Nothing Special   »   [go: up one dir, main page]

WO2010119633A1 - Optical image measuring device and method for controlling same - Google Patents

Optical image measuring device and method for controlling same Download PDF

Info

Publication number
WO2010119633A1
WO2010119633A1 PCT/JP2010/002427 JP2010002427W WO2010119633A1 WO 2010119633 A1 WO2010119633 A1 WO 2010119633A1 JP 2010002427 W JP2010002427 W JP 2010002427W WO 2010119633 A1 WO2010119633 A1 WO 2010119633A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
light
image
tomographic image
interference light
Prior art date
Application number
PCT/JP2010/002427
Other languages
French (fr)
Japanese (ja)
Inventor
渋谷雅博
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2010119633A1 publication Critical patent/WO2010119633A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]

Definitions

  • the present invention relates to an optical image measuring apparatus that scans a measured object with a light beam and forms an image of the measured object using interference of reflected light, and a control method thereof.
  • optical image measurement technology that forms an image representing the surface form and internal form of an object to be measured using a light beam from a laser light source or the like has attracted attention. Since this optical image measurement technique does not have invasiveness to the human body like an X-ray CT apparatus, it is expected to be applied particularly in the medical field.
  • Patent Document 1 discloses an apparatus to which an optical image measurement technique is applied.
  • the measuring arm scans an object with a rotating turning mirror (galvanomirror), a reference mirror is installed on the reference arm, and light that appears due to interference of light beams from the measuring arm and the reference arm at the exit.
  • An interferometer in which the intensity of the light is analyzed by a spectroscope is used, and the reference arm is provided with a device for changing the phase of the reference light beam stepwise by a discontinuous value.
  • the optical image measuring apparatus of Patent Document 1 uses a so-called “Fourier Domain OCT (Fourier Domain Optical Coherence Tomography)” technique. That is, by irradiating the measured object with a beam of low coherence light, obtaining the spectral intensity distribution of the interference light between the reflected light and the reference light, and performing Fourier transform on the spectral intensity distribution, the depth direction (z Direction) is imaged.
  • Fourier Domain OCT Frourier Domain Optical Coherence Tomography
  • the optical image measurement device described in Patent Document 1 includes a galvanometer mirror that scans a light beam (signal light), thereby forming an image of a desired measurement target region of the object to be measured.
  • the image to be formed is in the scanning direction of the light beam ( It becomes a two-dimensional tomographic image in the depth direction along (x direction).
  • Patent Document 2 a plurality of two-dimensional tomographic images in the scanning direction (x direction) are scanned by scanning the signal light in the scanning direction (x direction) and the vertical direction (y direction: a direction orthogonal to the x direction and the z direction).
  • a technique for forming and obtaining three-dimensional tomographic information of a measurement range based on the plurality of tomographic images and imaging it is disclosed.
  • this three-dimensional imaging for example, a method of displaying a plurality of tomographic images side by side in the vertical direction (y direction) (called stack data or the like), or rendering a plurality of tomographic images to form a three-dimensional image Possible ways to do this.
  • Patent Documents 3 and 4 disclose other types of optical image measurement devices.
  • Patent Document 3 scans the wavelength of light irradiated to an object to be measured, acquires a spectral intensity distribution based on interference light obtained by superimposing reflected light and irradiated light of each wavelength,
  • an optical image measurement device that images the form of an object to be measured by performing Fourier transform on the object.
  • Such an optical image measurement device is called a swept source type.
  • the traveling direction of light is obtained by irradiating the object to be measured with light having a predetermined beam diameter, and analyzing the component of interference light obtained by superimposing the reflected light and the reference light.
  • an optical image measuring device that forms an image representing a form in a cross section orthogonal to the shape.
  • Such an optical image measuring device is called a full-field type or an en-face type.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to reduce the processing time for 3D image formation by performing image formation without waiting for completion of detection of interference light corresponding to all frames.
  • An object of the present invention is to provide an optical image measurement device that can be shortened.
  • an optical image measurement device divides low-coherence light into signal light and reference light, changes the direction of a galvanometer mirror, and irradiates the object to be measured with the signal light. Scanning the signal light with respect to the object to be measured while changing the position, irradiating the signal light to the object to be measured and reflecting the signal light reflected by the object to be measured and the reference light via the reference light path To generate interference light, and form a tomographic image of the object to be measured from the interference light detection means for detecting the interference light and the detection result obtained by scanning one frame by the interference light detection means And a tomographic image forming means for detecting an abnormality of the tomographic image based on an image state of the formed tomographic image, wherein the tomographic image forming means has one frame by the interference light detecting means.
  • the tomographic image is sequentially formed every time the interference light detection results for the predetermined number of frames are obtained, and the abnormality detecting means performs the abnormality detection every time the tomographic image for a predetermined frame is obtained, and the abnormality is detected. Then, the interference light detection means stops changing the direction of the galvanometer mirror, and restarts the detection of the interference light from the stopped direction.
  • a second aspect of the present invention is the optical image measurement device according to the first aspect, wherein the abnormality detecting means detects an abnormality based on a position of the measured object depicted in the tomographic image. It is characterized by this.
  • the optical image measurement apparatus wherein the low-coherence light is divided into signal light and reference light, the orientation of the galvano mirror is changed, and the irradiation position of the signal light on the object to be measured is changed.
  • the signal light is irradiated onto the object to be measured while scanning the signal light with respect to the object, and the signal light reflected by the object to be measured and the reference light passing through a reference light path are superimposed to generate interference light.
  • Interference light detecting means for generating and detecting the interference light
  • tomographic image forming means for forming a tomographic image of the measured object from a detection result obtained by scanning one frame by the interference light detecting means
  • the interference light detection means detects the interference light while sequentially changing the direction of the galvanometer mirror, and the tomographic image formation means is based on the interference light detection means. In parallel with the detection of serial interference light, effect formation of a tomographic image for each of the one frame of the detection result is obtained, it is characterized in.
  • the invention according to claim 4 is the optical image measurement device according to claim 3, further comprising an abnormality detection means for detecting an abnormality of the tomographic image based on an image state of the formed tomographic image.
  • the interference light detection means stops detecting the interference light when the abnormality is detected.
  • the invention according to claim 5 is the optical image measurement device according to claim 4, wherein the abnormality detection means performs abnormality detection based on the position of the eye to be examined depicted in the tomographic image. It is characterized by.
  • the invention according to claim 6 is the optical image measurement device according to claim 4, wherein the abnormality detection means performs the abnormality detection every predetermined number of frames.
  • a seventh aspect of the present invention is the optical image measurement device according to the sixth aspect, wherein the abnormality detection unit is configured to detect the predetermined number of frames before and after the frame where the abnormality is detected. The abnormality detection is performed, and the interference light detection unit stops detecting the interference light when at least the predetermined number of frames in which the abnormality is detected continues. .
  • the invention according to claim 8 is the optical image measuring device according to claim 4, wherein the galvanometer mirror is obtained when the scan corresponding to the tomographic image in which the abnormality is detected is performed. And the interference light detection means changes the direction of the galvano mirror to the determined direction and starts detecting the interference light again from the direction of the galvano mirror when the abnormality is detected. It is characterized by that.
  • the invention according to claim 9 is the optical image measurement device according to claim 8, wherein the acquisition unit includes the tomographic image at the time when the abnormality is detected from the tomographic image where the abnormality is detected. And obtaining the orientation of the galvanometer mirror in the tomographic image before the acquired number of frames from the frame at the time when the abnormality is detected.
  • a tenth aspect of the present invention is the optical image measurement device according to the eighth aspect, wherein the object to be measured is a fundus and a fundus image is detected during detection of interference light by the interference light detection means.
  • the imaging device further includes an imaging unit that acquires at a rate, and the acquisition unit detects the abnormality based on the fundus image at the time of detecting the interference light of the tomographic image in which the abnormality is detected. Obtaining a position of the tomographic image in the fundus image, specifying a position corresponding to the acquired position in the current fundus image, and obtaining an orientation of the galvanometer mirror so as to scan the specified position; It is characterized by this.
  • the control method of the optical image measurement device wherein the low-coherence light is divided into signal light and reference light, the direction of the galvanometer mirror is changed, and the irradiation position of the signal light on the object to be measured is changed.
  • the signal light is irradiated onto the object to be measured while scanning the signal light with respect to the object to be measured, and the signal light reflected by the object to be measured and the reference light passing through a reference light path are superimposed.
  • Interference light detection means for generating interference light and detecting the interference light
  • tomographic image formation means for forming a tomographic image of the object to be measured from a detection result obtained by scanning one frame by the interference light detection means
  • an abnormality detection means for detecting an abnormality of the tomographic image based on an image state of the formed tomographic image, wherein the detecting step detects the interference light.
  • a tomographic image forming step for forming the tomographic image in units of frames an abnormality detecting step for detecting the abnormality every time the tomographic image for a predetermined frame is obtained, and when the abnormality is detected,
  • the method includes a galvano mirror stop stage for stopping driving of the galvano mirror, and a stage for restarting the detection stage from the orientation of the stopped galvano mirror.
  • the control method of the optical image measurement device wherein the low-coherence light is divided into signal light and reference light, the direction of the galvanometer mirror is changed, and the irradiation position of the signal light on the object to be measured is changed.
  • the signal light is irradiated onto the object to be measured while scanning the signal light with respect to the object to be measured, and the signal light reflected by the object to be measured and the reference light passing through a reference light path are superimposed.
  • Interference light detection means for generating interference light and detecting the interference light
  • tomographic image formation means for forming a tomographic image of the object to be measured from a detection result obtained by scanning one frame by the interference light detection means
  • a method of controlling the optical image measurement apparatus comprising: an interference light detection stage that sequentially detects the interference light while changing the direction of the galvanometer mirror; and one frame in the interference light detection stage.
  • the present invention it is possible to detect an abnormality in an image during detection of interference light. Thereby, it is possible to detect the occurrence of an abnormal image in parallel with the scanning of the object to be measured. Therefore, the occurrence of an abnormal image can be quickly grasped, and the processing time of the three-dimensional image forming process can be shortened. In addition, the resource of the apparatus can be effectively used.
  • detection of interference light and formation of a tomographic image can be performed in parallel.
  • the detection of interference light and the formation of a tomographic image are performed in parallel, and when an abnormality in the tomographic image is detected, the process returns to the place where the abnormal image has occurred and is again covered from that place. The scanning of the measurement object can be resumed. This makes it possible to effectively use the resources of the apparatus and reduce the time required for the 3D image forming process.
  • the configuration according to this embodiment can be applied to any type of OCT technology that scans signal light such as a swept source type. Further, the configuration according to this embodiment can be applied to an OCT technique in which signal light is not scanned in the horizontal direction as in the full field type.
  • the optical image measurement device 1 includes a fundus camera unit 1 ⁇ / b> A, an OCT unit 150, and an arithmetic control device 200. Each of these units may be provided in a distributed manner in a plurality of cases, or may be provided in a single case.
  • the fundus camera unit 1A has an optical system that is substantially the same as that of a conventional fundus camera.
  • a fundus camera is a device that photographs the fundus.
  • the fundus camera is used for photographing a fundus blood vessel.
  • the OCT unit 150 stores an optical system for acquiring an OCT image of the eye to be examined.
  • the arithmetic and control unit 200 includes a computer that executes various arithmetic processes and control processes.
  • connection line 152 One end of a connection line 152 is attached to the OCT unit 150.
  • a connector 151 for connecting the connection line 152 to the retinal camera unit 1A is attached to the other end of the connection line 152.
  • An optical fiber 152a is conducted inside the connection line 152 (see FIG. 2).
  • the OCT unit 150 and the fundus camera unit 1A are optically connected via a connection line 152.
  • the arithmetic and control unit 200 is connected to each of the fundus camera unit 1A and the OCT unit 150 via a communication line that transmits an electrical signal.
  • the fundus camera unit 1A includes an optical system for forming a two-dimensional image representing the form of the fundus surface.
  • the two-dimensional image of the fundus surface includes a color image and a monochrome image obtained by photographing the fundus surface, and further a fluorescent image (fluorescein fluorescent image, indocyanine green fluorescent image, etc.) and the like.
  • the retinal camera unit 1A is provided with various user interfaces as in the conventional retinal camera.
  • the user interface include an operation panel, a control lever (joystick), a photographing switch, a focusing handle, a display, and the like.
  • Various switches and buttons are provided on the operation panel.
  • the control lever is operated to three-dimensionally move a gantry provided with an operation panel or the like, or an apparatus main body incorporating an optical system with respect to the apparatus base.
  • the control lever is used particularly during manual alignment operations.
  • the imaging switch is provided at the upper end of the control lever, and is used to instruct acquisition of a fundus image or an OCT image.
  • the photographing switch is also used when performing other functions.
  • the operation panel and the control lever are provided at the position (rear surface) on the examiner side of the fundus camera unit 1A.
  • the focusing handle is provided on the side surface of the apparatus main body, for example, and is used for focus adjustment (focusing). When the focusing handle is operated, a focusing lens described later is moved to change the focus state.
  • the display is provided at a position on the examiner side of the fundus camera unit 1A, and displays various information such as tomographic images, patient information, and imaging conditions acquired by the optical image measurement device 1.
  • a chin rest and a forehead for holding the face of the subject are provided at a position (front surface) on the subject side of the fundus camera unit 1A.
  • the fundus camera unit 1A is provided with an illumination optical system 100 and a photographing optical system 120 as in the case of a conventional fundus camera.
  • the illumination optical system 100 irradiates the fundus oculi Ef with illumination light.
  • the imaging optical system 120 guides the fundus reflection light of the illumination light to the imaging devices 10 and 12.
  • the imaging optical system 120 guides the signal light from the OCT unit 150 to the fundus oculi Ef and guides the signal light passing through the fundus oculi Ef to the OCT unit 150.
  • the illumination optical system 100 includes an observation light source 101, a condenser lens 102, a photographing light source 103, a condenser lens 104, exciter filters 105 and 106, a ring translucent plate 107, a mirror 108, an LCD (Liquid Crystal Display), as in a conventional fundus camera. ) 109, an illumination aperture 110, a relay lens 111, a perforated mirror 112, and an objective lens 113.
  • the observation light source 101 outputs illumination light including wavelengths in the near-infrared region, for example, in the range of about 700 nm to 800 nm. This near-infrared light is set shorter than the wavelength of light used in the OCT unit 150 (described later).
  • the imaging light source 103 outputs illumination light including a wavelength in the visible region in the range of about 400 nm to 700 nm, for example.
  • the illumination light output from the observation light source 101 reaches the perforated mirror 112 via the condenser lenses 102 and 104, the (exciter filter 105 or 106) ring translucent plate 107, the mirror 108, the illumination stop 110, and the relay lens 111. To do. Further, the illumination light is reflected by the perforated mirror 112 and enters the eye E through the objective lens 113 to illuminate the fundus oculi Ef. On the other hand, the illumination light output from the imaging light source 103 similarly enters the eye E through the condenser lens 104 to the objective lens 113 and illuminates the fundus oculi Ef.
  • the photographing optical system 120 includes an objective lens 113, a perforated mirror 112 (hole 112a), a photographing aperture 121, barrier filters 122 and 123, a focusing lens 124, a relay lens 125, a photographing lens 126, a dichroic mirror 134, and a field lens. (Field lens) 128, half mirror 135, relay lens 131, dichroic mirror 136, photographing lens 133, imaging device 10, reflection mirror 137, photographing lens 138, imaging device 12, lens 139 and LCD 140 are configured.
  • the photographing optical system 120 has substantially the same configuration as a conventional fundus camera.
  • the focusing lens 124 is movable in the optical axis direction of the photographing optical system 120.
  • the dichroic mirror 134 reflects the fundus reflection light (having a wavelength included in the range of about 400 nm to 800 nm) of the illumination light from the illumination optical system 100.
  • the dichroic mirror 134 transmits the signal light LS (for example, having a wavelength included in the range of about 800 nm to 900 nm; see FIG. 2) from the OCT unit 150.
  • the dichroic mirror 136 reflects the fundus reflection light of the illumination light from the observation light source 101 and transmits the fundus reflection light of the illumination light from the imaging light source 103.
  • the LCD 140 displays a fixation target (internal fixation target) for fixing the eye E to be examined.
  • a fixation target (internal fixation target) for fixing the eye E to be examined.
  • Light from the LCD 140 is collected by the lens 139, reflected by the half mirror 135, and reflected by the dichroic mirror 136 via the field lens 128. Further, this light is incident on the eye E through the photographing lens 126, the relay lens 125, the focusing lens 124, the aperture mirror 112 (the aperture 112a thereof), the objective lens 113, and the like. Thereby, the internal fixation target is projected onto the fundus oculi Ef.
  • the fixation direction of the eye E can be changed by changing the display position of the internal fixation target on the LCD 140.
  • As the fixation direction of the eye E for example, a fixation direction for acquiring a tomographic image centered on the macular region of the fundus oculi Ef or a tomographic image centered on the optic disc as in the case of a conventional fundus camera.
  • the fixation position is changed, for example, by operating the operation panel.
  • the imaging device 10 includes an imaging element 10a.
  • the imaging device 10 can particularly detect light having a wavelength in the near infrared region. That is, the imaging device 10 functions as an infrared television camera that detects near-infrared light.
  • the imaging device 10 detects near infrared light and outputs a video signal.
  • the imaging element 10a is an arbitrary imaging element (area sensor) such as a CCD (Charge Coupled Devices) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the imaging device 12 includes an imaging element 12a.
  • the imaging device 12 can particularly detect light having a wavelength in the visible region. That is, the imaging device 12 functions as a television camera that detects visible light.
  • the imaging device 12 detects visible light and outputs a video signal.
  • the image sensor 12a is configured by an arbitrary image sensor (area sensor), similarly to the image sensor 10a.
  • the touch panel monitor 11 displays the fundus oculi image Ef ′ based on the video signals from the image sensors 10a and 12a.
  • the video signal is sent to the arithmetic and control unit 200.
  • the touch panel monitor 11 is an example of the display described above.
  • the fundus camera unit 1A is provided with a scanning unit 141 and a lens 142.
  • the scanning unit 141 scans the irradiation position of the signal light LS output from the OCT unit 150 to the fundus oculi Ef.
  • the scanning unit 141 scans the signal light LS on the xy plane shown in FIG.
  • the scanning unit 141 is provided with, for example, a galvanometer mirror 141A for scanning in the x direction and a galvanometer mirror 141B for scanning in the y direction (see FIG. 3).
  • the OCT unit 150 includes an optical system similar to that of a conventional Fourier domain type optical image measurement device. That is, the OCT unit 150 divides low-coherence light into reference light and signal light, and generates interference light by causing the signal light passing through the fundus of the eye to be examined and the reference light passing through the reference object to generate interference light. An optical system for detecting light and generating a detection signal is provided. This detection signal is sent to the arithmetic and control unit 200.
  • the low coherence light source 160 is a broadband light source that outputs a broadband low coherence light L0.
  • a broadband light source for example, a super luminescent diode (SLD), a light emitting diode (LED), or the like can be used.
  • SLD super luminescent diode
  • LED light emitting diode
  • the low coherence light L0 includes, for example, light having a wavelength in the near infrared region, and has a temporal coherence length of about several tens of micrometers.
  • the low coherence light L0 includes a wavelength longer than the illumination light (wavelength of about 400 nm to 800 nm) of the fundus camera unit 1A, for example, a wavelength in the range of about 800 nm to 900 nm.
  • the low coherence light L0 output from the low coherence light source 160 is guided to the optical coupler 162 through the optical fiber 161.
  • the optical fiber 161 is configured by, for example, a single mode fiber, a PM fiber (Polarization maintaining fiber), or the like.
  • the optical coupler 162 splits the low coherence light L0 into the reference light LR and the signal light LS.
  • the optical coupler 162 has both functions of a means for splitting light (splitter) and a means for superposing light (coupler), but here it is conventionally referred to as an “optical coupler”.
  • the reference light LR generated by the optical coupler 162 is guided by an optical fiber 163 made of a single mode fiber or the like and emitted from the end face of the fiber. Further, the reference light LR is converted into a parallel light beam by the collimator lens 171 and is reflected by the reference mirror 174 via the glass block 172 and the density filter 173.
  • the reference light LR reflected by the reference mirror 174 passes through the density filter 173 and the glass block 172 again, is condensed on the fiber end surface of the optical fiber 163 by the collimator lens 171, and is guided to the optical coupler 162 through the optical fiber 163. .
  • the glass block 172 and the density filter 173 act as delay means for matching the optical path lengths (optical distances) of the reference light LR and the signal light LS. Further, the glass block 172 and the density filter 173 function as dispersion compensation means for matching the dispersion characteristics of the reference light LR and the signal light LS.
  • the density filter 173 acts as a neutral density filter that reduces the amount of the reference light LR.
  • the density filter 173 is configured by, for example, a rotary ND (Neutral Density) filter.
  • the density filter 173 is rotationally driven by a drive mechanism (not shown) to change the amount of the reference light LR that contributes to the generation of the interference light LC.
  • the reference mirror 174 is moved in the traveling direction of the reference light LR (the direction of the double-sided arrow shown in FIG. 2) by a predetermined driving mechanism. Thereby, the optical path length of the reference light LR can be ensured according to the axial length of the eye E and the working distance (distance between the objective lens 113 and the eye E).
  • the signal light LS generated by the optical coupler 162 is guided to the end of the connection line 152 by an optical fiber 164 made of a single mode fiber or the like.
  • the optical fiber 164 and the optical fiber 152a may be formed from a single optical fiber, or may be formed integrally by joining the respective end faces.
  • the signal light LS is guided by the optical fiber 152a and guided to the fundus camera unit 1A. Further, the signal light LS includes the lens 142, the scanning unit 141, the dichroic mirror 134, the photographing lens 126, the relay lens 125, the half mirror 190, the focusing lens 124, the photographing aperture 121, the hole 112a of the aperture mirror 112, the objective lens.
  • the eye E is irradiated to the eye E via 113 and irradiated to the fundus Ef.
  • the barrier filters 122 and 123 are retracted from the optical path in advance.
  • the signal light LS incident on the eye E is imaged and reflected on the fundus oculi Ef.
  • the signal light LS is not only reflected by the surface of the fundus oculi Ef, but also reaches the deep region of the fundus oculi Ef and is scattered at the refractive index boundary. Therefore, the signal light LS passing through the fundus oculi Ef includes information reflecting the surface form of the fundus oculi Ef and information reflecting the state of backscattering at the refractive index boundary of the deep tissue of the fundus oculi Ef. This light may be simply referred to as “fundus reflected light of the signal light LS”.
  • the fundus reflection light of the signal light LS is guided in the reverse direction along the same path as the signal light LS toward the eye E to be collected on the end surface of the optical fiber 152a. Further, the fundus reflection light of the signal light LS enters the OCT unit 150 through the optical fiber 152 a and returns to the optical coupler 162 through the optical fiber 164.
  • the optical coupler 162 superimposes the signal light LS returned via the fundus oculi Ef and the reference light LR reflected by the reference mirror 174 to generate interference light LC.
  • the interference light LC is guided to the spectrometer 180 through an optical fiber 165 made of a single mode fiber or the like.
  • a spectrometer (spectrometer) 180 detects a spectral component of the interference light LC.
  • the spectrometer 180 includes a collimator lens 181, a diffraction grating 182, an imaging lens 183, and a CCD 184.
  • the diffraction grating 182 may be transmissive or reflective. Further, in place of the CCD 184, other light detection elements (line sensor or area sensor) such as CMOS may be used.
  • the interference light LC incident on the spectrometer 180 is converted into a parallel light beam by the collimator lens 181 and split (spectral decomposition) by the diffraction grating 182.
  • the split interference light LC is imaged on the imaging surface of the CCD 184 by the imaging lens 183.
  • the CCD 184 detects each spectral component of the separated interference light LC and converts it into electric charges.
  • the CCD 184 accumulates this electric charge and generates a detection signal. Further, the CCD 184 sends this detection signal to the arithmetic and control unit 200.
  • the “interference light detection means” is disposed, for example, between the scanning unit 141, the optical coupler 162, and an optical member on the optical path of the signal light LS (that is, between the optical coupler 162 and the fundus oculi Ef).
  • Optical member) and an optical member on the optical path of the reference light LR that is, an optical member disposed between the optical coupler 162 and the reference mirror 174.
  • the scanning unit 141, the optical coupler 162, It includes an interferometer having optical fibers 163 and 164 and a reference mirror 174, and further has a CCD 184.
  • a Michelson interferometer is used.
  • any type of interferometer such as a Mach-Zehnder type can be appropriately used.
  • the configuration of the arithmetic and control unit 200 will be described.
  • the arithmetic and control unit 200 analyzes the detection signal input from the CCD 184 and forms an OCT image of the fundus oculi Ef.
  • the arithmetic processing for this is the same as that of a conventional Fourier domain type optical image measurement device.
  • the arithmetic and control unit 200 controls each part of the fundus camera unit 1A and the OCT unit 150.
  • the arithmetic control device 200 controls the output of illumination light by the observation light source 101 and the imaging light source 103, and controls the insertion / retraction operation of the exciter filters 105 and 106 and the barrier filters 122 and 123 on the optical path. , Operation control of a display device such as LCD 140, movement control of illumination diaphragm 110 (control of aperture value), control of aperture value of photographing diaphragm 121, control of movement control of focus lens 124 (focus adjustment, magnification adjustment), etc. Do.
  • the arithmetic and control unit 200 controls the operation of the galvanometer mirrors 141A and 141B (see FIG. 3) and controls the scanning unit 141 to scan the signal light LS.
  • the arithmetic and control unit 200 controls the output of the low coherence light L0 by the low coherence light source 160, the movement control of the reference mirror 174, and the rotation operation of the density filter 173 (the amount of decrease in the light amount of the reference light LR). Control), charge accumulation time by CCD 184, charge accumulation timing, signal transmission timing, and the like.
  • the arithmetic and control unit 200 includes a microprocessor, a RAM, a ROM, a hard disk drive, a keyboard, a mouse, a display, a communication interface, and the like, like a conventional computer.
  • the hard disk drive stores a computer program for controlling the optical image measurement device 1.
  • the arithmetic and control unit 200 may include a dedicated circuit board that forms an OCT image based on a detection signal from the CCD 184.
  • Control system The configuration of the control system of the optical image measurement device 1 will be described with reference to FIG.
  • the imaging devices 10 and 12 are described separately from the fundus camera unit 1A, and the CCD 184 is described separately from the OCT unit 150.
  • the imaging devices 10 and 12 are connected to the fundus oculi.
  • the control system of the optical image measurement device 1 is configured around the control unit 210 of the arithmetic and control device 200.
  • the control unit 210 includes, for example, the aforementioned microprocessor, RAM, ROM, hard disk drive, communication interface, and the like.
  • the control unit 210 is provided with a main control unit 211 and a storage unit 212.
  • the main control unit 211 controls each part of the fundus camera unit 1 ⁇ / b> A, the OCT unit 150, and the arithmetic control device 200.
  • the main controller 211 controls the mirror drive mechanisms 241 and 242 to control the orientation (angle) of the galvano mirrors 141A and 141B. Thereby, the irradiation position of the signal light LS on the fundus oculi Ef is scanned.
  • the main control unit 211 controls the LCD 140 to display the internal fixation target.
  • the main control unit 211 controls the mirror driving mechanisms 241 and 242 and the LCD 140 simultaneously to cause the eye E to present the internal fixation target and scan the signal light LS.
