WO2010106588A1 - Electrical storage device and electronic circuit device used for same - Google Patents
Electrical storage device and electronic circuit device used for same Download PDFInfo
- Publication number
- WO2010106588A1 WO2010106588A1 PCT/JP2009/005136 JP2009005136W WO2010106588A1 WO 2010106588 A1 WO2010106588 A1 WO 2010106588A1 JP 2009005136 W JP2009005136 W JP 2009005136W WO 2010106588 A1 WO2010106588 A1 WO 2010106588A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power storage
- measurement
- unit
- state
- vehicle
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/15—Preventing overcharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a technology related to a power storage device and an electronic circuit device used therefor, typically to a technology for improving the detection accuracy of the state of the power storage device.
- Patent Document 1 a technique disclosed in Patent Document 1 is known as a background art relating to a power storage device and an electronic circuit device used therefor.
- the measurement parameters necessary for the state detection of the battery constituting the power storage device such as sampling time, measurement time interval, measurement channel, measurement range, etc.
- it is set by external digital information according to the configuration.
- One representative aspect of the present invention provides a power storage device capable of detecting the state of a power storage device with high accuracy and an electronic circuit device used therefor.
- one of the representative aspects of the present invention is necessary for detecting the state of the capacitor depending on the state of the load electrically connected to the capacitor constituting the power storage device or the state of the system provided with the power storage device.
- the measurement parameter is set or variable.
- the state of the capacitor indicates a secondary physical quantity calculated from a physical quantity that can be directly measured among physical quantities including current and voltage charged / discharged from the capacitor, the temperature of the capacitor, and the like.
- the measurement parameter is necessary when a plurality of electronic circuits including a measurement circuit for measuring a physical quantity that can be directly measured by the capacitor and a processing circuit that processes a signal output from the measurement unit operate or function. Indicates the setting value. Examples of the measurement parameter include a sampling time, a measurement time interval, a measurement channel, and a measurement range.
- a preferable measurement parameter corresponding to a load state or a system state is set or changed to a preferable measurement parameter, and the state of the capacitor can be detected with high accuracy in any state.
- FIG. 1 is a block diagram showing the configuration of a motor generator drive system that is a first embodiment of the present invention and the configuration of a drive system of a simple hybrid vehicle equipped with the system.
- the circuit diagram which shows the electrical circuit structure of the motor generator drive system of FIG.
- the block diagram which shows the functional structure of the control apparatus of the battery which comprises the power supply of the motor generator drive system of FIG.
- the block diagram which shows the structure of the measurement parameter setting part of FIG. FIG. 4 is a flowchart showing the operation of a measurement parameter setting unit in FIG. 3.
- the characteristic view which shows the relationship between each time change of the waveform regarding the voltage between the terminals of the battery of FIG. 1, the waveform regarding an electric current, and the waveform regarding temperature, and each vehicle state.
- the time-dependent changes in the waveform related to the voltage between the terminals of the battery and the waveform related to the current in an automobile that can be charged from an external power source, the charging / discharging when the vehicle is running, and the charging by the external power source when the vehicle is stopped The characteristic view which shows a relationship.
- the flowchart which shows the vehicle state determination operation
- the block part which shows the structure of the measurement part for vehicle state determination of FIG. The block part which shows the other structure of the measurement part for vehicle state determination of FIG.
- the present invention is mechanically connected via a belt to a battery that constitutes a power source of a motor generator drive system of a vehicle, particularly an engine that is an internal combustion engine of the vehicle.
- the engine is stopped when it is stopped, and the engine is restarted when the vehicle is started (during idling stop operation).
- the rotating electric machine is operated as an electric motor and the driving force is supplied to the engine.
- the rotary electric machine is operated as a generator to charge a battery as a power source of the rotary electric machine, for example, a 12-volt lead battery with a nominal output voltage of 12 volts, and also has a function of supplying electric power to an in-vehicle electric load.
- a case where the present invention is applied to the battery of the low-voltage motor generator drive system will be described as an example.
- a lithium ion battery or a nickel metal hydride battery can be used.
- the vehicle in addition to the engine restart described above, the vehicle is driven by adding the driving force obtained by operating the rotating electric machine as an electric motor to the driving force of the engine during high load operation such as acceleration of the vehicle. Torque assist operation can be performed.
- the power conversion device and the control device can be integrated (mechanical integration) with respect to the rotating electrical machine.
- the case where the rotating electrical machine and the power conversion device are separated will be described as an example.
- a configuration in which the rotating electrical machine and the power conversion device are integrated is adopted. It doesn't matter.
- a lead voltage, a lithium ion battery or a nickel metal hydride battery having a higher voltage than the above-described system for example, a nominal output voltage of 36 volts of 42 volts, or a higher voltage, for example, a nominal output voltage of 100 volts or more.
- a lead battery, a lithium ion battery or a nickel metal hydride battery can also be used.
- EV electric vehicle
- hybrid vehicles with engines and motors as power sources As for vehicles, hybrid vehicles with engines and motors as power sources, ordinary vehicles such as electric vehicles with motors as the only power source, buses (passenger vehicles), trucks (cargo vehicles), etc.
- special vehicles equipped with equipment required for work such as large-sized automobiles, railway vehicles such as hybrid trains, forklift trucks used for loading and unloading work, and vehicles used for civil engineering and construction work.
- a simple hybrid vehicle having an idle stop power transfer mode will be described as an example.
- the configuration of the battery described below includes a battery constituting an emergency power source provided in factories, hospitals, buildings, etc., a battery constituting a backup power source for computer equipment, a server, etc., a wind power generator, and a household solar power generator. You may apply to the battery etc. which comprise the electrical storage apparatus used for clean energy power generation equipments.
- a motor generator drive system mounted on a simple hybrid vehicle having an idle stop operation mode function can be realized by adding an electric motor function to a generator that has been conventionally mounted for charging a battery.
- a power conversion device inverter device
- the generator is used as an electric motor. This can be realized by driving.
- a function as an electric motor that supplies rotational power for restarting the engine and a function as a generator that supplies electric power for charging a battery and driving auxiliary equipment, Since it is integrated, a small space-saving can be realized.
- the power conversion device and the control device can be integrated (mechanical integration) with respect to the rotating electrical machine that operates as an electric motor and a generator. it can.
- the battery In a simple hybrid vehicle, the battery is used for driving the motor, starting the engine, supplying electric power to the on-vehicle electrical components, etc., and therefore needs to be able to be used safely and effectively. For this reason, the battery is equipped with an electronic circuit device (state estimation device) for monitoring the state of charge and the deterioration state, and charging / discharging of the battery is managed according to the monitoring result.
- an electronic circuit device state estimation device
- measurement parameters necessary for detection (measurement) of the physical quantity that can be measured by the battery such as sampling time, measurement time interval, measurement channel, measurement range, etc.
- sampling time e.g., a time period of time
- measurement time interval e.g., a time period of time
- measurement channel e.g., a measurement channel
- measurement range e.g., a measurement range
- the measurement parameters are uniquely set.
- the physical quantities for example, voltage, current, temperature, etc.
- the physical quantities for example, voltage, current, temperature, etc.
- the measurable physical quantity of the battery may change greatly depending on the vehicle state or the load state of the battery, and the measurement parameter needs to be set or changed accordingly. Not focused on.
- measurement parameters necessary for detection (measurement) of a measurable physical quantity of the battery are set according to the state of the vehicle or the state of the motor generator electrically connected to the battery. Yes or variable.
- the state of the battery indicates a secondary physical quantity calculated from a physical quantity that can be directly measured, among physical quantities including current and voltage charged / discharged from the battery, battery temperature, and the like.
- the measurement parameter is a measurement condition necessary for operating or functioning a plurality of electronic circuit units including a measurement unit that measures a battery state and converts an analog signal obtained by the measurement into a digital signal. Show. Examples of the measurement parameter include a sampling time, a measurement time interval, a measurement channel, and a measurement range.
- the preferred measurement parameter corresponding to the change is set or the preferred measurement parameter. Therefore, the measurable physical quantity of the battery can be detected (measured) with high accuracy in accordance with any state of the vehicle or the motor generator.
- the detection (estimation) precision of the state of a battery including the charge state relevant to charge / discharge of a battery, a deterioration state, etc. can be improved.
- the battery control device can be provided.
- the hybrid vehicle 1 of this embodiment uses an engine 4 that is an internal combustion engine as a drive source of the vehicle.
- the rotational driving force (engine torque) output from the engine 4 is transmitted to the axle 4 through a plurality of power transmission mechanisms (such as the automatic transmission 5 and the differential gear 6).
- drive wheels (for example, front wheels) 2 attached to both ends of the axle 4 are driven, and the hybrid vehicle 1 travels.
- a gasoline engine is mounted as the engine 4, but other engines such as a diesel engine, a natural gas engine, and a hydrogen engine may be mounted as a drive source.
- the driving wheel 2 is a front wheel, but the rear wheel may be driven.
- a motor generator drive system is disposed in the vicinity of the engine 4 (one side surface of the casing of the engine 4).
- the motor generator drive system includes a battery 100, a motor generator 200, and an inverter device 300 as main component devices.
- the motor generator drive system uses an alternator mounted on the vehicle as a power generation device for charging the battery 100, and an inverter device is newly installed so that the motor can be motored by the alternator. It functions as a motor when the engine 4 is restarted (the engine 4 is started in a state where the engine 4 is warm), when driving of the vehicle by the engine 4 is assisted.
- the engine 4 is equipped with a rotating electrical machine device called a starter so that rotational power can be transmitted to the engine 4.
- the starter is a starting device used when starting the engine 4 in a state where the engine 4 is cold, and uses a battery 100 as a DC power source as a driving power source.
- the motor generator 200 is a rotating electrical machine including an armature (stator in the present embodiment) 210 and a field pole (rotor in the present embodiment) 220 arranged to face the armature (stator in this embodiment).
- the rotating shaft is fixed to one side of the housing, and is mechanically connected to the crankshaft of the engine 4 via a belt 7 that is a coupling means.
- the rotational power (torque) can be exchanged between the motor generator 200 and the engine 4, and the rotational power can be transmitted from the motor generator 200 to the engine 4 during power running and from the engine 4 to the motor generator 200 during power generation.
- the belt 7 is used as the coupling means, but a chain, a gear or the like may be used as the coupling means.
- the inverter device 300 is a power conversion device that converts electric power from direct current to alternating current and alternating current to direct current by a switching operation of the switching semiconductor element.
- the inverter device 300 includes a power control module 340 that controls the operation of the power module 310, and a power module 310.
- a power control module 340 that controls the operation of the power module 310
- a power module 310 are connected in parallel to the drive circuit 330 for driving the switching semiconductor element mounted on the motor module 340 based on a command signal from the motor control device 340 and the DC side of the power module 310 to smooth the DC voltage (DC voltage).
- the electrolytic capacitor 320 is removed.
- the AC side of the power module 310 is electrically connected to the armature 210.
- the battery 100 is electrically connected to the DC side of the power module 310.
- the motor generator drive system uses the battery 100 as a power source.
- the battery 100 is a power storage device with a nominal output voltage of 12 volts that constitutes a 14-volt in-vehicle DC power supply.
- the battery 100 supplies DC power to an electric load such as an auxiliary machine of a vehicle and a motor generator drive system, and also drives a motor generator. Charged by the system.
- the power source of the motor generator driving system is the battery 100.
- a power storage device different from the battery 100 for example, a capacitive device such as an electric twentieth capacitor may be used as the power source of the motor generator driving system. Absent.
- a hybrid power source may be configured by the battery 100 and a capacitive device, and this may be used as a power source for the motor generator drive system.
- symbol 8 shows an engine control apparatus.
- the engine control device 8 controls driving of an air throttle valve, a fuel injection valve, an intake / exhaust valve, etc., which are components of the engine 4, and outputs a switching command signal to the field controller 230 to switch the field controller 230.
- the electronic circuit device controls the operation and controls the field current supplied to the field winding 221.
- Numeral 3 is an axle of the drive wheel 2.
- the driving force of the engine 4 is transmitted to the axle 3 via the automatic transmission 5 and the differential gear 6 so that the driving wheel 2 is driven.
- the motor generator 100 includes an armature (stator) having an armature winding 211 in which U-phase, V-phase, and W-phase windings 211U, 211V, and 211W wound around an iron core are Y-connected.
- armature stator
- 210 and a field element (rotor) 220 having a field winding 221 wound around a magnetic core, and an armature 210 and a field element that generate a rotating magnetic field by receiving supply of three-phase AC power during powering
- the magnetic field 220 causes the field 220 to rotate in synchronization with the rotational speed of the rotating magnetic field, and the field magnetic flux of the field 220 is linked to the armature winding 211 by the rotation of the field 220 during power generation.
- the armature winding 211 is constituted by a three-phase winding, but may be constituted by other multi-phase windings such as two-phase or six-phase.
- a wound field type three-phase AC synchronous machine is used as the motor generator 200.
- other AC rotating electric machines such as a permanent magnet field synchronous machine and an induction motor may be used.
- the armature winding 211 is configured by Y connection, but may be configured by ⁇ (delta) connection.
- a field controller 230 is electrically connected to the field winding 221.
- the field controller 230 is a controller that is electrically connected to the battery 100, controls the field current supplied from the battery 100 by the switching operation of the switching semiconductor element, and supplies it to the field winding 221.
- Output from the engine control unit 8 so that a target charging voltage (constant voltage) is supplied from the armature winding 211 to the battery 100 during power generation so that a necessary torque is output during assisting and braking (stopping).
- the field current is controlled based on the switching command signal.
- a brush 222 electrically connected to the field controller 230 and a slip ring 223 electrically connected to the field winding 221 are provided. Both the brush 222 and the slip ring 223 are in sliding contact with each other. Thereby, a field current can be exchanged between the rotating field winding 221 and the field controller 230.
- a switching command for the field controller 230 is output from the engine control device 8, but the switching command is used for the rotational speed of the motor generator 200 and the direct current that is input to and output from the battery 100 (inverter device 300).
- One or more of a plurality of parameters including a voltage, an energization width of a voltage applied to the armature winding 211 of the motor generator 200, and a voltage phase of the voltage applied to the armature winding 211 of the motor generator 200 are used.
- the motor controller 340 may generate the signal and output the motor controller 340 to the field controller 230.
- the armature winding 211 is electrically connected to the AC side terminal of the power module 310.
- the power module 310 includes six switching semiconductor elements 311U, 311V, 311W, 312U, 312V, and 312W, and constitutes a power conversion circuit (main circuit) that converts power from direct current to alternating current and from alternating current to direct current. That is, for each phase, switching semiconductor elements 311U, 311V, 311W (source electrodes) constituting the upper arm and switching semiconductor elements 312U, 312V, 312W (drain electrodes) constituting the lower arm are electrically connected in series.
- the power conversion circuit is configured by configuring a series circuit called an arm and further connecting three-phase series circuits in parallel (three-phase bridge connection).
- a MOSFET metal oxide semiconductor field effect transistor
- An IGBT insulated gate bipolar transistor
- the power conversion circuit is configured by a three-phase bridge circuit in accordance with the number of phases of the armature winding 211.
- the armature winding 211 is a two-phase
- a six-phase is formed by a two-phase bridge.
- a power conversion circuit is constituted by a six-phase bridge.
- each arm is configured by connecting two or more switching semiconductor elements in parallel to distribute the current flowing through the switching semiconductor elements and to reduce the current flowing through each arm. do it.
- the MOSFET has a configuration in which a diode is electrically connected in reverse parallel to the drain electrode and the source electrode of the switching semiconductor element. For this reason, a diode is electrically connected in antiparallel between the drain electrode and the source electrode of each switching semiconductor element, thereby forming a rectifier circuit.
- the U-phase winding 211U of the armature winding 211 is electrically connected to the connection point between the source electrode of the switching semiconductor element 311U and the drain electrode of the switching semiconductor element 312U. Connected. Similarly, the V-phase winding 211V of the armature winding 211 is electrically connected to the midpoint of the V-phase arm. The W-phase winding 211W of the armature winding 211 is electrically connected to the middle point of the W-phase arm.
- the positive electrode side of the battery 100 is electrically connected to one end side of the power conversion circuit (bridge circuit), that is, the drain electrodes of the switching semiconductor elements 311U, 311V, and 311W.
- the negative electrode side of the battery 100 is electrically connected to the other end side of the power conversion circuit (bridge circuit), that is, the source electrodes of the switching semiconductor elements 312U, 312V, and 312W.
- Electrolytic capacitors 320 are electrically connected in parallel to both ends of the power conversion circuit (bridge circuit). The electrolytic capacitor 320 smoothes a DC voltage applied to both ends of the power conversion circuit (bridge circuit) from the battery 100 or a DC voltage applied to the battery 100 from both ends of the power conversion circuit (bridge circuit).
- a gate drive signal output from the drive circuit 330 is supplied to each gate electrode of the six switching semiconductor elements 311U, 311V, 311W, 312U, 312V, 312W. Thereby, each of the six switching semiconductor elements 311U, 311V, 311W, 312U, 312V, 312W performs a switching operation.
- the drive circuit 330 generates a gate drive signal based on the switching command signal output from the motor control device 340.
- the motor control device 340 includes a torque command signal output from the engine control device 8, a rotation signal output from a sensor for detecting the magnetic pole position of the field magnetic pole (rotor) 220 of the motor generator 200, the battery 100 and the inverter device.
- a signal corresponding to a plurality of input parameters including a voltage signal output from a sensor for detecting a DC voltage with respect to 300 is input as an input signal for controlling motor generator 200 and input to drive circuit 330.
- the switching command is calculated, and a signal corresponding to the command is output to the drive circuit 330.
- a piston position signal indicating the position of a piston that reciprocates in the cylinder of the engine 4 may be input to control the piston position when the engine 4 is stopped.
- the battery 100 includes a battery module 110 that is a power storage unit capable of storing and releasing electrical energy, a battery control device 120 that manages the state of the battery module 110 and controls charging / discharging of the battery module 110, and a battery
- the voltage sensor 130 and the current sensor 140 for measuring (detecting) the voltage and current between the terminals of the module 110, and the temperature sensor 150 for measuring (detecting) the temperature of the battery module 110 are provided as main components. Has been.
