benzene dianhydride, 2,2-bis {4- [4- (1, 2-dicarboxy) phenoxy] phenyl} propane dianhydride, 2,2-bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} propane dianhydride, bis {4- [4- ( 1,2-dicarboxy) phenoxy] R} ketone dianhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} ketone dianhydride, 4,4′-bis [4- (1,2-dicarboxy) phenoxy] Biphenyl dianhydride, 4,4′-bis [3- (1,2-dicarboxy) phenoxy] biphenyl dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} sulfone Anhydride, bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} sulfone dianhydride, bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} sulfide dianhydride Bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} sulfide dianhydride, 2,2-bis {4- [4- (1,2-dicarboxy) phenoxy] phenyl} -1 , 1,1,3,3,3 Hexaflupropane dianhydride, 2,2-bis {4- [3- (1,2-dicarboxy) phenoxy] phenyl} -1,1,1,3,3,3-propane dianhydride, 2 , 3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2 , 3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7 , 8-phenanthrenetetracarboxylic dianhydride and the like.
 これらは単独あるいは2種以上混合して用いられる。中でも3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物が好ましい。 These may be used alone or in combination of two or more. Among them, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1 1,1,3,3,3-hexafluoropropane dianhydride is preferred.
 一方、式(1)中のRは2価の有機基であり、その具体例としては、式(3)で記述しているように、後述する各ジアミン成分に対応する2価の有機基、すなわち、ジアミン成分からポリイミド鎖の形成に関与する両末端アミノ基を取り除いた構造が挙げられる。 On the other hand, R 2 in the formula (1) is a divalent organic group, and specific examples thereof include a divalent organic group corresponding to each diamine component described later, as described in the formula (3). That is, the structure which remove | eliminated the both terminal amino group which participates in formation of a polyimide chain from a diamine component is mentioned.
 得られるポリイミドの線膨張性及び着色性から、剛直で電子吸引基を有するジアミンが好ましく用いられる。それらジアミンのRとしては式(3)中フェニレン基もしくは、ビフェニレン基、さらに好ましくはビフェニレン基を有するものが挙げられ、特には式(5)の構造を有するジアミンが好ましいる。 From the viewpoint of the linear expansion property and colorability of the resulting polyimide, a rigid diamine having an electron withdrawing group is preferably used. Examples of R 2 of these diamines include those having a phenylene group or a biphenylene group, more preferably a biphenylene group in the formula (3), and a diamine having a structure of the formula (5) is particularly preferable.
 式(3)及び式(5)中のRは、水素、ハロゲン、ハロゲン化アルキル、C1~C16のアルキル基を示す一価の有機基である。得られるポリイミドの透明性、耐熱性、及び寸法安定性から、ハロゲンやハロゲン化アルキルなどの電子吸引基が好ましく、フッ素原子もしくはフルオロアルキル基がさらに好ましい。フルオロメチル基、さらにはトリフルオロメチル基が最も好ましい。最も好ましいジアミンの具体例としては2,2'-ビス(トリフルオロメチル)ベンジジンが挙げられる。 R 3 in the formulas (3) and (5) is a monovalent organic group representing hydrogen, halogen, alkyl halide, or C1-C16 alkyl group. From the transparency, heat resistance, and dimensional stability of the resulting polyimide, an electron withdrawing group such as halogen or alkyl halide is preferred, and a fluorine atom or a fluoroalkyl group is more preferred. A fluoromethyl group, more preferably a trifluoromethyl group, is most preferred. A specific example of the most preferred diamine is 2,2′-bis (trifluoromethyl) benzidine.
 ジアミンは、ポリイミドの透明性を確保できる範囲内であれば2種以上を併用することができる。また、目的の物性に応じて、式(3)特には式(5)の構造を有するジアミンをジアミン全体の30モル%以上、好ましくは50モル%以上用いることが好ましく、実質的に全てのジアミンが式(3)の構造を有するジアミンを用いることが特に好ましい。また、2種以上用いた場合それらは、規則的に配列されていてもよいし、ランダムにポリイミド中に存在していてもよい。 Two or more diamines can be used in combination as long as the transparency of the polyimide can be ensured. Depending on the desired physical properties, it is preferable to use a diamine having the structure of formula (3), particularly formula (5), in an amount of 30 mol% or more, preferably 50 mol% or more of the entire diamine, and substantially all diamines. It is particularly preferred to use a diamine having the structure of formula (3). Moreover, when using 2 or more types, they may be regularly arranged and may exist in the polyimide at random.
 式(3)の構造を有するジアミンと併用可能なジアミンの具体例を示すとすれば、例えば、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、3,3'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルスルフィド、3,4'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルホン、3,4'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノベンゾフェノン、4,4'-ジアミノベンゾフェノン、3,4'-ジアミノベンゾフェノン、3,3'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルメタン、3,4'-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2,2-ジ(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ジ(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,1-ジ(3-アミノフェニル)-1-フェニルエタン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(3-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、2,6-ビス(3-アミノフェノキシ)ベンゾニトリル、2,6-ビス(3-アミノフェノキシ)ピリジン、4,4'-ビス(3-アミノフェノキシ)ビフェニル、4,4'-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、4,4'-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4'-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4'-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4'-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3'-ジアミノ-4,4'-ジフェノキシベンゾフェノン、3,3'-ジアミノ-4,4'-ジビフェノキシベンゾフェノン、3,3'-ジアミノ-4-フェノキシベンゾフェノン、3,3'-ジアミノ-4-ビフェノキシベンゾフェノン、6,6'-ビス(3-アミノフェノキシ)-3,3,3',3'-テトラメチル-1,1'-スピロビインダン、6,6'-ビス(4-アミノフェノキシ)-3,3,3',3'-テトラメチル-1,1'-スピロビインダン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(3-アミノブチル)ポリジメチルシロキサン、ビス(アミノメチル)エーテル、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテル、ビス(2-アミノメトキシ)エチル]エーテル、ビス[2-(2-アミノエトキシ)エチル]エーテル、ビス[2-(3-アミノプロトキシ)エチル]エーテル、1,2-ビス(アミノメトキシ)エタン、1,2-ビス(2-アミノエトキシ)エタン、1,2-ビス[2-(アミノメトキシ)エトキシ]エタン、1,2-ビス[2-(2-アミノエトキシ)エトキシ]エタン、エチレングリコールビス(3-アミノプロピル)エーテル、ジエチレングリコールビス(3-アミノプロピル)エーテル、トリエチレングリコールビス(3-アミノプロピル)エーテル、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,2-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、trans-1,4-ジアミノシクロヘキサン、1,2-ジ(2-アミノエチル)シクロヘキサン、1,3-ジ(2-アミノエチル)シクロヘキサン、1,4-ジ(2-アミノエチル)シクロヘキサン、ビス(4-アミノシクロへキシル)メタン、2,6-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、2,5-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、また、上記ジアミンの芳香環上水素原子の一部若しくは全てをフルオロ基、メチル基、メトキシ基、トリフルオロメチル基、又はトリフルオロメトキシ基から選ばれた置換基で置換したジアミンも使用することができる。 Specific examples of diamines that can be used in combination with the diamine having the structure of the formula (3) include, for example, p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 3,3′-diaminodiphenyl ether, 3, 4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,3′-diaminobenzophenone, 4,4′-diaminobenzophenone, 3,4′-diaminobenzophenone, 3,3′-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4 ' Diaminodiphenylmethane, 2,2-di (3-aminophenyl) propane, 2,2-di (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2, 2-di (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-di (4-aminophenyl) -1,1,1,3,3,3- Hexafluoropropane, 2- (3-aminophenyl) -2- (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 1,1-di (3-aminophenyl)- 1-phenylethane, 1,1-di (4-aminophenyl) -1-phenylethane, 1- (3-aminophenyl) -1- (4-aminophenyl) -1-phenylethane, 1,3-bis (3-Aminophenoxy) Zen, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-amino) Benzoyl) benzene, 1,3-bis (4-aminobenzoyl) benzene, 1,4-bis (3-aminobenzoyl) benzene, 1,4-bis (4-aminobenzoyl) benzene, 1,3-bis (3 -Amino-α, α-dimethylbenzyl) benzene, 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,3-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,3-bis (4-amino -Α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (4-amino-α, α-ditrifluoromethyl) Benzyl) benzene, 2,6-bis (3-aminophenoxy) benzonitrile, 2,6-bis (3-aminophenoxy) pyridine, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′- Bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide Bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [ 4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 2,2-bis [4- (3 -Aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3 , 3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 1,3-bis [4- (3-Aminophenoxy) benzoyl] benzene, 1,3-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] , 1,4-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [ 4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (3-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (4-aminophenoxy) -α, α-dimethylbenzyl] benzene, 4,4′-bis [4- (4-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [4- (4-amino-α) , Α-dimethylbenzyl) phenoxy] benzophenone, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenylsulfone, 4,4′-bis [4- (4-amino Phenoxy) phenoxy] diphenylsulfone, 3,3′-diamino-4,4′-diphenoxybenzophenone, 3,3′-diamino-4,4′-dibiphenoxybenzophenone, 3,3′-diamino-4-phenoxybenzophenone 3,3′-diamino-4-biphenoxybenzophenone, 6,6′-bis (3-aminophenoxy) -3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane, 6,6 '-Bis (4-aminophenoxy) -3,3,3', 3'-tetramethyl-1,1'-spirobiindane, 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3- Bis (4-aminobutyl) tetramethyldisiloxane, α, ω-bis (3-aminopropyl) polydimethylsiloxane, α, ω-bis (3-aminobutyl) polydimethyl Siloxane, bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, bis (2-aminomethoxy) ethyl] ether, bis [2- (2-aminoethoxy) ethyl] Ether, bis [2- (3-aminoprotoxy) ethyl] ether, 1,2-bis (aminomethoxy) ethane, 1,2-bis (2-aminoethoxy) ethane, 1,2-bis [2- ( Aminomethoxy) ethoxy] ethane, 1,2-bis [2- (2-aminoethoxy) ethoxy] ethane, ethylene glycol bis (3-aminopropyl) ether, diethylene glycol bis (3-aminopropyl) ether, triethylene glycol bis (3-aminopropyl) ether, ethylenediamine, 1,3-diaminopropane, 1 4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11- Diaminoundecane, 1,12-diaminododecane, 1,2-diaminocyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, trans-1,4-diaminocyclohexane, 1,2-di (2-aminoethyl) ) Cyclohexane, 1,3-di (2-aminoethyl) cyclohexane, 1,4-di (2-aminoethyl) cyclohexane, bis (4-aminocyclohexyl) methane, 2,6-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,5-bis (aminomethyl) bicyclo [2.2.1] hepta In addition, a diamine obtained by substituting some or all of the hydrogen atoms on the aromatic ring of the diamine with a substituent selected from a fluoro group, a methyl group, a methoxy group, a trifluoromethyl group, or a trifluoromethoxy group is also used. be able to.
 さらに目的に応じ、架橋点となるエチニル基、ベンゾシクロブテン-4'-イル基、ビニル基、アリル基、シアノ基、イソシアネート基、及びイソプロペニル基のいずれか1種又は2種以上を、上記ジアミンの芳香環上水素原子の一部若しくは全てに置換基として導入しても使用することができる。 Further, depending on the purpose, any one or more of ethynyl group, benzocyclobuten-4′-yl group, vinyl group, allyl group, cyano group, isocyanate group, and isopropenyl group serving as a crosslinking point may be used. Even if it introduce | transduces into some or all of the hydrogen atoms on the aromatic ring of diamine as a substituent, it can be used.
 置換基Rは、ジアミンの状態で導入されたものを用いることが好ましいが、ポリイミドやポリアミド酸の状態で導入しても良い。置換基Rを導入することで吸収する光の波長を調整することができ、得られるフィルムの透明性や着色度を調整することが出来る。 Although it is preferable to use the substituent R 3 introduced in the state of diamine, it may be introduced in the state of polyimide or polyamic acid. By introducing the substituent R 3 , the wavelength of light to be absorbed can be adjusted, and the transparency and coloring degree of the resulting film can be adjusted.