  • the storage unit 212 stores various data. Examples of data stored in the storage unit 212 include image data of an OCT image, image data of a fundus oculi image Ef ′, and eye information to be examined.
  • the eye information includes, for example, various information related to the eye such as information about the subject such as patient ID and name, left eye / right eye identification information, and diagnosis / test results of the eye.
  • the main control unit 211 performs a process of writing data to the storage unit 212 and a process of reading data from the storage unit 212.
  • the storage unit 212 stores a computer program for executing an operation (flow chart) described later.
  • the main control unit 211 operates based on the computer program.
  • the image forming unit 220 forms tomographic image data of the fundus oculi Ef based on the detection signal from the CCD 184.
  • This image data forming process includes processes such as noise removal (noise reduction), filter processing, and FFT (Fast Fourier Transform), as in the conventional Fourier domain type OCT technique.
  • the image forming unit 220 includes, for example, the above-described circuit board and communication interface.
  • image data and “image” displayed based on the “image data” may be identified.
  • the image processing unit 230 performs various kinds of image processing and analysis processing on the fundus image (captured image of the fundus surface) acquired by the fundus camera unit 1A and the tomographic image formed by the image forming unit 220. For example, the image processing unit 230 executes various correction processes such as luminance correction and dispersion correction of the tomographic image.
  • the image processing unit 230 forms image data of a three-dimensional image of the fundus oculi Ef by executing an interpolation process for interpolating pixels between tomographic images formed by the image forming unit 220.
  • the image data of a three-dimensional image means image data in which pixel positions are defined by a three-dimensional coordinate system.
  • image data of a three-dimensional image there is image data composed of voxels arranged three-dimensionally. This image data is called volume data or voxel data.
  • the image processing unit 230 When displaying an image based on the volume data, the image processing unit 230 performs rendering processing (volume rendering, MIP (Maximum Intensity Projection), etc.) on the volume data, and views the image from a specific line-of-sight direction.
  • rendering processing volume rendering, MIP (Maximum Intensity Projection), etc.
  • MIP Maximum Intensity Projection
  • stack data of a plurality of tomographic images is image data of a three-dimensional image.
  • the stack data is image data obtained by three-dimensionally arranging a plurality of tomographic images obtained along a plurality of scanning lines based on the positional relationship of the scanning lines. That is, stack data is image data obtained by expressing a plurality of tomographic images originally defined by individual two-dimensional coordinate systems by one three-dimensional coordinate system (that is, by embedding them in one three-dimensional space). is there.
  • the image processing unit 230 can also perform various image processing and analysis processing on the three-dimensional image.
  • the image processing unit 230 having the above configuration includes, for example, a microprocessor, a RAM, a ROM, a hard disk drive, and the like. Further, a circuit board that specializes in predetermined image processing and analysis processing may be included.
  • the image forming unit 220 (and the image processing unit 230) functions as an example of the “tomographic image forming unit” according to the present invention.
  • the abnormality detection unit 250 detects whether or not an abnormality has occurred in the tomographic image with respect to the image data of the tomographic image formed by the image forming unit 220.
  • an abnormality in a tomographic image means that, for example, a portion to be imaged (specifically, fundus oculi Ef) moves from the vicinity of the center of the tomographic image due to the movement of the eye E to be examined. It means that the image is taken toward the upper end or the lower end.
  • the upper end of the tomographic image indicates a shallow position in the depth direction (z direction).
  • the lower end of the tomographic image indicates a deep position in the depth direction (z direction).
  • the abnormality detection unit 250 grasps the position of the image to be inspected based on the luminance value of each pixel included in the tomographic image. Further, the abnormality detection unit 250 obtains a deviation from the center of the image and compares the deviation with a predetermined threshold value. When it is determined that this deviation is larger than the threshold value, the abnormality detection unit 250 assumes that an abnormality has occurred in the tomographic image.
  • the method for obtaining the position of the image is not particularly limited, and other methods may be used.
  • an abnormality is detected based on the position of the image.
  • an abnormality may be detected based on another image state.
  • an abnormality can be detected based on image disturbance due to noise.
  • the abnormality detection unit 250 corresponds to the “abnormality detection unit” in the present invention.
  • the user interface 240 includes a display unit 240A and an operation unit 240B.
  • the display unit 240 ⁇ / b> A includes the touch panel monitor 11. Furthermore, a display of the arithmetic and control unit 200 may be included in the display unit 240A.
  • the operation unit 240B includes an input device and an operation device such as a keyboard and a mouse.
  • the operation unit 240 ⁇ / b> B includes various input devices and operation devices provided on the surface of the housing of the optical image measurement device 1 and on the outside.
  • the display unit 240A and the operation unit 240B do not need to be configured as individual devices.
  • a device in which the display unit 240A and the operation unit 240B are integrated, such as a touch panel LCD, can be used.
  • 4A and 4B show an example of a scanning mode of the signal light LS for forming a tomographic image of the fundus oculi Ef.
  • 4A shows an example of a scanning mode of the signal light LS when the fundus oculi Ef is viewed from the direction in which the signal light LS enters the eye E (that is, when the + z direction is viewed from the ⁇ z direction in FIG. 1).
  • FIG. 4B shows an example of an arrangement mode of scanning points (positions where image measurement is performed) on each scanning line on the fundus oculi Ef.
  • the signal light LS is scanned in a rectangular scanning region R set in advance.
  • a plurality (m) of scanning lines R1 to Rm extending in the x direction are set.
  • each scanning line Ri is referred to as the “main scanning direction”, and the direction orthogonal thereto is referred to as the “sub-scanning direction”. Therefore, scanning of the signal light LS in the main scanning direction is executed by changing the direction of the reflecting surface of the galvano mirror 141A. A cross section corresponding to each scanning line Ri corresponds to one frame. Further, scanning in the sub-scanning direction is executed by changing the direction of the reflecting surface of the galvano mirror 141B.
  • each scanning line Ri As shown in FIG. 4B, a plurality (n) of scanning points Ri1 to Rin are set in advance.
  • the control unit 210 first controls the galvanometer mirrors 141A and 141B, and sets the incidence target of the signal light LS on the fundus oculi Ef to the scanning start position on the first scanning line R1.
  • the control unit 210 controls the low coherence light source 160 to cause the low coherence light L0 to flash and cause the signal light LS to enter the scan start position RS.
  • the CCD 184 receives the interference light LC based on the fundus reflection light at the scanning start position RS of the signal light LS and outputs a detection signal to the control unit 210.
  • control unit 210 controls the galvanometer mirror 141A, scans the signal light LS in the main scanning direction, sets the incident target at the scanning point R12, flashes the low coherence light L0, and scans the scanning point.
  • the signal light LS is incident on R12.
  • the CCD 184 receives the interference light LC based on the fundus reflection light at the scanning point R12 of the signal light LS, and outputs a detection signal to the control unit 210.
  • control unit 210 sequentially moves the incident target of the signal light LS to the scanning points R13, R14,..., R1 (n ⁇ 1), R1n, and flashes the low coherence light L0 at each scanning point.
  • a detection signal output from the CCD 184 corresponding to the interference light LC at each scanning point is acquired. Thereby, the scanning and detection corresponding to the first frame is completed.
  • control unit 210 controls the OCT unit 150 and the galvanometer mirrors 141A and 141B described above, and causes the OCT unit 150 to detect interference light.
  • the image forming unit 220 forms a tomographic image of the fundus oculi Ef along the scanning line R1 (main scanning direction) (details will be described later). .
  • the abnormality detection unit 250 detects an abnormality of the tomographic image based on the position of the eye E to be examined (more specifically, the position of the fundus oculi Ef) depicted in the tomographic image formed by the image forming unit 220. That is, the abnormality detection unit 250 determines that an abnormality has occurred in the tomographic image when the fundus oculi Ef is located near the upper end or the lower end of the tomographic image.
  • the control unit 210 controls the OCT unit 150 and the galvanometer mirrors 141A and 141B so that the tomographic image of the fundus oculi Ef along the scanning line R1 is formed again.
  • the arithmetic and control unit 200 causes each unit to perform operations such as generation of a tomographic image on the scanning line R2, detection of abnormality in the tomographic image, redetection of interference light, and re-formation of the tomographic image.
  • each scanning line Ri corresponds to “every time the tomographic image for a predetermined frame is obtained”.
  • the “predetermined number of frames” is “1 frame”, but may be an arbitrary number of 2 frames or more (for example, “10 frames”).
  • the symbol RE on the scanning line Rm is a scanning end position corresponding to the scanning point Rmn.
  • the detection signal corresponding to the scanning point Rij may be represented as Dij.
  • the control unit 210 stores the position of the scanning line Ri and the position of the scanning point Rij (coordinates in the xy coordinate system) as information indicating the operation content. It has become.
  • This stored content (scanning position information) is used in an image forming process or the like as in the prior art.
  • the abnormality detection unit 250 receives a tomographic image input on each scanning line Ri formed by the image forming unit 220. Then, the abnormality detection unit 250 extracts nine images in the depth direction among the images in the depth direction at each of the scanning points Ri1 to Rin constituting the tomographic image. The abnormality detection unit 250 stores in advance the positions of these nine scanning points (that is, what number of scanning points are extracted). In order to detect the occurrence of an abnormality in the tomographic image, the positions of these scanning points are preferably distributed on the average in the tomographic image.
  • the abnormality detection unit 250 obtains the luminance value of each pixel included in the image in the depth direction at these nine scanning points. Further, the abnormality detection unit 250 determines that an image in the depth direction at the scanning point is abnormal when a portion having a high luminance value exists above or below the tomographic image. Then, the abnormality detection unit 250 notifies the control unit 210 that an abnormality has been detected in the tomographic image when abnormality is detected in a predetermined number or more of the images in the depth direction along these nine scanning points. I do.
  • the abnormality detection unit 250 when no abnormality is detected in a predetermined number or more of the images at these nine scanning points, the abnormality detection unit 250 notifies the control unit 210 that the tomographic image is normal.
  • the predetermined number may be any one of 1 to 9. In order to accurately detect the occurrence of an abnormality in the tomographic image, it is preferable to set the predetermined number small.
  • nine scans dispersed on the screen are averaged in order to make the detection accuracy of the tomographic image abnormality constant, reduce the load of the abnormality detection process, and improve the processing speed.
  • An image abnormality is detected using an image in the depth direction at the point, but the number of scanning points used for this processing is preferably determined based on the accuracy of abnormality detection, the processing speed, and the like. For example, if it is desired to improve the processing speed, abnormality detection may be performed using a smaller number of scanning points. If abnormality detection is performed using all scanning points, abnormality detection with higher accuracy can be performed.
  • FIG. 5 represents an example of a usage pattern of the optical image measurement device 1 according to the present embodiment.
  • the eye E is placed at a predetermined measurement position (a position facing the objective lens 113), and the eye E and the apparatus are aligned (S1).
  • the main control unit 211 next focuses on the eye E (S2).
  • the operator operates the operation unit 240B to request the start of inspection (S3).
  • the main control unit 211 controls the LCD 140 as necessary to present the internal fixation target to the eye E.
  • the image forming unit 220 collects detection signals output from the CCD 184, and obtains a spectrum intensity distribution based on the detection signals. Further, the image forming unit 220 images the form in the depth direction (z direction) of the fundus oculi Ef by Fourier transforming the spectral intensity distribution of the interference light LC using a Fourier domain OCT technique, and forms a tomographic image. (S7).
  • the abnormality detection unit 250 acquires images in the depth direction at nine scanning points from the image data of the tomographic image formed by the image forming unit 220. Further, the abnormality detection unit 250 detects whether or not an abnormality has occurred in the tomographic image by obtaining the luminance values of the pixels included in the nine images in the depth direction (S8).
  • the main control unit 211 holds the value of i as it is, stops driving the galvanometer mirrors 141A and 141B, and returns to Step 6 (S10).
  • step 8 when repetition of steps 6, 7, 8, and 10 starts and a loop is entered, although not shown, it is possible to skip step 8 and proceed to step 9 in response to input from the operator. is there.
  • a step for counting the number of repetitions is provided between step 7 and step 8, and when the number of repetitions reaches a predetermined number, step 8 is skipped and the process proceeds to step 9. Also good.
  • the main control unit 211 determines whether i> m (where m is the number of all scanning lines) (S11). If i> m (Yes in S11), the process proceeds to Step 12. If i ⁇ m (No in S11), the process returns to Step 5.
  • step 12 the image processing unit 230 generates a three-dimensional image based on the formed m tomographic images. Then, the control unit 210 causes the display unit 240A to display the three-dimensional image generated by the image processing unit 230 (S12).
  • the optical image measuring device 1 forms a tomographic image following the scanning of the eye E while detecting the direction of the galvano mirror while changing the direction of the galvanometer mirror, and detects the interference light. It has the structure which detects sequentially whether it has generate
  • the optical image measurement device 1 can stop changing the orientation of the galvanometer mirrors 141A and 141B in that state, and perform scanning again from the scanning position corresponding to the tomographic image.
  • the optical image measurement device 1 since an abnormality of the tomographic image can be confirmed every frame, the abnormality can be detected quickly.
  • the optical image measurement device 1 is configured to stop changing the orientation of the galvano mirrors 141A and 141B when an abnormality occurs and scan again from that position. Therefore, after all the scanning of the eye E and the image formation are completed, there is no need to search for the position where the abnormality has occurred in order to re-form the tomographic image of the place where the abnormality has occurred. It becomes possible to deal with it quickly.
  • scanning is automatically started again from the scanning position corresponding to the tomographic image in which the abnormality has occurred. Scanning may be started manually.
  • the abnormality detection unit 250 detects an abnormality in the tomographic image.
  • the control unit 210 controls the mirror driving mechanisms 241 and 242 to stop driving the galvano mirrors 141A and 141B. Further, the control unit 210 stops the inspection by stopping the operations of the OCT unit 150, the image forming unit 220, and the abnormality detection unit 250 in this state.
  • control unit 210 waits for an input from the operation unit 240B by the operator, and in response to the operator issuing an instruction to restart the inspection using the operation unit 240B, the galvanometer mirror 141A and The inspection can be resumed from the stop position 141B.
  • the optical image measurement device is configured to stop changing the orientation of the galvanometer mirror and wait for the operator's instruction as it is when a tomographic image abnormality is detected.
  • abnormality detection is performed for each frame (that is, for each tomographic image), but abnormality is performed at a rate of a plurality of frames, for example, for every 10 frames (that is, for every 10 tomographic images). Detection may be performed.
  • the control unit 210 has a counter. This counter counts the number of tomographic images formed. When the counted number reaches ten, the control unit 210 transmits a control command to the abnormality detection unit 250 so that abnormality detection is performed on the tenth tomographic image. When the control unit 210 transmits a command for detecting an abnormality, the control unit 210 resets the counter to 0 and counts 10 sheets again. In this way, the abnormality detection unit 250 receives the control command and performs abnormality detection on every ten tomographic images.
  • the number of frames for determining the number of frames for which abnormality detection is performed may be a predetermined number or a number determined by receiving an input of the number of frames requested by the operator.
  • the abnormality detection is performed every plural frames, and the processing time can be shortened as compared with the case where the abnormality detection is performed every frame.
  • a second embodiment of the optical image measurement device according to the present invention will be described.
  • scanning of an object to be measured, detection of interference light, and image formation are performed in parallel.
  • scanning of an object to be measured, detection of interference light, control of image formation, and operation will be described.
  • control unit 210 causes the OCT unit 150 to sequentially detect the interference light based on the scanning along each of the scanning lines R1 to Rm. Further, the control unit 210 causes the image forming unit 220 to sequentially form tomographic images (acquisition of spectrum intensity distribution, Fourier transform, etc.) based on detection results corresponding to the scanning lines R1 to Rm.
  • control unit 210 causes the detection of the interference light by the OCT unit 150 and the formation of the tomographic image by the image forming unit 220 to be executed independently of each other.
  • the sequence diagram shown in FIG. 6 is an example of an on / off state (a state of whether or not the functional unit is operating) corresponding to the passage of time for each functional unit of the optical image measurement device according to the present embodiment. Represents.
  • the flowchart shown in FIG. 7 represents an example of the operation of each functional unit in the on / off state.
  • the control unit 210 receives an inspection start input from the operator, drives the galvanometer mirrors 141A and 141B to sequentially change the direction, and sequentially scans the fundus oculi Ef along the scanning line Ri, and causes the OCT unit 150 to emit interference light. Is detected (S001). Detection results in the OCT unit 150 are sequentially transmitted to the image forming unit 220 via the control unit 210.
  • the image forming unit 220 receives the detection results sequentially transmitted from the OCT unit 150 and sequentially forms tomographic images along the scanning line Ri. Then, the image forming unit 220 sequentially transmits sequentially formed tomographic images to the image processing unit 230 via the control unit 210.
  • the image processing unit 230 receives the image data of the tomographic image along each scanning line Ri, and generates a three-dimensional image based on these m pieces of image data.
  • a partial 3D image may be sequentially generated using a tomographic image in which no abnormality is detected.
  • the tomographic image forming process by the image forming unit 220 takes more time than the adjustment of the galvanometer mirrors 141A and 141B and the detection of the interference light by the OCT unit, as shown in FIG.
  • the total time required for adjusting the mirrors 141A and 141B and detecting the interference light corresponding to all the frames by the OCT unit 150 is larger than the total time required for forming the tomographic images corresponding to all the frames by the image forming unit 220. It will be a short time.
  • the eye E is placed at a predetermined measurement position (a position facing the objective lens 113), and the eye E and the apparatus are aligned.
  • the main control unit 211 performs focusing on the eye E.
  • the operator operates the operation unit 240B to request the start of the inspection.
  • the main control unit 211 controls the low-coherence light source 160, the CCD 184, and the like, and also controls the mirror drive mechanisms 241 and 242 to adjust the orientation of the galvano mirrors 141A and 141B to the position of the scanning point Ri1 (S102). .
  • the main control unit 211 determines whether i> m (where m is the number of all scanning lines) (S105). If i> m (Yes in S105), the direction change of the galvanometer mirrors 141A and 141B and the detection of the interference light are terminated. If i ⁇ m, the process returns to step 102 (No in S105). Thereby, the interference light corresponding to all the scanning lines (frames) can be detected.
  • the image forming unit 220 collects detection signals of the fundus component corresponding to the scanning line Rh output from the CCD 184 (S202), obtains a spectrum intensity distribution for the detection signals, and uses a Fourier domain OCT technique. Is used to image the form of the eye E in the depth direction (z direction) by Fourier transforming the spectral intensity distribution of the interference light, and a tomographic image along the scanning line Rh is formed (S203).
  • the main control unit 211 determines whether h> m. If h> m (Yes in S205), the inspection is terminated. If h ⁇ m (No in S205), the process returns to step 202. Thereby, tomographic images corresponding to all scanning lines (frames) are acquired.
  • the optical image measurement device 1 performs scanning of the fundus oculi Ef and detection of interference light while sequentially changing the direction of the galvanometer mirror, and in parallel with this, every time a detection result for one frame is obtained, 1 is an optical image measurement device having a configuration for performing image formation based thereon.
  • optical image measurement device 1 it is possible to perform the spectrum analysis and image formation that require high processing capability, as well as scanning of the eye E and detection of interference light that do not require much processing capability. it can. Thereby, the processing capability of the arithmetic and control unit 200 can be fully utilized. Therefore, the inspection can be performed quickly and the inspection time can be shortened.
  • the abnormality detection described in the first embodiment is not performed.
  • the abnormality may be detected after the tomographic image is formed.
  • the abnormality detection unit 250 may sequentially receive the tomographic images along the scanning line Ri formed by the image forming unit 220 and detect the abnormality of the tomographic images in the order received.
  • the optical image measurement device 1 has a detection result for one frame in parallel with the scanning of the fundus oculi Ef and the detection of interference light while sequentially changing the orientation of the galvanometer mirror. Each time it is obtained, it is configured to perform image formation and abnormality detection based on the detection result.
  • an abnormality can be detected before the formation of all the tomographic images is completed, so that a rapid abnormality can be detected.
  • the inspection can be stopped by the operator's judgment and the inspection can be started again.
  • the abnormality detection unit 250 may detect an abnormality for the tomographic image formed by the image forming unit 220 every predetermined number of frames, for example, every 10 frames.
  • control unit 210 stores a number of every 10 sheets in advance. Further, the control unit 210 counts the number of frames corresponding to the tomographic image formed by the image forming unit 220. When counting only 10 frames, the control unit 210 controls the abnormality detection unit 250 to perform abnormality detection on the tomographic image.
  • the optical image measurement device 1 has a detection result for one frame in parallel with the scanning of the fundus oculi Ef and the detection of interference light while sequentially changing the orientation of the galvanometer mirror. Each time it is obtained, an image is formed based on the detection result, and an abnormality is detected every predetermined frame.
  • the abnormality detection unit 250 detects abnormality for the tomographic image formed by the image forming unit 220 every several sheets (for example, every 10 sheets), and when an abnormality is detected, 10 sheets before and after the abnormality are detected. It may be configured to detect an abnormality for a tomographic image.
  • the control unit 210 counts the number of tomographic images formed by the image forming unit 220, and when it counts ten, the abnormality detection unit 250 applies the tomographic image to the tomographic image. An abnormality is detected, and when an abnormality is detected, the abnormality detection unit 250 performs abnormality detection for 10 sheets counted before the tomographic image in which the abnormality is detected. What is necessary is just to make it the structure which performs abnormality detection of the tomographic image for ten sheets after an image.
  • the optical image measurement device 1 has a detection result for one frame in parallel with the scanning of the fundus oculi Ef and the detection of interference light while sequentially changing the orientation of the galvanometer mirror. Image formation based on the detection result and detection of tomographic image abnormality every predetermined frame each time it is obtained, and when an abnormality is detected, the predetermined frame before and after the tomographic image in which the abnormality is detected In this configuration, anomaly detection of a number of tomographic images is performed.
  • the direction of the galvanometer mirror when scanning the scanning line corresponding to the tomographic image in which the abnormality is detected is acquired by the number of frames, and the actual fundus corresponding to the acquired direction
  • the position may be scanned again by driving the galvanometer mirrors 141A and 141B and changing the direction so that the position is scanned.
  • the control unit 210 acquires the number of frames from the scanning frame being performed at the time when the abnormality is detected to the tomographic image frame where the abnormality is detected.
  • the control unit 210 knows how many frames of image formation have been completed up to the tomographic image in which an abnormality has been detected, and furthermore, how many frames have been scanned.
  • the target number of frames can be obtained by subtracting the number of frames from the number of existing frames to the tomographic image in which an abnormality is detected.
  • the control unit 210 stops changing the direction of the galvano mirrors 141A and 141B, and further returns the galvano mirrors 141A and 141B to the previous direction by the number of frames obtained from the stopped direction.
  • the controller 210 moves the galvanometer mirror 141B by a predetermined angle, thereby changing the orientation of the galvanometer mirror in a direction orthogonal to each scan line, and aligning the direction so as to perform scanning along each scan line. Then, considering that the number of scanning lines scanned, that is, the number of frames corresponds to the number of times the direction of the galvano mirror 141B is changed, the galvano mirror 141B is obtained by multiplying the number of times by the predetermined angle described above. You can see the angle of movement.
  • the control unit 210 returns the galvanometer mirror 141B to the determined direction, and restarts scanning from the scanning along the scanning line in the direction.
  • the optical image measurement device obtains the position of the galvanometer mirror when scanning corresponding to the tomographic image in which an abnormality has been detected. Further, the optical image measurement device stops driving the galvano mirror, changes the direction of the galvano mirror to the obtained position, and restarts detection of the interference light from the changed direction of the galvano mirror.
  • the position of the scan can be obtained based on a fundus image captured while performing a scan corresponding to the tomographic image in which the abnormality is detected. Furthermore, the galvanometer mirrors 141A and 141B are driven based on the current fundus image so that the obtained position is scanned, and the direction can be changed to perform scanning again.
  • a fundus monitor that monitors the fundus image in real time (moving image observation) during scanning is required.
  • the fundus monitor detects a fundus image of the fundus oculi Ef based on illumination light including a near-infrared wavelength from the observation light source 101 output from the imaging device 10 while detecting interference light in a predetermined frame in real time. Is to get at the rate.
  • the position of the current scan with respect to the generated fundus image can be obtained.
  • the control unit 210 has 2D coordinates in the main scanning direction (x direction) and the sub scanning direction (y direction) on the fundus. Since these coordinates are determined based on the fundus feature points (specifically, fovea, macula, blood vessel bifurcation, diseased part, etc.), the fundus moves within the frame of the fundus image that is formed. However, the coordinates for the fundus itself do not change.
  • control unit 210 When the control unit 210 forms a tomographic image corresponding to the position of an arbitrary scanning line, it indicates which position on the fundus image the signal light scanning position with respect to the fundus oculi Ef corresponds to. The coordinate information shown is generated. Then, the control unit 210 sequentially stores the fundus image and the coordinate information at the time of scanning corresponding to the tomographic image in the storage unit 212 in association with the identification information of the tomographic image.
  • the control unit 210 When the control unit 210 receives a notification of abnormality detection from the abnormality detection unit 250, the control unit 210 acquires identification information of the tomographic image in which the abnormality has occurred. Further, the control unit 210 searches the storage unit 212 based on the acquired identification information, and acquires a fundus image generated at the time of scanning a tomographic image in which an abnormality has occurred. Then, the control unit 210 acquires the coordinates of the scanning position on the fundus based on the coordinate information of the fundus image. Then, the control unit 210 obtains a position corresponding to the coordinates on the current fundus image.
  • control unit 210 drives the galvanometer mirrors 141A and 141B based on the positions, and changes the orientation of the galvanometer mirrors 141A and 141B to the direction corresponding to the coordinates in the current fundus image. Then, the inspection is started again from the direction of the galvanometer mirrors 141A and 141B.
  • the optical image measurement device 1 monitors the fundus image of the fundus oculi Ef at a predetermined frame rate during detection of interference light, and further interferes with a tomographic image in which an abnormality is detected. Based on the fundus image at the time when the light was detected, the position in the fundus image of the tomographic image in which the abnormality was detected is acquired, the position in the current fundus image corresponding to the acquired position is specified, and the In this configuration, the orientation of the galvanometer mirror is determined so as to scan the specified position.
  • Optical Image Measuring Device 1A Fundus Camera Unit 140 LCD 141 Scanning unit 141A, 141B Galvano mirror 150 OCT unit 160 Low coherence light source 162 Optical coupler 174 Reference mirror 180 Spectrometer 184 CCD 200 Arithmetic Control Unit 210 Control Unit 220 Image Forming Unit 230 Image Processing Unit 240 User Interface 240A Display Unit 240B Operation Units 241 and 242 Mirror Drive Mechanism 250 Abnormality Detection Unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Disclosed is an optical image measuring device which enables detection of interference light and formation of a tomogram in parallel with each other. The device is provided with a control unit (210) for scanning the eye (E) to be examined with a signal light beam while changing the directions of galvanometer mirrors (141A, 141B), an OCT unit (150) for detecting interference light, an image forming unit (220) for forming a tomogram of the eye (E) to be e examined, and an abnormality detecting unit(250) for detecting an abnormality of the tomogram, if any, on the basis of the image state of the formed tomogram. The abnormality detecting unit (250) performs abnormality detection each time a predetermined number of frames of the tomogram are obtained. If an abnormality is detected, the control unit (210) stops the change of the directions of the galvanometer mirrors (141A, 141B), and the OCT unit (150) resumes the detection of interference light from the state in which the directions are the ones when the change is stopped.

Description

光画像計測装置及びその制御方法Optical image measuring device and control method thereof
 この発明は、被測定物体を光ビームで走査し、その反射光の干渉を用いて被測定物体の画像を形成する光画像計測装置及びその制御方法に関する。 The present invention relates to an optical image measuring apparatus that scans a measured object with a light beam and forms an image of the measured object using interference of reflected light, and a control method thereof.
 近年、レーザー光源等からの光ビームを用いて被測定物体の表面形態や内部形態を表す画像を形成する光画像計測技術が注目を集めている。この光画像計測技術は、X線CT装置のような人体に対する侵襲性を持たないことから、特に医用分野における応用の展開が期待されている。 In recent years, optical image measurement technology that forms an image representing the surface form and internal form of an object to be measured using a light beam from a laser light source or the like has attracted attention. Since this optical image measurement technique does not have invasiveness to the human body like an X-ray CT apparatus, it is expected to be applied particularly in the medical field.
 特許文献1には、光画像計測技術を適用した装置が開示されている。この装置は、測定腕が回転式転向鏡(ガルバノミラー)により物体を走査し、参照腕に参照ミラーが設置されており、さらにその出口では、計測腕及び参照腕からの光束の干渉によって現れる光の強度が分光器で分析されるという干渉器が利用されていて、参照腕には参照光光束位相を不連続な値で段階的に変える装置が設けられた構成である。 Patent Document 1 discloses an apparatus to which an optical image measurement technique is applied. In this apparatus, the measuring arm scans an object with a rotating turning mirror (galvanomirror), a reference mirror is installed on the reference arm, and light that appears due to interference of light beams from the measuring arm and the reference arm at the exit. An interferometer in which the intensity of the light is analyzed by a spectroscope is used, and the reference arm is provided with a device for changing the phase of the reference light beam stepwise by a discontinuous value.
 特許文献1の光画像計測装置は、いわゆる「フーリエドメインOCT(Fourier Domain Optical Coherence Tomography)」の手法を用いるものである。すなわち、被測定物体に対して低コヒーレンス光のビームを照射し、その反射光と参照光との干渉光のスペクトル強度分布を求め、それをフーリエ変換することにより、被測定物体の深度方向(z方向)の形態を画像化するものである。 The optical image measuring apparatus of Patent Document 1 uses a so-called “Fourier Domain OCT (Fourier Domain Optical Coherence Tomography)” technique. That is, by irradiating the measured object with a beam of low coherence light, obtaining the spectral intensity distribution of the interference light between the reflected light and the reference light, and performing Fourier transform on the spectral intensity distribution, the depth direction (z Direction) is imaged.
 更に、特許文献1に記載の光画像計測装置は、光ビーム(信号光)を走査するガルバノミラーを備え、それにより被測定物体の所望の測定対象領域の画像を形成できるようになっている。なお、この光画像計測装置においては、深度方向(z方向)に直交する1方向(x方向)のみ光ビームを走査するようになっているので、形成される画像は、光ビームの走査方向(x方向)に沿った深度方向の2次元断層画像となる。 Furthermore, the optical image measurement device described in Patent Document 1 includes a galvanometer mirror that scans a light beam (signal light), thereby forming an image of a desired measurement target region of the object to be measured. In this optical image measuring device, since the light beam is scanned only in one direction (x direction) orthogonal to the depth direction (z direction), the image to be formed is in the scanning direction of the light beam ( It becomes a two-dimensional tomographic image in the depth direction along (x direction).
 特許文献2には、信号光を走査方向(x方向)及び垂直方向(y方向:x方向及びz方向に直交する方向)に走査することにより走査方向(x方向)の2次元断層画像を複数形成し、これら複数の断層画像に基づいて測定範囲の3次元の断層情報を取得して画像化する技術が開示されている。この3次元画像化としては、例えば、複数の断層画像を垂直方向(y方向)に並べて表示させる方法や(スタックデータなどと呼ばれる)、複数の断層画像にレンダリング処理を施して3次元画像を形成する方法などが考えられる。 In Patent Document 2, a plurality of two-dimensional tomographic images in the scanning direction (x direction) are scanned by scanning the signal light in the scanning direction (x direction) and the vertical direction (y direction: a direction orthogonal to the x direction and the z direction). A technique for forming and obtaining three-dimensional tomographic information of a measurement range based on the plurality of tomographic images and imaging it is disclosed. As this three-dimensional imaging, for example, a method of displaying a plurality of tomographic images side by side in the vertical direction (y direction) (called stack data or the like), or rendering a plurality of tomographic images to form a three-dimensional image Possible ways to do this.
 特許文献3、4には、他のタイプの光画像計測装置が開示されている。特許文献3には、被測定物体に照射される光の波長を走査し、各波長の光の反射光と照射光とを重ね合わせて得られる干渉光に基づいてスペクトル強度分布を取得し、それに対してフーリエ変換を施すことにより被測定物体の形態を画像化する光画像計測装置が記載されている。このような光画像計測装置は、スウェプトソース(Swept Source)タイプなどと呼ばれる。 Patent Documents 3 and 4 disclose other types of optical image measurement devices. Patent Document 3 scans the wavelength of light irradiated to an object to be measured, acquires a spectral intensity distribution based on interference light obtained by superimposing reflected light and irradiated light of each wavelength, On the other hand, there is described an optical image measurement device that images the form of an object to be measured by performing Fourier transform on the object. Such an optical image measurement device is called a swept source type.
 また、特許文献4には、所定のビーム径を有する光を被測定物体に照射し、その反射光と参照光とを重ね合わせて得られる干渉光の成分を解析することにより、光の進行方向に直交する断面における形態を表す画像を形成する光画像計測装置が記載されている。このような光画像計測装置は、フルフィールド(full-field)タイプ、或いはエンフェイス(en-face)タイプなどと呼ばれる。 In Patent Document 4, the traveling direction of light is obtained by irradiating the object to be measured with light having a predetermined beam diameter, and analyzing the component of interference light obtained by superimposing the reflected light and the reference light. Describes an optical image measuring device that forms an image representing a form in a cross section orthogonal to the shape. Such an optical image measuring device is called a full-field type or an en-face type.
特開平11-325849号公報Japanese Patent Laid-Open No. 11-325849 特開2002-139421号公報JP 2002-139421 A 特開2007-24677号公報JP 2007-24677 A 特開2006-153838号公報JP 2006-153838 A
 しかし、特許文献1乃至特許文献4に記載されているような従来の光画像計測装置では、3次元画像を作成するために、必要とされる全てのフレーム数分の干渉光の検出を行った後{例えば、B-スキャンの干渉スペクトルを全て(128フレームであれば128フレーム分の干渉スペクトル)撮り込んだ後}、その検出結果に対しフーリエ変換などの画像処理を行うことで画像形成を行っていた。このように、必要とされるフレーム数分の干渉光の検出及び画像形成を逐次的に行っていたため、前の処理段階(干渉光の検出)が終了するまで次の処理段階(画像形成)を実施することができなかった。したがって、従来では、3次元画像を生成するのに長い処理時間が掛っていた。また、各段階を逐次的に行うため、装置のリソースの有効活用が困難であった。 However, in the conventional optical image measurement devices as described in Patent Documents 1 to 4, detection of interference light for all the required number of frames was performed in order to create a three-dimensional image. Later {for example, after capturing all the B-scan interference spectrum (128 frames if 128 frames)}, image processing such as Fourier transform is performed on the detection results. It was. As described above, since the interference light detection and image formation for the required number of frames are sequentially performed, the next processing stage (image formation) is performed until the previous processing stage (interference light detection) is completed. Could not be implemented. Therefore, conventionally, it takes a long processing time to generate a three-dimensional image. In addition, since each stage is performed sequentially, it is difficult to effectively use the resources of the apparatus.
 また従来は、全てのフレームにおける干渉光の検出を行ってから、全てのフレームに対応する断層画像を形成し、その後で異常検出を行っていた。このため、断層画像に異常が発生した場合には、最初から被測定物体の測定をやり直さなければならなかった。 Conventionally, after detecting interference light in all frames, a tomographic image corresponding to all frames is formed, and thereafter, abnormality detection is performed. For this reason, when an abnormality occurs in the tomographic image, the measurement of the object to be measured has to be performed again from the beginning.
 この発明は、このような事情に鑑みてなされたもので、その目的は、全フレーム分に相当する干渉光の検出の完了を待たずに画像形成を行うことにより、3D画像の形成処理時間の短縮を図ることが可能な光画像計測装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to reduce the processing time for 3D image formation by performing image formation without waiting for completion of detection of interference light corresponding to all frames. An object of the present invention is to provide an optical image measurement device that can be shortened.
 上記目的を達成するために、請求項1に記載の光画像計測装置は、低コヒーレンス光を信号光と参照光とに分割し、ガルバノミラーの向きを変更し被測定物体に対する前記信号光の照射位置を変更しながら前記被測定物体に対して前記信号光を走査しつつ前記被測定物体に前記信号光を照射し、前記被測定物体で反射した前記信号光と参照光路を経由した前記参照光とを重畳させて干渉光を生成し、前記干渉光を検出する干渉光検出手段と、前記干渉光検出手段による1フレーム分の走査において得られた検出結果から前記被測定物体の断層画像を形成する断層画像形成手段と、前記形成された断層画像の画像状態を基に前記断層画像の異常を検出する異常検出手段と、を備え、前記断層画像形成手段は、前記干渉光検出手段による1フレーム分の前記干渉光の検出結果が得られる毎に順次断層画像を形成し、前記異常検出手段は、所定フレーム分の前記断層画像が得られる度毎に前記異常検出を行い、前記異常が検出されたときに、前記干渉光検出手段は、前記ガルバノミラーの向きの変更を停止し、前記停止した前記向きから前記干渉光の検出を再度開始する、ことを特徴とするものである。 In order to achieve the above object, an optical image measurement device according to claim 1 divides low-coherence light into signal light and reference light, changes the direction of a galvanometer mirror, and irradiates the object to be measured with the signal light. Scanning the signal light with respect to the object to be measured while changing the position, irradiating the signal light to the object to be measured and reflecting the signal light reflected by the object to be measured and the reference light via the reference light path To generate interference light, and form a tomographic image of the object to be measured from the interference light detection means for detecting the interference light and the detection result obtained by scanning one frame by the interference light detection means And a tomographic image forming means for detecting an abnormality of the tomographic image based on an image state of the formed tomographic image, wherein the tomographic image forming means has one frame by the interference light detecting means. The tomographic image is sequentially formed every time the interference light detection results for the predetermined number of frames are obtained, and the abnormality detecting means performs the abnormality detection every time the tomographic image for a predetermined frame is obtained, and the abnormality is detected. Then, the interference light detection means stops changing the direction of the galvanometer mirror, and restarts the detection of the interference light from the stopped direction.
 請求項2に記載の発明は、請求項1に記載の光画像計測装置であって、前記異常検出手段は、前記断層画像に描出されている前記被測定物体の位置を基に異常検出を行うことを特徴とするものである。 A second aspect of the present invention is the optical image measurement device according to the first aspect, wherein the abnormality detecting means detects an abnormality based on a position of the measured object depicted in the tomographic image. It is characterized by this.
 請求項3に記載の光画像計測装置は、低コヒーレンス光を信号光と参照光とに分割し、ガルバノミラーの向きを変更し被測定物体に対する前記信号光の照射位置を変更しながら前記被測定物体に対して前記信号光を走査しつつ前記被測定物体に前記信号光を照射し、前記被測定物体で反射した前記信号光と参照光路を経由した前記参照光とを重畳させて干渉光を生成し、前記干渉光を検出する干渉光検出手段と、前記干渉光検出手段による1フレーム分の走査によって得られた検出結果から前記被測定物体の断層画像を形成する断層画像形成手段と、を備えた光画像計測装置であって、前記干渉光検出手段は、順次前記ガルバノミラーの向きを変更させながら前記干渉光の検出を行い、前記断層画像形成手段は、前記干渉光検出手段による前記干渉光の検出と並行して、1フレーム分の検出結果が得られる度毎に断層画像の形成を行う、ことを特徴とするものである。 The optical image measurement apparatus according to claim 3, wherein the low-coherence light is divided into signal light and reference light, the orientation of the galvano mirror is changed, and the irradiation position of the signal light on the object to be measured is changed. The signal light is irradiated onto the object to be measured while scanning the signal light with respect to the object, and the signal light reflected by the object to be measured and the reference light passing through a reference light path are superimposed to generate interference light. Interference light detecting means for generating and detecting the interference light, and tomographic image forming means for forming a tomographic image of the measured object from a detection result obtained by scanning one frame by the interference light detecting means, The interference light detection means detects the interference light while sequentially changing the direction of the galvanometer mirror, and the tomographic image formation means is based on the interference light detection means. In parallel with the detection of serial interference light, effect formation of a tomographic image for each of the one frame of the detection result is obtained, it is characterized in.
 請求項4に記載の発明は、請求項3に記載の光画像計測装置であって、前記形成された断層画像の画像状態を基に前記断層画像の異常を検出する異常検出手段、をさらに備え、前記干渉光検出手段は、前記異常が検出されたときに、前記干渉光の検出を停止する、ことを特徴とするものである。 The invention according to claim 4 is the optical image measurement device according to claim 3, further comprising an abnormality detection means for detecting an abnormality of the tomographic image based on an image state of the formed tomographic image. The interference light detection means stops detecting the interference light when the abnormality is detected.
 請求項5に記載の発明は、請求項4に記載の光画像計測装置であって、前記異常検出手段は、前記断層画像に描出されている前記被検眼の位置を基に異常検出を行うことを特徴とするものである。 The invention according to claim 5 is the optical image measurement device according to claim 4, wherein the abnormality detection means performs abnormality detection based on the position of the eye to be examined depicted in the tomographic image. It is characterized by.
 請求項6に記載の発明は、請求項4に記載の光画像計測装置であって、前記異常検出手段は、所定フレーム数毎に前記異常検出を行うことを特徴とするものである。 The invention according to claim 6 is the optical image measurement device according to claim 4, wherein the abnormality detection means performs the abnormality detection every predetermined number of frames.
 請求項7に記載の発明は、請求項6に記載の光画像計測装置であって、前記異常検出手段は、前記異常が検出されたフレームの前及び後のそれぞれの前記所定枚数のフレームそれぞれについて前記異常検出を行い、前記干渉光検出手段は、前記異常が検出された前記フレームが少なくとも前記所定枚数連続しているときに、前記干渉光の検出を停止する、ことを特徴とするものである。 A seventh aspect of the present invention is the optical image measurement device according to the sixth aspect, wherein the abnormality detection unit is configured to detect the predetermined number of frames before and after the frame where the abnormality is detected. The abnormality detection is performed, and the interference light detection unit stops detecting the interference light when at least the predetermined number of frames in which the abnormality is detected continues. .
 請求項8に記載の発明は、請求項4に記載の光画像計測装置であって、前記異常が検出された前記断層画像に対応する前記走査を行ったときの前記ガルバノミラーの向きを求める取得手段をさらに備え、前記異常が検出されたときに、前記干渉光検出手段は、前記求められた向きに前記ガルバノミラーの向きを変更し、前記ガルバノミラーの向きから前記干渉光の検出を再度開始する、ことを特徴とするものである。 The invention according to claim 8 is the optical image measuring device according to claim 4, wherein the galvanometer mirror is obtained when the scan corresponding to the tomographic image in which the abnormality is detected is performed. And the interference light detection means changes the direction of the galvano mirror to the determined direction and starts detecting the interference light again from the direction of the galvano mirror when the abnormality is detected. It is characterized by that.
 請求項9に記載の発明は、請求項8に記載の光画像計測装置であって、前記取得手段は、前記異常が検出された前記断層画像から前記異常が検出された時点における前記断層画像までのフレーム数を取得し、前記異常が検出された時点におけるフレームから前記取得されたフレーム数前の前記断層画像における前記ガルバノミラーの向きを求める、ことを特徴とするものである。 The invention according to claim 9 is the optical image measurement device according to claim 8, wherein the acquisition unit includes the tomographic image at the time when the abnormality is detected from the tomographic image where the abnormality is detected. And obtaining the orientation of the galvanometer mirror in the tomographic image before the acquired number of frames from the frame at the time when the abnormality is detected.
 請求項10に記載の発明は、請求項8に記載の光画像計測装置であって、前記被測定物体は眼底であり、眼底画像を前記干渉光検出手段による干渉光の検出中に所定のフレームレートで取得している撮像手段をさらに備え、前記取得手段は、前記異常が検出された前記断層画像の干渉光の検出を行った時点での前記眼底画像を基に、前記異常が検出された断層画像の前記眼底画像における位置を取得し、現在の前記眼底画像における前記取得された位置に対応する位置を特定し、前記特定された位置の走査を行うように前記ガルバノミラーの向きを求める、ことを特徴とするものである。 A tenth aspect of the present invention is the optical image measurement device according to the eighth aspect, wherein the object to be measured is a fundus and a fundus image is detected during detection of interference light by the interference light detection means. The imaging device further includes an imaging unit that acquires at a rate, and the acquisition unit detects the abnormality based on the fundus image at the time of detecting the interference light of the tomographic image in which the abnormality is detected. Obtaining a position of the tomographic image in the fundus image, specifying a position corresponding to the acquired position in the current fundus image, and obtaining an orientation of the galvanometer mirror so as to scan the specified position; It is characterized by this.
 請求項11に記載の光画像計測装置の制御方法は、低コヒーレンス光を信号光と参照光とに分割し、ガルバノミラーの向きを変更し被測定物体に対する前記信号光の照射位置を変更しながら前記被測定物体に対して前記信号光を走査しつつ前記被測定物体に前記信号光を照射し、前記被測定物体で反射した前記信号光と参照光路を経由した前記参照光とを重畳させて干渉光を生成し、前記干渉光を検出する干渉光検出手段と、前記干渉光検出手段による1フレーム分の走査によって得られた検出結果から前記被測定物体の断層画像を形成する断層画像形成手段と、前記形成された断層画像の画像状態を基に前記断層画像の異常を検出する異常検出手段と、を備えた光画像計測装置の制御方法であって、前記干渉光の検出を行う検出段階と、前記フレーム単位で前記断層画像の形成を行う断層画像形成段階と、所定フレーム分の前記断層画像が得られる度毎に前記異常の検出を行う異常検出段階と、前記異常が検出された場合、前記ガルバノミラーの駆動を停止するガルバノミラー停止段階と、停止した前記ガルバノミラーの前記向きから前記検出段階を再開する段階と、を有することを特徴とするものである。 The control method of the optical image measurement device according to claim 11, wherein the low-coherence light is divided into signal light and reference light, the direction of the galvanometer mirror is changed, and the irradiation position of the signal light on the object to be measured is changed. The signal light is irradiated onto the object to be measured while scanning the signal light with respect to the object to be measured, and the signal light reflected by the object to be measured and the reference light passing through a reference light path are superimposed. Interference light detection means for generating interference light and detecting the interference light, and tomographic image formation means for forming a tomographic image of the object to be measured from a detection result obtained by scanning one frame by the interference light detection means And an abnormality detection means for detecting an abnormality of the tomographic image based on an image state of the formed tomographic image, wherein the detecting step detects the interference light. When, A tomographic image forming step for forming the tomographic image in units of frames, an abnormality detecting step for detecting the abnormality every time the tomographic image for a predetermined frame is obtained, and when the abnormality is detected, The method includes a galvano mirror stop stage for stopping driving of the galvano mirror, and a stage for restarting the detection stage from the orientation of the stopped galvano mirror.
 請求項12に記載の光画像計測装置の制御方法は、低コヒーレンス光を信号光と参照光とに分割し、ガルバノミラーの向きを変更し被測定物体に対する前記信号光の照射位置を変更しながら前記被測定物体に対して前記信号光を走査しつつ前記被測定物体に前記信号光を照射し、前記被測定物体で反射した前記信号光と参照光路を経由した前記参照光とを重畳させて干渉光を生成し、前記干渉光を検出する干渉光検出手段と、前記干渉光検出手段による1フレーム分の走査によって得られた検出結果から前記被測定物体の断層画像を形成する断層画像形成手段と、を備えた光画像計測装置の制御方法であって、順次前記ガルバノミラーの向きを変更させながら前記干渉光の検出を行う干渉光検出段階と、前記干渉光検出段階において1フレーム分の検出結果が得られる毎に前記断層画像の形成を行う断層画像形成段階と、を有し、前記干渉光検出段階は連続して前記検出を行い、前記画像形成段階は前記干渉光検出段階と並行して実施される、ことを特徴とするものである。 The control method of the optical image measurement device according to claim 12, wherein the low-coherence light is divided into signal light and reference light, the direction of the galvanometer mirror is changed, and the irradiation position of the signal light on the object to be measured is changed. The signal light is irradiated onto the object to be measured while scanning the signal light with respect to the object to be measured, and the signal light reflected by the object to be measured and the reference light passing through a reference light path are superimposed. Interference light detection means for generating interference light and detecting the interference light, and tomographic image formation means for forming a tomographic image of the object to be measured from a detection result obtained by scanning one frame by the interference light detection means A method of controlling the optical image measurement apparatus comprising: an interference light detection stage that sequentially detects the interference light while changing the direction of the galvanometer mirror; and one frame in the interference light detection stage. A tomographic image forming step of forming the tomographic image every time a detection result for a predetermined number of times is obtained, wherein the interference light detecting step performs the detection continuously, and the image forming step detects the interference light It is performed in parallel with the stage.
 この発明によれば、干渉光の検出中に画像の異常を検出することができる。これにより、被測定物体の走査と平行して異常画像の発生を検出することが可能となる。したがって、異常画像の発生を迅速に把握することができ、3次元画像の形成処理の処理時間を短縮できることが可能となる。また、装置のリソースの有効活用が可能となる。 According to the present invention, it is possible to detect an abnormality in an image during detection of interference light. Thereby, it is possible to detect the occurrence of an abnormal image in parallel with the scanning of the object to be measured. Therefore, the occurrence of an abnormal image can be quickly grasped, and the processing time of the three-dimensional image forming process can be shortened. In addition, the resource of the apparatus can be effectively used.
 また、この発明によれば、干渉光の検出と断層画像の形成とを並行して行うことができる。これにより、被検眼の全フレームの走査の完了を待たずに、断層画像を形成することが可能となり、装置のリソースの有効活用及び3次元画像の形成処理に掛る時間の短縮が可能となる。したがって、被測定物体の検査の時間短縮に寄与することが可能となる。 Further, according to the present invention, detection of interference light and formation of a tomographic image can be performed in parallel. As a result, it is possible to form a tomographic image without waiting for the completion of scanning of all frames of the eye to be examined, and it is possible to effectively utilize the resources of the apparatus and reduce the time required for the process of forming a three-dimensional image. Therefore, it is possible to contribute to shortening the inspection time of the object to be measured.
 また、この発明によれば、干渉光の検出と断層画像の形成とを並行して行うとともに、断層画像の異常を検出した場合に、異常画像が発生した場所に戻って、その場所から再度被測定物体の走査を再開することができる。これにより、装置のリソースの有効活用及び3次元画像の形成処理に掛る時間の短縮が可能になる。 In addition, according to the present invention, the detection of interference light and the formation of a tomographic image are performed in parallel, and when an abnormality in the tomographic image is detected, the process returns to the place where the abnormal image has occurred and is again covered from that place. The scanning of the measurement object can be resumed. This makes it possible to effectively use the resources of the apparatus and reduce the time required for the 3D image forming process.
この発明に係る光画像計測装置の実施形態の全体構成の一例を表す概略構成図である。It is a schematic structure figure showing an example of the whole composition of the embodiment of the optical image measuring device concerning this invention. この発明に係る光画像計測装置の実施形態におけるOCTユニットの構成の一例を表す概略構成図である。It is a schematic block diagram showing an example of a structure of the OCT unit in embodiment of the optical image measuring device which concerns on this invention. この発明に係る光画像計測装置の実施形態の制御系の構成の一例を表す概略ブロック図である。It is a schematic block diagram showing an example of the structure of the control system of embodiment of the optical image measuring device which concerns on this invention. この発明に係る光画像計測装置の実施形態による信号光の走査態様の一例を表す概略図であり、被検眼に対する信号光の入射側から眼底を見たときの信号光の走査態様の一例を表している。It is the schematic showing an example of the scanning aspect of the signal light by embodiment of the optical image measuring device which concerns on this invention, and represents an example of the scanning aspect of the signal light when the fundus is seen from the incident side of the signal light with respect to the eye to be examined ing. この発明に係る光画像計測装置の実施形態による信号光の走査態様の一例を表す概略図であり、各走査線上の走査点の配列態様の一例を表している。It is the schematic showing an example of the scanning aspect of the signal light by embodiment of the optical image measuring device based on this invention, and represents an example of the arrangement | sequence aspect of the scanning point on each scanning line. この発明に係る光画像計測装置の実施形態の使用形態の一例を表すフローチャートである。It is a flowchart showing an example of the usage pattern of embodiment of the optical image measuring device which concerns on this invention. この発明に係る光画像計測装置の時間経過に対応した各機能部のオン/オフ状態の一例を表すシーケンス図である。It is a sequence diagram showing an example of the on / off state of each function part corresponding to the passage of time of the optical image measurement device according to the present invention. 各機能部のオン/オフ状態における動作の一例を表すフローチャートである。It is a flowchart showing an example of the operation | movement in the on / off state of each function part.
〔第1の実施形態〕
 以下、この発明の第1の実施形態に係る光画像計測装置について説明する。以下の実施形態では、フーリエドメインタイプの手法を適用する構成について詳しく説明する。なお、他の構成を適用する場合においても、この実施形態と同様の構成を適用することにより同様の作用及び効果が得られる。たとえば、スウェプトソースタイプのように信号光を走査(スキャン)する任意のタイプのOCT技術に対して、この実施形態に係る構成を適用することが可能である。また、フルフィールドタイプのように信号光を横方向にスキャンしないタイプのOCT技術に対して、この実施形態に係る構成を適用することも可能である。
[First Embodiment]
Hereinafter, an optical image measurement device according to a first embodiment of the present invention will be described. In the following embodiment, a configuration to which a Fourier domain type technique is applied will be described in detail. Even when other configurations are applied, the same operations and effects can be obtained by applying the same configuration as that of this embodiment. For example, the configuration according to this embodiment can be applied to any type of OCT technology that scans signal light such as a swept source type. Further, the configuration according to this embodiment can be applied to an OCT technique in which signal light is not scanned in the horizontal direction as in the full field type.
[装置構成]
 光画像計測装置1は、図1に示すように、眼底カメラユニット1A、OCTユニット150及び演算制御装置200を含んで構成される。これら各部は、複数の筐体内に分散して設けられていてもよいし、単一の筐体内にまとめて設けられていてもよい。眼底カメラユニット1Aは、従来の眼底カメラとほぼ同様の光学系を有する。眼底カメラは、眼底を撮影する装置である。また、眼底カメラは、眼底血管の形態の撮影に利用される。OCTユニット150は、被検眼のOCT画像を取得するための光学系を格納している。演算制御装置200は、各種の演算処理や制御処理等を実行するコンピュータを具備している。
[Device configuration]
As shown in FIG. 1, the optical image measurement device 1 includes a fundus camera unit 1 </ b> A, an OCT unit 150, and an arithmetic control device 200. Each of these units may be provided in a distributed manner in a plurality of cases, or may be provided in a single case. The fundus camera unit 1A has an optical system that is substantially the same as that of a conventional fundus camera. A fundus camera is a device that photographs the fundus. In addition, the fundus camera is used for photographing a fundus blood vessel. The OCT unit 150 stores an optical system for acquiring an OCT image of the eye to be examined. The arithmetic and control unit 200 includes a computer that executes various arithmetic processes and control processes.
 OCTユニット150には、接続線152の一端が取り付けられている。接続線152の他端には、接続線152を眼底カメラユニット1Aに接続するコネクタ部151が取り付けられている。接続線152の内部には光ファイバ152aが導通されている(図2を参照)。OCTユニット150と眼底カメラユニット1Aは、接続線152を介して光学的に接続されている。演算制御装置200は、眼底カメラユニット1A及びOCTユニット150のそれぞれと、電気信号を伝達する通信線を介して接続されている。 One end of a connection line 152 is attached to the OCT unit 150. A connector 151 for connecting the connection line 152 to the retinal camera unit 1A is attached to the other end of the connection line 152. An optical fiber 152a is conducted inside the connection line 152 (see FIG. 2). The OCT unit 150 and the fundus camera unit 1A are optically connected via a connection line 152. The arithmetic and control unit 200 is connected to each of the fundus camera unit 1A and the OCT unit 150 via a communication line that transmits an electrical signal.
〔眼底カメラユニット〕
 眼底カメラユニット1Aは、眼底表面の形態を表す2次元画像を形成するための光学系を有する。ここで、眼底表面の2次元画像には、眼底表面を撮影したカラー画像やモノクロ画像、更には蛍光画像(フルオレセイン蛍光画像、インドシアニングリーン蛍光画像等)などが含まれる。
[Fundus camera unit]
The fundus camera unit 1A includes an optical system for forming a two-dimensional image representing the form of the fundus surface. Here, the two-dimensional image of the fundus surface includes a color image and a monochrome image obtained by photographing the fundus surface, and further a fluorescent image (fluorescein fluorescent image, indocyanine green fluorescent image, etc.) and the like.
 眼底カメラユニット1Aには、従来の眼底カメラと同様に、各種のユーザインターフェイスが設けられている。このユーザインターフェイスの例として、操作パネル、コントロールレバー(ジョイスティック)、撮影スイッチ、合焦ハンドル、ディスプレイなどがある。操作パネルには、各種のスイッチやボタンが設けられている。コントロールレバーは、操作パネル等が設けられた架台や、光学系が内蔵された装置本体を、装置ベースに対して3次元的に移動させるために操作される。コントロールレバーは、特に、手動でのアライメント操作時に使用される。撮影スイッチは、コントロールレバーの上端に設けられ、眼底像やOCT画像の取得を指示するために使用される。また、撮影スイッチは、他の機能を実行する際にも使用される。操作パネルやコントロールレバーは、眼底カメラユニット1Aの検者側の位置(後面)に設けられている。合焦ハンドルは、たとえば装置本体の側面に設けられ、フォーカス調整(ピント合わせ)を行うために使用される。なお、合焦ハンドルを操作すると、後述の合焦レンズが移動されてフォーカス状態が変更される。ディスプレイは、眼底カメラユニット1Aの検者側の位置に設けられ、光画像計測装置1により取得された断層画像、患者情報、撮影条件等の各種情報を表示する。眼底カメラユニット1Aの被検者側の位置(前面)には、被検者の顔を保持するための顎受けや額当てが設けられている。 The retinal camera unit 1A is provided with various user interfaces as in the conventional retinal camera. Examples of the user interface include an operation panel, a control lever (joystick), a photographing switch, a focusing handle, a display, and the like. Various switches and buttons are provided on the operation panel. The control lever is operated to three-dimensionally move a gantry provided with an operation panel or the like, or an apparatus main body incorporating an optical system with respect to the apparatus base. The control lever is used particularly during manual alignment operations. The imaging switch is provided at the upper end of the control lever, and is used to instruct acquisition of a fundus image or an OCT image. The photographing switch is also used when performing other functions. The operation panel and the control lever are provided at the position (rear surface) on the examiner side of the fundus camera unit 1A. The focusing handle is provided on the side surface of the apparatus main body, for example, and is used for focus adjustment (focusing). When the focusing handle is operated, a focusing lens described later is moved to change the focus state. The display is provided at a position on the examiner side of the fundus camera unit 1A, and displays various information such as tomographic images, patient information, and imaging conditions acquired by the optical image measurement device 1. A chin rest and a forehead for holding the face of the subject are provided at a position (front surface) on the subject side of the fundus camera unit 1A.
 眼底カメラユニット1Aには、従来の眼底カメラと同様に、照明光学系100と撮影光学系120が設けられている。照明光学系100は眼底Efに照明光を照射する。撮影光学系120は、この照明光の眼底反射光を撮像装置10、12に導く。また、撮影光学系120は、OCTユニット150からの信号光を眼底Efに導くとともに、眼底Efを経由した信号光をOCTユニット150に導く。 The fundus camera unit 1A is provided with an illumination optical system 100 and a photographing optical system 120 as in the case of a conventional fundus camera. The illumination optical system 100 irradiates the fundus oculi Ef with illumination light. The imaging optical system 120 guides the fundus reflection light of the illumination light to the imaging devices 10 and 12. The imaging optical system 120 guides the signal light from the OCT unit 150 to the fundus oculi Ef and guides the signal light passing through the fundus oculi Ef to the OCT unit 150.
 照明光学系100は、従来の眼底カメラと同様に、観察光源101、コンデンサレンズ102、撮影光源103、コンデンサレンズ104、エキサイタフィルタ105及び106、リング透光板107、ミラー108、LCD(Liquid Crystal Display)109、照明絞り110、リレーレンズ111、孔開きミラー112、対物レンズ113を含んで構成される。 The illumination optical system 100 includes an observation light source 101, a condenser lens 102, a photographing light source 103, a condenser lens 104, exciter filters 105 and 106, a ring translucent plate 107, a mirror 108, an LCD (Liquid Crystal Display), as in a conventional fundus camera. ) 109, an illumination aperture 110, a relay lens 111, a perforated mirror 112, and an objective lens 113.
 観察光源101は、たとえば約700nm~800nmの範囲の近赤外領域の波長を含む照明光を出力する。この近赤外光は、OCTユニット150で使用する光の波長よりも短く設定されている(後述)。撮影光源103は、たとえば約400nm~700nmの範囲の可視領域の波長を含む照明光を出力する。 The observation light source 101 outputs illumination light including wavelengths in the near-infrared region, for example, in the range of about 700 nm to 800 nm. This near-infrared light is set shorter than the wavelength of light used in the OCT unit 150 (described later). The imaging light source 103 outputs illumination light including a wavelength in the visible region in the range of about 400 nm to 700 nm, for example.
 観察光源101から出力された照明光は、コンデンサレンズ102、104、(エキサイタフィルタ105又は106、)リング透光板107、ミラー108、照明絞り110、リレーレンズ111を介して孔開きミラー112に到達する。更に、この照明光は、孔開きミラー112により反射され、対物レンズ113を介して被検眼Eに入射して眼底Efを照明する。一方、撮影光源103から出力された照明光は、同様にコンデンサレンズ104から対物レンズ113までを経由して被検眼Eに入射して眼底Efを照明する。 The illumination light output from the observation light source 101 reaches the perforated mirror 112 via the condenser lenses 102 and 104, the (exciter filter 105 or 106) ring translucent plate 107, the mirror 108, the illumination stop 110, and the relay lens 111. To do. Further, the illumination light is reflected by the perforated mirror 112 and enters the eye E through the objective lens 113 to illuminate the fundus oculi Ef. On the other hand, the illumination light output from the imaging light source 103 similarly enters the eye E through the condenser lens 104 to the objective lens 113 and illuminates the fundus oculi Ef.
 撮影光学系120は、対物レンズ113、孔開きミラー112(の孔部112a)、撮影絞り121、バリアフィルタ122及び123、合焦レンズ124、リレーレンズ125、撮影レンズ126、ダイクロイックミラー134、フィールドレンズ(視野レンズ)128、ハーフミラー135、リレーレンズ131、ダイクロイックミラー136、撮影レンズ133、撮像装置10、反射ミラー137、撮影レンズ138、撮像装置12、レンズ139及びLCD140を含んで構成される。撮影光学系120は、従来の眼底カメラとほぼ同様の構成を有する。合焦レンズ124は、撮影光学系120の光軸方向に移動可能とされている。 The photographing optical system 120 includes an objective lens 113, a perforated mirror 112 (hole 112a), a photographing aperture 121, barrier filters 122 and 123, a focusing lens 124, a relay lens 125, a photographing lens 126, a dichroic mirror 134, and a field lens. (Field lens) 128, half mirror 135, relay lens 131, dichroic mirror 136, photographing lens 133, imaging device 10, reflection mirror 137, photographing lens 138, imaging device 12, lens 139 and LCD 140 are configured. The photographing optical system 120 has substantially the same configuration as a conventional fundus camera. The focusing lens 124 is movable in the optical axis direction of the photographing optical system 120.
 ダイクロイックミラー134は、照明光学系100からの照明光の眼底反射光(約400nm~800nmの範囲に含まれる波長を有する)を反射する。また、ダイクロイックミラー134は、OCTユニット150からの信号光LS(たとえば約800nm~900nmの範囲に含まれる波長を有する;図2を参照)を透過させる。 The dichroic mirror 134 reflects the fundus reflection light (having a wavelength included in the range of about 400 nm to 800 nm) of the illumination light from the illumination optical system 100. The dichroic mirror 134 transmits the signal light LS (for example, having a wavelength included in the range of about 800 nm to 900 nm; see FIG. 2) from the OCT unit 150.
 ダイクロイックミラー136は、観察光源101からの照明光の眼底反射光を反射し、撮影光源103からの照明光の眼底反射光を透過させる。 The dichroic mirror 136 reflects the fundus reflection light of the illumination light from the observation light source 101 and transmits the fundus reflection light of the illumination light from the imaging light source 103.
 LCD140は、被検眼Eを固視させるための固視標(内部固視標)を表示する。LCD140からの光は、レンズ139により集光され、ハーフミラー135により反射され、フィールドレンズ128を経由してダイクロイックミラー136に反射される。更に、この光は、撮影レンズ126、リレーレンズ125、合焦レンズ124、孔開きミラー112(の孔部112a)、対物レンズ113等を経由して被検眼Eに入射する。それにより、眼底Efに内部固視標が投影される。 LCD 140 displays a fixation target (internal fixation target) for fixing the eye E to be examined. Light from the LCD 140 is collected by the lens 139, reflected by the half mirror 135, and reflected by the dichroic mirror 136 via the field lens 128. Further, this light is incident on the eye E through the photographing lens 126, the relay lens 125, the focusing lens 124, the aperture mirror 112 (the aperture 112a thereof), the objective lens 113, and the like. Thereby, the internal fixation target is projected onto the fundus oculi Ef.
 LCD140による内部固視標の表示位置を変更することにより、被検眼Eの固視方向を変更することができる。被検眼Eの固視方向としては、たとえば従来の眼底カメラと同様に、眼底Efの黄斑部を中心とする断層画像を取得するための固視方向や、視神経乳頭を中心とする断層画像を取得するための固視方向や、黄斑部と視神経乳頭との間の眼底中心を中心とする断層画像を取得するための固視方向などがある。固視位置の変更は、たとえば操作パネルを操作することで行う。 The fixation direction of the eye E can be changed by changing the display position of the internal fixation target on the LCD 140. As the fixation direction of the eye E, for example, a fixation direction for acquiring a tomographic image centered on the macular region of the fundus oculi Ef or a tomographic image centered on the optic disc as in the case of a conventional fundus camera. A fixation direction for obtaining a tomographic image centered on the fundus center between the macula and the optic disc, and the like. The fixation position is changed, for example, by operating the operation panel.
 撮像装置10には、撮像素子10aが内蔵されている。撮像装置10は、特に近赤外領域の波長の光を検出可能である。つまり、撮像装置10は、近赤外光を検出する赤外線テレビカメラとして機能する。撮像装置10は、近赤外光を検出して映像信号を出力する。撮像素子10aは、たとえば、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の任意の撮像素子(エリアセンサ)である。 The imaging device 10 includes an imaging element 10a. The imaging device 10 can particularly detect light having a wavelength in the near infrared region. That is, the imaging device 10 functions as an infrared television camera that detects near-infrared light. The imaging device 10 detects near infrared light and outputs a video signal. The imaging element 10a is an arbitrary imaging element (area sensor) such as a CCD (Charge Coupled Devices) or a CMOS (Complementary Metal Oxide Semiconductor).
 撮像装置12には、撮像素子12aが内蔵されている。撮像装置12は、特に可視領域の波長の光を検出可能である。つまり、撮像装置12は、可視光を検出するテレビカメラとして機能する。撮像装置12は、可視光を検出して映像信号を出力する。撮像素子12aは、撮像素子10aと同様に、任意の撮像素子(エリアセンサ)により構成される。 The imaging device 12 includes an imaging element 12a. The imaging device 12 can particularly detect light having a wavelength in the visible region. That is, the imaging device 12 functions as a television camera that detects visible light. The imaging device 12 detects visible light and outputs a video signal. The image sensor 12a is configured by an arbitrary image sensor (area sensor), similarly to the image sensor 10a.
 タッチパネルモニタ11は、各撮像素子10a、12aからの映像信号に基づいて眼底像Ef′を表示する。また、この映像信号は演算制御装置200に送られる。このタッチパネルモニタ11は、前述のディスプレイの一例である。 The touch panel monitor 11 displays the fundus oculi image Ef ′ based on the video signals from the image sensors 10a and 12a. The video signal is sent to the arithmetic and control unit 200. The touch panel monitor 11 is an example of the display described above.
 眼底カメラユニット1Aには、走査ユニット141とレンズ142とが設けられている。走査ユニット141は、OCTユニット150から出力される信号光LSの眼底Efに対する照射位置を走査する。 The fundus camera unit 1A is provided with a scanning unit 141 and a lens 142. The scanning unit 141 scans the irradiation position of the signal light LS output from the OCT unit 150 to the fundus oculi Ef.
 走査ユニット141は、図1に示すxy平面上において信号光LSを走査する。そのために、走査ユニット141には、たとえば、x方向への走査用のガルバノミラー141Aと、y方向への走査用のガルバノミラー141Bとが設けられている(図3参照)。 The scanning unit 141 scans the signal light LS on the xy plane shown in FIG. For this purpose, the scanning unit 141 is provided with, for example, a galvanometer mirror 141A for scanning in the x direction and a galvanometer mirror 141B for scanning in the y direction (see FIG. 3).
〔OCTユニットの構成〕
 次に、OCTユニット150の構成について図2を参照しつつ説明する。OCTユニット150は、従来のフーリエドメインタイプの光画像計測装置と同様の光学系を備えている。すなわち、OCTユニット150は、低コヒーレンス光を参照光と信号光に分割し、被検眼の眼底を経由した信号光と参照物体を経由した参照光とを干渉させて干渉光を生成し、この干渉光を検出して検出信号を生成する光学系を備えている。この検出信号は演算制御装置200に送られる。
[Configuration of OCT unit]
Next, the configuration of the OCT unit 150 will be described with reference to FIG. The OCT unit 150 includes an optical system similar to that of a conventional Fourier domain type optical image measurement device. That is, the OCT unit 150 divides low-coherence light into reference light and signal light, and generates interference light by causing the signal light passing through the fundus of the eye to be examined and the reference light passing through the reference object to generate interference light. An optical system for detecting light and generating a detection signal is provided. This detection signal is sent to the arithmetic and control unit 200.
 低コヒーレンス光源160は、広帯域の低コヒーレンス光L0を出力する広帯域光源である。この広帯域光源としては、たとえば、スーパールミネセントダイオード(Super Luminescent Diode:SLD)や、発光ダイオード(Light Emitting Diode:LED)などを用いることができる。 The low coherence light source 160 is a broadband light source that outputs a broadband low coherence light L0. As the broadband light source, for example, a super luminescent diode (SLD), a light emitting diode (LED), or the like can be used.
 低コヒーレンス光L0は、たとえば、近赤外領域の波長の光を含み、かつ、数十マイクロメートル程度の時間的コヒーレンス長を有する。低コヒーレンス光L0は、眼底カメラユニット1Aの照明光(波長約400nm~800nm)よりも長い波長、たとえば約800nm~900nmの範囲の波長を含んでいる。 The low coherence light L0 includes, for example, light having a wavelength in the near infrared region, and has a temporal coherence length of about several tens of micrometers. The low coherence light L0 includes a wavelength longer than the illumination light (wavelength of about 400 nm to 800 nm) of the fundus camera unit 1A, for example, a wavelength in the range of about 800 nm to 900 nm.
 低コヒーレンス光源160から出力された低コヒーレンス光L0は、光ファイバ161を通じて光カプラ162に導かれる。光ファイバ161は、たとえばシングルモードファイバやPMファイバ(Polarization maintaining fiber;偏波面保持ファイバ)等により構成される。光カプラ162は、低コヒーレンス光L0を参照光LRと信号光LSとに分割する。 The low coherence light L0 output from the low coherence light source 160 is guided to the optical coupler 162 through the optical fiber 161. The optical fiber 161 is configured by, for example, a single mode fiber, a PM fiber (Polarization maintaining fiber), or the like. The optical coupler 162 splits the low coherence light L0 into the reference light LR and the signal light LS.
 なお、光カプラ162は、光を分割する手段(スプリッタ;splitter)、及び、光を重畳する手段(カプラ;coupler)の双方の作用を有するが、ここでは慣用的に「光カプラ」と称する。 The optical coupler 162 has both functions of a means for splitting light (splitter) and a means for superposing light (coupler), but here it is conventionally referred to as an “optical coupler”.
 光カプラ162により生成された参照光LRは、シングルモードファイバ等からなる光ファイバ163により導光されてそのファイバ端面から出射される。更に、参照光LRは、コリメータレンズ171により平行光束とされ、ガラスブロック172、及び濃度フィルタ173を経由し、参照ミラー174により反射される。 The reference light LR generated by the optical coupler 162 is guided by an optical fiber 163 made of a single mode fiber or the like and emitted from the end face of the fiber. Further, the reference light LR is converted into a parallel light beam by the collimator lens 171 and is reflected by the reference mirror 174 via the glass block 172 and the density filter 173.
 参照ミラー174により反射された参照光LRは、再び濃度フィルタ173、及びガラスブロック172を経由し、コリメータレンズ171によって光ファイバ163のファイバ端面に集光され、光ファイバ163を通じて光カプラ162に導かれる。 The reference light LR reflected by the reference mirror 174 passes through the density filter 173 and the glass block 172 again, is condensed on the fiber end surface of the optical fiber 163 by the collimator lens 171, and is guided to the optical coupler 162 through the optical fiber 163. .
 なお、ガラスブロック172と濃度フィルタ173は、参照光LRと信号光LSの光路長(光学距離)を合わせるための遅延手段として作用する。また、ガラスブロック172と濃度フィルタ173は、参照光LRと信号光LSの分散特性を合わせるための分散補償手段として作用する。 Note that the glass block 172 and the density filter 173 act as delay means for matching the optical path lengths (optical distances) of the reference light LR and the signal light LS. Further, the glass block 172 and the density filter 173 function as dispersion compensation means for matching the dispersion characteristics of the reference light LR and the signal light LS.
 濃度フィルタ173は、参照光LRの光量を減少させる減光フィルタとして作用する。濃度フィルタ173は、たとえば、回転型のND(Neutral Density)フィルタにより構成される。濃度フィルタ173は、図示しない駆動機構によって回転駆動されて、干渉光LCの生成に寄与する参照光LRの光量を変更する。 The density filter 173 acts as a neutral density filter that reduces the amount of the reference light LR. The density filter 173 is configured by, for example, a rotary ND (Neutral Density) filter. The density filter 173 is rotationally driven by a drive mechanism (not shown) to change the amount of the reference light LR that contributes to the generation of the interference light LC.
 参照ミラー174は、所定の駆動機構により、参照光LRの進行方向(図2に示す両側矢印方向)に移動される。それにより、被検眼Eの眼軸長やワーキングディスタンス(対物レンズ113と被検眼Eとの間の距離)などに応じて、参照光LRの光路長を確保できる。 The reference mirror 174 is moved in the traveling direction of the reference light LR (the direction of the double-sided arrow shown in FIG. 2) by a predetermined driving mechanism. Thereby, the optical path length of the reference light LR can be ensured according to the axial length of the eye E and the working distance (distance between the objective lens 113 and the eye E).
 他方、光カプラ162により生成された信号光LSは、シングルモードファイバ等からなる光ファイバ164により接続線152の端部まで導光される。ここで、光ファイバ164と光ファイバ152aは、単一の光ファイバから形成されていてもよいし、各々の端面同士を接合するなどして一体的に形成されていてもよい。 On the other hand, the signal light LS generated by the optical coupler 162 is guided to the end of the connection line 152 by an optical fiber 164 made of a single mode fiber or the like. Here, the optical fiber 164 and the optical fiber 152a may be formed from a single optical fiber, or may be formed integrally by joining the respective end faces.
 信号光LSは、光ファイバ152aにより導光されて眼底カメラユニット1Aに案内される。更に、信号光LSは、レンズ142、走査ユニット141、ダイクロイックミラー134、撮影レンズ126、リレーレンズ125、ハーフミラー190、合焦レンズ124、撮影絞り121、孔開きミラー112の孔部112a、対物レンズ113を経由して被検眼Eに照射されて眼底Efに照射される。なお、信号光LSを眼底Efに照射させるときには、バリアフィルタ122、123は事前に光路から退避される。 The signal light LS is guided by the optical fiber 152a and guided to the fundus camera unit 1A. Further, the signal light LS includes the lens 142, the scanning unit 141, the dichroic mirror 134, the photographing lens 126, the relay lens 125, the half mirror 190, the focusing lens 124, the photographing aperture 121, the hole 112a of the aperture mirror 112, the objective lens. The eye E is irradiated to the eye E via 113 and irradiated to the fundus Ef. When irradiating the fundus oculi Ef with the signal light LS, the barrier filters 122 and 123 are retracted from the optical path in advance.
 被検眼Eに入射した信号光LSは、眼底Ef上にて結像し反射される。このとき、信号光LSは、眼底Efの表面で反射されるだけでなく、眼底Efの深部領域にも到達して屈折率境界において散乱される。したがって、眼底Efを経由した信号光LSは、眼底Efの表面形態を反映する情報と、眼底Efの深層組織の屈折率境界における後方散乱の状態を反映する情報とを含んでいる。この光を単に「信号光LSの眼底反射光」と呼ぶことがある。 The signal light LS incident on the eye E is imaged and reflected on the fundus oculi Ef. At this time, the signal light LS is not only reflected by the surface of the fundus oculi Ef, but also reaches the deep region of the fundus oculi Ef and is scattered at the refractive index boundary. Therefore, the signal light LS passing through the fundus oculi Ef includes information reflecting the surface form of the fundus oculi Ef and information reflecting the state of backscattering at the refractive index boundary of the deep tissue of the fundus oculi Ef. This light may be simply referred to as “fundus reflected light of the signal light LS”.
 信号光LSの眼底反射光は、被検眼Eに向かう信号光LSと同じ経路を逆方向に案内されて光ファイバ152aの端面に集光される。更に、信号光LSの眼底反射光は、光ファイバ152aを通じてOCTユニット150に入射し、光ファイバ164を通じて光カプラ162に戻ってくる。 The fundus reflection light of the signal light LS is guided in the reverse direction along the same path as the signal light LS toward the eye E to be collected on the end surface of the optical fiber 152a. Further, the fundus reflection light of the signal light LS enters the OCT unit 150 through the optical fiber 152 a and returns to the optical coupler 162 through the optical fiber 164.
 光カプラ162は、眼底Efを経由して戻ってきた信号光LSと、参照ミラー174にて反射された参照光LRとを重ね合わせて干渉光LCを生成する。干渉光LCは、シングルモードファイバ等からなる光ファイバ165を通じてスペクトロメータ180に導かれる。 The optical coupler 162 superimposes the signal light LS returned via the fundus oculi Ef and the reference light LR reflected by the reference mirror 174 to generate interference light LC. The interference light LC is guided to the spectrometer 180 through an optical fiber 165 made of a single mode fiber or the like.
 スペクトロメータ(分光計)180は、干渉光LCのスペクトル成分を検出する。スペクトロメータ180は、コリメータレンズ181、回折格子182、結像レンズ183、CCD184を含んで構成される。回折格子182は、透過型でも反射型でもよい。また、CCD184に代えて、CMOS等の他の光検出素子(ラインセンサ又はエリアセンサ)を用いることも可能である。 A spectrometer (spectrometer) 180 detects a spectral component of the interference light LC. The spectrometer 180 includes a collimator lens 181, a diffraction grating 182, an imaging lens 183, and a CCD 184. The diffraction grating 182 may be transmissive or reflective. Further, in place of the CCD 184, other light detection elements (line sensor or area sensor) such as CMOS may be used.
 スペクトロメータ180に入射した干渉光LCは、コリメータレンズ181により平行光束とされ、回折格子182によって分光(スペクトル分解)される。分光された干渉光LCは、結像レンズ183によってCCD184の撮像面上に結像される。CCD184は、分光された干渉光LCの各スペクトル成分を検出して電荷に変換する。CCD184は、この電荷を蓄積して検出信号を生成する。更に、CCD184は、この検出信号を演算制御装置200に送る。 The interference light LC incident on the spectrometer 180 is converted into a parallel light beam by the collimator lens 181 and split (spectral decomposition) by the diffraction grating 182. The split interference light LC is imaged on the imaging surface of the CCD 184 by the imaging lens 183. The CCD 184 detects each spectral component of the separated interference light LC and converts it into electric charges. The CCD 184 accumulates this electric charge and generates a detection signal. Further, the CCD 184 sends this detection signal to the arithmetic and control unit 200.
 なお、この発明に係る「干渉光検出手段」は、たとえば、走査ユニット141と、光カプラ162と、信号光LSの光路上の光学部材(つまり光カプラ162と眼底Efとの間に配置された光学部材)と、参照光LRの光路上の光学部材(つまり光カプラ162と参照ミラー174との間に配置された光学部材)とを含んで構成され、特に、走査ユニット141、光カプラ162、光ファイバ163、164及び参照ミラー174を具備する干渉計を含み、さらにCCD184を有するものである。 The “interference light detection means” according to the present invention is disposed, for example, between the scanning unit 141, the optical coupler 162, and an optical member on the optical path of the signal light LS (that is, between the optical coupler 162 and the fundus oculi Ef). Optical member) and an optical member on the optical path of the reference light LR (that is, an optical member disposed between the optical coupler 162 and the reference mirror 174). In particular, the scanning unit 141, the optical coupler 162, It includes an interferometer having optical fibers 163 and 164 and a reference mirror 174, and further has a CCD 184.
 なお、この実施形態ではマイケルソン型の干渉計を採用しているが、たとえばマッハツェンダー型など任意のタイプの干渉計を適宜に採用することが可能である。 In this embodiment, a Michelson interferometer is used. However, for example, any type of interferometer such as a Mach-Zehnder type can be appropriately used.
〔演算制御装置〕
 演算制御装置200の構成について説明する。演算制御装置200は、CCD184から入力される検出信号を解析して眼底EfのOCT画像を形成する。そのための演算処理は、従来のフーリエドメインタイプの光画像計測装置と同様である。
[Calculation control device]
The configuration of the arithmetic and control unit 200 will be described. The arithmetic and control unit 200 analyzes the detection signal input from the CCD 184 and forms an OCT image of the fundus oculi Ef. The arithmetic processing for this is the same as that of a conventional Fourier domain type optical image measurement device.
 また、演算制御装置200は、眼底カメラユニット1A及びOCTユニット150の各部を制御する。 The arithmetic and control unit 200 controls each part of the fundus camera unit 1A and the OCT unit 150.
 眼底カメラユニット1Aの制御として、演算制御装置200は、観察光源101や撮影光源103による照明光の出力制御、エキサイタフィルタ105、106やバリアフィルタ122、123の光路上への挿入/退避動作の制御、LCD140等の表示装置の動作制御、照明絞り110の移動制御(絞り値の制御)、撮影絞り121の絞り値の制御、合焦レンズ124の移動制御(フォーカス調整、倍率調整)の制御などを行う。また、演算制御装置200は、ガルバノミラー141A、141B(図3参照)の動作制御を行い、走査ユニット141を制御して信号光LSを走査させる。 As control of the fundus camera unit 1A, the arithmetic control device 200 controls the output of illumination light by the observation light source 101 and the imaging light source 103, and controls the insertion / retraction operation of the exciter filters 105 and 106 and the barrier filters 122 and 123 on the optical path. , Operation control of a display device such as LCD 140, movement control of illumination diaphragm 110 (control of aperture value), control of aperture value of photographing diaphragm 121, control of movement control of focus lens 124 (focus adjustment, magnification adjustment), etc. Do. The arithmetic and control unit 200 controls the operation of the galvanometer mirrors 141A and 141B (see FIG. 3) and controls the scanning unit 141 to scan the signal light LS.
 また、OCTユニット150の制御として、演算制御装置200は、低コヒーレンス光源160による低コヒーレンス光L0の出力制御、参照ミラー174の移動制御、濃度フィルタ173の回転動作(参照光LRの光量の減少量の変更動作)の制御、CCD184による電荷蓄積時間や電荷蓄積タイミングや信号送信タイミングの制御などを行う。 Further, as the control of the OCT unit 150, the arithmetic and control unit 200 controls the output of the low coherence light L0 by the low coherence light source 160, the movement control of the reference mirror 174, and the rotation operation of the density filter 173 (the amount of decrease in the light amount of the reference light LR). Control), charge accumulation time by CCD 184, charge accumulation timing, signal transmission timing, and the like.
 演算制御装置200は、従来のコンピュータと同様に、マイクロプロセッサ、RAM、ROM、ハードディスクドライブ、キーボード、マウス、ディスプレイ、通信インターフェイスなどを含んで構成される。ハードディスクドライブには、光画像計測装置1を制御するためのコンピュータプログラムが記憶されている。また、演算制御装置200は、CCD184からの検出信号に基づいてOCT画像を形成する専用の回路基板を備えていてもよい。 The arithmetic and control unit 200 includes a microprocessor, a RAM, a ROM, a hard disk drive, a keyboard, a mouse, a display, a communication interface, and the like, like a conventional computer. The hard disk drive stores a computer program for controlling the optical image measurement device 1. Further, the arithmetic and control unit 200 may include a dedicated circuit board that forms an OCT image based on a detection signal from the CCD 184.
〔制御系〕
 光画像計測装置1の制御系の構成について図3を参照しつつ説明する。なお、図3において、撮像装置10、12は眼底カメラユニット1Aと別途に記載され、CCD184はOCTユニット150と別途に記載されているが、上記の説明のように、撮像装置10、12は眼底カメラユニット1Aに搭載され、CCD184はOCTユニット150に搭載されている。
[Control system]
The configuration of the control system of the optical image measurement device 1 will be described with reference to FIG. In FIG. 3, the imaging devices 10 and 12 are described separately from the fundus camera unit 1A, and the CCD 184 is described separately from the OCT unit 150. However, as described above, the imaging devices 10 and 12 are connected to the fundus oculi. Mounted on the camera unit 1 </ b> A, the CCD 184 is mounted on the OCT unit 150.
(制御部)
 光画像計測装置1の制御系は、演算制御装置200の制御部210を中心に構成される。制御部210は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイス等を含んで構成される。
(Control part)
The control system of the optical image measurement device 1 is configured around the control unit 210 of the arithmetic and control device 200. The control unit 210 includes, for example, the aforementioned microprocessor, RAM, ROM, hard disk drive, communication interface, and the like.
 制御部210には、主制御部211と記憶部212が設けられている。主制御部211は、眼底カメラユニット1A、OCTユニット150及び演算制御装置200の各部を制御する。 The control unit 210 is provided with a main control unit 211 and a storage unit 212. The main control unit 211 controls each part of the fundus camera unit 1 </ b> A, the OCT unit 150, and the arithmetic control device 200.
(主制御部)
 主制御部211は、ミラー駆動機構241、242を制御してガルバノミラー141A、141Bの向き(角度)を制御する。それにより、眼底Efに対する信号光LSの照射位置が走査される。また、主制御部211は、LCD140を制御して内部固視標を表示させる。特に、主制御部211は、ミラー駆動機構241、242とLCD140とを同時に制御して、被検眼Eに内部固視標を呈示させるとともに信号光LSを走査させる。
(Main control unit)
The main controller 211 controls the mirror drive mechanisms 241 and 242 to control the orientation (angle) of the galvano mirrors 141A and 141B. Thereby, the irradiation position of the signal light LS on the fundus oculi Ef is scanned. In addition, the main control unit 211 controls the LCD 140 to display the internal fixation target. In particular, the main control unit 211 controls the mirror driving mechanisms 241 and 242 and the LCD 140 simultaneously to cause the eye E to present the internal fixation target and scan the signal light LS.
(記憶部)
 記憶部212は、各種のデータを記憶する。記憶部212に記憶されるデータとしては、たとえば、OCT画像の画像データ、眼底像Ef′の画像データ、被検眼情報などがある。被検眼情報は、たとえば、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報や、被検眼の診断結果・検査結果など、被検眼に関する各種の情報を含む。主制御部211は、記憶部212にデータを書き込む処理や、記憶部212からデータを読み出す処理を行う。
(Memory part)
The storage unit 212 stores various data. Examples of data stored in the storage unit 212 include image data of an OCT image, image data of a fundus oculi image Ef ′, and eye information to be examined. The eye information includes, for example, various information related to the eye such as information about the subject such as patient ID and name, left eye / right eye identification information, and diagnosis / test results of the eye. The main control unit 211 performs a process of writing data to the storage unit 212 and a process of reading data from the storage unit 212.
 更に、記憶部212には、後述の動作(フローチャート)を実行するためのコンピュータプログラムが記憶される。主制御部211は、当該コンピュータプログラムに基づいて動作する。 Further, the storage unit 212 stores a computer program for executing an operation (flow chart) described later. The main control unit 211 operates based on the computer program.
(画像形成部)
 画像形成部220は、CCD184からの検出信号に基づいて眼底Efの断層画像の画像データを形成する。この画像データ形成処理には、従来のフーリエドメインタイプのOCT技術と同様に、ノイズ除去(ノイズ低減)、フィルタ処理、FFT(Fast Fourier Transform)などの処理が含まれている。
(Image forming part)
The image forming unit 220 forms tomographic image data of the fundus oculi Ef based on the detection signal from the CCD 184. This image data forming process includes processes such as noise removal (noise reduction), filter processing, and FFT (Fast Fourier Transform), as in the conventional Fourier domain type OCT technique.
 画像形成部220は、たとえば、前述の回路基板や通信インターフェイス等を含んで構成される。なお、この明細書では、「画像データ」と、それに基づいて表示される「画像」とを同一視することがある。 The image forming unit 220 includes, for example, the above-described circuit board and communication interface. In this specification, “image data” and “image” displayed based on the “image data” may be identified.
(画像処理部)
 画像処理部230は、眼底カメラユニット1Aにより取得された眼底像(眼底表面の撮影画像)や、画像形成部220により形成された断層画像に対して、各種の画像処理や解析処理を施す。たとえば、画像処理部230は、断層画像の輝度補正や分散補正等の各種補正処理などを実行する。
(Image processing unit)
The image processing unit 230 performs various kinds of image processing and analysis processing on the fundus image (captured image of the fundus surface) acquired by the fundus camera unit 1A and the tomographic image formed by the image forming unit 220. For example, the image processing unit 230 executes various correction processes such as luminance correction and dispersion correction of the tomographic image.
 また、画像処理部230は、画像形成部220により形成された断層画像の間の画素を補間する補間処理等を実行することにより、眼底Efの3次元画像の画像データを形成する。 Further, the image processing unit 230 forms image data of a three-dimensional image of the fundus oculi Ef by executing an interpolation process for interpolating pixels between tomographic images formed by the image forming unit 220.
 なお、3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、画像処理部230は、このボリュームデータに対してレンダリング処理(ボリュームレンダリングやMIP(Maximum Intensity Projection:最大値投影)など)を施して、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。表示部240A等の表示デバイスには、この擬似的な3次元画像が表示される。 Note that the image data of a three-dimensional image means image data in which pixel positions are defined by a three-dimensional coordinate system. As image data of a three-dimensional image, there is image data composed of voxels arranged three-dimensionally. This image data is called volume data or voxel data. When displaying an image based on the volume data, the image processing unit 230 performs rendering processing (volume rendering, MIP (Maximum Intensity Projection), etc.) on the volume data, and views the image from a specific line-of-sight direction. Image data of a pseudo three-dimensional image is formed. This pseudo three-dimensional image is displayed on a display device such as the display unit 240A.