- the battery module 110 includes a single lead battery having a nominal output voltage of 12 volts (a battery having a configuration in which six electrode groups (output voltage of 2 volts) electrically connected in series are immersed in the electrolytic solution in the housing). ).
- the battery module 110 may be configured by using another secondary battery such as a lithium ion battery or a nickel metal hydride battery configured by electrical series connection or series-parallel connection of a plurality of single cells (battery cells). Absent.
- a plurality of lithium battery cells having an average output voltage of 3.6 volts are electrically connected in series to constitute an assembled battery.
- the inter-terminal voltage of each of the plurality of lithium battery cells is also measured (detected).
- a primary battery such as a fuel cell, or a capacitive battery such as an electric double layer capacitor or a hybrid capacitor may be used.
- the battery control device 120 is an electronic circuit device configured by a battery module 110 in which a single integrated circuit (IC) in which a plurality of electronic circuits are integrated into one is mounted on a circuit board. It may be called a battery state estimation device or a battery monitoring device.
- the circuit board on which the integrated circuit constituting the battery control device 120 is mounted is on the surface where the two charge / discharge terminals of the positive and negative electrodes of the battery module 110 are arranged (in the case of a square-shaped lead battery, the on-vehicle installation surface side) Is placed in a dedicated case on the opposite surface, that is, on the upper surface), in the vicinity of the positive electrode terminal, or in the portion near the charge / discharge terminal on the cable connected to the charge / discharge terminal.
- the integrated circuit constituting the battery control device 120 operates by generating an operating voltage (for example, 3 to 5 volts) using the battery module 110 as a power source, and is grounded to the chassis ground in the same manner as the negative side of the battery module 110.
- the chassis ground potential is used as the reference potential. For this reason, a voltage adjustment circuit is provided inside the integrated circuit constituting the battery control device 120.
- the battery control device 120 includes a plurality of other devices including the engine control device 8 via a communication circuit such as CAN (Controller Area Network), LIN (Local Interconnect Network), UART (Universal Asynchronous Receiver Receiver Transmitter), Bluetooth (registered trademark), and the like. Are connected to each other and send and receive each other's information by serial signal transmission.
- CAN Controller Area Network
- LIN Local Interconnect Network
- UART Universal Asynchronous Receiver Receiver Transmitter
- Bluetooth registered trademark
- the voltage sensor 130 is mounted on the circuit board of the battery control device 120 and is electrically connected between charge / discharge terminals of the battery module 110.
- the current sensor 140 is electrically connected to a connection portion between the positive electrode side charge / discharge terminal of the battery module 110 and the cable.
- a temperature sensor (for example, a thermistor or a thermocouple) 150 is attached to the outer surface of the battery module 110.
- the measurement signals output from the voltage sensor 130, the current sensor 140, and the temperature sensor 150 are input to the battery control device 120, respectively.
- the battery control apparatus 120 can recognize the state of the battery module 110, and based on the input information, the estimation calculation of the charging state and the deterioration state of the battery module 110, the starting performance determination of the engine 4, the battery module 110 Perform abnormality detection.
- the battery control device 120 measures (detects) the inter-terminal voltage, current, and temperature, which are primary physical quantities that can be directly measured (detected) by the battery module 110, and cannot directly measure (detect) based on them.
- the integrated circuit constituting the battery control device 120 includes a plurality of processing units including a measurement unit 121, a calculation unit 122, a communication unit 123, and a measurement parameter setting unit 124.
- the integrated circuit constituting the battery control device 120 has an internal power source for generating an operating voltage necessary for its operation using the battery module 110 as a power source, and a program for executing calculations in the calculation unit 122.
- a non-volatile memory for storing detection and estimated physical quantities, calculation parameters necessary for calculation, and the like are provided.
- the measurement unit 121 measures (detects) the voltage, current, and temperature of the battery module 110 based on measurement signals (analog signals) output from the voltage sensor 130, the current sensor 140, and the temperature sensor 150, and measures these ( Detection) It functions to output a digital signal corresponding to the information to the arithmetic unit 122.
- the measurement unit 121 includes a multiplexer (MUX) 121a that selects and outputs one of a plurality of analog signals input via the measurement signal input terminal 127, and a multiplexer 121a.
- MUX multiplexer
- An amplifier (AMP) 121b that amplifies the output analog signal and an analog-digital converter (ADC) that converts the analog signal amplified by the amplifier 121b into a digital signal and outputs the digital signal to the arithmetic unit 122 are provided.
- Measurement parameters necessary for these operations are set by signals output from the measurement parameter setting unit 124. A detailed description of the measurement parameters will be given later.
- the calculation unit 122 includes a plurality of digital signals related to voltage measurement, current measurement, and temperature measurement output from the measurement unit 121, previous measurement (detection) information and calculation information stored in the memory, calculation information necessary for calculation, and the like. Based on the input information, it performs an estimation calculation of the SOC and SOH of the battery module 110, determination of starting performance of the engine 4, detection of abnormality of the battery module 110, and the like, and functions to output the result to the communication unit.
- the arithmetic unit 122 includes a digital signal processor, a logic circuit, a register, a memory, and the like.
- the communication unit 123 generates a serial signal related to a plurality of pieces of calculation result information such as a result of the estimation calculation performed by the calculation unit 122, an abnormality diagnosis result, and a determination result, and the serial signal is transmitted from the communication terminal 125 to the communication circuit described above.
- the engine control device 8 or other control device such as a vehicle control device or motor control device 340 for integrated control of the entire vehicle, and other controls such as the engine control device 8 or vehicle control device or motor control device 340.
- a state determination information signal related to information necessary for determining the vehicle state, the operating state of the motor generator 200, and the like is received from the apparatus via the communication circuit and communication terminal 125 described above, and obtained from the received state determination information signal. It functions to output the state determination information thus obtained to the measurement parameter setting unit 124.
- the measurement parameter setting unit 124 includes a plurality of information such as state determination information input from the communication unit 123 and ignition key switch on / off information obtained from the digital signal input via the setting terminal 126.
- a vehicle state determination unit 124a for determining the vehicle state based on the input information, and a measurement parameter suitable for accurately estimating the state of the storage battery according to the vehicle state determined by the vehicle state determination unit 124a
- a measurement parameter setting processing unit 124b for outputting the measurement parameters set by the measurement parameter setting processing unit 124b to the measurement unit 121.
- the measurement parameter setting unit 124 includes a digital signal processor, a logic circuit, a register, a memory, and the like.
- the measurement parameter is a parameter related to the measurement condition of the measurement unit 121, and indicates a measurement channel and a measurement range in the multiplexer 121a, an amplification factor in the amplifier 121b, a sampling time and a measurement time interval in the analog-digital converter 121c, and the like.
- the vehicle state indicates on / off of the ignition key switch, engine start, vehicle running, vehicle stopped, charging, etc.
- the measurement parameter setting unit 124 determines whether or not it is time for the measurement unit 121 to perform measurement in S001. If it is determined that the measurement timing is not reached (No), each step from S002 to S005 is skipped, and the process returns to S001. If it is determined that the measurement unit 121 is to perform measurement (Yes), whether or not input information has been input from the communication unit 123 or the setting terminal 126 or whether a change from the previous state has been detected in S002. Judging. If it is determined that no input information has been input from the communication unit 123 or the setting terminal 126 or a change from the previous state has not been detected (No), it is not necessary to change the measurement parameter, so skip to S005.
- the measurement parameter set in the previous state is output to the measurement unit 121.
- the input is input from the communication unit 123 or the setting terminal 126 in S003.
- the vehicle state is determined based on the input information, and the process proceeds to S004.
- a measurement parameter is set based on the vehicle state determined in S003.
- measurement parameters corresponding to each vehicle state are stored in advance as a data table (map).
- the measurement parameter corresponding to the determined vehicle state is set by referring to the data table (map) in which the measurement parameter is set corresponding to each vehicle state. To do. Thereafter, the process proceeds to S005, and the set measurement parameter is output to the measurement unit 121. Then, the process returns to S001.
- FIG. 6 shows the relationship between the time variation of the waveform related to the voltage between the terminals of the battery, the waveform related to the current, and the waveform related to the temperature, and each vehicle state.
- the voltage waveform and the current waveform change greatly instantaneously due to the power supply to the starter when the engine is started, and change transiently due to charging / discharging by the in-vehicle electrical components and the generator when the vehicle is running.
- the state changes in a stable state.
- the peak value of the voltage and current and the transient change are important parameters for estimating the state of the battery module 110.
- SOH deterioration state
- it can be estimated from a change in internal resistance calculated from a voltage drop and a current value at the time of engine start. For this reason, a short sampling time and a wide measurement range are required. That is, high-speed measurement (detection) is required.
- the battery module 110 is composed of six electrode groups (battery cells) and a lead battery electrically connected in series
- the sampling time, voltage measurement range, and current measurement range Each is set as follows, and the peak voltage and peak current are measured (detected).
- the temperature waveform takes longer to change than the voltage waveform and the current waveform. For this reason, it can be made longer than the measurement interval of the voltage waveform and the current waveform.
- the temperature measurement interval is set larger than the voltage and current measurement interval, such that the voltage and current measurement interval is 1 [msec] and the temperature measurement interval is 1 [sec].
- FIG. 7 shows a waveform related to a voltage between terminals of a battery and a waveform related to a current in a vehicle that can be charged from an external power source such as a pure electric vehicle (a vehicle having a motor as the only drive source) and a plug-in hybrid vehicle.
- an external power source such as a pure electric vehicle (a vehicle having a motor as the only drive source) and a plug-in hybrid vehicle.
- the relationship between a time change, the time of charge / discharge at the time of vehicle travel, and the time of charge by an external power supply at the time of vehicle stop is shown.
- the parameter that is the measurement condition of the measurement unit 121 can be set to a preferable value according to each vehicle state shown in FIG. 6 and FIG. Can detect (measure) the physical quantity that can be measured by the battery module 110 with high accuracy, and can detect (measure) the physical quantity that can be measured by the battery module 110 at high speed in a vehicle state that requires high speed.
- the measurable physical quantity of the battery module 110 can be detected (measured) with high accuracy in any state of the vehicle, and the battery module 110 such as SOC and SOH calculated based on the measurement result.
- the state detection (estimation) accuracy can be improved.
- the battery 100 having higher performance than the conventional battery and the battery used in the battery 100 that can greatly contribute to further increasing demands such as ensuring safety in vehicles, improving fuel efficiency, and reducing environmental load on the global environment.
- a control device 120 can be provided.
- This embodiment is an improved example of the first embodiment, and the output of the analog-digital converter 121c is input to the measurement parameter setting unit 124.
- the absolute value of the voltage, current, and temperature digital output values of the battery module 110, the differential value with respect to time, and the integrated value are input to the measurement parameter setting unit 124 as vehicle condition determination elements in the measurement parameter setting unit 124.
- the vehicle state is determined by input, and measurement parameters for the measurement unit 121 are set according to the determined vehicle state. According to such a configuration, as shown in FIG. 6, for example, if the change in voltage and current in a certain time is small, the vehicle is stopped, and if a transient change exceeding a certain value occurs, the engine is started.
- the vehicle state can be determined regardless of the vehicle state estimation information input from the communication unit 123 and the setting terminal 126.
- S701 based on the measurement parameter measurement time interval, it is determined whether or not the measurement (detection) timing for estimating the state of the battery module 110 is reached. If negative (No), the process proceeds to S704, and if positive (Yes), the process proceeds to S702.
- S ⁇ b> 702 a process for setting a measurement parameter for measuring (detecting) a physical quantity measurable by the battery module 110 necessary for estimating the state of the battery module 110 is executed as a measurement parameter. Thereafter, the process proceeds to S703, and the measurement parameter set in S702 is output to the measurement unit 121. After this, the process proceeds to S704.
- S704 based on the measurement parameter measurement time interval, it is determined whether it is a measurement timing for capturing the vehicle state determination information. If the determination is negative (No), the process returns to S701. If the determination is affirmative (Yes), the process proceeds to S705. In S705, processing for setting a measurement parameter for measuring (detecting) a physical quantity measurable by the battery module 110 necessary for vehicle state determination is executed as a measurement parameter. Thereafter, the process proceeds to S706, and the measurement parameter set in S705 is output to the measurement unit 121.
- the process proceeds to S707, the measurable physical quantity of the battery module 110 measured (detected) in the measuring unit 121 is taken in the output (digital signal) of the analog-to-digital converter 121c, the vehicle state is determined, and the current The vehicle state is updated to the determined new vehicle state. Thereafter, the process returns to S701.
- a new measurement parameter is set based on the new vehicle state based on S707.
- the set new measurement parameter is output to the measurement unit 121 (S703).
- the measurement unit 121 measures (detects) a measurable physical quantity of the battery module 110 based on the new measurement parameter output in S703.
- the vehicle when the vehicle is stopped and a current change of 100 [A] occurs for a certain period of time, it is determined that the engine is started.
- 0 to 10 [A] is set as the current measurement range at the timing
- the measurement (detection) for estimating the state of the battery module 110 is set as the current measurement range at the measurement timing for capturing the vehicle state determination information. Since 0 to 200 [A], which is different from the current measurement range at the timing, is set, it is possible to prevent omission of determination of the vehicle state without reducing the estimation accuracy in the state estimation of the battery module 110.
- a method can be provided. Thereby, according to the present Example, the reliable high performance battery 100 and the battery control apparatus 120 used therefor can be provided.
- This embodiment is a modification of the second embodiment. Instead of inputting the output of the analog-digital converter 121c to the measurement parameter setting section 124, a comparison section 128 is provided, and the analog output of the amplifier 121b is passed through the comparison section 128. Are input to the measurement parameter setting unit 124.
- the comparison unit 128 compares the analog output value of the amplifier 121b with the threshold value output from the measurement parameter setting unit 124 as a measurement parameter, and outputs the comparison result to the measurement parameter setting unit 124 as vehicle state determination information. It is constituted by.
- the present embodiment described above it is possible to output to the measurement parameter setting unit 124 in a shorter time as compared with the configuration of the second embodiment, since the conversion time in the analog-digital converter 121c can be reduced.
- the voltage is 8 [V] or less, and it is determined that the engine is started
- 12 to 13 [V] is used as the voltage measurement range for measurement (detection) for estimating the state of the battery module 110. If the threshold value of the comparator 128 is set to 8 [V], the battery module 110 state estimation measurement and the vehicle state determination measurement can be performed at the same time.
- the case where the output of the amplifier 121b is used as the input of the comparator 121b has been described as an example.
- the output of the multiplexer 121a may be used as the input of the comparator 121b.
- a vehicle state determination measuring unit 129 uses information different from the input information input to the measurement parameter setting unit 124 via the communication unit 123 and the setting terminal 126 as information necessary for vehicle state determination.
- 12 is a signal processing unit provided for performing signal processing necessary for input to an amplifier, and as shown in FIG. 12, an amplifier 129a for amplifying the input analog signal and an analog signal output from the amplifier 129a
- An analog-to-digital converter 129b that converts the signal into a digital signal and outputs the converted digital signal as vehicle state determination information to the measurement parameter setting unit 124, or an input analog signal as shown in FIG.
- An amplifier 129a for amplifying the signal, an analog output value output from the amplifier 129a, and a measurement parameter Measurement parameter setting unit compares the threshold value output from 124, the comparison result, and a one and a comparator 129c for outputting the measurement parameter setting unit 124 as the vehicle state determination information as.
- the vehicle state determination measurement unit 129 receives a measurement signal (analog signal) from a sensor or electronic circuit different from the voltage sensor 130, the current sensor 140, and the temperature sensor 150 via the measurement signal input terminal 127, or a vehicle brake. Information signals (analog signals) relating to pressure information and vehicle speed information are input.
- the vehicle state determination measurement unit 129 converts the input measurement signal or information signal into an input information signal (digital signal) necessary for vehicle state determination in the measurement parameter setting unit 124, and sets the converted signal as a measurement parameter. To the unit 124.
- the measurement parameter output from the measurement parameter setting unit 124 is input to the vehicle state determination measurement unit 129.
- the measurement parameters are the measurement parameters of the amplifier 129a and the analog-digital converter 129b shown in FIG. 12, or the measurement parameters of the amplifier 129a and the comparator 129c shown in FIG. 13, and the amplification factor of the amplifier 129a and the sampling of the analog-digital converter 129b. These are time, measurement time interval, threshold value input to the comparator 129c, and the like.
- the threshold value input to the comparator 129c is a voltage value similar to the threshold value input to the comparator 128 of the third embodiment.
- This example is a modification of the second example, and the output of the calculation unit 122 is input to the measurement parameter setting unit 124.
- the SOC and SOH estimated by calculation by the calculation unit 122 are input to the measurement parameter setting unit 124 as vehicle condition determination elements in the measurement parameter setting unit 124 to determine the vehicle state, and this determination is made.
- the measurement parameters for the measurement unit 121 are set according to the vehicle state.
- the calculation unit 122 determines that the state of charge of the battery module 110 is close to full charge, measurement is performed near the overvoltage determination threshold. Since the range can be set, overvoltage due to overcharging of the battery module 110 can be prevented.
- the measurement unit 121 includes the multiplexer 121a, the amplifier 121b, and the analog-digital converter 121c has been described as an example.
- a configuration in which the analog-digital converter 121c is provided corresponding to the input (variation 1) or a configuration in which the amplifier 121b is not present (variation 2) may be employed.
- the configuration including the multiplexer 121a, the amplifier 121b, and the analog-digital converter 121c has been described as the measurement unit 121.
- the measurement unit 121 includes each sensor in the configuration.
- the measurement unit 121 may be configured with each sensor, the multiplexer 121a, and the amplifier 121b, that is, each sensor includes a configuration that does not include the analog-digital converter 121c.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Provided are a battery, which can highly accurately detect the state of the battery, and an electronic circuit device used for the battery.