 本発明に使用する非プロトン性極性溶剤とは、極性が高く酸性水素をもたない溶媒のことである。極性が高いとは、例えば誘電率が5以上であることが好ましい。具体的には例えばN,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホリルアミド、アセトニトリル、アセトン、テトラヒドロフランなどの溶剤を単独または混合物として用いられるが、好ましくはN,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)をあげることができる。 The aprotic polar solvent used in the present invention is a solvent having high polarity and no acidic hydrogen. The high polarity means that the dielectric constant is preferably 5 or more, for example. Specifically, for example, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), hexamethylphosphorylamide, acetonitrile, acetone Solvents such as tetrahydrofuran can be used singly or as a mixture, preferably N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAc).
 本発明で用いる炭素数15以下の脂肪族カルボン酸以外の溶剤としては全量が非プロトン性極性溶剤であることが好ましいが、芳香族溶剤あるいはエーテル系溶剤を補助溶剤として使用してもかまわない。補助溶剤としては、例えば、キシレン、トルエン、ベンゼン、ジエチレングリコールエチルエーテル、1,2-ジメトキシエタン(モノグリム)、ジエチレングリコールジメチルエーテル(ジグリム)、1,2-ビス-(2-メトキシエトキシ)エタン(トリグリム)、ビス-(2-メトキシエチル)エーテル、ブチルセロソルブ、ブチルセロソルブアセテート、プロピレングリコールメチルエーテルおよびプロピレングリコールメチルエーテルアセテートが挙げられる。補助溶剤は用いる非プロトン性極性溶剤量の50重量%未満、さらには30重量%未満、特には15重量%未満で使用することができる。 The total amount of the solvent other than the aliphatic carboxylic acid having 15 or less carbon atoms used in the present invention is preferably an aprotic polar solvent, but an aromatic solvent or an ether solvent may be used as an auxiliary solvent. Examples of the auxiliary solvent include xylene, toluene, benzene, diethylene glycol ethyl ether, 1,2-dimethoxyethane (monoglyme), diethylene glycol dimethyl ether (diglyme), 1,2-bis- (2-methoxyethoxy) ethane (triglyme), Bis- (2-methoxyethyl) ether, butyl cellosolve, butyl cellosolve acetate, propylene glycol methyl ether and propylene glycol methyl ether acetate. The auxiliary solvent can be used in an amount of less than 50% by weight of the aprotic polar solvent used, further less than 30% by weight, particularly less than 15% by weight.
 本発明により合成するポリアミド酸溶液の固形分濃度としては、5~50重量%、さらには10~35重量%が取扱いの面から好ましい。 The solid content concentration of the polyamic acid solution synthesized according to the present invention is preferably 5 to 50% by weight, more preferably 10 to 35% by weight from the viewpoint of handling.
 本発明のポリアミド酸溶液の製造に用いるジアミン化合物と酸二無水物は実質的に略同量(モル比)で行うことが好ましいが、ジアミン成分が多い場合には、得られるポリアミド酸溶液の粘度が上昇度合いが大きくなり取扱いが困難となる場合があるので、酸二無水物の量(モル比)がジアミン化合物に比べて多いことが好ましい。ジアミン化合物と酸二無水物のモノマー比としては、例えば、酸無水物成分100モル%に対してジアミン成分92.0~99.5モル%、さらには95.0~99.0モル%が好ましい。ジアミン成分が少なすぎる場合には、十分な粘度が得られずポリアミド酸から合成したポリイミドフィルムの機械物性が十分とはなりがたい。 The diamine compound and acid dianhydride used in the production of the polyamic acid solution of the present invention are preferably carried out in substantially the same amount (molar ratio), but when the diamine component is large, the viscosity of the resulting polyamic acid solution However, it is preferable that the amount (molar ratio) of the acid dianhydride is larger than that of the diamine compound. The monomer ratio of the diamine compound to the acid dianhydride is, for example, preferably 92.0 to 99.5 mol%, more preferably 95.0 to 99.0 mol%, with respect to 100 mol% of the acid anhydride component. . If the diamine component is too small, sufficient viscosity cannot be obtained, and the mechanical properties of the polyimide film synthesized from polyamic acid are unlikely to be sufficient.
 ポリアミド酸を得る方法は、アミン成分と酸無水物成分を混合することで得ることができる。混合中には攪拌していることが好ましく、時間は操作上不都合がない範囲でなるべく短いとこが好ましい。たとえば10分~20時間、さらには10分~10時間、特には15分~5時間が好ましい。なお、本発明では15分~3時間、さらには1時間以内で行うことも可能である。 The method for obtaining the polyamic acid can be obtained by mixing an amine component and an acid anhydride component. Stirring is preferably performed during mixing, and the time is preferably as short as possible without causing inconvenience in operation. For example, 10 minutes to 20 hours, further 10 minutes to 10 hours, particularly 15 minutes to 5 hours are preferable. In the present invention, it can be carried out within 15 minutes to 3 hours, and further within 1 hour.
 アミン成分と酸無水物成分の混合方法は、アミン成分に酸無水物成分を加える方法、その反対の方法が採用できるが、アミン成分に酸無水物成分を加える方法が好ましい。それぞれの成分は一度に加えても良いし、複数回に分けて加えることも出来る。 As the mixing method of the amine component and the acid anhydride component, the method of adding the acid anhydride component to the amine component and the opposite method can be adopted, but the method of adding the acid anhydride component to the amine component is preferable. Each component may be added at once, or may be added in multiple portions.
 ポリアミド酸溶液の製造の際には、用いるジアミン化合物と酸二無水物を一度に追加(片方の全量中にもう片方の全量を加えることを含む)してもかまわないが、例えばどちらか一方の成分を全量用いずにプレポリマー(前駆体)をまず製造し、後から残りの成分を追加する方法でもかまわない。本発明のポリアミド酸の製造に用いるジアミン化合物と酸二無水物の使用割合は前記した割合を用いることが好ましいが、プレポリマーを製造する方法の場合、まずどちらかのモノマーが多い状態でプレポリマーを合成し次いでもう一方のモノマーを逐次添加し、粘度を調整することにより、ポリアミド酸を製造するのが好ましい。 In the production of the polyamic acid solution, the diamine compound and the acid dianhydride to be used may be added at once (including adding the whole amount in the other), for example, either one of them. A method may be used in which a prepolymer (precursor) is first produced without using all components, and the remaining components are added later. The ratio of the diamine compound and the acid dianhydride used in the production of the polyamic acid of the present invention is preferably the above-mentioned ratio. It is preferable to produce a polyamic acid by synthesizing and then sequentially adding the other monomer and adjusting the viscosity.
 中でも後でジアミン化合物を用いる方法の方が得られるポリアミド酸の保存安定性の面で好ましい。後で用いる酸二無水物あるいはジアミン化合物の量としては、酸二無水物あるいはジアミン化合物の全量の3~15モル%、さらには4~10モル%が好ましい。 Among them, the method using a diamine compound later is preferable in terms of the storage stability of the polyamic acid obtained. The amount of the acid dianhydride or diamine compound used later is preferably 3 to 15 mol%, more preferably 4 to 10 mol%, based on the total amount of the acid dianhydride or diamine compound.
 本発明により合成するポリアミド酸の反応温度は0~35℃であるが、3~30℃が好ましい。反応温度が低い場合には反応時間が長くなる可能性がある。また、反応温度が高い場合には粘度が上昇しない場合がある。 The reaction temperature of the polyamic acid synthesized according to the present invention is 0 to 35 ° C., preferably 3 to 30 ° C. When reaction temperature is low, reaction time may become long. Further, when the reaction temperature is high, the viscosity may not increase.
 すなわち、本発明においては、ポリアミド酸を合成する反応温度は0~35℃であるが、それと共に-0.5×(溶剤中の炭素数15以下の脂肪族カルボン酸の割合(重量%))+45以下の温度(℃)で行う必要がある。さらには-0.5×(溶剤中の炭素数15以下の脂肪族カルボン酸の割合(重量%))+40以下の温度(℃)であることが好ましい。 That is, in the present invention, the reaction temperature for synthesizing the polyamic acid is 0 to 35 ° C., and it is −0.5 × (the proportion of aliphatic carboxylic acid having 15 or less carbon atoms in the solvent (% by weight)). It is necessary to carry out at a temperature (° C) of +45 or less. Further, the temperature is preferably −0.5 × (ratio of aliphatic carboxylic acid having 15 or less carbon atoms in the solvent (% by weight)) + 40 or less (° C.).
 また、-1.0×(溶剤中の炭素数15以下の脂肪族カルボン酸の割合(重量%))+15以上、さらには-1.0×(溶剤中の炭素数15以下の脂肪族カルボン酸の割合(重量%))+20以上、特には-1.0×(溶剤中の炭素数15以下の脂肪族カルボン酸の割合(重量%))+25以上の温度(℃)であることが重合速度の面で好ましい。 Further, −1.0 × (ratio of aliphatic carboxylic acid having 15 or less carbon atoms in the solvent (% by weight)) + 15 or more, and further −1.0 × (aliphatic carboxylic acid having 15 or less carbon atoms in the solvent) Ratio (wt%)) + 20 or more, in particular, −1.0 × (ratio of aliphatic carboxylic acid having 15 or less carbon atoms in the solvent (wt%)) + temperature (° C.) of 25 or more. It is preferable in terms of
 本発明のポリイミドフィルムを製造する方法としては、酸二無水物とジアミンから前駆体であるポリアミド酸を合成し、これに脱水触媒とイミド化剤を添加して基材に流延あるいは塗布し、ポリイミドフィルムを得る手法が代表的に挙げられる。流延あるいは塗布する方法としては、エンドレスベルト上に流延あるいは塗布する方法、所定の大きさの基材に流延あるいは塗布する方法が採用できる。脱水触媒やイミド化剤を用いずに加熱によりイミド化を行う手法では、得られるフィルムの線膨張や寸法安定性が悪く、目的には適さない。 As a method for producing the polyimide film of the present invention, a polyamic acid which is a precursor is synthesized from an acid dianhydride and a diamine, a dehydration catalyst and an imidizing agent are added thereto, and cast or coated on a substrate. A technique for obtaining a polyimide film is typically mentioned. As a method of casting or coating, a method of casting or coating on an endless belt or a method of casting or coating on a substrate having a predetermined size can be employed. The method of imidizing by heating without using a dehydration catalyst or imidizing agent is not suitable for the purpose because the resulting film has poor linear expansion and dimensional stability.
 また、脱水触媒やイミド化剤中に浸漬する方法では、線膨張係数や寸法安定性をコントロールしてポリイミドフィルムを得ることが難しく、本願発明のような無機材料に匹敵する線膨張係数や寸法安定性を有するフィルムを得るのは難しい。 In addition, it is difficult to obtain a polyimide film by controlling the linear expansion coefficient and dimensional stability by the method of immersing in a dehydration catalyst or imidizing agent, and the linear expansion coefficient and dimensional stability comparable to the inorganic material as in the present invention. It is difficult to obtain a film having properties.
 本発明の製造方法により得られるポリアミド酸溶液を用いてポリイミド化してポリイミドフィルムを製造することにより、線膨張係数や寸法安定性が良好なポリイミドフィルムを得ることが可能であり、得られるポリイミドフィルムが線膨張係数や寸法安定性が良好であることからフレキシブルな基板として有用である。 By producing a polyimide film by polyimidizing using the polyamic acid solution obtained by the production method of the present invention, it is possible to obtain a polyimide film having good linear expansion coefficient and dimensional stability, and the resulting polyimide film is Since the linear expansion coefficient and dimensional stability are good, it is useful as a flexible substrate.
 用いるイミド化剤としては、3級アミンを用いることができる。3級アミンとしては複素環式の3級アミンがさらに好ましい。複素環式の3級アミンの好ましい具体例としてはピリジン、2,5-ジエチルピリジン、ピコリン、キノリン、イソキノリンなどをあげることができる。 As the imidizing agent to be used, a tertiary amine can be used. As the tertiary amine, a heterocyclic tertiary amine is more preferable. Preferable specific examples of the heterocyclic tertiary amine include pyridine, 2,5-diethylpyridine, picoline, quinoline, isoquinoline and the like.
