WO2010115183A1 - Flexible ultraviolet led sanitizing apparatus - Google Patents
Flexible ultraviolet led sanitizing apparatus Download PDFInfo
- Publication number
- WO2010115183A1 WO2010115183A1 PCT/US2010/029935 US2010029935W WO2010115183A1 WO 2010115183 A1 WO2010115183 A1 WO 2010115183A1 US 2010029935 W US2010029935 W US 2010029935W WO 2010115183 A1 WO2010115183 A1 WO 2010115183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- leds
- sanitizing apparatus
- sanitizing
- flexible
- power
- Prior art date
Links
- 238000011012 sanitization Methods 0.000 title claims abstract description 88
- 230000005855 radiation Effects 0.000 claims abstract description 37
- 238000003860 storage Methods 0.000 claims abstract description 22
- 230000004913 activation Effects 0.000 claims description 6
- 239000000446 fuel Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000003491 array Methods 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 244000052616 bacterial pathogen Species 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 241000194107 Bacillus megaterium Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 239000000645 desinfectant Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 230000002070 germicidal effect Effects 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical group CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 241000712461 unidentified influenza virus Species 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 208000032484 Accidental exposure to product Diseases 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000589244 Fluoribacter bozemanae Species 0.000 description 1
- 241000589282 Fluoribacter dumoffii Species 0.000 description 1
- 241000589278 Fluoribacter gormanii Species 0.000 description 1
- 241000589264 Legionella longbeachae Species 0.000 description 1
- 241000589242 Legionella pneumophila Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241001136712 Sambucus ebulus Species 0.000 description 1
- 241000723873 Tobacco mosaic virus Species 0.000 description 1
- 231100000818 accidental exposure Toxicity 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229940065181 bacillus anthracis Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000000981 bystander Effects 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 201000009240 nasopharyngitis Diseases 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
- A61L2/10—Ultraviolet radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/24—Apparatus using programmed or automatic operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/10—Apparatus features
- A61L2202/14—Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
Definitions
- the various embodiments relate generally to the sanitization of various surfaces, and more particularly to methods, materials and apparatus utilizing ultraviolet light to effectively reduce microbe levels.
- FIG. 1 illustrates a side elevation view of a horizontally disposed sanitizing apparatus with hinged panels according to an embodiment.
- FIG. 2 illustrates a top plan view of the sanitizing apparatus with hinged panels in FIG. 1.
- FIG. 3 illustrates a side elevation view of a horizontally disposed sanitizing apparatus with hinged panels according to an alternative embodiment.
- FIGs. 4A and 4B illustrate cross-sectional views of a panel of a horizontally disposed sanitizing apparatus showing storage and operational configurations according to various embodiments.
- FIGs. 5A and 5B illustrate detailed side elevation views of an interlock element illustrating the connectivity for operation of a sanitizing apparatus according to various embodiments.
- FIG. 6 illustrates a schematic detail view of light emitting diodes illustrating emittance of ultraviolet radiation in treating the surface of an object.
- FIG. 7 illustrates a top plan view of a sanitizing apparatus having a continuous flexible panel according to an embodiment.
- FIG. 8 illustrates a side elevation view of the sanitizing apparatus of FIG. 7.
- FIG. 9 illustrates a top plan view of a folding wall support for a continuous flexible panel of a sanitizing apparatus in a folded configuration for storage.
- FIG. 10 illustrates a parallel projection view of a folding wall support for a continuous flexible panel of a sanitizing apparatus in an unfolded configuration for active use.
- FIGs. HA and HB illustrate parallel projection views of alternative embodiments of a folding framework support for a continuous flexible panel of a sanitizing apparatus.
- FIG. 12 illustrates a side elevation view of a continuous flexible panel of a sanitizing apparatus in a rolled storage position.
- FIG. 13 illustrates a side elevation view of a continuous flexible panel of a sanitizing apparatus on a non-planer object.
- FIG. 14 illustrates a schematic view of a sanitizing apparatus with DC power supplied to the UV LEDs from a powered port of a computer according to an embodiment.
- UV radiation is known as a highly effective means of destroying microorganisms.
- UVC shortwave UV radiation
- Exposure to UVC damages microbial DNA by triggering adjacent thymine molecules to dimerize, thereby disrupting DNA and RNA replication and ultimately killing the pathogen.
- UVC radiation to sanitization has been used extensively in medical sterilization of flat surfaces, water treatment and air purification, and in recent years, household surface sanitization applications.
- Commercially available germicidal UV lamps are hand-held (“wands") and operate using incandescent or fluorescent UVC bulbs.
- wands germicidal UV lamps
- Incandescent or fluorescent UVC bulbs there are many limitations to the use of currently available UV light wands.
- Such devices give non-uniform exposure since the user "waves" the light over the surface. Each user is different and yields a different level of efficacy.
- UVC exposure to users and bystanders since UVC radiation more damaging to human eyes and more carcinogenic to skin than UVA and UVB radiation.
- LEDs light emitting diodes
- incandescent and fluorescent bulbs provide several advantages over incandescent and fluorescent bulbs and provides the ability to create a broad range of sanitizers with flexibility to treat a variety of objects and surfaces. Additionally, LEDs do not have filaments that can burn out thus lasting longer, and the small plastic bulbs of LEDs make them more durable and able to fit more easily into modern electronic circuits.
- LEDs Another advantage to the use of LEDs is efficiency of power usage, as a conventional incandescent bulb, in warming the filament, generates a good amount of wasted energy in the form of heat.
- the various embodiment apparatus and methods utilize LEDs to generate UVC in a range of flexble configurations that are easy and safe to use and that surpass the performance of currently available UV-emitting sanitizing devices.
- Treatment of a surface according to the various embodiments has kill rates of over 99.99% of bacteria and influenza virus, accomplished in under 60 seconds.
- UVC ultraviolet electromagnetic radiation having a wavelength of 100 nm - 280 nm.
- FIG. 1 illustrates an embodiment sanitizing apparatus 10 that includes a plurality of panels 14, thus creating a piecewise flexible configuration
- Each panel 14 contains a two- dimensional array of UV-emitting LEDs 16, and such LEDs that emit disinfecting UVC radiation in the 254 nm and lower wavelength range.
- the panels 14 may be attached to each other and to electrical control box 12 with hinges 19 such that the apparatus 10 is piecewise flexible at the hinges.
- Such hingeadly flexible configuration enables the apparatus 30 to fold into a compact storage/transport arrangement and unfold for use.
- An elongated apparatus 10 as shown in FIG. 1 is suitable for sanitizing elongated areas such as a keyboard surface for a computer, typewriter, ATM, musical instrument, etc.
- Each panel 14 forms an opaque enclosure with an open side that allows the array of UV LEDs 16 to treat an object.
- the panels 14 fold in such a manner such that so as to not have the arrays 16 exposed, although this is not a limitation.
- FIG. 2 illustrates a top view of sanitizing apparatus 10 in an unfolded operational position. After being unfolded, the apparatus 10 may be placed over the item to be sanitized and switch 18 may be activated to operate the UV LEDs 16 and thus sanitize the item.
- Control box 12 may include an activation switch 18 and a power source 23 that may be any source suitable for electrically powering the plurality of LEDs 16, including, but not limited to, an AC power cord and appropriate transformer, a DC power cord from a "wall wort" transformer or battery pack, a USB or IEEE 1394 receptacle for plugging into a (DC) powered USB or IEEE 1394 device, a battery or set of batteries (e.g., LiPo, alkaline, Ni-Cad, etc.), or a fuel cell (e.g., using methanol, butane or formic acid).
- a power source 23 may be any source suitable for electrically powering the plurality of LEDs 16, including, but not limited to, an AC power cord and appropriate transformer, a DC power cord from a "wall wort" transformer or battery pack, a USB or IEEE 1394 receptacle for plugging into a (DC) powered USB or IEEE 1394 device, a battery or set of batteries (e.g., LiPo, al
- Control box 12 may additionally include a timing unit or circuit 25 to control the duration of sanitization, as well as an interlock control circuit 27 to prevent accidental operation of the apparatus 10 and possible exposure to dangerous UVC radiation from the LEDs.