The electronic circuit device has: a measuring section (121) which measures the voltage, current and temperature of a battery module (110); an operating section (122) which calculates the estimated values of the battery module (110) in the charged state and the degraded state, based on the measurement information obtained by the measurement performed by the measuring section (121); and a measurement parameter setting section (124) which sets parameters that indicate measurement conditions in the measuring section (121). The measurement parameter setting section (124) determines the state of a system wherein the battery module (110) is mounted as a power supply, and corresponding to the determined state of the system, the measurement parameter setting section sets measurement parameters.
Description
本発明は、蓄電装置及びそれに用いられる電子回路装置に関する技術、代表的には蓄電装置の状態の検出精度を向上させるための技術に関する。
The present invention relates to a technology related to a power storage device and an electronic circuit device used therefor, typically to a technology for improving the detection accuracy of the state of the power storage device.
蓄電装置及びそれに用いられる電子回路装置に関する背景技術としては、例えば特許文献1に開示された技術が知られている。特許文献1に開示された技術では、蓄電装置を構成する蓄電器の状態検出に必要な測定パラメータ、例えばサンプリング時間、測定時間間隔、測定チャネル、測定レンジなどを、状態検出の対象となる蓄電器の種類或いは構成に応じて、外部ディジタル情報により設定するようにしている。
For example, a technique disclosed in Patent Document 1 is known as a background art relating to a power storage device and an electronic circuit device used therefor. In the technique disclosed in Patent Document 1, the measurement parameters necessary for the state detection of the battery constituting the power storage device, such as sampling time, measurement time interval, measurement channel, measurement range, etc. Alternatively, it is set by external digital information according to the configuration.
近年、電動化の普及、災害時などの非常時に対する対応強化、クリーンエネルギーの導入促進などによって蓄電装置を用いたシステムが増えている。最近では、地球環境に対する環境負荷のさらなる低減、システム効率及びエネルギー効率のさらなる向上などの要求から、背景技術よりもさらに高性能な蓄電装置の提供が望まれている。この要望に対する対応案の一つとしては、蓄電装置を構成する蓄電器の状態の検出精度を向上させることが考えられる。
In recent years, systems using power storage devices are increasing due to the spread of electrification, enhanced response to emergencies such as disasters, and the introduction of clean energy. Recently, due to demands such as further reduction of the environmental load on the global environment and further improvement of system efficiency and energy efficiency, it is desired to provide a power storage device with higher performance than the background art. One possible solution to this demand is to improve the detection accuracy of the state of the battery constituting the power storage device.
代表的な本発明の一つは、蓄電器の状態を高精度に検出できる蓄電装置及びそれに用いられる電子回路装置を提供する。
One representative aspect of the present invention provides a power storage device capable of detecting the state of a power storage device with high accuracy and an electronic circuit device used therefor.
ここに、代表的な本発明の一つは、蓄電装置を構成する蓄電器に電気的に接続される負荷の状態或いは蓄電装置が備えられたシステムの状態に応じて、蓄電器の状態検出に必要な測定パラメータを設定する或いは可変することを特徴とする。
Here, one of the representative aspects of the present invention is necessary for detecting the state of the capacitor depending on the state of the load electrically connected to the capacitor constituting the power storage device or the state of the system provided with the power storage device. The measurement parameter is set or variable.
ここで、蓄電器の状態とは、蓄電器から充放電される電流及び電圧、蓄電器の温度などを含む物理量のうち、直接計測可能な物理量から計算される二次的な物理量を示す。また、測定パラメータとは、蓄電器の直接計測可能な物理量を計測するための計測回路、計測部から出力された信号を処理する処理回路などを含む複数の電子回路が作動或いは機能するにあたって必要となる設定値を示す。測定パラメータには、例えばサンプリング時間、測定時間間隔、測定チャネル、測定レンジなどがある。
Here, the state of the capacitor indicates a secondary physical quantity calculated from a physical quantity that can be directly measured among physical quantities including current and voltage charged / discharged from the capacitor, the temperature of the capacitor, and the like. The measurement parameter is necessary when a plurality of electronic circuits including a measurement circuit for measuring a physical quantity that can be directly measured by the capacitor and a processing circuit that processes a signal output from the measurement unit operate or function. Indicates the setting value. Examples of the measurement parameter include a sampling time, a measurement time interval, a measurement channel, and a measurement range.
代表的な本発明の一つによれば、負荷の状態或いはシステムの状態に対応した好ましい測定パラメータが設定される或いは好ましい測定パラメータに可変され、あらゆる状態において蓄電器の状態を高精度に検出できる。
According to one of the typical present invention, a preferable measurement parameter corresponding to a load state or a system state is set or changed to a preferable measurement parameter, and the state of the capacitor can be detected with high accuracy in any state.
以上説明した代表的な本発明の一つによれば、蓄電器の状態の検出精度を向上させることができるので、地球環境に対する環境負荷のさらなる低減、システム効率及びエネルギー効率のさらなる向上などの要求に対応できる、従来よりも高性能な蓄電装置及びそれに用いられる電子回路装置を提供できる。
According to one of the representative inventions described above, it is possible to improve the detection accuracy of the state of the battery, so that the demand for further reduction of the environmental load on the global environment, further improvement of the system efficiency and energy efficiency, etc. It is possible to provide a power storage device with higher performance than before and an electronic circuit device used therefor.
以下、本発明の実施例を図面に基づいて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
以下の実施例では、本発明を、車両のモータジェネレータ駆動システムの電源を構成するバッテリ、特に車両の内燃機関であるエンジンにベルトを介して機械的に接続され、エンジンの始動時、特に車両の停止時にエンジンを停止し、車両の発進時に再びエンジンを始動させるエンジン再始動時(アイドルストップ運転時)に、回転電機を電動機として動作させ、駆動力をエンジンに供給する機能と、エンジンの駆動力により回転電機を発電機として動作させて、回転電機の電源であるバッテリ、例えば12ボルト系の公称出力電圧12ボルトの鉛バッテリを充電すると共に、車載電気負荷に電力を供給する機能とを兼ね備えた低電圧系のモータジェネレータ駆動システムの上記バッテリに適用した場合を例に挙げて説明する。
In the following embodiments, the present invention is mechanically connected via a belt to a battery that constitutes a power source of a motor generator drive system of a vehicle, particularly an engine that is an internal combustion engine of the vehicle. The engine is stopped when it is stopped, and the engine is restarted when the vehicle is started (during idling stop operation). The rotating electric machine is operated as an electric motor and the driving force is supplied to the engine. The rotary electric machine is operated as a generator to charge a battery as a power source of the rotary electric machine, for example, a 12-volt lead battery with a nominal output voltage of 12 volts, and also has a function of supplying electric power to an in-vehicle electric load. A case where the present invention is applied to the battery of the low-voltage motor generator drive system will be described as an example.
バッテリとしては、鉛バッテリの他に、リチウムイオンバッテリ或いはニッケル水素バッテリなどを用いることができる。
As the battery, in addition to a lead battery, a lithium ion battery or a nickel metal hydride battery can be used.
モータジェネレータ駆動システムでは、上述のエンジン再始動に加えて、車両の加速時などの高負荷運転時に、回転電機を電動機として動作させて得られる駆動力をエンジンの駆動力に加えて車両を駆動するトルクアシスト運転を行うことができる。
In the motor generator drive system, in addition to the engine restart described above, the vehicle is driven by adding the driving force obtained by operating the rotating electric machine as an electric motor to the driving force of the engine during high load operation such as acceleration of the vehicle. Torque assist operation can be performed.
上述のような低電圧系のモータジェネレータ駆動システムでは、回転電機に対して電力変換装置及び制御装置を集積化(機電一体化)することができる。以下の実施例においては、回転電機と電力変換装置とを別体にした場合を例に挙げて説明するが、前述のように、回転電機と電力変換装置とを一体にした構成を採用しても構わない。
In the low-voltage motor generator drive system as described above, the power conversion device and the control device can be integrated (mechanical integration) with respect to the rotating electrical machine. In the following embodiments, the case where the rotating electrical machine and the power conversion device are separated will be described as an example. However, as described above, a configuration in which the rotating electrical machine and the power conversion device are integrated is adopted. It doesn't matter.
モータジェネレータ駆動システムの電源としては、上述のシステムよりも高電圧、例えば42ボルト系の公称出力電圧36ボルトの鉛バッテリ或いはリチウムイオンバッテリ若しくはニッケル水素バッテリ、さらに高電圧、例えば公称出力電圧100ボルト以上の鉛バッテリ或いはリチウムイオンバッテリ若しくはニッケル水素バッテリを用いることもできる。高電圧のモータジェネレータ駆動システムでは、回転電機を電動機として動作させて得られる駆動力のみを用いて車両を駆動する電動走行(EV(電気自動車)走行)運転を行うことができる。
As a power source for the motor generator driving system, a lead voltage, a lithium ion battery or a nickel metal hydride battery having a higher voltage than the above-described system, for example, a nominal output voltage of 36 volts of 42 volts, or a higher voltage, for example, a nominal output voltage of 100 volts or more. A lead battery, a lithium ion battery or a nickel metal hydride battery can also be used. In the high-voltage motor generator drive system, it is possible to perform an electric running (EV (electric vehicle) running) driving that drives the vehicle using only the driving force obtained by operating the rotating electrical machine as an electric motor.
車両としては、動力源としてエンジン及びモータを備えたハイブリッド自動車、モータを唯一の動力源とする電気自動車などの普通自動車、バス(乗合車両)、トラック(貨物車両)など、普通自動車よりも重量が大きい大型自動車、ハイブリッド電車などの鉄道車両、荷物の積み下ろし作業に用いられるフォークリフトトラック、土木作業や建設作業に用いられる車両など、作業に必要な装置を搭載した特殊車両などがある。以下の実施例においては、アイドルストップ運電モードを備えた簡易型のハイブリッド自動車を例に挙げて説明する。
As for vehicles, hybrid vehicles with engines and motors as power sources, ordinary vehicles such as electric vehicles with motors as the only power source, buses (passenger vehicles), trucks (cargo vehicles), etc. There are special vehicles equipped with equipment required for work, such as large-sized automobiles, railway vehicles such as hybrid trains, forklift trucks used for loading and unloading work, and vehicles used for civil engineering and construction work. In the following embodiments, a simple hybrid vehicle having an idle stop power transfer mode will be described as an example.
以下において説明するバッテリの構成は、工場、病院、ビルなどに設けられた非常用電源を構成するバッテリ、コンピュータ機器、サーバーなどのバックアップ用電源を構成するバッテリ、風力発電装置、家庭用太陽光発電などのクリーンエネルギー発電設備に用けられた蓄電装置を構成するバッテリなどに適用してもよい。
The configuration of the battery described below includes a battery constituting an emergency power source provided in factories, hospitals, buildings, etc., a battery constituting a backup power source for computer equipment, a server, etc., a wind power generator, and a household solar power generator. You may apply to the battery etc. which comprise the electrical storage apparatus used for clean energy power generation equipments.
アイドルストップは、赤信号などで車両が停止した時、ドライバーのブレーキペダルの踏み込み量に応じてエンジンをストップさせ、青信号などで車両が再び発進する時、ドライバーのアクセルペダルの踏み込み量に応じてエンジンを再始動させるという車両の運転モードの一つである。このような運転モードを備えた簡易型のハイブリッド自動車では、エンジンのアイドルストップによる燃費改善が期待できると共に、エンジンの排気による地球温暖化への影響を低減できる。
When the vehicle stops due to a red light, etc., the engine stops according to the amount of depression of the driver's brake pedal, and when the vehicle starts again due to a green light, etc. This is one of the driving modes of the vehicle that restarts the vehicle. In a simple hybrid vehicle equipped with such an operation mode, it is possible to expect an improvement in fuel consumption by idling the engine, and to reduce the influence of engine exhaust on global warming.
アイドルストップの運転モード機能を備えた簡易型のハイブリッド自動車に搭載されるモータジェネレータ駆動システムは、従来からバッテリの充電用として搭載されている発電機に電動機の機能を付加することにより実現できる。具体的には、スイッチング半導体素子のスイッチング動作により直交及び交直の両電力変換が可能な電力変換装置(インバータ装置)、及びスイッチング半導体素子のスイッチング動作を制御する制御装置を設け、発電機を電動機として駆動することにより実現できる。このように、モータジェネレータ駆動システムでは、エンジンに再始動のための回転動力を供給する電動機としての機能と、バッテリの充電及び補機類の駆動のための電力を供給する発電機としての機能とを一体化するので、小型省スペース化を実現できる。
A motor generator drive system mounted on a simple hybrid vehicle having an idle stop operation mode function can be realized by adding an electric motor function to a generator that has been conventionally mounted for charging a battery. Specifically, a power conversion device (inverter device) capable of performing both orthogonal and AC power conversion by switching operation of the switching semiconductor element, and a control device for controlling the switching operation of the switching semiconductor element are provided, and the generator is used as an electric motor. This can be realized by driving. Thus, in the motor generator drive system, a function as an electric motor that supplies rotational power for restarting the engine, and a function as a generator that supplies electric power for charging a battery and driving auxiliary equipment, Since it is integrated, a small space-saving can be realized.
また、低電圧系のモータジェネレータ駆動システムでは、電動機及び発電機として作動する回転電機に対して電力変換装置及び制御装置を集積化(機電一体化)できるので、さらに小型省スペース化を図ることができる。
Further, in the low voltage system motor generator drive system, the power conversion device and the control device can be integrated (mechanical integration) with respect to the rotating electrical machine that operates as an electric motor and a generator. it can.
簡易型のハイブリッド自動車においてバッテリは、モータ駆動、エンジン始動、車載電装品などへの電力供給に用いられることから、安全にかつ有効に使用できることが必要である。このため、バッテリには、その充電状態や劣化状態を監視するための電子回路装置(状態推定装置)が搭載され、その監視結果に応じてバッテリに対する充放電が管理されている。
In a simple hybrid vehicle, the battery is used for driving the motor, starting the engine, supplying electric power to the on-vehicle electrical components, etc., and therefore needs to be able to be used safely and effectively. For this reason, the battery is equipped with an electronic circuit device (state estimation device) for monitoring the state of charge and the deterioration state, and charging / discharging of the battery is managed according to the monitoring result.
最近、車両における安全性の確保、燃費の向上、地球環境に対する環境負荷の低減などの要求がさらに高くなってきている。このような要求に対してバッテリが応えるためには、バッテリの充放電制御に関係する充電状態や劣化状態などを含むバッテリの状態の検出(推定)精度を向上させる必要がある。バッテリの状態の検出(推定)精度を向上させるためには、バッテリの測定可能な物理量(例えば電圧、電流、温度など)の検出(測定)精度を向上させると共に、充放電による電圧及び電流の過渡的な変化に対応して検出(測定)速度を高速にする必要である。しかし、高精度かつ高速な検出(測定)を簡単な構成で実現することは容易ではない。
Recently, demands such as ensuring safety in vehicles, improving fuel efficiency, and reducing environmental impact on the global environment have become even higher. In order for the battery to respond to such a request, it is necessary to improve the detection (estimation) accuracy of the state of the battery including the charge state and the deterioration state related to the charge / discharge control of the battery. In order to improve the detection (estimation) accuracy of the battery state, the detection (measurement) accuracy of the measurable physical quantity (for example, voltage, current, temperature, etc.) of the battery is improved, and voltage and current transients due to charging and discharging are improved. Therefore, it is necessary to increase the detection (measurement) speed in response to a general change. However, it is not easy to realize high-precision and high-speed detection (measurement) with a simple configuration.
従来、バッテリの種類或いは構成に応じて、バッテリの測定可能な物理量の検出(測定)に必要な測定パラメータ、例えばサンプリング時間、測定時間間隔、測定チャネル、測定レンジなどを設定して、検出(測定)精度と検出(測定)速度を決定し、バッテリの充電状態や劣化状態を検出(推定)するという技術はあった。このような従来の技術では、測定パラメータが一義的に設定される。ところが、車両におけるバッテリの測定可能な物理量(例えば電圧、電流、温度など)は、車両状態やバッテリの負荷状態に応じて変化量や絶対値が大きく異なる。従って、これまで以上に高性能なバッテリを提供するためには、車両状態やバッテリの負荷の状態に応じて測定パラメータをその都度設定する或いは可変する必要がある。このような事実は、本願発明者らの研究や実験などによって見出されたものである。これに対して、従来の技術は、車両状態やバッテリの負荷状態に応じてバッテリの測定可能な物理量が大きく変化することがあること、それに伴って測定パラメータを設定する或いは可変する必要があることについて着眼していない。
Conventionally, depending on the type or configuration of the battery, measurement parameters necessary for detection (measurement) of the physical quantity that can be measured by the battery, such as sampling time, measurement time interval, measurement channel, measurement range, etc., are set and detected (measurement). ) There is a technique for determining (estimating) the state of charge and deterioration of a battery by determining accuracy and detection (measurement) speed. In such a conventional technique, the measurement parameters are uniquely set. However, the physical quantities (for example, voltage, current, temperature, etc.) that can be measured by the battery in the vehicle vary greatly depending on the vehicle state and the load state of the battery. Therefore, in order to provide a battery with higher performance than before, it is necessary to set or change the measurement parameter each time according to the vehicle state and the load state of the battery. Such facts have been found by the inventors' research and experiments. On the other hand, in the conventional technique, the measurable physical quantity of the battery may change greatly depending on the vehicle state or the load state of the battery, and the measurement parameter needs to be set or changed accordingly. Not focused on.
そこで、以下に説明する実施例では、車両の状態或いはバッテリに電気的に接続されるモータジェネレータの状態に応じて、バッテリの測定可能な物理量の検出(測定)に必要な測定パラメータを設定している或いは可変している。
Therefore, in the embodiment described below, measurement parameters necessary for detection (measurement) of a measurable physical quantity of the battery are set according to the state of the vehicle or the state of the motor generator electrically connected to the battery. Yes or variable.