 イミド化剤の量として、ポリアミド酸のカルボン酸に対しての添加モル量を変えることにより、得られるポリイミドフィルムの物性が改良される事を見出した。すなわち、添加するイミド化剤の量を多くするほど、得られるフィルムの線膨張係数や寸法安定性が良好になる。一方で、多量のイミド化剤によりイミド化があまりに早く進行すると、フィルム化を行う前に不溶化してしまい、キャストできない。また、酸無水物については、イミド化剤ほどには量による影響は少ないものの、多すぎるとキャストフィルムが基板から剥がれてしまう等の問題点があり、それぞれ下記の好ましい範囲を例示することができる。 It has been found that the physical properties of the resulting polyimide film can be improved by changing the amount of the polyamic acid added to the carboxylic acid as the amount of the imidizing agent. That is, the greater the amount of imidizing agent added, the better the linear expansion coefficient and dimensional stability of the resulting film. On the other hand, if imidization proceeds too quickly with a large amount of imidizing agent, it becomes insoluble before filming and cannot be cast. Further, the acid anhydride is less affected by the amount than the imidizing agent, but if it is too much, there is a problem that the cast film is peeled off from the substrate, and the following preferred ranges can be exemplified respectively. .
 本発明では、ポリアミド酸のカルボン酸に対するイミド化剤の添加モル量を多くするほど、得られるフィルムの線膨張係数や寸法安定性が良好になる傾向がある。一方で、多量のイミド化剤によりイミド化があまりに早く進行すると、フィルム化を行う前に不溶化してしまい、キャストできない等の問題が出るので、実用的にはイミド化剤の添加量としては、ポリアミド酸のカルボン酸基に対して、0.05~2.0倍モル当量、さらには0.1~1.5倍モル当量、特に0.3~1.0倍当量が好ましい。 In the present invention, as the molar amount of the imidizing agent added to the carboxylic acid of the polyamic acid is increased, the linear expansion coefficient and dimensional stability of the resulting film tend to be improved. On the other hand, if imidization proceeds too quickly with a large amount of imidizing agent, it becomes insoluble before filming, which causes problems such as inability to cast. 0.05 to 2.0 times molar equivalent, more preferably 0.1 to 1.5 times molar equivalent, and particularly preferably 0.3 to 1.0 times equivalent to the carboxylic acid group of the polyamic acid.
 脱水触媒としては、酸無水物が好ましく、具体的には無水酢酸、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物をあげることができ、中でも無水酢酸が最も好ましい。
脱水触媒は添加する量に関わらず得られるフィルムの物性は変わらない傾向であるが、添加する量を多くするとキャストフィルムを基板から剥がしやすくなる傾向がある。これらの傾向から、脱水触媒の添加量としては、ポリアミド酸のカルボン酸基に対して、0.6~10.0倍モル当量が、さらには1.0~7.0倍モル当量、さらに好ましくは3.0~5.0倍当量であることが好ましい。なお、イミド化剤、脱水触媒の上記好ましい範囲は適宜組み合わせて用いることができる。
As the dehydration catalyst, acid anhydrides are preferred, and specific examples include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, and trifluoroacetic anhydride, with acetic anhydride being the most preferred. preferable.
The physical properties of the obtained film do not change regardless of the amount of the dehydration catalyst added, but if the amount added is increased, the cast film tends to be peeled off from the substrate. From these tendencies, the addition amount of the dehydration catalyst is 0.6 to 10.0 times molar equivalent, more preferably 1.0 to 7.0 times molar equivalent, more preferably relative to the carboxylic acid group of the polyamic acid. Is preferably 3.0 to 5.0 times equivalent. In addition, the said preferable range of an imidation agent and a dehydration catalyst can be used in combination as appropriate.
 ポリアミド酸溶液にイミド化剤や脱水触媒を加える際、溶剤に溶かさず直接加えても良いし、溶剤に溶かしたものを加えても良い。直接加える方法ではイミド化剤や脱水触媒が拡散する前に反応が急激に進行しゲルが生成することがある。好ましくはイミド化剤や脱水触媒を溶剤に溶かし、その溶液をポリアミド酸溶液に混合することが好ましい。 When adding an imidizing agent or a dehydration catalyst to a polyamic acid solution, it may be added directly without dissolving in a solvent, or a solution dissolved in a solvent may be added. In the direct addition method, the reaction may rapidly proceed before the imidizing agent or the dehydration catalyst diffuses to form a gel. Preferably, the imidizing agent and the dehydration catalyst are dissolved in a solvent, and the solution is mixed with the polyamic acid solution.
 所定時間撹拌した後、ポリアミド酸溶液が得られる。そのポリアミド酸を3℃以下、さらには0℃付近、特には0℃以下の低温にしてイミド化剤と脱水剤を加えることが好ましい。イミド化剤と脱水剤を加えた後、溶液を激しく攪拌し真空下もしくは遠心沈殿機等を用いて脱泡した後、ガラスやフィルムなどの基板上に塗布乾燥し、塗膜を成形させる。それを例えば300℃以上に加熱することでポリイミドの塗膜が得られる。 After stirring for a predetermined time, a polyamic acid solution is obtained. It is preferable to add the imidizing agent and the dehydrating agent at a low temperature of 3 ° C. or lower, more preferably around 0 ° C., particularly 0 ° C. or lower. After adding an imidizing agent and a dehydrating agent, the solution is vigorously stirred and defoamed under vacuum or using a centrifugal precipitator or the like, and then applied and dried on a substrate such as glass or a film to form a coating film. For example, a polyimide coating film can be obtained by heating it to 300 ° C. or higher.
 加熱によりポリアミド酸の溶剤を除去すると共にイミド化する。この時の加熱条件は低温から徐々に加熱して高温にするのが好ましい。また、最高温度は200~400℃の範囲が好ましい。加熱雰囲気は空気下、減圧下または窒素等の不活性ガス中で行うことができる。またそれらの雰囲気を組み合わせてもよい。 ∙ Remove the polyamic acid solvent by heating and imidize. It is preferable that the heating conditions at this time are gradually heated from a low temperature to a high temperature. The maximum temperature is preferably in the range of 200 to 400 ° C. The heating atmosphere can be performed in air, under reduced pressure, or in an inert gas such as nitrogen. Moreover, you may combine those atmospheres.
 このようにして合成される本発明のポリイミドは、低線膨張と加熱前後の寸法安定性を有することを特徴としており、例えば引っ張り加重法によりこれらの値を測定する場合、15mm×5mmのフィルム試料に加重を3.0gとし、10℃/minの昇温速度で測定したときに、線熱膨張係数が40ppm以下、好ましくは20ppm以下のポリイミドフィルムを得ることができる。 またイミド化剤量の調整によりさらには10ppm以下、特には5ppm以下のポリイミドフィルムを得ることができる。また、40℃から230℃まで加熱し再び40℃に戻した場合の加熱前後の寸法変化率が0.1%以下、さらには0.05%以下のポリイミドフィルムを得ることができる。またイミド化剤量の調整によりさらには0.003%以下のポリイミドフィルムを得ることができる。 The polyimide of the present invention synthesized in this way is characterized by low linear expansion and dimensional stability before and after heating. For example, when measuring these values by the tensile load method, a film sample of 15 mm × 5 mm When the weight is set to 3.0 g and measured at a heating rate of 10 ° C./min, a polyimide film having a linear thermal expansion coefficient of 40 ppm or less, preferably 20 ppm or less can be obtained. Further, by adjusting the amount of the imidizing agent, a polyimide film of 10 ppm or less, particularly 5 ppm or less can be obtained. Moreover, when heated from 40 ° C. to 230 ° C. and returned to 40 ° C. again, a polyimide film having a dimensional change rate before and after heating of 0.1% or less and further 0.05% or less can be obtained. Further, a polyimide film of 0.003% or less can be obtained by adjusting the amount of the imidizing agent.
 本発明で製造されたポリイミドフィルムの厚みについては特に指定はないが、あまりに薄すぎると得られるフィルムが取り扱いにくくなる。また、逆に分厚いと加熱による溶剤除去がしにくくなり、フィルムのアウトガス量が増加する。フィルム厚みについては、好ましくは10μm~100μm、さらに好ましくは20μm~80μmである。 The thickness of the polyimide film produced in the present invention is not particularly specified, but if it is too thin, the resulting film becomes difficult to handle. On the other hand, when the thickness is thick, it becomes difficult to remove the solvent by heating, and the outgas amount of the film increases. The film thickness is preferably 10 μm to 100 μm, more preferably 20 μm to 80 μm.
 ポリアミド酸の分子量はある程度高くないと上記したように得られるポリイミドの機械的物性が十分とはなりにくい。ポリアミド酸は不安定な化合物であり、分子量測定での重合状況の把握に代えて簡便な方法として、得られるポリアミド酸溶液の粘度により重合状況を把握する方法が用いられる。そのポリイミド酸溶液の粘度としては、23℃において500~4500ポイズ、さらには850~4000ポイズ、特には1000~3500ポイズになるように重合条件を決めることが好ましい。溶液粘度が高い場合には取扱いが困難となり、溶液粘度が低い場合には、ポリアミド酸から合成したポリイミドフィルムの機械物性が十分となりがたい。 If the molecular weight of the polyamic acid is not high to some extent, the mechanical properties of the polyimide obtained as described above are unlikely to be sufficient. Polyamic acid is an unstable compound, and as a simple method instead of grasping the polymerization state by molecular weight measurement, a method of grasping the polymerization state from the viscosity of the obtained polyamic acid solution is used. The polymerization conditions are preferably determined so that the viscosity of the polyimide acid solution is 500 to 4500 poises at 23 ° C., more preferably 850 to 4000 poises, and particularly 1000 to 3500 poises. When the solution viscosity is high, handling becomes difficult, and when the solution viscosity is low, the mechanical properties of the polyimide film synthesized from the polyamic acid are not sufficient.
 プレポリマーの溶液粘度は、23℃における粘度が1~200ポイズ、好ましくは2~150ポイズ、特に好ましくは3~100ポイズに調整することが可能である。 The solution viscosity of the prepolymer can be adjusted so that the viscosity at 23 ° C. is 1 to 200 poise, preferably 2 to 150 poise, particularly preferably 3 to 100 poise.
 本発明のポリイミドフィルムを構成するポリイミドの分子量を強いて表すとすれば、重量平均分子量は、その用途にもよるが、3,000~1,000,000の範囲であることが好ましく、5,000~500,000の範囲であることがさらに好ましく、10,000~500,000の範囲であることがさらに好ましい範囲として表すことが出来る。 If the molecular weight of the polyimide constituting the polyimide film of the present invention is expressed by force, the weight average molecular weight is preferably in the range of 3,000 to 1,000,000, although it depends on its use, 5,000 The range is more preferably in the range of ˜500,000, and the range in the range of 10,000 to 500,000 is more preferable.
 重量平均分子量が低すぎると、塗膜又はフィルムとした場合に十分な強度が得られにくい。また、フィルムの着色が少ないという点からは5000以上、さらには10,000以上が好ましい。一方、重量平均分子量が高すぎると粘度が上昇し、溶媒への溶解性も落ちてくるため、表面が平滑で膜厚が均一な塗膜又はフィルムが得られにくい。 If the weight average molecular weight is too low, it is difficult to obtain sufficient strength when used as a coating film or film. Moreover, from the point that there is little coloring of a film, 5000 or more, Furthermore, 10,000 or more are preferable. On the other hand, when the weight average molecular weight is too high, the viscosity increases and the solubility in a solvent also decreases, so that it is difficult to obtain a coating film or film having a smooth surface and a uniform film thickness.
 ここで用いている分子量とは、ゲルパーミレーションクロマトグラフィー(GPC)によるポリスチレン換算の値のことをいい、ポリイミド前駆体そのものの分子量でも良いし、得られるポリイミドが溶媒可溶性である場合は、無水酢酸等で化学的イミド化処理を行った後のものでも良い。 The molecular weight used here refers to a value in terms of polystyrene measured by gel permeation chromatography (GPC), and may be the molecular weight of the polyimide precursor itself, or acetic anhydride when the resulting polyimide is solvent soluble. The thing after performing a chemical imidation process by etc. may be sufficient.
