Nothing Special   »   [go: up one dir, main page]

WO2010122771A1 - 無線通信端末装置、無線通信基地局装置及び無線通信方法 - Google Patents

無線通信端末装置、無線通信基地局装置及び無線通信方法 Download PDF

Info

Publication number
WO2010122771A1
WO2010122771A1 PCT/JP2010/002823 JP2010002823W WO2010122771A1 WO 2010122771 A1 WO2010122771 A1 WO 2010122771A1 JP 2010002823 W JP2010002823 W JP 2010002823W WO 2010122771 A1 WO2010122771 A1 WO 2010122771A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
measurement
initiated
gap pattern
base station
Prior art date
Application number
PCT/JP2010/002823
Other languages
English (en)
French (fr)
Inventor
青山高久
トウホンタ
チェンホン
コーティエンミンベンジャミン
タンペクユー
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/264,901 priority Critical patent/US8817681B2/en
Priority to JP2011510192A priority patent/JP5490105B2/ja
Publication of WO2010122771A1 publication Critical patent/WO2010122771A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication terminal device, a wireless communication base station device, and a wireless communication method.
  • UE User Equipment
  • This measurement includes intra-frequency measurements, inter-frequency measurements using gaps, and inter-system measurements, and the cellular communication system measures these measurements. Need to support. Note that inter-frequency measurement and inter-system measurement using a gap may be referred to as gap utilization measurement.
  • the UE In order to perform the gap utilization measurement, the UE needs to receive a signal from another cell or a different system having a different carrier frequency. Must be adjusted to the frequency or another system. In addition, in order for the UE to measure neighboring cells, a gap (hereinafter also referred to as an idle period) must be provided in the UE.
  • a gap hereinafter also referred to as an idle period
  • an explicit start position for starting the gap is set.
  • the gaps are periodically arranged, and this periodic gap is called a gap pattern.
  • This gap pattern needs to be set over a long period in order to perform measurement. Therefore, the UE can support mobility control to another carrier frequency or another system even in a communication state by performing gap utilization measurement based on gap pattern assignment. Furthermore, even when discontinuous reception (DRX) is performed, measurement can be performed only after the gap becomes active.
  • DRX discontinuous reception
  • the gap is also used when receiving broadcast information (also referred to as “Broadcast information” or “System information”) of a specific cell. Specifically, whether or not there is an access right to a cell that can be accessed only by a specific UE called a CSG (Closed ⁇ ⁇ Subscriber Group) cell, the CSG identifier (CSG identifier) of the cell included in the broadcast information And the accessible CSG identifier list possessed by the UE are also used for the determination. Since the UE cannot receive broadcast information from other cells during communication with the serving base station, the UE uses the gap to acquire broadcast information of other cells.
  • broadcast information also referred to as “Broadcast information” or “System information”
  • Non-Patent Document 1 a method of measuring using DRX without specifying a gap by explicit signaling, or a CQI value measured without specifying a gap by explicit signaling disclosed in Non-Patent Document 1 is used. Based on this, a method for starting measurement is considered. In the former method, it is not necessary to explicitly set the gap pattern, and the UE can start measurement early.
  • Non-Patent Document 1 when the CQI value is smaller than a predetermined threshold or a set threshold, the UE starts a measurement procedure spontaneously by using a gap. . Since the base station receives a CQI report that implies that the UE has started the measurement, it can detect that the UE has started the measurement.
  • the former method cannot guarantee a sufficient time slot for the UE to perform measurement because the DRX sleep period, which is a time slot usable for measurement, is not constant. This is because the DRX active period, which is a time slot for the UE to receive data, may be extended (while the UE can successfully decode the PDCCH). That is, the DRX sleep period must be shortened by extending the DRX active period.
  • the latter method cannot guarantee sufficient time slots for the UE to perform measurement because the channel quality of the UE changes dynamically. Specifically, when the UE measures using a long gap pattern, the reported CQI value may suddenly change greatly, and the measurement may be terminated or interrupted midway. This increases the complexity of the UE configuration.
  • An object of the present invention is to provide a radio communication terminal apparatus, a radio communication base station apparatus, and a radio communication method that reduce the time required for performing handover without increasing the complexity of the configuration of the radio communication terminal apparatus. It is.
  • the wireless communication terminal apparatus based on the discontinuous reception active period for receiving data and the length of the offset indicating the time from the start of the discontinuous reception active period to the start of the gap pattern, A gap confirmation means for determining whether to start a gap pattern in a cycle or to start a gap pattern in the next discontinuous reception cycle; and a gap pattern setting means for generating a gap pattern in the determined discontinuous reception cycle;
  • the structure which comprises is taken.
  • the wireless communication method of the present invention is based on a discontinuous reception active period for receiving data and an offset length indicating a time from the start of the discontinuous reception active period to the start of a gap pattern.
  • a gap confirmation step for determining whether to start a gap pattern in the next discontinuous reception cycle or a gap pattern in which the wireless communication terminal generates a gap pattern in the determined discontinuous reception cycle And a setting step.
  • movement of UE shown in FIG. The block diagram which shows the structure of UE which concerns on Embodiment 2 of this invention.
  • movement which UE shown in FIG. 5 determines a gap information parameter
  • FIG. 8 is a flowchart illustrating a method for the UE shown in FIG. 8 to determine a UE-initiated GP information parameter.
  • FIG. 8 is a flowchart illustrating a method in which the UE illustrated in FIG. 8 uses UE-driven GP.
  • the block diagram which shows the structure of UE which concerns on Embodiment 4 of this invention.
  • FIG. 15 is a flowchart showing the operation of the measurement and multiple gap information generation unit shown in FIG.
  • FIG. 18 is a flowchart showing the operation of the UE shown in FIG.
  • FIG. 1 is a block diagram showing a configuration of UE 100 according to Embodiment 1 of the present invention.
  • a receiving unit 101 receives measurement setting information and gap pattern setting information from a network by dedicated control signaling. Examples of such signaling include measurement configuration information included in an RRC connection reconfiguration message defined in 3GPP TS 36.331.
  • the receiving unit 101 When receiving the setting information, the receiving unit 101 outputs the measurement setting information to the measuring unit 102 and outputs the set gap pattern parameter to the gap pattern setting unit 104.
  • the measurement setting information includes a measurement ID (measurement id) that is an identifier for managing the measurement setting, a measurement object (measurement object) indicating a measurement target system, a frequency, a cell, and the like, and an event for reporting the measurement ( event) etc., and reporting configuration (reporting configuration).
  • a measurement ID measurement ID
  • measurement object measurement object
  • the gap pattern setting information in addition to gap pattern information (gap length, gap period) for measuring different systems and different carrier frequencies, UE-driven for determining the position where the gap starts There is a GP start offset and the like.
  • the measurement unit 102 When the measurement unit 102 acquires the measurement setting information output from the reception unit 101, the measurement unit 102 stores the acquired measurement setting information and performs measurement based on an input physical layer reference signal (hereinafter simply referred to as a reference signal). Start.
  • the measurement setting information stored in the measurement unit 102 includes both the serving carrier frequency and other carrier frequency setting information (that is, the intra-frequency and inter-frequency measurement settings defined in 3GPP TS 36.331). If so, the measurement unit 102 performs measurement based on the input reference signal.
  • the measurement unit 102 can execute a cell search procedure and a serving carrier frequency measurement procedure.
  • the measurement unit 102 outputs the serving carrier frequency measurement result to the measurement report generation unit 103.
  • events here “the quality of the serving carrier frequency has become worse than a specific threshold”, “a CSG cell has been detected, and it is necessary to receive broadcast information of the CSG cell”, etc. It is.
  • the measurement report generation unit 103 includes the measurement result output from the measurement unit 102 in the reporting message and transmits the reporting message to the base station.
  • This reporting message may be referred to as a measurement report or an intra frequency measurement report.
  • the measurement report generation unit 103 outputs a reporting success notification signal to the gap confirmation unit 105.
  • the gap pattern setting unit 104 stores the gap pattern parameters output from the reception unit 101 and outputs the gap pattern parameters to the gap confirmation unit 105.
  • the gap pattern parameters can be in different formats depending on the operation and configuration of the network.
  • a gap pattern parameter a UE-initiated GP start offset (UE-initiated GP start position, UE-initiated GP) indicating the time from the start of the DRX active period to the start of the UE-initiated gap pattern (hereinafter referred to as “UE-initiated GP”).
  • UE-initiated GP UE-initiated GP start position
  • UE-initiated GP activation time UE-initiated GP location
  • the gap confirmation unit 105 determines a position to start the UE-driven GP based on the gap pattern parameter output from the gap pattern setting unit 104 and the reporting success notification signal output from the measurement report generation unit 103.
  • This start position is a position at which the UE 100 starts a gap for performing measurement.
  • the gap confirmation unit 105 determines the position where the UE-initiated GP is started based on the relationship between the active period during DRX and the UE-initiated GP start offset.
  • the starting point of the UE-initiated GP start offset is a DRX cycle in which a measurement report is successfully transmitted to the base station 200 (one DRX cycle includes one DRX active period and one DRX sleep period subsequent to the DRX active period).
  • the UE100 calculates
  • the UE 100 confirms whether the extended DRX active period ends before the UE initiated GP start offset at the time of transmitting the measurement report. Depending on whether the extended DRX active period ends before or after the UE initiated GP start offset, the UE 100 performs the following operations.
  • the UE 100 When the extended DRX active period ends before the UE initiated GP start offset, the UE 100 is considered that the DRX active period does not overlap with the UE initiated GP in the current DRX cycle. Therefore, the UE 100 activates the UE-initiated GP in the current DRX cycle.
  • the UE 100 When the extended DRX active period ends after the UE initiated GP start offset, the UE 100 is considered that the DRX active period overlaps with the UE initiated GP in the current DRX cycle. Therefore, the UE 100 activates the UE-initiated GP in the next DRX cycle.
  • the gap confirmation unit 105 determines the timing for making the UE-driven GP active, and outputs the determined timing to the UE-driven GP setting unit 106.
  • the UE-initiated GP setting unit 106 determines a position to start UE-initiated GP based on the timing output from the gap confirmation unit 105, and generates a gap pattern accordingly.
  • the UE 100 can measure another carrier frequency of another neighboring cell or another system using the UE-initiated GP.
  • the UE 100 transmits the measurement result to the base station 200 by the measurement report.
  • FIG. 2 is a block diagram showing a configuration of base station 200 according to Embodiment 1 of the present invention.
  • the measurement setting unit 201 when it is determined that measurement on another carrier frequency or another system is necessary in the UE 100, the measurement setting unit 201 performs measurement for inter frequency measurement or inter-RAT measurement (inter-RAT measurement). Determine the parameters. These measurement parameters are output to the dedicated signal generation unit 203.
  • the gap pattern setting unit 202 determines the UE-initiated GP start offset based on the set idle period (that is, the DRX cycle). Since the UE initiated GP start offset is based on the currently set DRX cycle, the length of the UE initiated GP start offset must not be longer than the set DRX cycle. The UE-initiated GP start offset is intended for the UE 100 to determine the start position of the UE-initiated GP without resulting in overlapping with the DRX active period. The gap pattern setting unit 202 outputs the UE initiated GP start offset to the dedicated signal generation unit 203.
  • the dedicated signal generation unit 203 determines a specific UE 100 that is a transmission destination of the set UE-initiated GP start offset and measurement information, and includes downlink dedicated signaling (measurement setting information and UE-initiated GP start offset to the UE 100) ) Is generated. This signaling is output to transmission section 204 and transmitted to UE 100.
  • An example of such downlink dedicated signaling is measurement configuration information included in the RRC connection reconfiguration message defined in 3GPP TS 36.331.
  • FIG. 3 is a diagram showing a signaling flow between the UE 100 shown in FIG. 1 and the base station 200 shown in FIG.
  • the base station first sets gap pattern setting information and measurement setting information.
  • the base station transmits the setting information to the UE 100.
  • the UE 100 receives and processes the setting information transmitted from the base station 200.
  • the UE 100 determines the UE-driven GP setting based on the gap pattern criterion.
  • the measurement report generator 103 generates this UE-initiated GP setting information together with the measurement result, and transmits it to the base station 200 through uplink dedicated control signaling (hereinafter also referred to as “measurement report”).
  • the gap confirmation unit 105 After the measurement report is normally transmitted to the base station 200, the gap confirmation unit 105 starts UE-driven GP using the set gap pattern parameter (hereinafter also referred to as “UE-driven GP start offset”). .
  • the gap confirmation unit 105 determines whether the data resource allocated in the extended DRX active period does not overlap as a result of activating the UE-initiated GP. This determination is made by comparing the length of the extended DRX active period with the length of the UE initiated GP start offset.
  • the UE 100 will change the UE-initiated GP after the timing indicated by the UE-initiated GP start offset. Even if it starts in the current DRX cycle, it is considered that the data does not overlap the measurement. Therefore, the UE 100 can start the UE-driven GP immediately before the DRX on period (On-Duration).
  • the UE 100 will change the UE-initiated GP after the timing indicated by the UE-initiated GP start offset. Even if it is activated, the DRX active period may overlap with the measurement. Therefore, in order to avoid the occurrence of data and measurement overlap, the UE 100 starts UE-driven GP after the timing indicated by the UE-driven GP start offset in the next DRX cycle.
  • the unit of the UE-initiated GP start offset is based on the number of subframes, and the service being executed in the UE 100 is video streaming.
  • LTE Long Term Evolution
  • 3GPP system 3GPP system
  • the UE 100 determines that there is a need to measure another carrier frequency or radio conditions of another system based on the quality of the own frequency, that is, the reporting event criteria due to the quality degradation of the own frequency are satisfied. Then, the evaluated measurement result is included in the measurement report and transmitted to the base station 200.
  • the remaining DRX cycle (10 subframes) is longer than the gap length (6 subframes). Therefore, the UE 100 can use the UE-initiated GP without overlapping the DRX active period and the measurement as a result in the current DRX cycle.
  • the above method is one method indicating how necessary information (for example, UE initiated GP start offset) is exchanged between the UE 100 and the base station 200 in the present invention, and another method, for example, the base station It is also possible to use signaling by radio resource control and media access control (MAC) between the 200 and the UE 100.
  • MAC media access control