ここで、バッテリの状態とは、バッテリから充放電される電流及び電圧、バッテリの温度などを含む物理量のうち、直接計測可能な物理量から計算される二次的な物理量を示す。また、測定パラメータとは、バッテリの状態を計測し、この計測によって得られたアナログ信号をディジタル信号に変換する測定部などを含む複数の電子回路部が作動或いは機能するにあたって必要となる測定条件を示す。測定パラメータには、例えばサンプリング時間、測定時間間隔、測定チャネル、測定レンジなどがある。
Here, the state of the battery indicates a secondary physical quantity calculated from a physical quantity that can be directly measured, among physical quantities including current and voltage charged / discharged from the battery, battery temperature, and the like. The measurement parameter is a measurement condition necessary for operating or functioning a plurality of electronic circuit units including a measurement unit that measures a battery state and converts an analog signal obtained by the measurement into a digital signal. Show. Examples of the measurement parameter include a sampling time, a measurement time interval, a measurement channel, and a measurement range.
以下に説明する実施例によれば、バッテリの測定可能な物理量が車両の状態或いはモータジェネレータの状態に応じて大きく変化しても、その変化に対応した好ましい測定パラメータが設定される或いは好ましい測定パラメータに可変されるので、車両或いはモータジェネレータのあらゆる状態に応じてバッテリの測定可能な物理量を高精度に検出(測定)できる。これにより、以下に説明する実施例によれば、バッテリの充放電に関係する充電状態や劣化状態などを含むバッテリの状態の検出(推定)精度を向上させることができる。従って、以下に説明する実施例によれば、車両における安全性の確保、燃費の向上、地球環境に対する環境負荷の低減などのさらに高まる要求に大きく貢献できる、従来よりも高性能なバッテリ及びそれに用いられるバッテリ制御装置を提供できる。
According to the embodiment described below, even if the physical quantity that can be measured by the battery changes greatly depending on the state of the vehicle or the state of the motor generator, the preferred measurement parameter corresponding to the change is set or the preferred measurement parameter. Therefore, the measurable physical quantity of the battery can be detected (measured) with high accuracy in accordance with any state of the vehicle or the motor generator. Thereby, according to the Example demonstrated below, the detection (estimation) precision of the state of a battery including the charge state relevant to charge / discharge of a battery, a deterioration state, etc. can be improved. Therefore, according to the embodiment described below, it is possible to greatly contribute to further increasing demands such as ensuring safety in a vehicle, improving fuel efficiency, and reducing environmental load on the global environment, and a battery having higher performance than that of the conventional battery and its use. The battery control device can be provided.
本発明の第1実施例を図1乃至図5に基づいて説明する。
A first embodiment of the present invention will be described with reference to FIGS.
まず、図1を用いて、モータジェネレータ駆動システムを搭載した簡易型のハイブリッド自動車1の構成を説明する。
First, the configuration of a simple hybrid vehicle 1 equipped with a motor generator drive system will be described with reference to FIG.
本実施例のハイブリッド自動車1は、内燃機関であるエンジン4を車両の駆動源としている。エンジン4から出力された回転駆動力(エンジントルク)は、複数の動力伝達機構(自動変速機5、デファレンシャルギア6など)を介して車軸4に伝達される。これにより、車軸4の両端に取り付けられた駆動輪(例えば前輪)2が駆動され、ハイブリッド自動車1が走行する。本実施例では、エンジン4として、ガソリンエンジンを搭載しているが、ディーゼルエンジン、天然ガスエンジン、水素エンジンなどの他のエンジンを駆動源として搭載しても構わない。また、本実施例では、駆動輪2を前輪としているが、後輪を駆動するようにしても構わない。
The hybrid vehicle 1 of this embodiment uses an engine 4 that is an internal combustion engine as a drive source of the vehicle. The rotational driving force (engine torque) output from the engine 4 is transmitted to the axle 4 through a plurality of power transmission mechanisms (such as the automatic transmission 5 and the differential gear 6). As a result, drive wheels (for example, front wheels) 2 attached to both ends of the axle 4 are driven, and the hybrid vehicle 1 travels. In this embodiment, a gasoline engine is mounted as the engine 4, but other engines such as a diesel engine, a natural gas engine, and a hydrogen engine may be mounted as a drive source. In this embodiment, the driving wheel 2 is a front wheel, but the rear wheel may be driven.
エンジン4の近傍(エンジン4の筐体の一側面)にはモータジェネレータ駆動システムが配置されている。モータジェネレータ駆動システムは、バッテリ100、モータジェネレータ200、インバータ装置300を主要コンポーネント機器として備えている。すなわちモータジェネレータ駆動システムは、従来よりバッテリ100の充電用発電装置として車両に搭載されたオルタネータを用いると共に、インバータ装置を新たに設置し、オルタネータでモータリングできるようにしたものであり、アイドルストップしたエンジン4を再始動(エンジン4が温まった状態でエンジン4を始動)する時、エンジン4による車両の駆動をアシストする時などにモータとして機能する。
A motor generator drive system is disposed in the vicinity of the engine 4 (one side surface of the casing of the engine 4). The motor generator drive system includes a battery 100, a motor generator 200, and an inverter device 300 as main component devices. In other words, the motor generator drive system uses an alternator mounted on the vehicle as a power generation device for charging the battery 100, and an inverter device is newly installed so that the motor can be motored by the alternator. It functions as a motor when the engine 4 is restarted (the engine 4 is started in a state where the engine 4 is warm), when driving of the vehicle by the engine 4 is assisted.
尚、エンジン4には、スタータと呼ばれる回転電機装置が搭載されており、エンジン4に回転動力を伝達できるようになっている。スタータは、エンジン4が冷えた状態でエンジン4を始動する時に用いられる始動装置であり、直流電源であるバッテリ100を駆動電源とする。
The engine 4 is equipped with a rotating electrical machine device called a starter so that rotational power can be transmitted to the engine 4. The starter is a starting device used when starting the engine 4 in a state where the engine 4 is cold, and uses a battery 100 as a DC power source as a driving power source.
モータジェネレータ200は、電機子(本実施例では固定子)210、及びこれに空隙を介して対向配置された界磁極(本実施例では回転子)220を備えた回転電機であり、エンジン4の筐体の一側面に固定され、その回転軸がエンジン4のクランク軸に、結合手段であるベルト7を介して機械的に連結されている。これにより、モータジェネレータ200とエンジン4との間において互いに回転動力(トルク)の授受が可能となり、力行時にはモータジェネレータ200からエンジン4に、発電時にはエンジン4からモータジェネレータ200に回転動力を伝達できる。本実施例では、ベルト7を結合手段として用いているが、チェーン、歯車などを結合手段としても構わない。
The motor generator 200 is a rotating electrical machine including an armature (stator in the present embodiment) 210 and a field pole (rotor in the present embodiment) 220 arranged to face the armature (stator in this embodiment). The rotating shaft is fixed to one side of the housing, and is mechanically connected to the crankshaft of the engine 4 via a belt 7 that is a coupling means. Thus, the rotational power (torque) can be exchanged between the motor generator 200 and the engine 4, and the rotational power can be transmitted from the motor generator 200 to the engine 4 during power running and from the engine 4 to the motor generator 200 during power generation. In this embodiment, the belt 7 is used as the coupling means, but a chain, a gear or the like may be used as the coupling means.
インバータ装置300は、スイッチング半導体素子のスイッチング動作によって電力を直流から交流、交流から直流に変換する電力変換装置であり、パワーモジュール310、パワーモジュール310の作動を制御するモータ制御装置340、パワーモジュール310に実装されたスイッチング半導体素子を、モータ制御装置340からの指令信号に基づいて駆動する駆動回路330、及びパワーモジュール310の直流側に電気的に並列に接続され、直流電圧を平滑する(直流電圧に重畳された交流分を除去する)電解コンデンサ320を備えている。
The inverter device 300 is a power conversion device that converts electric power from direct current to alternating current and alternating current to direct current by a switching operation of the switching semiconductor element. The inverter device 300 includes a power control module 340 that controls the operation of the power module 310, and a power module 310. Are connected in parallel to the drive circuit 330 for driving the switching semiconductor element mounted on the motor module 340 based on a command signal from the motor control device 340 and the DC side of the power module 310 to smooth the DC voltage (DC voltage). The electrolytic capacitor 320 is removed.
電機子210にはパワーモジュール310の交流側が電気的に接続されている。パワーモジュール310の直流側にはバッテリ100が電気的に接続されている。このように、モータジェネレータ駆動システムではバッテリ100を電源としている。バッテリ100は、14ボルト系の車載用直流電源を構成する公称出力電圧12ボルトの蓄電装置であり、車両の補機などの電気負荷及びモータジェネレータ駆動システムに直流電力を供給すると共に、モータジェネレータ駆動システムによって充電される。本実施例では、モータジェネレータ駆動システムの電源をバッテリ100としたが、バッテリ100とは別の蓄電装置、例えば電気二十層コンデンサなどの容量性を持つ装置をモータジェネレータ駆動システムの電源としても構わない。また、バッテリ100と容量性を持つ装置とによってハイブリッド電源を構成し、これをモータジェネレータ駆動システムの電源としても構わない。
The AC side of the power module 310 is electrically connected to the armature 210. The battery 100 is electrically connected to the DC side of the power module 310. Thus, the motor generator drive system uses the battery 100 as a power source. The battery 100 is a power storage device with a nominal output voltage of 12 volts that constitutes a 14-volt in-vehicle DC power supply. The battery 100 supplies DC power to an electric load such as an auxiliary machine of a vehicle and a motor generator drive system, and also drives a motor generator. Charged by the system. In this embodiment, the power source of the motor generator driving system is the battery 100. However, a power storage device different from the battery 100, for example, a capacitive device such as an electric twentieth capacitor may be used as the power source of the motor generator driving system. Absent. Alternatively, a hybrid power source may be configured by the battery 100 and a capacitive device, and this may be used as a power source for the motor generator drive system.
尚、符号8はエンジン制御装置を示す。エンジン制御装置8は、エンジン4のコンポネート機器である空気絞り弁、燃料噴射弁、吸排気弁などの駆動を制御すると共に、界磁制御器230にスイッチング指令の信号を出力して界磁制御器230のスイッチング動作を制御し、界磁巻線221に供給される界磁電流を制御する電子回路装置である。
In addition, the code | symbol 8 shows an engine control apparatus. The engine control device 8 controls driving of an air throttle valve, a fuel injection valve, an intake / exhaust valve, etc., which are components of the engine 4, and outputs a switching command signal to the field controller 230 to switch the field controller 230. The electronic circuit device controls the operation and controls the field current supplied to the field winding 221.
符号3は駆動輪2の車軸である。車軸3に対してエンジン4の駆動力が自動変速機5及びデファレンシャルギア6を介して伝達されることにより、駆動輪2が駆動される。
Numeral 3 is an axle of the drive wheel 2. The driving force of the engine 4 is transmitted to the axle 3 via the automatic transmission 5 and the differential gear 6 so that the driving wheel 2 is driven.
次に、図2に用いて、モータジェネレータ駆動システムの電気的な回路構成について具体的に説明する。
Next, the electrical circuit configuration of the motor generator drive system will be specifically described with reference to FIG.
モータジェネレータ100は、鉄心に巻かれたU相,V相,W相の3相の巻線211U,211V,211WがY(スター)結線された電機子巻線211を有する電機子(固定子)210と、磁極鉄心に巻かれた界磁巻線221を有する界磁(回転子)220とを備え、力行時には、三相交流電力の供給を受けて回転磁界を発生する電機子210と界磁220との磁気的作用により界磁220が回転磁界の回転速度に同期して回転し、発電時には、界磁220の界磁磁束が界磁220の回転によって電機子巻線211に鎖交することにより三相交流電力を発生して電機子巻線211から出力する巻線界磁型三相交流同期機である。本実施例では、電機子巻線211を三相巻線により構成したが、二相や六相など、他の多相巻線により構成しても構わない。また、本実施例では、モータジェネレータ200として巻線界磁型三相交流同期機を用いたが、永久磁石界磁式の同期機や誘導電動機など、他の交流回転電機を用いても構わない。さらに、本実施例では、電機子巻線211をY結線により構成したが、Δ(デルタ)結線により構成しても構わない。
The motor generator 100 includes an armature (stator) having an armature winding 211 in which U-phase, V-phase, and W- phase windings 211U, 211V, and 211W wound around an iron core are Y-connected. 210 and a field element (rotor) 220 having a field winding 221 wound around a magnetic core, and an armature 210 and a field element that generate a rotating magnetic field by receiving supply of three-phase AC power during powering The magnetic field 220 causes the field 220 to rotate in synchronization with the rotational speed of the rotating magnetic field, and the field magnetic flux of the field 220 is linked to the armature winding 211 by the rotation of the field 220 during power generation. Is a winding field type three-phase AC synchronous machine that generates three-phase AC power and outputs it from the armature winding 211. In this embodiment, the armature winding 211 is constituted by a three-phase winding, but may be constituted by other multi-phase windings such as two-phase or six-phase. In this embodiment, a wound field type three-phase AC synchronous machine is used as the motor generator 200. However, other AC rotating electric machines such as a permanent magnet field synchronous machine and an induction motor may be used. . Further, in this embodiment, the armature winding 211 is configured by Y connection, but may be configured by Δ (delta) connection.
界磁巻線221には界磁制御器230が電気的に接続されている。界磁制御器230はバッテリ100に電気的に接続され、バッテリ100から供給された界磁電流をスイッチング半導体素子のスイッチング動作により制御して界磁巻線221に供給する制御器であり、力行(始動、アシスト)時及び制動(停止)時には必要トルクが出力されるように、発電時には目標の充電電圧(一定電圧)が電機子巻線211からバッテリ100に供給されるように、エンジン制御装置8から出力されたスイッチング指令信号に基づいて界磁電流を制御する。界磁制御器230と界磁巻線221との間には、界磁制御器230に電気的に接続されたブラシ222、及び界磁巻線221に電気的に接続されたスリップリング223が設けられている。ブラシ222とスリップリング223の両者はお互いに摺動接触している。これにより、回転する界磁巻線221と界磁制御器230との間において界磁電流を授受できる。
A field controller 230 is electrically connected to the field winding 221. The field controller 230 is a controller that is electrically connected to the battery 100, controls the field current supplied from the battery 100 by the switching operation of the switching semiconductor element, and supplies it to the field winding 221. Output from the engine control unit 8 so that a target charging voltage (constant voltage) is supplied from the armature winding 211 to the battery 100 during power generation so that a necessary torque is output during assisting and braking (stopping). The field current is controlled based on the switching command signal. Between the field controller 230 and the field winding 221, a brush 222 electrically connected to the field controller 230 and a slip ring 223 electrically connected to the field winding 221 are provided. Both the brush 222 and the slip ring 223 are in sliding contact with each other. Thereby, a field current can be exchanged between the rotating field winding 221 and the field controller 230.
尚、本実施例では、界磁制御器230に対するスイッチング指令をエンジン制御装置8から出力しているが、そのスイッチング指令を、モータジェネレータ200の回転速度、バッテリ100(インバータ装置300)に入出力される直流電圧、モータジェネレータ200の電機子巻線211に印加さる電圧の通電幅、モータジェネレータ200の電機子巻線211に印加される電圧の電圧位相を含む複数のパラメータのいずれか一つ或いは複数を用いてモータ制御装置340により生成し、モータ制御装置340から界磁制御器230に対して出力するようにしても構わない。
In the present embodiment, a switching command for the field controller 230 is output from the engine control device 8, but the switching command is used for the rotational speed of the motor generator 200 and the direct current that is input to and output from the battery 100 (inverter device 300). One or more of a plurality of parameters including a voltage, an energization width of a voltage applied to the armature winding 211 of the motor generator 200, and a voltage phase of the voltage applied to the armature winding 211 of the motor generator 200 are used. The motor controller 340 may generate the signal and output the motor controller 340 to the field controller 230.
電機子巻線211はパワーモジュール310の交流側端子に電気的に接続されている。パワーモジュール310は6つのスイッチング半導体素子311U,311V,311W,312U,312V,312Wを備え、電力を直流から交流に、交流から直流に変換する電力変換回路(主回路)を構成している。すなわち各相毎に、上アームを構成するスイッチング半導体素子311U,311V,311W(ソース電極)と、下アームを構成するスイッチング半導体素子312U,312V,312W(ドレイン電極)とを電気的に直列に接続して、アームと呼ばれる直列回路を構成し、さらに三相の直列回路を電気的に並列に接続(三相ブリッジ接続)することにより、電力変換回路は構成されている。本実施例では、スイッチング半導体素子としてMOSFET(金属酸化物半導体型電界効果トランジスタ)を用いている。スイッチング半導体素子としてはIGBT(絶縁ゲート型バイポーラトランジスタ)を用いても構わない。
The armature winding 211 is electrically connected to the AC side terminal of the power module 310. The power module 310 includes six switching semiconductor elements 311U, 311V, 311W, 312U, 312V, and 312W, and constitutes a power conversion circuit (main circuit) that converts power from direct current to alternating current and from alternating current to direct current. That is, for each phase, switching semiconductor elements 311U, 311V, 311W (source electrodes) constituting the upper arm and switching semiconductor elements 312U, 312V, 312W (drain electrodes) constituting the lower arm are electrically connected in series. The power conversion circuit is configured by configuring a series circuit called an arm and further connecting three-phase series circuits in parallel (three-phase bridge connection). In this embodiment, a MOSFET (metal oxide semiconductor field effect transistor) is used as the switching semiconductor element. An IGBT (insulated gate bipolar transistor) may be used as the switching semiconductor element.
尚、本実施例では、電力変換回路を電機子巻線211の相数に合わせて三相ブリッジ回路で構成したが、電機子巻線211がニ相の場合にはニ相ブリッジにより、六相の場合には六相ブリッジにより電力変換回路を構成する。
In this embodiment, the power conversion circuit is configured by a three-phase bridge circuit in accordance with the number of phases of the armature winding 211. However, when the armature winding 211 is a two-phase, a six-phase is formed by a two-phase bridge. In this case, a power conversion circuit is constituted by a six-phase bridge.