 本発明のポリイミドフィルムは、特に優れた寸法安定性を有することを特徴とするが、耐熱性、絶縁性等のポリイミド本来の特性も損なわれておらず、良好である。 The polyimide film of the present invention is characterized by having particularly excellent dimensional stability, but the original properties of the polyimide such as heat resistance and insulation are not impaired and are good.
 ガラス転移温度は、耐熱性の観点からは高ければ高いほど良いが、示差走査熱量測定装置において、昇温速度10℃/minの条件で測定したときのガラス転移温度が、200℃以上が好ましく、更に好ましくは300℃以上であるとよい。 The glass transition temperature is preferably as high as possible from the viewpoint of heat resistance, but in a differential scanning calorimeter, the glass transition temperature when measured at a temperature rising rate of 10 ° C./min is preferably 200 ° C. or higher. More preferably, it is good at 300 degreeC or more.
 本発明におけるポリイミドフィルムは詳述しているように式(6)で示す構造を有することが特徴であるが、ポリイミドフィルムの繰り返し単位中その数の85%以上、さらには93%以上、特には97%以上が上式で示す構造であることが好ましい。実質的すべてが上記式で示す構造であることが最も好ましい。 The polyimide film in the present invention is characterized by having the structure represented by the formula (6) as described in detail, but it is 85% or more of the number of repeating units of the polyimide film, more preferably 93% or more, especially It is preferable that 97% or more has a structure represented by the above formula. Most preferably, substantially all of the structure is represented by the above formula.
 本発明に係るポリイミドフィルムは、そのまま製品や部材を作製するためのコーティングや成形プロセスに供してもよいが、フィルム状に成形された成形物にさらにコーティング等の処理を行い積層物として用いることが出来る。コーティングあるいは成形プロセスに供するために、該ポリイミドフィルムを必要に応じて溶剤に溶解又は分散させ、さらに、光又は熱硬化性成分、本発明に係るポリイミドフィルム成分以外の非重合性バインダー樹脂、その他の成分を配合して、ポリイミド樹脂組成物を調製してもよい。 The polyimide film according to the present invention may be used as it is for a coating or forming process for producing a product or a member as it is, but it may be used as a laminate by further processing such as coating on a molded product formed into a film shape. I can do it. In order to provide a coating or molding process, the polyimide film is dissolved or dispersed in a solvent as necessary. Further, a light or thermosetting component, a non-polymerizable binder resin other than the polyimide film component according to the present invention, other A polyimide resin composition may be prepared by blending the components.
 本発明に係るポリアミド酸溶液の製造方法で得られたポリアミド酸をイミド化したポリイミドを用いて樹脂組成物と成すことが出来る。得られた樹脂組成物に加工特性や各種機能性を付与するために、その他に様々な有機又は無機の低分子又は高分子化合物を配合してもよい。例えば、染料、界面活性剤、レベリング剤、可塑剤、微粒子、増感剤等を用いることができる。微粒子には、ポリスチレン、ポリテトラフルオロエチレン等の有機微粒子、コロイダルシリカ、カーボン、層状珪酸塩等の無機微粒子等が含まれ、それらは多孔質や中空構造であってもよい。また、その機能又は形態としては顔料、フィラー、繊維等がある。 The resin composition can be formed using a polyimide obtained by imidizing a polyamic acid obtained by the method for producing a polyamic acid solution according to the present invention. In addition, various organic or inorganic low-molecular or high-molecular compounds may be blended in order to impart processing characteristics and various functionalities to the obtained resin composition. For example, dyes, surfactants, leveling agents, plasticizers, fine particles, sensitizers, and the like can be used. The fine particles include organic fine particles such as polystyrene and polytetrafluoroethylene, inorganic fine particles such as colloidal silica, carbon, and layered silicate, and these may have a porous or hollow structure. The function or form includes pigments, fillers, fibers, and the like.
 ポリイミド樹脂組成物は、式(1)で表されるポリイミドを、樹脂組成物の固形分全体に対し、通常、5~99.9重量%の範囲内で含有させて得ることが出来る。また、上記したような配合できる成分の配合割合は、ポリイミド樹脂組成物の固形分全体に対し、0.1重量%~95重量%の範囲が好ましい。少ないと添加物を添加した効果が発揮されにくく、多いと樹脂組成物の特性が最終生成物に反映されにくい。なお、ポリイミド樹脂組成物の固形分とは溶剤以外の全成分であり、液状のモノマー成分も固形分に含まれる。 The polyimide resin composition can be obtained by containing the polyimide represented by the formula (1) in the range of usually 5 to 99.9% by weight with respect to the entire solid content of the resin composition. The blending ratio of the components that can be blended as described above is preferably in the range of 0.1 wt% to 95 wt% with respect to the total solid content of the polyimide resin composition. When the amount is small, the effect of adding the additive is hardly exhibited, and when the amount is large, the characteristics of the resin composition are hardly reflected in the final product. In addition, solid content of a polyimide resin composition is all components other than a solvent, and a liquid monomer component is also contained in solid content.
 本発明に係るポリイミドフィルムは、当該フィルムにコーティング等の処理を行い積層物として用いることができる。コーティング等の材質としては無機材料が好ましく、例えば金属酸化物や透明電極等の各種無機薄膜を挙げることができる。積層方法としては、ポリイミドフィルム表面に金属酸化物や透明電極等の各種無機薄膜を形成して用いることができる。これら無機薄膜の製膜方法は特に限定されるものではなく、例えばCVD法、スパッタリング法や真空蒸着法、イオンプレーティング法等のPVD法を用いることができる。 The polyimide film according to the present invention can be used as a laminate by subjecting the film to a treatment such as coating. The material such as coating is preferably an inorganic material, and examples thereof include various inorganic thin films such as metal oxides and transparent electrodes. As a lamination method, various inorganic thin films such as a metal oxide and a transparent electrode can be formed on the polyimide film surface and used. The method for forming these inorganic thin films is not particularly limited, and for example, a PVD method such as a CVD method, a sputtering method, a vacuum deposition method, or an ion plating method can be used.
 本発明で得られるポリイミドフィルムは、脂肪族カルボン酸を用いずに得られたポリイミドフィルムと比較して、黄色度(YI)がポリイミドフィルムを得ることができる。 The polyimide film obtained in the present invention can obtain a polyimide film having a yellowness (YI) as compared with a polyimide film obtained without using an aliphatic carboxylic acid.
 本発明で得られるポリイミドフィルムの黄色度については、あまり高いと透明性が要求されるディスプレイなどの製品に用いることはできない。本発明に係るポリイミドフィルムは、45μm~55μmの厚さのポリイミドフィルムで、20以下、好ましくは18以下、特には17以下となることも可能である。またポリイミドフィルムのヘイズについても、同様の理由で低いほうがこの好まれる。好ましくは5.0%以下、さらに好ましくは3.0%以下となることも可能である。 If the yellowness of the polyimide film obtained in the present invention is too high, it cannot be used for products such as displays that require transparency. The polyimide film according to the present invention is a polyimide film having a thickness of 45 μm to 55 μm and can be 20 or less, preferably 18 or less, particularly 17 or less. The lower haze of the polyimide film is also preferred for the same reason. Preferably, it may be 5.0% or less, more preferably 3.0% or less.
 本発明に係るポリイミドフィルムは、耐熱性、絶縁性等のポリイミド本来の特性に加えて、高い寸法安定性を有することから、これらの特性が有効とされる分野・製品、例えば、印刷物、カラーフィルター、フレキシブルディスプレー、半導体部品、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、ホログラム、光学部材又は建築材料を形成するのに適している。 Since the polyimide film according to the present invention has high dimensional stability in addition to the original characteristics of polyimide such as heat resistance and insulation, fields and products in which these characteristics are effective, such as printed matter, color filters, etc. Suitable for forming flexible displays, semiconductor parts, interlayer insulating films, wiring coating films, optical circuits, optical circuit parts, antireflection films, holograms, optical members or building materials.
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
 (前駆体溶液の合成)
 [線熱膨張係数及び加熱前後寸法変化率の評価]
 上記の熱物性評価において作製したフィルムの線熱膨張係数を、熱機械的分析装置Thermo Plus TMA8310(リガク社製)によって、昇温速度10℃/分、引っ張り加重3gで測定を行った。
(Synthesis of precursor solution)
[Evaluation of linear thermal expansion coefficient and dimensional change rate before and after heating]
The linear thermal expansion coefficient of the film produced in the above-mentioned thermophysical property evaluation was measured with a thermomechanical analyzer Thermo Plus TMA8310 (manufactured by Rigaku Corporation) at a heating rate of 10 ° C./min and a tensile load of 3 g.
 [線膨張係数]
 エスエスアイ・ナノテクノロジー(株)製TMA(ThermalMechanicalAnalysis)/SS120CUにより測定した。試験形状として縦10mm、横4mm、膜厚約40μmのフィルム片を用い、3gfの荷重をかけ、昇温速度5℃/分で測定を行った。100℃―200℃における単位温度あたりのフィルム片の変化量から線膨張係数を求めた。
[Linear expansion coefficient]
It was measured by SMA Nano Technology Co., Ltd. TMA (Thermal Mechanical Analysis) / SS120CU. A film piece having a length of 10 mm, a width of 4 mm, and a film thickness of about 40 μm was used as a test shape, and a load of 3 gf was applied and measurement was performed at a temperature rising rate of 5 ° C./min. The linear expansion coefficient was determined from the amount of change of the film piece per unit temperature at 100 ° C. to 200 ° C.
 [粘度測定]
東機産業(株)製 E型粘度計RE550型を用いて、23℃での溶液粘度を測定した。
測定時間は、前駆体溶液にモノマーを追加してから、15分、30分、40分、60分、80分、100分、2時間、3時間、4時間、24時間、48時間、72時間後の粘度を測定した。
[Viscosity measurement]
The solution viscosity at 23 ° C. was measured using an E-type viscometer RE550 manufactured by Toki Sangyo Co., Ltd.
Measurement time is 15 minutes, 30 minutes, 40 minutes, 60 minutes, 80 minutes, 100 minutes, 2 hours, 3 hours, 4 hours, 24 hours, 48 hours, 72 hours after adding monomer to the precursor solution. The later viscosity was measured.
 [引張特性]
ISO527に準じて、試験片(タイプ2)を引張速度20mm/分で測定した。
[Tensile properties]
According to ISO527, the test piece (type 2) was measured at a tensile speed of 20 mm / min.
 [全光線透過率及びヘイズ測定] 
日本電色工業(株)製 NDH-300Aを用いてフィルムのヘイズ及び全光線透過率を測定した。
[Total light transmittance and haze measurement]
The haze and total light transmittance of the film were measured using NDH-300A manufactured by Nippon Denshoku Industries Co., Ltd.
 [YI(黄色度)測定] 
日本電色工業(株)製 NR-3000を用いてフィルムのYIを測定した。
[YI (yellowness) measurement]
The YI of the film was measured using NR-3000 manufactured by Nippon Denshoku Industries Co., Ltd.
 (実施例1)
 500mlセパラブルフラスコに、2,2'-ビス(トリフルオロメチル)ベンジジン22.1g(69.1mmol)を投入し、175gのジメチルアセトアミド(DMAc)に溶解させ25℃の水浴中で撹拌した。そこへ、3,3',4,4'-BPDA22.4g(73.4mmol)を加えて室温で3時間撹拌して均一溶液とした後、酢酸20.4gを加えて、水浴中で1時間撹拌して前駆体溶液1を得た。前駆体溶液1の23℃における溶液粘度は、6ポイズであった。
Example 1
In a 500 ml separable flask, 22.2 g (69.1 mmol) of 2,2′-bis (trifluoromethyl) benzidine was charged, dissolved in 175 g of dimethylacetamide (DMAc), and stirred in a 25 ° C. water bath. 3,3 ′, 4,4′-BPDA (22.4 g, 73.4 mmol) was added thereto, and the mixture was stirred at room temperature for 3 hours to obtain a uniform solution. The precursor solution 1 was obtained by stirring. The solution viscosity of the precursor solution 1 at 23 ° C. was 6 poise.