 また、3次元画像の画像データとして、複数の断層画像のスタックデータを形成することも可能である。スタックデータは、複数の走査線に沿って得られた複数の断層画像を、走査線の位置関係に基づいて3次元的に配列させることで得られる画像データである。すなわち、スタックデータは、元々個別の2次元座標系により定義されていた複数の断層画像を、一つの3次元座標系により表現する(つまり一つの3次元空間に埋め込む)ことにより得られる画像データである。画像処理部230は、3次元画像に対して各種の画像処理や解析処理を行うことも可能である。 It is also possible to form stack data of a plurality of tomographic images as image data of a three-dimensional image. The stack data is image data obtained by three-dimensionally arranging a plurality of tomographic images obtained along a plurality of scanning lines based on the positional relationship of the scanning lines. That is, stack data is image data obtained by expressing a plurality of tomographic images originally defined by individual two-dimensional coordinate systems by one three-dimensional coordinate system (that is, by embedding them in one three-dimensional space). is there. The image processing unit 230 can also perform various image processing and analysis processing on the three-dimensional image.
 以上のような構成を有する画像処理部230は、たとえば、マイクロプロセッサ、RAM、ROM、ハードディスクドライブ等を含んで構成される。また、所定の画像処理や解析処理を専門に行う回路基板などを含んでいてもよい。 The image processing unit 230 having the above configuration includes, for example, a microprocessor, a RAM, a ROM, a hard disk drive, and the like. Further, a circuit board that specializes in predetermined image processing and analysis processing may be included.
 なお、画像形成部220(及び画像処理部230)は、この発明に係る「断層画像形成手段」の一例として機能するものである。 The image forming unit 220 (and the image processing unit 230) functions as an example of the “tomographic image forming unit” according to the present invention.
(異常検出部)
 異常検出部250は、画像形成部220により形成された断層画像の画像データに対してその断層画像に異常が発生しているか否かを検出する。本実施形態において断層画像の異常とは、たとえば、検査対象である被検眼Eの動きにより、撮像したい部分(具体的には、眼底Ef)が断層画像の中央付近から動いてしまい、断層画像の上端もしくは下端の方に撮像されてしまうことを指す。ここで、断層画像の上端とは、深さ方向(z方向)における浅い位置を指す。また、断層画像の下端とは、深さ方向(z方向)における深い位置を指す。断層画像の上端もしくは下端では解像度が低下するなどの不都合がある。よって、撮像したい部分が端に位置してしまうと、正確な診断を行うことができなくなるおそれがある。例えば、異常検出部250は、断層画像に含まれる各ピクセルの輝度値などに基づき、検査対象となっている画像の位置を把握する。更に、異常検出部250は、当該画像の中央からのずれを求め、このずれと予め決まっている閾値とを比較する。このずれが閾値より大きいと判断された場合、異常検出部250は、当該断層画像には異常が発生しているものとする。ただし、この画像の位置の求め方は特に制限はなく、他の方法を用いてもよい。また、本実施形態では画像の位置によって異常を検出したが、他の画像状態を基に異常を検出してもよい。例えばノイズによる画像の乱れを基に異常を検出することができる。異常検出部250が本発明における「異常検出手段」にあたる。
(Abnormality detection unit)
The abnormality detection unit 250 detects whether or not an abnormality has occurred in the tomographic image with respect to the image data of the tomographic image formed by the image forming unit 220. In this embodiment, an abnormality in a tomographic image means that, for example, a portion to be imaged (specifically, fundus oculi Ef) moves from the vicinity of the center of the tomographic image due to the movement of the eye E to be examined. It means that the image is taken toward the upper end or the lower end. Here, the upper end of the tomographic image indicates a shallow position in the depth direction (z direction). The lower end of the tomographic image indicates a deep position in the depth direction (z direction). There is a disadvantage that the resolution is lowered at the upper or lower end of the tomographic image. Therefore, if the part to be imaged is positioned at the end, there is a possibility that accurate diagnosis cannot be performed. For example, the abnormality detection unit 250 grasps the position of the image to be inspected based on the luminance value of each pixel included in the tomographic image. Further, the abnormality detection unit 250 obtains a deviation from the center of the image and compares the deviation with a predetermined threshold value. When it is determined that this deviation is larger than the threshold value, the abnormality detection unit 250 assumes that an abnormality has occurred in the tomographic image. However, the method for obtaining the position of the image is not particularly limited, and other methods may be used. In this embodiment, an abnormality is detected based on the position of the image. However, an abnormality may be detected based on another image state. For example, an abnormality can be detected based on image disturbance due to noise. The abnormality detection unit 250 corresponds to the “abnormality detection unit” in the present invention.
(表示部、操作部)
 ユーザインターフェイス240は、表示部240A及び操作部240Bで構成される。表示部240Aは、タッチパネルモニタ11を含んで構成される。更に、演算制御装置200のディスプレイなどが表示部240Aに含まれていてもよい。操作部240Bは、たとえばキーボードやマウスのような、入力デバイスや操作デバイスを含んで構成される。また、操作部240Bには、光画像計測装置1の筐体表面や外部に設けられた各種の入力デバイスや操作デバイスが含まれている。
(Display section, operation section)
The user interface 240 includes a display unit 240A and an operation unit 240B. The display unit 240 </ b> A includes the touch panel monitor 11. Furthermore, a display of the arithmetic and control unit 200 may be included in the display unit 240A. The operation unit 240B includes an input device and an operation device such as a keyboard and a mouse. The operation unit 240 </ b> B includes various input devices and operation devices provided on the surface of the housing of the optical image measurement device 1 and on the outside.
 なお、表示部240Aと操作部240Bは、それぞれ個別のデバイスとして構成される必要はない。たとえばタッチパネル方式のLCDのように、表示部240Aと操作部240Bとが一体化されたデバイスを用いることも可能である。 Note that the display unit 240A and the operation unit 240B do not need to be configured as individual devices. For example, a device in which the display unit 240A and the operation unit 240B are integrated, such as a touch panel LCD, can be used.
〔信号光の走査及びOCT画像について〕
 ここで、信号光LSの走査、OCT画像、及び異常検出について説明しておく。
[Scanning signal light and OCT images]
Here, scanning of the signal light LS, OCT image, and abnormality detection will be described.
 図4A、Bは、眼底Efの断層画像を形成するための信号光LSの走査態様の一例を表している。図4Aは、信号光LSが被検眼Eに入射する方向から眼底Efを見た(つまり図1の-z方向から+z方向を見た)ときの、信号光LSの走査態様の一例を表す。また、図4Bは、眼底Ef上の各走査線における走査点(画像計測を行う位置)の配列態様の一例を表す。 4A and 4B show an example of a scanning mode of the signal light LS for forming a tomographic image of the fundus oculi Ef. 4A shows an example of a scanning mode of the signal light LS when the fundus oculi Ef is viewed from the direction in which the signal light LS enters the eye E (that is, when the + z direction is viewed from the −z direction in FIG. 1). FIG. 4B shows an example of an arrangement mode of scanning points (positions where image measurement is performed) on each scanning line on the fundus oculi Ef.
 図4Aに示すように、信号光LSは、あらかじめ設定された矩形の走査領域R内を走査される。走査領域R内には、x方向に延びる複数(m本)の走査線R1~Rmが設定されている。各走査線Ri(i=1~m)に沿って信号光LSが走査されるときに、干渉光LCの検出信号が生成されるようになっている。 As shown in FIG. 4A, the signal light LS is scanned in a rectangular scanning region R set in advance. In the scanning region R, a plurality (m) of scanning lines R1 to Rm extending in the x direction are set. When the signal light LS is scanned along each scanning line Ri (i = 1 to m), a detection signal of the interference light LC is generated.
 各走査線Riの方向を「主走査方向」と呼び、それに直交する方向を「副走査方向」と呼ぶ。したがって、信号光LSの主走査方向への走査は、ガルバノミラー141Aの反射面の向きを変更することにより実行される。この各走査線Riに対応する断面が1つのフレームにあたる。また、副走査方向への走査は、ガルバノミラー141Bの反射面の向きを変更することによって実行される。 The direction of each scanning line Ri is referred to as the “main scanning direction”, and the direction orthogonal thereto is referred to as the “sub-scanning direction”. Therefore, scanning of the signal light LS in the main scanning direction is executed by changing the direction of the reflecting surface of the galvano mirror 141A. A cross section corresponding to each scanning line Ri corresponds to one frame. Further, scanning in the sub-scanning direction is executed by changing the direction of the reflecting surface of the galvano mirror 141B.
 各走査線Ri上には、図4Bに示すように、複数(n個)の走査点Ri1~Rinがあらかじめ設定されている。 On each scanning line Ri, as shown in FIG. 4B, a plurality (n) of scanning points Ri1 to Rin are set in advance.
 図4A、Bに示す走査を実行するために、制御部210は、まず、ガルバノミラー141A、141Bを制御し、眼底Efに対する信号光LSの入射目標を第1の走査線R1上の走査開始位置RS(走査点R11)に設定する。続いて、制御部210は、低コヒーレンス光源160を制御し、低コヒーレンス光L0をフラッシュ発光させて、走査開始位置RSに信号光LSを入射させる。CCD184は、この信号光LSの走査開始位置RSにおける眼底反射光に基づく干渉光LCを受光し、検出信号を制御部210に出力する。 4A and 4B, the control unit 210 first controls the galvanometer mirrors 141A and 141B, and sets the incidence target of the signal light LS on the fundus oculi Ef to the scanning start position on the first scanning line R1. Set to RS (scanning point R11). Subsequently, the control unit 210 controls the low coherence light source 160 to cause the low coherence light L0 to flash and cause the signal light LS to enter the scan start position RS. The CCD 184 receives the interference light LC based on the fundus reflection light at the scanning start position RS of the signal light LS and outputs a detection signal to the control unit 210.
 次に、制御部210は、ガルバノミラー141Aを制御して、信号光LSを主走査方向に走査して、その入射目標を走査点R12に設定し、低コヒーレンス光L0をフラッシュ発光させて走査点R12に信号光LSを入射させる。CCD184は、この信号光LSの走査点R12における眼底反射光に基づく干渉光LCを受光し、検出信号を制御部210に出力する。 Next, the control unit 210 controls the galvanometer mirror 141A, scans the signal light LS in the main scanning direction, sets the incident target at the scanning point R12, flashes the low coherence light L0, and scans the scanning point. The signal light LS is incident on R12. The CCD 184 receives the interference light LC based on the fundus reflection light at the scanning point R12 of the signal light LS, and outputs a detection signal to the control unit 210.
 制御部210は、同様にして、信号光LSの入射目標を走査点R13、R14、・・・、R1(n-1)、R1nと順次移動させつつ、各走査点において低コヒーレンス光L0をフラッシュ発光させることにより、各走査点の干渉光LCに対応してCCD184から出力される検出信号を取得する。これにより、最初のフレームに対応する走査及び検出が終了する。 Similarly, the control unit 210 sequentially moves the incident target of the signal light LS to the scanning points R13, R14,..., R1 (n−1), R1n, and flashes the low coherence light L0 at each scanning point. By emitting light, a detection signal output from the CCD 184 corresponding to the interference light LC at each scanning point is acquired. Thereby, the scanning and detection corresponding to the first frame is completed.
 この様に、制御部210は、上述したOCTユニット150の制御やガルバノミラー141A及び141Bの制御を行い、OCTユニット150に干渉光の検出を行わせる。そして、第1の走査線R1の最後の走査点R1nにおける計測が終了すると、画像形成部220は、走査線R1(主走査方向)に沿った眼底Efの断層画像を形成する(詳細は後述)。 Thus, the control unit 210 controls the OCT unit 150 and the galvanometer mirrors 141A and 141B described above, and causes the OCT unit 150 to detect interference light. When the measurement at the last scanning point R1n of the first scanning line R1 ends, the image forming unit 220 forms a tomographic image of the fundus oculi Ef along the scanning line R1 (main scanning direction) (details will be described later). .
 そして、異常検出部250は、画像形成部220が形成した断層画像に描出されている被検眼Eの位置(より詳しくは眼底Efの位置)を基に、この断層画像の異常を検出する。すなわち、異常検出部250は、眼底Efが断層画像の上端付近もしくは下端付近に位置しているときに、この断層画像に異常が発生していると判断する。 Then, the abnormality detection unit 250 detects an abnormality of the tomographic image based on the position of the eye E to be examined (more specifically, the position of the fundus oculi Ef) depicted in the tomographic image formed by the image forming unit 220. That is, the abnormality detection unit 250 determines that an abnormality has occurred in the tomographic image when the fundus oculi Ef is located near the upper end or the lower end of the tomographic image.
 異常検出部250が断層画像の異常を検出した場合、制御部210は、走査線R1に沿った眼底Efの断層画像の形成を再度行うよう、OCTユニット150やガルバノミラー141A及び141Bを制御する。 When the abnormality detection unit 250 detects an abnormality in the tomographic image, the control unit 210 controls the OCT unit 150 and the galvanometer mirrors 141A and 141B so that the tomographic image of the fundus oculi Ef along the scanning line R1 is formed again.
 一方、異常検出部250が断層画像の異常を検出しなかった場合、制御部210は、次の走査線R2に沿った走査を行わせる。すなわち、制御部210は、ガルバノミラー141A、141Bを同時に制御して、信号光LSの入射目標を、第2の走査線R2の最初の走査点R21まで移動させる。そして、この第2の走査線R2の各走査点R2j(j=1~n)について前述の計測を行うことで、各走査点R2jに対応する検出信号をそれぞれ取得する。さらに、演算制御装置200は、走査線R2における断層画像の生成、この断層画像における異常の検出、干渉光の再検出、断層画像の再形成といった動作を、各部に行わせる。 On the other hand, when the abnormality detection unit 250 does not detect any abnormality in the tomographic image, the control unit 210 performs scanning along the next scanning line R2. That is, the control unit 210 controls the galvanometer mirrors 141A and 141B simultaneously to move the incident target of the signal light LS to the first scanning point R21 of the second scanning line R2. Then, by performing the above-described measurement for each scanning point R2j (j = 1 to n) of the second scanning line R2, a detection signal corresponding to each scanning point R2j is obtained. Further, the arithmetic and control unit 200 causes each unit to perform operations such as generation of a tomographic image on the scanning line R2, detection of abnormality in the tomographic image, redetection of interference light, and re-formation of the tomographic image.
 同様に、第3の走査線R3、・・・・、第m-1の走査線R(m-1)、第mの走査線Rmのそれぞれについて計測を行って、各走査点に対応する検出信号を取得する。更に、各走査線Riにおける断層画像の生成、この断層画像における異常の検出、干渉光の再検出、断層画像の再形成といった動作を行う。この各走査線Riにおける動作が「所定フレーム分の前記断層画像が得られる度毎」にあたる。ここでは、「所定フレーム数」は「1フレーム」だが、2フレーム以上の任意の枚数(例えば「10フレーム」)でもよい。なお、走査線Rm上の符号REは、走査点Rmnに対応する走査終了位置である。 Similarly, measurement is performed for each of the third scanning line R3,..., The m−1th scanning line R (m−1), and the mth scanning line Rm, and detection corresponding to each scanning point is performed. Get the signal. Further, operations such as generation of a tomographic image at each scanning line Ri, detection of abnormality in the tomographic image, redetection of interference light, and re-formation of the tomographic image are performed. The operation on each scanning line Ri corresponds to “every time the tomographic image for a predetermined frame is obtained”. Here, the “predetermined number of frames” is “1 frame”, but may be an arbitrary number of 2 frames or more (for example, “10 frames”). Note that the symbol RE on the scanning line Rm is a scanning end position corresponding to the scanning point Rmn.
 それにより、制御部210は、走査領域R内のm×n個の走査点Rij(i=1~m、j=1~n)に対応するm×n個の検出信号を取得させるとともに、断層画像の形成、異常の検出、断層画像の再形成を行わせることができる。以下、走査点Rijに対応する検出信号をDijと表すことがある。 Thereby, the control unit 210 acquires m × n detection signals corresponding to m × n scanning points Rij (i = 1 to m, j = 1 to n) in the scanning region R, and Image formation, abnormality detection, and tomographic image reconstruction can be performed. Hereinafter, the detection signal corresponding to the scanning point Rij may be represented as Dij.
 制御部210は、上述のように各ガルバノミラー141A、141Bを動作させるときに、その動作内容を示す情報として走査線Riの位置や走査点Rijの位置(xy座標系における座標)を記憶するようになっている。この記憶内容(走査位置情報)は、従来と同様に画像形成処理などにおいて用いられる。 When the galvanometer mirrors 141A and 141B are operated as described above, the control unit 210 stores the position of the scanning line Ri and the position of the scanning point Rij (coordinates in the xy coordinate system) as information indicating the operation content. It has become. This stored content (scanning position information) is used in an image forming process or the like as in the prior art.
 次に、異常検出部250による断層画像の異常の検出の例を説明する。異常検出部250は、画像形成部220によって形成された各走査線Riにおける断層画像の入力を受ける。そして、異常検出部250は、断層画像を構成している走査点Ri1~Rinのそれぞれにおける深度方向の画像のうち、9個の深度方向の画像を抽出する。異常検出部250は、これら9つの走査点の位置(すなわち、何番目の走査点を抽出するか。)を予め記憶している。断層画像の異常の発生を検出するためには、これら走査点の位置は、断層画像の中で平均的に分布していることが好ましい。例えば、25、50、75、・・・、200、225というように、25×k番目(k=1、2、・・・、9)の走査点、すなわち走査点Ri25kを取得する。そして、異常検出部250は、これら9つの走査点における深度方向の画像に含まれる各ピクセルの輝度値を求める。更に、異常検出部250は、輝度値が高い部分が断層画像の上部や下部に存在するときに、その走査点における深度方向の画像を異常と判定する。そして、異常検出部250は、これら9つの走査点に沿った深度方向の画像のうち所定数以上において異常が検出された場合、制御部210に対し、断層画像に異常が検出された旨の通知を行う。他方、これら9つの走査点における画像のうちの所定数以上で異常が検出されなかった場合、異常検出部250は、制御部210に対し、断層画像が正常である旨の通知を行う。ここで、所定数とは1~9のうちのいずれかであればよい。断層画像の異常の発生を精度良く検出するためには、この所定数を小さく設定することが好ましい。 Next, an example of detecting an abnormality in a tomographic image by the abnormality detection unit 250 will be described. The abnormality detection unit 250 receives a tomographic image input on each scanning line Ri formed by the image forming unit 220. Then, the abnormality detection unit 250 extracts nine images in the depth direction among the images in the depth direction at each of the scanning points Ri1 to Rin constituting the tomographic image. The abnormality detection unit 250 stores in advance the positions of these nine scanning points (that is, what number of scanning points are extracted). In order to detect the occurrence of an abnormality in the tomographic image, the positions of these scanning points are preferably distributed on the average in the tomographic image. For example, 25 × k-th (k = 1, 2,..., 9) scanning points, that is, scanning point Ri25k, such as 25, 50, 75,. Then, the abnormality detection unit 250 obtains the luminance value of each pixel included in the image in the depth direction at these nine scanning points. Further, the abnormality detection unit 250 determines that an image in the depth direction at the scanning point is abnormal when a portion having a high luminance value exists above or below the tomographic image. Then, the abnormality detection unit 250 notifies the control unit 210 that an abnormality has been detected in the tomographic image when abnormality is detected in a predetermined number or more of the images in the depth direction along these nine scanning points. I do. On the other hand, when no abnormality is detected in a predetermined number or more of the images at these nine scanning points, the abnormality detection unit 250 notifies the control unit 210 that the tomographic image is normal. Here, the predetermined number may be any one of 1 to 9. In order to accurately detect the occurrence of an abnormality in the tomographic image, it is preferable to set the predetermined number small.
 このように本実施形態では、断層画像の異常の検出の精度を一定にするとともに、異常検出処理の負荷の軽減及び処理速度の向上を図るために、画面上に平均的に分散した9つの走査点における深度方向の画像を用いて画像の異常を検出しているが、この処理に供される走査点の数は、異常検出の確度や処理速度などに基づいて決定されることが好ましい。例えば、より処理速度を向上させたければ、より少ない数の走査点を用いて異常検出を行えばよい。また、すべての走査点を用いて異常検出を行えば、より確度の高い異常検出を行うことができる。 As described above, in this embodiment, nine scans dispersed on the screen are averaged in order to make the detection accuracy of the tomographic image abnormality constant, reduce the load of the abnormality detection process, and improve the processing speed. An image abnormality is detected using an image in the depth direction at the point, but the number of scanning points used for this processing is preferably determined based on the accuracy of abnormality detection, the processing speed, and the like. For example, if it is desired to improve the processing speed, abnormality detection may be performed using a smaller number of scanning points. If abnormality detection is performed using all scanning points, abnormality detection with higher accuracy can be performed.
 [動作]
 光画像計測装置1の動作について説明する。図5に示すフローチャートは、本実施形態に係る光画像計測装置1の使用形態の一例を表している。
[Operation]
The operation of the optical image measurement device 1 will be described. The flowchart shown in FIG. 5 represents an example of a usage pattern of the optical image measurement device 1 according to the present embodiment.
 まず、被検眼Eを所定の計測位置(対物レンズ113に対峙する位置)に配置させ、被検眼Eと装置とのアライメントを行う(S1)。アライメントが完了すると、次に、主制御部211は、被検眼Eに対するピント合わせを行う(S2)。 First, the eye E is placed at a predetermined measurement position (a position facing the objective lens 113), and the eye E and the apparatus are aligned (S1). When the alignment is completed, the main control unit 211 next focuses on the eye E (S2).
 アライメント調整及びピント調整が完了すると、オペレータは、操作部240Bを操作して検査の開始を要求する(S3)。このとき、主制御部211は、必要に応じてLCD140を制御し、被検眼Eに対して内部固視標を呈示させる。 When the alignment adjustment and focus adjustment are completed, the operator operates the operation unit 240B to request the start of inspection (S3). At this time, the main control unit 211 controls the LCD 140 as necessary to present the internal fixation target to the eye E.
 検査開始の要求を受けた主制御部211は、まずi=1と設定する(S4)。 The main control unit 211 having received the request to start the inspection first sets i = 1 (S4).
 そして、主制御部211は、低コヒーレンス光源160、CCD184等を制御するとともに、ミラー駆動機構241及び242を制御して、ガルバノミラー141A及び141Bの向きを走査点Ri1の向きに調整(S5)する。そして、主制御部211は、走査点Ri1の向きから各走査点Rij(j=2~m)の方向に順次ガルバノミラー141A、141Bの向きを変更して、走査線Riに沿った走査を実行させ、干渉光LCを検出させる(S6)。 The main control unit 211 controls the low coherence light source 160, the CCD 184, and the like, and also controls the mirror drive mechanisms 241 and 242 to adjust the direction of the galvanometer mirrors 141A and 141B to the direction of the scanning point Ri1 (S5). . Then, the main control unit 211 sequentially changes the direction of the galvanometer mirrors 141A and 141B from the direction of the scanning point Ri1 to the direction of each scanning point Rij (j = 2 to m), and executes scanning along the scanning line Ri. The interference light LC is detected (S6).
 続いて、画像形成部220は、CCD184から出力される検出信号を収集し、この検出信号に基づいてスペクトルの強度分布を求める。更に、画像形成部220は、フーリエドメインOCTの手法を用いて干渉光LCのスペクトル強度分布をフーリエ変換することで、眼底Efの深度方向(z方向)の形態を画像化し、断層画像を形成する(S7)。 Subsequently, the image forming unit 220 collects detection signals output from the CCD 184, and obtains a spectrum intensity distribution based on the detection signals. Further, the image forming unit 220 images the form in the depth direction (z direction) of the fundus oculi Ef by Fourier transforming the spectral intensity distribution of the interference light LC using a Fourier domain OCT technique, and forms a tomographic image. (S7).
 異常検出部250は、画像形成部220で形成された断層画像の画像データから、9つの走査点における深度方向の画像を取得する。更に、異常検出部250は、これら9個の深度方向の画像に含まれるピクセルの輝度値を求めることで、この断層画像に異常が発生しているか否かを検出する(S8)。 The abnormality detection unit 250 acquires images in the depth direction at nine scanning points from the image data of the tomographic image formed by the image forming unit 220. Further, the abnormality detection unit 250 detects whether or not an abnormality has occurred in the tomographic image by obtaining the luminance values of the pixels included in the nine images in the depth direction (S8).
 異常が検出されない場合(S8のNoの場合)、主制御部211は、i=i+1としてインクリメントを行ってiの値を1増やす(S9)。すなわち、走査線Riに沿った走査から走査線R(i+1)に沿った走査に移る。他方、異常が検出された場合(S8のYesの場合)、主制御部211は、iの値をそのままに保持し、ガルバノミラー141A,141Bの駆動を停止させステップ6に戻る(S10)。 If no abnormality is detected (No in S8), the main control unit 211 increments by setting i = i + 1 and increases the value of i by 1 (S9). That is, the scan along the scan line Ri shifts from the scan along the scan line R (i + 1). On the other hand, if an abnormality is detected (Yes in S8), the main control unit 211 holds the value of i as it is, stops driving the galvanometer mirrors 141A and 141B, and returns to Step 6 (S10).
 ここで、ステップ6、7、8、及び10の繰り返しが始まりループに入った場合、図示は省略するが、操作者からの入力を受けてステップ8をスキップしてステップ9に進むことが可能である。また、このほかにも、ステップ7とステップ8との間に繰り返しの数を数えるステップを設け、繰り返しの数が所定回数に達した場合にはステップ8をスキップしてステップ9に進む構成にしてもよい。 Here, when repetition of steps 6, 7, 8, and 10 starts and a loop is entered, although not shown, it is possible to skip step 8 and proceed to step 9 in response to input from the operator. is there. In addition, a step for counting the number of repetitions is provided between step 7 and step 8, and when the number of repetitions reaches a predetermined number, step 8 is skipped and the process proceeds to step 9. Also good.
 さらに、主制御部211は、i>m(ここで、mは全走査線の本数である。)か否かを判断する(S11)。i>mであれば(S11のYes)ステップ12に進む。また、i≦mであれば(S11のNo)、ステップ5に戻る。 Further, the main control unit 211 determines whether i> m (where m is the number of all scanning lines) (S11). If i> m (Yes in S11), the process proceeds to Step 12. If i ≦ m (No in S11), the process returns to Step 5.
 ステップ12において、画像処理部230は、形成されたm枚の断層画像を基に3次元画像を生成する。そして、制御部210は、画像処理部230により生成された3次元画像を表示部240Aに表示させる(S12)。 In step 12, the image processing unit 230 generates a three-dimensional image based on the formed m tomographic images. Then, the control unit 210 causes the display unit 240A to display the three-dimensional image generated by the image processing unit 230 (S12).
[作用・効果]
 以上のような光画像計測装置1の作用及び効果について説明する。
[Action / Effect]
The operation and effect of the optical image measurement apparatus 1 as described above will be described.
 光画像計測装置1は、1つのフレームにおいて、ガルバノミラーの向きを変更しながらの被検眼Eの走査及び干渉光の検出に続いて、断層画像の形成を行い、その形成された断層画像で異常が発生しているか否かの検出を順次行う構成を有する。断層画像の異常の発生を検出すると、光画像計測装置1は、その状態でガルバノミラー141A,141Bの向きの変更を停止させ、その断層画像に対応する走査位置から再度走査を行うことができる構成を有する。 In one frame, the optical image measuring device 1 forms a tomographic image following the scanning of the eye E while detecting the direction of the galvano mirror while changing the direction of the galvanometer mirror, and detects the interference light. It has the structure which detects sequentially whether it has generate | occur | produced. When the occurrence of an abnormality in a tomographic image is detected, the optical image measurement device 1 can stop changing the orientation of the galvanometer mirrors 141A and 141B in that state, and perform scanning again from the scanning position corresponding to the tomographic image. Have
 このような光画像計測装置1によれば、1フレーム毎に断層画像の異常が確認できるので、迅速に異常を検出することができる。また、光画像計測装置1は、異常が発生したときにガルバノミラー141A、141Bの向きの変更を停止させ、その位置から再度走査を行うように構成されている。よって、被検眼Eの走査や画像形成がすべて完了したのちに、異常が発生した場所の断層画像を再度形成するために、この異常が発生した位置を探す必要がないので、断層画像の異常に対して迅速に対処することが可能となる。 According to such an optical image measurement device 1, since an abnormality of the tomographic image can be confirmed every frame, the abnormality can be detected quickly. The optical image measurement device 1 is configured to stop changing the orientation of the galvano mirrors 141A and 141B when an abnormality occurs and scan again from that position. Therefore, after all the scanning of the eye E and the image formation are completed, there is no need to search for the position where the abnormality has occurred in order to re-form the tomographic image of the place where the abnormality has occurred. It becomes possible to deal with it quickly.
[変形例1]
 以上に説明した構成は、この発明に係る光画像計測装置を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形を適宜に施すことが可能である。
[Modification 1]
The configuration described above is merely an example for favorably implementing the optical image measurement device according to the present invention. Therefore, arbitrary modifications within the scope of the present invention can be made as appropriate.
 上記の実施形態では、異常が検出されたときに、その異常が発生している断層画像に対応する走査位置から自動的に再度走査を開始するようにしているが、これに代えて、オペレータが手作業で走査を開始するようにしてもよい。 In the above embodiment, when an abnormality is detected, scanning is automatically started again from the scanning position corresponding to the tomographic image in which the abnormality has occurred. Scanning may be started manually.
 本変形例においても上記実施形態と同様に、異常検出部250は、断層画像の異常を検出する。その情報を制御部210が受けると、制御部210は、ミラー駆動機構241及び242を制御してガルバノミラー141A及び141Bの駆動を停止させる。更に、制御部210は、その状態でOCTユニット150、画像形成部220、及び異常検出部250の動作を停止させることで検査を停止させる。 Also in this modification, as in the above embodiment, the abnormality detection unit 250 detects an abnormality in the tomographic image. When the control unit 210 receives the information, the control unit 210 controls the mirror driving mechanisms 241 and 242 to stop driving the galvano mirrors 141A and 141B. Further, the control unit 210 stops the inspection by stopping the operations of the OCT unit 150, the image forming unit 220, and the abnormality detection unit 250 in this state.
 更に、本変形例では、例えば、制御部210は、オペレータによる操作部240Bからの入力を待ち、オペレータが操作部240Bを用いて検査再開の命令を行ったことに対応して、ガルバノミラー141A及び141Bの当該停止位置から検査を再開するように構成することができる。 Further, in the present modification, for example, the control unit 210 waits for an input from the operation unit 240B by the operator, and in response to the operator issuing an instruction to restart the inspection using the operation unit 240B, the galvanometer mirror 141A and The inspection can be resumed from the stop position 141B.
 以上のように本変形例に係る光画像計測装置は、断層画像の異常が検出されたときに、ガルバノミラーの向きの変更を停止し、そのままの状態でオペレータの指示を待つ構成である。 As described above, the optical image measurement device according to the present modification is configured to stop changing the orientation of the galvanometer mirror and wait for the operator's instruction as it is when a tomographic image abnormality is detected.
 このような構成にすることで、オペレータの要求に応じた検査の再開及び検査再開時の走査位置の位置調整を行うことが可能となり、よりオペレータの要求に合った検査を行うことが可能となる。 By adopting such a configuration, it is possible to restart the inspection according to the operator's request and to adjust the position of the scanning position at the time of the inspection restart, and it is possible to perform an inspection that further meets the operator's request. .
[変形例2]
 また、上記の実施形態では、1フレーム毎(すなわち、断層画像1枚毎)に異常検出を行っているが、複数フレーム毎、例えば10フレーム毎(すなわち、断層画像10枚毎)といった割合で異常検出を行うようにしてもよい。
[Modification 2]
In the above embodiment, abnormality detection is performed for each frame (that is, for each tomographic image), but abnormality is performed at a rate of a plurality of frames, for example, for every 10 frames (that is, for every 10 tomographic images). Detection may be performed.
 この構成の一例を説明する。制御部210は、カウンタを有している。このカウンタは、断層画像の形成枚数をカウントしていく。制御部210は、カウントされた枚数が10枚に達した時点で、その10枚目の断層画像に対して異常検出を行うように、異常検出部250に制御命令を送信する。制御部210は、異常検出を行う命令を送信すると、カウンタを0に戻し再度10枚カウントする。このようにして、異常検出部250は、制御命令を受けて、10枚毎の断層画像に対して異常検出を実施する。 An example of this configuration will be described. The control unit 210 has a counter. This counter counts the number of tomographic images formed. When the counted number reaches ten, the control unit 210 transmits a control command to the abnormality detection unit 250 so that abnormality detection is performed on the tenth tomographic image. When the control unit 210 transmits a command for detecting an abnormality, the control unit 210 resets the counter to 0 and counts 10 sheets again. In this way, the abnormality detection unit 250 receives the control command and performs abnormality detection on every ten tomographic images.