- Interlock control circuit 27 may coordinate one or more switches that are normally biased in the off position until the apparatus is opened and positioned over an object to be treated. See, e.g., U.S. Patent No. 6,458,331, which is herein incorporated by reference.
- a horizontally-disposed apparatus for example, as illustrated in FIG. 2, may include a level switch (not shown) in the control box as a safety means to inhibit operation of the apparatus if the panels are not aligned in a level horizontal position.
- Such level switch may be, but is not limited to, a mercury tilt switch, a roller ball, or a magnetic switch.
- An interlock switch may be used to turn units on or off, it is preferable to include a separate activation switch 18 for embodiments that are powered by AC, DC, battery or fuel cell.
- the activation switch 18 may further include a light or other indicator to signal that the UV LEDs are operating, or the control box 12 may further include a timed circuit with different lights or other indicators, each of which may show that the sanitizing apparatus is either ready for operation, currently operating, or that sanitization is complete.
- the sanitizing time is set so as to deliver the appropriate amount of UV energy needed to deactivate a range of microorganism. Tables of energy for deactivation of a variety of micro-organisms is readily available to those skilled in the art. Noted below are some examples of the amount of UV energy levels at 254 nanometer units wavelength in microwatt- seconds per square centimeter required for 99.9% destruction of various organisms as but some examples, without limitation, or organisms that can be destroyed with various embodiments illustrated herein.
- Poliomyelitis (polio virus) 21,000
- Sanitizing apparatus 10 may optionally contain one or more additional two-dimensional arrays of UV-emitting LEDs facing an open side of one or more additional enclosure panels in which the additional arrays are mounted, with an additional hinge rotationally connecting the additional panels to one of the first and the second panel enclosure to allow the additional panel to rotate from a storage position to an operational position.
- FIG. 3 illustrates an alternative embodiment in which enclosure panels form a piecewise flexible configuration.
- the apparatus 30 has a control box 32 and an activation switch 38 that are integrated with one of the panels 34.
- the panels 34 include two-dimensional arrays of UV LEDs 36 and may be attached by hinges 39, enabling the hingeably flexible apparatus 30 to fold into a compact storage/transport arrangement and unfold for use.
- a center panel may be integrated with the control box 32, as is illustrated, and may be approximately twice the width of the outer panels such that the outer panels can fold inward to protect the center array.
- FIGs. 4A and 4B illustrate variations of an embodiment in which panels have side- wall fixtures providing increased enclosure height while still allowing compact storage.
- an apparatus 40 may contain one or more enclosure panels 44 in which a two-dimensional array of UV LEDs 46 is mounted adjacent the opaque face of each the enclosure panel 44.
- the side- walls of the enclosure panels 44 include extensions 41a, 41b, which may be attached by hinges 49 so as to move between the storage position of extention 41b and the extended position of extention 41a.
- FIG. 4B illustrates an alternative configuration of extentions 41a, 41b.
- extensions 41a, 41b may be slidably attached by guides 43 so as to move between the storage position of extension 41b and the operational position of extention 41a.
- the use of side extensions 41a, 41b may allow the sanitizing apparatus 40 to fold more compactly, the treatment of taller objects, and the use of fewer LEDs or LEDs with narrower projection angles.
- FIGs. 5 A and 5B illustrate an exemplary embodiment of an interlock mechanism within a piecewise flexible apparatus by which operation of panels 54 may be prevented when the sanitizing apparatus is in a folded position.
- Figure 5 A illustrates two enclosure panels 54 that are joined by a hinge 59 so as to allow the panels 54 to be folded into a storage position.
- Interlock elements 55a, 55b may be any suitable means for completion of a circuit capable of energizing the UV LEDs, (for example, mating electrical contacts) and such elements are in a nonoperational position when the panels 54 are folded. However, when panels 54 are rotated about the hinge 59 to a position for active use, as shown in FIG. 5B, the interlocking elements may form an operational position 56 (for example, as a completed electrical contact) thus allowing operation of the panels, assuming other interlock elements are also in proper position.
- an operational position 56 for example, as a completed electrical contact
- FIG. 6 illustrates the operation of individual UV LEDs 66 illuminating an object 68 (e.g., a computer keyboard) when treated with UVC radiation 67 according to the various embodiments.
- UV LEDs 66 may be mounted and positioned within an enclosure panel 64 so as to emit light toward an open side facing an object 68 to be treated.
- Each LED 66 emits UVC radiation, optimally at a wavelength of approximately 254 nm so as to most effectively neutralize and kill pathogens on the surface of object 68.
- UVC radiation 67 is emitted by each LED 66 at a projection angle, and each LED 66 may be spaced from adjacent LEDs 66 and the object 68 such that the UVC radiation 67 of each overlaps for full coverage of the surface, including any gaps or crevices, of object 68.
- the inward- facing surface 65 between LEDs 66 may preferably be formed with a material that is highly reflective of UVC radiation, such as brushed aluminum.
- An opaque and sturdy material, for example, brushed aluminum may be used to form the entire of the enclosure panel 64 as well as the inward-facing surface 65 although this is not meant as a limitation.
- the embodiments described above employ rigid panels and connecting means such as hinges and slidable guides to form a piecewise flexible sanitizing apparatus.
- a panel of UV LEDs that is flexible along its length may be employed to form a continuous flexible sanitizing apparatus.
- FIG. 7 illustrates an embodiment of a continuous flexible sanitizing apparatus 70 that has a control box 72 and pliable UV LED panel 74 with a two-dimensional array of UV LEDs 76 emitting UVC radiation for treatment of an object.
- Electrical control box 72 may include a power source 73, which may be any source suitable for electrically powering the plurality of LEDs, including, but not limited to, an AC power cord and appropriate transformer, a battery or set of batteries, or a fuel cell (e.g., using methanol, butane or formic acid).
- Control box 72 may additionally include an operating switch 78, a timing unit or circuit 75 to control the duration of sanitization, and an interlock control circuit 77 to prevent accidental operation of the apparatus 70. While illustrated as a separate, rigid box, the components of control box 72 may also be mounted or hinged to the flexible panel 74.
- UV LED panel 74 is made with flexible material(s) that allow the panel 74 to be rolled or folded, and includes appropriate means to allow operation of the array of UV LEDs 76 (for example, ribbon cable wiring or UV reflective mylar).
- the material(s) from which panel 74 is constructed allows the panel to move and bend around the shapes of objects and surfaces.
- Panel 74 forms at least a backing portion of an enclosure with an open lower side to allow the array of UV LEDs 76 to emit sanitizing UVC toward an object to be treated.
- Panel 74 may include sufficiently rigid and dimensioned side- walls (not shown) capable of supporting the UV LED array 76 and panel 74 over an object.
- panel 74 may be combined with a frame or other structure having side- walls and sufficient rigidity and dimensions to support the array 76 and opaque backing over an object, as discussed below with reference to FIG. 9-1 IB.
- a continuous flexible sanitizing apparatus may optionally be constructed with an accompanying support structure.
- Such support structure may be formed as folding walls, or as a folding frame with upper members to support the enclosure panel and leg members to support the upper members.
- FIG. 9 illustrates a folding wall support structure 90 in a configuration for storage and transport.
- support structure 90 may have first and second end- walls 94 joined by a pair of side-walls 96 formed of shorter segments in an "accordion" arrangement.
- the support wall 90 may optionally be attached or integrated with electrical control box 92, with one end- wall 94 optionally being formed from an existing wall of control box 92. If integrated with the control box 92, the support wall 90 may fold flat against the control box 92 for storage and transport.
- the support structure 90 of FIG. 9 may be pulled out for operational use sanitizing an object.
- End-walls 94 and side-walls 96 may support a flexible panel 100 operated with control box 92.
- the support wall may be dimensioned to support the panel 100 in the appropriate position for treating each particular object.
- means for attaching or securing the panel 100 in position on the support structure may be used as part of an interlock system for safe operation of the sanitizing apparatus so that the panel 100 will not operate when not properly secured to the support (not shown).