 更に、この前駆体溶液1に2,2'-ビス(トリフルオロメチル)ベンジジン1.1g(3.4mmol)を6gのDMAcに溶解させた溶液を添加した。2,2'-ビス(トリフルオロメチル)ベンジジン溶液を前駆体溶液1に添加してからの溶液粘度をE型粘度計で追跡し、先に測定した粘度と次に測定した粘度の差が±100ポイズ以内となった時の時間をもって重合時間とした。こうして得られたポリアミド酸溶液1の23℃における溶液粘度は、2660ポイズであり、最終到達粘度までの時間は4.0hであった。また、固形分濃度は18.0重量%であった。 Furthermore, a solution prepared by dissolving 1.1 g (3.4 mmol) of 2,2′-bis (trifluoromethyl) benzidine in 6 g of DMAc was added to the precursor solution 1. The solution viscosity after the 2,2′-bis (trifluoromethyl) benzidine solution was added to the precursor solution 1 was traced with an E-type viscometer, and the difference between the previously measured viscosity and the next measured viscosity was ± The time when it was within 100 poise was taken as the polymerization time. The solution viscosity of the polyamic acid solution 1 thus obtained at 23 ° C. was 2660 poise, and the time until the final reached viscosity was 4.0 h. Moreover, solid content concentration was 18.0 weight%.
 この上記ポリアミド酸溶液1の35gを0℃付近に冷却した後、βピコリン1.4g(15.5mmol)及び無水酢酸9.5g(92.7mmol)を添加して混合した。真空下で脱泡した後、ポリエチレンナフタレートフィルム上に流延し、約50℃にて約10分間、約100℃にて約10分間、約200℃にて約10分間熱風にて乾燥させた。その後、窒素雰囲気下、約300℃で1時間加熱を行い、ポリイミドフィルム1を得た。ポリイミドフィルム1の厚みは50μm、線膨張係数(100-200℃)は1.2ppmであり、全光線透過率87%、ヘイズ2.0%、黄色度16であった。 After cooling 35 g of this polyamic acid solution 1 to around 0 ° C., 1.4 g (15.5 mmol) of β-picoline and 9.5 g (92.7 mmol) of acetic anhydride were added and mixed. After defoaming under vacuum, it was cast on a polyethylene naphthalate film and dried with hot air at about 50 ° C. for about 10 minutes, at about 100 ° C. for about 10 minutes, and at about 200 ° C. for about 10 minutes. . Then, it heated at about 300 degreeC under nitrogen atmosphere for 1 hour, and the polyimide film 1 was obtained. The polyimide film 1 had a thickness of 50 μm, a linear expansion coefficient (100-200 ° C.) of 1.2 ppm, a total light transmittance of 87%, a haze of 2.0%, and a yellowness of 16.
 (実施例2)
 500mlセパラブルフラスコに、2,2'-ビス(トリフルオロメチル)ベンジジン22.0g(68.6mmol)を投入し、170gのジメチルアセトアミド(DMAc)に溶解させ25℃の水浴中で撹拌した。そこへ、3,3',4,4'-BPDA22.4g(76.3mmol)を加えて室温で3時間撹拌して均一溶液とした後、酢酸38.0gを加えて、水浴中で1時間撹拌して前駆体溶液2を得た。前駆体溶液の23℃における溶液粘度は、7ポイズであった。
(Example 2)
In a 500 ml separable flask, 22.0 g (68.6 mmol) of 2,2′-bis (trifluoromethyl) benzidine was charged, dissolved in 170 g of dimethylacetamide (DMAc), and stirred in a 25 ° C. water bath. Thereto, 22.4 g (76.3 mmol) of 3,3 ′, 4,4′-BPDA was added and stirred at room temperature for 3 hours to obtain a homogeneous solution, followed by addition of 38.0 g of acetic acid and 1 hour in a water bath. The precursor solution 2 was obtained by stirring. The solution viscosity at 23 ° C. of the precursor solution was 7 poise.
 更にこの前駆体溶液2に2,2'-ビス(トリフルオロメチル)ベンジジン2.1g(6.5mmol)を7gのDMAcに溶解させた溶液を添加した。実施例1と同様にして重合時間を測定した。ポリアミド酸溶液2の23℃における溶液粘度は、2130ポイズであり、最終到達粘度までの時間は120分であった。また、固形分濃度は18.2重量%であった。 Further, to this precursor solution 2, a solution prepared by dissolving 2.1 g (6.5 mmol) of 2,2′-bis (trifluoromethyl) benzidine in 7 g of DMAc was added. The polymerization time was measured in the same manner as in Example 1. The solution viscosity at 23 ° C. of the polyamic acid solution 2 was 2130 poise, and the time until the final viscosity reached 120 minutes. The solid content concentration was 18.2% by weight.
 ポリアミド酸溶液2の40gを0℃付近に冷却した後、β-ピコリン1.6g(17.6mmol)及び無水酢酸10.8g(105.7mmol)を添加して混合した。実施例1と同様の操作により、ポリイミドフィルム2を得た。ポリイミドフィルム2の厚みは49μm、線膨張係数(100-200℃)は0.9ppmであり、全光線透過率87%、ヘイズ1.9%、黄色度16.1であった。 After cooling 40 g of the polyamic acid solution 2 to around 0 ° C., 1.6 g (17.6 mmol) of β-picoline and 10.8 g (105.7 mmol) of acetic anhydride were added and mixed. A polyimide film 2 was obtained in the same manner as in Example 1. The polyimide film 2 had a thickness of 49 μm, a linear expansion coefficient (100-200 ° C.) of 0.9 ppm, a total light transmittance of 87%, a haze of 1.9%, and a yellowness of 16.1.
 (実施例3)
500mlセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン22.0g(68.6mmol)を投入し、160gのジメチルアセトアミド(DMAc)に溶解させ25℃の水浴中で撹拌した。そこへ、3,3’,4,4’-BPDA22.4g(76.3mmol)を加えて室温で3時間撹拌して均一溶液とした後、酢酸41.5gを加えて、25℃水浴中で1時間撹拌して前駆体溶液3を得た。前駆体溶液3の23℃における溶液粘度は、7ポイズであった。
(Example 3)
In a 500 ml separable flask, 22.0 g (68.6 mmol) of 2,2′-bis (trifluoromethyl) benzidine was charged, dissolved in 160 g of dimethylacetamide (DMAc), and stirred in a 25 ° C. water bath. Thereto, 22.4 g (76.3 mmol) of 3,3 ′, 4,4′-BPDA was added and stirred at room temperature for 3 hours to obtain a homogeneous solution. The precursor solution 3 was obtained by stirring for 1 hour. The solution viscosity of the precursor solution 3 at 23 ° C. was 7 poise.
 更にこの前駆体溶液3に2,2’-ビス(トリフルオロメチル)ベンジジン2.1g(6.5mmol)を7gのDMAcに溶解させた溶液を添加した。2,2’-ビス(トリフルオロメチル)ベンジジン溶液を前駆体溶液3に添加してからの溶液粘度をE型粘度計で追跡し、先に測定した粘度と次に測定した粘度の差が±100ポイズ以内となった時の時間をもって重合時間とした。ポリアミド酸溶液3の23℃における溶液粘度は、2130ポイズであり、最終到達粘度までの時間は100分であった。 Further, a solution prepared by dissolving 2.1 g (6.5 mmol) of 2,2′-bis (trifluoromethyl) benzidine in 7 g of DMAc was added to the precursor solution 3. The solution viscosity after the 2,2′-bis (trifluoromethyl) benzidine solution was added to the precursor solution 3 was traced with an E-type viscometer, and the difference between the previously measured viscosity and the next measured viscosity was ± The time when it was within 100 poise was taken as the polymerization time. The solution viscosity at 23 ° C. of the polyamic acid solution 3 was 2130 poise, and the time until the final reached viscosity was 100 minutes.
 この上記ポリアミド酸溶液3の80gを0℃付近に冷却した後、βピコリン3.3g(35.4mmol)、無水酢酸17.9g(175.3mmol)及びDMAc6.8gを添加して混合した。真空下で脱泡した後、90℃にて10分間、150℃にて10分間、200℃にて10分間、300℃にて10分間熱風にて乾燥させて、ポリイミドフィルム3を得た。ポリイミドフィルム3の厚みは49μm、線膨張係数(100-200℃)は0.0ppmであり、全光線透過率は87%、ヘイズは1.8%、YIは15.8であった。 After cooling 80 g of this polyamic acid solution 3 to around 0 ° C., 3.3 g (35.4 mmol) of β-picoline, 17.9 g (175.3 mmol) of acetic anhydride and 6.8 g of DMAc were added and mixed. After degassing under vacuum, polyimide film 3 was obtained by drying with hot air at 90 ° C. for 10 minutes, 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, and 300 ° C. for 10 minutes. The polyimide film 3 had a thickness of 49 μm, a linear expansion coefficient (100-200 ° C.) of 0.0 ppm, a total light transmittance of 87%, a haze of 1.8%, and a YI of 15.8.
 (実施例4)
500mLセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン23.3g(72.8mmol)を投入し、162gのジメチルアセトアミド(DMAc)に溶解させ25℃の水浴中で撹拌した。そこへ、3,3’,4,4’-BPDA23.0g(78.2mmol)を加えて室温で3時間撹拌して均一溶液とした後、酢酸50gを加えて、25℃水浴中で1時間撹拌して前駆体溶液4を得た。前駆体溶液4の23℃における溶液粘度は、8ポイズであった。
Example 4
To a 500 mL separable flask, 23.3 g (72.8 mmol) of 2,2′-bis (trifluoromethyl) benzidine was added, dissolved in 162 g of dimethylacetamide (DMAc), and stirred in a 25 ° C. water bath. Thereto, 23.0 g (78.2 mmol) of 3,3 ′, 4,4′-BPDA was added and stirred at room temperature for 3 hours to obtain a homogeneous solution, followed by addition of 50 g of acetic acid and 1 hour in a 25 ° C. water bath. The precursor solution 4 was obtained by stirring. The solution viscosity at 23 ° C. of the precursor solution 4 was 8 poise.
 更に、この前駆体溶液4に2,2’-ビス(トリフルオロメチル)ベンジジン1.4(4.4mmol)を6gのDMAcに溶解させた溶液を添加した。実施例1と同様にして重合時間を測定した。こうして得られたポリアミド酸溶液4の23℃における溶液粘度は、2020ポイズであり、最終到達粘度までの時間は45分であった。 Further, a solution prepared by dissolving 2,2′-bis (trifluoromethyl) benzidine 1.4 (4.4 mmol) in 6 g of DMAc was added to the precursor solution 4. The polymerization time was measured in the same manner as in Example 1. The solution viscosity at 23 ° C. of the polyamic acid solution 4 thus obtained was 2020 poise, and the time until the final reached viscosity was 45 minutes.
 この上記ポリアミド酸溶液4 80gを0℃付近に冷却した後、βピコリン3.3g(35.4mmol)、無水酢酸17.9g(175.3mmol)及びDMAc6.8gを添加して混合した。実施例1と同様の操作により、ポリイミドフィルム4を得た。ポリイミドフィルム4の厚みは48μm、線膨張係数(100-200℃)は-1.7ppm、熱ヒステリシスは0.6μmであり、全光線透過率は87%、ヘイズは1.9%、YIは15.8であった。 After cooling 80 g of this polyamic acid solution 4 g to around 0 ° C., 3.3 g (35.4 mmol) of β-picoline, 17.9 g (175.3 mmol) of acetic anhydride and 6.8 g of DMAc were added and mixed. A polyimide film 4 was obtained in the same manner as in Example 1. The thickness of the polyimide film 4 is 48 μm, the linear expansion coefficient (100-200 ° C.) is −1.7 ppm, the thermal hysteresis is 0.6 μm, the total light transmittance is 87%, the haze is 1.9%, and the YI is 15 .8.