また、各アームに流れる電流が大きい場合には、各アームを、2個以上のスイッチング半導体素子の並列接続から構成して、スイッチング半導体素子に流れる電流を分散し、1個あたりに流れる電流を小さくすればよい。
In addition, when the current flowing through each arm is large, each arm is configured by connecting two or more switching semiconductor elements in parallel to distribute the current flowing through the switching semiconductor elements and to reduce the current flowing through each arm. do it.
MOSFETは、スイッチング半導体素子のドレイン電極とソース電極との間に対して電気的に逆並列にダイオードが接続された構成になっている。このため、各スイッチング半導体素子のドレイン電極とソース電極との間には次の通りダイオードが電気的に逆並列に接続されており、これによって、整流回路が構成されている。
The MOSFET has a configuration in which a diode is electrically connected in reverse parallel to the drain electrode and the source electrode of the switching semiconductor element. For this reason, a diode is electrically connected in antiparallel between the drain electrode and the source electrode of each switching semiconductor element, thereby forming a rectifier circuit.
スイッチング半導体素子311U ダイオード313U
スイッチング半導体素子312U ダイオード314U
スイッチング半導体素子311V ダイオード313V
スイッチング半導体素子312V ダイオード314V
スイッチング半導体素子311W ダイオード313W
スイッチング半導体素子312W ダイオード314W
尚、スイッチング半導体素子としてIGBTを用いた場合には、別途、コレクタ電極とエミッタ電極との間にダイオード素子を電気的に逆並列に接続する必要がある。Switching semiconductor element 311U Diode 313U
Switching semiconductor element 312U Diode 314U
Switching semiconductor element 311V Diode 313V
Switching semiconductor element 312V Diode 314V
Switching semiconductor element 311W Diode 313W
Switching semiconductor element 312W Diode 314W
When an IGBT is used as the switching semiconductor element, it is necessary to separately connect a diode element between the collector electrode and the emitter electrode in antiparallel.
スイッチング半導体素子312U ダイオード314U
スイッチング半導体素子311V ダイオード313V
スイッチング半導体素子312V ダイオード314V
スイッチング半導体素子311W ダイオード313W
スイッチング半導体素子312W ダイオード314W
尚、スイッチング半導体素子としてIGBTを用いた場合には、別途、コレクタ電極とエミッタ電極との間にダイオード素子を電気的に逆並列に接続する必要がある。
Switching semiconductor element 312W Diode 314W
When an IGBT is used as the switching semiconductor element, it is necessary to separately connect a diode element between the collector electrode and the emitter electrode in antiparallel.
各アームの中点、すなわちU相のアームであれば、スイッチング半導体素子311Uのソース電極とスイッチング半導体素子312Uのドレイン電極との接続点には、電機子巻線211のU相巻線211Uが電気的に接続されている。これと同様に、V相アームの中点には電機子巻線211のV相巻線211Vが電気的に接続されている。W相アームの中点には電機子巻線211のW相巻線211Wが電気的に接続されている。
If it is the middle point of each arm, that is, the U-phase arm, the U-phase winding 211U of the armature winding 211 is electrically connected to the connection point between the source electrode of the switching semiconductor element 311U and the drain electrode of the switching semiconductor element 312U. Connected. Similarly, the V-phase winding 211V of the armature winding 211 is electrically connected to the midpoint of the V-phase arm. The W-phase winding 211W of the armature winding 211 is electrically connected to the middle point of the W-phase arm.
電力変換回路(ブリッジ回路)の一端側、すなわちスイッチング半導体素子311U,311V,311Wのドレイン電極にはバッテリ100の正極側が電気的に接続されている。電力変換回路(ブリッジ回路)の他端側、すなわちスイッチング半導体素子312U,312V,312Wのソース電極にはバッテリ100の負極側が電気的に接続されている。また、電力変換回路(ブリッジ回路)の両端には電解コンデンサ320が電気的に並列に接続されている。電解コンデンサ320は、バッテリ100から電力変換回路(ブリッジ回路)の両端に印加される直流電圧或いは電力変換回路(ブリッジ回路)の両端からバッテリ100に印加される直流電圧を平滑する。
The positive electrode side of the battery 100 is electrically connected to one end side of the power conversion circuit (bridge circuit), that is, the drain electrodes of the switching semiconductor elements 311U, 311V, and 311W. The negative electrode side of the battery 100 is electrically connected to the other end side of the power conversion circuit (bridge circuit), that is, the source electrodes of the switching semiconductor elements 312U, 312V, and 312W. Electrolytic capacitors 320 are electrically connected in parallel to both ends of the power conversion circuit (bridge circuit). The electrolytic capacitor 320 smoothes a DC voltage applied to both ends of the power conversion circuit (bridge circuit) from the battery 100 or a DC voltage applied to the battery 100 from both ends of the power conversion circuit (bridge circuit).
6つのスイッチング半導体素子311U,311V,311W,312U,312V,312Wの各々のゲート電極には、駆動回路330から出力されたゲート駆動信号が供給されている。これにより、6つのスイッチング半導体素子311U,311V,311W,312U,312V,312Wの各々はスイッチング動作する。駆動回路330は、モータ制御装置340から出力のスイッチング指令信号に基づいてゲート駆動信号を生成する。
A gate drive signal output from the drive circuit 330 is supplied to each gate electrode of the six switching semiconductor elements 311U, 311V, 311W, 312U, 312V, 312W. Thereby, each of the six switching semiconductor elements 311U, 311V, 311W, 312U, 312V, 312W performs a switching operation. The drive circuit 330 generates a gate drive signal based on the switching command signal output from the motor control device 340.
モータ制御装置340は、エンジン制御装置8から出力されたトルク指令信号、モータジェネレータ200の界磁極(回転子)220の磁極位置を検出するためのセンサから出力された回転信号、バッテリ100とインバータ装置300との間の直流電圧を検出するためのセンサから出力された電圧信号を含む複数の入力パラメータに対応する信号を、モータジェネレータ200を制御するための入力信号として入力し、駆動回路330に入力されるスイッチング指令を演算し、駆動回路330にその指令に対応する信号を出力する。この他、エンジン4の気筒内を往復運動するピストンの位置を示すピストン位置信号などを入力して、エンジン4停止時のピストン位置の制御を行ってもよい。
The motor control device 340 includes a torque command signal output from the engine control device 8, a rotation signal output from a sensor for detecting the magnetic pole position of the field magnetic pole (rotor) 220 of the motor generator 200, the battery 100 and the inverter device. A signal corresponding to a plurality of input parameters including a voltage signal output from a sensor for detecting a DC voltage with respect to 300 is input as an input signal for controlling motor generator 200 and input to drive circuit 330. The switching command is calculated, and a signal corresponding to the command is output to the drive circuit 330. In addition, a piston position signal indicating the position of a piston that reciprocates in the cylinder of the engine 4 may be input to control the piston position when the engine 4 is stopped.
バッテリ100は、電気的エネルギーの蓄積及び放出が可能な蓄電部であるバッテリモジュール110と、バッテリモジュール110の状態を管理し、バッテリモジュール110の充放電を制御するためのバッテリ制御装置120と、バッテリモジュール110の端子間電圧及び電流を計測(検出)するための電圧センサ130及び電流センサ140と、バッテリモジュール110の温度を計測(検出)するための温度センサ150とを主要構成要素として備え、構成されている。
The battery 100 includes a battery module 110 that is a power storage unit capable of storing and releasing electrical energy, a battery control device 120 that manages the state of the battery module 110 and controls charging / discharging of the battery module 110, and a battery The voltage sensor 130 and the current sensor 140 for measuring (detecting) the voltage and current between the terminals of the module 110, and the temperature sensor 150 for measuring (detecting) the temperature of the battery module 110 are provided as main components. Has been.
バッテリモジュール110は、公称出力電圧12ボルトの1個の鉛バッテリ(筐体内部の電解液に、電気的に直列に接続された6つの電極群(出力電圧2ボルト)が浸された構成のバッテリ)によって構成されている。
The battery module 110 includes a single lead battery having a nominal output voltage of 12 volts (a battery having a configuration in which six electrode groups (output voltage of 2 volts) electrically connected in series are immersed in the electrolytic solution in the housing). ).
バッテリモジュール110としては、複数の単電池(電池セル)の電気的な直列接続或いは直並列接続により構成されたリチウムイオンバッテリ或いはニッケル水素バッテリなど、他の二次電池を用いて構成しても構わない。この場合、鉛バッテリと同様の公称出力電圧が出力できるように、例えば平均的な出力電圧が3.6ボルトのリチウム電池セルを複数個、電気的に直列に接続して組電池を構成する。また、その組電池を備えたバッテリモジュール110の充放電を制御するために、バッテリモジュール110の端子間電圧の他に、複数のリチウム電池セルのそれぞれの端子間電圧も計測(検出)する。また、バッテリモジュール110としては、燃料電池などの一次電池や、電気二重層キャパシタ、ハイブリッドキャパシタなどの容量性を有する蓄電器を用いても構わない。
The battery module 110 may be configured by using another secondary battery such as a lithium ion battery or a nickel metal hydride battery configured by electrical series connection or series-parallel connection of a plurality of single cells (battery cells). Absent. In this case, in order to output the same nominal output voltage as that of the lead battery, for example, a plurality of lithium battery cells having an average output voltage of 3.6 volts are electrically connected in series to constitute an assembled battery. Moreover, in order to control charging / discharging of the battery module 110 provided with the assembled battery, in addition to the inter-terminal voltage of the battery module 110, the inter-terminal voltage of each of the plurality of lithium battery cells is also measured (detected). Further, as the battery module 110, a primary battery such as a fuel cell, or a capacitive battery such as an electric double layer capacitor or a hybrid capacitor may be used.
バッテリ制御装置120は、複数の電子回路を一つに集積した1個の集積回路(IC)が回路基板に実装されてバッテリモジュール110にから構成された電子回路装置であり、バッテリ状態管理装置或いはバッテリ状態推定装置若しくはバッテリ監視装置などと呼ばれる場合もある。バッテリ制御装置120を構成する集積回路が実装された回路基板は、バッテリモジュール110の正負極の二つの充放電端子が配置された面上(角型形状の鉛バッテリの場合、車載設置面側とは反対側の面上、すなわち上面上)或いは正極端子の近傍若しくは充放電端子に接続されるケーブル上の充放電端子に近い部分に、専用ケースに収納されて配置されている。
The battery control device 120 is an electronic circuit device configured by a battery module 110 in which a single integrated circuit (IC) in which a plurality of electronic circuits are integrated into one is mounted on a circuit board. It may be called a battery state estimation device or a battery monitoring device. The circuit board on which the integrated circuit constituting the battery control device 120 is mounted is on the surface where the two charge / discharge terminals of the positive and negative electrodes of the battery module 110 are arranged (in the case of a square-shaped lead battery, the on-vehicle installation surface side) Is placed in a dedicated case on the opposite surface, that is, on the upper surface), in the vicinity of the positive electrode terminal, or in the portion near the charge / discharge terminal on the cable connected to the charge / discharge terminal.
バッテリ制御装置120を構成する集積回路は、バッテリモジュール110を電源として動作電圧(例えば3~5ボルト)を生成して動作すると共に、バッテリモジュール110の負極側と同様に、シャーシグランドに接地され、シャーシグランドの電位を基準電位としている。このため、バッテリ制御装置120を構成する集積回路の内部には電圧調整回路が設けられている。
The integrated circuit constituting the battery control device 120 operates by generating an operating voltage (for example, 3 to 5 volts) using the battery module 110 as a power source, and is grounded to the chassis ground in the same manner as the negative side of the battery module 110. The chassis ground potential is used as the reference potential. For this reason, a voltage adjustment circuit is provided inside the integrated circuit constituting the battery control device 120.
バッテリ制御装置120は、CAN(Controller Area Network)、LIN(Local Interconnect Network)、UART(Universal Asynchronous Receiver Transmitter)、ブルートゥース(登録商標)などの通信回路を介して、エンジン制御装置8を含む複数の他の制御装置に対して接続され、お互いの情報をシリアル信号伝送により送受信している。
The battery control device 120 includes a plurality of other devices including the engine control device 8 via a communication circuit such as CAN (Controller Area Network), LIN (Local Interconnect Network), UART (Universal Asynchronous Receiver Receiver Transmitter), Bluetooth (registered trademark), and the like. Are connected to each other and send and receive each other's information by serial signal transmission.
電圧センサ130は、バッテリ制御装置120の回路基板に搭載されて、バッテリモジュール110の充放電端子間に電気的に接続されている。電流センサ140は、バッテリモジュール110の正極側充放電端子とケーブルとの接続部に電気的に接続されている。温度センサ(例えばサーミスタや熱電対など)150は、バッテリモジュール110の外表面に貼り付けられている。電圧センサ130、電流センサ140及び温度センサ150から出力された計測信号はそれぞれバッテリ制御装置120に入力されている。これにより、バッテリ制御装置120は、バッテリモジュール110の状態を認識でき、それらの入力情報に基づいて、バッテリモジュール110の充電状態及び劣化状態の推定演算、エンジン4の始動性能判別、バッテリモジュール110の異常検知などを実施する。
The voltage sensor 130 is mounted on the circuit board of the battery control device 120 and is electrically connected between charge / discharge terminals of the battery module 110. The current sensor 140 is electrically connected to a connection portion between the positive electrode side charge / discharge terminal of the battery module 110 and the cable. A temperature sensor (for example, a thermistor or a thermocouple) 150 is attached to the outer surface of the battery module 110. The measurement signals output from the voltage sensor 130, the current sensor 140, and the temperature sensor 150 are input to the battery control device 120, respectively. Thereby, the battery control apparatus 120 can recognize the state of the battery module 110, and based on the input information, the estimation calculation of the charging state and the deterioration state of the battery module 110, the starting performance determination of the engine 4, the battery module 110 Perform abnormality detection.
次に、図3及び図4を用いて、バッテリ制御装置120の機能的な構成について具体的に説明する。
Next, the functional configuration of the battery control device 120 will be specifically described with reference to FIGS. 3 and 4.
バッテリ制御装置120は、前述したように、バッテリモジュール110の直接計測(検出)できる一次物理量である端子間電圧、電流、温度を計測(検出)し、それらに基づいて、直接計測(検出)できない二次物理量である充電状態(State of chargeのことであり、以下、「SOC」と記述する)及び劣化状態(State of healthのことであり、以下、「SOH」と記述する)を演算により推定し、この推定されたSOC及びSOHを、バッテリモジュール110の充放電制御に必要な情報として、そらに対応する出力信号をエンジン制御装置8に出力するように機能する。
As described above, the battery control device 120 measures (detects) the inter-terminal voltage, current, and temperature, which are primary physical quantities that can be directly measured (detected) by the battery module 110, and cannot directly measure (detect) based on them. Estimate the secondary physical quantity (State of charge, hereinafter referred to as “SOC”) and deterioration state (State of health, hereinafter referred to as “SOH”) by calculation. Then, the estimated SOC and SOH are used as information necessary for charge / discharge control of the battery module 110 to function to output an output signal corresponding to the information to the engine control device 8.
その機能を達成するために、バッテリ制御装置120を構成する集積回路は、測定部121、演算部122、通信部123及び測定パラメータ設定部124を含む複数の処理部を備えている。また、図示省略したが、バッテリ制御装置120を構成する集積回路は、その動作に必要な動作電圧をバッテリモジュール110を電源として生成するための内部電源、演算部122において演算を実行するためのプログラム、検出や推定された物理量、演算に必要な演算パラメータなどを格納するための不揮発性メモリなどを備えている。
In order to achieve the function, the integrated circuit constituting the battery control device 120 includes a plurality of processing units including a measurement unit 121, a calculation unit 122, a communication unit 123, and a measurement parameter setting unit 124. Although not shown, the integrated circuit constituting the battery control device 120 has an internal power source for generating an operating voltage necessary for its operation using the battery module 110 as a power source, and a program for executing calculations in the calculation unit 122. In addition, a non-volatile memory for storing detection and estimated physical quantities, calculation parameters necessary for calculation, and the like are provided.
測定部121は、電圧センサ130、電流センサ140及び温度センサ150から出力された計測信号(アナログ信号)に基づいて、バッテリモジュール110の電圧、電流及び温度を計測(検出)し、これらの計測(検出)情報に対応するディジタル信号を演算部122に出力するように機能する。この機能を達成するために、測定部121は、計測信号入力端子127を介して入力された複数のアナログ信号のうち、1つの信号を選択して出力するマルチプレクサ(MUX)121aと、マルチプレクサ121aから出力されたアナログ信号を増幅する増幅器(AMP)121bと、増幅器121bによって増幅されたアナログ信号をディジタル信号に変換して演算部122に出力するアナログディジタル変換器(ADC)とを備えている。それらの動作に必要な測定パラメータは、測定パラメータ設定部124から出力された信号により設定されている。測定パラメータの詳細な説明は後述することにする。
The measurement unit 121 measures (detects) the voltage, current, and temperature of the battery module 110 based on measurement signals (analog signals) output from the voltage sensor 130, the current sensor 140, and the temperature sensor 150, and measures these ( Detection) It functions to output a digital signal corresponding to the information to the arithmetic unit 122. In order to achieve this function, the measurement unit 121 includes a multiplexer (MUX) 121a that selects and outputs one of a plurality of analog signals input via the measurement signal input terminal 127, and a multiplexer 121a. An amplifier (AMP) 121b that amplifies the output analog signal and an analog-digital converter (ADC) that converts the analog signal amplified by the amplifier 121b into a digital signal and outputs the digital signal to the arithmetic unit 122 are provided. Measurement parameters necessary for these operations are set by signals output from the measurement parameter setting unit 124. A detailed description of the measurement parameters will be given later.
演算部122は、測定部121から出力された、電圧計測、電流計測、温度計測に関するディジタル信号、メモリに格納された前の計測(検出)情報や演算情報、演算に必要な演算情報など複数の入力情報に基づいて、バッテリモジュール110のSOC及びSOHの推定演算、エンジン4の始動性能判別、バッテリモジュール110の異常検知などを実施し、その結果を通信部に出力するように機能する。この機能を達成するために、演算部122は、ディジタルシグナルプロセッサ、論理回路、レジスタ、メモリなどを備えている。
The calculation unit 122 includes a plurality of digital signals related to voltage measurement, current measurement, and temperature measurement output from the measurement unit 121, previous measurement (detection) information and calculation information stored in the memory, calculation information necessary for calculation, and the like. Based on the input information, it performs an estimation calculation of the SOC and SOH of the battery module 110, determination of starting performance of the engine 4, detection of abnormality of the battery module 110, and the like, and functions to output the result to the communication unit. In order to achieve this function, the arithmetic unit 122 includes a digital signal processor, a logic circuit, a register, a memory, and the like.
通信部123は、演算部122において推定演算された結果、異常診断結果、判別結果などの複数の演算結果情報に関するシリアル信号を生成して、そのシリアル信号を通信端子125から、前述した通信回路を介してエンジン制御装置8或いは車両全体を統合制御する車両制御装置若しくはモータ制御装置340などの他の制御装置に送信すると共に、エンジン制御装置8或いは車両制御装置若しくはモータ制御装置340などの他の制御装置から、車両状態の判定に必要となる情報やモータジェネレータ200の動作状態などに関する状態判定情報信号を、前述した通信回路及び通信端子125を介して受信し、この受信した状態判定情報信号から得られた状態判定情報を測定パラメータ設定部124に出力するように機能する。
The communication unit 123 generates a serial signal related to a plurality of pieces of calculation result information such as a result of the estimation calculation performed by the calculation unit 122, an abnormality diagnosis result, and a determination result, and the serial signal is transmitted from the communication terminal 125 to the communication circuit described above. Via the engine control device 8 or other control device such as a vehicle control device or motor control device 340 for integrated control of the entire vehicle, and other controls such as the engine control device 8 or vehicle control device or motor control device 340. A state determination information signal related to information necessary for determining the vehicle state, the operating state of the motor generator 200, and the like is received from the apparatus via the communication circuit and communication terminal 125 described above, and obtained from the received state determination information signal. It functions to output the state determination information thus obtained to the measurement parameter setting unit 124.
測定パラメータ設定部124は、図4に示すように、通信部123から入力された状態判定情報、設定端子126を介して入力されたディジタル信号から得られたイグニッションキースイッチのオンオフ情報などの複数の入力情報に基づいて車両状態を判定する車両状態判定部124aと、車両状態判定部124aによって判定された車両状態に応じて、蓄電池の状態を高精度に推定するのに適切な測定パラメータを設定処理する測定パラメータ設定処理部124bとを備え、測定パラメータ設定処理部124bによって設定処理された測定パラメータを測定部121に出力する。この機能を達成するために、測定パラメータ設定部124は、ディジタルシグナルプロセッサ、論理回路、レジスタ、メモリなどを備えている。
As shown in FIG. 4, the measurement parameter setting unit 124 includes a plurality of information such as state determination information input from the communication unit 123 and ignition key switch on / off information obtained from the digital signal input via the setting terminal 126. A vehicle state determination unit 124a for determining the vehicle state based on the input information, and a measurement parameter suitable for accurately estimating the state of the storage battery according to the vehicle state determined by the vehicle state determination unit 124a A measurement parameter setting processing unit 124b for outputting the measurement parameters set by the measurement parameter setting processing unit 124b to the measurement unit 121. In order to achieve this function, the measurement parameter setting unit 124 includes a digital signal processor, a logic circuit, a register, a memory, and the like.
ここで、測定パラメータとは、測定部121の測定条件に関するパラメータであり、マルチプレクサ121aにおける測定チャネルや測定レンジ、増幅器121bにおける増幅率、アナログディジタル変換器121cにおけるサンプリング時間や測定時間間隔などを示す。
Here, the measurement parameter is a parameter related to the measurement condition of the measurement unit 121, and indicates a measurement channel and a measurement range in the multiplexer 121a, an amplification factor in the amplifier 121b, a sampling time and a measurement time interval in the analog-digital converter 121c, and the like.
また、車両状態とは、イグニッションキースイッチのオンオフ、エンジン始動、車両走行中、車両停止中、充電中などを示す。
Also, the vehicle state indicates on / off of the ignition key switch, engine start, vehicle running, vehicle stopped, charging, etc.
次に、図5を用いて、測定パラメータ設定部124の処理の流れについて説明する。
Next, the processing flow of the measurement parameter setting unit 124 will be described with reference to FIG.
まず、測定パラメータ設定部124は、S001において、測定部121が測定を行うタイミングであるか否かを判断する。測定を行うタイミングではない(No)と判断した場合には、S002乃至S005の各ステップをスキップし、S001に戻る。測定部121が測定を行うタイミング(Yes)と判断した場合には、S002において、通信部123或いは設定端子126から入力情報の入力があったか否か又は前の状態からの変化が検知されたか否かを判断する。通信部123或いは設定端子126から入力情報の入力がなかった又は前の状態からの変化が検知されなかった(No)と判断した場合には、測定パラメータの変更が不要であるので、S005にスキップし、前の状態において設定した測定パラメータを測定部121に出力する。一方、通信部123或いは設定端子126から入力情報が入力された又は前の状態からの変化が検知された(Yes)と判断した場合には、S003において、通信部123或いは設定端子126から入力された入力情報に基づいて、車両状態を判定し、S004に進む。S004では、S003において判定された車両状態に基づいて、測定パラメータを設定処理する。ここで、測定パラメータ設定処理部124bのメモリには、予め、車両状態毎に対応した測定パラメータをデータテーブル(マップ)として格納している。従って、S004では、S003において判定された車両状態に基づいて、車両状態毎に対応して測定パラメータが設定されたデータテーブル(マップ)を参照し、判定された車両状態に対応する測定パラメータを設定する。この後、S005に進み、設定された測定パラメータを測定部121に出力する。そして、S001に戻る。
First, the measurement parameter setting unit 124 determines whether or not it is time for the measurement unit 121 to perform measurement in S001. If it is determined that the measurement timing is not reached (No), each step from S002 to S005 is skipped, and the process returns to S001. If it is determined that the measurement unit 121 is to perform measurement (Yes), whether or not input information has been input from the communication unit 123 or the setting terminal 126 or whether a change from the previous state has been detected in S002. Judging. If it is determined that no input information has been input from the communication unit 123 or the setting terminal 126 or a change from the previous state has not been detected (No), it is not necessary to change the measurement parameter, so skip to S005. Then, the measurement parameter set in the previous state is output to the measurement unit 121. On the other hand, when it is determined that input information is input from the communication unit 123 or the setting terminal 126 or a change from the previous state is detected (Yes), the input is input from the communication unit 123 or the setting terminal 126 in S003. The vehicle state is determined based on the input information, and the process proceeds to S004. In S004, a measurement parameter is set based on the vehicle state determined in S003. Here, in the memory of the measurement parameter setting processing unit 124b, measurement parameters corresponding to each vehicle state are stored in advance as a data table (map). Accordingly, in S004, based on the vehicle state determined in S003, the measurement parameter corresponding to the determined vehicle state is set by referring to the data table (map) in which the measurement parameter is set corresponding to each vehicle state. To do. Thereafter, the process proceeds to S005, and the set measurement parameter is output to the measurement unit 121. Then, the process returns to S001.
次に、図6及び図7を用いて、車両状態に対応する測定パラメータの設定方法について説明する。
Next, a measurement parameter setting method corresponding to the vehicle state will be described with reference to FIGS.
図6は、バッテリの端子間電圧に関する波形、電流に関する波形、温度に関する波形のそれぞれの時間的変化と、各車両状態との関係を示す。
FIG. 6 shows the relationship between the time variation of the waveform related to the voltage between the terminals of the battery, the waveform related to the current, and the waveform related to the temperature, and each vehicle state.
図6において、電圧波形及び電流波形は、エンジン始動時には、スタータへの電力供給により瞬時的に大きく変化し、車両走行時には、車載電装品や発電機による充放電により過渡的に変化し、車両停止時には、エンジン始動時及び車両走行時とは対称的に、発電の停止及び最低限の電気負荷の動作のみであることから安定した状態で変化する。
In FIG. 6, the voltage waveform and the current waveform change greatly instantaneously due to the power supply to the starter when the engine is started, and change transiently due to charging / discharging by the in-vehicle electrical components and the generator when the vehicle is running. Sometimes, in contrast to the time when the engine is started and the time when the vehicle is running, since the power generation is stopped and the operation of the minimum electric load is performed, the state changes in a stable state.
エンジン始動時において、電圧と電流のピーク値及び過渡的な変化は、バッテリモジュール110の状態推定において重要なパラメータになる。劣化状態(SOH)推定の一例として、エンジン始動時の電圧降下と電流値から計算される内部抵抗の変化から推定できる。このため、短いサンプリング時間、広い測定レンジが必要になる。すなわち高速な測定(検出)が必要になる。例えば本実施例のように、電極群(電池セル)が6つ、電気的に直列に接続された鉛バッテリによりバッテリモジュール110が構成されている場合、サンプリング時間、電圧測定レンジ及び電流測定レンジのそれぞれを次のように設定し、ピーク電圧及びピーク電流を測定(検出)する。
When the engine is started, the peak value of the voltage and current and the transient change are important parameters for estimating the state of the battery module 110. As an example of the deterioration state (SOH) estimation, it can be estimated from a change in internal resistance calculated from a voltage drop and a current value at the time of engine start. For this reason, a short sampling time and a wide measurement range are required. That is, high-speed measurement (detection) is required. For example, as in this embodiment, when the battery module 110 is composed of six electrode groups (battery cells) and a lead battery electrically connected in series, the sampling time, voltage measurement range, and current measurement range Each is set as follows, and the peak voltage and peak current are measured (detected).
サンプリング時間 0.1[msec]
電圧測定レンジ 5~15[V]
電流測定レンジ 0~1000[A]
車両停止時において、電圧及び電流の絶対値は、バッテリモジュール110の状態推定において重要なパラメータになる。充電状態(SOC)推定の一例として、車両停止時の負荷電流の少ない安定した状態の電圧の関数として計算できる。また、充電状態(SOC)はバッテリモジュール110からの充放電電流の積算値として計算することもできる。状態が安定し変化量が小さいので、長いサンプリング時間による高分解能化が必要になると共に、小さな測定レンジの設定が可能になる。すなわち高精度な測定(検出)が必要になる。例えば本実施例のように、電極群(電池セル)が6つ、電気的に直列に接続された鉛バッテリによりバッテリモジュール110が構成されている場合、サンプリング時間、電圧測定レンジ及び電流測定レンジのそれぞれを次のように設定し、高精度に測定(検出)する。 Sampling time 0.1 [msec]
Voltage measurement range 5 to 15 [V]
Current measurement range 0 to 1000 [A]
When the vehicle is stopped, the absolute values of the voltage and current become important parameters in estimating the state of thebattery module 110. As an example of the state of charge (SOC) estimation, it can be calculated as a function of a voltage in a stable state with a small load current when the vehicle is stopped. The state of charge (SOC) can also be calculated as an integrated value of the charge / discharge current from the battery module 110. Since the state is stable and the amount of change is small, high resolution with a long sampling time is required, and a small measurement range can be set. That is, highly accurate measurement (detection) is required. For example, as in this embodiment, when the battery module 110 is composed of six electrode groups (battery cells) and a lead battery electrically connected in series, the sampling time, voltage measurement range, and current measurement range Set each as follows and measure (detect) with high accuracy.
電圧測定レンジ 5~15[V]
電流測定レンジ 0~1000[A]
車両停止時において、電圧及び電流の絶対値は、バッテリモジュール110の状態推定において重要なパラメータになる。充電状態(SOC)推定の一例として、車両停止時の負荷電流の少ない安定した状態の電圧の関数として計算できる。また、充電状態(SOC)はバッテリモジュール110からの充放電電流の積算値として計算することもできる。状態が安定し変化量が小さいので、長いサンプリング時間による高分解能化が必要になると共に、小さな測定レンジの設定が可能になる。すなわち高精度な測定(検出)が必要になる。例えば本実施例のように、電極群(電池セル)が6つ、電気的に直列に接続された鉛バッテリによりバッテリモジュール110が構成されている場合、サンプリング時間、電圧測定レンジ及び電流測定レンジのそれぞれを次のように設定し、高精度に測定(検出)する。 Sampling time 0.1 [msec]
Voltage measurement range 5 to 15 [V]
Current measurement range 0 to 1000 [A]
When the vehicle is stopped, the absolute values of the voltage and current become important parameters in estimating the state of the
サンプリング時間 30[msec]
電圧測定レンジ 12~13[V]
電流測定レンジ 0~10[A]
また、図6において、温度波形は、電圧波形及び電流波形の変化に比べて変化にかかる時間が長い。このため、電圧波形及び電流波形の測定間隔に比べて長くすることが可能である。例えば車両走行時において、電圧と電流の測定間隔を1[msec]、温度の測定間隔を1[sec]というように、電圧と電流の測定間隔よりも温度の測定間隔を大きく設定する。このように設定することにより、バッテリ制御装置120における演算処理の負荷を軽減できる。 Sampling time 30 [msec]
Voltage measurement range 12-13 [V]
Current measurement range 0 to 10 [A]
In FIG. 6, the temperature waveform takes longer to change than the voltage waveform and the current waveform. For this reason, it can be made longer than the measurement interval of the voltage waveform and the current waveform. For example, when the vehicle is running, the temperature measurement interval is set larger than the voltage and current measurement interval, such that the voltage and current measurement interval is 1 [msec] and the temperature measurement interval is 1 [sec]. By setting in this way, the processing load on thebattery control device 120 can be reduced.
電圧測定レンジ 12~13[V]
電流測定レンジ 0~10[A]
また、図6において、温度波形は、電圧波形及び電流波形の変化に比べて変化にかかる時間が長い。このため、電圧波形及び電流波形の測定間隔に比べて長くすることが可能である。例えば車両走行時において、電圧と電流の測定間隔を1[msec]、温度の測定間隔を1[sec]というように、電圧と電流の測定間隔よりも温度の測定間隔を大きく設定する。このように設定することにより、バッテリ制御装置120における演算処理の負荷を軽減できる。 Sampling time 30 [msec]
Voltage measurement range 12-13 [V]
Current measurement range 0 to 10 [A]
In FIG. 6, the temperature waveform takes longer to change than the voltage waveform and the current waveform. For this reason, it can be made longer than the measurement interval of the voltage waveform and the current waveform. For example, when the vehicle is running, the temperature measurement interval is set larger than the voltage and current measurement interval, such that the voltage and current measurement interval is 1 [msec] and the temperature measurement interval is 1 [sec]. By setting in this way, the processing load on the
図7は、純粋な電気自動車(モータを唯一の駆動源とする車両)及びプラグインハイブリッド自動車などの外部電源からの充電が可能な自動車におけるバッテリの端子間電圧に関する波形、電流に関する波形のそれぞれの時間的変化と、車両走行時における充放電時と、車両停車時における、外部電源による充電時との関係を示す。
FIG. 7 shows a waveform related to a voltage between terminals of a battery and a waveform related to a current in a vehicle that can be charged from an external power source such as a pure electric vehicle (a vehicle having a motor as the only drive source) and a plug-in hybrid vehicle. The relationship between a time change, the time of charge / discharge at the time of vehicle travel, and the time of charge by an external power supply at the time of vehicle stop is shown.
車両走行時はモータ駆動などによる放電及び回生などによる充電により、電圧及び電流が過渡的に大きく変化する。このため、短いサンプリング時間、短い測定間隔、広い測定レンジの設定が必要になる。
When the vehicle is running, the voltage and current change transiently due to discharge by motor drive and charging by regeneration. For this reason, it is necessary to set a short sampling time, a short measurement interval, and a wide measurement range.
外部電源などによる充電時、特に定電流及び定電圧による充電の末期(SOCが100%に近づく時期)は、電圧及び電流の変化量が小さい。このため、長いサンプリング時間による高分解能で、長い測定間隔、小さな測定レンジの設定が必要になる。このように設定すれば、バッテリモジュール110の満充電付近(SOC100%近傍)において電圧及び電流を高精度に測定(検出)でき、SOC及びSOHを高精度に推定できる。
When charging with an external power source or the like, especially at the end of charging with a constant current and a constant voltage (when SOC approaches 100%), the amount of change in voltage and current is small. For this reason, it is necessary to set a long measurement interval and a small measurement range with high resolution with a long sampling time. With this setting, the voltage and current can be measured (detected) with high accuracy near the full charge of the battery module 110 (near SOC 100%), and the SOC and SOH can be estimated with high accuracy.
以上説明したように、本実施例では、図6及び図7に示す各車両状態に応じて、測定部121の測定条件となるパラメータを好ましい値に設定できるので、高精度が要求される車両状態においてはバッテリモジュール110の測定可能な物理量を高精度に検出(測定)でき、高速が要求される車両状態においてはバッテリモジュール110の測定可能な物理量を高速に検出(測定)できる。これにより、本実施例によれば、車両のあらゆる状態においてバッテリモジュール110の測定可能な物理量を高精度に検出(測定)でき、この測定結果に基づいて演算されるSOC及びSOHなどのバッテリモジュール110の状態の検出(推定)精度を向上させることができる。従って、本実施例によれば、車両における安全性の確保、燃費の向上、地球環境に対する環境負荷の低減などのさらに高まる要求に大きく貢献できる、従来よりも高性能なバッテリ100及びそれに用いられるバッテリ制御装置120を提供できる。
As described above, in the present embodiment, the parameter that is the measurement condition of the measurement unit 121 can be set to a preferable value according to each vehicle state shown in FIG. 6 and FIG. Can detect (measure) the physical quantity that can be measured by the battery module 110 with high accuracy, and can detect (measure) the physical quantity that can be measured by the battery module 110 at high speed in a vehicle state that requires high speed. Thus, according to the present embodiment, the measurable physical quantity of the battery module 110 can be detected (measured) with high accuracy in any state of the vehicle, and the battery module 110 such as SOC and SOH calculated based on the measurement result. The state detection (estimation) accuracy can be improved. Therefore, according to the present embodiment, the battery 100 having higher performance than the conventional battery and the battery used in the battery 100 that can greatly contribute to further increasing demands such as ensuring safety in vehicles, improving fuel efficiency, and reducing environmental load on the global environment. A control device 120 can be provided.