- FIGs. HA and HB illustrate an alternative embodiment support structure for use with a flexible UV LED panel.
- a flexible UV LED panel (not shown) may be supported upon a folding skeletal frame 110 having upper support members 114 that contact and support the panel and leg members 116 that position the panel in the appropriate position above an object to be treated.
- the upper support members 114 and leg members 116 are preferably attached in a jointed manner so as to allow the frame 110 to fold for storage and transport.
- opaque walls 112 of any suitable material may be draped or hung from upper support members 114, stretched between leg members 116, or otherwise secured to the frame 110 to form side-walls for enclosing the UV LEDs and the object to be treated.
- the side- walls 112 may be formed of rigid or pliable material which, in addition to being opaque to UV radiation, preferably are UV resistant and have an interior surface that is highly reflective of UV radiation.
- the frame 100 can be made of any appropriately rigid and UV resistant material, including, but not limited to, aluminum or UV resistant plastic. While leg members 114 are shown as straight, table-style legs, they may take other forms, including, but not limited to, the cross-legged form as is used for cots.
- a sanitizing apparatus 120 having an electrical control box 122 and a flexible UV LED panel 124 may be compactly stored by rolling the panel 124 toward the control box 122 or even around the control box for storage.
- FIG. 13 illustrates the use of a sanitizing apparatus in treating objects 138 that may not be substantially flat.
- a pliable enclosure panel 134 (or a plurality of hinged enclosure panels in a piecewise flexible configuration), and, if needed, a flexible support member 135, may substantially conform to the shape of the object to be treated.
- Control box 132 is preferably attached to the flexible panel 134 in a hinged or similar manner to allow flexible application of the apparatus.
- FIG. 12 may also have skirts of UV opaque material around the periphery of the flexible UV LED panel so that the skirt can drape down onto a surface to prevent the escape of UV illumination when sanitizing a surface or three dimensional object.
- FIG. 14 illustrates an embodiment sanitizing apparatus that is particularly suited for treating the input apparatus of a computer, such as a keyboard, mouse, stylus, tablet, trackball or trackpad.
- power source 143 is a DC input or port for receiving DC power from a powered port of a computer 145, such as the 5 V power of a USB port or the up to 30V (typically 9V/12V/25V) power provided by various IEEE 1394 ports.
- the control box 142 may then be operated to provide power to the UV LED array 146 inside enclosure 144 to sanitize object or input device 148 with UVC radiation.
- UV LEDs in the various embodiment apparatus preferably emit UVC radiation, and more preferably emit radiation at a wavelength of approximately 254 nm. It is also well known that ultraviolet radiation below 200 nm can produce small quantities of ozone by breaking up molecules of oxygen gas into free oxygen atoms that combine with nearby diatomic oxygen. Further, it is known that in sufficient concentrations, ozone has significant germicidal and sanitizing effects, for example, by disrupting and lysing cell walls thereby exposing the contents of the cell to oxidation and inactivation. Ozone gas may reach shadowed areas in keyboards, for example, beneath the keys and in any out-of-sight crevices that exist on computer input devices, where projected and reflected ultraviolet radiation may not reach. In an alternative embodiment, UV LEDs may emit a radiation having a wavelength of less than 200 nm, and preferably having a wavelength of 185 nm to accomplish optimum ozone production.
- UV LEDs in the arrays shown are not meant to be limited by the drawing figures, which are only meant to be representative. Actual numbers and spacing of the UV LEDs depend on numerous factors, including, but not limited to the emission power of the LEDs, the projection angle of the UVC radiation emitted by the LEDs, the desired speed/time-required for the sanitizing, the desired cost constraints, etc.
- UV LEDs that emit UVC radiation in wavelengths at or below 254 nm are available from various sources, such as UVTOP250 or UVTOP255 TO- 18 FW flat window LEDs available from Sensor Electronic Technology, Inc. of Columbia, South Carolina, or LED MOD Deep UV 22nm/300 ⁇ W UV LEDs from Omicrom Laserage of Rodgau Germany.
- electrical energy to operate the UV LEDs may be supplied by a power source and an interlock means operates to allow power to the UV LEDs when the panels are in the operational position.
- a switch means may be used to power the UV LEDs when activated, and the UV LEDs may be adjusted to limit active operation to a predetermined sanitizing period by a timing circuit.
- UV illumination referred to herein is not limited to constant illumination but could also be pulsed UV illumination as well.
- the power source may be selected from the group consisting of fuel cells, batteries, AC power, AC power converted to DC power, and DC power, and in preferred embodiments, the power source is DC power provided by a computer port.
- the present invention may be embodied in other specific forms without departing from the scope of the invention disclosed and that the examples and embodiments described herein are in all respects illustrative and not restrictive. Those skilled in the art ofthe present invention will recognize that other embodiments using the concepts described herein are also possible. Further, any reference to claim elements in the singular, for example, using the articles "a,” “an,” or “the” is not to be construed as limiting the element to the singular.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
Abstract
A sanitizing apparatus in a flexible configuration that uses ultraviolet (UV) radiation emitted from light emitting diodes (LEDs) may be folded or rolled for storage and transport. A piecewise flexible sanitizing apparatus may be formed with hinged or otherwise rotationally joined panels, and provides the ability to sanitize a variety of objects beneath enclosure panels. A continuous flexible sanitizing apparatus with an enclosure panel formed of flexible material may be folded or rolled and may be used with a support structure to treat taller objects.
Description
Flexible Ultraviolet LED Sanitizing
Apparatus
Inventor 1: Jon L. Roberts Citizen of: United States Address: 529 Clear Spring Road Great Falls, VA 22066
TITLE
Flexible Ultraviolet LED Sanitizing Apparatus
FIELD OF THE INVENTION
[0001] The various embodiments relate generally to the sanitization of various surfaces, and more particularly to methods, materials and apparatus utilizing ultraviolet light to effectively reduce microbe levels.
BACKGROUND
[0002] It has long been known that germs are spread by, among other things, hand to hand contact. Hence, recent public health campaigns and media have emphasized the importance of washing of hands in order to prevent the spreading of the common cold as well as other pathogens. Further, it has long been known that household objects such as toothbrushes can be a source of the spreading of germs as well, and recent discovery has shown that bacteria continue to live on writing implements that are used by individuals. Disease-causing germs can live on many surfaces and therefore can be a vector for the spread of disease.
SUMMARY
[0003] Hospitals routinely sanitize surgical instruments, which typically involves both the use of chemicals as well as high-pressure high-temperature steam such as is produced in an autoclave machine. This results in generally sterile instruments for use in surgery (i.e., maximum elimination of microbes). Such devices, however, are expensive, cumbersome, and are therefore not practical for the widespread sanitizing of more common devices that do not require a sterile field.
[0004] Common household disinfectants for kitchen and bathroom surfaces, toys, and other objects traditionally rely on chemicals such as alcohols, aldehydes, and oxidizing agents. However, most disinfectants are also by nature potentially harmful (even toxic) to humans or animals. Further, the introduction of a harsh chemical substance to a device with electrical components has the potential to damage the internal systems thereof.
[0005] It would therefore be desirable to have a convenient sanitizing method and apparatus for sanitizing many different kind of objects and surfaces, including keyboards and other input devices of all types and dimensions (collectively "computer input device(s)") thereby preventing the transmission of object-borne disease spreading microorganisms. Such devices would benefit schools, health care facilities, offices, and retail environments, as well as other places where frequently used objects are susceptible to high germ transmission.
DESCRIPTION OF THE DRAWINGS
[0006] The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary aspects of the invention. Together with the general description given above and the detailed description given below, the drawings serve to explain features of the invention.
[0007] FIG. 1 illustrates a side elevation view of a horizontally disposed sanitizing apparatus with hinged panels according to an embodiment.
[0008] FIG. 2 illustrates a top plan view of the sanitizing apparatus with hinged panels in FIG. 1.
[0009] FIG. 3 illustrates a side elevation view of a horizontally disposed sanitizing apparatus with hinged panels according to an alternative embodiment.