 (実施例5)
2Lセパラブルフラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン69.9g(0.22mol)を投入し、475gのジメチルアセトアミド(DMAc)に溶解させ25℃の水浴中で撹拌した。そこへ、3,3’,4,4’-BPDA69.0g(0.23mol)を加えて室温で3時間撹拌して均一溶液とした後、酢酸163gを加えて、25℃水浴中で1時間撹拌して前駆体溶液5を得た。前駆体溶液5の23℃における溶液粘度は、13ポイズであった。
(Example 5)
In a 2 L separable flask, 69.9 g (0.22 mol) of 2,2′-bis (trifluoromethyl) benzidine was added, dissolved in 475 g of dimethylacetamide (DMAc), and stirred in a 25 ° C. water bath. 3,3 ′, 4,4′-BPDA (69.0 g, 0.23 mol) was added thereto, and the mixture was stirred at room temperature for 3 hours to obtain a homogeneous solution. The precursor solution 5 was obtained by stirring. The solution viscosity at 23 ° C. of the precursor solution 5 was 13 poise.
 更に、この前駆体溶液5に2,2’-ビス(トリフルオロメチル)ベンジジン3.8g(11.9mmol)を13gのDMAcに溶解させた溶液を添加した。実施例1と同様にして重合時間を測定した。こうして得られたポリアミド酸溶液5の23℃における溶液粘度は、2030ポイズであり、最終到達粘度までの時間は30分であった。 Furthermore, a solution prepared by dissolving 3.8 g (11.9 mmol) of 2,2′-bis (trifluoromethyl) benzidine in 13 g of DMAc was added to the precursor solution 5. The polymerization time was measured in the same manner as in Example 1. The solution viscosity at 23 ° C. of the polyamic acid solution 5 thus obtained was 2030 poise, and the time until the final reached viscosity was 30 minutes.
 ポリアミド酸溶液5 80gを0℃付近に冷却した後、βピコリン3.3g(35.4mmol)、無水酢酸17.9g(175.3mmol)及びDMAc6.8gを添加して混合した。真空下で脱泡した後、90℃にて10分間、150℃にて10分間、200℃にて10分間、300℃にて10分間熱風にて乾燥させて、ポリイミドフィルム5を得た。ポリイミドフィルム5の厚みは47μm、線膨張係数(100-200℃)は0.0ppm、熱ヒステリシスは0.1μmであり、全光線透過率は87%、ヘイズは2.0%、YIは15.8であった。 After cooling 80 g of the polyamic acid solution 5 to about 0 ° C., 3.3 g (35.4 mmol) of β-picoline, 17.9 g (175.3 mmol) of acetic anhydride and 6.8 g of DMAc were added and mixed. After degassing under vacuum, polyimide film 5 was obtained by drying with hot air at 90 ° C. for 10 minutes, 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, and 300 ° C. for 10 minutes. The polyimide film 5 has a thickness of 47 μm, a linear expansion coefficient (100-200 ° C.) of 0.0 ppm, a thermal hysteresis of 0.1 μm, a total light transmittance of 87%, a haze of 2.0%, and a YI of 15. It was 8.
 (比較例1)
500mlセパラブルフラスコに、2,2'-ビス(トリフルオロメチル)ベンジジン22.0g(68.6mmol)を投入し、127gのジメチルアセトアミド(DMAc)に溶解させ約5℃の氷水浴中で撹拌した。そこへ、3,3',4,4'-BPDA22.4g(76.3mmol)を加えて室温で3時間撹拌して均一溶液とした後、酢酸55.0gを加えて、水浴中で1時間撹拌して前駆体溶液6を得た。前駆体溶液6の23℃における溶液粘度は、42ポイズであった。
(Comparative Example 1)
In a 500 ml separable flask, 22.0 g (68.6 mmol) of 2,2′-bis (trifluoromethyl) benzidine was charged, dissolved in 127 g of dimethylacetamide (DMAc), and stirred in an ice water bath at about 5 ° C. . Thereto, 22.4 g (76.3 mmol) of 3,3 ′, 4,4′-BPDA was added and stirred at room temperature for 3 hours to obtain a homogeneous solution, followed by addition of 55.0 g of acetic acid and 1 hour in a water bath. The precursor solution 6 was obtained by stirring. The solution viscosity of the precursor solution 6 at 23 ° C. was 42 poise.
 更に、この前駆体溶液6に2,2'-ビス(トリフルオロメチル)ベンジジン1.7g(5.3mmol)を1.2gのDMAcに溶解させた溶液を添加した。実施例1と同様にして重合時間を測定した。こうして得られたポリアミド酸溶液6の23℃における溶液粘度は、2900ポイズであり、最終到達粘度までの時間は30分であった。また、固形分濃度は20.1重量%であった。この上記ポリアミド酸溶液6 80gを0℃付近に冷却した後、βピコリン3.3g(35.4mmol)、無水酢酸17.9g(175.3mmol)及びDMAc6.8gを添加して混合した。実施例1と同様の操作により、ポリイミドフィルム6を得た。ポリイミドフィルム6の厚みは50μm、線膨張係数(100-200℃)は2.0ppmであり、全光線透過率は87%、ヘイズは2.0%、YIは16であった。 Further, a solution prepared by dissolving 1.7 g (5.3 mmol) of 2,2′-bis (trifluoromethyl) benzidine in 1.2 g of DMAc was added to the precursor solution 6. The polymerization time was measured in the same manner as in Example 1. The solution viscosity at 23 ° C. of the polyamic acid solution 6 thus obtained was 2900 poise, and the time until the final reached viscosity was 30 minutes. Moreover, solid content concentration was 20.1 weight%. After cooling 80 g of the above polyamic acid solution 6 to about 0 ° C., 3.3 g (35.4 mmol) of β-picoline, 17.9 g (175.3 mmol) of acetic anhydride and 6.8 g of DMAc were added and mixed. A polyimide film 6 was obtained in the same manner as in Example 1. The polyimide film 6 had a thickness of 50 μm, a linear expansion coefficient (100-200 ° C.) of 2.0 ppm, a total light transmittance of 87%, a haze of 2.0%, and a YI of 16.
 (比較例2)
 500mlセパラブルフラスコに、2,2'-ビス(トリフルオロメチル)ベンジジン21.4g(66.8mmol)を投入し、196gのジメチルアセトアミド(DMAc)に溶解させ25℃の水浴中で撹拌した。そこへ、3,3',4,4'-BPDA21.0g(71.4mmol)を加えて、水浴中で4時間撹拌して前駆体溶液7を得た。前駆体溶液7の23℃における溶液粘度は、5ポイズであった。
(Comparative Example 2)
In a 500 ml separable flask, 21.4 g (66.8 mmol) of 2,2′-bis (trifluoromethyl) benzidine was charged, dissolved in 196 g of dimethylacetamide (DMAc), and stirred in a 25 ° C. water bath. Thereto, 21.0 g (71.4 mmol) of 3,3 ′, 4,4′-BPDA was added and stirred for 4 hours in a water bath to obtain a precursor solution 7. The solution viscosity at 23 ° C. of the precursor solution 7 was 5 poise.
 更に、この前駆体溶液7に2,2'-ビス(トリフルオロメチル)ベンジジン1.2(3.8mmol)を1.4gのDMAcに溶解させた溶液を添加した。実施例1と同様にして重合時間を測定した。こうして得られたポリアミド酸溶液7の最終粘度到達までの時間は72時間であった。23℃における溶液粘度は、2620ポイズであり、また、固形分濃度は18.0重量%であった。この上記ポリアミド酸溶液7 80gを0℃付近に冷却した後、βピコリン3.3g(35.4mmol)、無水酢酸17.9g(175.3mmol)及びDMAc6.8gを添加して混合した。実施例1と同様の操作により、ポリイミドフィルム7を得た。ポリイミドフィルム7の厚みは47μm、線膨張係数(100-200℃)は0.3ppmであり、全光線透過率は87%、ヘイズは3%、YIは17.4であった。 Furthermore, a solution prepared by dissolving 2,2′-bis (trifluoromethyl) benzidine 1.2 (3.8 mmol) in 1.4 g of DMAc was added to the precursor solution 7. The polymerization time was measured in the same manner as in Example 1. The time required to reach the final viscosity of the polyamic acid solution 7 thus obtained was 72 hours. The solution viscosity at 23 ° C. was 2620 poise, and the solid content concentration was 18.0% by weight. After cooling 80 g of this polyamic acid solution 7 to about 0 ° C., 3.3 g (35.4 mmol) of β-picoline, 17.9 g (175.3 mmol) of acetic anhydride and 6.8 g of DMAc were added and mixed. A polyimide film 7 was obtained in the same manner as in Example 1. The polyimide film 7 had a thickness of 47 μm, a linear expansion coefficient (100-200 ° C.) of 0.3 ppm, a total light transmittance of 87%, a haze of 3%, and a YI of 17.4.
 (比較例3)
 500mlセパラブルフラスコに、2,2'-ビス(トリフルオロメチル)ベンジジン22.0g(68.6mmol)を投入し、165gのジメチルアセトアミド(DMAc)に溶解させ40℃の水浴中で撹拌した。そこへ、3,3',4,4'-BPDA22.4g(76.1mmol)を加えて室温で3時間撹拌して均一溶液とした後、酢酸42.4gを加えて、水浴中で1時間撹拌して前駆体溶液8を得た。前駆体溶液8の23℃における溶液粘度は、6ポイズであった。
(Comparative Example 3)
In a 500 ml separable flask, 22.0 g (68.6 mmol) of 2,2′-bis (trifluoromethyl) benzidine was charged, dissolved in 165 g of dimethylacetamide (DMAc), and stirred in a water bath at 40 ° C. Thereto, 22.4 g (76.1 mmol) of 3,3 ′, 4,4′-BPDA was added and stirred at room temperature for 3 hours to obtain a homogeneous solution, followed by addition of 42.4 g of acetic acid and 1 hour in a water bath. The precursor solution 8 was obtained by stirring. The solution viscosity of the precursor solution 8 at 23 ° C. was 6 poise.
 更に、この前駆体溶液8に2,2'-ビス(トリフルオロメチル)ベンジジン2.1g(6.4mmol)を4.9gのDMAcに溶解させた溶液を添加した。実施例1と同様にして重合時間を測定した。こうして得られたポリアミド酸溶液8の最終粘度到達までの時間は40分であった。23℃における溶液粘度は、800ポイズであり、また、固形分濃度は18.0重量%であった。実施例1と同様の操作によりポリイミドフィルムを得ようとしたが、ポリアミド酸溶液の粘度が低く、製膜できなかった。 Furthermore, a solution prepared by dissolving 2.1 g (6.4 mmol) of 2,2′-bis (trifluoromethyl) benzidine in 4.9 g of DMAc was added to the precursor solution 8. The polymerization time was measured in the same manner as in Example 1. The time required to reach the final viscosity of the polyamic acid solution 8 thus obtained was 40 minutes. The solution viscosity at 23 ° C. was 800 poise, and the solid content concentration was 18.0% by weight. An attempt was made to obtain a polyimide film by the same operation as in Example 1, but the polyamide acid solution had a low viscosity and could not be formed.
 (比較例4)
 500mlセパラブルフラスコに、2,2'-ビス(トリフルオロメチル)ベンジジン22.0g(68.6mmol)を投入し、127gのジメチルアセトアミド(DMAc)に溶解させ25℃の水浴中で撹拌した。そこへ、3,3',4,4'-BPDA22.4g(76.1mmol)を加えて室温で3時間撹拌して均一溶液とした後、酢酸55.0gを加えて、水浴中で1時間撹拌して前駆体溶液9を得た。前駆体溶液9の23℃における溶液粘度は、42ポイズであった。
(Comparative Example 4)
In a 500 ml separable flask, 22.0 g (68.6 mmol) of 2,2′-bis (trifluoromethyl) benzidine was charged, dissolved in 127 g of dimethylacetamide (DMAc), and stirred in a 25 ° C. water bath. Thereto, 22.4 g (76.1 mmol) of 3,3 ′, 4,4′-BPDA was added and stirred at room temperature for 3 hours to obtain a homogeneous solution, followed by addition of 55.0 g of acetic acid and 1 hour in a water bath. The precursor solution 9 was obtained by stirring. The solution viscosity of the precursor solution 9 at 23 ° C. was 42 poise.