  • FIG. 4 is a flowchart showing the operation of the UE 100 shown in FIG.
  • the measurement report generator 103 transmits the measurement report to the base station 200.
  • the gap confirmation unit 105 uses the UE-initiated GP start offset in the DRX active period check procedure to check whether the DRX active period overlaps when the gap pattern starts. Check. If the DRX active period overlaps with the gap pattern (YES), the process proceeds to ST303, and if the DRX active period does not overlap with the gap pattern (NO), the process proceeds to ST304.
  • step ST303 the gap confirmation unit 105 determines the position where the gap pattern starts using the length of the UE initiated GP start offset with reference to the starting point of the next DRX cycle.
  • the UE 100 starts UE-initiated GP.
  • the gap length required for each measurement such as inter-frequency E-UTRA, inter-RAT UTRAN, inter-RAT GERAN, inter-RAT CDMA2000, and gap repetition (gap repetition) (UE) included in the UE-driven GP information parameter
  • the UE-initiated GP setting unit 106 starts UE-initiated GP based on the UE-based GP standard).
  • the UE-initiated GP is started in the current DRX cycle according to the relationship between the length of the extended DRX active period and the UE-initiated GP start offset, or the next DRX cycle is started.
  • the time required for performing the handover can be reduced without increasing the complexity of the configuration of the wireless communication terminal device.
  • FIG. 5 is a block diagram showing a configuration of UE 400 according to Embodiment 2 of the present invention.
  • FIG. 5 differs from FIG. 1 in that the measurement report generation unit 103 is changed to a measurement and gap information generation unit 401.
  • the measurement and gap information generation unit 401 determines a gap information parameter that is information indicating a gap pattern when performing measurement using UE-led GP, and uses this parameter as a reporting message (for example, Measurement report message or other message). ) To the base station.
  • the gap information parameter is determined based on information that can be used only in the UE 400, for example, settings that the user individually performs on the terminal, an application that is being executed on the device, or a moving speed of the user.
  • the UE 400 can determine a gap pattern to be used when performing measurement using the UE-driven GP according to such a standard. Therefore, the UE 400 can freely set the gap information parameter for determining the gap pattern.
  • UE 400 transmits the measurement result to base station 200 by a reporting message.
  • This reporting message is also called a measurement report or an intra frequency measurement report as defined in 3GPP TS 36.331.
  • this reporting message is referred to as a measurement report.
  • the measurement and gap information generation unit 401 When the measurement report is normally transmitted from the UE 400 to the base station 200, the measurement and gap information generation unit 401 outputs a reporting success notification signal to the gap confirmation unit 105.
  • the UE 400 can ensure the synchronization of the gap pattern with the base station 200. Therefore, the data does not overlap with the UE-initiated GP, and packet loss does not occur.
  • FIG. 6 is a flowchart illustrating an operation in which the UE 400 illustrated in FIG. 5 determines a gap information parameter.
  • UE 400 when it is necessary to measure another carrier frequency, UE 400 starts a procedure for determining a gap pattern for performing measurement using UE-driven GP.
  • a fading signal serving as an index of the moving speed of the UE 400, an instantaneous quality value of the current serving cell, and the like can be used. Specifically, if the moving speed is high, or if the quality of the current serving cell is poor, etc., it is thought that it is necessary to perform the moving process quickly, so that another carrier frequency or another system is measured quickly. It is.
  • the frequency can be changed according to the number of detected CSG cells. For example, when the number of detected CSG cells is large, a large gap for receiving broadcast information is required. Therefore, the frequency of the gap is increased, and when the number of detected CSG cells is small, the broadcast information is received. It is conceivable to reduce the frequency of the gap.
  • the UE 400 determines the frequency of measurement using the UE-initiated GP based on the criteria for selecting the gap pattern. Specifically, the frequency with which the UE 400 measures using the UE-initiated GP is determined, and it is determined whether or not the measurement frequency is high. If it is determined that the measurement frequency is higher than the predetermined threshold (YES) due to the moving speed or serving cell quality as described above, the process proceeds to ST503, and if it is determined that the measurement frequency is lower than the predetermined threshold (NO), ST504 Migrate to
  • the UE 400 uses the UE-driven GP with a short period so that the measurement frequency using the UE-driven GP increases. Specifically, a short gap period is set with the designated gap length as it is.
  • These set gap information parameters include information such as short gap period parameters and gap identification information parameters.
  • UE 400 performs measurement using UE-driven GP having a long gap period so that the measurement frequency using UE-driven GP decreases. Specifically, a long gap period is set without changing the designated gap length.
  • the UE-initiated GP information parameter includes information such as a long gap period parameter and a gap identification information parameter.
  • the UE-driven GP information parameter and the measurement result are generated and included in the measurement report transmitted to the base station 200.
  • the purpose of including the UE-initiated GP information parameter in the measurement report is that the UE 400 starts the measurement using the UE-initiated GP based on the specified gap length and the gap period determined by the UE 400. 200 is notified. Therefore, the UE-initiated GP can be synchronized between the base station 200 and the UE 400 by including the UE-initiated GP information parameter in the measurement report.
  • the UE 400 When the fading signal indicates the high-speed movement of the UE 400, the UE 400 is expected to have a high possibility of handover (mobility). Therefore, it is necessary to increase the measurement frequency.
  • the UE 400 sets a short-period gap pattern and performs measurement more frequently.
  • the UE 400 when the fading signal indicates the low-speed movement of the UE 400, the UE 400 is expected to have a low possibility of handover. Therefore, it is possible to reduce the measurement frequency.
  • the UE 400 sets a long-period gap pattern and performs measurement with less frequency.
  • the UE 400 When the instantaneous quality value has deteriorated, the UE 400 is expected to have a poor reception state from the base station 200. This means that the UE 400 needs to perform a handover to ensure connectivity. Therefore, it is necessary to increase the measurement frequency, and the UE 400 sets a short period gap pattern.
  • the UE 400 sets a long-period gap pattern and performs measurement with less frequency.
  • FIG. 7 is a diagram showing a signaling flow between the UE 400 shown in FIG. 5 and the base station 200 shown in FIG. This figure demonstrates the case where the synchronization of a gap pattern is ensured between UE400 and the base station 200.
  • FIG. 7 is a diagram showing a signaling flow between the UE 400 shown in FIG. 5 and the base station 200 shown in FIG. This figure demonstrates the case where the synchronization of a gap pattern is ensured between UE400 and the base station 200.
  • the base station 200 sets gap pattern setting information and measurement setting information using RRC (Radio Resource Control).
  • the base station 200 transmits the setting information from the transmission unit 204 to the UE 400.
  • the UE 400 receives the message transmitted from the base station 200 and processes the setting information.
  • the UE 400 determines the UE-initiated GP setting based on the gap pattern criterion.
  • the measurement and gap information generation unit 401 generates the UE-initiated GP setting information and the evaluated measurement result, and transmits them to the base station 200 by uplink dedicated control signaling.
  • the gap confirmation unit 105 uses the set gap pattern parameter (UE-initiated GP start offset) to set the gap of the UE-initiated GP. Perform verification.
  • the gap confirmation unit 105 determines whether or not the gap overlaps with the DRX active period when the UE-driven GP is started. This determination is made by comparing the length of the extended DRX active period with the length of the UE initiated GP start offset. Since this operation is the same as that described in the first embodiment, a description thereof will be omitted.
  • the UE determines the gap period according to the guidelines indicated by the base station.
  • the UE it is also possible to notify the UE of gap cycle candidates from the base station side. Specifically, when three or more gap periods are prepared for standardization, it is possible to notify the UE of which gap period to select. In 3GPP LTE, which is currently standardized, two periods of 40 ms and 80 ms are defined. Therefore, the UE according to Embodiment 2 of the present invention only selects 40 ms or 80 ms. However, since a gap period of 20 ms or 160 ms may be added in the future, it is possible to cause the UE to make a selection suitable for the operation of the base station by narrowing down candidates.
  • the UE initiative of a short cycle is performed.
  • the measurement frequency can be increased by using GP to prepare for handover, and when the UE reception state is good, the measurement frequency is reduced by using a UE-driven GP with a long period and the power consumption of the UE is reduced. can do.
  • FIG. 8 is a block diagram showing a configuration of UE 600 according to Embodiment 3 of the present invention. 8 differs from FIG. 1 in that the gap pattern setting unit 104 is deleted, the measurement report generation unit 103 is changed to a measurement and UE-driven GP information generation unit 601, and the gap confirmation unit 105 is changed to a UE-driven GP confirmation unit 602. This is a change.
  • the measurement and UE-driven GP information generation unit 601 When the measurement reporting standard is satisfied, the measurement and UE-driven GP information generation unit 601 generates each setting information and includes the information in the measurement report. Further, the measurement and UE-initiated GP information generation unit 601 determines UE-initiated GP period parameters including the time required for CQI reporting from the UE 600, sets the determined UE-initiated GP period parameters, and measures the setting information. It is included in the report and transmitted to the base station 200. When a measurement report is transmitted within the extended DRX active period, a reporting notification is output to the UE-initiated GP confirmation unit 602.
  • the UE-initiated GP confirmation unit 602 confirms whether the UE-initiated GP starts in the current DRX or the next DRX cycle using the UE-initiated GP period parameter. When the position for starting the UE-initiated GP is determined based on the UE-initiated GP period parameter, the UE-initiated GP confirmation unit 602 sets the UE-initiated GP.
  • FIG. 9 is a diagram showing a signaling flow between UE 600 shown in FIG. 8 and base station 200 shown in FIG.
  • FIG. 9 shows an example in which the UE 600 determines the UE-initiated GP period parameter and confirms whether the UE-initiated GP starts in the current DRX cycle or the next DRX cycle.
  • the UE 600 stores the measurement setting information and performs measurement by processing in the measurement unit 102.
  • the UE 600 determines a UE-initiated GP period parameter based on the criterion for determining the UE-initiated GP, and sets a gap information parameter.
  • the criteria is based on the time required for the measurement required to report the channel quality indicator (CQI) and the gap length specified for the measurement. Specifically, when the channel quality indicator report is in the first subframe of DRX active, the time required for the channel quality indicator report and the sum of the gap length specified for the measurement become. When the channel quality indicator report is in two subframes from the beginning of DRX active, one subframe is calculated from the sum of the time required for the channel quality indicator report and the gap length specified for the measurement. Subtracted value.
  • the UE-initiated GP period parameter can be determined using an operation related to the CQI report interval in the UE 600 (for example, the position of the CQI report in the DRX on period).
  • the measurement and UE-initiated GP information generation unit 601 transmits the measurement report including the UE-initiated GP information parameter and the measurement result to the base station 200 as defined in 3GPP TS 36.331. To do.
  • the UE 600 confirms the DRX cycle in which the UE-initiated GP can be started using the UE-initiated GP period parameter.
  • the UE-initiated GP confirmation unit 602 activates the UE-initiated GP immediately before the beginning of the DRX on period based on the following conditions.
  • Condition # 1 (see FIG. 9A): (Set DRX cycle ⁇ (DRX active period in which measurement report including UE-initiated GP information parameter is sent))> UE-initiated GP period
  • Condition # 2 (see FIG. 9B): (Set DRX cycle-(DRX active period in which measurement report including UE-initiated GP information parameter is sent)) ⁇ UE-initiated GP period
  • a measurement report is sent that includes a UE-initiated GP information parameter, and the length of the extended DRX active period does not overlap with the length of the UE-initiated GP period parameter relative to the origin of the DRX on period in the next DRX cycle
  • the UE 600 is considered that the DRX active period does not overlap with the measurement when the UE initiated GP is started. Accordingly, UE 600 initiates UE initiated GP at a position where the remaining time in the current DRX cycle is equal to the length of the UE initiated GP period parameter, as shown as condition # 1 in FIG. 9A.
  • UE600 When a measurement report including a UE-initiated GP information parameter is transmitted, and the length of the extended DRX active period overlaps with the length of the UE-initiated GP period parameter with respect to the origin of the DRX on period in the next DRX cycle , UE600 is considered that the DRX active period overlaps the measurement when UE initiated GP is started. Accordingly, UE 600 initiates UE initiated GP at a position where the remaining time in the next DRX cycle is equal to the length of the UE initiated GP period parameter, as indicated as condition # 2 in FIG. 9B.
  • the measurement and UE-initiated GP information generation unit 601 determines UE-initiated GP repetition based on the measurement request level, and outputs gap repetition setting information to the UE-initiated GP confirmation unit 602.
  • the UE-initiated GP confirmation unit 602 determines a UE-initiated GP period parameter based on a reference list for selecting the UE-initiated GP, and confirms a position where the UE-initiated GP is started.
  • the UE-initiated GP confirmation unit 602 can determine the length of the UE-initiated GP period parameter using the CQI report interval (for example, the position of the CQI report in the DRX on period) in the UE 600.
  • the UE-initiated GP confirmation unit 602 determines the UE-initiated GP period parameter
  • the UE-initiated GP period parameter is measured and output to the UE-initiated GP information generation unit 601.
  • the UE 600 includes these setting parameters in the measurement report and transmits them to the base station 200.
  • the base station 200 can be notified of the position where the UE 600 starts the UE-initiated GP.
  • FIG. 11 is a flowchart illustrating a procedure for determining a position where the UE 600 starts the UE-initiated GP in the current or next DRX cycle.
  • the same reference numerals as those in FIG. 11 the same reference numerals as those in FIG.
  • the UE initiated GP confirmation section 602 uses the UE initiated GP period parameter in the DRX active period check procedure to confirm whether the DRX active period overlaps with the gap and starts UE initiated GP To decide. If the DRX active period overlaps with the UE-initiated GP (YES), the process proceeds to ST802. If the DRX active period does not overlap with the UE-initiated GP (NO), the process proceeds to ST304.
  • the UE-initiated GP confirmation unit 602 uses the length of the UE-initiated GP period parameter when the starting point of the DRX on period in the next DRX cycle is used as a reference as a position to start the UE-initiated GP.
  • the UE-initiated GP is currently set according to the relationship between the UE-initiated GP period parameter including the time required for CQI report from the UE 600 and the length of the extended DRX active period.
  • FIG. 12 is a block diagram showing a configuration of UE 900 according to Embodiment 4 of the present invention.
  • FIG. 12 is different from FIG. 1 in that the measurement report generation unit 103 is changed to a measurement and gap information generation unit 901 and the gap confirmation unit 105 is changed to a gap correction confirmation unit 902.
  • the measurement and gap information generation unit 901 generates setting information from the UE-driven GP information parameter and the measurement result output from the measurement unit 102, and includes the setting information in the measurement report.
  • the measurement and gap information generation unit 901 does not transmit the measurement report to the base station 200 and outputs this setting information to the gap correction confirmation unit 902.
  • the gap correction confirmation unit 902 starts UE-driven GP based on the reference list.
  • the gap correction confirming unit 902 uses the UE initiated GP start offset stored in the gap pattern setting unit 104 to start the UE initiated GP.
  • the UE 900 evaluates whether to transmit the measurement report to the base station 200 based on the transmission standard. If the transmission criteria are satisfied, the UE 900 sets the UE-initiated GP information parameter and transmits it to the base station 200 through the measurement report. When the transmission criteria are not satisfied, the UE 900 does not transmit the measurement report to the base station 200 as illustrated in FIG.
  • the transmission standard is the presence / absence of other data to be transmitted / received, the length of the DRX cycle, and the like. For example, when there is other data to be transmitted / received, transmission does not increase power consumption, but when there is no other data to be transmitted / received, transmission is not performed to reduce power consumption. desirable. Also, when the DRX cycle is short, power transmission does not increase even if transmission / reception is performed, but when the DRX cycle is long, it is desirable not to perform transmission in order to reduce power consumption.
  • the UE 900 can start measurement using the UE-initiated GP regardless of whether or not to send a measurement report even when using a service with a long DRX configuration. Can do.
  • FIG. 13 is a diagram showing a signaling flow between UE 900 shown in FIG. 12 and base station 200 shown in FIG.
  • FIG. 13 shows an example in which UE 900 has established a long DRX setting service and starts UE-driven GP regardless of whether or not to immediately send a measurement report.
  • the UE 900 stores the measurement setting information, and performs measurement by processing in measurement unit 102.
  • the UE 900 immediately starts measurement using the initiating UE-initiated GP.
  • the criterion for starting the UE-driven GP can be based on a threshold set for the radio quality of the serving cell. For example, when the radio quality of the serving cell of UE 900 falls below a threshold, UE 900 starts UE-initiated GP in the current DRX cycle.
  • the UE 900 sets the UE-initiated GP information parameter and defines it as defined in 3GPP TS 36.331 so that the base station 200 can synchronize the start of the gap pattern for measurement with the UE 900. It is also determined whether it is necessary to transmit to the base station 200 through the measurement report. That is, whether the UE 900 needs to send a measurement report is: 1) if the UE 900 is required to perform downlink data or uplink data resumption, or 2) if the UE 900 DRX active period is If it is expected to overlap with the UE-initiated GP, it can be determined based on. Furthermore, the UE 900 transmits the measurement report using the random access procedure for transmitting the measurement report only when it is determined that synchronization with the base station 200 is necessary.
  • FIG. 14 is a flowchart showing the operation of the gap correction confirmation unit 902 shown in FIG. 14, in ST1001, the gap correction confirmation section 902 acquires UE-driven GP information parameters and measurement results, and based on the criteria of UE-driven GP in long DRX, the UE 900 itself uses another UE-driven GP to generate another carrier. Determine if frequency measurement needs to be started.
  • the UE-driven GP in long DRX can be controlled based on a threshold set for the radio quality of the serving cell.
  • the UE 900 starts UE-initiated GP based on the UE-initiated GP start offset.
  • ST1002 it is determined whether there is an uplink resource that can be used to transmit the measurement report to the base station 200. If the uplink resource is available (YES), the process moves to ST1003, and if the uplink resource is not available (NO), the process moves to ST1004.
  • a measurement report including UE-initiated GP information parameters is transmitted to base station 200, and in UE1004, UE-initiated GP is started.
  • the UE-driven GP is started regardless of whether or not the measurement report is transmitted.
  • the time required for performing the handover can be shortened without increasing the complexity of.
  • FIG. 15 is a block diagram showing a configuration of UE 1100 according to Embodiment 5 of the present invention.
  • FIG. 15 differs from FIG. 1 in that the measurement report generation unit 103 is changed to a measurement and gap information generation unit 1101.
  • the measurement and gap information generation unit 1101 determines the period of the UE-driven GP based on the measurement frequency. Further, when different measurement types are set by the base station 200, the UE 1100 determines an appropriate gap length for the set measurement type.
  • FIG. 16 is a diagram illustrating a signaling flow between the UE 1100 illustrated in FIG. 15 and the base station 200 illustrated in FIG. This figure shows a signaling flow when the UE 1100 uses a plurality of gap lengths.
  • the UE 1100 determines the measurement request level and the length of each gap used for the measurement. This is because the UE 1100 uses different gap lengths for different measurements. Specifically, in the case of measurement of inter-frequency E-UTRA, inter-RAT UTRAN, inter-RAT GERAN, etc., the UE 1100 performs measurement using a common gap length. For other measurements (eg, WiMAX), the UE 1100 performs measurements using different gap lengths. That is, the UE 1100 can determine an appropriate gap length for the measurement using the UE-driven GP based on the set measurement type.
  • the measurement unit 102 of the UE 1100 determines the gap length based on the set information.
  • the UE 1100 sets a gap length parameter and includes this information in the UE initiated GP information parameter included in the measurement report. Accordingly, the UE 1100 activates the UE-initiated GP having an appropriate gap length and an appropriate gap repetition and transmits it to the base station 200 through the measurement report.
  • the UE 1100 When the UE 1100 activates the UE-driven GP using an appropriate gap repetition and gap length as shown in FIG. 16, the UE 1100 sets those gap-related parameters in the UE-driven GP information parameter, Transmit to station 200. Thereby, the synchronization of UE initiative GP can be maintained and guaranteed between base station 200 and UE1100.
  • FIG. 17 is a flowchart showing the operation of the measurement and gap information generation unit 1101 shown in FIG.
  • the same reference numerals as those in FIG. 17, in ST1201 it is determined whether the gap length of the UE-initiated GP is optimal with a short gap length. If measurement types such as inter-frequency E-UTRA, inter-RAT UTRAN, inter-RAT GERAN, and inter-RAT CDMA2000 are set, and a short gap length is optimal (YES), the process proceeds to ST1202. On the other hand, when a measurement type such as WiMAX is set and a long gap length is optimal (NO), the process proceeds to ST1203.
  • a short gap length is used for UE-driven GP.
  • a long gap length is used for UE-driven GP.
  • the fifth embodiment by determining the gap length according to the measurement type, even when the time required for measurement differs for each measurement type, measurement is performed using an appropriate length of the gap length. Therefore, it is possible to eliminate an excess or deficiency of the gap length with respect to the time required for measurement, and to shorten the time required for performing the handover.
  • HARQ Hybrid Auto Repeat reQuest
  • FIG. 18 is a block diagram showing a configuration of UE 1300 according to Embodiment 6 of the present invention.
  • FIG. 18 differs from FIG. 1 in that the measurement report generation unit 103 is changed to a measurement report generation unit 1301 and the gap confirmation unit 105 is changed to a gap candidate selection / determination unit 1302.
  • the measurement report generation unit 1301 excludes the reporting success notification signal that was an input to the measurement report generation unit 103, and the input to the gap candidate selection / determination unit 1302 is not a reporting success notification signal but a reporting It differs from the measurement report generator 103 in that it is an execution notification signal.
  • the gap candidate selection / determination unit 1302 determines a position to start the UE-driven GP based on the gap pattern parameter output from the gap pattern setting unit 104 and the reporting execution notification signal output from the measurement report generation unit 1301.
  • the start position is a position where the UE 1300 starts a gap for performing measurement.
  • the gap candidate selection / determination unit 1302 determines the position where the UE-initiated GP is started using the UE-initiated GP creation timing set in the UE.
  • the UE-driven gap creation timing set for this UE is included in the gap pattern parameter output from the gap pattern setting unit 104 in the present embodiment.
  • the UE-initiated GP creation timing is explicitly indicated by a system frame number (hereinafter referred to as “SFN (System Frame ⁇ Number) ”) or a subframe.
  • SFN System Frame ⁇ Number
  • SFN mod 10 From the subframe 5 of the SFN that becomes 3, and so on.
  • the gap length and gap repetition control are determined in the same manner as the gap confirmation unit 105.
  • FIG. 19 is a flowchart showing the operation of the UE 1300 shown in FIG. In this figure, in ST1401, an event in which the measurement report generator 1301 transmits a measurement report to the base station is triggered. As a result, reporting is also triggered.
  • the gap candidate selection / determination section 1302 confirms whether or not UE-driven GP creation timing is set based on a reporting execution notification signal from the measurement report generation section 1301. If the UE-initiated GP creation timing is set (YES), the process proceeds to ST1403. If the UE-initiated GP creation timing is not set (NO), the UE-initiated GP cannot be created, and the process ends.
  • the gap candidate selection / determination section 1302 determines the next UE-driven GP creation timing as the location of the UE-driven GP.
  • FIG. 20 is a diagram showing a signaling flow for the UE 1300 shown in FIG.
  • the base station first sets gap pattern setting information and measurement setting information.
  • the base station transmits the setting information to the UE 1300.
  • the UE 1300 receives and processes the setting information transmitted from the base station.
  • the point that the UE-driven GP creation timing is received as the gap pattern setting information is different from FIG.
  • the UE 1300 determines the UE-initiated GP from the UE-initiated GP creation timing received from the base station. Also, the UE 1300 transmits a measurement report to the base station.
  • the UE-initiated GP is created after the measurement report is transmitted, but the UE-initiated GP may be started first.
  • transmitting a measurement report is not an essential requirement for creating a UE-driven GP. Therefore, it is possible not to send a measurement report.
  • the quality of the serving carrier frequency has become lower than a specific threshold value, ”“ the CSG cell is detected and it is necessary to receive broadcast information of the CSG cell. ”
  • reporting is not performed first, but the broadcast information of the CSG cell is received and the CSG cell is received.
  • CGI Cell global Identifier
  • CSG ID CSG identifier
  • the gap of 80 ms is necessary is that the broadcast information including CGI, CSG ID, SIB1 (System Information Block Type 1) is transmitted once every 20 ms, and the UE with poor reception quality is This is because it is considered to improve the quality by receiving and synthesizing it four times.
  • the above-described SIB1 reception operation is shown in more detail in FIG.
  • an MIB Master Information Block
  • the location of the MIB is determined to be the first subframe of all radio frames (Radio frame: 10 ms interval and 10 subframes).
  • This MIB includes SFN.
  • SIB1 is transmitted in the sixth subframe of even SFN. Therefore, the transmission timing of SIB1 is known after receiving the MIB.
  • reception combining may be performed four times. Therefore, it is conceivable to provide an 80 ms gap as shown as case 1 in FIG. As a result, the MIB is received, the transmission timing of SIB1 is detected, and then the SIB1 reception is performed until reception is successful.
  • the UE can know at what timing the CSG cell transmits SIB1. Therefore, as shown in case 2, it is also conceivable to provide a gap only in a necessary portion of the 80 ms gap. In such a case, in a place where there is no gap, the UE can transmit and receive with the base station to which it originally connected.
  • FIG. 21 shows an example in which the reception is successful in the third SIB1 reception.
  • movement which combined the case 2 and case 3 of FIG. 21 is also possible.
  • the UE even when the UE does not implement DRX, it can be implemented. This is because the location where the UE performs UE-initiated GP is predictable for the base station regardless of the DRX operation.
  • the measurement report may be a measurement report message (Measurement report message) defined as an RRC message as described above, a MAC control message, or a layer 1 message.
  • a CQI report or the like can be considered as a layer 1 message.
  • UE-initiated GP creation timing using an identifier assigned to each UE.
  • UE User Equipment
  • IMSI InternationalIMMode Subscriber Identity
  • C-RNTI Cell Radio Network Temporary Identifier
  • S-TMSI SAE Temporary Mobile Station Identifier
  • the setting is transmitted by broadcast information or a rule is determined in advance, it may be possible to control the on / off of this operation for each UE or for each cell. Specifically, when it is performed for each UE, it is possible to notify on or off with an individual message, and when it is performed for each cell, it is notified of on or off with broadcast information. Is possible.
  • the CSG cell is indicated as being detected in each of the above embodiments, a plurality of forms are conceivable. Specifically, (1) when physical identification information (Physical Cell Identifier) of a cell decided to be used for CSG is detected, (2) of a cell decided to be used for CSG When physical identification information is detected and the quality of the CSG cell is above a certain level or included within a specific number of higher ranks, (3) physical identification information of a cell that is determined to be used for CSG And the physical identification information of the cell seems to be accessible to the UE, (4) it can be assumed that there is a CSG cell from the location information of the UE, and (1) to (4) The case where it combines is considered.
  • Physical Identification information Physical Cell Identifier
  • GPS Global Positioning System
  • information on other cells that can be received by the UE may be stored.
  • the UE-driven GP creation shown in the present embodiment may be canceled or postponed due to competition of other operations.
  • a scheduling method called semi-persistent scheduling for services that regularly transmit at a relatively small data rate such as voice communication.
  • the timing at which the UE should transmit or receive is determined in advance, and transmission / reception is performed at that timing. If this semi-fixed allocation is set for the UE and UE-driven GP creation is performed, if both occur simultaneously, it is necessary to prioritize one of them. In that case, priority may be given to semi-fixed allocation.
  • the measurement report may not be sent. However, whether or not the measurement report is sent may be determined based on the delay required to create the UE-driven GP. Specifically, if UE-driven GP creation can be created within a specific time, the measurement report is not sent, and if it takes more than a specific time, the measurement report is sent and the base station allocates a gap. It is conceivable to encourage movement. It should be noted that the specific time here may be determined to be a fixed value in the system, may be notified by broadcast information or the like, or in order to consider the service used by the UE, etc. You may make it transmit separately for every.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the radio communication terminal apparatus, radio communication base station apparatus, and radio communication method according to the present invention can be applied to, for example, a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線通信端末装置の構成上の複雑さを増大することなく、ハンドオーバーの実施に要する時間を短縮する無線通信端末装置及び無線通信方法を提供する。ギャップ確認部(105)は、延長されたDRXアクティブ期間がUE主導GP開始オフセットより短い場合、現在のDRXサイクルにおいてUE主導GPを開始すると決定し、延長されたDRXアクティブ期間がUE主導GP開始オフセットより長い場合、次のDRXサイクルにおいてUE主導GPを開始すると決定する。UE主導GP設定部(106)は、決定されたDRXサイクルにおいてギャップパターンを生成する。

Description

無線通信端末装置、無線通信基地局装置及び無線通信方法
 本発明は、無線通信端末装置、無線通信基地局装置及び無線通信方法に関する。
 3GPP LTE(3rd Generation Partnership Project Long Term Evolution)等に代表されるセルラー通信システムにおいて、移動局(以下、UE(User Equipment)という)はハンドオーバーなどの移動制御を行うため、測定処理を行う必要がある。この測定には、イントラ周波数測定(intra-frequency measurement)と、ギャップを使用したインター周波数測定(inter-frequency measurement)及びインターシステム測定(inter-system measurement)があり、セルラー通信システムはこれらの測定をサポートする必要がある。なお、ギャップを使用したインター周波数測定及びインターシステム測定をギャップ利用測定ということがある。
 ギャップ利用測定を行うためには、UEは、キャリア周波数の異なる別のセル、または別のシステムからの信号を受信する必要があり、UE自身の受信装置をソースセルの周波数から、隣接セルの別の周波数または別のシステムに調整しなければならない。また、UEが隣接セルの測定を行うためには、UEにギャップ(以下、アイドル期間ともいう)を設けなければならない。
 サービング基地局とUEとの間でギャップのタイミングを同期させるため、ギャップを開始する明示的な開始位置が設定される。また、ギャップは周期的な配列になっており、この周期的なギャップをギャップパターンという。このギャップパターンは、測定を行うために長期間にわたり設定する必要がある。したがって、UEは、ギャップパターンの割り当てに基づいて、ギャップ利用測定を行うことによって、通信状態においても別のキャリア周波数または別のシステムへの移動制御をサポートすることができる。さらには、不連続受信(DRX)が行われている場合でも、ギャップがアクティブになった後にのみ測定できるようになっている。
 また、ギャップは上記の測定処理の他に、特定のセルの報知情報(Broadcast information, System informationとも呼ぶ)を受信する際にも用いられる。具体的には、CSG(Closed Subscriber Group)セルと呼ばれる特定のUEのみがアクセスできるセルに対してアクセス権があるか否かを、報知情報に含まれているそのセルのCSG識別子(CSG identifier)とUEが持っているアクセス可能なCSG識別子リストとを比較して判断する場合にもギャップが用いられる。UEは、サービング基地局との通信中に他セルからの報知情報を受信できないため、ギャップを使用して、他セルの報知情報を取得することとなる。
 ところで、ギャップパターンの開始に明示的なシグナリングを使用すると、UEが測定を開始するまでの遅延が予想される。これは、基地局にてギャップを生成するための判断にかかる遅延と、ギャップパターンの開始を指示するシグナリングの送信にかかる遅延があるためである。
 そこで、従来、明示的なシグナリングでギャップを指定せずに、DRXを用いて測定する方法や、非特許文献1に開示されている明示的なシグナリングでギャップを指定せずに測定したCQI値に基づいて、測定を開始する方法などが考えられている。前者の方法は、ギャップパターンを明示的に設定する必要がなく、UEが早期に測定を開始することができる。
 後者の方法は、非特許文献1に開示されているように、CQI値が所定の閾値または設定された閾値よりも小さい場合、UEは、ギャップを使用することによって自発的に測定手順を開始する。基地局は、UEが測定を開始したことを暗示するCQI報告を受信するので、UEが測定を開始したことを検出できる。
R2-061922, 3GPP RAN2 document
 しかしながら、前者の方法は、測定に使用できるタイムスロットであるDRXスリープ期間が一定ではないため、UEが測定を行うための十分なタイムスロットを保証することができない。これは、UEがデータを受信するためのタイムスロットであるDRXアクティブ期間が延長されることがある(その間にUEはPDCCHを正常に復号化することができる)ためである。すなわち、DRXアクティブ期間が延びることにより、DRXスリープ期間を短縮しなければならない。
 このため、指定されたDRXスリープ期間内ではUEが測定を行う時間が減少してしまうので、十分なスロットが確保できるまで測定を先延ばしする必要がある。この結果、ハンドオーバーを実施するのに時間がかかることになる。
 また、後者の方法は、UEのチャネル品質は動的に変化するため、UEが測定を行うための十分なタイムスロットを保証することができない。具体的には、UEが長いギャップパターンを使用して測定した場合、報告されるCQI値が突然大きく変化することがあり、測定を途中で終了または中断することがある。これにより、UEの構成上の複雑さが増大する。
 本発明の目的は、無線通信端末装置の構成上の複雑さを増大することなく、ハンドオーバーの実施に要する時間を短縮する無線通信端末装置、無線通信基地局装置及び無線通信方法を提供することである。
 本発明の無線通信端末装置は、データを受信する不連続受信アクティブ期間と、前記不連続受信アクティブ期間の開始からギャップパターンの開始までの時間を示すオフセットの長さとに基づいて、現不連続受信サイクルにおいてギャップパターンを開始するか、または次の不連続受信サイクルにおいてギャップパターンを開始するかを決定するギャップ確認手段と、決定された不連続受信サイクルにおいてギャップパターンを生成するギャップパターン設定手段と、を具備する構成を採る。
 本発明の無線通信方法は、データを受信する不連続受信アクティブ期間と、前記不連続受信アクティブ期間の開始からギャップパターンの開始までの時間を示すオフセットの長さとに基づいて、現不連続受信サイクルにおいてギャップパターンを開始するか、または次の不連続受信サイクルにおいてギャップパターンを開始するかを決定するギャップ確認ステップと、決定された不連続受信サイクルにおいて無線通信端末装置がギャップパターンを生成するギャップパターン設定ステップと、を具備するようにした。
 本発明によれば、無線通信端末装置の構成上の複雑さを増大することなく、ハンドオーバーの実施に要する時間を短縮することができる。
本発明の実施の形態1に係るUEの構成を示すブロック図 本発明の実施の形態1に係る基地局の構成を示すブロック図 図1に示したUEと図2に示した基地局とのシグナリングフローを示す図 図1に示したUEの動作を示すフロー図 本発明の実施の形態2に係るUEの構成を示すブロック図 図5に示したUEがギャップ情報パラメータを決定する動作を示すフロー図 図5に示したUEと図2に示した基地局とのシグナリングフローを示す図 本発明の実施の形態3に係るUEの構成を示すブロック図 図8に示したUEと図2に示した基地局とのシグナリングフローを示す図 図8に示したUEと図2に示した基地局とのシグナリングフローを示す図 図8に示したUEがUE主導GP情報パラメータを決定する方法を示すフロー図 図8に示したUEがUE主導GPを使用する方法を示すフロー図 本発明の実施の形態4に係るUEの構成を示すブロック図 図12に示したUEと図2に示した基地局とのシグナリングフローを示す図 図12に示したギャップ修正確認部の動作を示すフロー図 本発明の実施の形態5に係るUEの構成を示すブロック図 図15に示したUEと図2に示した基地局とのシグナリングフローを示す図 図15に示した測定及び複数ギャップ情報生成部の動作を示すフロー図 本発明の実施の形態6に係るUEの構成を示すブロック図 図18に示したUEの動作を示すフロー図 図18に示したUEに対するシグナリングフローを示す図 SIB1受信の動作を示す図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。ただし、実施の形態において、同一機能を有する構成には同一符号を付し、重複する説明は省略する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係るUE100の構成を示すブロック図である。この図において、受信部101は、測定設定情報及びギャップパターン設定情報を専用の制御シグナリングによってネットワークから受信する。このようなシグナリングの例としては、3GPP TS 36.331に定義されているRRC接続再設定(RRC Connection Reconfiguration)メッセージに含まれる測定設定(Measurement Configuration)情報がある。受信部101は、これらの設定情報を受信すると、測定設定情報を測定部102に出力し、設定されたギャップパターンパラメータをギャップパターン設定部104に出力する。
 ここで、測定設定情報としては、測定設定を管理するための識別子である測定ID(measurement id)、測定対象のシステム、周波数、セル等を示す測定オブジェクト(measurement object)、測定を報告するイベント(event)等を規定するレポーティングコンフィギュレーション(reporting configuration)等がある。ギャップパターン設定情報としては、別のシステム、別のキャリア周波数を測定するためのギャップパターンの情報(ギャップの長さ、ギャップの周期)に加えて、ギャップを開始する位置を決定するためのUE主導GP開始オフセット等がある。
 測定部102は、受信部101から出力された測定設定情報を取得すると、取得した測定設定情報を格納すると共に、入力される物理層基準信号(以下、単に基準信号という)に基づいて、測定を開始する。また、測定部102に格納されている測定設定情報にサービングキャリア周波数及びその他のキャリア周波数の設定情報(すなわち、3GPP TS 36.331に定義されているイントラ周波数及びインター周波数の測定設定)の両方が含まれている場合、測定部102は、入力された基準信号に基づいて測定を行う。なお、測定部102は、セルサーチ手順と、サービングキャリア周波数の測定手順とを実行することができる。レポーティングを目的とした、サービングキャリア周波数測定のイベントがトリガーされると、測定部102は、サービングキャリア周波数測定の結果を測定レポート生成部103に出力する。なお、ここでのイベントの例としては、「サービングキャリア周波数の品質が特定の閾値より悪くなった」、「CSGセルが検出され、CSGセルの報知情報を受信することが必要となった」などである。
 測定レポート生成部103は、測定部102から出力された測定結果をレポーティングメッセージに含めて、レポーティングメッセージを基地局に送信する。このレポーティングメッセージは、測定レポート(measurement report)、またはイントラ周波数測定レポートということがある。測定レポートがUE100から基地局に正常に送信されると、測定レポート生成部103がレポーティング成功通知信号をギャップ確認部105に出力する。
 ギャップパターン設定部104は、受信部101から出力されたギャップパターンパラメータを格納すると共に、ギャップパターンパラメータをギャップ確認部105に出力する。なお、ギャップパターンパラメータは、ネットワークの動作及び構成に応じて異なる形式とすることができる。また、ギャップパターンパラメータとしては、DRXアクティブ期間の開始からUE主導ギャップパターン(以下、「UE主導GP」という)の開始までの時間を示すUE主導GP開始オフセット(UE主導GP開始位置、UE主導GPオフセット、UE主導GP位置、UE主導GPアクティブ化時間とも言う)がある。
 ギャップ確認部105は、ギャップパターン設定部104から出力されたギャップパターンパラメータ及び測定レポート生成部103から出力されたレポーティング成功通知信号に基づいて、UE主導GPを開始する位置を決定する。この開始位置とは、UE100が、測定を行うためのギャップを開始する位置である。ギャップ確認部105は、UE主導GPを開始する位置を、DRX時のアクティブ期間とUE主導GP開始オフセットとの間の関係に基づいて決定する。UE主導GP開始オフセットの起点は、測定レポートが基地局200に正常に送信されたDRXサイクル(1つのDRXサイクルは、1つのDRXアクティブ期間と、このDRXアクティブ期間に後続する1つのDRXスリープ期間とからなる)の起点に基づいて、UE100が求める。UE100は、測定レポートを送信する時点で、延長されたDRXアクティブ期間がUE主導GP開始オフセットより前に終了するか否かを確認する。延長されたDRXアクティブ期間がUE主導GP開始オフセットの前に終了するか後に終了するかに応じて、UE100は以下の動作を行う。
 (1)延長されたDRXアクティブ期間がUE主導GP開始オフセットの前に終了する場合、UE100は、現在のDRXサイクル内においてDRXアクティブ期間がUE主導GPと重ならないと考えられる。したがって、UE100は、現在のDRXサイクルにおいてUE主導GPをアクティブにする。
 (2)延長されたDRXアクティブ期間がUE主導GP開始オフセットの後に終了する場合、UE100は、現在のDRXサイクル内においてDRXアクティブ期間がUE主導GPと重なると考えられる。したがって、UE100は、次のDRXサイクルにおいてUE主導GPをアクティブにする。
 ギャップ確認部105は、上記の通り、UE主導GPをアクティブにするタイミングを決定し、決定したタイミングをUE主導GP設定部106に出力する。
 UE主導GP設定部106は、ギャップ確認部105から出力されたタイミングに基づいて、UE主導GPを開始する位置を決定し、それに従ってギャップパターンを生成する。
 このようにして、UE100は、UE主導GPを使用して隣接セルの別のキャリア周波数、または別のシステムを測定することができる。トリガーされた別のキャリア周波数の測定について、レポーティングのイベント基準が満たされると、UE100は、測定結果を測定レポートによって基地局200に送信する。
 図2は、本発明の実施の形態1に係る基地局200の構成を示すブロック図である。この図において、別のキャリア周波数、または別のシステムに関する測定がUE100において必要であると判定されると、測定設定部201は、インター周波数測定またはインターRAT測定(inter-RAT measurement)のための測定パラメータを決定する。これらの測定パラメータは専用信号生成部203に出力される。
 ギャップパターン設定部202は、設定されているアイドル期間(すなわち、DRXサイクル)に基づいて、UE主導GP開始オフセットを決定する。UE主導GP開始オフセットは、現在の設定されているDRXサイクルに基づくものであるため、UE主導GP開始オフセットの長さは、設定されているDRXサイクルよりも長くてはいけない。UE主導GP開始オフセットは、UE100が、結果としてDRXアクティブ期間と重なることなく、UE主導GPの開始位置を決定することを目的とする。ギャップパターン設定部202は、UE主導GP開始オフセットを専用信号生成部203に出力する。
 専用信号生成部203は、設定されたUE主導GP開始オフセット及び測定情報の送信先である特定のUE100を決定し、そのUE100へのダウンリンク専用シグナリング(測定設定情報及びUE主導GP開始オフセットを含む)を生成する。このシグナリングを送信部204に出力し、UE100に送信する。このようなダウンリンク専用シグナリングの例は、3GPP TS 36.331に定義されているRRC接続再設定メッセージに含まれる測定設定情報である。
 図3は、図1に示したUE100と図2に示した基地局200とのシグナリングフローを示す図である。基地局は、まず、ギャップパターン設定情報及び測定設定情報を設定する。基地局は、これらの設定情報をUE100に送信する。UE100は、基地局200から送信された設定情報を受信及び処理する。
 別のキャリア周波数を測定するためのアイドル期間が必要な場合、UE100は、ギャップパターンの基準に基づいてUE主導GPの設定を決定する。測定レポート生成部103において、このUE主導GP設定情報を測定結果と共に生成し、アップリンク専用制御シグナリング(以下、「測定レポート」ともいう)を通じて基地局200に送信する。
 測定レポートが基地局200に正常に送信された後、ギャップ確認部105において、設定されたギャップパターンパラメータ(以下、「UE主導GP開始オフセット」ともいう)を使用して、UE主導GPを開始する。ギャップ確認部105は、UE主導GPをアクティブにする結果として、延長されたDRXアクティブ期間内において割り当てられているデータリソースと重ならないかを判定する。この判定は、延長されたDRXアクティブ期間の長さとUE主導GP開始オフセットの長さとを比較することによって行われる。
 測定レポートが正常に送信され、延長されたDRXアクティブ期間がUE主導GP開始オフセットによって示されるタイミングより前に終了する場合、UE100は、UE主導GP開始オフセットによって示されるタイミングの後に、UE主導GPを現在のDRXサイクルにおいて開始してもデータが測定と重ならないと考えられる。したがって、UE100は、DRXオン期間(On-Duration)の直前にUE主導GPを開始することができる。
 測定レポートが正常に送信され、延長されたDRXアクティブ期間が、UE主導GP開始オフセットによって示されるタイミングの後に終了する場合、UE100は、UE主導GP開始オフセットによって示されるタイミングの後に、UE主導GPをアクティブにしても、DRXアクティブ期間が測定と重なることが考えられる。したがって、データと測定の重なりの発生を回避するため、UE100は、次のDRXサイクルにおいて、UE主導GP開始オフセットによって示されるタイミングの後にUE主導GPを開始する。
 上記の動作を詳しく説明するため、次の例においては、UE主導GP開始オフセットの単位はサブフレームの数に基づき、UE100において実行されているサービスはビデオストリーミングとする。
 LTEにおいては、インター周波数E-UTRA及びインターRAT(3GPPシステム)の場合、単一のギャップ長を使用する。
   ギャップ長=6サブフレーム
   UE主導GP開始オフセット=25サブフレーム
   DRXサイクル=40サブフレーム
   DRXオン期間=10サブフレーム
   DRX非アクティブタイマー=5サブフレーム
   DRX開始タイミング=5番目のサブフレーム
 UE100は、別のキャリア周波数、または別のシステムの無線条件を測定する必要性があるという判断が、自周波数の品質により行われた、すなわち、自周波数の品質劣化によるレポーティングのイベント基準が満たされると、評価した測定結果を測定レポートに含めて基地局200に送信する。
 次の例においては、延長されたDRXアクティブ期間が終了し、その同じDRXサイクル内において測定レポートがすでに送信されたものと想定する。
 延長されたDRXアクティブ期間=DRX開始タイミング+DRXオン期間+DRX非アクティブタイマー=5+10+5=20番目のサブフレーム
 UE主導GPの開始タイミング=DRX開始タイミング+UE主導GP開始オフセット=5+25=30番目のサブフレーム
 UE主導GP開始オフセットによって示されるタイミングより前に、延長されたDRXアクティブ期間が先に終了するため、UE100は、図示したように現在のDRXサイクル内においてUE主導GPをアクティブにする。
 残りのDRXサイクル=DRXサイクル-UE主導GPのアクティブ化=40-30=10サブフレーム
 このように、残りのDRXサイクル(10サブフレーム)は、ギャップ長(6サブフレーム)より長い。したがって、UE100は、現在のDRXサイクルにおいて、結果としてDRXアクティブ期間と測定とが重なることなく、UE主導GPを使用することができる。
 上記の方法は、本発明においてどのようにUE100と基地局200とで必要な情報(例えば、UE主導GP開始オフセット)をやり取りするかを示す1つの方法であり、別の方法、例えば、基地局200とUE100との間で、無線リソース制御及びメディアアクセス制御(MAC)によるシグナリングを使用することも可能である。
 次に、UE100が、測定レポートのトリガーに基づいてUE主導GP開始オフセットを使用する方法について図4を用いて説明する。
 図4は、図1に示したUE100の動作を示すフロー図である。この図において、ステップ(以下、「ST」と省略する)301では、測定レポート生成部103が測定レポートを基地局200に送信する。
 ST302では、測定が正常に行われると、ギャップ確認部105は、DRXアクティブ期間のチェック手順において、UE主導GP開始オフセットを使用して、DRXアクティブ期間がギャップパターンを開始した場合に重ならないかを確認する。DRXアクティブ期間がギャップパターンと重なる(YES)場合、ST303に移行し、DRXアクティブ期間がギャップパターンと重ならない(NO)場合、ST304に移行する。
 ステップST303では、ギャップ確認部105は、次のDRXサイクルの起点を基準としてUE主導GP開始オフセットの長さを使用してギャップパターンを開始する位置を決定する。次のDRXサイクルにおいて、UE100はUE主導GPを開始する。
 ST304では、インター周波数E-UTRA、インターRAT UTRAN、インターRAT GERAN、インターRAT CDMA2000などの各測定に要求されるギャップ長と、UE主導GP情報パラメータに含まれているギャップ反復(gap repetition)(UE主導GPの基準に基づいてUE100が決定する)とに基づいて、UE主導GP設定部106がUE主導GPを開始する。
 このように実施の形態1によれば、延長されたDRXアクティブ期間とUE主導GP開始オフセットとの長さの関係に応じて、UE主導GPを現在のDRXサイクルにおいて開始するか、次のDRXサイクルにおいて開始することにより、無線通信端末装置の構成上の複雑さを増大することなく、ハンドオーバーの実施に要する時間を短縮することができる。
 (実施の形態2)
 図5は、本発明の実施の形態2に係るUE400の構成を示すブロック図である。図5が図1と異なる点は、測定レポート生成部103を測定及びギャップ情報生成部401に変更した点である。
 測定及びギャップ情報生成部401は、UE主導GPを用いた測定を行う際のギャップパターンを示す情報であるギャップ情報パラメータを決定し、このパラメータをレポーティングメッセージ(例えば、Measurement report message、またはその他のメッセージ)を用いて基地局に報告する。ギャップ情報パラメータは、UE400においてのみ利用可能な情報、例えば、ユーザーが個々に端末に行った設定、デバイス上で実行中のアプリケーション、またはユーザーの移動速度等に基づいて決められる。
 UE400は、このような基準によって、UE主導GPを使用した測定を実行する際に使用するギャップパターンを決定することができる。したがって、UE400は、ギャップパターンを決定するためのギャップ情報パラメータを自由に設定できる。UE400は、測定結果をレポーティングメッセージによって基地局200に送信する。このレポーティングメッセージは、測定レポート、または3GPP TS 36.331に定義されているようにイントラ周波数測定レポートともいう。以下、このレポーティングメッセージを測定レポートと称する。
 測定及びギャップ情報生成部401は、測定レポートがUE400から基地局200に正常に送信されると、レポーティング成功通知信号をギャップ確認部105に出力する。
 このようにして、UE400は、基地局200との間でギャップパターンの同期を確保することができる。したがって、データがUE主導GPと重ならず、パケット消失が生じない。
 次に、UE400がUE主導GP情報パラメータを決定する方法について図6を用いて説明する。図6は、図5に示したUE400がギャップ情報パラメータを決定する動作を示すフロー図である。
 ST501では、UE400は、別のキャリア周波数を測定する必要があると、UE主導GPを使用して測定を行うためのギャップパターンを決定する手順を開始する。基準としては、UE400の移動速度の指標となるフェージング信号と、現在のサービングセルの瞬間的な品質値等を使用することができる。具体的には、移動速度が速い場合、現在のサービングセルの品質が悪い場合等には速く移動処理を行う必要があると考えられるため、別のキャリア周波数、または別のシステムの測定を早く行うなどである。
 また、その他の手段としては、検出したCSGセルの数に応じて頻度を変えることも可能である。例えば、検出したCSGセルの数が多い時には、報知情報を受信するためのギャップが多く必要であるため、ギャップの頻度を多くし、検出したCSGセルの数が少ないときには報知情報を受信するためのギャップの頻度を少なくすることが考えられる。
 ST502では、UE400は、ギャップパターンを選択する基準に基づいて、UE主導GPを使用した測定の頻度を決定する。具体的には、UE400がUE主導GPを使用して測定する頻度を決定し、測定頻度が高いか否かを判定する。上記の通り移動速度またはサービングセルの品質により測定頻度が所定の閾値より高い(YES)と判断された場合、ST503に移行し、測定頻度が所定の閾値より低い(NO)と判断された場合、ST504に移行する。
 ST503では、UE400は、UE主導GPを使用した測定頻度が増大するように、短い周期のUE主導GPを使用する。具体的には、指定されているギャップ長はそのままに短いギャップ周期を設定する。これらの設定されたギャップ情報パラメータ(以下、UE主導GP情報パラメータともいう)は、短いギャップ周期パラメータ、ギャップ識別情報パラメータなどの情報を含んでいる。
 ST504では、UE400は、UE主導GPを使用した測定頻度が減少するように、長いギャップ周期のUE主導GPを使用した測定をする。具体的には、指定されているギャップ長はそのままに長いギャップ周期を設定する。UE主導GP情報パラメータは、長いギャップ周期パラメータ、ギャップ識別情報パラメータなどの情報を含んでいる。
 ST505では、UE主導GP情報パラメータと測定結果とを生成し、基地局200に送信する測定レポートに含める。UE主導GP情報パラメータを測定レポートに含める目的は、UE400が、指定されているギャップ長と、UE400によって決定されたギャップ周期とに基づくUE主導GPを使用して測定を開始することを、基地局200に通知することである。したがって、UE主導GP情報パラメータを測定レポートに含めることによって、基地局200とUE400との間でUE主導GPを同期させることができる。
 次に、各種の基準を用いたときのUE400の動作について説明する。まず、フェージング信号を基準に用いた場合について説明する。
 フェージング信号がUE400の高速移動を示す場合、UE400は、ハンドオーバー(モビリティ)の可能性が高いことが予想される。したがって、測定頻度を高める必要がある。UE400は、短い周期のギャップパターンを設定し、より頻繁に測定を行う。
 一方、フェージング信号がUE400の低速移動を示す場合、UE400は、ハンドオーバーの可能性が低いことが予想される。したがって、測定頻度を下げることが可能となる。UE400は、長い周期のギャップパターンを設定し、より少ない頻度で測定を行う。
 続いて、現在のサービングセルの瞬間的な品質値を基準に用いた場合について説明する。
 瞬間的な品質値が悪化してきた場合、UE400は、基地局200からの受信状態が不良になることが予想される。これは、UE400が接続性を確保するためにハンドオーバーを実行する必要があることを意味する。したがって、測定頻度を高める必要があり、UE400は、短い周期のギャップパターンを設定する。
 一方、瞬間的な品質値が良好になってきた、または良好な場合、UE400がハンドオーバーを実行する必要性は低い。したがって、UE400のモビリティに関する測定頻度を下げることが可能となる。UE400は、長い周期のギャップパターンを設定し、より少ない頻度で測定を行う。
 図7は、図5に示したUE400と図2に示した基地局200とのシグナリングフローを示す図である。この図では、UE400と基地局200との間でギャップパターンの同期を確保する場合について説明する。
 基地局200は、RRC(Radio Resource Control)を用いて、ギャップパターン設定情報及び測定設定情報を設定する。基地局200は、これらの設定情報を送信部204からUE400に送信する。UE400では、基地局200から送信されたメッセージを受信し、これらの設定情報を処理する。
 別のキャリア周波数を測定するためのアイドル期間が必要である場合、UE400は、ギャップパターンの基準に基づいて、UE主導GPの設定を決定する。測定及びギャップ情報生成部401は、このUE主導GP設定情報と、評価した測定結果とを生成し、アップリンク専用制御シグナリングによって基地局200に送信する。
 UE主導GPを含んでいる測定レポートが基地局200に正常に送信された後、ギャップ確認部105において、設定されたギャップパターンパラメータ(UE主導GP開始オフセット)を使用して、UE主導GPのギャップ確認を実行する。ギャップ確認部105は、UE主導GPを開始した場合に、DRXアクティブ期間とギャップが重ならないかを判定する。この判定は、延長されたDRXアクティブ期間の長さとUE主導GP開始オフセットの長さとを比較することによって行われる。この動作は、実施の形態1で説明した内容と同じであるため、説明を省略する。
 なお、ギャップ周期の決定をUEが自由にするのではなく、基地局側にてガイドラインを設定し、UEに通知することも可能である。例えば、UEの移動速度を元にギャップ周期を決定する場合には、ギャップ頻度が高いか、低いかを決めるUEの移動速度の閾値をUEに通知することなどが考えられる。この場合には、UEは基地局から示されたガイドラインに従いギャップの周期を決めることになる。
 また、基地局側からギャップ周期の候補をUEに通知しておくことも可能である。具体的には、ギャップ周期が標準化で三つ以上準備されている時などに、どのギャップ周期内で選択するかをUEに通知することが可能である。現在標準化が行われている、3GPP LTEにおいては、40msと80msの二つの周期が定義されている。そのため、本発明の実施の形態2に係るUEとしては40msを選択するか、80msを選択するかのみとなる。ただし、将来的に20msや160ms等のギャップ周期が追加されることも考えられるため、その場合に候補を絞ることで基地局のオペレーションにあった選択をUEに行わせることができる。
 このように実施の形態2によれば、UEの受信状態に応じて、UE主導GPを使用した測定の頻度を制御することにより、UEの受信状態が良くない場合には、短い周期のUE主導GPを用いて測定頻度を多くし、ハンドオーバーに備えることができ、UEの受信状態が良好な場合には、長い周期のUE主導GPを用いて測定頻度を少なくし、UEの消費電力を低減することができる。
 (実施の形態3)
 図8は、本発明の実施の形態3に係るUE600の構成を示すブロック図である。図8が図1と異なる点は、ギャップパターン設定部104を削除し、測定レポート生成部103を測定及びUE主導GP情報生成部601に変更し、ギャップ確認部105をUE主導GP確認部602に変更した点である。
 測定及びUE主導GP情報生成部601は、測定レポーティング基準が満たされたとき、各設定情報を生成してこれらの情報を測定レポートに含める。また、測定及びUE主導GP情報生成部601は、UE600からのCQI報告に要する時間を含めたUE主導GP期間パラメータを決定し、決定したUE主導GP期間パラメータを設定すると共に、この設定情報を測定レポートに含めて基地局200に送信する。延長されたDRXアクティブ期間内において測定レポートが送信された場合、レポーティング通知をUE主導GP確認部602に出力する。
 UE主導GP確認部602は、現在のDRX及び次のDRXサイクルのどちらにおいてUE主導GPを開始するかを、UE主導GP期間パラメータを使用して確認する。UE主導GPを開始する位置をUE主導GP期間パラメータに基づいて決定すると、UE主導GP確認部602において、UE主導GPを設定する。
 図9は、図8に示したUE600と図2に示した基地局200とのシグナリングフローを示す図である。図9は、UE600が、UE主導GP期間パラメータを決定して、UE主導GPを現在のDRXサイクルにおいて開始するのか、次のDRXサイクルにおいて開始するのかを確認する例を示している。
 UE600は、測定設定情報を格納し、測定部102において処理して測定を行う。測定レポーティング基準が満たされたとき、UE600は、UE主導GPを決定する基準に基づいてUE主導GP期間パラメータを決定し、ギャップ情報パラメータを設定する。基準は、チャネル品質インジケータ(CQI)の報告に必要な測定に要する時間と、測定のため指定されているギャップ長とに基づくものである。具体的には、チャネル品質インジケータの報告がDRXアクティブの先頭のサブフレームにある場合には、チャネル品質インジケータの報告に必要な測定に要する時間と、測定のため指定されているギャップ長の和となる。チャネル品質インジケータの報告がDRXアクティブの先頭から2サブフレームにある場合には、チャネル品質インジケータの報告に必要な測定に要する時間と、測定のため指定されているギャップ長の和から1サブフレームを引いた値となる。
 このようにUE主導GP期間パラメータは、UE600におけるCQI報告間隔に関する動作(例えば、DRXオン期間におけるCQI報告の位置)を使用して決定することができる。UE主導GP期間パラメータを決定すると、測定及びUE主導GP情報生成部601は、3GPP TS 36.331に定義されているように、測定レポートにUE主導GP情報パラメータ及び測定結果を含めて基地局200に送信する。
 UE主導GP情報パラメータを含んでいる測定レポートが送信されると、UE600は、UE主導GPを開始できるDRXサイクルを、UE主導GP期間パラメータを使用して確認する。UE主導GP確認部602は、以下の条件に基づいて、UE主導GPをDRXオン期間の先頭の直前でアクティブにする。
 条件#1(図9A参照):(設定されているDRXサイクル-(UE主導GP情報パラメータを含む測定レポートが送られたDRXアクティブ期間))>UE主導GP期間
 条件#2(図9B参照):(設定されているDRXサイクル-(UE主導GP情報パラメータを含む測定レポートが送られたDRXアクティブ期間))≦UE主導GP期間
 UE主導GP情報パラメータを含む測定レポートが送信され、延長されたDRXアクティブ期間の長さが、次のDRXサイクルにおけるDRXオン期間の起点を基準としたときのUE主導GP期間パラメータの長さと重ならない場合、UE600は、UE主導GPを開始した場合にDRXアクティブ期間が測定と重ならないと考えられる。したがって、UE600は、図9Aに条件#1として示したように、現在のDRXサイクル内の残りの時間がUE主導GP期間パラメータの長さと等しい位置において、UE主導GPを開始する。
 UE主導GP情報パラメータを含む測定レポートが送信され、延長されたDRXアクティブ期間の長さが、次のDRXサイクルにおけるDRXオン期間の起点を基準としたときのUE主導GP期間パラメータの長さと重なる場合、UE600は、UE主導GPを開始した場合にDRXアクティブ期間が測定と重なると考えられる。したがって、UE600は、図9Bに条件#2として示したように、次のDRXサイクル内の残りの時間がUE主導GP期間パラメータの長さと等しい位置において、UE主導GPを開始する。
 次に、図8に示したUE600がUE主導GP情報パラメータを決定する方法について図10を用いて説明する。図10は、図6と共通する部分には、図6と同一の符号を付し、重複する説明は省略する。
 ST701では、測定及びUE主導GP情報生成部601は、測定要求レベルに基づいてUE主導GPの反復を決定し、ギャップ反復設定情報をUE主導GP確認部602に出力する。UE主導GP確認部602は、UE主導GPを選択する基準リストに基づいて、UE主導GP期間パラメータを決定して、UE主導GPを開始する位置を確認する。また、UE主導GP確認部602は、UE600におけるCQI報告間隔(例えば、DRXオン期間のCQI報告の位置)を使用して、UE主導GP期間パラメータの長さを決定できる。
 UE主導GP確認部602は、UE主導GP期間パラメータを決定すると、このパラメータとギャップ反復設定情報とを測定及びUE主導GP情報生成部601に出力する。UE600は、これらの設定パラメータを測定レポートに含めて基地局200に送信する。UE主導GP期間パラメータを測定レポートに含めることにより、UE600がUE主導GPを開始する位置を基地局200に通知することができる。
 次に、測定レポートのトリガーに基づいて、UE600がUE主導GPを使用する方法について図11を用いて説明する。図11は、UE600が現在または次のDRXサイクルにおいてUE主導GPを開始する位置を決定する手順を示すフロー図である。ただし、図11において、図4と共通する部分には図4と同一の符号を付し、重複する説明は省略する。
 ST801では、UE主導GP確認部602が、DRXアクティブ期間のチェック手順において、UE主導GP期間パラメータを使用して、DRXアクティブ期間がギャップと重なるか否かを確認し、UE主導GPを開始する位置を決定する。DRXアクティブ期間がUE主導GPと重なる場合(YES)、ST802に移行し、DRXアクティブ期間がUE主導GPと重ならない場合(NO)、ST304に移行する。
 ST802では、UE主導GP確認部602が、UE主導GPを開始する位置として、次のDRXサイクルにおけるDRXオン期間の起点を基準としたときのUE主導GP期間パラメータの長さを使用する。
 このように実施の形態3によれば、UE600からのCQI報告に要する時間を含めたUE主導GP期間パラメータと、延長されたDRXアクティブ期間との長さの関係に応じて、UE主導GPを現在のDRXサイクルにおいて開始するか、次のDRXサイクルにおいて開始することにより、無線通信端末装置の構成上の複雑さを増大することなく、ハンドオーバーの実施に要する時間を短縮することができる。
 (実施の形態4)
 図12は、本発明の実施の形態4に係るUE900の構成を示すブロック図である。ただし、図12が図1と異なる点は、測定レポート生成部103を測定及びギャップ情報生成部901に変更し、ギャップ確認部105をギャップ修正確認部902に変更した点である。
 測定及びギャップ情報生成部901は、UE主導GP情報パラメータと、測定部102から出力された測定結果とから設定情報を生成し、測定レポートに含める。測定及びギャップ情報生成部901は、基地局200への測定レポートの送信を行わず、この設定情報をギャップ修正確認部902に出力する。
 ギャップ修正確認部902は、基準リストに基づいてUE主導GPを開始する。基準が満たされると、ギャップ修正確認部902は、ギャップパターン設定部104に格納されているUE主導GP開始オフセットを使用し、UE主導GPを開始する。
 UE900は、測定レポートを基地局200に送信するかを、送信基準に基づいて評価する。送信基準が満たされている場合、UE900は、UE主導GP情報パラメータを設定し、測定レポートを通じて基地局200に送信する。送信基準が満たされていない場合、UE900は、図13に示したように測定レポートを基地局200に送信しない。ここで、送信基準とは、他に送受信するデータの有無、DRX周期の長さなどである。例えば、他に送受信するデータがある場合には、送信を行っても電力消費の増加を招かないが、他に送受信するデータがない場合には、電力消費を低減するため送信を行わないことが望ましい。また、DRX周期が短い場合には、送受信を行っても電力消費の増加を招かないが、DRX周期が長い場合には、電力消費を低減するため送信を行わないことが望ましい。
 このような構成を有することにより、UE900は、長いDRX設定を用いるサービスを使用している場合でも、測定レポートを送信するか否かにかかわらず、UE主導GPを使用して測定を開始することができる。
 図13は、図12に示したUE900と図2に示した基地局200とのシグナリングフローを示す図である。図13は、UE900が長いDRX設定のサービスを確立しており、測定レポートをただちに送信するか否かにかかわらず、UE主導GPを開始する場合の例を示している。
 UE900は、測定設定情報を格納し、測定部102において処理して測定を行う。UE主導GPを開始する基準が満たされたとき、UE900は、開始したUE主導GPを使用してただちに測定を開始する。
 UE主導GPを開始する基準は、サービングセルの無線品質について設定されている閾値に基づくことができる。例えば、UE900のサービングセルの無線品質が閾値より低下したとき、UE900は、現在のDRXサイクルにおいてUE主導GPを開始する。
 なお、基地局200が、測定のためのギャップパターンの開始をUE900と同期させることができるように、UE900は、UE主導GP情報パラメータを設定して、それを3GPP TS 36.331に定義されているように測定レポートを通じて基地局200に送信する必要があるか否かも判断する。すなわち、UE900が測定レポートを送信する必要があるか否かは、1)UE900がダウンリンクデータまたはアップリンクデータの再開を実行することが要求される場合、または、2)UE900のDRXアクティブ期間がUE主導GPと重なることが予想される場合、に基づいて判断することができる。さらに言えば、UE900は、基地局200と同期を取る必要があると判断した場合にのみ、測定レポートを送信するためのランダムアクセス手順を使用して測定レポートを送信する。
 図14は、図12に示したギャップ修正確認部902の動作を示すフロー図である。図14において、ST1001では、ギャップ修正確認部902がUE主導GP情報パラメータ及び測定結果を取得し、長いDRXにおけるUE主導GPの基準に基づいて、UE900自身がUE主導GPを使用して別のキャリア周波数の測定を開始する必要があるかを判定する。
 長いDRXにおけるUE主導GPは、サービングセルの無線品質について設定されている閾値に基づいて制御できる。サービングセルの無線品質が閾値より低下したとき、UE900は、UE主導GP開始オフセットに基づいて、UE主導GPを開始する。
 ST1002では、測定レポートを基地局200に送信するために利用可能なアップリンクリソースが存在するか否かを判定する。アップリンクリソースが利用可能である場合(YES)、ST1003に移行し、アップリンクリソースが利用可能ではない場合(NO)、ST1004に移行する。
 ST1003では、UE主導GP情報パラメータを含む測定レポートを基地局200に送信し、ST1004では、UE主導GPを開始する。
 このように実施の形態4によれば、長いDRXが設定されている場合には、測定レポートを送信するか否かにかかわらず、UE主導GPを開始することにより、無線通信端末装置の構成上の複雑さを増大することなく、ハンドオーバーの実施に要する時間を短縮することができる。
 (実施の形態5)
 図15は、本発明の実施の形態5に係るUE1100の構成を示すブロック図である。図15が図1と異なる点は、測定レポート生成部103を測定及びギャップ情報生成部1101に変更した点である。
 測定及びギャップ情報生成部1101は、UE主導GPの周期を測定頻度に基づいて決定する。さらに、基地局200によって異なる測定タイプが設定されている場合、UE1100は、設定されている測定タイプに対して適切なギャップ長を決定する。
 図16は、図15に示したUE1100と図2に示した基地局200とのシグナリングフローを示す図である。この図では、UE1100が複数のギャップ長を使用するときのシグナリングフローを示している。
 本実施の形態では、UE1100は、測定要求レベルと、その測定に使用する個々のギャップの長さとを決定する。これは、UE1100が、異なる測定に対して異なるギャップ長を使用するためである。具他的には、インター周波数E-UTRA、インターRAT UTRAN、インターRAT GERANなどの測定の場合、UE1100は、共通のギャップ長を使用して測定を行う。それ以外の測定(例えば、WiMAX)の場合、UE1100は、異なるギャップ長を使用して測定を行う。すなわち、UE1100は、設定された測定タイプに基づいて、UE主導GPを使用する測定に適切なギャップ長を決定することができる。
 UE1100の測定部102は、設定されている情報に基づいて、ギャップ長を決定する。UE1100は、適切なギャップ長を決定すると、ギャップ長パラメータを設定し、測定レポートに含まれるUE主導GP情報パラメータにこの情報を含める。したがって、UE1100は、適切なギャップ長及び適切なギャップ反復を有する、UE主導GPをアクティブにし、測定レポートを通じて基地局200に送信する。
 UE1100は、図16に示したように、適切なギャップ反復及びギャップ長を使用してUE主導GPをアクティブにする場合、それらのギャップ関連パラメータをUE主導GP情報パラメータにセットし、測定レポートを通じて基地局200に送信する。これにより、基地局200とUE1100との間で、UE主導GPの同期を維持、保証することができる。
 図17は、図15に示した測定及びギャップ情報生成部1101の動作を示すフロー図である。ただし、図17において、図6と共通する部分には図6と同一の符号を付し、重複する説明は省略する。図17において、ST1201では、基地局200によって設定される測定タイプに基づいて、UE主導GPのギャップ長は短いギャップ長が最適であるか判定する。インター周波数E-UTRA、インターRAT UTRAN、インターRAT GERAN、インターRAT CDMA2000などの測定タイプが設定されており、短いギャップ長が最適である場合(YES)、ST1202に移行する。一方、WiMAXなどの測定タイプが設定されており、長いギャップ長が最適である場合(NO)、ST1203に移行する。
 ST1202では、UE主導GPに短いギャップ長を使用する。
 ST1203では、UE主導GPに長いギャップ長を使用する。
 このように実施の形態5によれば、測定タイプに応じて、ギャップ長を決定することにより、測定タイプ毎に測定に要する時間が異なる場合でも、適切な長さのギャップ長を用いて測定することができるので、測定に要する時間に対するギャップ長の過不足を解消し、ハンドオーバーの実施に要する時間を短縮することができる。
 なお、上記実施の形態におけるレポーティング成功通知信号は、HARQ(Hybrid Auto Repeat reQuest)のACKを用いてもよい。
 (実施の形態6)
 本発明の実施の形態6では、UEが上記実施の形態と異なる方法でギャップを生成する方法を示す。図18は、本発明の実施の形態6に係るUE1300の構成を示すブロック図である。図18が図1と異なる点は、測定レポート生成部103を測定レポート生成部1301に変更した点と、ギャップ確認部105をギャップ候補選択・決定部1302に変更した点である。
 測定レポート生成部1301は、測定レポート生成部103への入力であったレポーティング成功通知信号を除いた点と、ギャップ候補選択・決定部1302に対しての入力が、レポーティング成功通知信号ではなく、レポーティング実施通知信号である点が測定レポート生成部103と異なる。
 ギャップ候補選択・決定部1302は、ギャップパターン設定部104から出力されたギャップパターンパラメータ及び測定レポート生成部1301から出力されたレポーティング実施通知信号に基づいて、UE主導GPを開始する位置を決定する。この開始位置とは、UE1300が測定を行うためのギャップを開始する位置である。ギャップ候補選択・決定部1302は、UE主導GPを開始する位置を、ギャップ確認部105とは異なり、UEに設定されたUE主導GP作成タイミングを用いて決定する。このUEに設定されたUE主導ギャップ作成タイミングは、本実施の形態においては、ギャップパターン設定部104から出力されるギャップパターンパラメータに含まれるものとなる。具体的には、UE主導GP作成タイミングは、システムフレームナンバー(以下、「SFN(System Frame Number)」と呼ぶ)やサブフレーム(subframe)で明示的に示されるものであり、例えばSFN mod 10=3となるSFNのサブフレーム5から、というように示される。なお、ギャップ長、ギャップ反復の制御に関しては、ギャップ確認部105と同様に決定する。
 図19は、図18に示したUE1300の動作を示すフロー図である。この図において、ST1401では、測定レポート生成部1301が測定レポートを基地局に送信するイベントがトリガーされる。その結果、レポーティングもトリガーされることになる。
 ST1402では、測定レポート生成部1301からのレポーティング実施通知信号により、ギャップ候補選択・決定部1302は、UE主導GP作成タイミングが設定されているか否かを確認する。UE主導GP作成タイミングが設定されている(YES)場合、ST1403に移行し、UE主導GP作成タイミングが設定されていない(NO)場合、UE主導GPが作成できないため、処理を終了する。
 ST1403では、ギャップ候補選択・決定部1302は、次のUE主導GP作成タイミングをUE主導GPの場所と決定する。
 図20は、図18に示したUE1300に対するシグナリングフローを示す図である。基地局は、まず、ギャップパターン設定情報及び測定設定情報を設定する。基地局は、これらの設定情報をUE1300に送信する。UE1300は、基地局から送信された設定情報を受信及び処理する。ここで、ギャップパターン設定情報として、UE主導GP作成タイミングを受信する点が図3と異なる。
 別のキャリア周波数を測定する、または他セルからの受信を実施するためのアイドル期間が必要な場合、UE1300は、基地局から受信したUE主導GP作成タイミングからUE主導GPを決定する。また、UE1300は測定レポートを基地局に送信する。
 なお、図20においては測定レポートの送信後にUE主導GPが作成されているが、UE主導GPが先に開始されてもかまわない。
 なお、本実施の形態においては、測定レポートを送信することはUE主導GP作成のための必須要件とはなっていない。そのため、測定レポートを送らないことも可能である。実施の形態1においても説明したように、レポーティングに対するイベントとしてはサービングキャリア周波数の品質が特定の閾値より悪くなった」、「CSGセルが検出され、CSGセルの報知情報を受信することが必要となった」などである。特に、このうちの「CSGセルが検出され、CSGセルの報知情報を受信することが必要となった」場合には、レポーティングを最初に行わず、CSGセルの報知情報を受信し、そのCSGセルのセルグローバル識別子(Cell Global Identifier: CGI)や、CSG識別子(CSG Identifier: CSG ID)等を受信してからレポーティングを実施することなどが考えられる。これは、そのCSGセルはUEがアクセス可能なセルなのか、また実際にどのセルなのかを認識するためには、CGIやCSG IDといった情報が必要なためである。
 また、CSGセルが多数設置されているような場合には、UE主導GPが多く発生することが考えられ、UEのスループットの低下、サービス品質の劣化が起こりうる。この解決策としては、前述のUE主導GP作成タイミングを限定することが考えられるが、その場合にはUEがCSGセルを検出後にUE主導GPを実施するまでに時間がかかるという課題が存在する。そのため、UE主導GP作成タイミングを限定するのではなく、UE主導GP作成タイミングを使用する頻度を限定することが考えられる。例えば、UE主導GP作成タイミングが1秒あたり10回あったとしても、使用できるのはそのうち2回までにする、また、一度使用したら500msは使用しないことなどが考えられる。このようにUE主導GP作成タイミングを使用する頻度を限定する動作は、基地局がその設定をUEに指示するようにしてもよいし、予め決められた動作を行うようにしてもよい。
 また、CSGセルから報知情報を受信するためには、80msのギャップを一度使用することが考えられる。そのため、ギャップ長やギャップ反復を基地局から通知することなしに、ギャップ長を80ms、ギャップ反復なし、という設定を常に使用する。または、基地局から指示がない場合には、その設定を使用する等の動作が考えられる。また、80msのギャップが必要となる理由は、CGIや、CSG IDが含まれている報知情報、SIB1(System Information Block Type 1)が20msに一度送信されており、受信品質の良くないUEは、それを4回受信して合成することにより、品質向上を図ることが考えられているためである。
 上述のSIB1受信の動作を図21に更に詳細に示す。報知情報の取得の際には、最初にMIB(Master Information Block)を受信する。MIBの場所は全てのレディオフレーム(Radio Frame:10ms間隔であり、10個のサブフレームを持つ)の先頭のサブフレームと決まっている。このMIBの中にはSFNが含まれている。SIB1は、偶数SFNの6番目のサブフレームで送信される。そのため、MIBを受信してからSIB1の送信タイミングが分かることになる。前述の通り、SIB1を正確に受信する際に4回の受信合成をする場合があるため、図21のケース1として示されるように80msのギャップを設けることが考えられる。これにより、MIBを受信し、SIB1の送信タイミングを検出し、その後SIB1の受信を受信成功するまで行うという動作となる。
 しかしながら、MIBを一度CSGセルから受信すると、UEはどのタイミングでSIB1をCSGセルが送信するかが分かるようになる。そのため、ケース2に示すように80msのギャップのうち必要な部分のみギャップを設けることも考えられる。このような場合には、ギャップがない場所ではUEはもともと接続している基地局と送受信することができる。
 また、その他の動作として、ケース3に示すように、SIB1の受信が成功したらギャップを終了することが考えられる。図21では3度目のSIB1受信で受信成功となった例を示している。なお、図21のケース2とケース3を合わせた動作も可能である。
 なお、本発明ではUEがDRXを実施していない場合でも、実施することが可能である。それは、UEがUE主導GPを実施する場所はDRX動作に関わらず基地局にとって予測可能であるためである。
 なお、UEがUE主導GPを行うか否かを、基地局が判断するのには、実施の形態1で示しているように、UEから送信される測定レポートを使用することが考えられる。ここでの測定レポートとしては、前述の通りRRCメッセージとして定義されている測定レポートメッセージ(Measurement report message)でもよいし、MAC制御メッセージでも良いし、レイヤ1のメッセージでもよい。また、レイヤ1のメッセージとしてはCQI報告等が考えられる。
 また、本実施の形態では、図20に示すように、UE毎に個別に測定制御情報を送信し、その中にUE主導GP作成タイミング等を示す場合について説明した。しかしながら、その他の例として報知情報にて送信、または予めルールを決めておく等の動作も可能である。
 また、UE毎に割り当てている識別子(Identifier)を用いて、UE主導GP作成タイミングを決定することも可能である。例えば、TS36.304V8.5.0, User Equipment (UE) procedure in idle modeの7章には、UEがIMSI(International Mode Subscriber Identity)と呼ばれる識別子を用いてページング(Paging)を受信するタイミングを決定する方法が示されている。このようにUEの識別子を用いて決定する場合には、報知情報や特定のルールを使用しても、UE毎にUE主導GP作成タイミングとして異なる場所を指定できるようになる。なお、使用するUEの識別子としては、IMSIに限る必要はなく、C-RNTI(Cell Radio Network Temporary Identifier)や、S-TMSI(SAE Temporary Mobile Station Identifier)などを使用してもよい。
 また、報知情報にて設定を送信、または予めルールを決めておくような場合において、UE毎、またはセル毎に本動作のオンオフを制御することも考えられる。具体的には、UE毎に行う場合には、個別のメッセージでオンまたはオフの通知をすることが可能であるし、セル毎に行う場合には、報知情報でオンまたはオフの通知をすることが可能である。
 また、上記各実施の形態でCSGのセルが検出と示したが、これには複数の形態が考えられる。具体的には、(1)CSG用に使用されることが決まっているセルの物理識別情報(Physical Cell Identifier)を検出した場合、(2)CSG用に使用されることが決まっているセルの物理識別情報を検出し、かつ、そのCSGセルの品質が一定以上、または上位の特定数以内に含まれている場合、(3)CSG用に使用されることが決まっているセルの物理識別情報を検出し、かつ、そのセルの物理識別情報がUEにとってアクセス可能と思われる場合、(4)UEの位置情報等からCSGのセルがあると想定できる場合、及び、(1)~(4)を組み合わせた場合が考えられる。なお、UEの位置情報等からCSGのセルがあると想定できるというのは、UEは、以前CSGセルに接続した際にその際の位置情報を保存しておき、その付近にUEが来た場合には、UEがアクセス可能なCSGセルがあると認識するような動作である。ここで、位置情報の生成としては、GPS(Global Positioning System)を使用してもよいし、UEが受信できるその他のセルの情報を保存しておく等でもよい。
 なお、本実施の形態で示したUE主導GP作成は、他の動作の競合等により処理を中止、または延期することも考えられる。例えば、音声通信のように比較的小さいデータレートで、定期的に送信を行うようなサービスに対して、半固定割り当て(Semi-Persistent scheduling)と呼ばれるスケジューリング方式がある。これは、UEがどのタイミングで送信、または受信するべきかを予め決めておき、そのタイミングで送受信を実施するものである。この半固定割り当てがUEに設定されており、UE主導GP作成を実施した場合に、その二つが同時に起こるような場合には、どちらかを優先する必要がある。その際に、半固定割り当てを優先することなどが考えられる。
 また、前述の通り半固定割り当てとUE主導GP作成が衝突する問題を解決する方法としては、半固定割り当てをUE主導GP作成が起こらないようなタイミングにすることが考えられる。これは、基地局のスケジューリング動作などにより実現することが可能である。
 また、本実施の形態では、測定レポートを送らないことも可能と記載したが、測定レポートを送るか否かを、UE主導GP作成を行うのにかかる遅延に基づいて決定してもよい。具体的には、UE主導GP作成を特定の時間以内に作成できる場合には、測定レポートを送らないようにし、特定の時間以上かかる場合には、測定レポートを送信し、基地局がギャップを割り当てる動作を促すことが考えられる。なお、ここでの特定の時間は、システムで固定値に決められてもよいし、報知情報等で通知するようにしてもよいし、UEが使用しているサービス等を考慮するために、UE毎に個別に送信するようにしてもよい。
 上記各実施の形態で示された動作は、組み合わせて実現することが可能である。具体例としては、実施の形態4に示す送信基準を用いて、実施の形態6で示した測定レポートの送信を判断するなどが可能である。
 上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2009年4月20日出願の特願2009-101958の日本出願及び2009年6月24日出願の特願2009-149876の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明にかかる無線通信端末装置、無線通信基地局装置及び無線通信方法は、例えば、移動通信システム等に適用できる。
 101 受信部
 102 測定部
 103、1301 測定レポート生成部
 104、202 ギャップパターン設定部
 105 ギャップ確認部
 106 UE主導GP設定部
 201 測定設定部
 203 専用信号生成部
 204 送信部
 401、901 測定及びギャップ情報生成部
 601 測定及びUE主導GP情報生成部
 602 UE主導GP確認部
 902 ギャップ修正確認部
 1101 測定及びギャップ情報生成部
 1302 ギャップ候補選択・決定部

Claims (8)

  1.  データを受信する不連続受信アクティブ期間と、前記不連続受信アクティブ期間の開始からギャップパターンの開始までの時間を示すオフセットの長さとに基づいて、現不連続受信サイクルにおいてギャップパターンを開始するか、または次の不連続受信サイクルにおいてギャップパターンを開始するかを決定するギャップ確認手段と、
     決定された不連続受信サイクルにおいてギャップパターンを生成するギャップパターン設定手段と、
     を具備する無線通信端末装置。
  2.  自装置における受信状態に応じて、ギャップパターンの周期を制御することにより、サービングセル以外の隣接セルにおける周波数を測定する頻度を制御すると共に、制御した前記ギャップパターンの周期をサービングセルにおける無線通信基地局装置に通知するギャップ情報生成手段を具備する請求項1に記載の無線通信端末装置。
  3.  前記ギャップ確認手段は、自装置からのCQI報告に要する時間を含めたギャップパターン期間パラメータと、前記不連続受信アクティブ期間とに基づいて、ギャップパターンを開始する不連続受信サイクルを決定する請求項1に記載の無線通信端末装置。
  4.  前記ギャップ確認手段は、サービングセルの無線品質が所定の閾値を下回った場合、ギャップパターンを開始することを決定する請求項1に記載の無線通信端末装置。
  5.  前記ギャップ情報生成手段は、測定対象を示す測定タイプに応じて、前記ギャップパターンのギャップ長を決定する請求項1に記載の無線通信端末装置。
  6.  設定されている不連続受信サイクルに基づいて、不連続受信アクティブ期間の開始からギャップパターンの開始までの時間を示すオフセットを設定するギャップパターン設定手段と、
     設定された前記オフセットを送信先である無線通信端末装置を特定して送信する送信手段と、
     を具備する無線通信基地局装置。
  7.  前記ギャップパターン設定手段は、前記無線通信端末装置から送信されたギャップパターンのパラメータを受信し、前記ギャップパターンを前記無線通信端末装置との間で同期する請求項6に記載の無線通信基地局装置。
  8.  データを受信する不連続受信アクティブ期間と、前記不連続受信アクティブ期間の開始からギャップパターンの開始までの時間を示すオフセットの長さとに基づいて、現不連続受信サイクルにおいてギャップパターンを開始するか、または次の不連続受信サイクルにおいてギャップパターンを開始するかを決定するギャップ確認ステップと、
     決定された不連続受信サイクルにおいて無線通信端末装置がギャップパターンを生成するギャップパターン設定ステップと、
     を具備する無線通信方法。
PCT/JP2010/002823 2009-04-20 2010-04-19 無線通信端末装置、無線通信基地局装置及び無線通信方法 WO2010122771A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/264,901 US8817681B2 (en) 2009-04-20 2010-04-19 Wireless communication apparatus and wireless communication method using a gap pattern
JP2011510192A JP5490105B2 (ja) 2009-04-20 2010-04-19 無線通信端末装置及び無線通信方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009101958 2009-04-20
JP2009-101958 2009-04-20
JP2009149876 2009-06-24
JP2009-149876 2009-06-24

Publications (1)

Publication Number Publication Date
WO2010122771A1 true WO2010122771A1 (ja) 2010-10-28

Family

ID=43010898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002823 WO2010122771A1 (ja) 2009-04-20 2010-04-19 無線通信端末装置、無線通信基地局装置及び無線通信方法

Country Status (3)

Country Link
US (1) US8817681B2 (ja)
JP (1) JP5490105B2 (ja)
WO (1) WO2010122771A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022061A1 (ja) * 2011-08-10 2013-02-14 株式会社エヌ・ティ・ティ・ドコモ 移動局及び移動通信方法
WO2013141194A1 (ja) * 2012-03-23 2013-09-26 住友電気工業株式会社 設定装置、通信制御方法および通信制御プログラム
US20140198701A1 (en) * 2011-08-12 2014-07-17 Telefonaktiebolaget L M Ericsson (Publ) Deciding Whether to Send Uplink Control Signaling Based on the Active Time Status of a User Equipment Configured with Discontinuous Reception (DRX)
JP2015504265A (ja) * 2011-11-07 2015-02-05 アルカテル−ルーセント モバイル・デバイスの速度に基づくhetnetでの周波数間測定
JP2015507427A (ja) * 2012-01-10 2015-03-05 アップル インコーポレイテッド 間欠受信の間の無線測定を管理するための方法及び装置
JP2015525020A (ja) * 2012-05-15 2015-08-27 アップル インコーポレイテッド 間欠受信シナリオにおける省電力適応型チャネル状態フィードバック
JP2016509411A (ja) * 2013-01-13 2016-03-24 アップル インコーポレイテッド 測定頻度の低減を通じた電力消費の低減
JP2016096555A (ja) * 2011-12-20 2016-05-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated LTEにおける周波数間/RAT間測定とeMBMSとの優先度付け
JP2017535151A (ja) * 2014-09-30 2017-11-24 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Rat間測定方法ならびに関連する装置およびシステム
JPWO2020095455A1 (ja) * 2018-11-09 2021-10-07 株式会社Nttドコモ ユーザ装置及び基地局装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720334B1 (ko) * 2010-01-12 2017-04-05 삼성전자주식회사 이동통신 시스템에서 불연속 수신 동작을 지원하는 방법 및 장치
USRE49879E1 (en) 2010-01-12 2024-03-19 Samsung Electronics Co., Ltd. Method and apparatus for supporting discontinuous reception operation in mobile communication system
US9538434B2 (en) * 2010-04-06 2017-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a wireless communication system
US8675554B2 (en) * 2010-11-08 2014-03-18 Intel Corporation Wireless communication device and method for performing neighbor cell analysis during continuous packet connectivity mode
US8837313B2 (en) * 2011-04-04 2014-09-16 Kyocera Corporation Mobile communication method and radio terminal
US9204392B2 (en) * 2011-04-04 2015-12-01 Kyocera Corporation Mobile communication method and radio terminal
KR101150846B1 (ko) 2011-09-05 2012-06-13 엘지전자 주식회사 셀 측정 방법 및 그를 위한 정보 전송 방법
US9386535B2 (en) * 2011-10-26 2016-07-05 Lg Electronics Inc. Method for determining transmission power information of downlink subframe and apparatus therefor
US9219994B2 (en) * 2011-11-09 2015-12-22 Lg Electronics Inc. Methods for transmitting and receiving downlink data in MBSFN subframe and apparatuses thereof
GB2498805A (en) * 2012-01-30 2013-07-31 Renesas Mobile Corp UE requesting an increase to the gap length in closed subscriber group (csg) mobility procedures
WO2013125897A1 (en) * 2012-02-23 2013-08-29 Lg Electronics Inc. Methods and apparatuses for receiving or transmitting downlink signal in mbsfn subframe
CN103391571B (zh) * 2012-05-09 2018-12-04 北京三星通信技术研究有限公司 一种异频邻小区的测量方法及用户设备
CN103686619B (zh) 2012-09-17 2017-02-01 华为技术有限公司 一种集群业务快速建立方法及相关设备、系统
US9578531B2 (en) * 2012-09-27 2017-02-21 Blackberry Limited Method and system for indicating frequency for reporting a GERAN CGI
CN104838715A (zh) 2012-10-05 2015-08-12 司亚乐无线通讯股份有限公司 用于无线电资源分配的方法和系统
US10455575B2 (en) 2012-10-05 2019-10-22 Sierra Wireless, Inc. Method, apparatus and system for uplink radio resource allocation in an LTE communication system
EP2946492A4 (en) 2013-01-17 2016-10-05 Intel Ip Corp METHOD AND SYSTEMS FOR EXTENDED DISCONTINUOUS RECEPTION
US20160044541A1 (en) * 2013-04-05 2016-02-11 Nokia Technologies Oy Relaxed performance requirements for offloading measurements
WO2014179874A1 (en) * 2013-05-10 2014-11-13 Sierra Wireless, Inc. Method and apparatus for communication of system information in a wireless system
ES2585937T3 (es) * 2013-10-08 2016-10-10 Telefónica, S.A. Procedimiento, sistema y dispositivos para mejorar la recepción discontinua en redes de comunicación inalámbrica
US9998934B2 (en) * 2014-05-29 2018-06-12 Apple Inc. Device and method for idle mode power saving
EP3245841B1 (en) * 2015-01-15 2020-09-02 Sony Corporation Radio terminal measurements in extended drx
JP6867942B2 (ja) * 2015-02-27 2021-05-12 京セラ株式会社 無線端末及びプロセッサ
EP3282786B1 (en) * 2015-04-09 2021-02-17 Sony Corporation Terminal device, base station, wireless communication methods, and computer programs
JP6813481B2 (ja) * 2015-05-15 2021-01-13 京セラ株式会社 無線端末及び基地局
WO2016190798A2 (en) * 2015-05-25 2016-12-01 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, wireless device and methods performed therein
US12052592B2 (en) * 2018-11-02 2024-07-30 Lg Electronics Inc. Method for managing beam performed by terminal in wireless communication system, and terminal using same
WO2021152806A1 (ja) * 2020-01-30 2021-08-05 株式会社Nttドコモ 端末、無線通信方法及び基地局

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155912A1 (ja) * 2007-06-19 2008-12-24 Panasonic Corporation 無線通信基地局装置、無線通信端末装置及びギャップ生成方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI105252B (fi) 1997-07-14 2000-06-30 Nokia Mobile Phones Ltd Menetelmä ajan varaamiseksi matkaviestimelle
KR100487245B1 (ko) 2001-11-28 2005-05-03 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 이동 통신시스템에서압축 모드에 따른 전송 불능 구간을 최소화하는장치 및 방법
US8094554B2 (en) * 2006-10-26 2012-01-10 Qualcomm Incorporated Compressed mode operation and power control with discontinuous transmission and/or reception
US20080225772A1 (en) * 2007-03-12 2008-09-18 Shugong Xu Explicit layer two signaling for discontinuous reception
JP4879054B2 (ja) * 2007-03-20 2012-02-15 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムで使用されるユーザ装置、基地局装置及び方法
JP5069546B2 (ja) * 2007-03-20 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ 通信制御方法、基地局及びユーザ装置
WO2008132598A2 (en) * 2007-04-30 2008-11-06 Nokia Corporation Method and apparatus for reporting channel quality in a 3gpp system
US8165175B2 (en) * 2007-05-31 2012-04-24 Panasonic Corporation Gap support measuring method
JP5052377B2 (ja) 2007-06-19 2012-10-17 パナソニック株式会社 無線通信基地局装置、無線通信端末装置及びギャップ生成方法
GB2452022B (en) * 2007-07-24 2012-03-28 Nec Corp DRX configuration
BRPI0914546A2 (pt) * 2008-06-24 2015-12-15 Ntt Docomo Inc aparelho de estação base e método de controle de comunicação
US8315182B2 (en) * 2008-11-03 2012-11-20 Htc Corporation Method and related communication device for parameter reconfiguration in a wireless communications system
US20110199908A1 (en) * 2010-02-15 2011-08-18 Nokia Corporation Methods and Apparatuses for Measurement Gap Pattern for Carrier Aggregation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155912A1 (ja) * 2007-06-19 2008-12-24 Panasonic Corporation 無線通信基地局装置、無線通信端末装置及びギャップ生成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ZTE, DRX and measurement gap", 3GPP TSG-RAN WG2#63 R2-083984, August 2008 (2008-08-01), Retrieved from the Internet <URL:http://ftp.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR263/Docs/R2-083984.zip> [retrieved on 20100628] *
PANASONIC: "Relation between DRX and Gap for Measurement", 3GPP TSG RAN WG2 #60 R2-074856, November 2007 (2007-11-01), Retrieved from the Internet <URL:http://ftp.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_60/Docs/R2-074856.zip> [retrieved on 20100628] *
SAMSUNG: "Measurement Gap and DRX interaction", 3GPP TSG-RAN2 MEETING #58 R2-072038, May 2007 (2007-05-01), Retrieved from the Internet <URL:http://ftp.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_58/Documents/R2-072038.zip>> *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038686A (ja) * 2011-08-10 2013-02-21 Ntt Docomo Inc 移動局及び移動通信方法
CN103718617A (zh) * 2011-08-10 2014-04-09 株式会社Ntt都科摩 移动台以及移动通信方法
WO2013022061A1 (ja) * 2011-08-10 2013-02-14 株式会社エヌ・ティ・ティ・ドコモ 移動局及び移動通信方法
US9668207B2 (en) * 2011-08-12 2017-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Deciding whether to send uplink control signaling based on the active time status of a user equipment configured with discontinuous reception (DRX)
US20140198701A1 (en) * 2011-08-12 2014-07-17 Telefonaktiebolaget L M Ericsson (Publ) Deciding Whether to Send Uplink Control Signaling Based on the Active Time Status of a User Equipment Configured with Discontinuous Reception (DRX)
JP2015504265A (ja) * 2011-11-07 2015-02-05 アルカテル−ルーセント モバイル・デバイスの速度に基づくhetnetでの周波数間測定
US9532248B2 (en) 2011-11-07 2016-12-27 Alcatel Lucent Apparatuses, methods and computer programs for a mobile transceiver and a base station transceiver, mobile transceiver, base station transceiver and mobile communication system
JP2016096555A (ja) * 2011-12-20 2016-05-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated LTEにおける周波数間/RAT間測定とeMBMSとの優先度付け
US9572062B2 (en) 2012-01-10 2017-02-14 Apple Inc. Methods and apparatus for managing radio measurements during discontinuous reception
JP2015507427A (ja) * 2012-01-10 2015-03-05 アップル インコーポレイテッド 間欠受信の間の無線測定を管理するための方法及び装置
WO2013141194A1 (ja) * 2012-03-23 2013-09-26 住友電気工業株式会社 設定装置、通信制御方法および通信制御プログラム
JP2015525020A (ja) * 2012-05-15 2015-08-27 アップル インコーポレイテッド 間欠受信シナリオにおける省電力適応型チャネル状態フィードバック
JP2016509411A (ja) * 2013-01-13 2016-03-24 アップル インコーポレイテッド 測定頻度の低減を通じた電力消費の低減
US9549359B2 (en) 2013-01-13 2017-01-17 Apple Inc. Reducing power consumption through reduced measurement frequency
JP2017535151A (ja) * 2014-09-30 2017-11-24 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Rat間測定方法ならびに関連する装置およびシステム
JPWO2020095455A1 (ja) * 2018-11-09 2021-10-07 株式会社Nttドコモ ユーザ装置及び基地局装置
JP7223026B2 (ja) 2018-11-09 2023-02-15 株式会社Nttドコモ 端末、基地局、無線通信システム、及び通信方法
US11917438B2 (en) 2018-11-09 2024-02-27 Ntt Docomo, Inc. User device and base station device

Also Published As

Publication number Publication date
US20120033595A1 (en) 2012-02-09
JPWO2010122771A1 (ja) 2012-10-25
US8817681B2 (en) 2014-08-26
JP5490105B2 (ja) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5490105B2 (ja) 無線通信端末装置及び無線通信方法
EP3420757B1 (en) Discovery reference signal transmission window detection and random access procedure selection
EP3413660B1 (en) Communication method and mobile device applied to a super cell
US10548181B2 (en) Methods and apparatus for cell verification under UE eDRX
KR101724986B1 (ko) 무선 통신 네트워크에서 핸드오버 동안 디바이스-투-디바이스(d2d) 통신을 핸들링하기 위한 무선 장치, 네트워크 노드 및 그 내부에서의 방법
KR101994764B1 (ko) M2m(machine-to-machine) 단말, 기지국, 방법, 및 컴퓨터 가독 매체
US10588140B2 (en) User apparatus and timer control method
CN108633003B (zh) 一种资源分配方法和装置以及终端设备
JP6469679B2 (ja) 移動通信システムでシステム情報とページングを受信する方法及び装置
KR102570814B1 (ko) 네트워크 유지 관리를 위한 측정 보고 방법 및 시스템
US20080189970A1 (en) Measurement gap pattern scheduling to support mobility
US20180146410A1 (en) Method and apparatus for reselecting cell in wireless communication system
EP2608604A1 (en) Method and apparatus for searching for closed subscriber group cells
WO2014092616A1 (en) Base station, user equipment and methods for random access
CN115811755A (zh) 用于在rrc非激活状态中执行空闲模式测量的方法和装置
WO2016171609A1 (en) Improvements to paging of terminal devices
EP3970411A1 (en) Systems and methods for performing cell change to a target cell subject to clear channel assessment
WO2024171149A1 (en) Adaptation of sl synchronization source based on cca failures
WO2024231577A1 (en) Sidelink positioning technique
CN116097701A (zh) 用于增强无线通信装置测量的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011510192

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13264901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766833

Country of ref document: EP

Kind code of ref document: A1