本発明の第2実施例を図8及び図9に基づいて説明する。
A second embodiment of the present invention will be described with reference to FIGS.
本実施例は第1実施例の改良例であり、アナログディジタル変換器121cの出力を測定パラメータ設定部124に入力している。
This embodiment is an improved example of the first embodiment, and the output of the analog-digital converter 121c is input to the measurement parameter setting unit 124.
この他の構成は第1実施例と同様である。第1実施例と同様の構成には第1実施例と同じ符号を付して、その説明を省略する。
Other configurations are the same as those in the first embodiment. The same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted.
本実施例では、バッテリモジュール110の電圧、電流、温度のディジタル出力値の絶対値、時間に対する微分値、積算値を、測定パラメータ設定部124における車両状態の判定要素として、測定パラメータ設定部124に入力して車両状態を判定し、この判定された車両状態に応じて、測定部121に対する測定パラメータを設定している。このような構成によれば、図6に示すように、例えば一定時間での電圧及び電流の変化が小さければ車両停止、一定値以上の過渡的な変化が発生すればエンジン始動、というように、通信部123及び設定端子126から入力される車両状態推定情報によらず、車両状態の判定が可能になる。
In the present embodiment, the absolute value of the voltage, current, and temperature digital output values of the battery module 110, the differential value with respect to time, and the integrated value are input to the measurement parameter setting unit 124 as vehicle condition determination elements in the measurement parameter setting unit 124. The vehicle state is determined by input, and measurement parameters for the measurement unit 121 are set according to the determined vehicle state. According to such a configuration, as shown in FIG. 6, for example, if the change in voltage and current in a certain time is small, the vehicle is stopped, and if a transient change exceeding a certain value occurs, the engine is started. The vehicle state can be determined regardless of the vehicle state estimation information input from the communication unit 123 and the setting terminal 126.
次に、図9を用いて、図8の構成における測定パラメータ設定部124の車両状態判定動作について説明する。
Next, the vehicle state determination operation of the measurement parameter setting unit 124 in the configuration of FIG. 8 will be described with reference to FIG.
まず、S701において、測定パラメータの測定時間間隔に基づいて、バッテリモジュール110の状態推定用の測定(検出)タイミングにあるか否かを判定する。否定(No)の場合にはS704に、肯定(Yes)の場合にはS702にそれぞれ進む。S702では、測定パラメータとして、バッテリモジュール110の状態推定に必要な、バッテリモジュール110の測定可能な物理量を測定(検出)するための測定パラメータを設定する処理を実行する。この後、S703に進み、S702において設定された測定パラメータを測定部121に出力する。この後、S704に進む。
First, in S701, based on the measurement parameter measurement time interval, it is determined whether or not the measurement (detection) timing for estimating the state of the battery module 110 is reached. If negative (No), the process proceeds to S704, and if positive (Yes), the process proceeds to S702. In S <b> 702, a process for setting a measurement parameter for measuring (detecting) a physical quantity measurable by the battery module 110 necessary for estimating the state of the battery module 110 is executed as a measurement parameter. Thereafter, the process proceeds to S703, and the measurement parameter set in S702 is output to the measurement unit 121. After this, the process proceeds to S704.
S704では、測定パラメータの測定時間間隔に基づいて、車両状態判定情報を取り込むための測定タイミングであるか否かを判定する。否定(No)の場合にはS701に戻り、肯定(Yes)の場合にはS705に進む。S705では、測定パラメータとして、車両状態判定に必要な、バッテリモジュール110の測定可能な物理量を測定(検出)するための測定パラメータを設定する処理を実行する。この後、S706に進み、S705において設定された測定パラメータを測定部121に出力する。この後、S707に進み、測定部121において測定(検出)された、バッテリモジュール110の測定可能な物理量を、アナログディジタル変換器121cの出力(ディジタル信号)を取り込み、車両状態を判定し、現在の車両状態を、判定した新たな車両状態に更新する。この後、S701に戻る。
In S704, based on the measurement parameter measurement time interval, it is determined whether it is a measurement timing for capturing the vehicle state determination information. If the determination is negative (No), the process returns to S701. If the determination is affirmative (Yes), the process proceeds to S705. In S705, processing for setting a measurement parameter for measuring (detecting) a physical quantity measurable by the battery module 110 necessary for vehicle state determination is executed as a measurement parameter. Thereafter, the process proceeds to S706, and the measurement parameter set in S705 is output to the measurement unit 121. Thereafter, the process proceeds to S707, the measurable physical quantity of the battery module 110 measured (detected) in the measuring unit 121 is taken in the output (digital signal) of the analog-to-digital converter 121c, the vehicle state is determined, and the current The vehicle state is updated to the determined new vehicle state. Thereafter, the process returns to S701.
以上の処理により、再びS701において、バッテリモジュール110の状態推定用の測定(検出)タイミングであると判定された場合には、S707に基づく新たな車両状態に基づいて、新たな測定パラメータが設定され(S702)、その設定された新たな測定パラメータが測定部121に出力される(S703)。この結果、測定部121においては、S703において出力された、新たな測定パラメータに基づいて、バッテリモジュール110の測定可能な物理量が測定(検出)される。
With the above processing, when it is determined again in S701 that the measurement (detection) timing for estimating the state of the battery module 110 is reached, a new measurement parameter is set based on the new vehicle state based on S707. (S702) The set new measurement parameter is output to the measurement unit 121 (S703). As a result, the measurement unit 121 measures (detects) a measurable physical quantity of the battery module 110 based on the new measurement parameter output in S703.
以上説明した本実施例によれば、例えば車両停止時、一定時間に100[A]の電流変化が発生すればエンジン始動と判定される場合において、バッテリモジュール110の状態推定用の測定(検出)タイミングにあるときの電流測定レンジとして0~10[A]が設定され、車両状態判定情報を取り込むための測定タイミングにあるときの電流測定レンジとして、バッテリモジュール110の状態推定用の測定(検出)タイミングにあるときの電流測定レンジとは異なる0~200[A]が設定されるので、バッテリモジュール110の状態推定における推定精度を低下させることなく、車両状態の判定の漏れを防止できる効果的な手法を提供できる。これにより、本実施例によれば、信頼性の高い高性能なバッテリ100及びそれに用いられるバッテリ制御装置120を提供できる。
According to the present embodiment described above, for example, when the vehicle is stopped and a current change of 100 [A] occurs for a certain period of time, it is determined that the engine is started. 0 to 10 [A] is set as the current measurement range at the timing, and the measurement (detection) for estimating the state of the battery module 110 is set as the current measurement range at the measurement timing for capturing the vehicle state determination information. Since 0 to 200 [A], which is different from the current measurement range at the timing, is set, it is possible to prevent omission of determination of the vehicle state without reducing the estimation accuracy in the state estimation of the battery module 110. A method can be provided. Thereby, according to the present Example, the reliable high performance battery 100 and the battery control apparatus 120 used therefor can be provided.
本発明の第3実施例を図10に基づいて説明する。
A third embodiment of the present invention will be described with reference to FIG.
本実施例は第2実施例の変形例であり、アナログディジタル変換器121cの出力を測定パラメータ設定部124に入力する代わりに、比較部128を設け、増幅器121bのアナログ出力を比較部128を介して測定パラメータ設定部124に入力している。
This embodiment is a modification of the second embodiment. Instead of inputting the output of the analog-digital converter 121c to the measurement parameter setting section 124, a comparison section 128 is provided, and the analog output of the amplifier 121b is passed through the comparison section 128. Are input to the measurement parameter setting unit 124.
この他の構成は第2実施例と同様である。第2実施例と同様の構成には第2実施例と同じ符号を付して、その説明を省略する。
Other configurations are the same as those in the second embodiment. The same components as those of the second embodiment are denoted by the same reference numerals as those of the second embodiment, and the description thereof is omitted.
比較部128では、増幅器121bのアナログ出力値と、測定パラメータとして測定パラメータ設定部124から出力された閾値とを比較し、この比較結果を、車両状態判定情報として測定パラメータ設定部124に出力するコンパレータによって構成されている。
The comparison unit 128 compares the analog output value of the amplifier 121b with the threshold value output from the measurement parameter setting unit 124 as a measurement parameter, and outputs the comparison result to the measurement parameter setting unit 124 as vehicle state determination information. It is constituted by.
以上説明した本実施例によれば、第2実施例の構成に比べ、アナログディジタル変換器121cにおける変換時間が削減できる分、短時間に測定パラメータ設定部124に出力することができる。また、例えば車両停止時、電圧が8[V]以下になればエンジン始動と判定される場合において、バッテリモジュール110の状態推定用の測定(検出)の電圧測定レンジとして12~13[V]が設定され、比較器128の閾値に8[V]を設定すれば、バッテリモジュール110の状態推定用の測定と、車両状態判定用の測定を、同時に実施できることで効果を奏する。
According to the present embodiment described above, it is possible to output to the measurement parameter setting unit 124 in a shorter time as compared with the configuration of the second embodiment, since the conversion time in the analog-digital converter 121c can be reduced. For example, when the vehicle is stopped and the voltage is 8 [V] or less, and it is determined that the engine is started, 12 to 13 [V] is used as the voltage measurement range for measurement (detection) for estimating the state of the battery module 110. If the threshold value of the comparator 128 is set to 8 [V], the battery module 110 state estimation measurement and the vehicle state determination measurement can be performed at the same time.
尚、本実施例では、増幅器121bの出力を比較器121bの入力とした場合を例に挙げて説明したが、マルチプレクサ121aの出力を比較器121bの入力としても構わない。
In this embodiment, the case where the output of the amplifier 121b is used as the input of the comparator 121b has been described as an example. However, the output of the multiplexer 121a may be used as the input of the comparator 121b.
本発明の第4実施例を図11乃至図13に基づいて説明する。
A fourth embodiment of the present invention will be described with reference to FIGS.
本実施例は第2実施例の改良例であり、図11に示すように、車両状態判定用測定部129が設けられている。車両状態判定用測定部129は、車両状態判定に必要な情報として、通信部123及び設定端子126を介して測定パラメータ設定部124に入力される入力情報とは異なる情報を、測定パラメータ設定部124に入力するのに必要な信号処理を行うために設けられた信号処理部であり、図12に示すように、入力されたアナログ信号を増幅する増幅器129aと、増幅器129aから出力されたアナログ信号をディジタル信号に変換して、この変換されたディジタル信号を車両状態判定情報として測定パラメータ設定部124に出力するアナログディジタル変換器129bとを備えたもの、或いは図13に示すように、入力されたアナログ信号を増幅する増幅器129aと、増幅器129aから出力されたアナログ出力値と、測定パラメータとして測定パラメータ設定部124から出力された閾値とを比較し、この比較結果を、車両状態判定情報として測定パラメータ設定部124に出力する比較器129cとを備えたものから構成されている。
This example is an improvement of the second example, and as shown in FIG. 11, a vehicle state determination measuring unit 129 is provided. The vehicle state determination measurement unit 129 uses information different from the input information input to the measurement parameter setting unit 124 via the communication unit 123 and the setting terminal 126 as information necessary for vehicle state determination. 12 is a signal processing unit provided for performing signal processing necessary for input to an amplifier, and as shown in FIG. 12, an amplifier 129a for amplifying the input analog signal and an analog signal output from the amplifier 129a An analog-to-digital converter 129b that converts the signal into a digital signal and outputs the converted digital signal as vehicle state determination information to the measurement parameter setting unit 124, or an input analog signal as shown in FIG. An amplifier 129a for amplifying the signal, an analog output value output from the amplifier 129a, and a measurement parameter Measurement parameter setting unit compares the threshold value output from 124, the comparison result, and a one and a comparator 129c for outputting the measurement parameter setting unit 124 as the vehicle state determination information as.
車両状態判定用測定部129には、計測信号入力端子127を介して、電圧センサ130、電流センサ140及び温度センサ150とは異なるセンサ或いは電子回路による計測信号(アナログ信号)、若しくは車両のブレーキの圧力情報や車両の速度情報に関する情報信号(アナログ信号)が入力されている。車両状態判定用測定部129は、入力された計測信号や情報信号を、測定パラメータ設定部124における車両状態判定に必要な入力情報信号(ディジタル信号)に変換し、この変換した信号を測定パラメータ設定部124に出力する。
The vehicle state determination measurement unit 129 receives a measurement signal (analog signal) from a sensor or electronic circuit different from the voltage sensor 130, the current sensor 140, and the temperature sensor 150 via the measurement signal input terminal 127, or a vehicle brake. Information signals (analog signals) relating to pressure information and vehicle speed information are input. The vehicle state determination measurement unit 129 converts the input measurement signal or information signal into an input information signal (digital signal) necessary for vehicle state determination in the measurement parameter setting unit 124, and sets the converted signal as a measurement parameter. To the unit 124.
また、車両状態判定用測定部129には、測定パラメータ設定部124から出力された測定パラメータが入力されている。測定パラメータは、図12に示す増幅器129a及びアナログディジタル変換器129bの測定パラメータ、或いは図13に示す増幅器129a及び比較器129cの測定パラメータであり、増幅器129aの増幅率、アナログディジタル変換器129bのサンプリング時間や測定時間間隔、比較器129cに入力される閾値などである。比較器129cに入力される閾値は第3実施例の比較器128に入力される閾値と同様に電圧値である。
The measurement parameter output from the measurement parameter setting unit 124 is input to the vehicle state determination measurement unit 129. The measurement parameters are the measurement parameters of the amplifier 129a and the analog-digital converter 129b shown in FIG. 12, or the measurement parameters of the amplifier 129a and the comparator 129c shown in FIG. 13, and the amplification factor of the amplifier 129a and the sampling of the analog-digital converter 129b. These are time, measurement time interval, threshold value input to the comparator 129c, and the like. The threshold value input to the comparator 129c is a voltage value similar to the threshold value input to the comparator 128 of the third embodiment.
この他の構成は第2実施例と同様である。第2実施例と同様の構成には第2実施例と同じ符号を付して、その説明を省略する。
Other configurations are the same as those in the second embodiment. The same components as those of the second embodiment are denoted by the same reference numerals as those of the second embodiment, and the description thereof is omitted.
以上説明した本実施例によれば、第2実施例と同様の作用効果を奏する。
According to the present embodiment described above, the same operational effects as those of the second embodiment can be obtained.
本発明の第5実施例を図14に基づいて説明する。
A fifth embodiment of the present invention will be described with reference to FIG.
本実施例は第2実施例の変形例であり、演算部122の出力を測定パラメータ設定部124に入力している。
This example is a modification of the second example, and the output of the calculation unit 122 is input to the measurement parameter setting unit 124.
この他の構成は第2実施例と同様である。第2実施例と同様の構成には第2実施例と同じ符号を付して、その説明を省略する。
Other configurations are the same as those in the second embodiment. The same components as those of the second embodiment are denoted by the same reference numerals as those of the second embodiment, and the description thereof is omitted.
本実施例では、演算部122によって演算により推定されたSOC及びSOHを、測定パラメータ設定部124における車両状態の判定要素として、測定パラメータ設定部124に入力して車両状態を判定し、この判定された車両状態に応じて、測定部121に対する測定パラメータを設定している。
In this embodiment, the SOC and SOH estimated by calculation by the calculation unit 122 are input to the measurement parameter setting unit 124 as vehicle condition determination elements in the measurement parameter setting unit 124 to determine the vehicle state, and this determination is made. The measurement parameters for the measurement unit 121 are set according to the vehicle state.
以上説明した本実施例によれば、例えば図7に示す車両停止時の充電時において、演算部122によって、バッテリモジュール110の充電状態が満充電に近いと判定した場合、過電圧判定閾値付近に測定レンジを設定することができるので、バッテリモジュール110の過充電による過電圧を防止することができる。
According to the present embodiment described above, for example, when charging when the vehicle is stopped as shown in FIG. 7, when the calculation unit 122 determines that the state of charge of the battery module 110 is close to full charge, measurement is performed near the overvoltage determination threshold. Since the range can be set, overvoltage due to overcharging of the battery module 110 can be prevented.
以上説明した第1乃至第6実施例では、測定部121の構成として、マルチプレクサ121a、増幅器121b、アナログディジタル変換器121cを備えた場合を例に挙げて説明したが、マルチプレクサ121aがなく、各センサの入力に対応してアナログディジタル変換器121cが設けられた構成(変形例1)或いは増幅器121bがない構成(変形例2)であっても構わない。
In the first to sixth embodiments described above, the case where the measurement unit 121 includes the multiplexer 121a, the amplifier 121b, and the analog-digital converter 121c has been described as an example. A configuration in which the analog-digital converter 121c is provided corresponding to the input (variation 1) or a configuration in which the amplifier 121b is not present (variation 2) may be employed.
また、以上説明した第1乃至第6実施例では、マルチプレクサ121a、増幅器121b、アナログディジタル変換器121cを備えた構成を測定部121として説明したが、それらの構成に各センサを含んで測定部121とする場合或いは各センサ、マルチプレクサ121a、増幅器121bを備えた構成、すなわち各センサが含み、アナログディジタル変換器121cが含まない構成をもって測定部121とする場合もある。
In the first to sixth embodiments described above, the configuration including the multiplexer 121a, the amplifier 121b, and the analog-digital converter 121c has been described as the measurement unit 121. However, the measurement unit 121 includes each sensor in the configuration. Alternatively, the measurement unit 121 may be configured with each sensor, the multiplexer 121a, and the amplifier 121b, that is, each sensor includes a configuration that does not include the analog-digital converter 121c.
Claims (14)
- 蓄電部の測定可能な物理量を測定する測定部と、
該測定部の測定結果に基づいて、前記蓄電部の状態を演算する演算部と、
前記測定部における測定条件を示すパラメータを設定するための設定部と、を有し、
前記設定部は、前記蓄電部を電源として搭載したシステムの状態を判定し、この判定したシステムの状態に応じて、前記パラメータを設定する、
ことを特徴とする蓄電装置用電子回路装置。 A measurement unit for measuring a measurable physical quantity of the power storage unit;
Based on the measurement result of the measurement unit, a calculation unit that calculates the state of the power storage unit;
A setting unit for setting a parameter indicating measurement conditions in the measurement unit,
The setting unit determines a state of a system in which the power storage unit is mounted as a power source, and sets the parameter according to the determined state of the system;
An electronic circuit device for a power storage device. - 請求項1に記載の蓄電装置用電子回路装置において、
前記システムは車両であり、
前記設定部は、前記システムの状態として、前記車両が、少なくともイグニッションキースイッチのオンオフ,車両走行中,車両停止中,充電中のいずれかであるか判定する、
ことを特徴とする蓄電装置用電子回路装置。 The electronic circuit device for a power storage device according to claim 1,
The system is a vehicle;
The setting unit determines, as the state of the system, whether the vehicle is at least on / off of an ignition key switch, running the vehicle, stopping the vehicle, or charging.
An electronic circuit device for a power storage device. - 請求項1又は2に記載の蓄電装置用電子回路装置において、
前記パラメータは、少なくとも、サンプリング時間,測定時間間隔,測定チャネル,測定レンジのいずれか一つである、
ことを特徴とする蓄電装置用電子回路装置。 The electronic circuit device for a power storage device according to claim 1 or 2,
The parameter is at least one of a sampling time, a measurement time interval, a measurement channel, and a measurement range.
An electronic circuit device for a power storage device. - 請求項1乃至3のいずれかに記載の蓄電装置用電子回路装置において、
前記システムの状態を判定する判定要素として、前記測定部の測定結果を加える、
ことを特徴とする蓄電装置用電子回路装置。 The electronic circuit device for a power storage device according to any one of claims 1 to 3,
As a determination element for determining the state of the system, the measurement result of the measurement unit is added,
An electronic circuit device for a power storage device. - 請求項1乃至3のいずれかに記載の蓄電装置用電子回路装置において、
前記システムの状態を判定する判定要素として、前記測定部の測定結果とは異なる別の測定可能な物理量を加える、
ことを特徴とする蓄電装置用電子回路装置。 The electronic circuit device for a power storage device according to any one of claims 1 to 3,
As a determination element for determining the state of the system, a measurable physical quantity different from the measurement result of the measurement unit is added,
An electronic circuit device for a power storage device. - 請求項4又は5に記載の蓄電装置用電子回路装置において、
前記システムの状態を判定する判定要素として、前記蓄電部の状態を加える、
ことを特徴とする蓄電装置用電子回路装置。 The electronic circuit device for a power storage device according to claim 4 or 5,
As a determination element for determining the state of the system, the state of the power storage unit is added.
An electronic circuit device for a power storage device. - 電気的エネルギーの蓄積及び放出が可能な蓄電部と、
該蓄電部の状態を管理する制御装置と、を有し、
前記制御装置は、蓄電部の測定可能な物理量を測定する測定部と、該測定部の測定結果に基づいて、前記蓄電部の状態を演算する演算部と、前記測定部における測定条件を示すパラメータを設定するための設定部と、を備え、
前記設定部は、前記蓄電部を電源として搭載したシステムの状態を判定し、この判定したシステムの状態に応じて、前記パラメータを設定する、
ことを特徴とする蓄電装置。 A power storage unit capable of storing and releasing electrical energy;
A control device for managing the state of the power storage unit,
The control device includes a measurement unit that measures a measurable physical quantity of the power storage unit, a calculation unit that calculates a state of the power storage unit based on a measurement result of the measurement unit, and a parameter that indicates a measurement condition in the measurement unit And a setting unit for setting
The setting unit determines a state of a system in which the power storage unit is mounted as a power source, and sets the parameter according to the determined state of the system;
A power storage device. - 車両に搭載される蓄電装置の状態を管理する電子回路装置であって、
前記蓄電装置を構成する蓄電部の測定可能な物理量を測定する測定部と、
該測定部の測定結果に基づいて、前記蓄電部の充電状態或いは前記蓄電部の劣化状態若しくは前記蓄電部の充電状態及び劣化状態を演算する演算部と、
前記測定部における測定条件を示すパラメータを設定するための設定部と、を有し、
前記設定部は、通信回線或いは外部端子を介して入力された情報に基づいて、車両の状態を判定する判定部、及び前記判定した車両の状態に応じて、前記パラメータを設定処理する設定処理部を有しており、
前記設定部には、複数の車両の状態のそれぞれに対応して複数の前記パラメータが記憶されており、
前記設定処理部は、前記複数の車両の状態のそれぞれに対応する複数のパラメータから、前記判定部の判定結果に対応した前記パラメータを設定する、
ことを特徴とする蓄電装置用電子回路装置。 An electronic circuit device for managing a state of a power storage device mounted on a vehicle,
A measuring unit for measuring a measurable physical quantity of the power storage unit constituting the power storage device;
Based on the measurement result of the measurement unit, a calculation unit that calculates the charge state of the power storage unit or the deterioration state of the power storage unit or the charge state and deterioration state of the power storage unit;
A setting unit for setting a parameter indicating measurement conditions in the measurement unit,
The setting unit is configured to determine a state of a vehicle based on information input via a communication line or an external terminal, and a setting processing unit configured to set the parameter according to the determined state of the vehicle Have
The setting unit stores a plurality of the parameters corresponding to each of a plurality of vehicle states,
The setting processing unit sets the parameter corresponding to the determination result of the determination unit from a plurality of parameters corresponding to each of the states of the plurality of vehicles.
An electronic circuit device for a power storage device. - 請求項8に記載の蓄電装置用電子回路装置において、
前記通信回線を介して入力される情報は、車両の走行中、車両の停止中、車両のアイドリングストップ中を含むモード情報であり、
前記外部端子を介して入力される情報は、イグニッションキー又はアクセサリスイッチのオンオフを示す状態の情報であり、
前記判定部は、前記通信回線或いは前記外部端子を介して入力された情報に基づいて、少なくともアイドリングストップ中、車両走行中、車両停止中でエンジンオン、車両停止中でエンジンオフ、充電中のいずれかであるかを判定する、
ことを特徴とする蓄電装置用電子回路装置。 The electronic circuit device for a power storage device according to claim 8,
The information input via the communication line is mode information including vehicle running, vehicle stopping, vehicle idling stop,
The information input via the external terminal is information indicating a state indicating ON / OFF of an ignition key or an accessory switch,
Based on the information input via the communication line or the external terminal, the determination unit is at least any one of idling stop, vehicle running, vehicle stop, engine on, vehicle stop, engine off, and charging. To determine whether
An electronic circuit device for a power storage device. - 請求項8又は9に記載の蓄電装置用電子回路装置において、
前記パラメータは、少なくとも、サンプリング時間、測定時間間隔、測定チャネル、測定レンジのいずれか一つである、
ことを特徴とする蓄電装置用電子回路装置。 The electronic circuit device for a power storage device according to claim 8 or 9,
The parameter is at least one of a sampling time, a measurement time interval, a measurement channel, and a measurement range.
An electronic circuit device for a power storage device. - 請求項8乃至10のいずれかに記載の蓄電装置用電子回路装置において、
前記車両の状態を判定する判定要素として、前記測定部の測定結果を加える、
ことを特徴とする蓄電装置用電子回路装置。 The electronic circuit device for a power storage device according to any one of claims 8 to 10,
As a determination element for determining the state of the vehicle, add the measurement result of the measurement unit,
An electronic circuit device for a power storage device. - 請求項8乃至10のいずれかに記載の蓄電装置用電子回路装置において、
前記車両の状態を判定する判定要素として、前記測定部とは異なる測定部により測定された測定結果を加える、
ことを特徴とする蓄電装置用電子回路装置。 The electronic circuit device for a power storage device according to any one of claims 8 to 10,
As a determination element for determining the state of the vehicle, a measurement result measured by a measurement unit different from the measurement unit is added,
An electronic circuit device for a power storage device. - 請求項11又は12に記載の蓄電装置用電子回路装置において、
前記車両の状態を判定する判定要素として、前記蓄電部の状態を加える、
ことを特徴とする蓄電装置用電子回路装置。 The electronic circuit device for a power storage device according to claim 11 or 12,
As a determination element for determining the state of the vehicle, the state of the power storage unit is added.
An electronic circuit device for a power storage device. - 車両に搭載され、車載負荷駆動或いは車両走行のための電気エネルギーを蓄積した蓄電装置であって、
電気エネルギーの蓄積及び放出が可能な蓄電部と、
該蓄電部の状態を管理する制御装置と、を有し、
前記制御装置は、前記蓄電部の測定可能な物理量を測定する測定部と、該測定部の測定結果に基づいて、前記蓄電部の充電状態或いは前記蓄電部の劣化状態若しくは前記蓄電部の充電状態及び劣化状態を演算する演算部と、前記測定部における測定条件を示すパラメータを設定するための設定部と、を有しており、
前記設定部は、通信回線或いは外部端子を介して入力された情報に基づいて、車両の状態を判定する判定部、及び前記判定した車両の状態に応じて、前記パラメータを設定処理する設定処理部を有しており、
前記設定部には、複数の車両の状態のそれぞれに対応して複数の前記パラメータが記憶されており、
前記設定処理部は、前記複数の車両の状態のそれぞれに対応する複数のパラメータから、前記判定部の判定結果に対応した前記パラメータを設定する、
ことを特徴とする蓄電装置。 A power storage device that is mounted on a vehicle and stores electrical energy for in-vehicle load driving or vehicle traveling,
A power storage unit capable of storing and releasing electrical energy;
A control device for managing the state of the power storage unit,
The control device includes a measurement unit that measures a measurable physical quantity of the power storage unit, and a charge state of the power storage unit, a deterioration state of the power storage unit, or a charge state of the power storage unit based on a measurement result of the measurement unit And a calculation unit for calculating the deterioration state, and a setting unit for setting parameters indicating measurement conditions in the measurement unit,
The setting unit is configured to determine a state of a vehicle based on information input via a communication line or an external terminal, and a setting processing unit configured to set the parameter according to the determined state of the vehicle Have
The setting unit stores a plurality of the parameters corresponding to each of a plurality of vehicle states,
The setting processing unit sets the parameter corresponding to the determination result of the determination unit from a plurality of parameters corresponding to each of the states of the plurality of vehicles.
A power storage device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011504617A JPWO2010106588A1 (en) | 2009-03-16 | 2009-10-05 | Power storage device and electronic circuit device used therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009062231 | 2009-03-16 | ||
JP2009-062231 | 2009-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010106588A1 true WO2010106588A1 (en) | 2010-09-23 |
Family
ID=42739262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/005136 WO2010106588A1 (en) | 2009-03-16 | 2009-10-05 | Electrical storage device and electronic circuit device used for same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2010106588A1 (en) |
WO (1) | WO2010106588A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012210862A (en) * | 2011-03-31 | 2012-11-01 | Furukawa Electric Co Ltd:The | Vehicle condition estimation device, temperature of secondary cell estimation device, and vehicle condition estimation method |
JP2013242281A (en) * | 2012-05-23 | 2013-12-05 | Mitsubishi Electric Corp | Secondary battery monitoring device |
KR20180056091A (en) * | 2016-11-18 | 2018-05-28 | 현대자동차주식회사 | Monitoring apparatus of battery for vehicle and method thereof |
JP2018151269A (en) * | 2017-03-14 | 2018-09-27 | 株式会社デンソー | Battery state estimation device |
JP2019533416A (en) * | 2016-09-27 | 2019-11-14 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | How to operate an in-vehicle power system |
WO2020240324A1 (en) * | 2019-05-24 | 2020-12-03 | 株式会社半導体エネルギー研究所 | Estimation method for internal resistance of secondary battery and anomaly detection system for secondary battery |
CN112304360A (en) * | 2019-08-02 | 2021-02-02 | 施耐德电器工业公司 | Apparatus for measuring operating parameters of electronic device and measuring method thereof |
CN113119737A (en) * | 2021-04-28 | 2021-07-16 | 中国第一汽车股份有限公司 | Power battery thermal runaway monitoring device and method and power battery system |
JP7552467B2 (en) | 2020-10-23 | 2024-09-18 | 株式会社デンソー | Battery management device and battery device |
US12119683B2 (en) | 2020-10-23 | 2024-10-15 | Denso Corporation | Battery management device and battery device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0591677A (en) * | 1991-09-27 | 1993-04-09 | Toshiba Corp | Battery charger |
JPH0851730A (en) * | 1994-06-03 | 1996-02-20 | Hitachi Koki Co Ltd | Battery charger |
JP2000294299A (en) * | 1999-04-02 | 2000-10-20 | Nec Mobile Energy Kk | Battery pack control device |
JP2008118841A (en) * | 2006-11-01 | 2008-05-22 | Samsung Sdi Co Ltd | Battery management system and its driving method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10125359A (en) * | 1996-10-21 | 1998-05-15 | Sanyo Electric Co Ltd | Battery cooling device for electric vehicle |
JP4578289B2 (en) * | 2005-03-15 | 2010-11-10 | 富士通テン株式会社 | Machine control device, maintenance control system, and maintenance control method |
-
2009
- 2009-10-05 WO PCT/JP2009/005136 patent/WO2010106588A1/en active Application Filing
- 2009-10-05 JP JP2011504617A patent/JPWO2010106588A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0591677A (en) * | 1991-09-27 | 1993-04-09 | Toshiba Corp | Battery charger |
JPH0851730A (en) * | 1994-06-03 | 1996-02-20 | Hitachi Koki Co Ltd | Battery charger |
JP2000294299A (en) * | 1999-04-02 | 2000-10-20 | Nec Mobile Energy Kk | Battery pack control device |
JP2008118841A (en) * | 2006-11-01 | 2008-05-22 | Samsung Sdi Co Ltd | Battery management system and its driving method |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012210862A (en) * | 2011-03-31 | 2012-11-01 | Furukawa Electric Co Ltd:The | Vehicle condition estimation device, temperature of secondary cell estimation device, and vehicle condition estimation method |
JP2013242281A (en) * | 2012-05-23 | 2013-12-05 | Mitsubishi Electric Corp | Secondary battery monitoring device |
JP2019533416A (en) * | 2016-09-27 | 2019-11-14 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | How to operate an in-vehicle power system |
KR20180056091A (en) * | 2016-11-18 | 2018-05-28 | 현대자동차주식회사 | Monitoring apparatus of battery for vehicle and method thereof |
KR102621295B1 (en) * | 2016-11-18 | 2024-01-08 | 현대자동차주식회사 | Monitoring apparatus of battery for vehicle and method thereof |
JP2018151269A (en) * | 2017-03-14 | 2018-09-27 | 株式会社デンソー | Battery state estimation device |
WO2020240324A1 (en) * | 2019-05-24 | 2020-12-03 | 株式会社半導体エネルギー研究所 | Estimation method for internal resistance of secondary battery and anomaly detection system for secondary battery |
US11906594B2 (en) | 2019-05-24 | 2024-02-20 | Semiconductor Energy Laboratory Co., Ltd. | Method for estimating internal resistance of secondary battery and anomaly detection system of secondary battery |
CN112304360A (en) * | 2019-08-02 | 2021-02-02 | 施耐德电器工业公司 | Apparatus for measuring operating parameters of electronic device and measuring method thereof |
JP7552467B2 (en) | 2020-10-23 | 2024-09-18 | 株式会社デンソー | Battery management device and battery device |
US12119683B2 (en) | 2020-10-23 | 2024-10-15 | Denso Corporation | Battery management device and battery device |
CN113119737A (en) * | 2021-04-28 | 2021-07-16 | 中国第一汽车股份有限公司 | Power battery thermal runaway monitoring device and method and power battery system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010106588A1 (en) | 2012-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010106588A1 (en) | Electrical storage device and electronic circuit device used for same | |
US7688023B2 (en) | Battery pack management method for HEV and EV | |
JP5653534B2 (en) | Control device for electric vehicle | |
US10054097B2 (en) | Vehicular control apparatus | |
US8648571B2 (en) | Electric-powered vehicle, method for estimating state of charge, and computer-readable storage medium having program stored therein for causing computer to execute method for estimating state of charge | |
JP5713111B2 (en) | Vehicle control apparatus and control method | |
US10668812B2 (en) | Power supply system | |
JP5500250B2 (en) | VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD | |
EP1587201A1 (en) | Battery power circuit | |
US8922228B2 (en) | Control method and a control apparatus in a hybrid type construction apparatus | |
US10926642B2 (en) | Electric vehicle | |
JP2011087408A (en) | Power supply system of vehicle | |
JP6186248B2 (en) | Inverter abnormality determination device | |
JP2009219180A (en) | Electricity accumulating unit | |
JP6042192B2 (en) | Vehicle power supply | |
US20130271086A1 (en) | Electric Power Supply System and Vehicle Having the Same Mounted Therein, and Method of Controlling Electric Power Storage Device | |
KR20120004670A (en) | Battery sensor for vehicle | |
US10464550B2 (en) | Abnormality detection of current sensor for electrically heated catalyst device in hybrid vehicle | |
JP2004325263A (en) | Self-discharge amount detection device of battery | |
CN117060555A (en) | Power supply system and state determination method for relay in power supply system | |
KR20170007937A (en) | Hybrid vehicle low battery soc estimating method | |
JPH09308117A (en) | Battery residual capacity measuring device | |
JP2021047032A (en) | Estimation device, estimation method, and vehicle | |
JP2009025032A (en) | Battery state detection device and method, and output control device and method | |
JP2007237809A (en) | Power supply system for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09841796 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011504617 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09841796 Country of ref document: EP Kind code of ref document: A1 |