 更に、この前駆体溶液9に2,2'-ビス(トリフルオロメチル)ベンジジン1.6g(5.0mmol)を2.3gのDMAcに溶解させた溶液を添加した。実施例1と同様にして重合時間を測定した。こうして得られたポリアミド酸溶液9の最終到達粘度までの時間は2時間であった。23℃における溶液粘度は、1100ポイズであり、また、固形分濃度は20.0重量%であった。実施例1と同様の操作によりポリイミドフィルムを得ようとしたが、ポリアミド酸溶液の粘度が低く、製膜できなかった。 Furthermore, a solution prepared by dissolving 1.6 g (5.0 mmol) of 2,2′-bis (trifluoromethyl) benzidine in 2.3 g of DMAc was added to the precursor solution 9. The polymerization time was measured in the same manner as in Example 1. The time until the final reached viscosity of the polyamic acid solution 9 thus obtained was 2 hours. The solution viscosity at 23 ° C. was 1100 poise, and the solid content concentration was 20.0% by weight. An attempt was made to obtain a polyimide film by the same operation as in Example 1, but the polyamide acid solution had a low viscosity and could not be formed.
 表1の結果から、脂肪族カルボン酸を用いない場合には、低粘度のポリアミド酸から昇粘が完了するまでの時間に多くの時間を要する(比較例2)。また、脂肪族カルボン酸を用い、さらに重合温度を40℃で行った場合には、最終ポリアミド酸の粘度が、実施例1及び2/比較例1とモノマー組成はほぼ同じであるにもかかわらず、十分高い溶液粘度まで到達しない(比較例3)。 From the results of Table 1, when no aliphatic carboxylic acid is used, it takes a long time to complete the viscosity increase from the low-viscosity polyamic acid (Comparative Example 2). In addition, when an aliphatic carboxylic acid was used and the polymerization temperature was 40 ° C., the viscosity of the final polyamic acid was almost the same as that of Examples 1 and 2 / Comparative Example 1 and the monomer composition. It does not reach a sufficiently high solution viscosity (Comparative Example 3).
 さらに脂肪族カルボン酸30%を用いて重合温度を25℃で行った場合も、十分高い粘度を有するポリアミド酸が得られないのに対して(比較例4)、本発明中の脂肪族カルボン酸0.5以上29重量%未満かつ25℃で反応を行った場合には、2000ポイズ以上の十分に高い粘度を持つポリアミド酸溶液を4時間以内で合成することができることが分かる。更に、ポリアミド酸溶液を0℃で200時間保管した後の粘度低下が起こらず、保管安定性に優れていることがわかる。 Furthermore, when the polymerization temperature is 25 ° C. using 30% aliphatic carboxylic acid, a polyamic acid having a sufficiently high viscosity cannot be obtained (Comparative Example 4), whereas the aliphatic carboxylic acid in the present invention is not obtained. It can be seen that when the reaction is carried out at 0.5 or more and less than 29% by weight and at 25 ° C., a polyamic acid solution having a sufficiently high viscosity of 2000 poise or more can be synthesized within 4 hours. Furthermore, it can be seen that the viscosity is not lowered after the polyamic acid solution is stored at 0 ° C. for 200 hours, and the storage stability is excellent.
 このようにして得られたポリイミドフィルムは脂肪族カルボン酸を用いない場合とほぼ同様の膨張係数、厚み、透過率、ヘイズを有する。また、黄色度(YI)については脂肪族カルボン酸を用いない場合と比べて改善している。このように、重合溶媒として脂肪族カルボン酸を併用することにより、物性が改善されたポリイミドフィルムを得ることが可能になる。 The polyimide film thus obtained has substantially the same expansion coefficient, thickness, transmittance and haze as when no aliphatic carboxylic acid is used. Further, the yellowness (YI) is improved as compared with the case where no aliphatic carboxylic acid is used. Thus, a polyimide film with improved physical properties can be obtained by using an aliphatic carboxylic acid in combination as a polymerization solvent.
 また、実施例、比較例で得られたポリイミドフィルムのガラス転移温度(Tg)を測定した。ティー・エス・インスツルメント社製DSC Q200を用い、昇温速度10℃/分で測定し、400℃まででTgに相当するピークが観測されなかったため、得られたポリイミドフィルムのTgは、いずれも少なくとも400℃以上であることがわかった。 In addition, the glass transition temperature (Tg) of the polyimide films obtained in Examples and Comparative Examples was measured. Since DSC Q200 manufactured by TS Instruments was used and measured at a heating rate of 10 ° C./min and no peak corresponding to Tg was observed up to 400 ° C., the Tg of the obtained polyimide film was Was also found to be at least 400 ° C. or higher.
 実施例で得られたポリアミド酸の分子量測定を、ゲルパーミエーションクロマトグラフィーを用いて行った。展開溶媒としてジメチルホルムアミド、標準試料としてポリスチレンを用い、検出器として東ソー社製RI8020カラムにShodex社製、KD-Gを1本、KD-806Mを2本、KD-801を1本直列につないだものを用い、測定温度40℃にて測定を行った。その結果、実施例のポリアミド酸はいずれも重量平均分子量が3000以上であることを確認した。 The molecular weight of the polyamic acid obtained in the examples was measured using gel permeation chromatography. Dimethylformamide was used as a developing solvent, polystyrene was used as a standard sample, and Shodex, one KD-G, two KD-806M, and one KD-801 were connected in series to a Tosoh RI8020 column as a detector. The measurement was performed at a measurement temperature of 40 ° C. As a result, it was confirmed that all the polyamic acids of the examples had a weight average molecular weight of 3000 or more.
 [加熱前後寸法変化率の評価]
 実施例で作製したフィルムを、熱機械的分析装置Thermo Plus TMA8310(リガク社製)によって、昇温速度10℃/分で230℃まで加熱した後、同じ速度で40℃まで冷却した状態で寸法を測定し(寸法1)、再び230℃まで過熱40℃まで冷却した状態で寸法を測定した(寸法2)。寸法1と寸法2を比較して、フィルムの寸法変化率を評価した結果、いずれのフィルムも0.05%以下の加熱前後収縮率を示した。すなわち、0.005%以下の加熱前後寸法変化率であることがわかった。
[Evaluation of dimensional change rate before and after heating]
The film produced in the example was heated to 230 ° C. at a temperature increase rate of 10 ° C./min with a thermomechanical analyzer Thermo Plus TMA8310 (manufactured by Rigaku Corporation), and then cooled to 40 ° C. at the same rate. The measurement was performed (dimension 1), and the dimensions were measured in the state of being cooled to 230 ° C. and superheated to 40 ° C. (dimension 2). As a result of comparing the dimension 1 and the dimension 2 and evaluating the dimensional change rate of the film, all the films showed a shrinkage ratio before and after heating of 0.05% or less. That is, it was found that the dimensional change rate before and after heating was 0.005% or less.
 このようにして作成した本発明のポリイミドフィルムは、耐熱性が良好で、且つ、任意の低膨張率・寸法安定性を有するフィルムを作製することが可能である為、これらの特性が有効とされる分野・製品、例えば、塗料、印刷インキ、カラーフィルター、フレキシブルディスプレー用フィルム、半導体装置、電子部品、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、ホログラム、その他の光学部材又は建築材料を形成するのに適している。
 
Since the polyimide film of the present invention thus produced has good heat resistance and can produce a film having an arbitrary low expansion coefficient and dimensional stability, these characteristics are considered to be effective. Fields and products such as paints, printing inks, color filters, flexible display films, semiconductor devices, electronic components, interlayer insulation films, wiring coating films, optical circuits, optical circuit components, antireflection films, holograms, etc. Suitable for forming optical members or building materials.

Claims (26)

  1. 非プロトン極性溶剤及び炭素数15以下の脂肪族カルボン酸の混合物を溶剤とし、ジアミン化合物と酸二無水物を重合し下記式(1)で表される繰り返し単位を含むポリアミド酸溶液の製造方法であり、溶剤中の炭素数15以下の脂肪族カルボン酸の割合が0.5以上29重量%未満で、かつ、重合温度が0~35℃かつ-0.5×(溶剤中の炭素数15以下の脂肪族カルボン酸の割合(重量%))+45以下の温度で重合する、下記式(1)で表される繰り返し単位を含むポリアミド酸溶液の製造方法。
    Figure JPOXMLDOC01-appb-C000011
    (式中Rは4価の有機基を、Rは2価の有機基を示す。)
    A method for producing a polyamic acid solution containing a repeating unit represented by the following formula (1) by polymerizing a diamine compound and an acid dianhydride using a mixture of an aprotic polar solvent and an aliphatic carboxylic acid having 15 or less carbon atoms as a solvent. Yes, the proportion of the aliphatic carboxylic acid having 15 or less carbon atoms in the solvent is 0.5 or more and less than 29% by weight, and the polymerization temperature is 0 to 35 ° C. and −0.5 × (15 or less carbon atoms in the solvent) The ratio of the aliphatic carboxylic acid (% by weight)) The process for producing a polyamic acid solution containing a repeating unit represented by the following formula (1) is polymerized at a temperature of 45 or less.
    Figure JPOXMLDOC01-appb-C000011
    (In the formula, R 1 represents a tetravalent organic group, and R 2 represents a divalent organic group.)
  2. は、置換、非置換の芳香族基を含む酸二無水物残基であることを特徴とする請求項1に記載のポリアミド酸溶液の製造方法。 The method for producing a polyamic acid solution according to claim 1, wherein R 1 is an acid dianhydride residue containing a substituted or unsubstituted aromatic group.
  3. は芳香族基を少なくとも1個有し少なくともその1個が置換基を有するか、あるいは芳香族基を複数個有し分岐あるいは直鎖のアルキル基で結合されていることを特徴とする請求項1に記載のポリアミド酸溶液の製造方法。 R 2 has at least one aromatic group and at least one of them has a substituent, or has a plurality of aromatic groups and is bonded with a branched or straight chain alkyl group. Item 2. A method for producing a polyamic acid solution according to Item 1.
  4. の置換基が炭素数1~16のアルキル基、炭素数1~16のハロゲン化アルキル基、ハロゲンから選ばれることを特徴とする請求項3に記載のポリアミド酸溶液の製造方法。 4. The method for producing a polyamic acid solution according to claim 3, wherein the substituent of R 2 is selected from an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, and a halogen.
  5. は下記一般式(2)から選択される4価の有機基であることを特徴とする請求項2に記載のポリアミド酸溶液の製造方法。
    Figure JPOXMLDOC01-appb-C000012
    The method for producing a polyamic acid solution according to claim 2, wherein R 1 is a tetravalent organic group selected from the following general formula (2).
    Figure JPOXMLDOC01-appb-C000012
  6. は下記一般式(3)から選択される2価の有機基であることを特徴とする請求項3に記載のポリアミド酸溶液の製造方法。
    Figure JPOXMLDOC01-appb-C000013
    (Rは、炭素数1~16のアルキル基、炭素数1~16のハロゲン化アルキル基、あるいはハロゲンを示す。)。
    The method for producing a polyamic acid solution according to claim 3, wherein R 2 is a divalent organic group selected from the following general formula (3).
    Figure JPOXMLDOC01-appb-C000013
    (R 3 represents an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, or halogen).
  7. が下記一般式(4)で表される4価の有機基であることを特徴とする請求項2に記載のポリアミド酸溶液の製造方法。
    Figure JPOXMLDOC01-appb-C000014
    The method for producing a polyamic acid solution according to claim 2, wherein R 1 is a tetravalent organic group represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000014
  8. の構造が下記一般式(5)から選択される2価のビフェニレン基であることを特徴とする請求項3に記載のポリアミド酸溶液の製造方法。
    Figure JPOXMLDOC01-appb-C000015
    (Rは、炭素数1~16のアルキル基、炭素数1~16のハロゲン化アルキル基、あるいはハロゲンを示す)。
    The method for producing a polyamic acid solution according to claim 3, wherein the structure of R 2 is a divalent biphenylene group selected from the following general formula (5).