[0010] FIGs. 4A and 4B illustrate cross-sectional views of a panel of a horizontally disposed sanitizing apparatus showing storage and operational configurations according to various embodiments.
[0011] FIGs. 5A and 5B illustrate detailed side elevation views of an interlock element illustrating the connectivity for operation of a sanitizing apparatus according to various embodiments.
[0012] FIG. 6 illustrates a schematic detail view of light emitting diodes illustrating emittance of ultraviolet radiation in treating the surface of an object.
[0013] FIG. 7 illustrates a top plan view of a sanitizing apparatus having a continuous flexible panel according to an embodiment.
[0014] FIG. 8 illustrates a side elevation view of the sanitizing apparatus of FIG. 7.
[0015] FIG. 9 illustrates a top plan view of a folding wall support for a continuous flexible panel of a sanitizing apparatus in a folded configuration for storage.
[0016] FIG. 10 illustrates a parallel projection view of a folding wall support for a continuous flexible panel of a sanitizing apparatus in an unfolded configuration for active use.
[0017] FIGs. HA and HB illustrate parallel projection views of alternative embodiments of a folding framework support for a continuous flexible panel of a sanitizing apparatus.
[0018] FIG. 12 illustrates a side elevation view of a continuous flexible panel of a sanitizing apparatus in a rolled storage position.
[0019] FIG. 13 illustrates a side elevation view of a continuous flexible panel of a sanitizing apparatus on a non-planer object.
[0020] FIG. 14 illustrates a schematic view of a sanitizing apparatus with DC power supplied to the UV LEDs from a powered port of a computer according to an embodiment.
DETAILED DESCRIPTION
[0021] Ultraviolet (UV) radiation is known as a highly effective means of destroying microorganisms. At an optimal wavelength of 254 nm, shortwave UV radiation (UVC) exposure kills bacteria, molds, protozoa, yeasts, and viruses on the surfaces of household and personal objects, eliminating over 99% of surface microbes. Exposure to UVC damages microbial DNA by triggering adjacent thymine molecules to dimerize, thereby disrupting DNA and RNA replication and ultimately killing the pathogen.
[0022] The application of UVC radiation to sanitization has been used extensively in medical sterilization of flat surfaces, water treatment and air purification, and in recent years, household surface sanitization applications. Commercially available germicidal UV lamps are hand-held
("wands") and operate using incandescent or fluorescent UVC bulbs. However, there are many limitations to the use of currently available UV light wands. Such devices give non-uniform exposure since the user "waves" the light over the surface. Each user is different and yields a different level of efficacy. Further, there is a concern with respect to UVC exposure to users and bystanders since UVC radiation more damaging to human eyes and more carcinogenic to skin than UVA and UVB radiation.
[0023] The use of light emitting diodes (LEDs) in a sanitizing apparatus provides several advantages over incandescent and fluorescent bulbs and provides the ability to create a broad range of sanitizers with flexibility to treat a variety of objects and surfaces. Additionally, LEDs do not have filaments that can burn out thus lasting longer, and the small plastic bulbs of LEDs make them more durable and able to fit more easily into modern electronic circuits.
[0024] Another advantage to the use of LEDs is efficiency of power usage, as a conventional incandescent bulb, in warming the filament, generates a good amount of wasted energy in the form of heat. The various embodiment apparatus and methods utilize LEDs to generate UVC in a range of flexble configurations that are easy and safe to use and that surpass the performance of currently available UV-emitting sanitizing devices. Treatment of a surface according to the various embodiments has kill rates of over 99.99% of bacteria and influenza virus, accomplished in under 60 seconds.
[0025] The various aspects will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and implementations are for illustrative purposes and are not intended to limit the scope of the invention or the claims.
[0026] The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any implementation described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other implementations.
[0027] The terms "UVC", "UVC light" and "UVC radiation" are used interchangeably herein consistent with customary application in physics to refer to ultraviolet electromagnetic radiation having a wavelength of 100 nm - 280 nm.
[0028] FIG. 1 illustrates an embodiment sanitizing apparatus 10 that includes a plurality of panels 14, thus creating a piecewise flexible configuration Each panel 14 contains a two- dimensional array of UV-emitting LEDs 16, and such LEDs that emit disinfecting UVC radiation in the 254 nm and lower wavelength range. The panels 14 may be attached to each other and to electrical control box 12 with hinges 19 such that the apparatus 10 is piecewise flexible at the hinges. Such hingeadly flexible configuration enables the apparatus 30 to fold into a compact storage/transport arrangement and unfold for use. An elongated apparatus 10 as shown in FIG. 1 is suitable for sanitizing elongated areas such as a keyboard surface for a computer, typewriter, ATM, musical instrument, etc. Each panel 14 forms an opaque enclosure with an open side that allows the array of UV LEDs 16 to treat an object. In order to protect the UV LED arrays 16 and prevent possible accidental exposure to UVC radiation, it is preferable that the panels 14 fold in such a manner such that so as to not have the arrays 16 exposed, although this is not a limitation.
[0029] FIG. 2 illustrates a top view of sanitizing apparatus 10 in an unfolded operational position. After being unfolded, the apparatus 10 may be placed over the item to be sanitized and switch 18 may be activated to operate the UV LEDs 16 and thus sanitize the item. Control box 12 may include an activation switch 18 and a power source 23 that may be any source suitable for electrically powering the plurality of LEDs 16, including, but not limited to, an AC power cord and appropriate transformer, a DC power cord from a "wall wort" transformer or battery pack, a USB or IEEE 1394 receptacle for plugging into a (DC) powered USB or IEEE 1394 device, a battery or set of batteries (e.g., LiPo, alkaline, Ni-Cad, etc.), or a fuel cell (e.g., using methanol, butane or formic acid). Control box 12 may additionally include a timing unit or circuit 25 to control the duration of sanitization, as well as an interlock control circuit 27 to prevent accidental operation of the apparatus 10 and possible exposure to dangerous UVC radiation from the LEDs. Interlock control circuit 27 may coordinate one or more switches that are normally biased in the off position until the apparatus is opened and positioned over an object to be treated. See, e.g., U.S. Patent No. 6,458,331, which is herein incorporated by reference.
Optionally, a horizontally-disposed apparatus, for example, as illustrated in FIG. 2, may include a level switch (not shown) in the control box as a safety means to inhibit operation of the apparatus if the panels are not aligned in a level horizontal position. Such level switch may be, but is not limited to, a mercury tilt switch, a roller ball, or a magnetic switch.
[0030] An interlock switch may be used to turn units on or off, it is preferable to include a separate activation switch 18 for embodiments that are powered by AC, DC, battery or fuel cell. Optionally, the activation switch 18 may further include a light or other indicator to signal that the UV LEDs are operating, or the control box 12 may further include a timed circuit with different lights or other indicators, each of which may show that the sanitizing apparatus is either ready for operation, currently operating, or that sanitization is complete. The sanitizing time is set so as to deliver the appropriate amount of UV energy needed to deactivate a range of microorganism. Tables of energy for deactivation of a variety of micro-organisms is readily available to those skilled in the art. Noted below are some examples of the amount of UV energy levels at 254 nanometer units wavelength in microwatt- seconds per square centimeter required for 99.9% destruction of various organisms as but some examples, without limitation, or organisms that can be destroyed with various embodiments illustrated herein.
Virus
Coliphage 6,600
Hepatitis virus (infectious) 8,000
Influenza virus 6,600
Poliomyelitis (polio virus) 21,000
Rotavirus 24,000
Tobacco mosaic virus 440,000
Bacterial Organisms
Agrobacterium tumefaciens 8,500
Bacillus anthracis 8,700
B.megaterium (vegetable) 2,500
B.megaterium (spores) 52,000
B.paratyphosus 6,100
B.subtilis (vegetable) 11,000
B.subtilis (spores) 22,000 Escherichia coli 6,600
Legionella bozemanii 3,500
L.dumoffii 5,500
L.gormanii 4,900
L.longbeachae 2,900 L.micdadel 3,100 L.pneumophila 3,800
[0031] Sanitizing apparatus 10 may optionally contain one or more additional two-dimensional arrays of UV-emitting LEDs facing an open side of one or more additional enclosure panels in which the additional arrays are mounted, with an additional hinge rotationally connecting the additional panels to one of the first and the second panel enclosure to allow the additional panel to rotate from a storage position to an operational position.
[0032] FIG. 3 illustrates an alternative embodiment in which enclosure panels form a piecewise flexible configuration. The apparatus 30 has a control box 32 and an activation switch 38 that are integrated with one of the panels 34. The panels 34 include two-dimensional arrays of UV LEDs 36 and may be attached by hinges 39, enabling the hingeably flexible apparatus 30 to fold into a compact storage/transport arrangement and unfold for use. A center panel may be integrated with the control box 32, as is illustrated, and may be approximately twice the width of the outer panels such that the outer panels can fold inward to protect the center array.
[0033] When unfolded, the panels 14 of FIGs.1 and 2 and panels 34 of FIG.3 form an open-sided enclosure for treating an object with UVC radiation. While using folding panels in an embodiment apparatus forms a compact unit for storage and transport, the panels may conversely be designed so as to have sufficient height to enclose the objects to be treated. FIGs. 4A and 4B illustrate variations of an embodiment in which panels have side- wall fixtures providing increased enclosure height while still allowing compact storage. Referring to FIG. 4A, an apparatus 40 may contain one or more enclosure panels 44 in which a two-dimensional array of UV LEDs 46 is mounted adjacent the opaque face of each the enclosure panel 44. The side- walls of the enclosure panels 44 include extensions 41a, 41b, which may be attached by hinges 49 so as to move between the storage position of extention 41b and the extended position of extention 41a.
[0034] FIG. 4B illustrates an alternative configuration of extentions 41a, 41b. In this example configuration, extensions 41a, 41b may be slidably attached by guides 43 so as to move between the storage position of extension 41b and the operational position of extention 41a. The use of
side extensions 41a, 41b may allow the sanitizing apparatus 40 to fold more compactly, the treatment of taller objects, and the use of fewer LEDs or LEDs with narrower projection angles.
[0035] As discussed above, various embodiments may have safety and/or interlock switching means to prevent unintended operation of a sanitizing apparatus that generates UVC radiation, such as when in a folded storage configuration. FIGs. 5 A and 5B illustrate an exemplary embodiment of an interlock mechanism within a piecewise flexible apparatus by which operation of panels 54 may be prevented when the sanitizing apparatus is in a folded position. Figure 5 A illustrates two enclosure panels 54 that are joined by a hinge 59 so as to allow the panels 54 to be folded into a storage position. Interlock elements 55a, 55b may be any suitable means for completion of a circuit capable of energizing the UV LEDs, (for example, mating electrical contacts) and such elements are in a nonoperational position when the panels 54 are folded. However, when panels 54 are rotated about the hinge 59 to a position for active use, as shown in FIG. 5B, the interlocking elements may form an operational position 56 (for example, as a completed electrical contact) thus allowing operation of the panels, assuming other interlock elements are also in proper position.
[0036] FIG. 6 illustrates the operation of individual UV LEDs 66 illuminating an object 68 (e.g., a computer keyboard) when treated with UVC radiation 67 according to the various embodiments. UV LEDs 66 may be mounted and positioned within an enclosure panel 64 so as to emit light toward an open side facing an object 68 to be treated. Each LED 66 emits UVC radiation, optimally at a wavelength of approximately 254 nm so as to most effectively neutralize and kill pathogens on the surface of object 68. UVC radiation 67 is emitted by each LED 66 at a projection angle, and each LED 66 may be spaced from adjacent LEDs 66 and the object 68 such that the UVC radiation 67 of each overlaps for full coverage of the surface, including any gaps or crevices, of object 68. In an embodiment, the inward- facing surface 65 between LEDs 66 may preferably be formed with a material that is highly reflective of UVC radiation, such as brushed aluminum. An opaque and sturdy material, for example, brushed aluminum, may be used to form the entire of the enclosure panel 64 as well as the inward-facing surface 65 although this is not meant as a limitation.
[0037] The embodiments described above employ rigid panels and connecting means such as hinges and slidable guides to form a piecewise flexible sanitizing apparatus. Alternatively, a panel of UV LEDs that is flexible along its length may be employed to form a continuous flexible sanitizing apparatus.
[0038] FIG. 7 illustrates an embodiment of a continuous flexible sanitizing apparatus 70 that has a control box 72 and pliable UV LED panel 74 with a two-dimensional array of UV LEDs 76 emitting UVC radiation for treatment of an object. Electrical control box 72 may include a power source 73, which may be any source suitable for electrically powering the plurality of LEDs, including, but not limited to, an AC power cord and appropriate transformer, a battery or set of batteries, or a fuel cell (e.g., using methanol, butane or formic acid). Control box 72 may additionally include an operating switch 78, a timing unit or circuit 75 to control the duration of sanitization, and an interlock control circuit 77 to prevent accidental operation of the apparatus 70. While illustrated as a separate, rigid box, the components of control box 72 may also be mounted or hinged to the flexible panel 74.
[0039] As illustrated in FIG. 8, UV LED panel 74 is made with flexible material(s) that allow the panel 74 to be rolled or folded, and includes appropriate means to allow operation of the array of UV LEDs 76 (for example, ribbon cable wiring or UV reflective mylar). The material(s) from which panel 74 is constructed allows the panel to move and bend around the shapes of objects and surfaces. Panel 74 forms at least a backing portion of an enclosure with an open lower side to allow the array of UV LEDs 76 to emit sanitizing UVC toward an object to be treated. Panel 74 may include sufficiently rigid and dimensioned side- walls (not shown) capable of supporting the UV LED array 76 and panel 74 over an object. Alternately, panel 74 may be combined with a frame or other structure having side- walls and sufficient rigidity and dimensions to support the array 76 and opaque backing over an object, as discussed below with reference to FIG. 9-1 IB.
[0040] A continuous flexible sanitizing apparatus may optionally be constructed with an accompanying support structure. Such support structure may be formed as folding walls, or as a folding frame with upper members to support the enclosure panel and leg members to support the upper members. FIG. 9 illustrates a folding wall support structure 90 in a configuration for
storage and transport. According to an embodiment, support structure 90 may have first and second end- walls 94 joined by a pair of side-walls 96 formed of shorter segments in an "accordion" arrangement. The support wall 90 may optionally be attached or integrated with electrical control box 92, with one end- wall 94 optionally being formed from an existing wall of control box 92. If integrated with the control box 92, the support wall 90 may fold flat against the control box 92 for storage and transport.
[0041] Referring to FIG. 10, the support structure 90 of FIG. 9 may be pulled out for operational use sanitizing an object. End-walls 94 and side-walls 96 may support a flexible panel 100 operated with control box 92. When using a sanitizing apparatus in such a manner, the support wall may be dimensioned to support the panel 100 in the appropriate position for treating each particular object. Optionally, means for attaching or securing the panel 100 in position on the support structure may be used as part of an interlock system for safe operation of the sanitizing apparatus so that the panel 100 will not operate when not properly secured to the support (not shown).
[0042] FIGs. HA and HB illustrate an alternative embodiment support structure for use with a flexible UV LED panel. Referring to FIG. HA, a flexible UV LED panel (not shown) may be supported upon a folding skeletal frame 110 having upper support members 114 that contact and support the panel and leg members 116 that position the panel in the appropriate position above an object to be treated. The upper support members 114 and leg members 116 are preferably attached in a jointed manner so as to allow the frame 110 to fold for storage and transport. Referring to FIG. 1 IB, opaque walls 112 of any suitable material may be draped or hung from upper support members 114, stretched between leg members 116, or otherwise secured to the frame 110 to form side-walls for enclosing the UV LEDs and the object to be treated.
[0043] The side- walls 112 may be formed of rigid or pliable material which, in addition to being opaque to UV radiation, preferably are UV resistant and have an interior surface that is highly reflective of UV radiation. The frame 100 can be made of any appropriately rigid and UV resistant material, including, but not limited to, aluminum or UV resistant plastic. While leg
members 114 are shown as straight, table-style legs, they may take other forms, including, but not limited to, the cross-legged form as is used for cots.
[0044] Referring to FIG. 12, a sanitizing apparatus 120 having an electrical control box 122 and a flexible UV LED panel 124 according to various embodiments may be compactly stored by rolling the panel 124 toward the control box 122 or even around the control box for storage. FIG. 13 illustrates the use of a sanitizing apparatus in treating objects 138 that may not be substantially flat. In such a case, a pliable enclosure panel 134 (or a plurality of hinged enclosure panels in a piecewise flexible configuration), and, if needed, a flexible support member 135, may substantially conform to the shape of the object to be treated. Control box 132 is preferably attached to the flexible panel 134 in a hinged or similar manner to allow flexible application of the apparatus. Other embodiments of the flexible sanitizing apparatus of Figure 12 may also have skirts of UV opaque material around the periphery of the flexible UV LED panel so that the skirt can drape down onto a surface to prevent the escape of UV illumination when sanitizing a surface or three dimensional object.
[0045] FIG. 14 illustrates an embodiment sanitizing apparatus that is particularly suited for treating the input apparatus of a computer, such as a keyboard, mouse, stylus, tablet, trackball or trackpad. In this embodiment, power source 143 is a DC input or port for receiving DC power from a powered port of a computer 145, such as the 5 V power of a USB port or the up to 30V (typically 9V/12V/25V) power provided by various IEEE 1394 ports. The control box 142 may then be operated to provide power to the UV LED array 146 inside enclosure 144 to sanitize object or input device 148 with UVC radiation.
[0046] UV LEDs in the various embodiment apparatus preferably emit UVC radiation, and more preferably emit radiation at a wavelength of approximately 254 nm. It is also well known that ultraviolet radiation below 200 nm can produce small quantities of ozone by breaking up molecules of oxygen gas into free oxygen atoms that combine with nearby diatomic oxygen. Further, it is known that in sufficient concentrations, ozone has significant germicidal and sanitizing effects, for example, by disrupting and lysing cell walls thereby exposing the contents of the cell to oxidation and inactivation. Ozone gas may reach shadowed areas in keyboards, for
example, beneath the keys and in any out-of-sight crevices that exist on computer input devices, where projected and reflected ultraviolet radiation may not reach. In an alternative embodiment, UV LEDs may emit a radiation having a wavelength of less than 200 nm, and preferably having a wavelength of 185 nm to accomplish optimum ozone production.
[0047] The number and spacing of the UV LEDs in the arrays shown are not meant to be limited by the drawing figures, which are only meant to be representative. Actual numbers and spacing of the UV LEDs depend on numerous factors, including, but not limited to the emission power of the LEDs, the projection angle of the UVC radiation emitted by the LEDs, the desired speed/time-required for the sanitizing, the desired cost constraints, etc. UV LEDs that emit UVC radiation in wavelengths at or below 254 nm are available from various sources, such as UVTOP250 or UVTOP255 TO- 18 FW flat window LEDs available from Sensor Electronic Technology, Inc. of Columbia, South Carolina, or LED MOD Deep UV 22nm/300 μW UV LEDs from Omicrom Laserage of Rodgau Germany.
[0048] In the various embodiments, electrical energy to operate the UV LEDs may be supplied by a power source and an interlock means operates to allow power to the UV LEDs when the panels are in the operational position. A switch means may be used to power the UV LEDs when activated, and the UV LEDs may be adjusted to limit active operation to a predetermined sanitizing period by a timing circuit.
[0049] Treatment of elongated surfaces described herein is provided only as an example application. Reference to elongated surfaces is not meant to be a limitation, as the various embodiments may also be used to sanitize non-elongated surfaces.
[0050] It should also be noted that the UV illumination referred to herein is not limited to constant illumination but could also be pulsed UV illumination as well.
[0051] In the various embodiments, the power source may be selected from the group consisting of fuel cells, batteries, AC power, AC power converted to DC power, and DC power, and in preferred embodiments, the power source is DC power provided by a computer port. It will be
understood by those skilled in the art that the present invention may be embodied in other specific forms without departing from the scope of the invention disclosed and that the examples and embodiments described herein are in all respects illustrative and not restrictive. Those skilled in the art ofthe present invention will recognize that other embodiments using the concepts described herein are also possible. Further, any reference to claim elements in the singular, for example, using the articles "a," "an," or "the" is not to be construed as limiting the element to the singular.
Claims
1. A sanitizing apparatus with a piecewise flexible configuration comprising: a first two-dimensial array of ultraviolet (UV) light-emitting diodes (LEDs) mounted in a first enclosure panel, wherein the LEDs face an open side of the first enclosure panel; a second two-dimensional array of ultraviolet UV LEDs mounted in a second enclosure panel, wherein the LEDs face an open side of the second enclosure panel; a hinge that rotationally connects the first enclosure panel to the second enclosure panel, whereby the first and second panels can rotate from a storage position to an operational position; a power source for providing electrical energy to operate the UV LEDs; an interlock means operable to allow power to the UV LEDs when the first and second panels are in the operational position; a switch means for powering the UV LEDs; and a timing circuit operating in response to activation of the switch means to operate the UV LEDs for a predetermined sanitizing period, wherein said piecewise flexible configuration is hingeably flexible.
2. The sanitizing apparatus of claim 1, wherein the UV LEDs emit UVC radiation.
3. The sanitizing apparatus of claim 1, wherein the UV LEDs emit radiation at or below a wavelength of approximately 254 nm.
4. The sanitizing apparatus of claim 1, wherein the power source is selected from a group consisting of fuel cells, batteries, AC power, AC power converted to DC power, and DC power.
5. The sanitizing apparatus of claim 4, wherein the power source is DC power provided by a computer port.
6. The sanitizing apparatus of claim 1, wherein control circuitry provides both the interlock means and the timing circuit.
7. The sanitizing apparatus of claim 6, wherein the timing circuit further comprises at least one indicator whereby current operational status of the sanitizing apparatus is conveyed.
8. The sanitizing apparatus of claim 1, further comprising a control box for housing the power source, interlock means, switch means, and timing circuit.
9. The sanitizing apparatus of claim 8, wherein the operational position is horizontally-disposed, and further comprising a level switch housed in the control box.
10. The sanitizing apparatus of claim 1, further comprising: an additional two-dimensional array of UV LEDs mounted in an additional enclosure panel, wherein the LEDs face an open side of the additional enclosure panel; and an additional hinge that is rotationally connected to the additional enclosure panel to one of the first and the second enclosure panels, whereby the additional enclosure panel can rotate from the storage position to the operational position.
11. The sanitizing apparatus of claim 1, further comprising side- wall extensions on each of the enclosure panels, wherein the extensions are connected to the side-walls of the enclosure panels, and wherein the extensions are adjacent the open side of each of the enclosure panels.
12. The sanitizing apparatus of claim 11, wherein the side- wall extensions comprise a hinged attachment to swing between the storage position and the operational position.
13. The sanitizing apparatus of claim 11, wherein the side- wall extensions comprise a guide and a sliding attachment to slide between the storage position and the operational position.
14. A sanitizing apparatus with a flexible configuration comprising: a two-dimensional array of ultraviolet (UV) light emitting diodes (LEDs) mounted in a flexible enclosure panel and wherein the LEDs face an open side of the flexible enclosure panel; a power source for providing electrical energy to operate the UV LEDs; an interlock means operable to allow power to the UV LEDs when the panels are in the operational position; a switch means for powering the UV LEDs; and a timing circuit operating in response to activation of the switch means to operate the UV LEDs for a predetermined sanitizing period, wherein said flexible configuration is continuously flexible.
15. The sanitizing apparatus of claim 14, further comprising a folding support structure for the flexible enclosure panel.
16. The sanitizing apparatus of claim 14, wherein the UV LEDs emit UVC radiation.
17. The sanitizing apparatus of claim 14, wherein the UV LEDs emit sanitizing radiation at or below a wavelength of approximately 254 nm.
18. The sanitizing apparatus of claim 14, wherein the power source is selected from a group consisting of fuel cells, batteries, AC power, AC power converted to DC power, and DC power.
19. The sanitizing apparatus of claim 18, wherein the power source is DC power provided by a computer port.
20. The sanitizing apparatus of claim 14, wherein control circuitry provides both the interlock means and the timing circuit.
21. The sanitizing apparatus of claim 20, wherein the timing circuit further comprises at least one indicator whereby current operational status of the sanitizing apparatus is conveyed.
22. The sanitizing apparatus of claim 14, further comprising a control box for housing the power source, interlock means, switch means, and timing circuit.
23. The sanitizing apparatus of claim 20 wherein the flexible enclosure panel is rolled inward to the control box for transportation and storage of the apparatus.
24. The sanitizing apparatus of claim 15, wherein the support structure comprises folding walls.
25. The sanitizing apparatus of claim 15, wherein the support structure comprises a folding frame with upper members for supporting the flexible enclosure panel and leg members for supporting the upper members.
26. The sanitizing apparatus of claim 25, wherein the support structure further comprises opaque, flexible side- walls.
27. A method of uniformly sanitizing an object's surface comprising treating the surface with exposure to ultraviolet (UV) radiation, wherein the UV radiation is emitted by light emitting diodes (LEDs) in a two-dimensional array, and wherein the UV radiation is UVC radiation.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16642909P | 2009-04-03 | 2009-04-03 | |
US61/166,429 | 2009-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010115183A1 true WO2010115183A1 (en) | 2010-10-07 |
Family
ID=42828736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/029935 WO2010115183A1 (en) | 2009-04-03 | 2010-04-05 | Flexible ultraviolet led sanitizing apparatus |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010115183A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012040757A1 (en) * | 2010-09-29 | 2012-04-05 | Helioz Research & Development Gmbh | Device for disinfecting liquids and/or objects |
WO2014078324A1 (en) * | 2012-11-13 | 2014-05-22 | Violet Defense Technology, Inc. | Device for ultraviolet light emission |
WO2014100493A1 (en) | 2012-12-19 | 2014-06-26 | Helios Innovative Technologies Inc. | Sterilization units, systems, and methods |
US8926119B2 (en) | 2011-08-04 | 2015-01-06 | Universal Display Corporation | Extendable light source with variable light emitting area |
US9698003B2 (en) | 2011-06-08 | 2017-07-04 | Xenex Disinfection Services, Llc. | Ultraviolet discharge lamp apparatuses with one or more reflectors |
KR101767055B1 (en) * | 2016-04-06 | 2017-08-11 | 주식회사 세스코 | An uv sterilizer for sterilizing side face of a matress |
US9773658B2 (en) | 2011-06-08 | 2017-09-26 | Xenex Disinfection Services, Llc. | Ultraviolet discharge lamp apparatuses having lamp housings which are transparent to ultraviolet light |
KR101801804B1 (en) * | 2016-04-06 | 2017-11-28 | 주식회사 세스코 | An uv sterilzer |
CN107496951A (en) * | 2017-08-25 | 2017-12-22 | 昆山好创电子科技有限公司 | Portable ultraviolet sterilizer |
US10180248B2 (en) | 2015-09-02 | 2019-01-15 | ProPhotonix Limited | LED lamp with sensing capabilities |
US10245340B2 (en) | 2014-09-18 | 2019-04-02 | Xenex Disinfection Services, Llc. | Room and area disinfection utilizing pulsed light with modulated power flux and light systems with visible light compensation between pulses |
KR20190060450A (en) * | 2017-11-24 | 2019-06-03 | (주)한국전자기술 | Portable Sterilizer |
CN110404086A (en) * | 2019-06-27 | 2019-11-05 | 佛山市海狮凯尔科技有限公司 | A kind of foldable electrolysis disinfection device |
WO2021113848A1 (en) * | 2019-12-06 | 2021-06-10 | Purplesun Inc. | Proportionality of distributed illumination with adaptive multivector delivery system |
US11141499B2 (en) | 2016-10-19 | 2021-10-12 | Christopher Alexander CORSETTI | Sanitization system |
GB2601730A (en) * | 2020-11-16 | 2022-06-15 | L & Co Trading Ltd | Mat and method of sterilising thereof |
US11511012B2 (en) | 2018-01-16 | 2022-11-29 | Leviant, Inc. | Adaptive multivector illumination delivery system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4793507A (en) * | 1986-02-25 | 1988-12-27 | Alain Delplanque | Folding packaging case |
US5588549A (en) * | 1992-11-18 | 1996-12-31 | Steiner Freizeitmobel Gesellschaft M.B.H. & Co. Kg. | Container with swivelling sidewalls |
US6030099A (en) * | 1998-06-16 | 2000-02-29 | Mcdermott; Kevin | Selected direction lighting device |
WO2001051098A1 (en) * | 2000-01-14 | 2001-07-19 | Roberts Jon L | Infant utensil sterilization method and apparatus |
US20030048256A1 (en) * | 2001-09-07 | 2003-03-13 | Salmon Peter C. | Computing device with roll up components |
US6974223B2 (en) * | 2000-05-20 | 2005-12-13 | Acco Brands Usa, Llc | IEEE 1394 or USB powered computer light |
US7273300B2 (en) * | 2004-08-06 | 2007-09-25 | Lumination Llc | Curvilinear LED light source |
US20080265179A1 (en) * | 2007-04-27 | 2008-10-30 | Havens William H | Sterilization apparatus |
-
2010
- 2010-04-05 WO PCT/US2010/029935 patent/WO2010115183A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4793507A (en) * | 1986-02-25 | 1988-12-27 | Alain Delplanque | Folding packaging case |
US5588549A (en) * | 1992-11-18 | 1996-12-31 | Steiner Freizeitmobel Gesellschaft M.B.H. & Co. Kg. | Container with swivelling sidewalls |
US6030099A (en) * | 1998-06-16 | 2000-02-29 | Mcdermott; Kevin | Selected direction lighting device |
WO2001051098A1 (en) * | 2000-01-14 | 2001-07-19 | Roberts Jon L | Infant utensil sterilization method and apparatus |
US6974223B2 (en) * | 2000-05-20 | 2005-12-13 | Acco Brands Usa, Llc | IEEE 1394 or USB powered computer light |
US20030048256A1 (en) * | 2001-09-07 | 2003-03-13 | Salmon Peter C. | Computing device with roll up components |
US7273300B2 (en) * | 2004-08-06 | 2007-09-25 | Lumination Llc | Curvilinear LED light source |
US20080265179A1 (en) * | 2007-04-27 | 2008-10-30 | Havens William H | Sterilization apparatus |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012040757A1 (en) * | 2010-09-29 | 2012-04-05 | Helioz Research & Development Gmbh | Device for disinfecting liquids and/or objects |
US9698003B2 (en) | 2011-06-08 | 2017-07-04 | Xenex Disinfection Services, Llc. | Ultraviolet discharge lamp apparatuses with one or more reflectors |
US11000608B2 (en) | 2011-06-08 | 2021-05-11 | Xenex Disinfection Services Inc. | Ultraviolet lamp room/area disinfection apparatuses having integrated cooling systems |
US10410853B2 (en) | 2011-06-08 | 2019-09-10 | Xenex Disinfection Services, Llc. | Ultraviolet lamp apparatuses with one or more moving components |
US10335506B2 (en) | 2011-06-08 | 2019-07-02 | Xenex Disinfection Services, Llc. | Mobile ultraviolet lamp apparatuses having a reflector system that redirects light to a high touch area of a room |
US10004822B2 (en) | 2011-06-08 | 2018-06-26 | Xenex Disinfection Services, Llc. | Mobile ultraviolet lamp apparatuses having a reflector system that redirects light to a high touch area of a room |
US11929247B2 (en) | 2011-06-08 | 2024-03-12 | Xenex Disinfection Services Inc. | Ultraviolet lamp apparatuses having automated mobility while emitting light |
US9773658B2 (en) | 2011-06-08 | 2017-09-26 | Xenex Disinfection Services, Llc. | Ultraviolet discharge lamp apparatuses having lamp housings which are transparent to ultraviolet light |
US8926119B2 (en) | 2011-08-04 | 2015-01-06 | Universal Display Corporation | Extendable light source with variable light emitting area |
US11633508B2 (en) | 2012-11-13 | 2023-04-25 | Violet Defense Group, Inc. | Device for increased ultraviolet exposure of fluids |
US10046075B2 (en) | 2012-11-13 | 2018-08-14 | Violet Defense Technology, Inc. | Device for transmitting and projecting greater photonic energy |
WO2014078324A1 (en) * | 2012-11-13 | 2014-05-22 | Violet Defense Technology, Inc. | Device for ultraviolet light emission |
US9572902B2 (en) | 2012-11-13 | 2017-02-21 | Violet Defense Technology, Inc. | Device for ultraviolet and color light emission |
US8993988B2 (en) | 2012-11-13 | 2015-03-31 | Violet Defense Technology, Inc. | Device for ultraviolet light emission |
AU2021201533B2 (en) * | 2012-12-19 | 2023-01-19 | Leviant, Inc. | Sterilization units, systems, and methods |
US20190365938A1 (en) * | 2012-12-19 | 2019-12-05 | Purplesun Inc. | Sterilization units, systems, and methods |
US20180140727A1 (en) * | 2012-12-19 | 2018-05-24 | PurpleSun, Inc. | Sterilization units, systems, and methods |
EP2934606A1 (en) * | 2012-12-19 | 2015-10-28 | Purplesun Inc. | Sterilization units, systems, and methods |
EP3354289A1 (en) * | 2012-12-19 | 2018-08-01 | Purplesun Inc. | Room partition with uv sterilisation device |
US20150367008A1 (en) * | 2012-12-19 | 2015-12-24 | PurpleSun, Inc. | Sterilization units, systems, and methods |
AU2013361188B2 (en) * | 2012-12-19 | 2017-05-11 | Leviant, Inc. | Sterilization units, systems, and methods |
AU2017213522B2 (en) * | 2012-12-19 | 2019-03-21 | Leviant, Inc. | Sterilization units, systems, and methods |
EP3791898A1 (en) * | 2012-12-19 | 2021-03-17 | Purplesun Inc. | Method for disinfecting objects in a target zone illuminated by a plurality of uv-emitting devices |
US10894102B2 (en) | 2012-12-19 | 2021-01-19 | Purplesun Inc. | Sterilization units, systems, and methods |
US20210244834A1 (en) * | 2012-12-19 | 2021-08-12 | Purplesun Inc. | Sterilization units, systems, and methods |
EP2934606A4 (en) * | 2012-12-19 | 2016-08-10 | Purplesun Inc | Sterilization units, systems, and methods |
US10376604B2 (en) * | 2012-12-19 | 2019-08-13 | Purplesun Inc. | Sterilization units, systems, and methods |
WO2014100493A1 (en) | 2012-12-19 | 2014-06-26 | Helios Innovative Technologies Inc. | Sterilization units, systems, and methods |
US9675720B2 (en) | 2012-12-19 | 2017-06-13 | PurpleSun, Inc. | Sterilization units, systems, and methods |
AU2019204237B2 (en) * | 2012-12-19 | 2020-12-10 | Leviant, Inc. | Sterilization units, systems, and methods |
US11813370B2 (en) | 2012-12-19 | 2023-11-14 | Leviant, Inc. | Sterilization units, systems, and methods |
US11382992B2 (en) | 2014-09-18 | 2022-07-12 | Xenex Disinfection Services Inc. | Room and area disinfection utilizing pulsed light |
US10245341B2 (en) | 2014-09-18 | 2019-04-02 | Xenex Disinfection Services, Llc. | Room and area disinfection utilizing pulsed light with modulated power flux and light systems with visible light compensation between pulses |
US10245340B2 (en) | 2014-09-18 | 2019-04-02 | Xenex Disinfection Services, Llc. | Room and area disinfection utilizing pulsed light with modulated power flux and light systems with visible light compensation between pulses |
US10180248B2 (en) | 2015-09-02 | 2019-01-15 | ProPhotonix Limited | LED lamp with sensing capabilities |
KR101767055B1 (en) * | 2016-04-06 | 2017-08-11 | 주식회사 세스코 | An uv sterilizer for sterilizing side face of a matress |
KR101801804B1 (en) * | 2016-04-06 | 2017-11-28 | 주식회사 세스코 | An uv sterilzer |
US11141499B2 (en) | 2016-10-19 | 2021-10-12 | Christopher Alexander CORSETTI | Sanitization system |
CN107496951A (en) * | 2017-08-25 | 2017-12-22 | 昆山好创电子科技有限公司 | Portable ultraviolet sterilizer |
KR102030004B1 (en) * | 2017-11-24 | 2019-11-08 | (주)한국전자기술 | Portable Sterilizer |
KR20190060450A (en) * | 2017-11-24 | 2019-06-03 | (주)한국전자기술 | Portable Sterilizer |
US11511012B2 (en) | 2018-01-16 | 2022-11-29 | Leviant, Inc. | Adaptive multivector illumination delivery system |
US11839704B2 (en) | 2018-01-16 | 2023-12-12 | Leviant, Inc. | Adaptive multivector illumination delivery system |
CN110404086A (en) * | 2019-06-27 | 2019-11-05 | 佛山市海狮凯尔科技有限公司 | A kind of foldable electrolysis disinfection device |
WO2021113848A1 (en) * | 2019-12-06 | 2021-06-10 | Purplesun Inc. | Proportionality of distributed illumination with adaptive multivector delivery system |
US11524086B2 (en) | 2019-12-06 | 2022-12-13 | Leviant, Inc. | Proportionality of distributed illumination with adaptive multivector delivery system |
US11534511B2 (en) | 2019-12-06 | 2022-12-27 | Leviant, Inc. | Proportionality of distributed illumination with adaptive multivector delivery system |
GB2601730A (en) * | 2020-11-16 | 2022-06-15 | L & Co Trading Ltd | Mat and method of sterilising thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8662705B2 (en) | Flexible ultraviolet LED sanitizing apparatus | |
WO2010115183A1 (en) | Flexible ultraviolet led sanitizing apparatus | |
CA2749283C (en) | Improved method and apparatus for producing a high level of disinfection in air and surfaces | |
CN108025182B (en) | Method and device for disinfection, sterilization and disinfection | |
US9700642B2 (en) | Method and apparatus for sterilizing and disinfecting air and surfaces and protecting a zone from external microbial contamination | |
KR102002451B1 (en) | Room and area disinfection utilizing pulsed light with modulated power flux and light systems with visible light compensation between pulses | |
US8302248B2 (en) | Handheld vacuum attachment with ultraviolet light | |
US20100266446A1 (en) | Hands and forearms sanitizer | |
US20180214585A1 (en) | Disinfection devices and systems | |
JP3230090U (en) | Sterilization equipment for product shelves and display fixtures | |
JP2012516197A5 (en) | ||
WO2022076201A1 (en) | Apparatus and method for uv-c mask sanitization | |
KR200335685Y1 (en) | Portable UV sterilizer with optical sensor | |
CN211475561U (en) | Folding type sterilizing and deodorizing lighting lamp | |
CN215133843U (en) | Device for sterilizing and disinfecting keyboard and mouse by deep ultraviolet LED | |
US20210077642A1 (en) | Sterilizer | |
JP2005218850A (en) | Method and device for sterilization | |
KR100583764B1 (en) | Portable sterilizing dryer shaped like spoon case | |
RU207245U1 (en) | Surface sterilization and disinfection device (USDP) | |
KR200166350Y1 (en) | Potable Disinfecting Device | |
KR20210111103A (en) | Variable sterilizing apparatus using UV LED | |
KR20210111916A (en) | Variable sterilizing apparatus using UV LED | |
KR200386206Y1 (en) | portable UV sterilizer | |
KR200328418Y1 (en) | a sterilizer for mike | |
JP2022030179A (en) | Ultraviolet sterilization device and circulation type air sterilization device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10759531 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10759531 Country of ref document: EP Kind code of ref document: A1 |