 ここで、異常検出を何フレーム毎に行うかというフレーム数は、予め決められた数であってもよいし、操作者の要求するフレーム数の入力を受けて決まった数であってもよい。 Here, the number of frames for determining the number of frames for which abnormality detection is performed may be a predetermined number or a number determined by receiving an input of the number of frames requested by the operator.
 このような構成にすることで、異常検出を複数フレーム毎に行うことになり、1フレーム毎に異常検出を行う場合に比較し、処理時間を短縮することが可能となる。 By adopting such a configuration, the abnormality detection is performed every plural frames, and the processing time can be shortened as compared with the case where the abnormality detection is performed every frame.
〔第2の実施形態〕
 この発明に係る光画像計測装置の第2の実施形態について説明する。この実施形態は、被測定物体の走査及び干渉光の検出と、画像の形成とを並行して行うものである。この実施形態では、被測定物体の走査、干渉光の検出及び画像の形成の制御、並びに動作ついて説明する。
[Second Embodiment]
A second embodiment of the optical image measurement device according to the present invention will be described. In this embodiment, scanning of an object to be measured, detection of interference light, and image formation are performed in parallel. In this embodiment, scanning of an object to be measured, detection of interference light, control of image formation, and operation will be described.
 制御部210は、ミラー駆動機構241及び242を制御することでガルバノミラー141A及び141Bの向きを変更させながら、OCTユニット150に走査線Ri(i=1、2、・・・m)に沿った眼底Efの走査及び干渉光の検出を順次行わせる。これは、第1の実施形態と異なり、走査線R1~Rmに対応する各フレームにおける走査及び検出を、画像形成や異常検出と並行して行うものである。 The control unit 210 controls the mirror drive mechanisms 241 and 242 to change the orientation of the galvanometer mirrors 141A and 141B, while causing the OCT unit 150 to follow the scanning line Ri (i = 1, 2,... M). Scanning of the fundus oculi Ef and detection of interference light are sequentially performed. This differs from the first embodiment in that scanning and detection in each frame corresponding to the scanning lines R1 to Rm are performed in parallel with image formation and abnormality detection.
 より詳しく説明すると、制御部210は、OCTユニット150に、走査線R1~Rmのそれぞれに沿った走査に基づく干渉光の検出を順次行わせていく。また、制御部210は、画像形成部220に、走査線R1~Rmのそれぞれに対応する検出結果に基づく断層画像の形成(スペクトルの強度分布の取得やフーリエ変換など)を順次行わせる。ここで、制御部210は、上述したOCTユニット150による干渉光の検出と画像形成部220による断層画像の形成をそれぞれ独立して実行させる。 More specifically, the control unit 210 causes the OCT unit 150 to sequentially detect the interference light based on the scanning along each of the scanning lines R1 to Rm. Further, the control unit 210 causes the image forming unit 220 to sequentially form tomographic images (acquisition of spectrum intensity distribution, Fourier transform, etc.) based on detection results corresponding to the scanning lines R1 to Rm. Here, the control unit 210 causes the detection of the interference light by the OCT unit 150 and the formation of the tomographic image by the image forming unit 220 to be executed independently of each other.
 以上のような構成を有する光画像計測装置1を用いて眼底Efを計測する動作について説明する。図6に示すシーケンス図は、本実施形態に係る光画像計測装置の各機能部について、時間経過に応じたそのオン/オフ状態(その機能部が動作しているか否かの状態)の一例を表している。図7に示すフローチャートは、各機能部のオン/オフ状態における動作の一例を表している。 The operation of measuring the fundus oculi Ef using the optical image measurement device 1 having the above configuration will be described. The sequence diagram shown in FIG. 6 is an example of an on / off state (a state of whether or not the functional unit is operating) corresponding to the passage of time for each functional unit of the optical image measurement device according to the present embodiment. Represents. The flowchart shown in FIG. 7 represents an example of the operation of each functional unit in the on / off state.
 図6は、図面に向かって上から下に時間が経過している。制御部210は、オペレータからの検査開始の入力を受けて、ガルバノミラー141A及び141Bを駆動させて順次向きを変更させながら順次走査線Riに沿って眼底Efを走査させ、OCTユニット150に干渉光を検出させる(S001)。OCTユニット150での検出結果は、制御部210を介して画像形成部220へ順次送信される。 In FIG. 6, time has passed from top to bottom as viewed in the drawing. The control unit 210 receives an inspection start input from the operator, drives the galvanometer mirrors 141A and 141B to sequentially change the direction, and sequentially scans the fundus oculi Ef along the scanning line Ri, and causes the OCT unit 150 to emit interference light. Is detected (S001). Detection results in the OCT unit 150 are sequentially transmitted to the image forming unit 220 via the control unit 210.
 画像形成部220は、OCTユニット150から順次送信される検出結果を受けて、走査線Riに沿った断層画像を順次に形成する。そして、画像形成部220は、順次形成される断層画像を、制御部210を介して画像処理部230へ順次送信する。 The image forming unit 220 receives the detection results sequentially transmitted from the OCT unit 150 and sequentially forms tomographic images along the scanning line Ri. Then, the image forming unit 220 sequentially transmits sequentially formed tomographic images to the image processing unit 230 via the control unit 210.
 画像処理部230は、各走査線Riに沿った断層画像の画像データを受信して、これらm個の画像データを基に3次元画像を生成する。 The image processing unit 230 receives the image data of the tomographic image along each scanning line Ri, and generates a three-dimensional image based on these m pieces of image data.
 図6で表わされるように、ガルバノミラー141A、141Bの調整及びOCTユニット150による干渉光の検出(S001)と、画像形成部220による断層画像の形成(S002)は並列的に行われる。そして、すべての断層画像の形成が終わった後に3次元画像の生成が行われる(S003)。ここで、本実施形態の変形例として、異常が検出されなかった断層画像を用いて部分的な3D画像を順次生成する構成にしてもよい。 As shown in FIG. 6, adjustment of the galvanometer mirrors 141A and 141B, detection of interference light by the OCT unit 150 (S001), and formation of a tomographic image by the image forming unit 220 (S002) are performed in parallel. Then, after all the tomographic images are formed, a three-dimensional image is generated (S003). Here, as a modification of the present embodiment, a partial 3D image may be sequentially generated using a tomographic image in which no abnormality is detected.
 ここで、画像形成部220による断層画像の形成処理の方が、ガルバノミラー141A、141Bの調整及びOCTユニットによる干渉光の検出よりも時間が掛かることを考慮すると、図6に示すように、ガルバノミラー141A、141Bの調整及びOCTユニット150によるすべてのフレームに対応する干渉光の検出にかかる全体の時間は、画像形成部220による全てのフレームに対応する断層画像の形成にかかる全体の時間よりも短い時間となる。 Here, considering that the tomographic image forming process by the image forming unit 220 takes more time than the adjustment of the galvanometer mirrors 141A and 141B and the detection of the interference light by the OCT unit, as shown in FIG. The total time required for adjusting the mirrors 141A and 141B and detecting the interference light corresponding to all the frames by the OCT unit 150 is larger than the total time required for forming the tomographic images corresponding to all the frames by the image forming unit 220. It will be a short time.
 次に、図7を参照してS001とS002における各機能部の動作を説明する。 Next, the operation of each functional unit in S001 and S002 will be described with reference to FIG.
 まず、前提として、被検眼Eを所定の計測位置(対物レンズ113に対峙する位置)に配置させ、被検眼Eと装置とのアライメントを行う。アライメントが完了すると、主制御部211は、被検眼Eに対するピント合わせを行う。アライメント調整及びピント調整が完了した後、オペレータは操作部240Bを操作して検査の開始を要求する。 First, as a premise, the eye E is placed at a predetermined measurement position (a position facing the objective lens 113), and the eye E and the apparatus are aligned. When the alignment is completed, the main control unit 211 performs focusing on the eye E. After the alignment adjustment and the focus adjustment are completed, the operator operates the operation unit 240B to request the start of the inspection.
(走査及び干渉光の検出の動作)
 検査開始の要求を受けた主制御部211は、まずi=1と設定する(S101)。
(Operation of scanning and detection of interference light)
The main control unit 211 that has received the request to start the inspection first sets i = 1 (S101).
 そして、主制御部211は、低コヒーレンス光源160、CCD184等を制御するとともに、ミラー駆動機構241及び242を制御して、ガルバノミラー141A及び141Bの向きを走査点Ri1の位置に調整する(S102)。 Then, the main control unit 211 controls the low-coherence light source 160, the CCD 184, and the like, and also controls the mirror drive mechanisms 241 and 242 to adjust the orientation of the galvano mirrors 141A and 141B to the position of the scanning point Ri1 (S102). .
 OCTユニット150及び眼底カメラユニット1Aは、走査点Ri1の向きから各走査点Rij(j=2~m)の方向に順次ガルバノミラー141A、141Bの向きを変更して干渉光を検出させる(S103)。 The OCT unit 150 and the fundus camera unit 1A sequentially change the direction of the galvanometer mirrors 141A and 141B from the direction of the scanning point Ri1 to the direction of each scanning point Rij (j = 2 to m) to detect interference light (S103). .
 そして、主制御部211は、i=i+1としてインクリメントを行いiの値を1だけ増やす(S104)。 The main control unit 211 increments i = i + 1 and increases the value of i by 1 (S104).
 さらに、主制御部211は、i>m(ここで、mは全走査線の本数である。)か否かを判断する(S105)。i>mであれば(S105のYes)ガルバノミラー141A、141Bの向きの変更、及び干渉光の検出を終了する。また、i≦mであれば、ステップ102に戻る(S105のNo)。これにより、すべての走査線(フレーム)に対応する干渉光の検出が行える。 Furthermore, the main control unit 211 determines whether i> m (where m is the number of all scanning lines) (S105). If i> m (Yes in S105), the direction change of the galvanometer mirrors 141A and 141B and the detection of the interference light are terminated. If i ≦ m, the process returns to step 102 (No in S105). Thereby, the interference light corresponding to all the scanning lines (frames) can be detected.
(画像形成及び表示の動作)
 検査開始の要求を受けた主制御部211は、まずh=1と設定する(S201)。
(Image formation and display operations)
The main control unit 211 that has received the request to start the inspection first sets h = 1 (S201).
 続いて、画像形成部220は、CCD184から出力される、走査線Rhに対応する眼底成分の検出信号を収集し(S202)、この検出信号に対しスペクトルの強度分布を求め、フーリエドメインOCTの手法を用いて干渉光のスペクトル強度分布をフーリエ変換することで被検眼Eの深度方向(z方向)の形態を画像化し、走査線Rhに沿った断層画像を形成する(S203)。 Subsequently, the image forming unit 220 collects detection signals of the fundus component corresponding to the scanning line Rh output from the CCD 184 (S202), obtains a spectrum intensity distribution for the detection signals, and uses a Fourier domain OCT technique. Is used to image the form of the eye E in the depth direction (z direction) by Fourier transforming the spectral intensity distribution of the interference light, and a tomographic image along the scanning line Rh is formed (S203).
 そして、主制御部211は、h=h+1としてインクリメントを行いhの値を1増やす(S204)。 The main control unit 211 increments by setting h = h + 1 and increases the value of h by 1 (S204).
 さらに、主制御部211は、h>mか否かを判断する。h>mであれば(S205のYes)検査を終了する。また、h≦mであれば(S205のNo)ステップ202に戻る。これにより、すべての走査線(フレーム)に対応する断層画像が取得される。 Furthermore, the main control unit 211 determines whether h> m. If h> m (Yes in S205), the inspection is terminated. If h ≦ m (No in S205), the process returns to step 202. Thereby, tomographic images corresponding to all scanning lines (frames) are acquired.
[作用・効果]
 以上のような光画像計測装置の作用及び効果について説明する。
[Action / Effect]
The operation and effect of the optical image measurement apparatus as described above will be described.
 光画像計測装置1は、順次ガルバノミラーの向きを変更させながら眼底Efの走査及び干渉光の検出を行うとともに、これに並行して、1フレーム分の検出結果が得られる毎にその検出結果に基づく画像形成を行う構成を有する光画像計測装置である。 The optical image measurement device 1 performs scanning of the fundus oculi Ef and detection of interference light while sequentially changing the direction of the galvanometer mirror, and in parallel with this, every time a detection result for one frame is obtained, 1 is an optical image measurement device having a configuration for performing image formation based thereon.
 このような光画像計測装置1によれば、処理能力をそれほど必要としない被検眼Eの走査及び干渉光の検出の実施と共に、高い処理能力を必要とするスペクトル解析及び画像形成を実施することができる。それにより、演算制御装置200の処理能力を十分に活用することができる。したがって、検査を迅速に行うことができ、検査時間を短縮することが可能となる。 According to such an optical image measurement device 1, it is possible to perform the spectrum analysis and image formation that require high processing capability, as well as scanning of the eye E and detection of interference light that do not require much processing capability. it can. Thereby, the processing capability of the arithmetic and control unit 200 can be fully utilized. Therefore, the inspection can be performed quickly and the inspection time can be shortened.
[変形例1]
 以上に説明した構成は、この発明に係る光画像計測装置を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形を適宜に施すことが可能である。
[Modification 1]
The configuration described above is merely an example for favorably implementing the optical image measurement device according to the present invention. Therefore, arbitrary modifications within the scope of the present invention can be made as appropriate.
 上記の実施形態では、第1の実施形態で説明した異常の検出がなされていないが、断層画像の形成の後に異常の検出を行う構成にしてもよい。 In the above embodiment, the abnormality detection described in the first embodiment is not performed. However, the abnormality may be detected after the tomographic image is formed.
 例えば、異常検出部250が、画像形成部220により形成された走査線Riに沿った断層画像を順次受けて、受けた順に断層画像の異常を検出していく構成にしてもよい。 For example, the abnormality detection unit 250 may sequentially receive the tomographic images along the scanning line Ri formed by the image forming unit 220 and detect the abnormality of the tomographic images in the order received.
 以上で説明したように、本変形例に係る光画像計測装置1は、順次ガルバノミラーの向きを変更させながらの眼底Efの走査及び干渉光の検出に並行して、1フレーム分の検出結果が得られる毎に、その検出結果に基づく画像形成、及び異常の検出を行う構成である。 As described above, the optical image measurement device 1 according to the present modification has a detection result for one frame in parallel with the scanning of the fundus oculi Ef and the detection of interference light while sequentially changing the orientation of the galvanometer mirror. Each time it is obtained, it is configured to perform image formation and abnormality detection based on the detection result.
 このような構成にすることで、すべての断層画像の形成を終了する前に異常の検出を行うことができるので、迅速な異常の検出が可能となる。また、異常検出がなされたときに、オペレータの判断により検査を中止し、再度検査を開始することもできる。 By adopting such a configuration, an abnormality can be detected before the formation of all the tomographic images is completed, so that a rapid abnormality can be detected. In addition, when an abnormality is detected, the inspection can be stopped by the operator's judgment and the inspection can be started again.
[変形例2]
 また、異常検出部250が、画像形成部220が形成した断層画像に対する異常の検出を所定フレーム数毎、例えば10枚ごとに行う構成でもよい。
[Modification 2]
Further, the abnormality detection unit 250 may detect an abnormality for the tomographic image formed by the image forming unit 220 every predetermined number of frames, for example, every 10 frames.
 この場合、制御部210は、予め10枚毎という数を記憶している。更に、制御部210は、画像形成部220が形成した断層画像に対応するフレーム数をカウントしていく。そして、10フレームだけカウントをしたときに、制御部210は、異常検出部250を制御して、その断層画像に対して異常検出を行わせる。 In this case, the control unit 210 stores a number of every 10 sheets in advance. Further, the control unit 210 counts the number of frames corresponding to the tomographic image formed by the image forming unit 220. When counting only 10 frames, the control unit 210 controls the abnormality detection unit 250 to perform abnormality detection on the tomographic image.
 以上で説明したように、本変形例に係る光画像計測装置1は、順次ガルバノミラーの向きを変更させながらの眼底Efの走査及び干渉光の検出に並行して、1フレーム分の検出結果が得られる毎にその検出結果に基づく画像形成、及び所定フレーム毎の異常の検出を行う構成である。 As described above, the optical image measurement device 1 according to the present modification has a detection result for one frame in parallel with the scanning of the fundus oculi Ef and the detection of interference light while sequentially changing the orientation of the galvanometer mirror. Each time it is obtained, an image is formed based on the detection result, and an abnormality is detected every predetermined frame.
 このような構成にすることで、すべての断層画像に対する異常の検出を行わなくても、例えば10枚以上連続して断層画像に異常が発生しているケースを検出することができる。それにより、3次元画像の形成処理が不可能となるような異常を検出でき、更に、処理の時間を短縮することが可能となる。 By adopting such a configuration, it is possible to detect a case in which, for example, 10 or more consecutive abnormalities occur in the tomographic image without detecting abnormalities in all the tomographic images. Accordingly, an abnormality that makes it impossible to form a three-dimensional image can be detected, and further, the processing time can be shortened.
[変形例3]
 また、異常検出部250が、画像形成部220が形成した断層画像に対する異常の検出を数枚ごと(例えば10枚ごと)に行い、異常が検出された場合に、その前及び後の10枚の断層画像に対する異常の検出を実施する構成でもよい。
[Modification 3]
In addition, the abnormality detection unit 250 detects abnormality for the tomographic image formed by the image forming unit 220 every several sheets (for example, every 10 sheets), and when an abnormality is detected, 10 sheets before and after the abnormality are detected. It may be configured to detect an abnormality for a tomographic image.
 この場合、変形例2と同様に、制御部210が、画像形成部220が形成した断層画像の枚数をカウントしていき、10枚カウントしたときに、異常検出部250にその断層画像に対して異常検出を行わせるとともに、異常が検出された場合に、その異常が検出された断層画像の前にカウントした10枚分の異常検出を異常検出部250に行わせ、さらに異常が検出された断層画像の後の10枚分の断層画像の異常検出を行わせる構成にすればよい。 In this case, as in the second modification, the control unit 210 counts the number of tomographic images formed by the image forming unit 220, and when it counts ten, the abnormality detection unit 250 applies the tomographic image to the tomographic image. An abnormality is detected, and when an abnormality is detected, the abnormality detection unit 250 performs abnormality detection for 10 sheets counted before the tomographic image in which the abnormality is detected. What is necessary is just to make it the structure which performs abnormality detection of the tomographic image for ten sheets after an image.
 以上で説明したように、本変形例に係る光画像計測装置1は、順次ガルバノミラーの向きを変更させながらの眼底Efの走査及び干渉光の検出に並行して、1フレーム分の検出結果が得られる毎にその検出結果に基づく画像形成、及び所定フレーム毎の断層画像の異常の検出を行い、異常が検出された場合に、その異常が検出された断層画像の前及び後のその所定フレーム数の断層画像の異常検出を行う構成である。 As described above, the optical image measurement device 1 according to the present modification has a detection result for one frame in parallel with the scanning of the fundus oculi Ef and the detection of interference light while sequentially changing the orientation of the galvanometer mirror. Image formation based on the detection result and detection of tomographic image abnormality every predetermined frame each time it is obtained, and when an abnormality is detected, the predetermined frame before and after the tomographic image in which the abnormality is detected In this configuration, anomaly detection of a number of tomographic images is performed.
 このような構成にすることで、10枚以上連続した断層画像に異常が発生していることを確実に検出することが可能となる。これにより、全てのフレームにおける干渉光の検出及び画像の形成を完了せずとも、3次元画像の生成の障害となる異常を検出することが可能となり、検査の全体的な時間の短縮が可能となる。 With such a configuration, it is possible to reliably detect that an abnormality has occurred in 10 or more consecutive tomographic images. As a result, it is possible to detect an anomaly that hinders the generation of a three-dimensional image without completing the detection of interference light and image formation in all frames, and the overall time of inspection can be reduced. Become.
[変形例4]
 また、異常が検出された場合に、その異常が検出された断層画像に対応する走査線を走査した時のガルバノミラーの向きをフレーム数によって取得し、その取得した向きに対応する実際の眼底上における位置の走査を行うように、ガルバノミラー141A、141Bを駆動させて向きを変更することにより、その位置の走査を再度行う構成にしてもよい。
[Modification 4]
In addition, when an abnormality is detected, the direction of the galvanometer mirror when scanning the scanning line corresponding to the tomographic image in which the abnormality is detected is acquired by the number of frames, and the actual fundus corresponding to the acquired direction The position may be scanned again by driving the galvanometer mirrors 141A and 141B and changing the direction so that the position is scanned.
 この場合の動作を説明する。制御部210は、異常が検出された時点で行っている走査のフレームからさかのぼって、異常が検出された断層画像のフレームまでのフレームの数を取得する。ここで、制御部210は、異常が検出された断層画像までに何枚のフレームの画像形成が終了しており、更に、走査は何フレーム終わっているか把握しているので、走査が終了しているフレーム数から異常が検出された断層画像までのフレーム数を減算することにより、目的のフレーム数を求めることができる。そして、制御部210は、ガルバノミラー141A、141Bの向きの変更を停止し、さらに、停止した向きから求められたフレーム数だけ前の向きにガルバノミラー141A、141Bを戻す。制御部210は、ガルバノミラー141Bを所定角度ずつ動かしていくことで、各走査線に直交する方向にガルバノミラーの向きを変更し、各走査線に沿った走査を行うように向きを合わせる。そして、走査した走査線の数、すなわちフレームの数が、ガルバノミラー141Bの向きを変更した回数に相当することを考慮すると、その回数に対して前述した所定角度をかけることで、ガルバノミラー141Bが移動した角度がわかる。したがって、異常が検出された時点で走査しているフレームからさかのぼって、異常が検出された断層画像のフレームまでのフレームの数に基づいて、ガルバノミラー141Bを停止させた向きに対して当該フレーム数だけ前におけるガルバノミラー141Bの向きを求めることができる。そして、制御部210は、その求めた向きにガルバノミラー141Bを戻し、その向きの走査線に沿った走査から走査を再開させる。 The operation in this case will be described. The control unit 210 acquires the number of frames from the scanning frame being performed at the time when the abnormality is detected to the tomographic image frame where the abnormality is detected. Here, the control unit 210 knows how many frames of image formation have been completed up to the tomographic image in which an abnormality has been detected, and furthermore, how many frames have been scanned. The target number of frames can be obtained by subtracting the number of frames from the number of existing frames to the tomographic image in which an abnormality is detected. Then, the control unit 210 stops changing the direction of the galvano mirrors 141A and 141B, and further returns the galvano mirrors 141A and 141B to the previous direction by the number of frames obtained from the stopped direction. The controller 210 moves the galvanometer mirror 141B by a predetermined angle, thereby changing the orientation of the galvanometer mirror in a direction orthogonal to each scan line, and aligning the direction so as to perform scanning along each scan line. Then, considering that the number of scanning lines scanned, that is, the number of frames corresponds to the number of times the direction of the galvano mirror 141B is changed, the galvano mirror 141B is obtained by multiplying the number of times by the predetermined angle described above. You can see the angle of movement. Therefore, based on the number of frames going back to the frame of the tomographic image in which the abnormality is detected, going back from the frame that was scanned when the abnormality was detected, the number of frames relative to the direction in which the galvano mirror 141B was stopped The direction of the galvanometer mirror 141B just before can be obtained. Then, the control unit 210 returns the galvanometer mirror 141B to the determined direction, and restarts scanning from the scanning along the scanning line in the direction.
 本変形例に係る光画像計測装置は、異常が検出された断層画像に対応する走査を行ったときのガルバノミラーの位置を求める。更に、この光画像計測装置は、ガルバノミラーの駆動を停止し、この求めた位置にガルバノミラーの向きを変更し、この変更後のガルバノミラーの向きから干渉光の検出を再開する。 The optical image measurement device according to this modification obtains the position of the galvanometer mirror when scanning corresponding to the tomographic image in which an abnormality has been detected. Further, the optical image measurement device stops driving the galvano mirror, changes the direction of the galvano mirror to the obtained position, and restarts detection of the interference light from the changed direction of the galvano mirror.
 このような構成にすることで、途中で異常が検出された場合に、その異常が発生した断層画像に対応する実際の眼底上の位置からすぐに検査を再開することができる。これにより、すべての断層画像の形成の完了まで待つことなく、迅速に異常に対応することが可能となり、検査効率を向上させるとともに検査の全体的な時間短縮が可能となる。 With such a configuration, when an abnormality is detected on the way, the examination can be restarted immediately from the actual position on the fundus corresponding to the tomographic image where the abnormality has occurred. As a result, it is possible to respond quickly to an abnormality without waiting for the completion of the formation of all tomographic images, thereby improving the inspection efficiency and reducing the overall inspection time.
[変形例5]
 また、異常が検出された場合に、その異常が検出された断層画像に対応する走査を行っている間に撮像された眼底画像に基づいて、その走査の位置を求めることができる。更に、その求めた位置を走査するように、現在の眼底画像に基づいて、ガルバノミラー141A、141Bを駆動させて向きを変更して再度走査を行うように構成することができる。
[Modification 5]
Further, when an abnormality is detected, the position of the scan can be obtained based on a fundus image captured while performing a scan corresponding to the tomographic image in which the abnormality is detected. Furthermore, the galvanometer mirrors 141A and 141B are driven based on the current fundus image so that the obtained position is scanned, and the direction can be changed to perform scanning again.
 この場合、走査を行っている最中に眼底画像をリアルタイムでモニタリング(動画観察)する眼底モニタを要する。眼底モニタは、干渉光の検出が行われている間、撮像装置10から出力される観察光源101からの近赤外領域の波長を含む照明光に基づく眼底Efの眼底画像をリアルタイムで所定のフレームレートで取得するものである。 In this case, a fundus monitor that monitors the fundus image in real time (moving image observation) during scanning is required. The fundus monitor detects a fundus image of the fundus oculi Ef based on illumination light including a near-infrared wavelength from the observation light source 101 output from the imaging device 10 while detecting interference light in a predetermined frame in real time. Is to get at the rate.
 このようにリアルタイムで眼底画像をモニタすることで、断層画像を形成するために被検眼を走査している間に生成される眼底画像を用いて、その生成された眼底画像に対する現在の走査の位置を取得することができる。 By monitoring the fundus image in real time in this way, using the fundus image generated while scanning the eye to form a tomographic image, the position of the current scan with respect to the generated fundus image Can be obtained.
 この場合の動作を具体的に説明する。制御部210は、眼底における主走査方向(x方向)及び副走査方向(y方向)の2D座標を有している。この座標は、眼底の特徴点(具体的には、中心窩、黄班、血管の分岐点、疾患部など)を基に決定されるため、形成される眼底画像の枠内で眼底が移動しても眼底自体に対しての座標は変わらない。 The operation in this case will be specifically described. The control unit 210 has 2D coordinates in the main scanning direction (x direction) and the sub scanning direction (y direction) on the fundus. Since these coordinates are determined based on the fundus feature points (specifically, fovea, macula, blood vessel bifurcation, diseased part, etc.), the fundus moves within the frame of the fundus image that is formed. However, the coordinates for the fundus itself do not change.
 制御部210は、任意の走査線の位置に対応する断層画像を形成するときに、眼底Efに対する信号光の走査位置が、その走査時に取得される眼底画像上のどの位置に相当しているかを示す座標情報を生成する。そして、制御部210は、断層画像の識別情報に対して、その断層画像に対応する走査を行った時点での眼底画像と座標情報とを関連づけて記憶部212に逐次記憶していく。 When the control unit 210 forms a tomographic image corresponding to the position of an arbitrary scanning line, it indicates which position on the fundus image the signal light scanning position with respect to the fundus oculi Ef corresponds to. The coordinate information shown is generated. Then, the control unit 210 sequentially stores the fundus image and the coordinate information at the time of scanning corresponding to the tomographic image in the storage unit 212 in association with the identification information of the tomographic image.
 制御部210は、異常検出部250から異常の検出の通知を受けると、その異常が発生した断層画像の識別情報を取得する。更に、制御部210は、取得した識別情報を基に記憶部212を検索して、異常が発生した断層画像の走査を行った時点で生成された眼底画像を取得する。そして、制御部210は、その眼底画像の座標情報に基づき、眼底上における走査位置の座標を取得する。そして、制御部210は、現在の眼底画像上において当該座標に相当する位置を求める。次に、制御部210は、その位置を基に、ガルバノミラー141A、141Bを駆動させ、現在の眼底画像における当該座標にあたる向きにガルバノミラー141A、141Bの向きを変更する。そして、そのガルバノミラー141A、141Bの向きから再度検査を開始する。 When the control unit 210 receives a notification of abnormality detection from the abnormality detection unit 250, the control unit 210 acquires identification information of the tomographic image in which the abnormality has occurred. Further, the control unit 210 searches the storage unit 212 based on the acquired identification information, and acquires a fundus image generated at the time of scanning a tomographic image in which an abnormality has occurred. Then, the control unit 210 acquires the coordinates of the scanning position on the fundus based on the coordinate information of the fundus image. Then, the control unit 210 obtains a position corresponding to the coordinates on the current fundus image. Next, the control unit 210 drives the galvanometer mirrors 141A and 141B based on the positions, and changes the orientation of the galvanometer mirrors 141A and 141B to the direction corresponding to the coordinates in the current fundus image. Then, the inspection is started again from the direction of the galvanometer mirrors 141A and 141B.
 以上で説明したように、本変形例に係る光画像計測装置1は、眼底Efの眼底画像を干渉光の検出中に所定のフレームレートでモニタし、更に、異常が検出された断層画像の干渉光の検出を行った時点での眼底画像を基に、異常が検出された断層画像の眼底画像における位置を取得し、その取得された位置に対応する現在の眼底画像における位置を特定し、その特定された位置を走査するようにガルバノミラーの向きを求める構成である。 As described above, the optical image measurement device 1 according to the present modification monitors the fundus image of the fundus oculi Ef at a predetermined frame rate during detection of interference light, and further interferes with a tomographic image in which an abnormality is detected. Based on the fundus image at the time when the light was detected, the position in the fundus image of the tomographic image in which the abnormality was detected is acquired, the position in the current fundus image corresponding to the acquired position is specified, and the In this configuration, the orientation of the galvanometer mirror is determined so as to scan the specified position.
 このような構成にすることで、検査の途中で異常が検出された場合に、現在の眼底の位置におけるその異常が発生した断層画像に対応する走査位置から検査を再開することができる。これにより、より正確な3次元画像の生成を行うことが可能となる。 With this configuration, when an abnormality is detected during the examination, the examination can be resumed from the scanning position corresponding to the tomographic image where the abnormality has occurred at the current fundus position. As a result, a more accurate three-dimensional image can be generated.
1 光画像計測装置
1A 眼底カメラユニット
140 LCD
141 走査ユニット
141A、141B ガルバノミラー
150 OCTユニット
160 低コヒーレンス光源
162 光カプラ
174 参照ミラー
180 スペクトロメータ
184 CCD
200 演算制御装置
210 制御部
220 画像形成部
230 画像処理部
240 ユーザインターフェイス
240A 表示部
240B 操作部
241、242 ミラー駆動機構
250 異常検出部
1 Optical Image Measuring Device 1A Fundus Camera Unit 140 LCD
141 Scanning unit 141A, 141B Galvano mirror 150 OCT unit 160 Low coherence light source 162 Optical coupler 174 Reference mirror 180 Spectrometer 184 CCD
200 Arithmetic Control Unit 210 Control Unit 220 Image Forming Unit 230 Image Processing Unit 240 User Interface 240A Display Unit 240B Operation Units 241 and 242 Mirror Drive Mechanism 250 Abnormality Detection Unit

Claims (12)

  1.  低コヒーレンス光を信号光と参照光とに分割し、ガルバノミラーの向きを変更し被測定物体に対する前記信号光の照射位置を変更しながら前記被測定物体に対して前記信号光を走査しつつ前記被測定物体に前記信号光を照射し、前記被測定物体で反射した前記信号光と参照光路を経由した前記参照光とを重畳させて干渉光を生成し、前記干渉光を検出する干渉光検出手段と、
     前記干渉光検出手段による1フレーム分の走査において得られた検出結果から前記被測定物体の断層画像を形成する断層画像形成手段と、
     前記形成された断層画像の画像状態を基に前記断層画像の異常を検出する異常検出手段と、
     を備え、
     前記断層画像形成手段は、前記干渉光検出手段による1フレーム分の前記干渉光の検出結果が得られる毎に順次断層画像を形成し、
     前記異常検出手段は、所定フレーム分の前記断層画像が得られる度毎に前記異常検出を行い、
     前記異常が検出されたときに、前記干渉光検出手段は、前記ガルバノミラーの向きの変更を停止し、前記停止した前記向きから前記干渉光の検出を再度開始する、
     ことを特徴とする光画像計測装置。
    The low-coherence light is divided into signal light and reference light, the direction of the galvano mirror is changed, and the irradiation position of the signal light on the object to be measured is changed while the signal light is scanned with respect to the object to be measured. Interference light detection for detecting the interference light by irradiating the signal light to the object to be measured, superimposing the signal light reflected by the object to be measured and the reference light via the reference light path to generate interference light Means,
    A tomographic image forming means for forming a tomographic image of the object to be measured from a detection result obtained by scanning one frame by the interference light detecting means;
    An abnormality detecting means for detecting an abnormality of the tomographic image based on an image state of the formed tomographic image;
    With
    The tomographic image forming unit sequentially forms a tomographic image every time the interference light detection result for one frame by the interference light detecting unit is obtained,
    The abnormality detection means performs the abnormality detection every time the tomographic image for a predetermined frame is obtained,
    When the abnormality is detected, the interference light detection means stops changing the orientation of the galvanometer mirror, and restarts the detection of the interference light from the stopped orientation.
    An optical image measuring device characterized by that.
  2.  前記異常検出手段は、前記断層画像に描出されている前記被測定物体の位置を基に異常検出を行うことを特徴とする請求項1に記載の光画像計測装置。 2. The optical image measurement device according to claim 1, wherein the abnormality detection means detects an abnormality based on a position of the measured object depicted in the tomographic image.
  3.  低コヒーレンス光を信号光と参照光とに分割し、ガルバノミラーの向きを変更し被測定物体に対する前記信号光の照射位置を変更しながら前記被測定物体に対して前記信号光を走査しつつ前記被測定物体に前記信号光を照射し、前記被測定物体で反射した前記信号光と参照光路を経由した前記参照光とを重畳させて干渉光を生成し、前記干渉光を検出する干渉光検出手段と、前記干渉光検出手段による1フレーム分の走査によって得られた検出結果から前記被測定物体の断層画像を形成する断層画像形成手段と、を備えた光画像計測装置であって、
     前記干渉光検出手段は、順次前記ガルバノミラーの向きを変更させながら前記干渉光の検出を行い、
     前記断層画像形成手段は、前記干渉光検出手段による前記干渉光の検出と並行して、1フレーム分の検出結果が得られる度毎に断層画像の形成を行う、
     ことを特徴とする光画像計測装置。
    The low-coherence light is divided into signal light and reference light, the direction of the galvano mirror is changed, and the irradiation position of the signal light on the object to be measured is changed while the signal light is scanned with respect to the object to be measured. Interference light detection for detecting the interference light by irradiating the signal light to the object to be measured, superimposing the signal light reflected by the object to be measured and the reference light via the reference light path to generate interference light And a tomographic image forming unit that forms a tomographic image of the measured object from a detection result obtained by scanning for one frame by the interference light detecting unit,
    The interference light detection means detects the interference light while sequentially changing the direction of the galvanometer mirror,
    The tomographic image forming unit forms a tomographic image every time a detection result for one frame is obtained in parallel with the detection of the interference light by the interference light detection unit.
    An optical image measuring device characterized by that.
  4.  前記形成された断層画像の画像状態を基に前記断層画像の異常を検出する異常検出手段、をさらに備え、
     前記干渉光検出手段は、前記異常が検出されたときに、前記干渉光の検出を停止する、
     ことを特徴とする請求項3に記載の光画像計測装置。
    An abnormality detecting means for detecting an abnormality of the tomographic image based on an image state of the formed tomographic image,
    The interference light detection means stops detecting the interference light when the abnormality is detected;
    The optical image measuring device according to claim 3.
  5.  前記異常検出手段は、前記断層画像に描出されている前記被検眼の位置を基に異常検出を行うことを特徴とする請求項4に記載の光画像計測装置。 5. The optical image measurement device according to claim 4, wherein the abnormality detection means detects an abnormality based on a position of the eye to be examined depicted in the tomographic image.
  6.  前記異常検出手段は、所定フレーム数毎に前記異常検出を行うことを特徴とする請求項4に記載の光画像計測装置。 The optical image measurement device according to claim 4, wherein the abnormality detection means performs the abnormality detection every predetermined number of frames.
  7.  前記異常検出手段は、前記異常が検出されたフレームの前及び後のそれぞれの前記所定枚数のフレームそれぞれについて前記異常検出を行い、
     前記干渉光検出手段は、前記異常が検出された前記フレームが少なくとも前記所定枚数連続しているときに、前記干渉光の検出を停止する、
     ことを特徴とする請求項6に記載の光画像計測装置。
    The abnormality detection means performs the abnormality detection for each of the predetermined number of frames before and after the frame in which the abnormality is detected,
    The interference light detection means stops the detection of the interference light when at least the predetermined number of frames in which the abnormality is detected continues.
    The optical image measuring device according to claim 6.
  8.  前記異常が検出された前記断層画像に対応する前記走査を行ったときの前記ガルバノミラーの向きを求める取得手段をさらに備え、
     前記異常が検出されたときに、前記干渉光検出手段は、前記求められた向きに前記ガルバノミラーの向きを変更し、前記ガルバノミラーの向きから前記干渉光の検出を再度開始する、
     ことを特徴とする請求項4に記載の光画像計測装置。
    An acquisition means for obtaining an orientation of the galvanometer mirror when performing the scan corresponding to the tomographic image in which the abnormality is detected;
    When the abnormality is detected, the interference light detection means changes the direction of the galvano mirror to the determined direction, and restarts the detection of the interference light from the direction of the galvano mirror.
    The optical image measuring device according to claim 4.
  9.  前記取得手段は、前記異常が検出された前記断層画像から前記異常が検出された時点における前記断層画像までのフレーム数を取得し、前記異常が検出された時点におけるフレームから前記取得されたフレーム数前の前記断層画像における前記ガルバノミラーの向きを求める、
     ことを特徴とする請求項8に記載の光画像計測装置。
    The acquisition means acquires the number of frames from the tomographic image where the abnormality is detected to the tomographic image at the time when the abnormality is detected, and the number of frames acquired from the frame at the time when the abnormality is detected Obtaining the orientation of the galvanometer mirror in the previous tomographic image;
    The optical image measuring device according to claim 8.
  10.  前記被測定物体は眼底であり、
     眼底画像を前記干渉光検出手段による干渉光の検出中に所定のフレームレートで取得している撮像手段をさらに備え、
     前記取得手段は、前記異常が検出された前記断層画像の干渉光の検出を行った時点での前記眼底画像を基に、前記異常が検出された断層画像の前記眼底画像における位置を取得し、現在の前記眼底画像における前記取得された位置に対応する位置を特定し、前記特定された位置の走査を行うように前記ガルバノミラーの向きを求める、
     ことを特徴とする請求項8に記載の光画像計測装置。
    The object to be measured is the fundus;
    An imaging means for acquiring a fundus image at a predetermined frame rate during detection of interference light by the interference light detection means;
    The acquisition means acquires a position of the tomographic image in which the abnormality is detected in the fundus image based on the fundus image at the time of detecting the interference light of the tomographic image in which the abnormality is detected, Specifying a position corresponding to the acquired position in the current fundus image, and obtaining an orientation of the galvanometer mirror so as to scan the specified position;
    The optical image measuring device according to claim 8.
  11.  低コヒーレンス光を信号光と参照光とに分割し、ガルバノミラーの向きを変更し被測定物体に対する前記信号光の照射位置を変更しながら前記被測定物体に対して前記信号光を走査しつつ前記被測定物体に前記信号光を照射し、前記被測定物体で反射した前記信号光と参照光路を経由した前記参照光とを重畳させて干渉光を生成し、前記干渉光を検出する干渉光検出手段と、前記干渉光検出手段による1フレーム分の走査によって得られた検出結果から前記被測定物体の断層画像を形成する断層画像形成手段と、前記形成された断層画像の画像状態を基に前記断層画像の異常を検出する異常検出手段と、を備えた光画像計測装置の制御方法であって、
     前記干渉光の検出を行う検出段階と、
     前記フレーム単位で前記断層画像の形成を行う断層画像形成段階と、
     所定フレーム分の前記断層画像が得られる度毎に前記異常の検出を行う異常検出段階と、
     前記異常が検出された場合、
     前記ガルバノミラーの駆動を停止するガルバノミラー停止段階と、
     停止した前記ガルバノミラーの前記向きから前記検出段階を再開する段階と、
     を有することを特徴とする光画像計測装置の制御方法。
    The low-coherence light is divided into signal light and reference light, the direction of the galvano mirror is changed, and the irradiation position of the signal light on the object to be measured is changed while the signal light is scanned with respect to the object to be measured. Interference light detection for detecting the interference light by irradiating the signal light to the object to be measured, superimposing the signal light reflected by the object to be measured and the reference light via the reference light path to generate interference light A tomographic image forming unit for forming a tomographic image of the object to be measured from a detection result obtained by scanning for one frame by the interference light detecting unit, and based on an image state of the formed tomographic image An abnormality detection means for detecting an abnormality in a tomographic image, and a control method for an optical image measurement device comprising:
    A detection stage for detecting the interference light;
    A tomographic image forming stage for forming the tomographic image in the frame unit;
    An abnormality detection step for detecting the abnormality each time the tomographic image for a predetermined frame is obtained;
    When the abnormality is detected,
    A galvanometer mirror stopping stage for stopping driving of the galvanometer mirror;
    Resuming the detection step from the orientation of the stopped galvanometer mirror;
    A control method for an optical image measurement device, comprising:
  12.  低コヒーレンス光を信号光と参照光とに分割し、ガルバノミラーの向きを変更し被測定物体に対する前記信号光の照射位置を変更しながら前記被測定物体に対して前記信号光を走査しつつ前記被測定物体に前記信号光を照射し、前記被測定物体で反射した前記信号光と参照光路を経由した前記参照光とを重畳させて干渉光を生成し、前記干渉光を検出する干渉光検出手段と、前記干渉光検出手段による1フレーム分の走査によって得られた検出結果から前記被測定物体の断層画像を形成する断層画像形成手段と、を備えた光画像計測装置の制御方法であって、
     順次前記ガルバノミラーの向きを変更させながら前記干渉光の検出を行う干渉光検出段階と、
     前記干渉光検出段階において1フレーム分の検出結果が得られる毎に前記断層画像の形成を行う断層画像形成段階と、を有し、
     前記干渉光検出段階は連続して前記検出を行い、
     前記画像形成段階は前記干渉光検出段階と並行して実施される、
     ことを特徴とする光画像計測装置の制御方法。
    The low-coherence light is divided into signal light and reference light, the direction of the galvano mirror is changed, and the irradiation position of the signal light on the object to be measured is changed while the signal light is scanned with respect to the object to be measured. Interference light detection for detecting the interference light by irradiating the signal light to the object to be measured, superimposing the signal light reflected by the object to be measured and the reference light via the reference light path to generate interference light And a tomographic image forming means for forming a tomographic image of the measured object from a detection result obtained by scanning for one frame by the interference light detecting means. ,
    An interference light detection stage for detecting the interference light while sequentially changing the direction of the galvanometer mirror;
    A tomographic image forming step of forming the tomographic image every time a detection result for one frame is obtained in the interference light detecting step;
    The interference light detection step continuously performs the detection,
    The image forming step is performed in parallel with the interference light detecting step;
    A method for controlling an optical image measuring device.
PCT/JP2010/002427 2009-04-17 2010-04-02 Optical image measuring device and method for controlling same WO2010119633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-101176 2009-04-17
JP2009101176A JP5415812B2 (en) 2009-04-17 2009-04-17 Optical image measuring device and control method thereof

Publications (1)

Publication Number Publication Date
WO2010119633A1 true WO2010119633A1 (en) 2010-10-21

Family

ID=42982308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002427 WO2010119633A1 (en) 2009-04-17 2010-04-02 Optical image measuring device and method for controlling same

Country Status (2)

Country Link
JP (1) JP5415812B2 (en)
WO (1) WO2010119633A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175390A1 (en) * 2012-05-21 2013-11-28 The Chinese University Of Hong Kong Detection of disease-related retinal nerve fiber layer thinning
EP2638848A4 (en) * 2010-11-09 2016-12-21 Kk Topcon Fundus image processing device and fundus observation device
WO2018100454A1 (en) * 2016-11-30 2018-06-07 Novartis Ag Automated optical coherence tomography scanning
EP3216431A4 (en) * 2015-10-15 2018-09-05 Sony Corporation Image processing device, image processing method, and surgical microscope

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570195B2 (en) * 2009-12-07 2014-08-13 株式会社ニデック OCT equipment
US9033510B2 (en) 2011-03-30 2015-05-19 Carl Zeiss Meditec, Inc. Systems and methods for efficiently obtaining measurements of the human eye using tracking
JP6075755B2 (en) 2012-11-19 2017-02-08 株式会社トプコン Optical image measuring device
JP6101475B2 (en) 2012-12-06 2017-03-22 株式会社トプコン Ophthalmic observation device
EP2865323B1 (en) * 2013-10-23 2022-02-16 Canon Kabushiki Kaisha Retinal movement tracking in optical coherence tomography
US11071452B2 (en) 2014-06-30 2021-07-27 Nidek Co., Ltd. Optical coherence tomography device, optical coherence tomography calculation method, and optical coherence tomography calculation program
JP6535985B2 (en) * 2014-06-30 2019-07-03 株式会社ニデック Optical coherence tomography apparatus, optical coherence tomography computing method and optical coherence tomography computing program
JP6746884B2 (en) * 2015-09-02 2020-08-26 株式会社ニデック Ophthalmic photography device and ophthalmic photography program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140671A (en) * 1995-11-22 1997-06-03 Canon Inc Fundus blood flowmeter and fundus tracking apparatus
JP2008154939A (en) * 2006-12-26 2008-07-10 Topcon Corp Optical image measuring apparatus and program for controlling optical image measuring apparatus
JP2008203246A (en) * 2007-01-26 2008-09-04 Topcon Corp Optical image measuring device
JP2008267891A (en) * 2007-04-18 2008-11-06 Topcon Corp Optical image measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140671A (en) * 1995-11-22 1997-06-03 Canon Inc Fundus blood flowmeter and fundus tracking apparatus
JP2008154939A (en) * 2006-12-26 2008-07-10 Topcon Corp Optical image measuring apparatus and program for controlling optical image measuring apparatus
JP2008203246A (en) * 2007-01-26 2008-09-04 Topcon Corp Optical image measuring device
JP2008267891A (en) * 2007-04-18 2008-11-06 Topcon Corp Optical image measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2638848A4 (en) * 2010-11-09 2016-12-21 Kk Topcon Fundus image processing device and fundus observation device
WO2013175390A1 (en) * 2012-05-21 2013-11-28 The Chinese University Of Hong Kong Detection of disease-related retinal nerve fiber layer thinning
CN104411230A (en) * 2012-05-21 2015-03-11 香港中文大学 Detection of disease-related retinal nerve fiber layer thinning
US9117121B2 (en) 2012-05-21 2015-08-25 The Chinese University Of Hong Kong Detection of disease-related retinal nerve fiber layer thinning
EP3216431A4 (en) * 2015-10-15 2018-09-05 Sony Corporation Image processing device, image processing method, and surgical microscope
WO2018100454A1 (en) * 2016-11-30 2018-06-07 Novartis Ag Automated optical coherence tomography scanning

Also Published As

Publication number Publication date
JP2010249740A (en) 2010-11-04
JP5415812B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5415812B2 (en) Optical image measuring device and control method thereof
JP4971863B2 (en) Optical image measuring device
JP5138977B2 (en) Optical image measuring device
JP4971864B2 (en) Optical image measuring device and program for controlling the same
JP4896794B2 (en) Optical image measuring apparatus, program for controlling the same, and optical image measuring method
JP5192250B2 (en) Fundus observation device
JP5523658B2 (en) Optical image measuring device
JP4996918B2 (en) Optical image measurement device and program for controlling optical image measurement device
JP5404078B2 (en) Optical image measuring device
JP4869756B2 (en) Fundus observation device
JP4996917B2 (en) Optical image measurement device and program for controlling optical image measurement device
JP4971872B2 (en) Fundus observation apparatus and program for controlling the same
JP4864515B2 (en) Fundus observation device
JP5117787B2 (en) Optical image measuring device
JP4921201B2 (en) Optical image measurement device and program for controlling optical image measurement device
JP4855150B2 (en) Fundus observation apparatus, ophthalmic image processing apparatus, and ophthalmic image processing program
JP5061380B2 (en) Fundus observation apparatus, ophthalmologic image display apparatus, and program
JP5367047B2 (en) Fundus observation device
JP2010000191A (en) Optical image measuring instrument
JP2008005987A (en) Eye fundus observation apparatus and control program for the same
JP2007185244A (en) Optical image measuring device
KR20130085978A (en) Image processing apparatus and image processing method
JP4994911B2 (en) Optical image measuring device
JP6624641B2 (en) Ophthalmic equipment
US10045691B2 (en) Ophthalmologic observation apparatus using optical coherence tomography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764220

Country of ref document: EP

Kind code of ref document: A1