    Figure JPOXMLDOC01-appb-C000015
    (R 3 represents an alkyl group having 1 to 16 carbon atoms, a halogenated alkyl group having 1 to 16 carbon atoms, or halogen).
  9. が、ハロゲン、もしくはハロゲン化アルキルであることを特徴とする請求項8に記載のポリアミド酸溶液の製造方法。 The method for producing a polyamic acid solution according to claim 8, wherein R 3 is halogen or an alkyl halide.
  10. が、炭素数が1~16のフルオロアルキル基であることを特徴とする請求項8に記載のポリアミド酸溶液の製造方法。 The method for producing a polyamic acid solution according to claim 8, wherein R 3 is a fluoroalkyl group having 1 to 16 carbon atoms.
  11. 式(6)で表される繰り返し単位を含むポリイミドフィルムの製造方法であり、請求項1で得られたポリアミド酸に脱水触媒及びイミド化剤を混合した溶液を支持体上に流延することにより作成することを特徴とする、ポリイミドフィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000016
    式中Rは下記一般式(2)から選択される4価の有機基を、また、Rは下記一般式(3)から選択される2価の有機基を示し、
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    式中Rは、水素、ハロゲン、ハロゲン化アルキル、C1~C16のアルキル基を示す。
    It is a manufacturing method of the polyimide film containing the repeating unit represented by Formula (6), and it casts on the support body the solution which mixed the dehydration catalyst and the imidizing agent with the polyamic acid obtained in Claim 1. A method for producing a polyimide film, characterized by comprising:
    Figure JPOXMLDOC01-appb-C000016
    In the formula, R 1 represents a tetravalent organic group selected from the following general formula (2), R 2 represents a divalent organic group selected from the following general formula (3),
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    In the formula, R 3 represents hydrogen, halogen, alkyl halide, or a C1-C16 alkyl group.
  12. の構造が下記一般式(4)から選択される4価の有機基であることを特徴とする請求項11に記載のポリイミドフィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000019
    The method for producing a polyimide film according to claim 11, wherein the structure of R 1 is a tetravalent organic group selected from the following general formula (4).
    Figure JPOXMLDOC01-appb-C000019
  13. の構造が下記一般式(5)から選択される2価の有機基ビフェニレン基もしくはフェニレン基であることを特徴とする請求項11に記載のポリイミドフィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000020
    式中Rは、水素、ハロゲン、ハロゲン化アルキル、C1~C16のアルキル基を示す。
    The method for producing a polyimide film according to claim 11, wherein the structure of R 2 is a divalent organic group biphenylene group or phenylene group selected from the following general formula (5).
    Figure JPOXMLDOC01-appb-C000020
    In the formula, R 3 represents hydrogen, halogen, alkyl halide, or a C1-C16 alkyl group.
  14. がハロゲン、もしくは、ハロゲン化アルキルであることを特徴とする請求項13に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 13, wherein R 3 is halogen or alkyl halide.
  15. がトリフルオロメチル基であることを特徴とする請求項13に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 13, wherein R 3 is a trifluoromethyl group.
  16. イミド化剤として、ピリジン、ピコリン、キノリン、もしくはイソキノリンから選ばれ、脱水触媒が無水酢酸等の酸無水物から選ばれることを特徴とする、請求項11に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 11, wherein the imidizing agent is selected from pyridine, picoline, quinoline, or isoquinoline, and the dehydration catalyst is selected from acid anhydrides such as acetic anhydride.
  17. アミン化合物の添加量が、ポリアミド酸のカルボン酸に対して0.05モル倍当量以上を用いることを特徴とする、請求項16に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 16, wherein the addition amount of the amine compound is 0.05 molar equivalent or more with respect to the carboxylic acid of the polyamic acid.
  18. 線熱膨張係数が40ppm以下、加熱前後の収縮率が0.1%以下である、請求項1~17のいずれかに記載の方法で製造されたポリイミドフィルム。 The polyimide film produced by the method according to any one of claims 1 to 17, having a linear thermal expansion coefficient of 40 ppm or less and a shrinkage ratio before and after heating of 0.1% or less.
  19. ガラス転移温度が200℃以上である、請求項1~17のいずれかに記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 17, which has a glass transition temperature of 200 ° C or higher.
  20. 重量平均分子量が3,000以上である、請求項1~17のいずれかに記載のポリイミドフィルム。 The polyimide film according to any one of claims 1 to 17, which has a weight average molecular weight of 3,000 or more.
  21. 請求項18に記載されたポリイミドフィルムを用いたポリイミド樹脂組成物。 A polyimide resin composition using the polyimide film according to claim 18.
  22. 請求項19に記載されたポリイミドフィルムを用いたポリイミド樹脂組成物。 A polyimide resin composition using the polyimide film according to claim 19.
  23. 請求項20に記載されたポリイミドフィルムを用いたポリイミド樹脂組成物。 A polyimide resin composition using the polyimide film according to claim 20.
  24. 請求項18に記載のポリイミドフィルムに、少なくとも1層の無機材料が積層されていることを特徴とする積層物。 A laminate comprising at least one layer of an inorganic material laminated on the polyimide film according to claim 18.
  25. 請求項19に記載のポリイミドフィルムに、少なくとも1層の無機材料が積層されていることを特徴とする積層物。 A laminate comprising at least one layer of an inorganic material laminated on the polyimide film according to claim 19.
  26. 請求項20に記載のポリイミドフィルムに、少なくとも1層の無機材料が積層されていることを特徴とする積層物。
     
    A laminate comprising at least one layer of an inorganic material laminated on the polyimide film according to claim 20.
PCT/JP2010/003124 2009-05-12 2010-05-07 Process for producing polyamic acid solution, and polyimide film WO2010131442A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-115699 2009-05-12
JP2009115699 2009-05-12
JP2009137575 2009-06-08
JP2009-137575 2009-06-08
JP2009-256320 2009-11-09
JP2009256320 2009-11-09

Publications (1)

Publication Number Publication Date
WO2010131442A1 true WO2010131442A1 (en) 2010-11-18

Family

ID=43084827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003124 WO2010131442A1 (en) 2009-05-12 2010-05-07 Process for producing polyamic acid solution, and polyimide film

Country Status (2)

Country Link
TW (1) TW201105712A (en)
WO (1) WO2010131442A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086627A1 (en) * 2010-01-15 2011-07-21 株式会社カネカ Polyimide film and process for production thereof
JP2014501301A (en) * 2010-12-31 2014-01-20 コーロン インダストリーズ インク Transparent polyimide film and method for producing the same
CN111205457A (en) * 2018-11-22 2020-05-29 达迈科技股份有限公司 Method for producing polyimide film
CN111363151A (en) * 2020-04-22 2020-07-03 江苏奥神新材料股份有限公司 Method for controlling polymerization viscosity of industrial polyamic acid
CN115109289A (en) * 2022-08-26 2022-09-27 苏州尊尔光电科技有限公司 Polyimide film with strong physical adhesion with glass substrate and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9462688B2 (en) 2011-09-07 2016-10-04 Lg Chem, Ltd. Flexible metal laminate containing fluoropolymer
KR20140144177A (en) * 2012-03-14 2014-12-18 스미토모 베이클리트 컴퍼니 리미티드 Metal-clad laminate plate, printed wiring board, semiconductor package, and semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649731A (en) * 1979-09-28 1981-05-06 Nitto Electric Ind Co Ltd Production of polyimide resin
JPH01299871A (en) * 1988-05-26 1989-12-04 Toray Ind Inc Polyamic acid solution, polyimide powder and production thereof
US5071997A (en) * 1989-07-20 1991-12-10 University Of Akron Polyimides comprising substituted benzidines
JPH08253585A (en) * 1994-06-23 1996-10-01 Trw Inc Concentrated prepolymer composition useful for producing polyimide article
JP2007046054A (en) * 2005-08-03 2007-02-22 E I Du Pont De Nemours & Co Low tinted polyimide resin composition useful in optical application field, as well as method and composition relating to the same
WO2009078365A1 (en) * 2007-12-14 2009-06-25 Nissan Chemical Industries, Ltd. Method for producing polyhydroxyimide and positive photosensitive resin composition containing polyhydroxyimide obtained by the production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649731A (en) * 1979-09-28 1981-05-06 Nitto Electric Ind Co Ltd Production of polyimide resin
JPH01299871A (en) * 1988-05-26 1989-12-04 Toray Ind Inc Polyamic acid solution, polyimide powder and production thereof
US5071997A (en) * 1989-07-20 1991-12-10 University Of Akron Polyimides comprising substituted benzidines
JPH08253585A (en) * 1994-06-23 1996-10-01 Trw Inc Concentrated prepolymer composition useful for producing polyimide article
JP2007046054A (en) * 2005-08-03 2007-02-22 E I Du Pont De Nemours & Co Low tinted polyimide resin composition useful in optical application field, as well as method and composition relating to the same
WO2009078365A1 (en) * 2007-12-14 2009-06-25 Nissan Chemical Industries, Ltd. Method for producing polyhydroxyimide and positive photosensitive resin composition containing polyhydroxyimide obtained by the production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086627A1 (en) * 2010-01-15 2011-07-21 株式会社カネカ Polyimide film and process for production thereof
JP2014501301A (en) * 2010-12-31 2014-01-20 コーロン インダストリーズ インク Transparent polyimide film and method for producing the same
CN111205457A (en) * 2018-11-22 2020-05-29 达迈科技股份有限公司 Method for producing polyimide film
CN111205457B (en) * 2018-11-22 2022-09-23 达迈科技股份有限公司 Method for producing polyimide film
CN111363151A (en) * 2020-04-22 2020-07-03 江苏奥神新材料股份有限公司 Method for controlling polymerization viscosity of industrial polyamic acid
CN115109289A (en) * 2022-08-26 2022-09-27 苏州尊尔光电科技有限公司 Polyimide film with strong physical adhesion with glass substrate and preparation method thereof
CN115109289B (en) * 2022-08-26 2022-11-11 苏州尊尔光电科技有限公司 Polyimide film with strong physical adhesion with glass substrate and preparation method thereof

Also Published As

Publication number Publication date
TW201105712A (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP6516048B2 (en) Polyimide precursor and polyimide
JP5757876B2 (en) Optical film, method for manufacturing optical film, transparent substrate, image display device, and solar cell
JP6900152B2 (en) Film for glass replacement material
KR102529151B1 (en) Composition for preparing article including polyimide or poly(amide-imide) copolymer, article obtained therefrom, and display device including same
JP5650458B2 (en) LAMINATE MANUFACTURING METHOD AND FLEXIBLE DEVICE MANUFACTURING METHOD
JP5909391B2 (en) Polyimide solution and polyimide film obtained from the solution
JP2018522105A (en) Polyamide-imide precursor, polyamide-imide film, and display element including the same
KR20180018392A (en) Polyimide precursor, polyimide and manufacturing method of transparent polyimide film
JP5785018B2 (en) Polyimide resin and optical film with improved film forming properties
WO2010131442A1 (en) Process for producing polyamic acid solution, and polyimide film
JP2011111596A (en) Manufacturing method of polyimide film, and polyimide film
JP6974956B2 (en) Polyimide precursor and polyimide
JP2011148955A (en) Method for producing polyimide film, and the resultant polyimide film
JPWO2019131896A1 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
CN112204086B (en) Polyimide-based polymer film, substrate for display device using same, and optical device
JP2012102215A (en) Method for manufacturing polyamic acid solution and polyimide
JP2011031429A (en) Laminated film
JP6496993B2 (en) Polyimide precursor composition, method for producing polyimide precursor, polyimide molded body, and method for producing polyimide molded body
US20070100129A1 (en) Low expansion polyimide, resin composition and article using thereof
JP2012102216A (en) Method for producing polyimide film, and polyimide film
JP5598086B2 (en) Gas barrier film
KR20200092628A (en) Preparing method of polyamide-based (co)polymer, and polyamide-based (co)polymer resin composition, polymer film using the same
JP2519228B2 (en) Colorless and transparent polyimide molding and method for producing the same
WO2011086627A1 (en) Polyimide film and process for production thereof
WO2021049556A1 (en) Metal-clad laminate for flexible electronic devices, and flexible electronic device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP